(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* $Id: closure.ml 9983 2007-07-12 17:15:22Z barras $ *) open Util open Pp open Term open Names open Esubst open Environ let stats = ref false let share = ref true (* Profiling *) let beta = ref 0 let delta = ref 0 let zeta = ref 0 let evar = ref 0 let iota = ref 0 let prune = ref 0 let reset () = beta := 0; delta := 0; zeta := 0; evar := 0; iota := 0; prune := 0 let stop() = msgnl (str "[Reds: beta=" ++ int !beta ++ str" delta=" ++ int !delta ++ str" zeta=" ++ int !zeta ++ str" evar=" ++ int !evar ++ str" iota=" ++ int !iota ++ str" prune=" ++ int !prune ++ str"]") let incr_cnt red cnt = if red then begin if !stats then incr cnt; true end else false let with_stats c = if !stats then begin reset(); let r = Lazy.force c in stop(); r end else Lazy.force c type transparent_state = Idpred.t * Cpred.t let all_opaque = (Idpred.empty, Cpred.empty) let all_transparent = (Idpred.full, Cpred.full) module type RedFlagsSig = sig type reds type red_kind val fBETA : red_kind val fDELTA : red_kind val fIOTA : red_kind val fZETA : red_kind val fCONST : constant -> red_kind val fVAR : identifier -> red_kind val no_red : reds val red_add : reds -> red_kind -> reds val red_sub : reds -> red_kind -> reds val red_add_transparent : reds -> transparent_state -> reds val mkflags : red_kind list -> reds val red_set : reds -> red_kind -> bool val red_get_const : reds -> bool * evaluable_global_reference list end module RedFlags = (struct (* [r_const=(true,cl)] means all constants but those in [cl] *) (* [r_const=(false,cl)] means only those in [cl] *) (* [r_delta=true] just mean [r_const=(true,[])] *) type reds = { r_beta : bool; r_delta : bool; r_const : transparent_state; r_zeta : bool; r_evar : bool; r_iota : bool } type red_kind = BETA | DELTA | IOTA | ZETA | CONST of constant | VAR of identifier let fBETA = BETA let fDELTA = DELTA let fIOTA = IOTA let fZETA = ZETA let fCONST kn = CONST kn let fVAR id = VAR id let no_red = { r_beta = false; r_delta = false; r_const = all_opaque; r_zeta = false; r_evar = false; r_iota = false } let red_add red = function | BETA -> { red with r_beta = true } | DELTA -> { red with r_delta = true; r_const = all_transparent } | CONST kn -> let (l1,l2) = red.r_const in { red with r_const = l1, Cpred.add kn l2 } | IOTA -> { red with r_iota = true } | ZETA -> { red with r_zeta = true } | VAR id -> let (l1,l2) = red.r_const in { red with r_const = Idpred.add id l1, l2 } let red_sub red = function | BETA -> { red with r_beta = false } | DELTA -> { red with r_delta = false } | CONST kn -> let (l1,l2) = red.r_const in { red with r_const = l1, Cpred.remove kn l2 } | IOTA -> { red with r_iota = false } | ZETA -> { red with r_zeta = false } | VAR id -> let (l1,l2) = red.r_const in { red with r_const = Idpred.remove id l1, l2 } let red_add_transparent red tr = { red with r_const = tr } let mkflags = List.fold_left red_add no_red let red_set red = function | BETA -> incr_cnt red.r_beta beta | CONST kn -> let (_,l) = red.r_const in let c = Cpred.mem kn l in incr_cnt c delta | VAR id -> (* En attendant d'avoir des kn pour les Var *) let (l,_) = red.r_const in let c = Idpred.mem id l in incr_cnt c delta | ZETA -> incr_cnt red.r_zeta zeta | IOTA -> incr_cnt red.r_iota iota | DELTA -> (* Used for Rel/Var defined in context *) incr_cnt red.r_delta delta let red_get_const red = let p1,p2 = red.r_const in let (b1,l1) = Idpred.elements p1 in let (b2,l2) = Cpred.elements p2 in if b1=b2 then let l1' = List.map (fun x -> EvalVarRef x) l1 in let l2' = List.map (fun x -> EvalConstRef x) l2 in (b1, l1' @ l2') else error "unrepresentable pair of predicate" end : RedFlagsSig) open RedFlags let betadeltaiota = mkflags [fBETA;fDELTA;fZETA;fIOTA] let betadeltaiotanolet = mkflags [fBETA;fDELTA;fIOTA] let betaiota = mkflags [fBETA;fIOTA] let beta = mkflags [fBETA] let betaiotazeta = mkflags [fBETA;fIOTA;fZETA] let unfold_red kn = let flag = match kn with | EvalVarRef id -> fVAR id | EvalConstRef kn -> fCONST kn in (* Remove fZETA for finer behaviour ? *) mkflags [fBETA;flag;fIOTA;fZETA] (************************* Obsol�te (* [r_const=(true,cl)] means all constants but those in [cl] *) (* [r_const=(false,cl)] means only those in [cl] *) type reds = { r_beta : bool; r_const : bool * constant_path list * identifier list; r_zeta : bool; r_evar : bool; r_iota : bool } let betadeltaiota_red = { r_beta = true; r_const = true,[],[]; r_zeta = true; r_evar = true; r_iota = true } let betaiota_red = { r_beta = true; r_const = false,[],[]; r_zeta = false; r_evar = false; r_iota = true } let beta_red = { r_beta = true; r_const = false,[],[]; r_zeta = false; r_evar = false; r_iota = false } let no_red = { r_beta = false; r_const = false,[],[]; r_zeta = false; r_evar = false; r_iota = false } let betaiotazeta_red = { r_beta = true; r_const = false,[],[]; r_zeta = true; r_evar = false; r_iota = true } let unfold_red kn = let c = match kn with | EvalVarRef id -> false,[],[id] | EvalConstRef kn -> false,[kn],[] in { r_beta = true; r_const = c; r_zeta = true; (* false for finer behaviour ? *) r_evar = false; r_iota = true } (* Sets of reduction kinds. Main rule: delta implies all consts (both global (= by kernel_name) and local (= by Rel or Var)), all evars, and zeta (= letin's). Rem: reduction of a Rel/Var bound to a term is Delta, but reduction of a LetIn expression is Letin reduction *) type red_kind = BETA | DELTA | ZETA | IOTA | CONST of constant_path list | CONSTBUT of constant_path list | VAR of identifier | VARBUT of identifier let rec red_add red = function | BETA -> { red with r_beta = true } | DELTA -> (match red.r_const with | _,_::_,[] | _,[],_::_ -> error "Conflict in the reduction flags" | _ -> { red with r_const = true,[],[]; r_zeta = true; r_evar = true }) | CONST cl -> (match red.r_const with | true,_,_ -> error "Conflict in the reduction flags" | _,l1,l2 -> { red with r_const = false, list_union cl l1, l2 }) | CONSTBUT cl -> (match red.r_const with | false,_::_,_ | false,_,_::_ -> error "Conflict in the reduction flags" | _,l1,l2 -> { red with r_const = true, list_union cl l1, l2; r_zeta = true; r_evar = true }) | IOTA -> { red with r_iota = true } | ZETA -> { red with r_zeta = true } | VAR id -> (match red.r_const with | true,_,_ -> error "Conflict in the reduction flags" | _,l1,l2 -> { red with r_const = false, l1, list_union [id] l2 }) | VARBUT cl -> (match red.r_const with | false,_::_,_ | false,_,_::_ -> error "Conflict in the reduction flags" | _,l1,l2 -> { red with r_const = true, l1, list_union [cl] l2; r_zeta = true; r_evar = true }) let red_delta_set red = let b,_,_ = red.r_const in b let red_local_const = red_delta_set (* to know if a redex is allowed, only a subset of red_kind is used ... *) let red_set red = function | BETA -> incr_cnt red.r_beta beta | CONST [kn] -> let (b,l,_) = red.r_const in let c = List.mem kn l in incr_cnt ((b & not c) or (c & not b)) delta | VAR id -> (* En attendant d'avoir des kn pour les Var *) let (b,_,l) = red.r_const in let c = List.mem id l in incr_cnt ((b & not c) or (c & not b)) delta | ZETA -> incr_cnt red.r_zeta zeta | EVAR -> incr_cnt red.r_zeta evar | IOTA -> incr_cnt red.r_iota iota | DELTA -> red_delta_set red (*Used for Rel/Var defined in context*) (* Not for internal use *) | CONST _ | CONSTBUT _ | VAR _ | VARBUT _ -> failwith "not implemented" (* Gives the constant list *) let red_get_const red = let b,l1,l2 = red.r_const in let l1' = List.map (fun x -> EvalConstRef x) l1 in let l2' = List.map (fun x -> EvalVarRef x) l2 in b, l1' @ l2' fin obsol�te **************) (* specification of the reduction function *) (* Flags of reduction and cache of constants: 'a is a type that may be * mapped to constr. 'a infos implements a cache for constants and * abstractions, storing a representation (of type 'a) of the body of * this constant or abstraction. * * i_tab is the cache table of the results * * i_repr is the function to get the representation from the current * state of the cache and the body of the constant. The result * is stored in the table. * * i_rels = (4,[(1,c);(3,d)]) means there are 4 free rel variables * and only those with index 1 and 3 have bodies which are c and d resp. * * i_vars is the list of _defined_ named variables. * * ref_value_cache searchs in the tab, otherwise uses i_repr to * compute the result and store it in the table. If the constant can't * be unfolded, returns None, but does not store this failure. * This * doesn't take the RESET into account. You mustn't keep such a table * after a Reset. * This type is not exported. Only its two * instantiations (cbv or lazy) are. *) type table_key = | ConstKey of constant | VarKey of identifier | RelKey of int type 'a infos = { i_flags : reds; i_repr : 'a infos -> constr -> 'a; i_env : env; i_rels : int * (int * constr) list; i_vars : (identifier * constr) list; i_tab : (table_key, 'a) Hashtbl.t } let info_flags info = info.i_flags let ref_value_cache info ref = try Some (Hashtbl.find info.i_tab ref) with Not_found -> try let body = match ref with | RelKey n -> let (s,l) = info.i_rels in lift n (List.assoc (s-n) l) | VarKey id -> List.assoc id info.i_vars | ConstKey cst -> constant_value info.i_env cst in let v = info.i_repr info body in Hashtbl.add info.i_tab ref v; Some v with | Not_found (* List.assoc *) | NotEvaluableConst _ (* Const *) -> None let defined_vars flags env = (* if red_local_const (snd flags) then*) fold_named_context (fun (id,b,_) e -> match b with | None -> e | Some body -> (id, body)::e) (named_context env) ~init:[] (* else []*) let defined_rels flags env = (* if red_local_const (snd flags) then*) fold_rel_context (fun (id,b,t) (i,subs) -> match b with | None -> (i+1, subs) | Some body -> (i+1, (i,body) :: subs)) (rel_context env) ~init:(0,[]) (* else (0,[])*) let mind_equiv_infos info = mind_equiv info.i_env let create mk_cl flgs env = { i_flags = flgs; i_repr = mk_cl; i_env = env; i_rels = defined_rels flgs env; i_vars = defined_vars flgs env; i_tab = Hashtbl.create 17 } (**********************************************************************) (* Lazy reduction: the one used in kernel operations *) (* type of shared terms. fconstr and frterm are mutually recursive. * Clone of the constr structure, but completely mutable, and * annotated with reduction state (reducible or not). * - FLIFT is a delayed shift; allows sharing between 2 lifted copies * of a given term. * - FCLOS is a delayed substitution applied to a constr * - FLOCKED is used to erase the content of a reference that must * be updated. This is to allow the garbage collector to work * before the term is computed. *) (* Norm means the term is fully normalized and cannot create a redex when substituted Cstr means the term is in head normal form and that it can create a redex when substituted (i.e. constructor, fix, lambda) Whnf means we reached the head normal form and that it cannot create a redex when substituted Red is used for terms that might be reduced *) type red_state = Norm | Cstr | Whnf | Red let neutr = function | (Whnf|Norm) -> Whnf | (Red|Cstr) -> Red type fconstr = { mutable norm: red_state; mutable term: fterm } and fterm = | FRel of int | FAtom of constr (* Metas and Sorts *) | FCast of fconstr * cast_kind * fconstr | FFlex of table_key | FInd of inductive | FConstruct of constructor | FApp of fconstr * fconstr array | FFix of fixpoint * fconstr subs | FCoFix of cofixpoint * fconstr subs | FCases of case_info * fconstr * fconstr * fconstr array | FLambda of int * (name * constr) list * constr * fconstr subs | FProd of name * fconstr * fconstr | FLetIn of name * fconstr * fconstr * constr * fconstr subs | FEvar of existential_key * fconstr array | FLIFT of int * fconstr | FCLOS of constr * fconstr subs | FLOCKED let fterm_of v = v.term let set_norm v = v.norm <- Norm let is_val v = v.norm = Norm let mk_atom c = {norm=Norm;term=FAtom c} (* Could issue a warning if no is still Red, pointing out that we loose sharing. *) let update v1 (no,t) = if !share then (v1.norm <- no; v1.term <- t; v1) else {norm=no;term=t} (**********************************************************************) (* The type of (machine) stacks (= lambda-bar-calculus' contexts) *) type stack_member = | Zapp of fconstr array | Zcase of case_info * fconstr * fconstr array | Zfix of fconstr * stack | Zshift of int | Zupdate of fconstr and stack = stack_member list let empty_stack = [] let append_stack v s = if Array.length v = 0 then s else match s with | Zapp l :: s -> Zapp (Array.append v l) :: s | _ -> Zapp v :: s (* Collapse the shifts in the stack *) let zshift n s = match (n,s) with (0,_) -> s | (_,Zshift(k)::s) -> Zshift(n+k)::s | _ -> Zshift(n)::s let rec stack_args_size = function | Zapp v :: s -> Array.length v + stack_args_size s | Zshift(_)::s -> stack_args_size s | Zupdate(_)::s -> stack_args_size s | _ -> 0 (* When used as an argument stack (only Zapp can appear) *) let rec decomp_stack = function | Zapp v :: s -> (match Array.length v with 0 -> decomp_stack s | 1 -> Some (v.(0), s) | _ -> Some (v.(0), (Zapp (Array.sub v 1 (Array.length v - 1)) :: s))) | _ -> None let rec decomp_stackn = function | Zapp v :: s -> if Array.length v = 0 then decomp_stackn s else (v, s) | _ -> assert false let array_of_stack s = let rec stackrec = function | [] -> [] | Zapp args :: s -> args :: (stackrec s) | _ -> assert false in Array.concat (stackrec s) let rec stack_assign s p c = match s with | Zapp args :: s -> let q = Array.length args in if p >= q then Zapp args :: stack_assign s (p-q) c else (let nargs = Array.copy args in nargs.(p) <- c; Zapp nargs :: s) | _ -> s let rec stack_tail p s = if p = 0 then s else match s with | Zapp args :: s -> let q = Array.length args in if p >= q then stack_tail (p-q) s else Zapp (Array.sub args p (q-p)) :: s | _ -> failwith "stack_tail" let rec stack_nth s p = match s with | Zapp args :: s -> let q = Array.length args in if p >= q then stack_nth s (p-q) else args.(p) | _ -> raise Not_found (* Lifting. Preserves sharing (useful only for cell with norm=Red). lft_fconstr always create a new cell, while lift_fconstr avoids it when the lift is 0. *) let rec lft_fconstr n ft = match ft.term with | (FInd _|FConstruct _|FFlex(ConstKey _|VarKey _)) -> ft | FRel i -> {norm=Norm;term=FRel(i+n)} | FLambda(k,tys,f,e) -> {norm=Cstr; term=FLambda(k,tys,f,subs_shft(n,e))} | FFix(fx,e) -> {norm=Cstr; term=FFix(fx,subs_shft(n,e))} | FCoFix(cfx,e) -> {norm=Cstr; term=FCoFix(cfx,subs_shft(n,e))} | FLIFT(k,m) -> lft_fconstr (n+k) m | FLOCKED -> assert false | _ -> {norm=ft.norm; term=FLIFT(n,ft)} let lift_fconstr k f = if k=0 then f else lft_fconstr k f let lift_fconstr_vect k v = if k=0 then v else Array.map (fun f -> lft_fconstr k f) v let lift_fconstr_list k l = if k=0 then l else List.map (fun f -> lft_fconstr k f) l let clos_rel e i = match expand_rel i e with | Inl(n,mt) -> lift_fconstr n mt | Inr(k,None) -> {norm=Norm; term= FRel k} | Inr(k,Some p) -> lift_fconstr (k-p) {norm=Red;term=FFlex(RelKey p)} (* since the head may be reducible, we might introduce lifts of 0 *) let compact_stack head stk = let rec strip_rec depth = function | Zshift(k)::s -> strip_rec (depth+k) s | Zupdate(m)::s -> (* Be sure to create a new cell otherwise sharing would be lost by the update operation *) let h' = lft_fconstr depth head in let _ = update m (h'.norm,h'.term) in strip_rec depth s | stk -> zshift depth stk in strip_rec 0 stk (* Put an update mark in the stack, only if needed *) let zupdate m s = if !share & m.norm = Red then let s' = compact_stack m s in let _ = m.term <- FLOCKED in Zupdate(m)::s' else s (* Closure optimization: *) let rec compact_constr (lg, subs as s) c k = match c with Rel i -> if i < k then c,s else (try Rel (k + lg - list_index (i-k+1) subs), (lg,subs) with Not_found -> Rel (k+lg), (lg+1, (i-k+1)::subs)) | (Sort _|Var _|Meta _|Ind _|Const _|Construct _) -> c,s | Evar(ev,v) -> let (v',s) = compact_vect s v k in if v==v' then c,s else Evar(ev,v'),s | Cast(a,ck,b) -> let (a',s) = compact_constr s a k in let (b',s) = compact_constr s b k in if a==a' && b==b' then c,s else Cast(a', ck, b'), s | App(f,v) -> let (f',s) = compact_constr s f k in let (v',s) = compact_vect s v k in if f==f' && v==v' then c,s else App(f',v'), s | Lambda(n,a,b) -> let (a',s) = compact_constr s a k in let (b',s) = compact_constr s b (k+1) in if a==a' && b==b' then c,s else Lambda(n,a',b'), s | Prod(n,a,b) -> let (a',s) = compact_constr s a k in let (b',s) = compact_constr s b (k+1) in if a==a' && b==b' then c,s else Prod(n,a',b'), s | LetIn(n,a,ty,b) -> let (a',s) = compact_constr s a k in let (ty',s) = compact_constr s ty k in let (b',s) = compact_constr s b (k+1) in if a==a' && ty==ty' && b==b' then c,s else LetIn(n,a',ty',b'), s | Fix(fi,(na,ty,bd)) -> let (ty',s) = compact_vect s ty k in let (bd',s) = compact_vect s bd (k+Array.length ty) in if ty==ty' && bd==bd' then c,s else Fix(fi,(na,ty',bd')), s | CoFix(i,(na,ty,bd)) -> let (ty',s) = compact_vect s ty k in let (bd',s) = compact_vect s bd (k+Array.length ty) in if ty==ty' && bd==bd' then c,s else CoFix(i,(na,ty',bd')), s | Case(ci,p,a,br) -> let (p',s) = compact_constr s p k in let (a',s) = compact_constr s a k in let (br',s) = compact_vect s br k in if p==p' && a==a' && br==br' then c,s else Case(ci,p',a',br'),s and compact_vect s v k = compact_v [] s v k (Array.length v - 1) and compact_v acc s v k i = if i < 0 then let v' = Array.of_list acc in if array_for_all2 (==) v v' then v,s else v',s else let (a',s') = compact_constr s v.(i) k in compact_v (a'::acc) s' v k (i-1) (* Computes the minimal environment of a closure. Idea: if the subs is not identity, the term will have to be reallocated entirely (to propagate the substitution). So, computing the set of free variables does not change the complexity. *) let optimise_closure env c = if is_subs_id env then (env,c) else let (c',(_,s)) = compact_constr (0,[]) c 1 in let env' = Array.map (fun i -> clos_rel env i) (Array.of_list s) in (subs_cons (env', ESID 0),c') let mk_lambda env t = let (env,t) = optimise_closure env t in let (rvars,t') = decompose_lam t in FLambda(List.length rvars, List.rev rvars, t', env) let destFLambda clos_fun t = match t.term with FLambda(_,[(na,ty)],b,e) -> (na,clos_fun e ty,clos_fun (subs_lift e) b) | FLambda(n,(na,ty)::tys,b,e) -> (na,clos_fun e ty,{norm=Cstr;term=FLambda(n-1,tys,b,subs_lift e)}) | _ -> assert false (* Optimization: do not enclose variables in a closure. Makes variable access much faster *) let mk_clos e t = match t with | Rel i -> clos_rel e i | Var x -> { norm = Red; term = FFlex (VarKey x) } | Const c -> { norm = Red; term = FFlex (ConstKey c) } | Meta _ | Sort _ -> { norm = Norm; term = FAtom t } | Ind kn -> { norm = Norm; term = FInd kn } | Construct kn -> { norm = Cstr; term = FConstruct kn } | (CoFix _|Lambda _|Fix _|Prod _|Evar _|App _|Case _|Cast _|LetIn _) -> {norm = Red; term = FCLOS(t,e)} let mk_clos_vect env v = Array.map (mk_clos env) v (* Translate the head constructor of t from constr to fconstr. This function is parameterized by the function to apply on the direct subterms. Could be used insted of mk_clos. *) let mk_clos_deep clos_fun env t = match t with | (Rel _|Ind _|Const _|Construct _|Var _|Meta _ | Sort _) -> mk_clos env t | Cast (a,k,b) -> { norm = Red; term = FCast (clos_fun env a, k, clos_fun env b)} | App (f,v) -> { norm = Red; term = FApp (clos_fun env f, Array.map (clos_fun env) v) } | Case (ci,p,c,v) -> { norm = Red; term = FCases (ci, clos_fun env p, clos_fun env c, Array.map (clos_fun env) v) } | Fix fx -> { norm = Cstr; term = FFix (fx, env) } | CoFix cfx -> { norm = Cstr; term = FCoFix(cfx,env) } | Lambda _ -> { norm = Cstr; term = mk_lambda env t } | Prod (n,t,c) -> { norm = Whnf; term = FProd (n, clos_fun env t, clos_fun (subs_lift env) c) } | LetIn (n,b,t,c) -> { norm = Red; term = FLetIn (n, clos_fun env b, clos_fun env t, c, env) } | Evar(ev,args) -> { norm = Whnf; term = FEvar(ev,Array.map (clos_fun env) args) } (* A better mk_clos? *) let mk_clos2 = mk_clos_deep mk_clos (* The inverse of mk_clos_deep: move back to constr *) let rec to_constr constr_fun lfts v = match v.term with | FRel i -> Rel (reloc_rel i lfts) | FFlex (RelKey p) -> Rel (reloc_rel p lfts) | FFlex (VarKey x) -> Var x | FAtom c -> exliftn lfts c | FCast (a,k,b) -> Cast (constr_fun lfts a, k, constr_fun lfts b) | FFlex (ConstKey op) -> Const op | FInd op -> Ind op | FConstruct op -> Construct op | FCases (ci,p,c,ve) -> Case (ci, constr_fun lfts p, constr_fun lfts c, Array.map (constr_fun lfts) ve) | FFix ((op,(lna,tys,bds)),e) -> let n = Array.length bds in let ftys = Array.map (mk_clos e) tys in let fbds = Array.map (mk_clos (subs_liftn n e)) bds in let lfts' = el_liftn n lfts in Fix (op, (lna, Array.map (constr_fun lfts) ftys, Array.map (constr_fun lfts') fbds)) | FCoFix ((op,(lna,tys,bds)),e) -> let n = Array.length bds in let ftys = Array.map (mk_clos e) tys in let fbds = Array.map (mk_clos (subs_liftn n e)) bds in let lfts' = el_liftn (Array.length bds) lfts in CoFix (op, (lna, Array.map (constr_fun lfts) ftys, Array.map (constr_fun lfts') fbds)) | FApp (f,ve) -> App (constr_fun lfts f, Array.map (constr_fun lfts) ve) | FLambda _ -> let (na,ty,bd) = destFLambda mk_clos2 v in Lambda (na, constr_fun lfts ty, constr_fun (el_lift lfts) bd) | FProd (n,t,c) -> Prod (n, constr_fun lfts t, constr_fun (el_lift lfts) c) | FLetIn (n,b,t,f,e) -> let fc = mk_clos2 (subs_lift e) f in LetIn (n, constr_fun lfts b, constr_fun lfts t, constr_fun (el_lift lfts) fc) | FEvar (ev,args) -> Evar(ev,Array.map (constr_fun lfts) args) | FLIFT (k,a) -> to_constr constr_fun (el_shft k lfts) a | FCLOS (t,env) -> let fr = mk_clos2 env t in let unfv = update v (fr.norm,fr.term) in to_constr constr_fun lfts unfv | FLOCKED -> assert false (*mkVar(id_of_string"_LOCK_")*) (* This function defines the correspondance between constr and fconstr. When we find a closure whose substitution is the identity, then we directly return the constr to avoid possibly huge reallocation. *) let term_of_fconstr = let rec term_of_fconstr_lift lfts v = match v.term with | FCLOS(t,env) when is_subs_id env & is_lift_id lfts -> t | FLambda(_,tys,f,e) when is_subs_id e & is_lift_id lfts -> compose_lam (List.rev tys) f | FFix(fx,e) when is_subs_id e & is_lift_id lfts -> Fix fx | FCoFix(cfx,e) when is_subs_id e & is_lift_id lfts -> CoFix cfx | _ -> to_constr term_of_fconstr_lift lfts v in term_of_fconstr_lift ELID (* fstrong applies unfreeze_fun recursively on the (freeze) term and * yields a term. Assumes that the unfreeze_fun never returns a * FCLOS term. let rec fstrong unfreeze_fun lfts v = to_constr (fstrong unfreeze_fun) lfts (unfreeze_fun v) *) let rec zip m stk = match stk with | [] -> m | Zapp args :: s -> zip {norm=neutr m.norm; term=FApp(m, args)} s | Zcase(ci,p,br)::s -> let t = FCases(ci, p, m, br) in zip {norm=neutr m.norm; term=t} s | Zfix(fx,par)::s -> zip fx (par @ append_stack [|m|] s) | Zshift(n)::s -> zip (lift_fconstr n m) s | Zupdate(rf)::s -> zip (update rf (m.norm,m.term)) s let fapp_stack (m,stk) = zip m stk (*********************************************************************) (* The assertions in the functions below are granted because they are called only when m is a constructor, a cofix (strip_update_shift_app), a fix (get_nth_arg) or an abstraction (strip_update_shift, through get_arg). *) (* optimised for the case where there are no shifts... *) let strip_update_shift head stk = assert (head.norm <> Red); let rec strip_rec h depth = function | Zshift(k)::s -> strip_rec (lift_fconstr k h) (depth+k) s | Zupdate(m)::s -> strip_rec (update m (h.norm,h.term)) depth s | stk -> (depth,stk) in strip_rec head 0 stk (* optimised for the case where there are no shifts... *) let strip_update_shift_app head stk = assert (head.norm <> Red); let rec strip_rec rstk h depth = function | Zshift(k) as e :: s -> strip_rec (e::rstk) (lift_fconstr k h) (depth+k) s | (Zapp args :: s) -> strip_rec (Zapp args :: rstk) {norm=h.norm;term=FApp(h,args)} depth s | Zupdate(m)::s -> strip_rec rstk (update m (h.norm,h.term)) depth s | stk -> (depth,List.rev rstk, stk) in strip_rec [] head 0 stk let get_nth_arg head n stk = assert (head.norm <> Red); let rec strip_rec rstk h depth n = function | Zshift(k) as e :: s -> strip_rec (e::rstk) (lift_fconstr k h) (depth+k) n s | Zapp args::s' -> let q = Array.length args in if n >= q then strip_rec (Zapp args::rstk) {norm=h.norm;term=FApp(h,args)} depth (n-q) s' else let bef = Array.sub args 0 n in let aft = Array.sub args (n+1) (q-n-1) in let stk' = List.rev (if n = 0 then rstk else (Zapp bef :: rstk)) in (Some (stk', args.(n)), append_stack aft s') | Zupdate(m)::s -> strip_rec rstk (update m (h.norm,h.term)) depth n s | s -> (None, List.rev rstk @ s) in strip_rec [] head 0 n stk (* Beta reduction: look for an applied argument in the stack. Since the encountered update marks are removed, h must be a whnf *) let get_arg h stk = let (depth,stk') = strip_update_shift h stk in match decomp_stack stk' with Some (v, s') -> (Some (depth,v), s') | None -> (None, zshift depth stk') let rec get_args n tys f e stk = match stk with Zupdate r :: s -> let _hd = update r (Cstr,FLambda(n,tys,f,e)) in get_args n tys f e s | Zshift k :: s -> get_args n tys f (subs_shft (k,e)) s | Zapp l :: s -> let na = Array.length l in if n == na then (Inl (subs_cons(l,e)),s) else if n < na then (* more arguments *) let args = Array.sub l 0 n in let eargs = Array.sub l n (na-n) in (Inl (subs_cons(args,e)), Zapp eargs :: s) else (* more lambdas *) let etys = list_skipn na tys in get_args (n-na) etys f (subs_cons(l,e)) s | _ -> (Inr {norm=Cstr;term=FLambda(n,tys,f,e)}, stk) (* Iota reduction: extract the arguments to be passed to the Case branches *) let rec reloc_rargs_rec depth stk = match stk with Zapp args :: s -> Zapp (lift_fconstr_vect depth args) :: reloc_rargs_rec depth s | Zshift(k)::s -> if k=depth then s else reloc_rargs_rec (depth-k) s | _ -> stk let reloc_rargs depth stk = if depth = 0 then stk else reloc_rargs_rec depth stk let rec drop_parameters depth n stk = match stk with Zapp args::s -> let q = Array.length args in if n > q then drop_parameters depth (n-q) s else if n = q then reloc_rargs depth s else let aft = Array.sub args n (q-n) in reloc_rargs depth (append_stack aft s) | Zshift(k)::s -> drop_parameters (depth-k) n s | [] -> assert (n=0); [] | _ -> assert false (* we know that n < stack_args_size(stk) *) (* Iota reduction: expansion of a fixpoint. * Given a fixpoint and a substitution, returns the corresponding * fixpoint body, and the substitution in which it should be * evaluated: its first variables are the fixpoint bodies * * FCLOS(fix Fi {F0 := T0 .. Fn-1 := Tn-1}, S) * -> (S. FCLOS(F0,S) . ... . FCLOS(Fn-1,S), Ti) *) (* does not deal with FLIFT *) let contract_fix_vect fix = let (thisbody, make_body, env, nfix) = match fix with | FFix (((reci,i),(_,_,bds as rdcl)),env) -> (bds.(i), (fun j -> { norm = Cstr; term = FFix (((reci,j),rdcl),env) }), env, Array.length bds) | FCoFix ((i,(_,_,bds as rdcl)),env) -> (bds.(i), (fun j -> { norm = Cstr; term = FCoFix ((j,rdcl),env) }), env, Array.length bds) | _ -> assert false in (subs_cons(Array.init nfix make_body, env), thisbody) (*********************************************************************) (* A machine that inspects the head of a term until it finds an atom or a subterm that may produce a redex (abstraction, constructor, cofix, letin, constant), or a neutral term (product, inductive) *) let rec knh m stk = match m.term with | FLIFT(k,a) -> knh a (zshift k stk) | FCLOS(t,e) -> knht e t (zupdate m stk) | FLOCKED -> assert false | FApp(a,b) -> knh a (append_stack b (zupdate m stk)) | FCases(ci,p,t,br) -> knh t (Zcase(ci,p,br)::zupdate m stk) | FFix(((ri,n),(_,_,_)),_) -> (match get_nth_arg m ri.(n) stk with (Some(pars,arg),stk') -> knh arg (Zfix(m,pars)::stk') | (None, stk') -> (m,stk')) | FCast(t,_,_) -> knh t stk (* cases where knh stops *) | (FFlex _|FLetIn _|FConstruct _|FEvar _| FCoFix _|FLambda _|FRel _|FAtom _|FInd _|FProd _) -> (m, stk) (* The same for pure terms *) and knht e t stk = match t with | App(a,b) -> knht e a (append_stack (mk_clos_vect e b) stk) | Case(ci,p,t,br) -> knht e t (Zcase(ci, mk_clos e p, mk_clos_vect e br)::stk) | Fix _ -> knh (mk_clos2 e t) stk | Cast(a,_,_) -> knht e a stk | Rel n -> knh (clos_rel e n) stk | (Lambda _|Prod _|Construct _|CoFix _|Ind _| LetIn _|Const _|Var _|Evar _|Meta _|Sort _) -> (mk_clos2 e t, stk) (************************************************************************) (* Computes a weak head normal form from the result of knh. *) let rec knr info m stk = match m.term with | FLambda(n,tys,f,e) when red_set info.i_flags fBETA -> (match get_args n tys f e stk with Inl e', s -> knit info e' f s | Inr lam, s -> (lam,s)) | FFlex(ConstKey kn) when red_set info.i_flags (fCONST kn) -> (match ref_value_cache info (ConstKey kn) with Some v -> kni info v stk | None -> (set_norm m; (m,stk))) | FFlex(VarKey id) when red_set info.i_flags (fVAR id) -> (match ref_value_cache info (VarKey id) with Some v -> kni info v stk | None -> (set_norm m; (m,stk))) | FFlex(RelKey k) when red_set info.i_flags fDELTA -> (match ref_value_cache info (RelKey k) with Some v -> kni info v stk | None -> (set_norm m; (m,stk))) | FConstruct(ind,c) when red_set info.i_flags fIOTA -> (match strip_update_shift_app m stk with (depth, args, Zcase(ci,_,br)::s) -> assert (ci.ci_npar>=0); let rargs = drop_parameters depth ci.ci_npar args in kni info br.(c-1) (rargs@s) | (_, cargs, Zfix(fx,par)::s) -> let rarg = fapp_stack(m,cargs) in let stk' = par @ append_stack [|rarg|] s in let (fxe,fxbd) = contract_fix_vect fx.term in knit info fxe fxbd stk' | (_,args,s) -> (m,args@s)) | FCoFix _ when red_set info.i_flags fIOTA -> (match strip_update_shift_app m stk with (_, args, ((Zcase _::_) as stk')) -> let (fxe,fxbd) = contract_fix_vect m.term in knit info fxe fxbd (args@stk') | (_,args,s) -> (m,args@s)) | FLetIn (_,v,_,bd,e) when red_set info.i_flags fZETA -> knit info (subs_cons([|v|],e)) bd stk | _ -> (m,stk) (* Computes the weak head normal form of a term *) and kni info m stk = let (hm,s) = knh m stk in knr info hm s and knit info e t stk = let (ht,s) = knht e t stk in knr info ht s let kh info v stk = fapp_stack(kni info v stk) (************************************************************************) (* Initialization and then normalization *) (* weak reduction *) let whd_val info v = with_stats (lazy (term_of_fconstr (kh info v []))) let inject = mk_clos (ESID 0) let whd_stack infos m stk = let k = kni infos m stk in let _ = fapp_stack k in (* to unlock Zupdates! *) k (* cache of constants: the body is computed only when needed. *) type clos_infos = fconstr infos let create_clos_infos flgs env = create (fun _ -> inject) flgs env let unfold_reference = ref_value_cache