open Util open Names open Term (* Bytecode *) type values type reloc_table type to_patch_substituted (*Retroknowledge *) type action type retroknowledge type engagement = ImpredicativeSet type polymorphic_arity = { poly_param_levels : Univ.universe option list; poly_level : Univ.universe; } type constant_type = | NonPolymorphicType of constr | PolymorphicArity of rel_context * polymorphic_arity type substitution_domain = MSI of mod_self_id | MBI of mod_bound_id | MPI of module_path module Umap = Map.Make(struct type t = substitution_domain let compare = Pervasives.compare end) type resolver type substitution = (module_path * resolver option) Umap.t type 'a subst_fun = substitution -> 'a -> 'a let fold_subst fs fb fp = Umap.fold (fun k (mp,_) acc -> match k with MSI msid -> fs msid mp acc | MBI mbid -> fb mbid mp acc | MPI mp1 -> fp mp1 mp acc) let empty_subst = Umap.empty let add_msid msid mp = Umap.add (MSI msid) (mp,None) let add_mbid mbid mp = Umap.add (MBI mbid) (mp,None) let add_mp mp1 mp2 = Umap.add (MPI mp1) (mp2,None) let map_msid msid mp = add_msid msid mp empty_subst let map_mbid mbid mp = add_mbid mbid mp empty_subst let map_mp mp1 mp2 = add_mp mp1 mp2 empty_subst let subst_mp0 sub mp = (* 's like subst *) let rec aux mp = match mp with | MPself sid -> let mp',resolve = Umap.find (MSI sid) sub in mp',resolve | MPbound bid -> let mp',resolve = Umap.find (MBI bid) sub in mp',resolve | MPdot (mp1,l) as mp2 -> begin try let mp',resolve = Umap.find (MPI mp2) sub in mp',resolve with Not_found -> let mp1',resolve = aux mp1 in MPdot (mp1',l),resolve end | _ -> raise Not_found in try Some (aux mp) with Not_found -> None let subst_mp0 sub mp = (* 's like subst *) let rec aux mp = match mp with | MPself sid -> fst (Umap.find (MSI sid) sub) | MPbound bid -> fst (Umap.find (MBI bid) sub) | MPdot (mp1,l) as mp2 -> begin try fst (Umap.find (MPI mp2) sub) with Not_found -> MPdot (aux mp1,l) end | _ -> raise Not_found in try Some (aux mp) with Not_found -> None let subst_mp sub mp = match subst_mp0 sub mp with None -> mp | Some mp' -> mp' let subst_kn0 sub kn = let mp,dir,l = repr_kn kn in match subst_mp0 sub mp with Some mp' -> Some (make_kn mp' dir l) | None -> None let subst_kn sub kn = match subst_kn0 sub kn with None -> kn | Some kn' -> kn' let subst_con sub con = let mp,dir,l = repr_con con in match subst_mp0 sub mp with None -> con | Some mp' -> make_con mp' dir l let subst_con0 sub con = let mp,dir,l = repr_con con in match subst_mp0 sub mp with None -> None | Some mp' -> let con' = make_con mp' dir l in Some (Const con') let rec map_kn f f' c = let func = map_kn f f' in match c with | Const kn -> (match f' kn with None -> c | Some const ->const) | Ind (kn,i) -> (match f kn with None -> c | Some kn' -> Ind (kn',i)) | Construct ((kn,i),j) -> (match f kn with None -> c | Some kn' -> Construct ((kn',i),j)) | Case (ci,p,ct,l) -> let ci_ind = let (kn,i) = ci.ci_ind in (match f kn with None -> ci.ci_ind | Some kn' -> kn',i ) in let p' = func p in let ct' = func ct in let l' = array_smartmap func l in if (ci.ci_ind==ci_ind && p'==p && l'==l && ct'==ct)then c else Case ({ci with ci_ind = ci_ind}, p',ct', l') | Cast (ct,k,t) -> let ct' = func ct in let t'= func t in if (t'==t && ct'==ct) then c else Cast (ct', k, t') | Prod (na,t,ct) -> let ct' = func ct in let t'= func t in if (t'==t && ct'==ct) then c else Prod (na, t', ct') | Lambda (na,t,ct) -> let ct' = func ct in let t'= func t in if (t'==t && ct'==ct) then c else Lambda (na, t', ct') | LetIn (na,b,t,ct) -> let ct' = func ct in let t'= func t in let b'= func b in if (t'==t && ct'==ct && b==b') then c else LetIn (na, b', t', ct') | App (ct,l) -> let ct' = func ct in let l' = array_smartmap func l in if (ct'== ct && l'==l) then c else App (ct',l') | Evar (e,l) -> let l' = array_smartmap func l in if (l'==l) then c else Evar (e,l') | Fix (ln,(lna,tl,bl)) -> let tl' = array_smartmap func tl in let bl' = array_smartmap func bl in if (bl == bl'&& tl == tl') then c else Fix (ln,(lna,tl',bl')) | CoFix(ln,(lna,tl,bl)) -> let tl' = array_smartmap func tl in let bl' = array_smartmap func bl in if (bl == bl'&& tl == tl') then c else CoFix (ln,(lna,tl',bl')) | _ -> c let subst_mps sub = map_kn (subst_kn0 sub) (subst_con0 sub) let rec replace_mp_in_mp mpfrom mpto mp = match mp with | _ when mp = mpfrom -> mpto | MPdot (mp1,l) -> let mp1' = replace_mp_in_mp mpfrom mpto mp1 in if mp1==mp1' then mp else MPdot (mp1',l) | _ -> mp let replace_mp_in_con mpfrom mpto kn = let mp,dir,l = kn in let mp'' = replace_mp_in_mp mpfrom mpto mp in if mp==mp'' then kn else (mp'', dir, l) type 'a lazy_subst = | LSval of 'a | LSlazy of substitution * 'a type 'a substituted = 'a lazy_subst ref let from_val a = ref (LSval a) let force fsubst r = match !r with | LSval a -> a | LSlazy(s,a) -> let a' = fsubst s a in r := LSval a'; a' let join (subst1 : substitution) (subst2 : substitution) = let apply_subst (sub : substitution) key (mp,_) = match subst_mp0 sub mp with None -> mp,None | Some mp' -> mp',None in let subst = Umap.mapi (apply_subst subst2) subst1 in (Umap.fold Umap.add subst2 subst) let subst_key subst1 subst2 = let replace_in_key key mp sub= let newkey = match key with | MPI mp1 -> begin match subst_mp0 subst1 mp1 with | None -> None | Some mp2 -> Some (MPI mp2) end | _ -> None in match newkey with | None -> Umap.add key mp sub | Some mpi -> Umap.add mpi mp sub in Umap.fold replace_in_key subst2 empty_subst let update_subst_alias subst1 subst2 = let subst_inv key (mp,_) sub = let newmp = match key with | MBI msid -> Some (MPbound msid) | MSI msid -> Some (MPself msid) | _ -> None in match newmp with | None -> sub | Some mpi -> match mp with | MPbound mbid -> Umap.add (MBI mbid) (mpi,None) sub | MPself msid -> Umap.add (MSI msid) (mpi,None) sub | _ -> Umap.add (MPI mp) (mpi,None) sub in let subst_mbi = Umap.fold subst_inv subst2 empty_subst in let alias_subst key (mp,_) sub= let newkey = match key with | MPI mp1 -> begin match subst_mp0 subst_mbi mp1 with | None -> None | Some mp2 -> Some (MPI mp2) end | _ -> None in match newkey with | None -> Umap.add key (mp,None) sub | Some mpi -> Umap.add mpi (mp,None) sub in Umap.fold alias_subst subst1 empty_subst let join_alias (subst1 : substitution) (subst2 : substitution) = let apply_subst (sub : substitution) key (mp,_) = match subst_mp0 sub mp with None -> mp,None | Some mp' -> mp',None in Umap.mapi (apply_subst subst2) subst1 let update_subst subst1 subst2 = let subst_inv key (mp,_) l = let newmp = match key with | MBI msid -> MPbound msid | MSI msid -> MPself msid | MPI mp -> mp in match mp with | MPbound mbid -> ((MBI mbid),newmp)::l | MPself msid -> ((MSI msid),newmp)::l | _ -> ((MPI mp),newmp)::l in let subst_mbi = Umap.fold subst_inv subst2 [] in let alias_subst key (mp,_) sub= let newsetkey = match key with | MPI mp1 -> let compute_set_newkey l (k,mp') = let mp_from_key = match k with | MBI msid -> MPbound msid | MSI msid -> MPself msid | MPI mp -> mp in let new_mp1 = replace_mp_in_mp mp_from_key mp' mp1 in if new_mp1 == mp1 then l else (MPI new_mp1)::l in begin match List.fold_left compute_set_newkey [] subst_mbi with | [] -> None | l -> Some (l) end | _ -> None in match newsetkey with | None -> sub | Some l -> List.fold_left (fun s k -> Umap.add k (mp,None) s) sub l in Umap.fold alias_subst subst1 empty_subst let subst_substituted s r = match !r with | LSval a -> ref (LSlazy(s,a)) | LSlazy(s',a) -> let s'' = join s' s in ref (LSlazy(s'',a)) let force_constr = force subst_mps type constr_substituted = constr substituted let subst_constr_subst = subst_substituted type constant_body = { const_hyps : section_context; (* New: younger hyp at top *) const_body : constr_substituted option; const_type : constant_type; const_body_code : to_patch_substituted; (* const_type_code : Cemitcodes.to_patch; *) const_constraints : Univ.constraints; const_opaque : bool; const_inline : bool} let subst_rel_declaration sub (id,copt,t as x) = let copt' = Option.smartmap (subst_mps sub) copt in let t' = subst_mps sub t in if copt == copt' & t == t' then x else (id,copt',t') let subst_rel_context sub = list_smartmap (subst_rel_declaration sub) type recarg = | Norec | Mrec of int | Imbr of inductive let subst_recarg sub r = match r with | Norec | Mrec _ -> r | Imbr (kn,i) -> let kn' = subst_kn sub kn in if kn==kn' then r else Imbr (kn',i) type wf_paths = recarg Rtree.t let mk_norec = Rtree.mk_node Norec [||] let mk_paths r recargs = Rtree.mk_node r (Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs) let dest_recarg p = fst (Rtree.dest_node p) let dest_subterms p = let (_,cstrs) = Rtree.dest_node p in Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs let subst_wf_paths sub p = Rtree.smartmap (subst_recarg sub) p (**********************************************************************) (* Representation of mutual inductive types in the kernel *) (* Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1 ... with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn *) type monomorphic_inductive_arity = { mind_user_arity : constr; mind_sort : sorts; } type inductive_arity = | Monomorphic of monomorphic_inductive_arity | Polymorphic of polymorphic_arity type one_inductive_body = { (* Primitive datas *) (* Name of the type: [Ii] *) mind_typename : identifier; (* Arity context of [Ii] with parameters: [forall params, Ui] *) mind_arity_ctxt : rel_context; (* Arity sort, original user arity, and allowed elim sorts, if monomorphic *) mind_arity : inductive_arity; (* Names of the constructors: [cij] *) mind_consnames : identifier array; (* Types of the constructors with parameters: [forall params, Tij], where the Ik are replaced by de Bruijn index in the context I1:forall params, U1 .. In:forall params, Un *) mind_user_lc : constr array; (* Derived datas *) (* Number of expected real arguments of the type (no let, no params) *) mind_nrealargs : int; (* List of allowed elimination sorts *) mind_kelim : sorts_family list; (* Head normalized constructor types so that their conclusion is atomic *) mind_nf_lc : constr array; (* Length of the signature of the constructors (with let, w/o params) *) mind_consnrealdecls : int array; (* Signature of recursive arguments in the constructors *) mind_recargs : wf_paths; (* Datas for bytecode compilation *) (* number of constant constructor *) mind_nb_constant : int; (* number of no constant constructor *) mind_nb_args : int; mind_reloc_tbl : reloc_table; } type mutual_inductive_body = { (* The component of the mutual inductive block *) mind_packets : one_inductive_body array; (* Whether the inductive type has been declared as a record *) mind_record : bool; (* Whether the type is inductive or coinductive *) mind_finite : bool; (* Number of types in the block *) mind_ntypes : int; (* Section hypotheses on which the block depends *) mind_hyps : section_context; (* Number of expected parameters *) mind_nparams : int; (* Number of recursively uniform (i.e. ordinary) parameters *) mind_nparams_rec : int; (* The context of parameters (includes let-in declaration) *) mind_params_ctxt : rel_context; (* Universes constraints enforced by the inductive declaration *) mind_constraints : Univ.constraints; (* Source of the inductive block when aliased in a module *) mind_equiv : kernel_name option } let subst_arity sub = function | NonPolymorphicType s -> NonPolymorphicType (subst_mps sub s) | PolymorphicArity (ctx,s) -> PolymorphicArity (subst_rel_context sub ctx,s) (* TODO: should be changed to non-coping after Term.subst_mps *) let subst_const_body sub cb = { const_hyps = (assert (cb.const_hyps=[]); []); const_body = Option.map (subst_constr_subst sub) cb.const_body; const_type = subst_arity sub cb.const_type; const_body_code = (*Cemitcodes.subst_to_patch_subst sub*) cb.const_body_code; (*const_type_code = Cemitcodes.subst_to_patch sub cb.const_type_code;*) const_constraints = cb.const_constraints; const_opaque = cb.const_opaque; const_inline = cb.const_inline} let subst_arity sub = function | Monomorphic s -> Monomorphic { mind_user_arity = subst_mps sub s.mind_user_arity; mind_sort = s.mind_sort; } | Polymorphic s as x -> x let subst_mind_packet sub mbp = { mind_consnames = mbp.mind_consnames; mind_consnrealdecls = mbp.mind_consnrealdecls; mind_typename = mbp.mind_typename; mind_nf_lc = array_smartmap (subst_mps sub) mbp.mind_nf_lc; mind_arity_ctxt = subst_rel_context sub mbp.mind_arity_ctxt; mind_arity = subst_arity sub mbp.mind_arity; mind_user_lc = array_smartmap (subst_mps sub) mbp.mind_user_lc; mind_nrealargs = mbp.mind_nrealargs; mind_kelim = mbp.mind_kelim; mind_recargs = subst_wf_paths sub mbp.mind_recargs (*wf_paths*); mind_nb_constant = mbp.mind_nb_constant; mind_nb_args = mbp.mind_nb_args; mind_reloc_tbl = mbp.mind_reloc_tbl } let subst_mind sub mib = { mind_record = mib.mind_record ; mind_finite = mib.mind_finite ; mind_ntypes = mib.mind_ntypes ; mind_hyps = (assert (mib.mind_hyps=[]); []) ; mind_nparams = mib.mind_nparams; mind_nparams_rec = mib.mind_nparams_rec; mind_params_ctxt = map_rel_context (subst_mps sub) mib.mind_params_ctxt; mind_packets = array_smartmap (subst_mind_packet sub) mib.mind_packets ; mind_constraints = mib.mind_constraints ; mind_equiv = Option.map (subst_kn sub) mib.mind_equiv } (* Modules *) type structure_field_body = | SFBconst of constant_body | SFBmind of mutual_inductive_body | SFBmodule of module_body | SFBalias of module_path * Univ.constraints option | SFBmodtype of module_type_body and structure_body = (label * structure_field_body) list and struct_expr_body = | SEBident of module_path | SEBfunctor of mod_bound_id * module_type_body * struct_expr_body | SEBstruct of mod_self_id * structure_body | SEBapply of struct_expr_body * struct_expr_body * Univ.constraints | SEBwith of struct_expr_body * with_declaration_body and with_declaration_body = With_module_body of identifier list * module_path * Univ.constraints | With_definition_body of identifier list * constant_body and module_body = { mod_expr : struct_expr_body option; mod_type : struct_expr_body option; mod_constraints : Univ.constraints; mod_alias : substitution; mod_retroknowledge : action list} and module_type_body = { typ_expr : struct_expr_body; typ_strength : module_path option; typ_alias : substitution} let subst_with_body sub = function | With_module_body(id,mp,cst) -> With_module_body(id,subst_mp sub mp,cst) | With_definition_body(id,cb) -> With_definition_body( id,subst_const_body sub cb) let rec subst_modtype sub mtb = let typ_expr' = subst_struct_expr sub mtb.typ_expr in if typ_expr'==mtb.typ_expr then mtb else { mtb with typ_expr = typ_expr'} and subst_structure sub sign = let subst_body = function SFBconst cb -> SFBconst (subst_const_body sub cb) | SFBmind mib -> SFBmind (subst_mind sub mib) | SFBmodule mb -> SFBmodule (subst_module sub mb) | SFBmodtype mtb -> SFBmodtype (subst_modtype sub mtb) | SFBalias (mp,cst) -> SFBalias (subst_mp sub mp,cst) in List.map (fun (l,b) -> (l,subst_body b)) sign and subst_module sub mb = let mtb' = Option.smartmap (subst_struct_expr sub) mb.mod_type in (* This is similar to the previous case. In this case we have a module M in a signature that is knows to be equivalent to a module M' (because the signature is "K with Module M := M'") and we are substituting M' with some M''. *) let me' = Option.smartmap (subst_struct_expr sub) mb.mod_expr in let mb_alias = join_alias mb.mod_alias sub in if mtb'==mb.mod_type && mb.mod_expr == me' && mb_alias == mb.mod_alias then mb else { mod_expr = me'; mod_type=mtb'; mod_constraints=mb.mod_constraints; mod_alias = mb_alias; mod_retroknowledge=mb.mod_retroknowledge} and subst_struct_expr sub = function | SEBident mp -> SEBident (subst_mp sub mp) | SEBfunctor (msid, mtb, meb') -> SEBfunctor(msid,subst_modtype sub mtb,subst_struct_expr sub meb') | SEBstruct (msid,str)-> SEBstruct(msid, subst_structure sub str) | SEBapply (meb1,meb2,cst)-> SEBapply(subst_struct_expr sub meb1, subst_struct_expr sub meb2, cst) | SEBwith (meb,wdb)-> SEBwith(subst_struct_expr sub meb, subst_with_body sub wdb) let subst_signature_msid msid mp = subst_structure (map_msid msid mp)