From 3ef7797ef6fc605dfafb32523261fe1b023aeecb Mon Sep 17 00:00:00 2001 From: Samuel Mimram Date: Fri, 28 Apr 2006 14:59:16 +0000 Subject: Imported Upstream version 8.0pl3+8.1alpha --- theories7/Reals/Alembert.v | 549 ------------- theories7/Reals/AltSeries.v | 362 --------- theories7/Reals/ArithProp.v | 134 --- theories7/Reals/Binomial.v | 181 ----- theories7/Reals/Cauchy_prod.v | 347 -------- theories7/Reals/Cos_plus.v | 1017 ----------------------- theories7/Reals/Cos_rel.v | 360 --------- theories7/Reals/DiscrR.v | 58 -- theories7/Reals/Exp_prop.v | 890 -------------------- theories7/Reals/Integration.v | 13 - theories7/Reals/MVT.v | 517 ------------ theories7/Reals/NewtonInt.v | 600 -------------- theories7/Reals/PSeries_reg.v | 194 ----- theories7/Reals/PartSum.v | 475 ----------- theories7/Reals/RIneq.v | 1631 ------------------------------------- theories7/Reals/RList.v | 427 ---------- theories7/Reals/R_Ifp.v | 552 ------------- theories7/Reals/R_sqr.v | 232 ------ theories7/Reals/R_sqrt.v | 251 ------ theories7/Reals/Ranalysis.v | 477 ----------- theories7/Reals/Ranalysis1.v | 1046 ------------------------ theories7/Reals/Ranalysis2.v | 302 ------- theories7/Reals/Ranalysis3.v | 617 -------------- theories7/Reals/Ranalysis4.v | 313 -------- theories7/Reals/Raxioms.v | 172 ---- theories7/Reals/Rbase.v | 14 - theories7/Reals/Rbasic_fun.v | 476 ----------- theories7/Reals/Rcomplete.v | 175 ---- theories7/Reals/Rdefinitions.v | 69 -- theories7/Reals/Rderiv.v | 453 ----------- theories7/Reals/Reals.v | 32 - theories7/Reals/Rfunctions.v | 832 ------------------- theories7/Reals/Rgeom.v | 84 -- theories7/Reals/RiemannInt.v | 1699 --------------------------------------- theories7/Reals/RiemannInt_SF.v | 1400 -------------------------------- theories7/Reals/Rlimit.v | 539 ------------- theories7/Reals/Rpower.v | 560 ------------- theories7/Reals/Rprod.v | 164 ---- theories7/Reals/Rseries.v | 279 ------- theories7/Reals/Rsigma.v | 117 --- theories7/Reals/Rsqrt_def.v | 688 ---------------- theories7/Reals/Rsyntax.v | 236 ------ theories7/Reals/Rtopology.v | 1178 --------------------------- theories7/Reals/Rtrigo.v | 1111 ------------------------- theories7/Reals/Rtrigo_alt.v | 294 ------- theories7/Reals/Rtrigo_calc.v | 350 -------- theories7/Reals/Rtrigo_def.v | 357 -------- theories7/Reals/Rtrigo_fun.v | 118 --- theories7/Reals/Rtrigo_reg.v | 497 ------------ theories7/Reals/SeqProp.v | 1089 ------------------------- theories7/Reals/SeqSeries.v | 307 ------- theories7/Reals/SplitAbsolu.v | 22 - theories7/Reals/SplitRmult.v | 19 - theories7/Reals/Sqrt_reg.v | 297 ------- 54 files changed, 25173 deletions(-) delete mode 100644 theories7/Reals/Alembert.v delete mode 100644 theories7/Reals/AltSeries.v delete mode 100644 theories7/Reals/ArithProp.v delete mode 100644 theories7/Reals/Binomial.v delete mode 100644 theories7/Reals/Cauchy_prod.v delete mode 100644 theories7/Reals/Cos_plus.v delete mode 100644 theories7/Reals/Cos_rel.v delete mode 100644 theories7/Reals/DiscrR.v delete mode 100644 theories7/Reals/Exp_prop.v delete mode 100644 theories7/Reals/Integration.v delete mode 100644 theories7/Reals/MVT.v delete mode 100644 theories7/Reals/NewtonInt.v delete mode 100644 theories7/Reals/PSeries_reg.v delete mode 100644 theories7/Reals/PartSum.v delete mode 100644 theories7/Reals/RIneq.v delete mode 100644 theories7/Reals/RList.v delete mode 100644 theories7/Reals/R_Ifp.v delete mode 100644 theories7/Reals/R_sqr.v delete mode 100644 theories7/Reals/R_sqrt.v delete mode 100644 theories7/Reals/Ranalysis.v delete mode 100644 theories7/Reals/Ranalysis1.v delete mode 100644 theories7/Reals/Ranalysis2.v delete mode 100644 theories7/Reals/Ranalysis3.v delete mode 100644 theories7/Reals/Ranalysis4.v delete mode 100644 theories7/Reals/Raxioms.v delete mode 100644 theories7/Reals/Rbase.v delete mode 100644 theories7/Reals/Rbasic_fun.v delete mode 100644 theories7/Reals/Rcomplete.v delete mode 100644 theories7/Reals/Rdefinitions.v delete mode 100644 theories7/Reals/Rderiv.v delete mode 100644 theories7/Reals/Reals.v delete mode 100644 theories7/Reals/Rfunctions.v delete mode 100644 theories7/Reals/Rgeom.v delete mode 100644 theories7/Reals/RiemannInt.v delete mode 100644 theories7/Reals/RiemannInt_SF.v delete mode 100644 theories7/Reals/Rlimit.v delete mode 100644 theories7/Reals/Rpower.v delete mode 100644 theories7/Reals/Rprod.v delete mode 100644 theories7/Reals/Rseries.v delete mode 100644 theories7/Reals/Rsigma.v delete mode 100644 theories7/Reals/Rsqrt_def.v delete mode 100644 theories7/Reals/Rsyntax.v delete mode 100644 theories7/Reals/Rtopology.v delete mode 100644 theories7/Reals/Rtrigo.v delete mode 100644 theories7/Reals/Rtrigo_alt.v delete mode 100644 theories7/Reals/Rtrigo_calc.v delete mode 100644 theories7/Reals/Rtrigo_def.v delete mode 100644 theories7/Reals/Rtrigo_fun.v delete mode 100644 theories7/Reals/Rtrigo_reg.v delete mode 100644 theories7/Reals/SeqProp.v delete mode 100644 theories7/Reals/SeqSeries.v delete mode 100644 theories7/Reals/SplitAbsolu.v delete mode 100644 theories7/Reals/SplitRmult.v delete mode 100644 theories7/Reals/Sqrt_reg.v (limited to 'theories7/Reals') diff --git a/theories7/Reals/Alembert.v b/theories7/Reals/Alembert.v deleted file mode 100644 index 702daffc..00000000 --- a/theories7/Reals/Alembert.v +++ /dev/null @@ -1,549 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R) ((n:nat)``0<(An n)``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) R0) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intros An H H0. -Cut (sigTT R [l:R](is_lub (EUn [N:nat](sum_f_R0 An N)) l)) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intro; Apply X. -Apply complet. -Unfold Un_cv in H0; Unfold bound; Cut ``0``(An (S n))R) ((n:nat)``(An n)<>0``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) R0) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intros. -Pose Vn := [i:nat]``(2*(Rabsolu (An i))+(An i))/2``. -Pose Wn := [i:nat]``(2*(Rabsolu (An i))-(An i))/2``. -Cut (n:nat)``0<(Vn n)``. -Intro; Cut (n:nat)``0<(Wn n)``. -Intro; Cut (Un_cv [n:nat](Rabsolu ``(Vn (S n))/(Vn n)``) ``0``). -Intro; Cut (Un_cv [n:nat](Rabsolu ``(Wn (S n))/(Wn n)``) ``0``). -Intro; Assert H5 := (Alembert_C1 Vn H1 H3). -Assert H6 := (Alembert_C1 Wn H2 H4). -Elim H5; Intros. -Elim H6; Intros. -Apply Specif.existT with ``x-x0``; Unfold Un_cv; Unfold Un_cv in p; Unfold Un_cv in p0; Intros; Cut ``0R;x:R) ``x<>0`` -> ((n:nat)``(An n)<>0``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) ``0``) -> (SigT R [l:R](Pser An x l)). -Intros; Pose Bn := [i:nat]``(An i)*(pow x i)``. -Cut (n:nat)``(Bn n)<>0``. -Intro; Cut (Un_cv [n:nat](Rabsolu ``(Bn (S n))/(Bn n)``) ``0``). -Intro; Assert H4 := (Alembert_C2 Bn H2 H3). -Elim H4; Intros. -Apply Specif.existT with x0; Unfold Bn in p; Apply tech12; Assumption. -Unfold Un_cv; Intros; Unfold Un_cv in H1; Cut ``0R;x:R) ``x==0`` -> (SigT R [l:R](Pser An x l)). -Intros; Apply Specif.existT with (An O). -Unfold Pser; Unfold infinit_sum; Intros; Exists O; Intros; Replace (sum_f_R0 [n0:nat]``(An n0)*(pow x n0)`` n) with (An O). -Unfold R_dist; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. -Induction n. -Simpl; Ring. -Rewrite tech5; Rewrite Hrecn; [Rewrite H; Simpl; Ring | Unfold ge; Apply le_O_n]. -Qed. - -(* An useful criterion of convergence for power series *) -Theorem Alembert_C3 : (An:nat->R;x:R) ((n:nat)``(An n)<>0``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) ``0``) -> (SigT R [l:R](Pser An x l)). -Intros; Case (total_order_T x R0); Intro. -Elim s; Intro. -Cut ``x<>0``. -Intro; Apply AlembertC3_step1; Assumption. -Red; Intro; Rewrite H1 in a; Elim (Rlt_antirefl ? a). -Apply AlembertC3_step2; Assumption. -Cut ``x<>0``. -Intro; Apply AlembertC3_step1; Assumption. -Red; Intro; Rewrite H1 in r; Elim (Rlt_antirefl ? r). -Qed. - -Lemma Alembert_C4 : (An:nat->R;k:R) ``0<=k<1`` -> ((n:nat)``0<(An n)``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) k) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intros An k Hyp H H0. -Cut (sigTT R [l:R](is_lub (EUn [N:nat](sum_f_R0 An N)) l)) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intro; Apply X. -Apply complet. -Assert H1 := (tech13 ? ? Hyp H0). -Elim H1; Intros. -Elim H2; Intros. -Elim H4; Intros. -Unfold bound; Exists ``(sum_f_R0 An x0)+/(1-x)*(An (S x0))``. -Unfold is_upper_bound; Intros; Unfold EUn in H6. -Elim H6; Intros. -Rewrite H7. -Assert H8 := (lt_eq_lt_dec x2 x0). -Elim H8; Intros. -Elim a; Intro. -Replace (sum_f_R0 An x0) with (Rplus (sum_f_R0 An x2) (sum_f_R0 [i:nat](An (plus (S x2) i)) (minus x0 (S x2)))). -Pattern 1 (sum_f_R0 An x2); Rewrite <- Rplus_Or. -Rewrite Rplus_assoc; Apply Rle_compatibility. -Left; Apply gt0_plus_gt0_is_gt0. -Apply tech1. -Intros; Apply H. -Apply Rmult_lt_pos. -Apply Rlt_Rinv; Apply Rlt_anti_compatibility with x; Rewrite Rplus_Or; Replace ``x+(1-x)`` with R1; [Elim H3; Intros; Assumption | Ring]. -Apply H. -Symmetry; Apply tech2; Assumption. -Rewrite b; Pattern 1 (sum_f_R0 An x0); Rewrite <- Rplus_Or; Apply Rle_compatibility. -Left; Apply Rmult_lt_pos. -Apply Rlt_Rinv; Apply Rlt_anti_compatibility with x; Rewrite Rplus_Or; Replace ``x+(1-x)`` with R1; [Elim H3; Intros; Assumption | Ring]. -Apply H. -Replace (sum_f_R0 An x2) with (Rplus (sum_f_R0 An x0) (sum_f_R0 [i:nat](An (plus (S x0) i)) (minus x2 (S x0)))). -Apply Rle_compatibility. -Cut (Rle (sum_f_R0 [i:nat](An (plus (S x0) i)) (minus x2 (S x0))) (Rmult (An (S x0)) (sum_f_R0 [i:nat](pow x i) (minus x2 (S x0))))). -Intro; Apply Rle_trans with (Rmult (An (S x0)) (sum_f_R0 [i:nat](pow x i) (minus x2 (S x0)))). -Assumption. -Rewrite <- (Rmult_sym (An (S x0))); Apply Rle_monotony. -Left; Apply H. -Rewrite tech3. -Unfold Rdiv; Apply Rle_monotony_contra with ``1-x``. -Apply Rlt_anti_compatibility with x; Rewrite Rplus_Or. -Replace ``x+(1-x)`` with R1; [Elim H3; Intros; Assumption | Ring]. -Do 2 Rewrite (Rmult_sym ``1-x``). -Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Apply Rle_anti_compatibility with ``(pow x (S (minus x2 (S x0))))``. -Replace ``(pow x (S (minus x2 (S x0))))+(1-(pow x (S (minus x2 (S x0)))))`` with R1; [Idtac | Ring]. -Rewrite <- (Rplus_sym R1); Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility. -Left; Apply pow_lt. -Apply Rle_lt_trans with k. -Elim Hyp; Intros; Assumption. -Elim H3; Intros; Assumption. -Apply Rminus_eq_contra. -Red; Intro. -Elim H3; Intros. -Rewrite H10 in H12; Elim (Rlt_antirefl ? H12). -Red; Intro. -Elim H3; Intros. -Rewrite H10 in H12; Elim (Rlt_antirefl ? H12). -Replace (An (S x0)) with (An (plus (S x0) O)). -Apply (tech6 [i:nat](An (plus (S x0) i)) x). -Left; Apply Rle_lt_trans with k. -Elim Hyp; Intros; Assumption. -Elim H3; Intros; Assumption. -Intro. -Cut (n:nat)(ge n x0)->``(An (S n))R;k:R) ``0<=k<1`` -> ((n:nat)``(An n)<>0``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) k) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intros. -Cut (sigTT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intro Hyp0; Apply Hyp0. -Apply cv_cauchy_2. -Apply cauchy_abs. -Apply cv_cauchy_1. -Cut (SigT R [l:R](Un_cv [N:nat](sum_f_R0 [i:nat](Rabsolu (An i)) N) l)) -> (sigTT R [l:R](Un_cv [N:nat](sum_f_R0 [i:nat](Rabsolu (An i)) N) l)). -Intro Hyp; Apply Hyp. -Apply (Alembert_C4 [i:nat](Rabsolu (An i)) k). -Assumption. -Intro; Apply Rabsolu_pos_lt; Apply H0. -Unfold Un_cv. -Unfold Un_cv in H1. -Unfold Rdiv. -Intros. -Elim (H1 eps H2); Intros. -Exists x; Intros. -Rewrite <- Rabsolu_Rinv. -Rewrite <- Rabsolu_mult. -Rewrite Rabsolu_Rabsolu. -Unfold Rdiv in H3; Apply H3; Assumption. -Apply H0. -Intro. -Elim X; Intros. -Apply existTT with x. -Assumption. -Intro. -Elim X; Intros. -Apply Specif.existT with x. -Assumption. -Qed. - -(* Convergence of power series in D(O,1/k) *) -(* k=0 is described in Alembert_C3 *) -Lemma Alembert_C6 : (An:nat->R;x,k:R) ``0 ((n:nat)``(An n)<>0``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) k) -> ``(Rabsolu x) (SigT R [l:R](Pser An x l)). -Intros. -Cut (SigT R [l:R](Un_cv [N:nat](sum_f_R0 [i:nat]``(An i)*(pow x i)`` N) l)). -Intro. -Elim X; Intros. -Apply Specif.existT with x0. -Apply tech12; Assumption. -Case (total_order_T x R0); Intro. -Elim s; Intro. -EApply Alembert_C5 with ``k*(Rabsolu x)``. -Split. -Unfold Rdiv; Apply Rmult_le_pos. -Left; Assumption. -Left; Apply Rabsolu_pos_lt. -Red; Intro; Rewrite H3 in a; Elim (Rlt_antirefl ? a). -Apply Rlt_monotony_contra with ``/k``. -Apply Rlt_Rinv; Assumption. -Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l. -Rewrite Rmult_1r; Assumption. -Red; Intro; Rewrite H3 in H; Elim (Rlt_antirefl ? H). -Intro; Apply prod_neq_R0. -Apply H0. -Apply pow_nonzero. -Red; Intro; Rewrite H3 in a; Elim (Rlt_antirefl ? a). -Unfold Un_cv; Unfold Un_cv in H1. -Intros. -Cut ``0R] : nat->R := [i:nat]``(pow (-1) i)*(Un i)``. -Definition positivity_seq [Un:nat->R] : Prop := (n:nat)``0<=(Un n)``. - -Lemma CV_ALT_step0 : (Un:nat->R) (Un_decreasing Un) -> (Un_growing [N:nat](sum_f_R0 (tg_alt Un) (S (mult (2) N)))). -Intros; Unfold Un_growing; Intro. -Cut (mult (S (S O)) (S n)) = (S (S (mult (2) n))). -Intro; Rewrite H0. -Do 4 Rewrite tech5; Repeat Rewrite Rplus_assoc; Apply Rle_compatibility. -Pattern 1 (tg_alt Un (S (mult (S (S O)) n))); Rewrite <- Rplus_Or. -Apply Rle_compatibility. -Unfold tg_alt; Rewrite <- H0; Rewrite pow_1_odd; Rewrite pow_1_even; Rewrite Rmult_1l. -Apply Rle_anti_compatibility with ``(Un (S (mult (S (S O)) (S n))))``. -Rewrite Rplus_Or; Replace ``(Un (S (mult (S (S O)) (S n))))+((Un (mult (S (S O)) (S n)))+ -1*(Un (S (mult (S (S O)) (S n)))))`` with ``(Un (mult (S (S O)) (S n)))``; [Idtac | Ring]. -Apply H. -Cut (n:nat) (S n)=(plus n (1)); [Intro | Intro; Ring]. -Rewrite (H0 n); Rewrite (H0 (S (mult (2) n))); Rewrite (H0 (mult (2) n)); Ring. -Qed. - -Lemma CV_ALT_step1 : (Un:nat->R) (Un_decreasing Un) -> (Un_decreasing [N:nat](sum_f_R0 (tg_alt Un) (mult (2) N))). -Intros; Unfold Un_decreasing; Intro. -Cut (mult (S (S O)) (S n)) = (S (S (mult (2) n))). -Intro; Rewrite H0; Do 2 Rewrite tech5; Repeat Rewrite Rplus_assoc. -Pattern 2 (sum_f_R0 (tg_alt Un) (mult (S (S O)) n)); Rewrite <- Rplus_Or. -Apply Rle_compatibility. -Unfold tg_alt; Rewrite <- H0; Rewrite pow_1_odd; Rewrite pow_1_even; Rewrite Rmult_1l. -Apply Rle_anti_compatibility with ``(Un (S (mult (S (S O)) n)))``. -Rewrite Rplus_Or; Replace ``(Un (S (mult (S (S O)) n)))+( -1*(Un (S (mult (S (S O)) n)))+(Un (mult (S (S O)) (S n))))`` with ``(Un (mult (S (S O)) (S n)))``; [Idtac | Ring]. -Rewrite H0; Apply H. -Cut (n:nat) (S n)=(plus n (1)); [Intro | Intro; Ring]. -Rewrite (H0 n); Rewrite (H0 (S (mult (2) n))); Rewrite (H0 (mult (2) n)); Ring. -Qed. - -(**********) -Lemma CV_ALT_step2 : (Un:nat->R;N:nat) (Un_decreasing Un) -> (positivity_seq Un) -> (Rle (sum_f_R0 [i:nat](tg_alt Un (S i)) (S (mult (2) N))) R0). -Intros; Induction N. -Simpl; Unfold tg_alt; Simpl; Rewrite Rmult_1r. -Replace ``-1* -1*(Un (S (S O)))`` with (Un (S (S O))); [Idtac | Ring]. -Apply Rle_anti_compatibility with ``(Un (S O))``; Rewrite Rplus_Or. -Replace ``(Un (S O))+ (-1*(Un (S O))+(Un (S (S O))))`` with (Un (S (S O))); [Apply H | Ring]. -Cut (S (mult (2) (S N))) = (S (S (S (mult (2) N)))). -Intro; Rewrite H1; Do 2 Rewrite tech5. -Apply Rle_trans with (sum_f_R0 [i:nat](tg_alt Un (S i)) (S (mult (S (S O)) N))). -Pattern 2 (sum_f_R0 [i:nat](tg_alt Un (S i)) (S (mult (S (S O)) N))); Rewrite <- Rplus_Or. -Rewrite Rplus_assoc; Apply Rle_compatibility. -Unfold tg_alt; Rewrite <- H1. -Rewrite pow_1_odd. -Cut (S (S (mult (2) (S N)))) = (mult (2) (S (S N))). -Intro; Rewrite H2; Rewrite pow_1_even; Rewrite Rmult_1l; Rewrite <- H2. -Apply Rle_anti_compatibility with ``(Un (S (mult (S (S O)) (S N))))``. -Rewrite Rplus_Or; Replace ``(Un (S (mult (S (S O)) (S N))))+( -1*(Un (S (mult (S (S O)) (S N))))+(Un (S (S (mult (S (S O)) (S N))))))`` with ``(Un (S (S (mult (S (S O)) (S N)))))``; [Idtac | Ring]. -Apply H. -Apply INR_eq; Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Apply HrecN. -Apply INR_eq; Repeat Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Qed. - -(* A more general inequality *) -Lemma CV_ALT_step3 : (Un:nat->R;N:nat) (Un_decreasing Un) -> (positivity_seq Un) -> (Rle (sum_f_R0 [i:nat](tg_alt Un (S i)) N) R0). -Intros; Induction N. -Simpl; Unfold tg_alt; Simpl; Rewrite Rmult_1r. -Apply Rle_anti_compatibility with (Un (S O)). -Rewrite Rplus_Or; Replace ``(Un (S O))+ -1*(Un (S O))`` with R0; [Apply H0 | Ring]. -Assert H1 := (even_odd_cor N). -Elim H1; Intros. -Elim H2; Intro. -Rewrite H3; Apply CV_ALT_step2; Assumption. -Rewrite H3; Rewrite tech5. -Apply Rle_trans with (sum_f_R0 [i:nat](tg_alt Un (S i)) (S (mult (S (S O)) x))). -Pattern 2 (sum_f_R0 [i:nat](tg_alt Un (S i)) (S (mult (S (S O)) x))); Rewrite <- Rplus_Or. -Apply Rle_compatibility. -Unfold tg_alt; Simpl. -Replace (plus x (plus x O)) with (mult (2) x); [Idtac | Ring]. -Rewrite pow_1_even. -Replace `` -1*( -1*( -1*1))*(Un (S (S (S (mult (S (S O)) x)))))`` with ``-(Un (S (S (S (mult (S (S O)) x)))))``; [Idtac | Ring]. -Apply Rle_anti_compatibility with (Un (S (S (S (mult (S (S O)) x))))). -Rewrite Rplus_Or; Rewrite Rplus_Ropp_r. -Apply H0. -Apply CV_ALT_step2; Assumption. -Qed. - -(**********) -Lemma CV_ALT_step4 : (Un:nat->R) (Un_decreasing Un) -> (positivity_seq Un) -> (has_ub [N:nat](sum_f_R0 (tg_alt Un) (S (mult (2) N)))). -Intros; Unfold has_ub; Unfold bound. -Exists ``(Un O)``. -Unfold is_upper_bound; Intros; Elim H1; Intros. -Rewrite H2; Rewrite decomp_sum. -Replace (tg_alt Un O) with ``(Un O)``. -Pattern 2 ``(Un O)``; Rewrite <- Rplus_Or. -Apply Rle_compatibility. -Apply CV_ALT_step3; Assumption. -Unfold tg_alt; Simpl; Ring. -Apply lt_O_Sn. -Qed. - -(* This lemma gives an interesting result about alternated series *) -Lemma CV_ALT : (Un:nat->R) (Un_decreasing Un) -> (positivity_seq Un) -> (Un_cv Un R0) -> (sigTT R [l:R](Un_cv [N:nat](sum_f_R0 (tg_alt Un) N) l)). -Intros. -Assert H2 := (CV_ALT_step0 ? H). -Assert H3 := (CV_ALT_step4 ? H H0). -Assert X := (growing_cv ? H2 H3). -Elim X; Intros. -Apply existTT with x. -Unfold Un_cv; Unfold R_dist; Unfold Un_cv in H1; Unfold R_dist in H1; Unfold Un_cv in p; Unfold R_dist in p. -Intros; Cut ``0R) (Un_decreasing Un) -> (Un_cv Un R0) -> (sigTT R [l:R](Un_cv [N:nat](sum_f_R0 (tg_alt Un) N) l)). -Intros; Apply CV_ALT. -Assumption. -Unfold positivity_seq; Apply decreasing_ineq; Assumption. -Assumption. -Qed. - -Theorem alternated_series_ineq : (Un:nat->R;l:R;N:nat) (Un_decreasing Un) -> (Un_cv Un R0) -> (Un_cv [N:nat](sum_f_R0 (tg_alt Un) N) l) -> ``(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) N)))<=l<=(sum_f_R0 (tg_alt Un) (mult (S (S O)) N))``. -Intros. -Cut (Un_cv [N:nat](sum_f_R0 (tg_alt Un) (mult (2) N)) l). -Cut (Un_cv [N:nat](sum_f_R0 (tg_alt Un) (S (mult (2) N))) l). -Intros; Split. -Apply (growing_ineq [N:nat](sum_f_R0 (tg_alt Un) (S (mult (2) N)))). -Apply CV_ALT_step0; Assumption. -Assumption. -Apply (decreasing_ineq [N:nat](sum_f_R0 (tg_alt Un) (mult (2) N))). -Apply CV_ALT_step1; Assumption. -Assumption. -Unfold Un_cv; Unfold R_dist; Unfold Un_cv in H1; Unfold R_dist in H1; Intros. -Elim (H1 eps H2); Intros. -Exists x; Intros. -Apply H3. -Unfold ge; Apply le_trans with (mult (2) n). -Apply le_trans with n. -Assumption. -Assert H5 := (mult_O_le n (2)). -Elim H5; Intro. -Cut ~(O)=(2); [Intro; Elim H7; Symmetry; Assumption | Discriminate]. -Assumption. -Apply le_n_Sn. -Unfold Un_cv; Unfold R_dist; Unfold Un_cv in H1; Unfold R_dist in H1; Intros. -Elim (H1 eps H2); Intros. -Exists x; Intros. -Apply H3. -Unfold ge; Apply le_trans with n. -Assumption. -Assert H5 := (mult_O_le n (2)). -Elim H5; Intro. -Cut ~(O)=(2); [Intro; Elim H7; Symmetry; Assumption | Discriminate]. -Assumption. -Qed. - -(************************************) -(* Application : construction of PI *) -(************************************) - -Definition PI_tg := [n:nat]``/(INR (plus (mult (S (S O)) n) (S O)))``. - -Lemma PI_tg_pos : (n:nat)``0<=(PI_tg n)``. -Intro; Unfold PI_tg; Left; Apply Rlt_Rinv; Apply lt_INR_0; Replace (plus (mult (2) n) (1)) with (S (mult (2) n)); [Apply lt_O_Sn | Ring]. -Qed. - -Lemma PI_tg_decreasing : (Un_decreasing PI_tg). -Unfold PI_tg Un_decreasing; Intro. -Apply Rle_monotony_contra with ``(INR (plus (mult (S (S O)) n) (S O)))``. -Apply lt_INR_0. -Replace (plus (mult (2) n) (1)) with (S (mult (2) n)); [Apply lt_O_Sn | Ring]. -Rewrite <- Rinv_r_sym. -Apply Rle_monotony_contra with ``(INR (plus (mult (S (S O)) (S n)) (S O)))``. -Apply lt_INR_0. -Replace (plus (mult (2) (S n)) (1)) with (S (mult (2) (S n))); [Apply lt_O_Sn | Ring]. -Rewrite (Rmult_sym ``(INR (plus (mult (S (S O)) (S n)) (S O)))``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Do 2 Rewrite Rmult_1r; Apply le_INR. -Replace (plus (mult (2) (S n)) (1)) with (S (S (plus (mult (2) n) (1)))). -Apply le_trans with (S (plus (mult (2) n) (1))); Apply le_n_Sn. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Apply not_O_INR; Discriminate. -Apply not_O_INR; Replace (plus (mult (2) n) (1)) with (S (mult (2) n)); [Discriminate | Ring]. -Qed. - -Lemma PI_tg_cv : (Un_cv PI_tg R0). -Unfold Un_cv; Unfold R_dist; Intros. -Cut ``0<2*eps``; [Intro | Apply Rmult_lt_pos; [Sup0 | Assumption]]. -Assert H1 := (archimed ``/(2*eps)``). -Cut (Zle `0` ``(up (/(2*eps)))``). -Intro; Assert H3 := (IZN ``(up (/(2*eps)))`` H2). -Elim H3; Intros N H4. -Cut (lt O N). -Intro; Exists N; Intros. -Cut (lt O n). -Intro; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_right. -Unfold PI_tg; Apply Rlt_trans with ``/(INR (mult (S (S O)) n))``. -Apply Rlt_monotony_contra with ``(INR (mult (S (S O)) n))``. -Apply lt_INR_0. -Replace (mult (2) n) with (plus n n); [Idtac | Ring]. -Apply lt_le_trans with n. -Assumption. -Apply le_plus_l. -Rewrite <- Rinv_r_sym. -Apply Rlt_monotony_contra with ``(INR (plus (mult (S (S O)) n) (S O)))``. -Apply lt_INR_0. -Replace (plus (mult (2) n) (1)) with (S (mult (2) n)); [Apply lt_O_Sn | Ring]. -Rewrite (Rmult_sym ``(INR (plus (mult (S (S O)) n) (S O)))``). -Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Do 2 Rewrite Rmult_1r; Apply lt_INR. -Replace (plus (mult (2) n) (1)) with (S (mult (2) n)); [Apply lt_n_Sn | Ring]. -Apply not_O_INR; Replace (plus (mult (2) n) (1)) with (S (mult (2) n)); [Discriminate | Ring]. -Replace n with (S (pred n)). -Apply not_O_INR; Discriminate. -Symmetry; Apply S_pred with O. -Assumption. -Apply Rle_lt_trans with ``/(INR (mult (S (S O)) N))``. -Apply Rle_monotony_contra with ``(INR (mult (S (S O)) N))``. -Rewrite mult_INR; Apply Rmult_lt_pos; [Simpl; Sup0 | Apply lt_INR_0; Assumption]. -Rewrite <- Rinv_r_sym. -Apply Rle_monotony_contra with ``(INR (mult (S (S O)) n))``. -Rewrite mult_INR; Apply Rmult_lt_pos; [Simpl; Sup0 | Apply lt_INR_0; Assumption]. -Rewrite (Rmult_sym (INR (mult (S (S O)) n))); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Do 2 Rewrite Rmult_1r; Apply le_INR. -Apply mult_le; Assumption. -Replace n with (S (pred n)). -Apply not_O_INR; Discriminate. -Symmetry; Apply S_pred with O. -Assumption. -Replace N with (S (pred N)). -Apply not_O_INR; Discriminate. -Symmetry; Apply S_pred with O. -Assumption. -Rewrite mult_INR. -Rewrite Rinv_Rmult. -Replace (INR (S (S O))) with ``2``; [Idtac | Reflexivity]. -Apply Rlt_monotony_contra with ``2``. -Sup0. -Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Idtac | DiscrR]. -Rewrite Rmult_1l; Apply Rlt_monotony_contra with (INR N). -Apply lt_INR_0; Assumption. -Rewrite <- Rinv_r_sym. -Apply Rlt_monotony_contra with ``/(2*eps)``. -Apply Rlt_Rinv; Assumption. -Rewrite Rmult_1r; Replace ``/(2*eps)*((INR N)*(2*eps))`` with ``(INR N)*((2*eps)*/(2*eps))``; [Idtac | Ring]. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Replace (INR N) with (IZR (INZ N)). -Rewrite <- H4. -Elim H1; Intros; Assumption. -Symmetry; Apply INR_IZR_INZ. -Apply prod_neq_R0; [DiscrR | Red; Intro; Rewrite H8 in H; Elim (Rlt_antirefl ? H)]. -Apply not_O_INR. -Red; Intro; Rewrite H8 in H5; Elim (lt_n_n ? H5). -Replace (INR (S (S O))) with ``2``; [DiscrR | Reflexivity]. -Apply not_O_INR. -Red; Intro; Rewrite H8 in H5; Elim (lt_n_n ? H5). -Apply Rle_sym1; Apply PI_tg_pos. -Apply lt_le_trans with N; Assumption. -Elim H1; Intros H5 _. -Assert H6 := (lt_eq_lt_dec O N). -Elim H6; Intro. -Elim a; Intro. -Assumption. -Rewrite <- b in H4. -Rewrite H4 in H5. -Simpl in H5. -Cut ``0 a end)). - -(* We can get an approximation of PI with the following inequality *) -Lemma PI_ineq : (N:nat) ``(sum_f_R0 (tg_alt PI_tg) (S (mult (S (S O)) N)))<=PI/4<=(sum_f_R0 (tg_alt PI_tg) (mult (S (S O)) N))``. -Intro; Apply alternated_series_ineq. -Apply PI_tg_decreasing. -Apply PI_tg_cv. -Unfold PI; Case exist_PI; Intro. -Replace ``(4*x)/4`` with x. -Trivial. -Unfold Rdiv; Rewrite (Rmult_sym ``4``); Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1r; Reflexivity | DiscrR]. -Qed. - -Lemma PI_RGT_0 : ``0 ~(minus n i)=O. -Intros; Red; Intro. -Cut (n,m:nat) (le m n) -> (minus n m)=O -> n=m. -Intro; Assert H2 := (H1 ? ? (lt_le_weak ? ? H) H0); Rewrite H2 in H; Elim (lt_n_n ? H). -Pose R := [n,m:nat](le m n)->(minus n m)=(0)->n=m. -Cut ((n,m:nat)(R n m)) -> ((n0,m:nat)(le m n0)->(minus n0 m)=(0)->n0=m). -Intro; Apply H1. -Apply nat_double_ind. -Unfold R; Intros; Inversion H2; Reflexivity. -Unfold R; Intros; Simpl in H3; Assumption. -Unfold R; Intros; Simpl in H4; Assert H5 := (le_S_n ? ? H3); Assert H6 := (H2 H5 H4); Rewrite H6; Reflexivity. -Unfold R; Intros; Apply H1; Assumption. -Qed. - -Lemma le_minusni_n : (n,i:nat) (le i n)->(le (minus n i) n). -Pose R := [m,n:nat] (le n m) -> (le (minus m n) m). -Cut ((m,n:nat)(R m n)) -> ((n,i:nat)(le i n)->(le (minus n i) n)). -Intro; Apply H. -Apply nat_double_ind. -Unfold R; Intros; Simpl; Apply le_n. -Unfold R; Intros; Simpl; Apply le_n. -Unfold R; Intros; Simpl; Apply le_trans with n. -Apply H0; Apply le_S_n; Assumption. -Apply le_n_Sn. -Unfold R; Intros; Apply H; Assumption. -Qed. - -Lemma lt_minus_O_lt : (m,n:nat) (lt m n) -> (lt O (minus n m)). -Intros n m; Pattern n m; Apply nat_double_ind; [ - Intros; Rewrite <- minus_n_O; Assumption -| Intros; Elim (lt_n_O ? H) -| Intros; Simpl; Apply H; Apply lt_S_n; Assumption]. -Qed. - -Lemma even_odd_cor : (n:nat) (EX p : nat | n=(mult (2) p)\/n=(S (mult (2) p))). -Intro. -Assert H := (even_or_odd n). -Exists (div2 n). -Assert H0 := (even_odd_double n). -Elim H0; Intros. -Elim H1; Intros H3 _. -Elim H2; Intros H4 _. -Replace (mult (2) (div2 n)) with (Div2.double (div2 n)). -Elim H; Intro. -Left. -Apply H3; Assumption. -Right. -Apply H4; Assumption. -Unfold Div2.double; Ring. -Qed. - -(* 2m <= 2n => m<=n *) -Lemma le_double : (m,n:nat) (le (mult (2) m) (mult (2) n)) -> (le m n). -Intros; Apply INR_le. -Assert H1 := (le_INR ? ? H). -Do 2 Rewrite mult_INR in H1. -Apply Rle_monotony_contra with ``(INR (S (S O)))``. -Replace (INR (S (S O))) with ``2``; [Sup0 | Reflexivity]. -Assumption. -Qed. - -(* Here, we have the euclidian division *) -(* This lemma is used in the proof of sin_eq_0 : (sin x)=0<->x=kPI *) -Lemma euclidian_division : (x,y:R) ``y<>0`` -> (EXT k:Z | (EXT r : R | ``x==(IZR k)*y+r``/\``0<=r<(Rabsolu y)``)). -Intros. -Pose k0 := Cases (case_Rabsolu y) of - (leftT _) => (Zminus `1` (up ``x/-y``)) - | (rightT _) => (Zminus (up ``x/y``) `1`) end. -Exists k0. -Exists ``x-(IZR k0)*y``. -Split. -Ring. -Unfold k0; Case (case_Rabsolu y); Intro. -Assert H0 := (archimed ``x/-y``); Rewrite <- Z_R_minus; Simpl; Unfold Rminus. -Replace ``-((1+ -(IZR (up (x/( -y)))))*y)`` with ``((IZR (up (x/-y)))-1)*y``; [Idtac | Ring]. -Split. -Apply Rle_monotony_contra with ``/-y``. -Apply Rlt_Rinv; Apply Rgt_RO_Ropp; Exact r. -Rewrite Rmult_Or; Rewrite (Rmult_sym ``/-y``); Rewrite Rmult_Rplus_distrl; Rewrite <- Ropp_Rinv; [Idtac | Assumption]. -Rewrite Rmult_assoc; Repeat Rewrite Ropp_mul3; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1r | Assumption]. -Apply Rle_anti_compatibility with ``(IZR (up (x/( -y))))-x/( -y)``. -Rewrite Rplus_Or; Unfold Rdiv; Pattern 4 ``/-y``; Rewrite <- Ropp_Rinv; [Idtac | Assumption]. -Replace ``(IZR (up (x*/ -y)))-x* -/y+( -(x*/y)+ -((IZR (up (x*/ -y)))-1))`` with R1; [Idtac | Ring]. -Elim H0; Intros _ H1; Unfold Rdiv in H1; Exact H1. -Rewrite (Rabsolu_left ? r); Apply Rlt_monotony_contra with ``/-y``. -Apply Rlt_Rinv; Apply Rgt_RO_Ropp; Exact r. -Rewrite <- Rinv_l_sym. -Rewrite (Rmult_sym ``/-y``); Rewrite Rmult_Rplus_distrl; Rewrite <- Ropp_Rinv; [Idtac | Assumption]. -Rewrite Rmult_assoc; Repeat Rewrite Ropp_mul3; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1r | Assumption]; Apply Rlt_anti_compatibility with ``((IZR (up (x/( -y))))-1)``. -Replace ``(IZR (up (x/( -y))))-1+1`` with ``(IZR (up (x/( -y))))``; [Idtac | Ring]. -Replace ``(IZR (up (x/( -y))))-1+( -(x*/y)+ -((IZR (up (x/( -y))))-1))`` with ``-(x*/y)``; [Idtac | Ring]. -Rewrite <- Ropp_mul3; Rewrite (Ropp_Rinv ? H); Elim H0; Unfold Rdiv; Intros H1 _; Exact H1. -Apply Ropp_neq; Assumption. -Assert H0 := (archimed ``x/y``); Rewrite <- Z_R_minus; Simpl; Cut ``0 (C n i) == (C n (minus n i)). -Intros; Unfold C; Replace (minus n (minus n i)) with i. -Rewrite Rmult_sym. -Reflexivity. -Apply plus_minus; Rewrite plus_sym; Apply le_plus_minus; Assumption. -Qed. - -Lemma pascal_step2 : (n,i:nat) (le i n) -> (C (S n) i) == ``(INR (S n))/(INR (minus (S n) i))*(C n i)``. -Intros; Unfold C; Replace (minus (S n) i) with (S (minus n i)). -Cut (n:nat) (fact (S n))=(mult (S n) (fact n)). -Intro; Repeat Rewrite H0. -Unfold Rdiv; Repeat Rewrite mult_INR; Repeat Rewrite Rinv_Rmult. -Ring. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply not_O_INR; Discriminate. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply prod_neq_R0. -Apply not_O_INR; Discriminate. -Apply INR_fact_neq_0. -Intro; Reflexivity. -Apply minus_Sn_m; Assumption. -Qed. - -Lemma pascal_step3 : (n,i:nat) (lt i n) -> (C n (S i)) == ``(INR (minus n i))/(INR (S i))*(C n i)``. -Intros; Unfold C. -Cut (n:nat) (fact (S n))=(mult (S n) (fact n)). -Intro. -Cut (minus n i) = (S (minus n (S i))). -Intro. -Pattern 2 (minus n i); Rewrite H1. -Repeat Rewrite H0; Unfold Rdiv; Repeat Rewrite mult_INR; Repeat Rewrite Rinv_Rmult. -Rewrite <- H1; Rewrite (Rmult_sym ``/(INR (minus n i))``); Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym (INR (minus n i))); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Ring. -Apply not_O_INR; Apply minus_neq_O; Assumption. -Apply not_O_INR; Discriminate. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0]. -Apply not_O_INR; Discriminate. -Apply INR_fact_neq_0. -Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0]. -Apply INR_fact_neq_0. -Rewrite minus_Sn_m. -Simpl; Reflexivity. -Apply lt_le_S; Assumption. -Intro; Reflexivity. -Qed. - -(**********) -Lemma pascal : (n,i:nat) (lt i n) -> ``(C n i)+(C n (S i))==(C (S n) (S i))``. -Intros. -Rewrite pascal_step3; [Idtac | Assumption]. -Replace ``(C n i)+(INR (minus n i))/(INR (S i))*(C n i)`` with ``(C n i)*(1+(INR (minus n i))/(INR (S i)))``; [Idtac | Ring]. -Replace ``1+(INR (minus n i))/(INR (S i))`` with ``(INR (S n))/(INR (S i))``. -Rewrite pascal_step1. -Rewrite Rmult_sym; Replace (S i) with (minus (S n) (minus n i)). -Rewrite <- pascal_step2. -Apply pascal_step1. -Apply le_trans with n. -Apply le_minusni_n. -Apply lt_le_weak; Assumption. -Apply le_n_Sn. -Apply le_minusni_n. -Apply lt_le_weak; Assumption. -Rewrite <- minus_Sn_m. -Cut (minus n (minus n i))=i. -Intro; Rewrite H0; Reflexivity. -Symmetry; Apply plus_minus. -Rewrite plus_sym; Rewrite le_plus_minus_r. -Reflexivity. -Apply lt_le_weak; Assumption. -Apply le_minusni_n; Apply lt_le_weak; Assumption. -Apply lt_le_weak; Assumption. -Unfold Rdiv. -Repeat Rewrite S_INR. -Rewrite minus_INR. -Cut ``((INR i)+1)<>0``. -Intro. -Apply r_Rmult_mult with ``(INR i)+1``; [Idtac | Assumption]. -Rewrite Rmult_Rplus_distr. -Rewrite Rmult_1r. -Do 2 Rewrite (Rmult_sym ``(INR i)+1``). -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym; [Idtac | Assumption]. -Ring. -Rewrite <- S_INR. -Apply not_O_INR; Discriminate. -Apply lt_le_weak; Assumption. -Qed. - -(*********************) -(*********************) -Lemma binomial : (x,y:R;n:nat) ``(pow (x+y) n)``==(sum_f_R0 [i:nat]``(C n i)*(pow x i)*(pow y (minus n i))`` n). -Intros; Induction n. -Unfold C; Simpl; Unfold Rdiv; Repeat Rewrite Rmult_1r; Rewrite Rinv_R1; Ring. -Pattern 1 (S n); Replace (S n) with (plus n (1)); [Idtac | Ring]. -Rewrite pow_add; Rewrite Hrecn. -Replace ``(pow (x+y) (S O))`` with ``x+y``; [Idtac | Simpl; Ring]. -Rewrite tech5. -Cut (p:nat)(C p p)==R1. -Cut (p:nat)(C p O)==R1. -Intros; Rewrite H0; Rewrite <- minus_n_n; Rewrite Rmult_1l. -Replace (pow y O) with R1; [Rewrite Rmult_1r | Simpl; Reflexivity]. -Induction n. -Simpl; Do 2 Rewrite H; Ring. -(* N >= 1 *) -Pose N := (S n). -Rewrite Rmult_Rplus_distr. -Replace (Rmult (sum_f_R0 ([i:nat]``(C N i)*(pow x i)*(pow y (minus N i))``) N) x) with (sum_f_R0 [i:nat]``(C N i)*(pow x (S i))*(pow y (minus N i))`` N). -Replace (Rmult (sum_f_R0 ([i:nat]``(C N i)*(pow x i)*(pow y (minus N i))``) N) y) with (sum_f_R0 [i:nat]``(C N i)*(pow x i)*(pow y (minus (S N) i))`` N). -Rewrite (decomp_sum [i:nat]``(C (S N) i)*(pow x i)*(pow y (minus (S N) i))`` N). -Rewrite H; Replace (pow x O) with R1; [Idtac | Reflexivity]. -Do 2 Rewrite Rmult_1l. -Replace (minus (S N) O) with (S N); [Idtac | Reflexivity]. -Pose An := [i:nat]``(C N i)*(pow x (S i))*(pow y (minus N i))``. -Pose Bn := [i:nat]``(C N (S i))*(pow x (S i))*(pow y (minus N i))``. -Replace (pred N) with n. -Replace (sum_f_R0 ([i:nat]``(C (S N) (S i))*(pow x (S i))*(pow y (minus (S N) (S i)))``) n) with (sum_f_R0 [i:nat]``(An i)+(Bn i)`` n). -Rewrite plus_sum. -Replace (pow x (S N)) with (An (S n)). -Rewrite (Rplus_sym (sum_f_R0 An n)). -Repeat Rewrite Rplus_assoc. -Rewrite <- tech5. -Fold N. -Pose Cn := [i:nat]``(C N i)*(pow x i)*(pow y (minus (S N) i))``. -Cut (i:nat) (lt i N)-> (Cn (S i))==(Bn i). -Intro; Replace (sum_f_R0 Bn n) with (sum_f_R0 [i:nat](Cn (S i)) n). -Replace (pow y (S N)) with (Cn O). -Rewrite <- Rplus_assoc; Rewrite (decomp_sum Cn N). -Replace (pred N) with n. -Ring. -Unfold N; Simpl; Reflexivity. -Unfold N; Apply lt_O_Sn. -Unfold Cn; Rewrite H; Simpl; Ring. -Apply sum_eq. -Intros; Apply H1. -Unfold N; Apply le_lt_trans with n; [Assumption | Apply lt_n_Sn]. -Intros; Unfold Bn Cn. -Replace (minus (S N) (S i)) with (minus N i); Reflexivity. -Unfold An; Fold N; Rewrite <- minus_n_n; Rewrite H0; Simpl; Ring. -Apply sum_eq. -Intros; Unfold An Bn; Replace (minus (S N) (S i)) with (minus N i); [Idtac | Reflexivity]. -Rewrite <- pascal; [Ring | Apply le_lt_trans with n; [Assumption | Unfold N; Apply lt_n_Sn]]. -Unfold N; Reflexivity. -Unfold N; Apply lt_O_Sn. -Rewrite <- (Rmult_sym y); Rewrite scal_sum; Apply sum_eq. -Intros; Replace (minus (S N) i) with (S (minus N i)). -Replace (S (minus N i)) with (plus (minus N i) (1)); [Idtac | Ring]. -Rewrite pow_add; Replace (pow y (S O)) with y; [Idtac | Simpl; Ring]; Ring. -Apply minus_Sn_m; Assumption. -Rewrite <- (Rmult_sym x); Rewrite scal_sum; Apply sum_eq. -Intros; Replace (S i) with (plus i (1)); [Idtac | Ring]; Rewrite pow_add; Replace (pow x (S O)) with x; [Idtac | Simpl; Ring]; Ring. -Intro; Unfold C. -Replace (INR (fact O)) with R1; [Idtac | Reflexivity]. -Replace (minus p O) with p; [Idtac | Apply minus_n_O]. -Rewrite Rmult_1l; Unfold Rdiv; Rewrite <- Rinv_r_sym; [Reflexivity | Apply INR_fact_neq_0]. -Intro; Unfold C. -Replace (minus p p) with O; [Idtac | Apply minus_n_n]. -Replace (INR (fact O)) with R1; [Idtac | Reflexivity]. -Rewrite Rmult_1r; Unfold Rdiv; Rewrite <- Rinv_r_sym; [Reflexivity | Apply INR_fact_neq_0]. -Qed. diff --git a/theories7/Reals/Cauchy_prod.v b/theories7/Reals/Cauchy_prod.v deleted file mode 100644 index 9442eff0..00000000 --- a/theories7/Reals/Cauchy_prod.v +++ /dev/null @@ -1,347 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R;N:nat) (lt O N) -> (sum_f_R0 An N)==``(sum_f_R0 An (pred N)) + (An N)``. -Intros. -Replace N with (S (pred N)). -Rewrite tech5. -Reflexivity. -Symmetry; Apply S_pred with O; Assumption. -Qed. - -(**********) -Lemma sum_plus : (An,Bn:nat->R;N:nat) (sum_f_R0 [l:nat]``(An l)+(Bn l)`` N)==``(sum_f_R0 An N)+(sum_f_R0 Bn N)``. -Intros. -Induction N. -Reflexivity. -Do 3 Rewrite tech5. -Rewrite HrecN; Ring. -Qed. - -(* The main result *) -Theorem cauchy_finite : (An,Bn:nat->R;N:nat) (lt O N) -> (Rmult (sum_f_R0 An N) (sum_f_R0 Bn N)) == (Rplus (sum_f_R0 [k:nat](sum_f_R0 [p:nat]``(An p)*(Bn (minus k p))`` k) N) (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(An (S (plus l k)))*(Bn (minus N l))`` (pred (minus N k))) (pred N))). -Intros; Induction N. -Elim (lt_n_n ? H). -Cut N=O\/(lt O N). -Intro; Elim H0; Intro. -Rewrite H1; Simpl; Ring. -Replace (pred (S N)) with (S (pred N)). -Do 5 Rewrite tech5. -Rewrite Rmult_Rplus_distrl; Rewrite Rmult_Rplus_distr; Rewrite (HrecN H1). -Repeat Rewrite Rplus_assoc; Apply Rplus_plus_r. -Replace (pred (minus (S N) (S (pred N)))) with (O). -Rewrite Rmult_Rplus_distr; Replace (sum_f_R0 [l:nat]``(An (S (plus l (S (pred N)))))*(Bn (minus (S N) l))`` O) with ``(An (S N))*(Bn (S N))``. -Repeat Rewrite <- Rplus_assoc; Do 2 Rewrite <- (Rplus_sym ``(An (S N))*(Bn (S N))``); Repeat Rewrite Rplus_assoc; Apply Rplus_plus_r. -Rewrite <- minus_n_n; Cut N=(1)\/(le (2) N). -Intro; Elim H2; Intro. -Rewrite H3; Simpl; Ring. -Replace (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(An (S (plus l k)))*(Bn (minus N l))`` (pred (minus N k))) (pred N)) with (Rplus (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(An (S (S (plus l k))))*(Bn (minus N l))`` (pred (pred (minus N k)))) (pred (pred N))) (sum_f_R0 [l:nat]``(An (S l))*(Bn (minus N l))`` (pred N))). -Replace (sum_f_R0 [p:nat]``(An p)*(Bn (minus (S N) p))`` N) with (Rplus (sum_f_R0 [l:nat]``(An (S l))*(Bn (minus N l))`` (pred N)) ``(An O)*(Bn (S N))``). -Repeat Rewrite <- Rplus_assoc; Rewrite <- (Rplus_sym (sum_f_R0 [l:nat]``(An (S l))*(Bn (minus N l))`` (pred N))); Repeat Rewrite Rplus_assoc; Apply Rplus_plus_r. -Replace (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(An (S (plus l k)))*(Bn (minus (S N) l))`` (pred (minus (S N) k))) (pred N)) with (Rplus (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(An (S (S (plus l k))))*(Bn (minus N l))`` (pred (minus N k))) (pred N)) (Rmult (Bn (S N)) (sum_f_R0 [l:nat](An (S l)) (pred N)))). -Rewrite (decomp_sum An N H1); Rewrite Rmult_Rplus_distrl; Repeat Rewrite <- Rplus_assoc; Rewrite <- (Rplus_sym ``(An O)*(Bn (S N))``); Repeat Rewrite Rplus_assoc; Apply Rplus_plus_r. -Repeat Rewrite <- Rplus_assoc; Rewrite <- (Rplus_sym (Rmult (sum_f_R0 [i:nat](An (S i)) (pred N)) (Bn (S N)))); Rewrite <- (Rplus_sym (Rmult (Bn (S N)) (sum_f_R0 [i:nat](An (S i)) (pred N)))); Rewrite (Rmult_sym (Bn (S N))); Repeat Rewrite Rplus_assoc; Apply Rplus_plus_r. -Replace (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(An (S (S (plus l k))))*(Bn (minus N l))`` (pred (minus N k))) (pred N)) with (Rplus (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(An (S (S (plus l k))))*(Bn (minus N l))`` (pred (pred (minus N k)))) (pred (pred N))) (Rmult (An (S N)) (sum_f_R0 [l:nat](Bn (S l)) (pred N)))). -Rewrite (decomp_sum Bn N H1); Rewrite Rmult_Rplus_distr. -Pose Z := (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(An (S (S (plus l k))))*(Bn (minus N l))`` (pred (pred (minus N k)))) (pred (pred N))); Pose Z2 := (sum_f_R0 [i:nat](Bn (S i)) (pred N)); Ring. -Rewrite (sum_N_predN [k:nat](sum_f_R0 [l:nat]``(An (S (S (plus l k))))*(Bn (minus N l))`` (pred (minus N k))) (pred N)). -Replace (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(An (S (S (plus l k))))*(Bn (minus N l))`` (pred (minus N k))) (pred (pred N))) with (sum_f_R0 [k:nat](Rplus (sum_f_R0 [l:nat]``(An (S (S (plus l k))))*(Bn (minus N l))`` (pred (pred (minus N k)))) ``(An (S N))*(Bn (S k))``) (pred (pred N))). -Rewrite (sum_plus [k:nat](sum_f_R0 [l:nat]``(An (S (S (plus l k))))*(Bn (minus N l))`` (pred (pred (minus N k)))) [k:nat]``(An (S N))*(Bn (S k))`` (pred (pred N))). -Repeat Rewrite Rplus_assoc; Apply Rplus_plus_r. -Replace (pred (minus N (pred N))) with O. -Simpl; Rewrite <- minus_n_O. -Replace (S (pred N)) with N. -Replace (sum_f_R0 [k:nat]``(An (S N))*(Bn (S k))`` (pred (pred N))) with (sum_f_R0 [k:nat]``(Bn (S k))*(An (S N))`` (pred (pred N))). -Rewrite <- (scal_sum [l:nat](Bn (S l)) (pred (pred N)) (An (S N))); Rewrite (sum_N_predN [l:nat](Bn (S l)) (pred N)). -Replace (S (pred N)) with N. -Ring. -Apply S_pred with O; Assumption. -Apply lt_pred; Apply lt_le_trans with (2); [Apply lt_n_Sn | Assumption]. -Apply sum_eq; Intros; Apply Rmult_sym. -Apply S_pred with O; Assumption. -Replace (minus N (pred N)) with (1). -Reflexivity. -Pattern 1 N; Replace N with (S (pred N)). -Rewrite <- minus_Sn_m. -Rewrite <- minus_n_n; Reflexivity. -Apply le_n. -Symmetry; Apply S_pred with O; Assumption. -Apply sum_eq; Intros; Rewrite (sum_N_predN [l:nat]``(An (S (S (plus l i))))*(Bn (minus N l))`` (pred (minus N i))). -Replace (S (S (plus (pred (minus N i)) i))) with (S N). -Replace (minus N (pred (minus N i))) with (S i). -Ring. -Rewrite pred_of_minus; Apply INR_eq; Repeat Rewrite minus_INR. -Rewrite S_INR; Ring. -Apply le_trans with (pred (pred N)). -Assumption. -Apply le_trans with (pred N); Apply le_pred_n. -Apply INR_le; Rewrite minus_INR. -Apply Rle_anti_compatibility with ``(INR i)-1``. -Replace ``(INR i)-1+(INR (S O))`` with (INR i); [Idtac | Ring]. -Replace ``(INR i)-1+((INR N)-(INR i))`` with ``(INR N)-(INR (S O))``; [Idtac | Ring]. -Rewrite <- minus_INR. -Apply le_INR; Apply le_trans with (pred (pred N)). -Assumption. -Rewrite <- pred_of_minus; Apply le_pred_n. -Apply le_trans with (2). -Apply le_n_Sn. -Assumption. -Apply le_trans with (pred (pred N)). -Assumption. -Apply le_trans with (pred N); Apply le_pred_n. -Rewrite <- pred_of_minus. -Apply le_trans with (pred N). -Apply le_S_n. -Replace (S (pred N)) with N. -Replace (S (pred (minus N i))) with (minus N i). -Apply simpl_le_plus_l with i; Rewrite le_plus_minus_r. -Apply le_plus_r. -Apply le_trans with (pred (pred N)); [Assumption | Apply le_trans with (pred N); Apply le_pred_n]. -Apply S_pred with O. -Apply simpl_lt_plus_l with i; Rewrite le_plus_minus_r. -Replace (plus i O) with i; [Idtac | Ring]. -Apply le_lt_trans with (pred (pred N)); [Assumption | Apply lt_trans with (pred N); Apply lt_pred_n_n]. -Apply lt_S_n. -Replace (S (pred N)) with N. -Apply lt_le_trans with (2). -Apply lt_n_Sn. -Assumption. -Apply S_pred with O; Assumption. -Assumption. -Apply le_trans with (pred (pred N)). -Assumption. -Apply le_trans with (pred N); Apply le_pred_n. -Apply S_pred with O; Assumption. -Apply le_pred_n. -Apply INR_eq; Rewrite pred_of_minus; Do 3 Rewrite S_INR; Rewrite plus_INR; Repeat Rewrite minus_INR. -Ring. -Apply le_trans with (pred (pred N)). -Assumption. -Apply le_trans with (pred N); Apply le_pred_n. -Apply INR_le. -Rewrite minus_INR. -Apply Rle_anti_compatibility with ``(INR i)-1``. -Replace ``(INR i)-1+(INR (S O))`` with (INR i); [Idtac | Ring]. -Replace ``(INR i)-1+((INR N)-(INR i))`` with ``(INR N)-(INR (S O))``; [Idtac | Ring]. -Rewrite <- minus_INR. -Apply le_INR. -Apply le_trans with (pred (pred N)). -Assumption. -Rewrite <- pred_of_minus. -Apply le_pred_n. -Apply le_trans with (2). -Apply le_n_Sn. -Assumption. -Apply le_trans with (pred (pred N)). -Assumption. -Apply le_trans with (pred N); Apply le_pred_n. -Apply lt_le_trans with (1). -Apply lt_O_Sn. -Apply INR_le. -Rewrite pred_of_minus. -Repeat Rewrite minus_INR. -Apply Rle_anti_compatibility with ``(INR i)-1``. -Replace ``(INR i)-1+(INR (S O))`` with (INR i); [Idtac | Ring]. -Replace ``(INR i)-1+((INR N)-(INR i)-(INR (S O)))`` with ``(INR N)-(INR (S O)) -(INR (S O))``. -Repeat Rewrite <- minus_INR. -Apply le_INR. -Apply le_trans with (pred (pred N)). -Assumption. -Do 2 Rewrite <- pred_of_minus. -Apply le_n. -Apply simpl_le_plus_l with (1). -Rewrite le_plus_minus_r. -Simpl; Assumption. -Apply le_trans with (2); [Apply le_n_Sn | Assumption]. -Apply le_trans with (2); [Apply le_n_Sn | Assumption]. -Ring. -Apply le_trans with (pred (pred N)). -Assumption. -Apply le_trans with (pred N); Apply le_pred_n. -Apply simpl_le_plus_l with i. -Rewrite le_plus_minus_r. -Replace (plus i (1)) with (S i). -Replace N with (S (pred N)). -Apply le_n_S. -Apply le_trans with (pred (pred N)). -Assumption. -Apply le_pred_n. -Symmetry; Apply S_pred with O; Assumption. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Reflexivity. -Apply le_trans with (pred (pred N)). -Assumption. -Apply le_trans with (pred N); Apply le_pred_n. -Apply lt_le_trans with (1). -Apply lt_O_Sn. -Apply le_S_n. -Replace (S (pred N)) with N. -Assumption. -Apply S_pred with O; Assumption. -Replace (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(An (S (plus l k)))*(Bn (minus (S N) l))`` (pred (minus (S N) k))) (pred N)) with (sum_f_R0 [k:nat](Rplus (sum_f_R0 [l:nat]``(An (S (S (plus l k))))*(Bn (minus N l))`` (pred (minus N k))) ``(An (S k))*(Bn (S N))``) (pred N)). -Rewrite (sum_plus [k:nat](sum_f_R0 [l:nat]``(An (S (S (plus l k))))*(Bn (minus N l))`` (pred (minus N k))) [k:nat]``(An (S k))*(Bn (S N))``). -Apply Rplus_plus_r. -Rewrite scal_sum; Reflexivity. -Apply sum_eq; Intros; Rewrite Rplus_sym; Rewrite (decomp_sum [l:nat]``(An (S (plus l i)))*(Bn (minus (S N) l))`` (pred (minus (S N) i))). -Replace (plus O i) with i; [Idtac | Ring]. -Rewrite <- minus_n_O; Apply Rplus_plus_r. -Replace (pred (pred (minus (S N) i))) with (pred (minus N i)). -Apply sum_eq; Intros. -Replace (minus (S N) (S i0)) with (minus N i0); [Idtac | Reflexivity]. -Replace (plus (S i0) i) with (S (plus i0 i)). -Reflexivity. -Apply INR_eq; Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring. -Cut (minus N i)=(pred (minus (S N) i)). -Intro; Rewrite H5; Reflexivity. -Rewrite pred_of_minus. -Apply INR_eq; Repeat Rewrite minus_INR. -Rewrite S_INR; Ring. -Apply le_trans with N. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_n_Sn. -Apply simpl_le_plus_l with i. -Rewrite le_plus_minus_r. -Replace (plus i (1)) with (S i). -Apply le_n_S. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Ring. -Apply le_trans with N. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_n_Sn. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Replace (pred (minus (S N) i)) with (minus (S N) (S i)). -Replace (minus (S N) (S i)) with (minus N i); [Idtac | Reflexivity]. -Apply simpl_lt_plus_l with i. -Rewrite le_plus_minus_r. -Replace (plus i O) with i; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Assumption. -Apply lt_pred_n_n. -Assumption. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Rewrite pred_of_minus. -Apply INR_eq; Repeat Rewrite minus_INR. -Repeat Rewrite S_INR; Ring. -Apply le_trans with N. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_n_Sn. -Apply simpl_le_plus_l with i. -Rewrite le_plus_minus_r. -Replace (plus i (1)) with (S i). -Apply le_n_S. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Ring. -Apply le_trans with N. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_n_Sn. -Apply le_n_S. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Rewrite Rplus_sym. -Rewrite (decomp_sum [p:nat]``(An p)*(Bn (minus (S N) p))`` N). -Rewrite <- minus_n_O. -Apply Rplus_plus_r. -Apply sum_eq; Intros. -Reflexivity. -Assumption. -Rewrite Rplus_sym. -Rewrite (decomp_sum [k:nat](sum_f_R0 [l:nat]``(An (S (plus l k)))*(Bn (minus N l))`` (pred (minus N k))) (pred N)). -Rewrite <- minus_n_O. -Replace (sum_f_R0 [l:nat]``(An (S (plus l O)))*(Bn (minus N l))`` (pred N)) with (sum_f_R0 [l:nat]``(An (S l))*(Bn (minus N l))`` (pred N)). -Apply Rplus_plus_r. -Apply sum_eq; Intros. -Replace (pred (minus N (S i))) with (pred (pred (minus N i))). -Apply sum_eq; Intros. -Replace (plus i0 (S i)) with (S (plus i0 i)). -Reflexivity. -Apply INR_eq; Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring. -Cut (pred (minus N i))=(minus N (S i)). -Intro; Rewrite H5; Reflexivity. -Rewrite pred_of_minus. -Apply INR_eq. -Repeat Rewrite minus_INR. -Repeat Rewrite S_INR; Ring. -Apply le_trans with (S (pred (pred N))). -Apply le_n_S; Assumption. -Replace (S (pred (pred N))) with (pred N). -Apply le_pred_n. -Apply S_pred with O. -Apply lt_S_n. -Replace (S (pred N)) with N. -Apply lt_le_trans with (2). -Apply lt_n_Sn. -Assumption. -Apply S_pred with O; Assumption. -Apply le_trans with (pred (pred N)). -Assumption. -Apply le_trans with (pred N); Apply le_pred_n. -Apply simpl_le_plus_l with i. -Rewrite le_plus_minus_r. -Replace (plus i (1)) with (S i). -Replace N with (S (pred N)). -Apply le_n_S. -Apply le_trans with (pred (pred N)). -Assumption. -Apply le_pred_n. -Symmetry; Apply S_pred with O; Assumption. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Ring. -Apply le_trans with (pred (pred N)). -Assumption. -Apply le_trans with (pred N); Apply le_pred_n. -Apply sum_eq; Intros. -Replace (plus i O) with i; [Reflexivity | Trivial]. -Apply lt_S_n. -Replace (S (pred N)) with N. -Apply lt_le_trans with (2); [Apply lt_n_Sn | Assumption]. -Apply S_pred with O; Assumption. -Inversion H1. -Left; Reflexivity. -Right; Apply le_n_S; Assumption. -Simpl. -Replace (S (pred N)) with N. -Reflexivity. -Apply S_pred with O; Assumption. -Simpl. -Cut (minus N (pred N))=(1). -Intro; Rewrite H2; Reflexivity. -Rewrite pred_of_minus. -Apply INR_eq; Repeat Rewrite minus_INR. -Ring. -Apply lt_le_S; Assumption. -Rewrite <- pred_of_minus; Apply le_pred_n. -Simpl; Symmetry; Apply S_pred with O; Assumption. -Inversion H. -Left; Reflexivity. -Right; Apply lt_le_trans with (1); [Apply lt_n_Sn | Exact H1]. -Qed. diff --git a/theories7/Reals/Cos_plus.v b/theories7/Reals/Cos_plus.v deleted file mode 100644 index 481e51bf..00000000 --- a/theories7/Reals/Cos_plus.v +++ /dev/null @@ -1,1017 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R := [n:nat](Rdiv (pow (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (4) (S n))) (INR (fact n))). - -Lemma Majxy_cv_R0 : (x,y:R) (Un_cv (Majxy x y) R0). -Intros. -Pose C := (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))). -Pose C0 := (pow C (4)). -Cut ``0 ``(Rabsolu (Reste1 x y N))<=(Majxy x y (pred N))``. -Intros. -Pose C := (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))). -Unfold Reste1. -Apply Rle_trans with (sum_f_R0 - [k:nat] - (Rabsolu (sum_f_R0 - [l:nat] - ``(pow ( -1) (S (plus l k)))/ - (INR (fact (mult (S (S O)) (S (plus l k)))))* - (pow x (mult (S (S O)) (S (plus l k))))* - (pow ( -1) (minus N l))/ - (INR (fact (mult (S (S O)) (minus N l))))* - (pow y (mult (S (S O)) (minus N l)))`` (pred (minus N k)))) - (pred N)). -Apply (sum_Rabsolu [k:nat] - (sum_f_R0 - [l:nat] - ``(pow ( -1) (S (plus l k)))/ - (INR (fact (mult (S (S O)) (S (plus l k)))))* - (pow x (mult (S (S O)) (S (plus l k))))* - (pow ( -1) (minus N l))/ - (INR (fact (mult (S (S O)) (minus N l))))* - (pow y (mult (S (S O)) (minus N l)))`` (pred (minus N k))) (pred N)). -Apply Rle_trans with (sum_f_R0 - [k:nat] - (sum_f_R0 - [l:nat] - (Rabsolu (``(pow ( -1) (S (plus l k)))/ - (INR (fact (mult (S (S O)) (S (plus l k)))))* - (pow x (mult (S (S O)) (S (plus l k))))* - (pow ( -1) (minus N l))/ - (INR (fact (mult (S (S O)) (minus N l))))* - (pow y (mult (S (S O)) (minus N l)))``)) (pred (minus N k))) - (pred N)). -Apply sum_Rle. -Intros. -Apply (sum_Rabsolu [l:nat] - ``(pow ( -1) (S (plus l n)))/ - (INR (fact (mult (S (S O)) (S (plus l n)))))* - (pow x (mult (S (S O)) (S (plus l n))))* - (pow ( -1) (minus N l))/ - (INR (fact (mult (S (S O)) (minus N l))))* - (pow y (mult (S (S O)) (minus N l)))`` (pred (minus N n))). -Apply Rle_trans with (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``/(INR (mult (fact (mult (S (S O)) (S (plus l k)))) (fact (mult (S (S O)) (minus N l)))))*(pow C (mult (S (S O)) (S (plus N k))))`` (pred (minus N k))) (pred N)). -Apply sum_Rle; Intros. -Apply sum_Rle; Intros. -Unfold Rdiv; Repeat Rewrite Rabsolu_mult. -Do 2 Rewrite pow_1_abs. -Do 2 Rewrite Rmult_1l. -Rewrite (Rabsolu_right ``/(INR (fact (mult (S (S O)) (S (plus n0 n)))))``). -Rewrite (Rabsolu_right ``/(INR (fact (mult (S (S O)) (minus N n0))))``). -Rewrite mult_INR. -Rewrite Rinv_Rmult. -Repeat Rewrite Rmult_assoc. -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Rewrite <- Rmult_assoc. -Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (minus N n0))))``). -Rewrite Rmult_assoc. -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Do 2 Rewrite <- Pow_Rabsolu. -Apply Rle_trans with ``(pow (Rabsolu x) (mult (S (S O)) (S (plus n0 n))))*(pow C (mult (S (S O)) (minus N n0)))``. -Apply Rle_monotony. -Apply pow_le; Apply Rabsolu_pos. -Apply pow_incr. -Split. -Apply Rabsolu_pos. -Unfold C. -Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)); Apply RmaxLess2. -Apply Rle_trans with ``(pow C (mult (S (S O)) (S (plus n0 n))))*(pow C (mult (S (S O)) (minus N n0)))``. -Do 2 Rewrite <- (Rmult_sym ``(pow C (mult (S (S O)) (minus N n0)))``). -Apply Rle_monotony. -Apply pow_le. -Apply Rle_trans with R1. -Left; Apply Rlt_R0_R1. -Unfold C; Apply RmaxLess1. -Apply pow_incr. -Split. -Apply Rabsolu_pos. -Unfold C; Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)). -Apply RmaxLess1. -Apply RmaxLess2. -Right. -Replace (mult (2) (S (plus N n))) with (plus (mult (2) (minus N n0)) (mult (2) (S (plus n0 n)))). -Rewrite pow_add. -Apply Rmult_sym. -Apply INR_eq; Rewrite plus_INR; Do 3 Rewrite mult_INR. -Rewrite minus_INR. -Repeat Rewrite S_INR; Do 2 Rewrite plus_INR; Ring. -Apply le_trans with (pred (minus N n)). -Exact H1. -Apply le_S_n. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_trans with N. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_n_Sn. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n O) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Assumption. -Apply lt_pred_n_n; Assumption. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply Rle_trans with (sum_f_R0 - [k:nat] - (sum_f_R0 - [l:nat] - ``/(INR - (mult (fact (mult (S (S O)) (S (plus l k)))) - (fact (mult (S (S O)) (minus N l)))))* - (pow C (mult (S (S (S (S O)))) N))`` (pred (minus N k))) - (pred N)). -Apply sum_Rle; Intros. -Apply sum_Rle; Intros. -Apply Rle_monotony. -Left; Apply Rlt_Rinv. -Rewrite mult_INR; Apply Rmult_lt_pos; Apply INR_fact_lt_0. -Apply Rle_pow. -Unfold C; Apply RmaxLess1. -Replace (mult (4) N) with (mult (2) (mult (2) N)); [Idtac | Ring]. -Apply mult_le. -Replace (mult (2) N) with (S (plus N (pred N))). -Apply le_n_S. -Apply le_reg_l; Assumption. -Rewrite pred_of_minus. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Rewrite minus_INR. -Repeat Rewrite S_INR; Ring. -Apply lt_le_S; Assumption. -Apply Rle_trans with (sum_f_R0 - [k:nat] - (sum_f_R0 - [l:nat] - ``(pow C (mult (S (S (S (S O)))) N))*(Rsqr (/(INR (fact (S (plus N k))))))`` (pred (minus N k))) - (pred N)). -Apply sum_Rle; Intros. -Apply sum_Rle; Intros. -Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) N))``). -Apply Rle_monotony. -Apply pow_le. -Left; Apply Rlt_le_trans with R1. -Apply Rlt_R0_R1. -Unfold C; Apply RmaxLess1. -Replace ``/(INR - (mult (fact (mult (S (S O)) (S (plus n0 n)))) - (fact (mult (S (S O)) (minus N n0)))))`` with ``(Binomial.C (mult (S (S O)) (S (plus N n))) (mult (S (S O)) (S (plus n0 n))))/(INR (fact (mult (S (S O)) (S (plus N n)))))``. -Apply Rle_trans with ``(Binomial.C (mult (S (S O)) (S (plus N n))) (S (plus N n)))/(INR (fact (mult (S (S O)) (S (plus N n)))))``. -Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (S (plus N n)))))``). -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply C_maj. -Apply mult_le. -Apply le_n_S. -Apply le_reg_r. -Apply le_trans with (pred (minus N n)). -Assumption. -Apply le_S_n. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_trans with N. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_n_Sn. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n O) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Assumption. -Apply lt_pred_n_n; Assumption. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Right. -Unfold Rdiv; Rewrite Rmult_sym. -Unfold Binomial.C. -Unfold Rdiv; Repeat Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l. -Replace (minus (mult (2) (S (plus N n))) (S (plus N n))) with (S (plus N n)). -Rewrite Rinv_Rmult. -Unfold Rsqr; Reflexivity. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_eq; Rewrite S_INR; Rewrite minus_INR. -Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite plus_INR; Ring. -Apply le_n_2n. -Apply INR_fact_neq_0. -Unfold Rdiv; Rewrite Rmult_sym. -Unfold Binomial.C. -Unfold Rdiv; Repeat Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l. -Replace (minus (mult (2) (S (plus N n))) (mult (2) (S (plus n0 n)))) with (mult (2) (minus N n0)). -Rewrite mult_INR. -Reflexivity. -Apply INR_eq; Rewrite minus_INR. -Do 3 Rewrite mult_INR; Repeat Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite minus_INR. -Ring. -Apply le_trans with (pred (minus N n)). -Assumption. -Apply le_S_n. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_trans with N. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_n_Sn. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n O) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Assumption. -Apply lt_pred_n_n; Assumption. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply mult_le. -Apply le_n_S. -Apply le_reg_r. -Apply le_trans with (pred (minus N n)). -Assumption. -Apply le_S_n. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_trans with N. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_n_Sn. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n O) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Assumption. -Apply lt_pred_n_n; Assumption. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply INR_fact_neq_0. -Apply Rle_trans with (sum_f_R0 [k:nat]``(INR N)/(INR (fact (S N)))*(pow C (mult (S (S (S (S O)))) N))`` (pred N)). -Apply sum_Rle; Intros. -Rewrite <- (scal_sum [_:nat]``(pow C (mult (S (S (S (S O)))) N))`` (pred (minus N n)) ``(Rsqr (/(INR (fact (S (plus N n))))))``). -Rewrite sum_cte. -Rewrite <- Rmult_assoc. -Do 2 Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) N))``). -Rewrite Rmult_assoc. -Apply Rle_monotony. -Apply pow_le. -Left; Apply Rlt_le_trans with R1. -Apply Rlt_R0_R1. -Unfold C; Apply RmaxLess1. -Apply Rle_trans with ``(Rsqr (/(INR (fact (S (plus N n))))))*(INR N)``. -Apply Rle_monotony. -Apply pos_Rsqr. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_INR. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n O) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Assumption. -Apply lt_pred_n_n; Assumption. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Rewrite Rmult_sym; Unfold Rdiv; Apply Rle_monotony. -Apply pos_INR. -Apply Rle_trans with ``/(INR (fact (S (plus N n))))``. -Pattern 2 ``/(INR (fact (S (plus N n))))``; Rewrite <- Rmult_1r. -Unfold Rsqr. -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply Rle_monotony_contra with ``(INR (fact (S (plus N n))))``. -Apply INR_fact_lt_0. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r. -Replace R1 with (INR (S O)). -Apply le_INR. -Apply lt_le_S. -Apply INR_lt; Apply INR_fact_lt_0. -Reflexivity. -Apply INR_fact_neq_0. -Apply Rle_monotony_contra with ``(INR (fact (S (plus N n))))``. -Apply INR_fact_lt_0. -Rewrite <- Rinv_r_sym. -Apply Rle_monotony_contra with ``(INR (fact (S N)))``. -Apply INR_fact_lt_0. -Rewrite Rmult_1r. -Rewrite (Rmult_sym (INR (fact (S N)))). -Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Apply le_INR. -Apply fact_growing. -Apply le_n_S. -Apply le_plus_l. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Rewrite sum_cte. -Apply Rle_trans with ``(pow C (mult (S (S (S (S O)))) N))/(INR (fact (pred N)))``. -Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) N))``). -Unfold Rdiv; Rewrite Rmult_assoc; Apply Rle_monotony. -Apply pow_le. -Left; Apply Rlt_le_trans with R1. -Apply Rlt_R0_R1. -Unfold C; Apply RmaxLess1. -Cut (S (pred N)) = N. -Intro; Rewrite H0. -Pattern 2 N; Rewrite <- H0. -Do 2 Rewrite fact_simpl. -Rewrite H0. -Repeat Rewrite mult_INR. -Repeat Rewrite Rinv_Rmult. -Rewrite (Rmult_sym ``/(INR (S N))``). -Repeat Rewrite <- Rmult_assoc. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l. -Pattern 2 ``/(INR (fact (pred N)))``; Rewrite <- Rmult_1r. -Rewrite Rmult_assoc. -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply Rle_monotony_contra with (INR (S N)). -Apply lt_INR_0; Apply lt_O_Sn. -Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Rewrite Rmult_1l. -Apply le_INR; Apply le_n_Sn. -Apply not_O_INR; Discriminate. -Apply not_O_INR. -Red; Intro; Rewrite H1 in H; Elim (lt_n_n ? H). -Apply not_O_INR. -Red; Intro; Rewrite H1 in H; Elim (lt_n_n ? H). -Apply INR_fact_neq_0. -Apply not_O_INR; Discriminate. -Apply prod_neq_R0. -Apply not_O_INR. -Red; Intro; Rewrite H1 in H; Elim (lt_n_n ? H). -Apply INR_fact_neq_0. -Symmetry; Apply S_pred with O; Assumption. -Right. -Unfold Majxy. -Unfold C. -Replace (S (pred N)) with N. -Reflexivity. -Apply S_pred with O; Assumption. -Qed. - -Lemma reste2_maj : (x,y:R;N:nat) (lt O N) -> ``(Rabsolu (Reste2 x y N))<=(Majxy x y N)``. -Intros. -Pose C := (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))). -Unfold Reste2. -Apply Rle_trans with (sum_f_R0 - [k:nat] - (Rabsolu (sum_f_R0 - [l:nat] - ``(pow ( -1) (S (plus l k)))/ - (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))* - (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))* - (pow ( -1) (minus N l))/ - (INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))* - (pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N k)))) - (pred N)). -Apply (sum_Rabsolu [k:nat] - (sum_f_R0 - [l:nat] - ``(pow ( -1) (S (plus l k)))/ - (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))* - (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))* - (pow ( -1) (minus N l))/ - (INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))* - (pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N k))) (pred N)). -Apply Rle_trans with (sum_f_R0 - [k:nat] - (sum_f_R0 - [l:nat] - (Rabsolu (``(pow ( -1) (S (plus l k)))/ - (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))* - (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))* - (pow ( -1) (minus N l))/ - (INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))* - (pow y (plus (mult (S (S O)) (minus N l)) (S O)))``)) (pred (minus N k))) - (pred N)). -Apply sum_Rle. -Intros. -Apply (sum_Rabsolu [l:nat] - ``(pow ( -1) (S (plus l n)))/ - (INR (fact (plus (mult (S (S O)) (S (plus l n))) (S O))))* - (pow x (plus (mult (S (S O)) (S (plus l n))) (S O)))* - (pow ( -1) (minus N l))/ - (INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))* - (pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N n))). -Apply Rle_trans with (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``/(INR (mult (fact (plus (mult (S (S O)) (S (plus l k))) (S O))) (fact (plus (mult (S (S O)) (minus N l)) (S O)))))*(pow C (mult (S (S O)) (S (S (plus N k)))))`` (pred (minus N k))) (pred N)). -Apply sum_Rle; Intros. -Apply sum_Rle; Intros. -Unfold Rdiv; Repeat Rewrite Rabsolu_mult. -Do 2 Rewrite pow_1_abs. -Do 2 Rewrite Rmult_1l. -Rewrite (Rabsolu_right ``/(INR (fact (plus (mult (S (S O)) (S (plus n0 n))) (S O))))``). -Rewrite (Rabsolu_right ``/(INR (fact (plus (mult (S (S O)) (minus N n0)) (S O))))``). -Rewrite mult_INR. -Rewrite Rinv_Rmult. -Repeat Rewrite Rmult_assoc. -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Rewrite <- Rmult_assoc. -Rewrite <- (Rmult_sym ``/(INR (fact (plus (mult (S (S O)) (minus N n0)) (S O))))``). -Rewrite Rmult_assoc. -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Do 2 Rewrite <- Pow_Rabsolu. -Apply Rle_trans with ``(pow (Rabsolu x) (plus (mult (S (S O)) (S (plus n0 n))) (S O)))*(pow C (plus (mult (S (S O)) (minus N n0)) (S O)))``. -Apply Rle_monotony. -Apply pow_le; Apply Rabsolu_pos. -Apply pow_incr. -Split. -Apply Rabsolu_pos. -Unfold C. -Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)); Apply RmaxLess2. -Apply Rle_trans with ``(pow C (plus (mult (S (S O)) (S (plus n0 n))) (S O)))*(pow C (plus (mult (S (S O)) (minus N n0)) (S O)))``. -Do 2 Rewrite <- (Rmult_sym ``(pow C (plus (mult (S (S O)) (minus N n0)) (S O)))``). -Apply Rle_monotony. -Apply pow_le. -Apply Rle_trans with R1. -Left; Apply Rlt_R0_R1. -Unfold C; Apply RmaxLess1. -Apply pow_incr. -Split. -Apply Rabsolu_pos. -Unfold C; Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)). -Apply RmaxLess1. -Apply RmaxLess2. -Right. -Replace (mult (2) (S (S (plus N n)))) with (plus (plus (mult (2) (minus N n0)) (S O)) (plus (mult (2) (S (plus n0 n))) (S O))). -Repeat Rewrite pow_add. -Ring. -Apply INR_eq; Repeat Rewrite plus_INR; Do 3 Rewrite mult_INR. -Rewrite minus_INR. -Repeat Rewrite S_INR; Do 2 Rewrite plus_INR; Ring. -Apply le_trans with (pred (minus N n)). -Exact H1. -Apply le_S_n. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_trans with N. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_n_Sn. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n O) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Assumption. -Apply lt_pred_n_n; Assumption. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply Rle_sym1; Left; Apply Rlt_Rinv. -Apply INR_fact_lt_0. -Apply Rle_sym1; Left; Apply Rlt_Rinv. -Apply INR_fact_lt_0. -Apply Rle_trans with (sum_f_R0 - [k:nat] - (sum_f_R0 - [l:nat] - ``/(INR - (mult (fact (plus (mult (S (S O)) (S (plus l k))) (S O))) - (fact (plus (mult (S (S O)) (minus N l)) (S O)))))* - (pow C (mult (S (S (S (S O)))) (S N)))`` (pred (minus N k))) - (pred N)). -Apply sum_Rle; Intros. -Apply sum_Rle; Intros. -Apply Rle_monotony. -Left; Apply Rlt_Rinv. -Rewrite mult_INR; Apply Rmult_lt_pos; Apply INR_fact_lt_0. -Apply Rle_pow. -Unfold C; Apply RmaxLess1. -Replace (mult (4) (S N)) with (mult (2) (mult (2) (S N))); [Idtac | Ring]. -Apply mult_le. -Replace (mult (2) (S N)) with (S (S (plus N N))). -Repeat Apply le_n_S. -Apply le_reg_l. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply INR_eq; Do 2Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR. -Repeat Rewrite S_INR; Ring. -Apply Rle_trans with (sum_f_R0 - [k:nat] - (sum_f_R0 - [l:nat] - ``(pow C (mult (S (S (S (S O)))) (S N)))*(Rsqr (/(INR (fact (S (S (plus N k)))))))`` (pred (minus N k))) - (pred N)). -Apply sum_Rle; Intros. -Apply sum_Rle; Intros. -Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) (S N)))``). -Apply Rle_monotony. -Apply pow_le. -Left; Apply Rlt_le_trans with R1. -Apply Rlt_R0_R1. -Unfold C; Apply RmaxLess1. -Replace ``/(INR - (mult (fact (plus (mult (S (S O)) (S (plus n0 n))) (S O))) - (fact (plus (mult (S (S O)) (minus N n0)) (S O)))))`` with ``(Binomial.C (mult (S (S O)) (S (S (plus N n)))) (plus (mult (S (S O)) (S (plus n0 n))) (S O)))/(INR (fact (mult (S (S O)) (S (S (plus N n))))))``. -Apply Rle_trans with ``(Binomial.C (mult (S (S O)) (S (S (plus N n)))) (S (S (plus N n))))/(INR (fact (mult (S (S O)) (S (S (plus N n))))))``. -Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (S (S (plus N n))))))``). -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply C_maj. -Apply le_trans with (mult (2) (S (S (plus n0 n)))). -Replace (mult (2) (S (S (plus n0 n)))) with (S (plus (mult (2) (S (plus n0 n))) (1))). -Apply le_n_Sn. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite plus_INR; Ring. -Apply mult_le. -Repeat Apply le_n_S. -Apply le_reg_r. -Apply le_trans with (pred (minus N n)). -Assumption. -Apply le_S_n. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_trans with N. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_n_Sn. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n O) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Assumption. -Apply lt_pred_n_n; Assumption. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Right. -Unfold Rdiv; Rewrite Rmult_sym. -Unfold Binomial.C. -Unfold Rdiv; Repeat Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l. -Replace (minus (mult (2) (S (S (plus N n)))) (S (S (plus N n)))) with (S (S (plus N n))). -Rewrite Rinv_Rmult. -Unfold Rsqr; Reflexivity. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_eq; Do 2 Rewrite S_INR; Rewrite minus_INR. -Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite plus_INR; Ring. -Apply le_n_2n. -Apply INR_fact_neq_0. -Unfold Rdiv; Rewrite Rmult_sym. -Unfold Binomial.C. -Unfold Rdiv; Repeat Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l. -Replace (minus (mult (2) (S (S (plus N n)))) (plus (mult (2) (S (plus n0 n))) (S O))) with (plus (mult (2) (minus N n0)) (S O)). -Rewrite mult_INR. -Reflexivity. -Apply INR_eq; Rewrite minus_INR. -Do 2 Rewrite plus_INR; Do 3 Rewrite mult_INR; Repeat Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite minus_INR. -Ring. -Apply le_trans with (pred (minus N n)). -Assumption. -Apply le_S_n. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_trans with N. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_n_Sn. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n O) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Assumption. -Apply lt_pred_n_n; Assumption. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_trans with (mult (2) (S (S (plus n0 n)))). -Replace (mult (2) (S (S (plus n0 n)))) with (S (plus (mult (2) (S (plus n0 n))) (1))). -Apply le_n_Sn. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite plus_INR; Ring. -Apply mult_le. -Repeat Apply le_n_S. -Apply le_reg_r. -Apply le_trans with (pred (minus N n)). -Assumption. -Apply le_S_n. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_trans with N. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply le_n_Sn. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n O) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Assumption. -Apply lt_pred_n_n; Assumption. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply INR_fact_neq_0. -Apply Rle_trans with (sum_f_R0 [k:nat]``(INR N)/(INR (fact (S (S N))))*(pow C (mult (S (S (S (S O)))) (S N)))`` (pred N)). -Apply sum_Rle; Intros. -Rewrite <- (scal_sum [_:nat]``(pow C (mult (S (S (S (S O)))) (S N)))`` (pred (minus N n)) ``(Rsqr (/(INR (fact (S (S (plus N n)))))))``). -Rewrite sum_cte. -Rewrite <- Rmult_assoc. -Do 2 Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) (S N)))``). -Rewrite Rmult_assoc. -Apply Rle_monotony. -Apply pow_le. -Left; Apply Rlt_le_trans with R1. -Apply Rlt_R0_R1. -Unfold C; Apply RmaxLess1. -Apply Rle_trans with ``(Rsqr (/(INR (fact (S (S (plus N n)))))))*(INR N)``. -Apply Rle_monotony. -Apply pos_Rsqr. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_INR. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n O) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Assumption. -Apply lt_pred_n_n; Assumption. -Apply le_trans with (pred N). -Assumption. -Apply le_pred_n. -Rewrite Rmult_sym; Unfold Rdiv; Apply Rle_monotony. -Apply pos_INR. -Apply Rle_trans with ``/(INR (fact (S (S (plus N n)))))``. -Pattern 2 ``/(INR (fact (S (S (plus N n)))))``; Rewrite <- Rmult_1r. -Unfold Rsqr. -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply Rle_monotony_contra with ``(INR (fact (S (S (plus N n)))))``. -Apply INR_fact_lt_0. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r. -Replace R1 with (INR (S O)). -Apply le_INR. -Apply lt_le_S. -Apply INR_lt; Apply INR_fact_lt_0. -Reflexivity. -Apply INR_fact_neq_0. -Apply Rle_monotony_contra with ``(INR (fact (S (S (plus N n)))))``. -Apply INR_fact_lt_0. -Rewrite <- Rinv_r_sym. -Apply Rle_monotony_contra with ``(INR (fact (S (S N))))``. -Apply INR_fact_lt_0. -Rewrite Rmult_1r. -Rewrite (Rmult_sym (INR (fact (S (S N))))). -Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Apply le_INR. -Apply fact_growing. -Repeat Apply le_n_S. -Apply le_plus_l. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Rewrite sum_cte. -Apply Rle_trans with ``(pow C (mult (S (S (S (S O)))) (S N)))/(INR (fact N))``. -Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) (S N)))``). -Unfold Rdiv; Rewrite Rmult_assoc; Apply Rle_monotony. -Apply pow_le. -Left; Apply Rlt_le_trans with R1. -Apply Rlt_R0_R1. -Unfold C; Apply RmaxLess1. -Cut (S (pred N)) = N. -Intro; Rewrite H0. -Do 2 Rewrite fact_simpl. -Repeat Rewrite mult_INR. -Repeat Rewrite Rinv_Rmult. -Apply Rle_trans with ``(INR (S (S N)))*(/(INR (S (S N)))*(/(INR (S N))*/(INR (fact N))))* - (INR N)``. -Repeat Rewrite Rmult_assoc. -Rewrite (Rmult_sym (INR N)). -Rewrite (Rmult_sym (INR (S (S N)))). -Apply Rle_monotony. -Repeat Apply Rmult_le_pos. -Left; Apply Rlt_Rinv; Apply lt_INR_0; Apply lt_O_Sn. -Left; Apply Rlt_Rinv; Apply lt_INR_0; Apply lt_O_Sn. -Left; Apply Rlt_Rinv. -Apply INR_fact_lt_0. -Apply pos_INR. -Apply le_INR. -Apply le_trans with (S N); Apply le_n_Sn. -Repeat Rewrite <- Rmult_assoc. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l. -Apply Rle_trans with ``/(INR (S N))*/(INR (fact N))*(INR (S N))``. -Repeat Rewrite Rmult_assoc. -Repeat Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply lt_INR_0; Apply lt_O_Sn. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply le_INR; Apply le_n_Sn. -Rewrite (Rmult_sym ``/(INR (S N))``). -Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Right; Reflexivity. -Apply not_O_INR; Discriminate. -Apply not_O_INR; Discriminate. -Apply not_O_INR; Discriminate. -Apply INR_fact_neq_0. -Apply not_O_INR; Discriminate. -Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0]. -Symmetry; Apply S_pred with O; Assumption. -Right. -Unfold Majxy. -Unfold C. -Reflexivity. -Qed. - -Lemma reste1_cv_R0 : (x,y:R) (Un_cv (Reste1 x y) R0). -Intros. -Assert H := (Majxy_cv_R0 x y). -Unfold Un_cv in H; Unfold R_dist in H. -Unfold Un_cv; Unfold R_dist; Intros. -Elim (H eps H0); Intros N0 H1. -Exists (S N0); Intros. -Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or. -Apply Rle_lt_trans with (Rabsolu (Majxy x y (pred n))). -Rewrite (Rabsolu_right (Majxy x y (pred n))). -Apply reste1_maj. -Apply lt_le_trans with (S N0). -Apply lt_O_Sn. -Assumption. -Apply Rle_sym1. -Unfold Majxy. -Unfold Rdiv; Apply Rmult_le_pos. -Apply pow_le. -Apply Rle_trans with R1. -Left; Apply Rlt_R0_R1. -Apply RmaxLess1. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Replace (Majxy x y (pred n)) with ``(Majxy x y (pred n))-0``; [Idtac | Ring]. -Apply H1. -Unfold ge; Apply le_S_n. -Replace (S (pred n)) with n. -Assumption. -Apply S_pred with O. -Apply lt_le_trans with (S N0); [Apply lt_O_Sn | Assumption]. -Qed. - -Lemma reste2_cv_R0 : (x,y:R) (Un_cv (Reste2 x y) R0). -Intros. -Assert H := (Majxy_cv_R0 x y). -Unfold Un_cv in H; Unfold R_dist in H. -Unfold Un_cv; Unfold R_dist; Intros. -Elim (H eps H0); Intros N0 H1. -Exists (S N0); Intros. -Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or. -Apply Rle_lt_trans with (Rabsolu (Majxy x y n)). -Rewrite (Rabsolu_right (Majxy x y n)). -Apply reste2_maj. -Apply lt_le_trans with (S N0). -Apply lt_O_Sn. -Assumption. -Apply Rle_sym1. -Unfold Majxy. -Unfold Rdiv; Apply Rmult_le_pos. -Apply pow_le. -Apply Rle_trans with R1. -Left; Apply Rlt_R0_R1. -Apply RmaxLess1. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Replace (Majxy x y n) with ``(Majxy x y n)-0``; [Idtac | Ring]. -Apply H1. -Unfold ge; Apply le_trans with (S N0). -Apply le_n_Sn. -Exact H2. -Qed. - -Lemma reste_cv_R0 : (x,y:R) (Un_cv (Reste x y) R0). -Intros. -Unfold Reste. -Pose An := [n:nat](Reste2 x y n). -Pose Bn := [n:nat](Reste1 x y (S n)). -Cut (Un_cv [n:nat]``(An n)-(Bn n)`` ``0-0``) -> (Un_cv [N:nat]``(Reste2 x y N)-(Reste1 x y (S N))`` ``0``). -Intro. -Apply H. -Apply CV_minus. -Unfold An. -Replace [n:nat](Reste2 x y n) with (Reste2 x y). -Apply reste2_cv_R0. -Reflexivity. -Unfold Bn. -Assert H0 := (reste1_cv_R0 x y). -Unfold Un_cv in H0; Unfold R_dist in H0. -Unfold Un_cv; Unfold R_dist; Intros. -Elim (H0 eps H1); Intros N0 H2. -Exists N0; Intros. -Apply H2. -Unfold ge; Apply le_trans with (S N0). -Apply le_n_Sn. -Apply le_n_S; Assumption. -Unfold An Bn. -Intro. -Replace R0 with ``0-0``; [Idtac | Ring]. -Exact H. -Qed. - -Theorem cos_plus : (x,y:R) ``(cos (x+y))==(cos x)*(cos y)-(sin x)*(sin y)``. -Intros. -Cut (Un_cv (C1 x y) ``(cos x)*(cos y)-(sin x)*(sin y)``). -Cut (Un_cv (C1 x y) ``(cos (x+y))``). -Intros. -Apply UL_sequence with (C1 x y); Assumption. -Apply C1_cvg. -Unfold Un_cv; Unfold R_dist. -Intros. -Assert H0 := (A1_cvg x). -Assert H1 := (A1_cvg y). -Assert H2 := (B1_cvg x). -Assert H3 := (B1_cvg y). -Assert H4 := (CV_mult ? ? ? ? H0 H1). -Assert H5 := (CV_mult ? ? ? ? H2 H3). -Assert H6 := (reste_cv_R0 x y). -Unfold Un_cv in H4; Unfold Un_cv in H5; Unfold Un_cv in H6. -Unfold R_dist in H4; Unfold R_dist in H5; Unfold R_dist in H6. -Cut ``0R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))*(pow x (mult (S (S O)) k))`` N). - -Definition B1 [x:R] : nat->R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow x (plus (mult (S (S O)) k) (S O)))`` N). - -Definition C1 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))*(pow (x+y) (mult (S (S O)) k))`` N). - -Definition Reste1 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow (-1) (S (plus l k)))/(INR (fact (mult (S (S O)) (S (plus l k)))))*(pow x (mult (S (S O)) (S (plus l k))))*(pow (-1) (minus N l))/(INR (fact (mult (S (S O)) (minus N l))))*(pow y (mult (S (S O)) (minus N l)))`` (pred (minus N k))) (pred N)). - -Definition Reste2 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow (-1) (S (plus l k)))/(INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*(pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*(pow (-1) (minus N l))/(INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*(pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N k))) (pred N)). - -Definition Reste [x,y:R] : nat -> R := [N:nat]``(Reste2 x y N)-(Reste1 x y (S N))``. - -(* Here is the main result that will be used to prove that (cos (x+y))=(cos x)(cos y)-(sin x)(sin y) *) -Theorem cos_plus_form : (x,y:R;n:nat) (lt O n) -> ``(A1 x (S n))*(A1 y (S n))-(B1 x n)*(B1 y n)+(Reste x y n)``==(C1 x y (S n)). -Intros. -Unfold A1 B1. -Rewrite (cauchy_finite [k:nat] - ``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))* - (pow x (mult (S (S O)) k))`` [k:nat] - ``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))* - (pow y (mult (S (S O)) k))`` (S n)). -Rewrite (cauchy_finite [k:nat] - ``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))* - (pow x (plus (mult (S (S O)) k) (S O)))`` [k:nat] - ``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))* - (pow y (plus (mult (S (S O)) k) (S O)))`` n H). -Unfold Reste. -Replace (sum_f_R0 - [k:nat] - (sum_f_R0 - [l:nat] - ``(pow ( -1) (S (plus l k)))/ - (INR (fact (mult (S (S O)) (S (plus l k)))))* - (pow x (mult (S (S O)) (S (plus l k))))* - ((pow ( -1) (minus (S n) l))/ - (INR (fact (mult (S (S O)) (minus (S n) l))))* - (pow y (mult (S (S O)) (minus (S n) l))))`` - (pred (minus (S n) k))) (pred (S n))) with (Reste1 x y (S n)). -Replace (sum_f_R0 - [k:nat] - (sum_f_R0 - [l:nat] - ``(pow ( -1) (S (plus l k)))/ - (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))* - (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))* - ((pow ( -1) (minus n l))/ - (INR (fact (plus (mult (S (S O)) (minus n l)) (S O))))* - (pow y (plus (mult (S (S O)) (minus n l)) (S O))))`` - (pred (minus n k))) (pred n)) with (Reste2 x y n). -Ring. -Replace (sum_f_R0 - [k:nat] - (sum_f_R0 - [p:nat] - ``(pow ( -1) p)/(INR (fact (mult (S (S O)) p)))* - (pow x (mult (S (S O)) p))*((pow ( -1) (minus k p))/ - (INR (fact (mult (S (S O)) (minus k p))))* - (pow y (mult (S (S O)) (minus k p))))`` k) (S n)) with (sum_f_R0 [k:nat](Rmult ``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))`` (sum_f_R0 [l:nat]``(C (mult (S (S O)) k) (mult (S (S O)) l))*(pow x (mult (S (S O)) l))*(pow y (mult (S (S O)) (minus k l)))`` k)) (S n)). -Pose sin_nnn := [n:nat]Cases n of O => R0 | (S p) => (Rmult ``(pow (-1) (S p))/(INR (fact (mult (S (S O)) (S p))))`` (sum_f_R0 [l:nat]``(C (mult (S (S O)) (S p)) (S (mult (S (S O)) l)))*(pow x (S (mult (S (S O)) l)))*(pow y (S (mult (S (S O)) (minus p l))))`` p)) end. -Replace (Ropp (sum_f_R0 - [k:nat] - (sum_f_R0 - [p:nat] - ``(pow ( -1) p)/ - (INR (fact (plus (mult (S (S O)) p) (S O))))* - (pow x (plus (mult (S (S O)) p) (S O)))* - ((pow ( -1) (minus k p))/ - (INR (fact (plus (mult (S (S O)) (minus k p)) (S O))))* - (pow y (plus (mult (S (S O)) (minus k p)) (S O))))`` k) - n)) with (sum_f_R0 sin_nnn (S n)). -Rewrite <- sum_plus. -Unfold C1. -Apply sum_eq; Intros. -Induction i. -Simpl. -Rewrite Rplus_Ol. -Replace (C O O) with R1. -Unfold Rdiv; Rewrite Rinv_R1. -Ring. -Unfold C. -Rewrite <- minus_n_n. -Simpl. -Unfold Rdiv; Rewrite Rmult_1r; Rewrite Rinv_R1; Ring. -Unfold sin_nnn. -Rewrite <- Rmult_Rplus_distr. -Apply Rmult_mult_r. -Rewrite binomial. -Pose Wn := [i0:nat]``(C (mult (S (S O)) (S i)) i0)*(pow x i0)* - (pow y (minus (mult (S (S O)) (S i)) i0))``. -Replace (sum_f_R0 - [l:nat] - ``(C (mult (S (S O)) (S i)) (mult (S (S O)) l))* - (pow x (mult (S (S O)) l))* - (pow y (mult (S (S O)) (minus (S i) l)))`` (S i)) with (sum_f_R0 [l:nat](Wn (mult (2) l)) (S i)). -Replace (sum_f_R0 - [l:nat] - ``(C (mult (S (S O)) (S i)) (S (mult (S (S O)) l)))* - (pow x (S (mult (S (S O)) l)))* - (pow y (S (mult (S (S O)) (minus i l))))`` i) with (sum_f_R0 [l:nat](Wn (S (mult (2) l))) i). -Rewrite Rplus_sym. -Apply sum_decomposition. -Apply sum_eq; Intros. -Unfold Wn. -Apply Rmult_mult_r. -Replace (minus (mult (2) (S i)) (S (mult (2) i0))) with (S (mult (2) (minus i i0))). -Reflexivity. -Apply INR_eq. -Rewrite S_INR; Rewrite mult_INR. -Repeat Rewrite minus_INR. -Rewrite mult_INR; Repeat Rewrite S_INR. -Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Replace (mult (2) (S i)) with (S (S (mult (2) i))). -Apply le_n_S. -Apply le_trans with (mult (2) i). -Apply mult_le; Assumption. -Apply le_n_Sn. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Assumption. -Apply sum_eq; Intros. -Unfold Wn. -Apply Rmult_mult_r. -Replace (minus (mult (2) (S i)) (mult (2) i0)) with (mult (2) (minus (S i) i0)). -Reflexivity. -Apply INR_eq. -Rewrite mult_INR. -Repeat Rewrite minus_INR. -Rewrite mult_INR; Repeat Rewrite S_INR. -Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Apply mult_le; Assumption. -Assumption. -Rewrite <- (Ropp_Ropp (sum_f_R0 sin_nnn (S n))). -Apply eq_Ropp. -Replace ``-(sum_f_R0 sin_nnn (S n))`` with ``-1*(sum_f_R0 sin_nnn (S n))``; [Idtac | Ring]. -Rewrite scal_sum. -Rewrite decomp_sum. -Replace (sin_nnn O) with R0. -Rewrite Rmult_Ol; Rewrite Rplus_Ol. -Replace (pred (S n)) with n; [Idtac | Reflexivity]. -Apply sum_eq; Intros. -Rewrite Rmult_sym. -Unfold sin_nnn. -Rewrite scal_sum. -Rewrite scal_sum. -Apply sum_eq; Intros. -Unfold Rdiv. -Repeat Rewrite Rmult_assoc. -Rewrite (Rmult_sym ``/(INR (fact (mult (S (S O)) (S i))))``). -Repeat Rewrite <- Rmult_assoc. -Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (S i))))``). -Repeat Rewrite <- Rmult_assoc. -Replace ``/(INR (fact (mult (S (S O)) (S i))))* - (C (mult (S (S O)) (S i)) (S (mult (S (S O)) i0)))`` with ``/(INR (fact (plus (mult (S (S O)) i0) (S O))))*/(INR (fact (plus (mult (S (S O)) (minus i i0)) (S O))))``. -Replace (S (mult (2) i0)) with (plus (mult (2) i0) (1)); [Idtac | Ring]. -Replace (S (mult (2) (minus i i0))) with (plus (mult (2) (minus i i0)) (1)); [Idtac | Ring]. -Replace ``(pow (-1) (S i))`` with ``-1*(pow (-1) i0)*(pow (-1) (minus i i0))``. -Ring. -Simpl. -Pattern 2 i; Replace i with (plus i0 (minus i i0)). -Rewrite pow_add. -Ring. -Symmetry; Apply le_plus_minus; Assumption. -Unfold C. -Unfold Rdiv; Repeat Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l. -Rewrite Rinv_Rmult. -Replace (S (mult (S (S O)) i0)) with (plus (mult (2) i0) (1)); [Apply Rmult_mult_r | Ring]. -Replace (minus (mult (2) (S i)) (plus (mult (2) i0) (1))) with (plus (mult (2) (minus i i0)) (1)). -Reflexivity. -Apply INR_eq. -Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite minus_INR. -Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Replace (plus (mult (2) i0) (1)) with (S (mult (2) i0)). -Replace (mult (2) (S i)) with (S (S (mult (2) i))). -Apply le_n_S. -Apply le_trans with (mult (2) i). -Apply mult_le; Assumption. -Apply le_n_Sn. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Assumption. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Reflexivity. -Apply lt_O_Sn. -Apply sum_eq; Intros. -Rewrite scal_sum. -Apply sum_eq; Intros. -Unfold Rdiv. -Repeat Rewrite <- Rmult_assoc. -Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) i)))``). -Repeat Rewrite <- Rmult_assoc. -Replace ``/(INR (fact (mult (S (S O)) i)))* - (C (mult (S (S O)) i) (mult (S (S O)) i0))`` with ``/(INR (fact (mult (S (S O)) i0)))*/(INR (fact (mult (S (S O)) (minus i i0))))``. -Replace ``(pow (-1) i)`` with ``(pow (-1) i0)*(pow (-1) (minus i i0))``. -Ring. -Pattern 2 i; Replace i with (plus i0 (minus i i0)). -Rewrite pow_add. -Ring. -Symmetry; Apply le_plus_minus; Assumption. -Unfold C. -Unfold Rdiv; Repeat Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l. -Rewrite Rinv_Rmult. -Replace (minus (mult (2) i) (mult (2) i0)) with (mult (2) (minus i i0)). -Reflexivity. -Apply INR_eq. -Rewrite mult_INR; Repeat Rewrite minus_INR. -Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Apply mult_le; Assumption. -Assumption. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Unfold Reste2; Apply sum_eq; Intros. -Apply sum_eq; Intros. -Unfold Rdiv; Ring. -Unfold Reste1; Apply sum_eq; Intros. -Apply sum_eq; Intros. -Unfold Rdiv; Ring. -Apply lt_O_Sn. -Qed. - -Lemma pow_sqr : (x:R;i:nat) (pow x (mult (2) i))==(pow ``x*x`` i). -Intros. -Assert H := (pow_Rsqr x i). -Unfold Rsqr in H; Exact H. -Qed. - -Lemma A1_cvg : (x:R) (Un_cv (A1 x) (cos x)). -Intro. -Assert H := (exist_cos ``x*x``). -Elim H; Intros. -Assert p_i := p. -Unfold cos_in in p. -Unfold cos_n infinit_sum in p. -Unfold R_dist in p. -Cut ``(cos x)==x0``. -Intro. -Rewrite H0. -Unfold Un_cv; Unfold R_dist; Intros. -Elim (p eps H1); Intros. -Exists x1; Intros. -Unfold A1. -Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*(pow x (mult (S (S O)) k))``) n) with (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (mult (S (S O)) i)))*(pow (x*x) i)``) n). -Apply H2; Assumption. -Apply sum_eq. -Intros. -Replace ``(pow (x*x) i)`` with ``(pow x (mult (S (S O)) i))``. -Reflexivity. -Apply pow_sqr. -Unfold cos. -Case (exist_cos (Rsqr x)). -Unfold Rsqr; Intros. -Unfold cos_in in p_i. -Unfold cos_in in c. -Apply unicity_sum with [i:nat]``(cos_n i)*(pow (x*x) i)``; Assumption. -Qed. - -Lemma C1_cvg : (x,y:R) (Un_cv (C1 x y) (cos (Rplus x y))). -Intros. -Assert H := (exist_cos ``(x+y)*(x+y)``). -Elim H; Intros. -Assert p_i := p. -Unfold cos_in in p. -Unfold cos_n infinit_sum in p. -Unfold R_dist in p. -Cut ``(cos (x+y))==x0``. -Intro. -Rewrite H0. -Unfold Un_cv; Unfold R_dist; Intros. -Elim (p eps H1); Intros. -Exists x1; Intros. -Unfold C1. -Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*(pow (x+y) (mult (S (S O)) k))``) n) with (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (mult (S (S O)) i)))*(pow ((x+y)*(x+y)) i)``) n). -Apply H2; Assumption. -Apply sum_eq. -Intros. -Replace ``(pow ((x+y)*(x+y)) i)`` with ``(pow (x+y) (mult (S (S O)) i))``. -Reflexivity. -Apply pow_sqr. -Unfold cos. -Case (exist_cos (Rsqr ``x+y``)). -Unfold Rsqr; Intros. -Unfold cos_in in p_i. -Unfold cos_in in c. -Apply unicity_sum with [i:nat]``(cos_n i)*(pow ((x+y)*(x+y)) i)``; Assumption. -Qed. - -Lemma B1_cvg : (x:R) (Un_cv (B1 x) (sin x)). -Intro. -Case (Req_EM x R0); Intro. -Rewrite H. -Rewrite sin_0. -Unfold B1. -Unfold Un_cv; Unfold R_dist; Intros; Exists O; Intros. -Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow 0 (plus (mult (S (S O)) k) (S O)))``) n) with R0. -Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. -Induction n. -Simpl; Ring. -Rewrite tech5; Rewrite <- Hrecn. -Simpl; Ring. -Unfold ge; Apply le_O_n. -Assert H0 := (exist_sin ``x*x``). -Elim H0; Intros. -Assert p_i := p. -Unfold sin_in in p. -Unfold sin_n infinit_sum in p. -Unfold R_dist in p. -Cut ``(sin x)==x*x0``. -Intro. -Rewrite H1. -Unfold Un_cv; Unfold R_dist; Intros. -Cut ``0 ``0 ``0 (IZR z1)==(IZR z2). -Intros; Rewrite H; Reflexivity. -Qed. - -Lemma IZR_neq : (z1,z2:Z) `z1<>z2` -> ``(IZR z1)<>(IZR z2)``. -Intros; Red; Intro; Elim H; Apply eq_IZR; Assumption. -Qed. - -Tactic Definition DiscrR := - Try Match Context With - | [ |- ~(?1==?2) ] -> Replace ``2`` with (IZR `2`); [Replace R1 with (IZR `1`); [Replace R0 with (IZR `0`); [Repeat Rewrite <- plus_IZR Orelse Rewrite <- mult_IZR Orelse Rewrite <- Ropp_Ropp_IZR Orelse Rewrite Z_R_minus; Apply IZR_neq; Try Discriminate | Reflexivity] | Reflexivity] | Reflexivity]. - -Recursive Tactic Definition Sup0 := - Match Context With - | [ |- ``0<1`` ] -> Apply Rlt_R0_R1 - | [ |- ``0 Repeat (Apply Rmult_lt_pos Orelse Apply Rplus_lt_pos; Try Apply Rlt_R0_R1 Orelse Apply Rlt_R0_R2) - | [ |- ``?1>0`` ] -> Change ``0 Change ``?2 Sup0 - | [ |- (Rlt (Ropp ?1) R0) ] -> Rewrite <- Ropp_O; Sup - | [ |- (Rlt (Ropp ?1) (Ropp ?2)) ] -> Apply Rlt_Ropp; Sup - | [ |- (Rlt (Ropp ?1) ?2) ] -> Apply Rlt_trans with ``0``; Sup - | [ |- (Rlt ?1 ?2) ] -> SupOmega - | _ -> Idtac. - -Tactic Definition RCompute := Replace ``2`` with (IZR `2`); [Replace R1 with (IZR `1`); [Replace R0 with (IZR `0`); [Repeat Rewrite <- plus_IZR Orelse Rewrite <- mult_IZR Orelse Rewrite <- Ropp_Ropp_IZR Orelse Rewrite Z_R_minus; Apply IZR_eq; Try Reflexivity | Reflexivity] | Reflexivity] | Reflexivity]. diff --git a/theories7/Reals/Exp_prop.v b/theories7/Reals/Exp_prop.v deleted file mode 100644 index 6ed9c00b..00000000 --- a/theories7/Reals/Exp_prop.v +++ /dev/null @@ -1,890 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R := [N:nat](sum_f_R0 [k:nat]``/(INR (fact k))*(pow x k)`` N). - -Lemma E1_cvg : (x:R) (Un_cv (E1 x) (exp x)). -Intro; Unfold exp; Unfold projT1. -Case (exist_exp x); Intro. -Unfold exp_in Un_cv; Unfold infinit_sum E1; Trivial. -Qed. - -Definition Reste_E [x,y:R] : nat->R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``/(INR (fact (S (plus l k))))*(pow x (S (plus l k)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))`` (pred (minus N k))) (pred N)). - -Lemma exp_form : (x,y:R;n:nat) (lt O n) -> ``(E1 x n)*(E1 y n)-(Reste_E x y n)==(E1 (x+y) n)``. -Intros; Unfold E1. -Rewrite cauchy_finite. -Unfold Reste_E; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Apply sum_eq; Intros. -Rewrite binomial. -Rewrite scal_sum; Apply sum_eq; Intros. -Unfold C; Unfold Rdiv; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym (INR (fact i))); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite Rinv_Rmult. -Ring. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply H. -Qed. - -Definition maj_Reste_E [x,y:R] : nat->R := [N:nat]``4*(pow (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S O)) N))/(Rsqr (INR (fact (div2 (pred N)))))``. - -Lemma Rle_Rinv : (x,y:R) ``0 ``0 ``x<=y`` -> ``/y<=/x``. -Intros; Apply Rle_monotony_contra with x. -Apply H. -Rewrite <- Rinv_r_sym. -Apply Rle_monotony_contra with y. -Apply H0. -Rewrite Rmult_1r; Rewrite Rmult_sym; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Apply H1. -Red; Intro; Rewrite H2 in H0; Elim (Rlt_antirefl ? H0). -Red; Intro; Rewrite H2 in H; Elim (Rlt_antirefl ? H). -Qed. - -(**********) -Lemma div2_double : (N:nat) (div2 (mult (2) N))=N. -Intro; Induction N. -Reflexivity. -Replace (mult (2) (S N)) with (S (S (mult (2) N))). -Simpl; Simpl in HrecN; Rewrite HrecN; Reflexivity. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Qed. - -Lemma div2_S_double : (N:nat) (div2 (S (mult (2) N)))=N. -Intro; Induction N. -Reflexivity. -Replace (mult (2) (S N)) with (S (S (mult (2) N))). -Simpl; Simpl in HrecN; Rewrite HrecN; Reflexivity. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Qed. - -Lemma div2_not_R0 : (N:nat) (lt (1) N) -> (lt O (div2 N)). -Intros; Induction N. -Elim (lt_n_O ? H). -Cut (lt (1) N)\/N=(1). -Intro; Elim H0; Intro. -Assert H2 := (even_odd_dec N). -Elim H2; Intro. -Rewrite <- (even_div2 ? a); Apply HrecN; Assumption. -Rewrite <- (odd_div2 ? b); Apply lt_O_Sn. -Rewrite H1; Simpl; Apply lt_O_Sn. -Inversion H. -Right; Reflexivity. -Left; Apply lt_le_trans with (2); [Apply lt_n_Sn | Apply H1]. -Qed. - -Lemma Reste_E_maj : (x,y:R;N:nat) (lt O N) -> ``(Rabsolu (Reste_E x y N))<=(maj_Reste_E x y N)``. -Intros; Pose M := (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))). -Apply Rle_trans with (Rmult (pow M (mult (2) N)) (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``/(Rsqr (INR (fact (div2 (S N)))))`` (pred (minus N k))) (pred N))). -Unfold Reste_E. -Apply Rle_trans with (sum_f_R0 [k:nat](Rabsolu (sum_f_R0 [l:nat]``/(INR (fact (S (plus l k))))*(pow x (S (plus l k)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))`` (pred (minus N k)))) (pred N)). -Apply (sum_Rabsolu [k:nat](sum_f_R0 [l:nat]``/(INR (fact (S (plus l k))))*(pow x (S (plus l k)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))`` (pred (minus N k))) (pred N)). -Apply Rle_trans with (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(Rabsolu (/(INR (fact (S (plus l k))))*(pow x (S (plus l k)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))))`` (pred (minus N k))) (pred N)). -Apply sum_Rle; Intros. -Apply (sum_Rabsolu [l:nat]``/(INR (fact (S (plus l n))))*(pow x (S (plus l n)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))``). -Apply Rle_trans with (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow M (mult (S (S O)) N))*/(INR (fact (S l)))*/(INR (fact (minus N l)))`` (pred (minus N k))) (pred N)). -Apply sum_Rle; Intros. -Apply sum_Rle; Intros. -Repeat Rewrite Rabsolu_mult. -Do 2 Rewrite <- Pow_Rabsolu. -Rewrite (Rabsolu_right ``/(INR (fact (S (plus n0 n))))``). -Rewrite (Rabsolu_right ``/(INR (fact (minus N n0)))``). -Replace ``/(INR (fact (S (plus n0 n))))*(pow (Rabsolu x) (S (plus n0 n)))* - (/(INR (fact (minus N n0)))*(pow (Rabsolu y) (minus N n0)))`` with ``/(INR (fact (minus N n0)))*/(INR (fact (S (plus n0 n))))*(pow (Rabsolu x) (S (plus n0 n)))*(pow (Rabsolu y) (minus N n0))``; [Idtac | Ring]. -Rewrite <- (Rmult_sym ``/(INR (fact (minus N n0)))``). -Repeat Rewrite Rmult_assoc. -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply Rle_trans with ``/(INR (fact (S n0)))*(pow (Rabsolu x) (S (plus n0 n)))*(pow (Rabsolu y) (minus N n0))``. -Rewrite (Rmult_sym ``/(INR (fact (S (plus n0 n))))``); Rewrite (Rmult_sym ``/(INR (fact (S n0)))``); Repeat Rewrite Rmult_assoc; Apply Rle_monotony. -Apply pow_le; Apply Rabsolu_pos. -Rewrite (Rmult_sym ``/(INR (fact (S n0)))``); Apply Rle_monotony. -Apply pow_le; Apply Rabsolu_pos. -Apply Rle_Rinv. -Apply INR_fact_lt_0. -Apply INR_fact_lt_0. -Apply le_INR; Apply fact_growing; Apply le_n_S. -Apply le_plus_l. -Rewrite (Rmult_sym ``(pow M (mult (S (S O)) N))``); Rewrite Rmult_assoc; Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply Rle_trans with ``(pow M (S (plus n0 n)))*(pow (Rabsolu y) (minus N n0))``. -Do 2 Rewrite <- (Rmult_sym ``(pow (Rabsolu y) (minus N n0))``). -Apply Rle_monotony. -Apply pow_le; Apply Rabsolu_pos. -Apply pow_incr; Split. -Apply Rabsolu_pos. -Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)). -Apply RmaxLess1. -Unfold M; Apply RmaxLess2. -Apply Rle_trans with ``(pow M (S (plus n0 n)))*(pow M (minus N n0))``. -Apply Rle_monotony. -Apply pow_le; Apply Rle_trans with R1. -Left; Apply Rlt_R0_R1. -Unfold M; Apply RmaxLess1. -Apply pow_incr; Split. -Apply Rabsolu_pos. -Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)). -Apply RmaxLess2. -Unfold M; Apply RmaxLess2. -Rewrite <- pow_add; Replace (plus (S (plus n0 n)) (minus N n0)) with (plus N (S n)). -Apply Rle_pow. -Unfold M; Apply RmaxLess1. -Replace (mult (2) N) with (plus N N); [Idtac | Ring]. -Apply le_reg_l. -Replace N with (S (pred N)). -Apply le_n_S; Apply H0. -Symmetry; Apply S_pred with O; Apply H. -Apply INR_eq; Do 2 Rewrite plus_INR; Do 2 Rewrite S_INR; Rewrite plus_INR; Rewrite minus_INR. -Ring. -Apply le_trans with (pred (minus N n)). -Apply H1. -Apply le_S_n. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_trans with N. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Apply H0. -Apply le_pred_n. -Apply le_n_Sn. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n (0)) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Apply H0. -Apply lt_pred_n_n. -Apply H. -Apply le_trans with (pred N). -Apply H0. -Apply le_pred_n. -Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Rewrite scal_sum. -Apply sum_Rle; Intros. -Rewrite <- Rmult_sym. -Rewrite scal_sum. -Apply sum_Rle; Intros. -Rewrite (Rmult_sym ``/(Rsqr (INR (fact (div2 (S N)))))``). -Rewrite Rmult_assoc; Apply Rle_monotony. -Apply pow_le. -Apply Rle_trans with R1. -Left; Apply Rlt_R0_R1. -Unfold M; Apply RmaxLess1. -Assert H2 := (even_odd_cor N). -Elim H2; Intros N0 H3. -Elim H3; Intro. -Apply Rle_trans with ``/(INR (fact n0))*/(INR (fact (minus N n0)))``. -Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (minus N n0)))``). -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply Rle_Rinv. -Apply INR_fact_lt_0. -Apply INR_fact_lt_0. -Apply le_INR. -Apply fact_growing. -Apply le_n_Sn. -Replace ``/(INR (fact n0))*/(INR (fact (minus N n0)))`` with ``(C N n0)/(INR (fact N))``. -Pattern 1 N; Rewrite H4. -Apply Rle_trans with ``(C N N0)/(INR (fact N))``. -Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(INR (fact N))``). -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Rewrite H4. -Apply C_maj. -Rewrite <- H4; Apply le_trans with (pred (minus N n)). -Apply H1. -Apply le_S_n. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_trans with N. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Apply H0. -Apply le_pred_n. -Apply le_n_Sn. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n (0)) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Apply H0. -Apply lt_pred_n_n. -Apply H. -Apply le_trans with (pred N). -Apply H0. -Apply le_pred_n. -Replace ``(C N N0)/(INR (fact N))`` with ``/(Rsqr (INR (fact N0)))``. -Rewrite H4; Rewrite div2_S_double; Right; Reflexivity. -Unfold Rsqr C Rdiv. -Repeat Rewrite Rinv_Rmult. -Rewrite (Rmult_sym (INR (fact N))). -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Replace (minus N N0) with N0. -Ring. -Replace N with (plus N0 N0). -Symmetry; Apply minus_plus. -Rewrite H4. -Apply INR_eq; Rewrite plus_INR; Rewrite mult_INR; Do 2 Rewrite S_INR; Ring. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Unfold C Rdiv. -Rewrite (Rmult_sym (INR (fact N))). -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_r_sym. -Rewrite Rinv_Rmult. -Rewrite Rmult_1r; Ring. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Replace ``/(INR (fact (S n0)))*/(INR (fact (minus N n0)))`` with ``(C (S N) (S n0))/(INR (fact (S N)))``. -Apply Rle_trans with ``(C (S N) (S N0))/(INR (fact (S N)))``. -Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (S N)))``). -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply INR_fact_lt_0. -Cut (S N) = (mult (2) (S N0)). -Intro; Rewrite H5; Apply C_maj. -Rewrite <- H5; Apply le_n_S. -Apply le_trans with (pred (minus N n)). -Apply H1. -Apply le_S_n. -Replace (S (pred (minus N n))) with (minus N n). -Apply le_trans with N. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Apply H0. -Apply le_pred_n. -Apply le_n_Sn. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n (0)) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Apply H0. -Apply lt_pred_n_n. -Apply H. -Apply le_trans with (pred N). -Apply H0. -Apply le_pred_n. -Apply INR_eq; Rewrite H4. -Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Cut (S N) = (mult (2) (S N0)). -Intro. -Replace ``(C (S N) (S N0))/(INR (fact (S N)))`` with ``/(Rsqr (INR (fact (S N0))))``. -Rewrite H5; Rewrite div2_double. -Right; Reflexivity. -Unfold Rsqr C Rdiv. -Repeat Rewrite Rinv_Rmult. -Replace (minus (S N) (S N0)) with (S N0). -Rewrite (Rmult_sym (INR (fact (S N)))). -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Reflexivity. -Apply INR_fact_neq_0. -Replace (S N) with (plus (S N0) (S N0)). -Symmetry; Apply minus_plus. -Rewrite H5; Ring. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_eq; Rewrite H4; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Unfold C Rdiv. -Rewrite (Rmult_sym (INR (fact (S N)))). -Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Rewrite Rinv_Rmult. -Reflexivity. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Unfold maj_Reste_E. -Unfold Rdiv; Rewrite (Rmult_sym ``4``). -Rewrite Rmult_assoc. -Apply Rle_monotony. -Apply pow_le. -Apply Rle_trans with R1. -Left; Apply Rlt_R0_R1. -Apply RmaxLess1. -Apply Rle_trans with (sum_f_R0 [k:nat]``(INR (minus N k))*/(Rsqr (INR (fact (div2 (S N)))))`` (pred N)). -Apply sum_Rle; Intros. -Rewrite sum_cte. -Replace (S (pred (minus N n))) with (minus N n). -Right; Apply Rmult_sym. -Apply S_pred with O. -Apply simpl_lt_plus_l with n. -Rewrite <- le_plus_minus. -Replace (plus n (0)) with n; [Idtac | Ring]. -Apply le_lt_trans with (pred N). -Apply H0. -Apply lt_pred_n_n. -Apply H. -Apply le_trans with (pred N). -Apply H0. -Apply le_pred_n. -Apply Rle_trans with (sum_f_R0 [k:nat]``(INR N)*/(Rsqr (INR (fact (div2 (S N)))))`` (pred N)). -Apply sum_Rle; Intros. -Do 2 Rewrite <- (Rmult_sym ``/(Rsqr (INR (fact (div2 (S N)))))``). -Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply Rsqr_pos_lt. -Apply INR_fact_neq_0. -Apply le_INR. -Apply simpl_le_plus_l with n. -Rewrite <- le_plus_minus. -Apply le_plus_r. -Apply le_trans with (pred N). -Apply H0. -Apply le_pred_n. -Rewrite sum_cte; Replace (S (pred N)) with N. -Cut (div2 (S N)) = (S (div2 (pred N))). -Intro; Rewrite H0. -Rewrite fact_simpl; Rewrite mult_sym; Rewrite mult_INR; Rewrite Rsqr_times. -Rewrite Rinv_Rmult. -Rewrite (Rmult_sym (INR N)); Repeat Rewrite Rmult_assoc; Apply Rle_monotony. -Left; Apply Rlt_Rinv; Apply Rsqr_pos_lt; Apply INR_fact_neq_0. -Rewrite <- H0. -Cut ``(INR N)<=(INR (mult (S (S O)) (div2 (S N))))``. -Intro; Apply Rle_monotony_contra with ``(Rsqr (INR (div2 (S N))))``. -Apply Rsqr_pos_lt. -Apply not_O_INR; Red; Intro. -Cut (lt (1) (S N)). -Intro; Assert H4 := (div2_not_R0 ? H3). -Rewrite H2 in H4; Elim (lt_n_O ? H4). -Apply lt_n_S; Apply H. -Repeat Rewrite <- Rmult_assoc. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l. -Replace ``(INR N)*(INR N)`` with (Rsqr (INR N)); [Idtac | Reflexivity]. -Rewrite Rmult_assoc. -Rewrite Rmult_sym. -Replace ``4`` with (Rsqr ``2``); [Idtac | SqRing]. -Rewrite <- Rsqr_times. -Apply Rsqr_incr_1. -Replace ``2`` with (INR (2)). -Rewrite <- mult_INR; Apply H1. -Reflexivity. -Left; Apply lt_INR_0; Apply H. -Left; Apply Rmult_lt_pos. -Sup0. -Apply lt_INR_0; Apply div2_not_R0. -Apply lt_n_S; Apply H. -Cut (lt (1) (S N)). -Intro; Unfold Rsqr; Apply prod_neq_R0; Apply not_O_INR; Intro; Assert H4 := (div2_not_R0 ? H2); Rewrite H3 in H4; Elim (lt_n_O ? H4). -Apply lt_n_S; Apply H. -Assert H1 := (even_odd_cor N). -Elim H1; Intros N0 H2. -Elim H2; Intro. -Pattern 2 N; Rewrite H3. -Rewrite div2_S_double. -Right; Rewrite H3; Reflexivity. -Pattern 2 N; Rewrite H3. -Replace (S (S (mult (2) N0))) with (mult (2) (S N0)). -Rewrite div2_double. -Rewrite H3. -Rewrite S_INR; Do 2 Rewrite mult_INR. -Rewrite (S_INR N0). -Rewrite Rmult_Rplus_distr. -Apply Rle_compatibility. -Rewrite Rmult_1r. -Simpl. -Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Apply Rlt_R0_R1. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Unfold Rsqr; Apply prod_neq_R0; Apply INR_fact_neq_0. -Unfold Rsqr; Apply prod_neq_R0; Apply not_O_INR; Discriminate. -Assert H0 := (even_odd_cor N). -Elim H0; Intros N0 H1. -Elim H1; Intro. -Cut (lt O N0). -Intro; Rewrite H2. -Rewrite div2_S_double. -Replace (mult (2) N0) with (S (S (mult (2) (pred N0)))). -Replace (pred (S (S (mult (2) (pred N0))))) with (S (mult (2) (pred N0))). -Rewrite div2_S_double. -Apply S_pred with O; Apply H3. -Reflexivity. -Replace N0 with (S (pred N0)). -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Symmetry; Apply S_pred with O; Apply H3. -Rewrite H2 in H. -Apply neq_O_lt. -Red; Intro. -Rewrite <- H3 in H. -Simpl in H. -Elim (lt_n_O ? H). -Rewrite H2. -Replace (pred (S (mult (2) N0))) with (mult (2) N0); [Idtac | Reflexivity]. -Replace (S (S (mult (2) N0))) with (mult (2) (S N0)). -Do 2 Rewrite div2_double. -Reflexivity. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Apply S_pred with O; Apply H. -Qed. - -Lemma maj_Reste_cv_R0 : (x,y:R) (Un_cv (maj_Reste_E x y) ``0``). -Intros; Assert H := (Majxy_cv_R0 x y). -Unfold Un_cv in H; Unfold Un_cv; Intros. -Cut ``0 ``0<(exp x)``. -Intros; Pose An := [N:nat]``/(INR (fact N))*(pow x N)``. -Cut (Un_cv [n:nat](sum_f_R0 An n) (exp x)). -Intro; Apply Rlt_le_trans with (sum_f_R0 An O). -Unfold An; Simpl; Rewrite Rinv_R1; Rewrite Rmult_1r; Apply Rlt_R0_R1. -Apply sum_incr. -Assumption. -Intro; Unfold An; Left; Apply Rmult_lt_pos. -Apply Rlt_Rinv; Apply INR_fact_lt_0. -Apply (pow_lt ? n H). -Unfold exp; Unfold projT1; Case (exist_exp x); Intro. -Unfold exp_in; Unfold infinit_sum Un_cv; Trivial. -Qed. - -(**********) -Lemma exp_pos : (x:R) ``0<(exp x)``. -Intro; Case (total_order_T R0 x); Intro. -Elim s; Intro. -Apply (exp_pos_pos ? a). -Rewrite <- b; Rewrite exp_0; Apply Rlt_R0_R1. -Replace (exp x) with ``1/(exp (-x))``. -Unfold Rdiv; Apply Rmult_lt_pos. -Apply Rlt_R0_R1. -Apply Rlt_Rinv; Apply exp_pos_pos. -Apply (Rgt_RO_Ropp ? r). -Cut ``(exp (-x))<>0``. -Intro; Unfold Rdiv; Apply r_Rmult_mult with ``(exp (-x))``. -Rewrite Rmult_1l; Rewrite <- Rinv_r_sym. -Rewrite <- exp_plus. -Rewrite Rplus_Ropp_l; Rewrite exp_0; Reflexivity. -Apply H. -Apply H. -Assert H := (exp_plus x ``-x``). -Rewrite Rplus_Ropp_r in H; Rewrite exp_0 in H. -Red; Intro; Rewrite H0 in H. -Rewrite Rmult_Or in H. -Elim R1_neq_R0; Assumption. -Qed. - -(* ((exp h)-1)/h -> 0 quand h->0 *) -Lemma derivable_pt_lim_exp_0 : (derivable_pt_lim exp ``0`` ``1``). -Unfold derivable_pt_lim; Intros. -Pose fn := [N:nat][x:R]``(pow x N)/(INR (fact (S N)))``. -Cut (CVN_R fn). -Intro; Cut (x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l)). -Intro cv; Cut ((n:nat)(continuity (fn n))). -Intro; Cut (continuity (SFL fn cv)). -Intro; Unfold continuity in H1. -Assert H2 := (H1 R0). -Unfold continuity_pt in H2; Unfold continue_in in H2; Unfold limit1_in in H2; Unfold limit_in in H2; Simpl in H2; Unfold R_dist in H2. -Elim (H2 ? H); Intros alp H3. -Elim H3; Intros. -Exists (mkposreal ? H4); Intros. -Rewrite Rplus_Ol; Rewrite exp_0. -Replace ``((exp h)-1)/h`` with (SFL fn cv h). -Replace R1 with (SFL fn cv R0). -Apply H5. -Split. -Unfold D_x no_cond; Split. -Trivial. -Apply (not_sym ? ? H6). -Rewrite minus_R0; Apply H7. -Unfold SFL. -Case (cv ``0``); Intros. -EApply UL_sequence. -Apply u. -Unfold Un_cv SP. -Intros; Exists (1); Intros. -Unfold R_dist; Rewrite decomp_sum. -Rewrite (Rplus_sym (fn O R0)). -Replace (fn O R0) with R1. -Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or. -Replace (sum_f_R0 [i:nat](fn (S i) ``0``) (pred n)) with R0. -Rewrite Rabsolu_R0; Apply H8. -Symmetry; Apply sum_eq_R0; Intros. -Unfold fn. -Simpl. -Unfold Rdiv; Do 2 Rewrite Rmult_Ol; Reflexivity. -Unfold fn; Simpl. -Unfold Rdiv; Rewrite Rinv_R1; Rewrite Rmult_1r; Reflexivity. -Apply lt_le_trans with (1); [Apply lt_n_Sn | Apply H9]. -Unfold SFL exp. -Unfold projT1. -Case (cv h); Case (exist_exp h); Intros. -EApply UL_sequence. -Apply u. -Unfold Un_cv; Intros. -Unfold exp_in in e. -Unfold infinit_sum in e. -Cut ``0``0``. -Intro; Apply Alembert_C2. -Intro; Apply Rabsolu_no_R0. -Unfold Rdiv; Apply prod_neq_R0. -Apply pow_nonzero; Assumption. -Apply Rinv_neq_R0; Apply INR_fact_neq_0. -Unfold Un_cv in H0. -Unfold Un_cv; Intros. -Cut ``0R;a,b:R;pr1:(c:R)``a(derivable_pt f c);pr2:(c:R)``a(derivable_pt g c)) ``a ((c:R)``a<=c<=b``->(continuity_pt f c)) -> ((c:R)``a<=c<=b``->(continuity_pt g c)) -> (EXT c : R | (EXT P : ``a(derivable_pt h c). -Intro; Cut ((c:R)``a<=c<=b``->(continuity_pt h c)). -Intro; Assert H4 := (continuity_ab_maj h a b H2 H3). -Assert H5 := (continuity_ab_min h a b H2 H3). -Elim H4; Intros Mx H6. -Elim H5; Intros mx H7. -Cut (h a)==(h b). -Intro; Pose M := (h Mx); Pose m := (h mx). -Cut (c:R;P:``a(h c)==M). -Intro; Cut ``a<(a+b)/2R); a,b:R; pr:(derivable f)) ``a < b``->(EXT c:R | ``(f b)-(f a) == (derive_pt f c (pr c))*(b-a)``/\``a < c < b``). -Intros f a b pr H; Cut (c:R)``a(derivable_pt f c); [Intro | Intros; Apply pr]. -Cut (c:R)``a(derivable_pt id c); [Intro | Intros; Apply derivable_pt_id]. -Cut ((c:R)``a<=c<=b``->(continuity_pt f c)); [Intro | Intros; Apply derivable_continuous_pt; Apply pr]. -Cut ((c:R)``a<=c<=b``->(continuity_pt id c)); [Intro | Intros; Apply derivable_continuous_pt; Apply derivable_id]. -Assert H2 := (MVT f id a b X X0 H H0 H1). -Elim H2; Intros c H3; Elim H3; Intros. -Exists c; Split. -Cut (derive_pt id c (X0 c x)) == (derive_pt id c (derivable_pt_id c)); [Intro | Apply pr_nu]. -Rewrite H5 in H4; Rewrite (derive_pt_id c) in H4; Rewrite Rmult_1r in H4; Rewrite <- H4; Replace (derive_pt f c (X c x)) with (derive_pt f c (pr c)); [Idtac | Apply pr_nu]; Apply Rmult_sym. -Apply x. -Qed. - -Theorem MVT_cor2 : (f,f':R->R;a,b:R) ``a ((c:R)``a<=c<=b``->(derivable_pt_lim f c (f' c))) -> (EXT c:R | ``(f b)-(f a)==(f' c)*(b-a)``/\``a(derivable_pt f c)). -Intro; Cut ((c:R)``a(derivable_pt f c)). -Intro; Cut ((c:R)``a<=c<=b``->(continuity_pt f c)). -Intro; Cut ((c:R)``a<=c<=b``->(derivable_pt id c)). -Intro; Cut ((c:R)``a(derivable_pt id c)). -Intro; Cut ((c:R)``a<=c<=b``->(continuity_pt id c)). -Intro; Elim (MVT f id a b X0 X2 H H1 H2); Intros; Elim H3; Clear H3; Intros; Exists x; Split. -Cut (derive_pt id x (X2 x x0))==R1. -Cut (derive_pt f x (X0 x x0))==(f' x). -Intros; Rewrite H4 in H3; Rewrite H5 in H3; Unfold id in H3; Rewrite Rmult_1r in H3; Rewrite Rmult_sym; Symmetry; Assumption. -Apply derive_pt_eq_0; Apply H0; Elim x0; Intros; Split; Left; Assumption. -Apply derive_pt_eq_0; Apply derivable_pt_lim_id. -Assumption. -Intros; Apply derivable_continuous_pt; Apply X1; Assumption. -Intros; Apply derivable_pt_id. -Intros; Apply derivable_pt_id. -Intros; Apply derivable_continuous_pt; Apply X; Assumption. -Intros; Elim H1; Intros; Apply X; Split; Left; Assumption. -Intros; Unfold derivable_pt; Apply Specif.existT with (f' c); Apply H0; Apply H1. -Qed. - -Lemma MVT_cor3 : (f,f':(R->R); a,b:R) ``a < b`` -> ((x:R)``a <= x`` -> ``x <= b``->(derivable_pt_lim f x (f' x))) -> (EXT c:R | ``a<=c``/\``c<=b``/\``(f b)==(f a) + (f' c)*(b-a)``). -Intros f f' a b H H0; Assert H1 : (EXT c:R | ``(f b) -(f a) == (f' c)*(b-a)``/\``aR;a,b:R;pr:(x:R)``a(derivable_pt f x)) ((x:R)``a<=x<=b``->(continuity_pt f x)) -> ``a (f a)==(f b) -> (EXT c:R | (EXT P: ``a(derivable_pt id x). -Intros; Apply derivable_pt_id. -Assert H3 := (MVT f id a b pr H2 H0 H); Assert H4 : (x:R)``a<=x<=b``->(continuity_pt id x). -Intros; Apply derivable_continuous; Apply derivable_id. -Elim (H3 H4); Intros; Elim H5; Intros; Exists x; Exists x0; Rewrite H1 in H6; Unfold id in H6; Unfold Rminus in H6; Rewrite Rplus_Ropp_r in H6; Rewrite Rmult_Ol in H6; Apply r_Rmult_mult with ``b-a``; [Rewrite Rmult_Or; Apply H6 | Apply Rminus_eq_contra; Red; Intro; Rewrite H7 in H0; Elim (Rlt_antirefl ? H0)]. -Qed. - -(**********) -Lemma nonneg_derivative_1 : (f:R->R;pr:(derivable f)) ((x:R) ``0<=(derive_pt f x (pr x))``) -> (increasing f). -Intros. -Unfold increasing. -Intros. -Case (total_order_T x y); Intro. -Elim s; Intro. -Apply Rle_anti_compatibility with ``-(f x)``. -Rewrite Rplus_Ropp_l; Rewrite Rplus_sym. -Assert H1 := (MVT_cor1 f ? ? pr a). -Elim H1; Intros. -Elim H2; Intros. -Unfold Rminus in H3. -Rewrite H3. -Apply Rmult_le_pos. -Apply H. -Apply Rle_anti_compatibility with x. -Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Assumption | Ring]. -Rewrite b; Right; Reflexivity. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 r)). -Qed. - -(**********) -Lemma nonpos_derivative_0 : (f:R->R;pr:(derivable f)) (decreasing f) -> ((x:R) ``(derive_pt f x (pr x))<=0``). -Intros f pr H x; Assert H0 :=H; Unfold decreasing in H0; Generalize (derivable_derive f x (pr x)); Intro; Elim H1; Intros l H2. -Rewrite H2; Case (total_order l R0); Intro. -Left; Assumption. -Elim H3; Intro. -Right; Assumption. -Generalize (derive_pt_eq_1 f x l (pr x) H2); Intros; Cut ``0< (l/2)``. -Intro; Elim (H5 ``(l/2)`` H6); Intros delta H7; Cut ``delta/2<>0``/\``0R) (increasing f) -> (decreasing (opp_fct f)). -Unfold increasing decreasing opp_fct; Intros; Generalize (H x y H0); Intro; Apply Rge_Ropp; Apply Rle_sym1; Assumption. -Qed. - -(**********) -Lemma nonpos_derivative_1 : (f:R->R;pr:(derivable f)) ((x:R) ``(derive_pt f x (pr x))<=0``) -> (decreasing f). -Intros. -Cut (h:R)``-(-(f h))==(f h)``. -Intro. -Generalize (increasing_decreasing_opp (opp_fct f)). -Unfold decreasing. -Unfold opp_fct. -Intros. -Rewrite <- (H0 x); Rewrite <- (H0 y). -Apply H1. -Cut (x:R)``0<=(derive_pt (opp_fct f) x ((derivable_opp f pr) x))``. -Intros. -Replace [x:R]``-(f x)`` with (opp_fct f); [Idtac | Reflexivity]. -Apply (nonneg_derivative_1 (opp_fct f) (derivable_opp f pr) H3). -Intro. -Assert H3 := (derive_pt_opp f x0 (pr x0)). -Cut ``(derive_pt (opp_fct f) x0 (derivable_pt_opp f x0 (pr x0)))==(derive_pt (opp_fct f) x0 (derivable_opp f pr x0))``. -Intro. -Rewrite <- H4. -Rewrite H3. -Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Apply (H x0). -Apply pr_nu. -Assumption. -Intro; Ring. -Qed. - -(**********) -Lemma positive_derivative : (f:R->R;pr:(derivable f)) ((x:R) ``0<(derive_pt f x (pr x))``)->(strict_increasing f). -Intros. -Unfold strict_increasing. -Intros. -Apply Rlt_anti_compatibility with ``-(f x)``. -Rewrite Rplus_Ropp_l; Rewrite Rplus_sym. -Assert H1 := (MVT_cor1 f ? ? pr H0). -Elim H1; Intros. -Elim H2; Intros. -Unfold Rminus in H3. -Rewrite H3. -Apply Rmult_lt_pos. -Apply H. -Apply Rlt_anti_compatibility with x. -Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Assumption | Ring]. -Qed. - -(**********) -Lemma strictincreasing_strictdecreasing_opp : (f:R->R) (strict_increasing f) -> -(strict_decreasing (opp_fct f)). -Unfold strict_increasing strict_decreasing opp_fct; Intros; Generalize (H x y H0); Intro; Apply Rlt_Ropp; Assumption. -Qed. - -(**********) -Lemma negative_derivative : (f:R->R;pr:(derivable f)) ((x:R) ``(derive_pt f x (pr x))<0``)->(strict_decreasing f). -Intros. -Cut (h:R)``- (-(f h))==(f h)``. -Intros. -Generalize (strictincreasing_strictdecreasing_opp (opp_fct f)). -Unfold strict_decreasing opp_fct. -Intros. -Rewrite <- (H0 x). -Rewrite <- (H0 y). -Apply H1; [Idtac | Assumption]. -Cut (x:R)``0<(derive_pt (opp_fct f) x (derivable_opp f pr x))``. -Intros; EApply positive_derivative; Apply H3. -Intro. -Assert H3 := (derive_pt_opp f x0 (pr x0)). -Cut ``(derive_pt (opp_fct f) x0 (derivable_pt_opp f x0 (pr x0)))==(derive_pt (opp_fct f) x0 (derivable_opp f pr x0))``. -Intro. -Rewrite <- H4; Rewrite H3. -Rewrite <- Ropp_O; Apply Rlt_Ropp; Apply (H x0). -Apply pr_nu. -Intro; Ring. -Qed. - -(**********) -Lemma null_derivative_0 : (f:R->R;pr:(derivable f)) (constant f)->((x:R) ``(derive_pt f x (pr x))==0``). -Intros. -Unfold constant in H. -Apply derive_pt_eq_0. -Intros; Exists (mkposreal ``1`` Rlt_R0_R1); Simpl; Intros. -Rewrite (H x ``x+h``); Unfold Rminus; Unfold Rdiv; Rewrite Rplus_Ropp_r; Rewrite Rmult_Ol; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. -Qed. - -(**********) -Lemma increasing_decreasing : (f:R->R) (increasing f) -> (decreasing f) -> (constant f). -Unfold increasing decreasing constant; Intros; Case (total_order x y); Intro. -Generalize (Rlt_le x y H1); Intro; Apply (Rle_antisym (f x) (f y) (H x y H2) (H0 x y H2)). -Elim H1; Intro. -Rewrite H2; Reflexivity. -Generalize (Rlt_le y x H2); Intro; Symmetry; Apply (Rle_antisym (f y) (f x) (H y x H3) (H0 y x H3)). -Qed. - -(**********) -Lemma null_derivative_1 : (f:R->R;pr:(derivable f)) ((x:R) ``(derive_pt f x (pr x))==0``)->(constant f). -Intros. -Cut (x:R)``(derive_pt f x (pr x)) <= 0``. -Cut (x:R)``0 <= (derive_pt f x (pr x))``. -Intros. -Assert H2 := (nonneg_derivative_1 f pr H0). -Assert H3 := (nonpos_derivative_1 f pr H1). -Apply increasing_decreasing; Assumption. -Intro; Right; Symmetry; Apply (H x). -Intro; Right; Apply (H x). -Qed. - -(**********) -Lemma derive_increasing_interv_ax : (a,b:R;f:R->R;pr:(derivable f)) ``a (((t:R) ``a ``0<(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x``(f x)<(f y)``)) /\ (((t:R) ``a ``0<=(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x``(f x)<=(f y)``)). -Intros. -Split; Intros. -Apply Rlt_anti_compatibility with ``-(f x)``. -Rewrite Rplus_Ropp_l; Rewrite Rplus_sym. -Assert H4 := (MVT_cor1 f ? ? pr H3). -Elim H4; Intros. -Elim H5; Intros. -Unfold Rminus in H6. -Rewrite H6. -Apply Rmult_lt_pos. -Apply H0. -Elim H7; Intros. -Split. -Elim H1; Intros. -Apply Rle_lt_trans with x; Assumption. -Elim H2; Intros. -Apply Rlt_le_trans with y; Assumption. -Apply Rlt_anti_compatibility with x. -Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Assumption | Ring]. -Apply Rle_anti_compatibility with ``-(f x)``. -Rewrite Rplus_Ropp_l; Rewrite Rplus_sym. -Assert H4 := (MVT_cor1 f ? ? pr H3). -Elim H4; Intros. -Elim H5; Intros. -Unfold Rminus in H6. -Rewrite H6. -Apply Rmult_le_pos. -Apply H0. -Elim H7; Intros. -Split. -Elim H1; Intros. -Apply Rle_lt_trans with x; Assumption. -Elim H2; Intros. -Apply Rlt_le_trans with y; Assumption. -Apply Rle_anti_compatibility with x. -Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Left; Assumption | Ring]. -Qed. - -(**********) -Lemma derive_increasing_interv : (a,b:R;f:R->R;pr:(derivable f)) ``a ((t:R) ``a ``0<(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x``(f x)<(f y)``). -Intros. -Generalize (derive_increasing_interv_ax a b f pr H); Intro. -Elim H4; Intros H5 _; Apply (H5 H0 x y H1 H2 H3). -Qed. - -(**********) -Lemma derive_increasing_interv_var : (a,b:R;f:R->R;pr:(derivable f)) ``a ((t:R) ``a ``0<=(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x``(f x)<=(f y)``). -Intros a b f pr H H0 x y H1 H2 H3; Generalize (derive_increasing_interv_ax a b f pr H); Intro; Elim H4; Intros _ H5; Apply (H5 H0 x y H1 H2 H3). -Qed. - -(**********) -(**********) -Theorem IAF : (f:R->R;a,b,k:R;pr:(derivable f)) ``a<=b`` -> ((c:R) ``a<=c<=b`` -> ``(derive_pt f c (pr c))<=k``) -> ``(f b)-(f a)<=k*(b-a)``. -Intros. -Case (total_order_T a b); Intro. -Elim s; Intro. -Assert H1 := (MVT_cor1 f ? ? pr a0). -Elim H1; Intros. -Elim H2; Intros. -Rewrite H3. -Do 2 Rewrite <- (Rmult_sym ``(b-a)``). -Apply Rle_monotony. -Apply Rle_anti_compatibility with ``a``; Rewrite Rplus_Or. -Replace ``a+(b-a)`` with b; [Assumption | Ring]. -Apply H0. -Elim H4; Intros. -Split; Left; Assumption. -Rewrite b0. -Unfold Rminus; Do 2 Rewrite Rplus_Ropp_r. -Rewrite Rmult_Or; Right; Reflexivity. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). -Qed. - -Lemma IAF_var : (f,g:R->R;a,b:R;pr1:(derivable f);pr2:(derivable g)) ``a<=b`` -> ((c:R) ``a<=c<=b`` -> ``(derive_pt g c (pr2 c))<=(derive_pt f c (pr1 c))``) -> ``(g b)-(g a)<=(f b)-(f a)``. -Intros. -Cut (derivable (minus_fct g f)). -Intro. -Cut (c:R)``a<=c<=b``->``(derive_pt (minus_fct g f) c (X c))<=0``. -Intro. -Assert H2 := (IAF (minus_fct g f) a b R0 X H H1). -Rewrite Rmult_Ol in H2; Unfold minus_fct in H2. -Apply Rle_anti_compatibility with ``-(f b)+(f a)``. -Replace ``-(f b)+(f a)+((f b)-(f a))`` with R0; [Idtac | Ring]. -Replace ``-(f b)+(f a)+((g b)-(g a))`` with ``(g b)-(f b)-((g a)-(f a))``; [Apply H2 | Ring]. -Intros. -Cut (derive_pt (minus_fct g f) c (X c))==(derive_pt (minus_fct g f) c (derivable_pt_minus ? ? ? (pr2 c) (pr1 c))). -Intro. -Rewrite H2. -Rewrite derive_pt_minus. -Apply Rle_anti_compatibility with (derive_pt f c (pr1 c)). -Rewrite Rplus_Or. -Replace ``(derive_pt f c (pr1 c))+((derive_pt g c (pr2 c))-(derive_pt f c (pr1 c)))`` with ``(derive_pt g c (pr2 c))``; [Idtac | Ring]. -Apply H0; Assumption. -Apply pr_nu. -Apply derivable_minus; Assumption. -Qed. - -(* If f has a null derivative in ]a,b[ and is continue in [a,b], *) -(* then f is constant on [a,b] *) -Lemma null_derivative_loc : (f:R->R;a,b:R;pr:(x:R)``a(derivable_pt f x)) ((x:R)``a<=x<=b``->(continuity_pt f x)) -> ((x:R;P:``a (constant_D_eq f [x:R]``a<=x<=b`` (f a)). -Intros; Unfold constant_D_eq; Intros; Case (total_order_T a b); Intro. -Elim s; Intro. -Assert H2 : (y:R)``a(derivable_pt id y). -Intros; Apply derivable_pt_id. -Assert H3 : (y:R)``a<=y<=x``->(continuity_pt id y). -Intros; Apply derivable_continuous; Apply derivable_id. -Assert H4 : (y:R)``a(derivable_pt f y). -Intros; Apply pr; Elim H4; Intros; Split. -Assumption. -Elim H1; Intros; Apply Rlt_le_trans with x; Assumption. -Assert H5 : (y:R)``a<=y<=x``->(continuity_pt f y). -Intros; Apply H; Elim H5; Intros; Split. -Assumption. -Elim H1; Intros; Apply Rle_trans with x; Assumption. -Elim H1; Clear H1; Intros; Elim H1; Clear H1; Intro. -Assert H7 := (MVT f id a x H4 H2 H1 H5 H3). -Elim H7; Intros; Elim H8; Intros; Assert H10 : ``aR;a,b:R) (antiderivative f g1 a b) -> (antiderivative f g2 a b) -> (EXT c:R | (x:R)``a<=x<=b``->``(g1 x)==(g2 x)+c``). -Unfold antiderivative; Intros; Elim H; Clear H; Intros; Elim H0; Clear H0; Intros H0 _; Exists ``(g1 a)-(g2 a)``; Intros; Assert H3 : (x:R)``a<=x<=b``->(derivable_pt g1 x). -Intros; Unfold derivable_pt; Apply Specif.existT with (f x0); Elim (H x0 H3); Intros; EApply derive_pt_eq_1; Symmetry; Apply H4. -Assert H4 : (x:R)``a<=x<=b``->(derivable_pt g2 x). -Intros; Unfold derivable_pt; Apply Specif.existT with (f x0); Elim (H0 x0 H4); Intros; EApply derive_pt_eq_1; Symmetry; Apply H5. -Assert H5 : (x:R)``a(derivable_pt (minus_fct g1 g2) x). -Intros; Elim H5; Intros; Apply derivable_pt_minus; [Apply H3; Split; Left; Assumption | Apply H4; Split; Left; Assumption]. -Assert H6 : (x:R)``a<=x<=b``->(continuity_pt (minus_fct g1 g2) x). -Intros; Apply derivable_continuous_pt; Apply derivable_pt_minus; [Apply H3 | Apply H4]; Assumption. -Assert H7 : (x:R;P:``aR;a,b:R] : Type := (sigTT ? [g:R->R](antiderivative f g a b)\/(antiderivative f g b a)). - -Definition NewtonInt [f:R->R;a,b:R;pr:(Newton_integrable f a b)] : R := let g = Cases pr of (existTT a b) => a end in ``(g b)-(g a)``. - -(* If f is differentiable, then f' is Newton integrable (Tautology ?) *) -Lemma FTCN_step1 : (f:Differential;a,b:R) (Newton_integrable [x:R](derive_pt f x (cond_diff f x)) a b). -Intros f a b; Unfold Newton_integrable; Apply existTT with (d1 f); Unfold antiderivative; Intros; Case (total_order_Rle a b); Intro; [Left; Split; [Intros; Exists (cond_diff f x); Reflexivity | Assumption] | Right; Split; [Intros; Exists (cond_diff f x); Reflexivity | Auto with real]]. -Defined. - -(* By definition, we have the Fondamental Theorem of Calculus *) -Lemma FTC_Newton : (f:Differential;a,b:R) (NewtonInt [x:R](derive_pt f x (cond_diff f x)) a b (FTCN_step1 f a b))==``(f b)-(f a)``. -Intros; Unfold NewtonInt; Reflexivity. -Qed. - -(* $\int_a^a f$ exists forall a:R and f:R->R *) -Lemma NewtonInt_P1 : (f:R->R;a:R) (Newton_integrable f a a). -Intros f a; Unfold Newton_integrable; Apply existTT with (mult_fct (fct_cte (f a)) id); Left; Unfold antiderivative; Split. -Intros; Assert H1 : (derivable_pt (mult_fct (fct_cte (f a)) id) x). -Apply derivable_pt_mult. -Apply derivable_pt_const. -Apply derivable_pt_id. -Exists H1; Assert H2 : x==a. -Elim H; Intros; Apply Rle_antisym; Assumption. -Symmetry; Apply derive_pt_eq_0; Replace (f x) with ``0*(id x)+(fct_cte (f a) x)*1``; [Apply (derivable_pt_lim_mult (fct_cte (f a)) id x); [Apply derivable_pt_lim_const | Apply derivable_pt_lim_id] | Unfold id fct_cte; Rewrite H2; Ring]. -Right; Reflexivity. -Defined. - -(* $\int_a^a f = 0$ *) -Lemma NewtonInt_P2 : (f:R->R;a:R) ``(NewtonInt f a a (NewtonInt_P1 f a))==0``. -Intros; Unfold NewtonInt; Simpl; Unfold mult_fct fct_cte id; Ring. -Qed. - -(* If $\int_a^b f$ exists, then $\int_b^a f$ exists too *) -Lemma NewtonInt_P3 : (f:R->R;a,b:R;X:(Newton_integrable f a b)) (Newton_integrable f b a). -Unfold Newton_integrable; Intros; Elim X; Intros g H; Apply existTT with g; Tauto. -Defined. - -(* $\int_a^b f = -\int_b^a f$ *) -Lemma NewtonInt_P4 : (f:R->R;a,b:R;pr:(Newton_integrable f a b)) ``(NewtonInt f a b pr)==-(NewtonInt f b a (NewtonInt_P3 f a b pr))``. -Intros; Unfold Newton_integrable in pr; Elim pr; Intros; Elim p; Intro. -Unfold NewtonInt; Case (NewtonInt_P3 f a b (existTT R->R [g:(R->R)](antiderivative f g a b)\/(antiderivative f g b a) x p)). -Intros; Elim o; Intro. -Unfold antiderivative in H0; Elim H0; Intros; Elim H2; Intro. -Unfold antiderivative in H; Elim H; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H5 H3)). -Rewrite H3; Ring. -Assert H1 := (antiderivative_Ucte f x x0 a b H H0); Elim H1; Intros; Unfold antiderivative in H0; Elim H0; Clear H0; Intros _ H0. -Assert H3 : ``a<=a<=b``. -Split; [Right; Reflexivity | Assumption]. -Assert H4 : ``a<=b<=b``. -Split; [Assumption | Right; Reflexivity]. -Assert H5 := (H2 ? H3); Assert H6 := (H2 ? H4); Rewrite H5; Rewrite H6; Ring. -Unfold NewtonInt; Case (NewtonInt_P3 f a b (existTT R->R [g:(R->R)](antiderivative f g a b)\/(antiderivative f g b a) x p)); Intros; Elim o; Intro. -Assert H1 := (antiderivative_Ucte f x x0 b a H H0); Elim H1; Intros; Unfold antiderivative in H0; Elim H0; Clear H0; Intros _ H0. -Assert H3 : ``b<=a<=a``. -Split; [Assumption | Right; Reflexivity]. -Assert H4 : ``b<=b<=a``. -Split; [Right; Reflexivity | Assumption]. -Assert H5 := (H2 ? H3); Assert H6 := (H2 ? H4); Rewrite H5; Rewrite H6; Ring. -Unfold antiderivative in H0; Elim H0; Intros; Elim H2; Intro. -Unfold antiderivative in H; Elim H; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H5 H3)). -Rewrite H3; Ring. -Qed. - -(* The set of Newton integrable functions is a vectorial space *) -Lemma NewtonInt_P5 : (f,g:R->R;l,a,b:R) (Newton_integrable f a b) -> (Newton_integrable g a b) -> (Newton_integrable [x:R]``l*(f x)+(g x)`` a b). -Unfold Newton_integrable; Intros; Elim X; Intros; Elim X0; Intros; Exists [y:R]``l*(x y)+(x0 y)``. -Elim p; Intro. -Elim p0; Intro. -Left; Unfold antiderivative; Unfold antiderivative in H H0; Elim H; Clear H; Intros; Elim H0; Clear H0; Intros H0 _. -Split. -Intros; Elim (H ? H2); Elim (H0 ? H2); Intros. -Assert H5 : (derivable_pt [y:R]``l*(x y)+(x0 y)`` x1). -Reg. -Exists H5; Symmetry; Reg; Rewrite <- H3; Rewrite <- H4; Reflexivity. -Assumption. -Unfold antiderivative in H H0; Elim H; Elim H0; Intros; Elim H4; Intro. -Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H5 H2)). -Left; Rewrite <- H5; Unfold antiderivative; Split. -Intros; Elim H6; Intros; Assert H9 : ``x1==a``. -Apply Rle_antisym; Assumption. -Assert H10 : ``a<=x1<=b``. -Split; Right; [Symmetry; Assumption | Rewrite <- H5; Assumption]. -Assert H11 : ``b<=x1<=a``. -Split; Right; [Rewrite <- H5; Symmetry; Assumption | Assumption]. -Assert H12 : (derivable_pt x x1). -Unfold derivable_pt; Exists (f x1); Elim (H3 ? H10); Intros; EApply derive_pt_eq_1; Symmetry; Apply H12. -Assert H13 : (derivable_pt x0 x1). -Unfold derivable_pt; Exists (g x1); Elim (H1 ? H11); Intros; EApply derive_pt_eq_1; Symmetry; Apply H13. -Assert H14 : (derivable_pt [y:R]``l*(x y)+(x0 y)`` x1). -Reg. -Exists H14; Symmetry; Reg. -Assert H15 : ``(derive_pt x0 x1 H13)==(g x1)``. -Elim (H1 ? H11); Intros; Rewrite H15; Apply pr_nu. -Assert H16 : ``(derive_pt x x1 H12)==(f x1)``. -Elim (H3 ? H10); Intros; Rewrite H16; Apply pr_nu. -Rewrite H15; Rewrite H16; Ring. -Right; Reflexivity. -Elim p0; Intro. -Unfold antiderivative in H H0; Elim H; Elim H0; Intros; Elim H4; Intro. -Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H5 H2)). -Left; Rewrite H5; Unfold antiderivative; Split. -Intros; Elim H6; Intros; Assert H9 : ``x1==a``. -Apply Rle_antisym; Assumption. -Assert H10 : ``a<=x1<=b``. -Split; Right; [Symmetry; Assumption | Rewrite H5; Assumption]. -Assert H11 : ``b<=x1<=a``. -Split; Right; [Rewrite H5; Symmetry; Assumption | Assumption]. -Assert H12 : (derivable_pt x x1). -Unfold derivable_pt; Exists (f x1); Elim (H3 ? H11); Intros; EApply derive_pt_eq_1; Symmetry; Apply H12. -Assert H13 : (derivable_pt x0 x1). -Unfold derivable_pt; Exists (g x1); Elim (H1 ? H10); Intros; EApply derive_pt_eq_1; Symmetry; Apply H13. -Assert H14 : (derivable_pt [y:R]``l*(x y)+(x0 y)`` x1). -Reg. -Exists H14; Symmetry; Reg. -Assert H15 : ``(derive_pt x0 x1 H13)==(g x1)``. -Elim (H1 ? H10); Intros; Rewrite H15; Apply pr_nu. -Assert H16 : ``(derive_pt x x1 H12)==(f x1)``. -Elim (H3 ? H11); Intros; Rewrite H16; Apply pr_nu. -Rewrite H15; Rewrite H16; Ring. -Right; Reflexivity. -Right; Unfold antiderivative; Unfold antiderivative in H H0; Elim H; Clear H; Intros; Elim H0; Clear H0; Intros H0 _; Split. -Intros; Elim (H ? H2); Elim (H0 ? H2); Intros. -Assert H5 : (derivable_pt [y:R]``l*(x y)+(x0 y)`` x1). -Reg. -Exists H5; Symmetry; Reg; Rewrite <- H3; Rewrite <- H4; Reflexivity. -Assumption. -Defined. - -(**********) -Lemma antiderivative_P1 : (f,g,F,G:R->R;l,a,b:R) (antiderivative f F a b) -> (antiderivative g G a b) -> (antiderivative [x:R]``l*(f x)+(g x)`` [x:R]``l*(F x)+(G x)`` a b). -Unfold antiderivative; Intros; Elim H; Elim H0; Clear H H0; Intros; Split. -Intros; Elim (H ? H3); Elim (H1 ? H3); Intros. -Assert H6 : (derivable_pt [x:R]``l*(F x)+(G x)`` x). -Reg. -Exists H6; Symmetry; Reg; Rewrite <- H4; Rewrite <- H5; Ring. -Assumption. -Qed. - -(* $\int_a^b \lambda f + g = \lambda \int_a^b f + \int_a^b f *) -Lemma NewtonInt_P6 : (f,g:R->R;l,a,b:R;pr1:(Newton_integrable f a b);pr2:(Newton_integrable g a b)) (NewtonInt [x:R]``l*(f x)+(g x)`` a b (NewtonInt_P5 f g l a b pr1 pr2))==``l*(NewtonInt f a b pr1)+(NewtonInt g a b pr2)``. -Intros f g l a b pr1 pr2; Unfold NewtonInt; Case (NewtonInt_P5 f g l a b pr1 pr2); Intros; Case pr1; Intros; Case pr2; Intros; Case (total_order_T a b); Intro. -Elim s; Intro. -Elim o; Intro. -Elim o0; Intro. -Elim o1; Intro. -Assert H2 := (antiderivative_P1 f g x0 x1 l a b H0 H1); Assert H3 := (antiderivative_Ucte ? ? ? ? ? H H2); Elim H3; Intros; Assert H5 : ``a<=a<=b``. -Split; [Right; Reflexivity | Left; Assumption]. -Assert H6 : ``a<=b<=b``. -Split; [Left; Assumption | Right; Reflexivity]. -Assert H7 := (H4 ? H5); Assert H8 := (H4 ? H6); Rewrite H7; Rewrite H8; Ring. -Unfold antiderivative in H1; Elim H1; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H3 a0)). -Unfold antiderivative in H0; Elim H0; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 a0)). -Unfold antiderivative in H; Elim H; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H1 a0)). -Rewrite b0; Ring. -Elim o; Intro. -Unfold antiderivative in H; Elim H; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H1 r)). -Elim o0; Intro. -Unfold antiderivative in H0; Elim H0; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 r)). -Elim o1; Intro. -Unfold antiderivative in H1; Elim H1; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H3 r)). -Assert H2 := (antiderivative_P1 f g x0 x1 l b a H0 H1); Assert H3 := (antiderivative_Ucte ? ? ? ? ? H H2); Elim H3; Intros; Assert H5 : ``b<=a<=a``. -Split; [Left; Assumption | Right; Reflexivity]. -Assert H6 : ``b<=b<=a``. -Split; [Right; Reflexivity | Left; Assumption]. -Assert H7 := (H4 ? H5); Assert H8 := (H4 ? H6); Rewrite H7; Rewrite H8; Ring. -Qed. - -Lemma antiderivative_P2 : (f,F0,F1:R->R;a,b,c:R) (antiderivative f F0 a b) -> (antiderivative f F1 b c) -> (antiderivative f [x:R](Cases (total_order_Rle x b) of (leftT _) => (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end) a c). -Unfold antiderivative; Intros; Elim H; Clear H; Intros; Elim H0; Clear H0; Intros; Split. -2:Apply Rle_trans with b; Assumption. -Intros; Elim H3; Clear H3; Intros; Case (total_order_T x b); Intro. -Elim s; Intro. -Assert H5 : ``a<=x<=b``. -Split; [Assumption | Left; Assumption]. -Assert H6 := (H ? H5); Elim H6; Clear H6; Intros; Assert H7 : (derivable_pt_lim [x:R](Cases (total_order_Rle x b) of (leftT _) => (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end) x (f x)). -Unfold derivable_pt_lim; Assert H7 : ``(derive_pt F0 x x0)==(f x)``. -Symmetry; Assumption. -Assert H8 := (derive_pt_eq_1 F0 x (f x) x0 H7); Unfold derivable_pt_lim in H8; Intros; Elim (H8 ? H9); Intros; Pose D := (Rmin x1 ``b-x``). -Assert H11 : ``0 (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end x). -Unfold derivable_pt; Apply Specif.existT with (f x); Apply H7. -Exists H8; Symmetry; Apply derive_pt_eq_0; Apply H7. -Assert H5 : ``a<=x<=b``. -Split; [Assumption | Right; Assumption]. -Assert H6 : ``b<=x<=c``. -Split; [Right; Symmetry; Assumption | Assumption]. -Elim (H ? H5); Elim (H0 ? H6); Intros; Assert H9 : (derive_pt F0 x x1)==(f x). -Symmetry; Assumption. -Assert H10 : (derive_pt F1 x x0)==(f x). -Symmetry; Assumption. -Assert H11 := (derive_pt_eq_1 F0 x (f x) x1 H9); Assert H12 := (derive_pt_eq_1 F1 x (f x) x0 H10); Assert H13 : (derivable_pt_lim [x:R]Cases (total_order_Rle x b) of (leftT _) => (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end x (f x)). -Unfold derivable_pt_lim; Unfold derivable_pt_lim in H11 H12; Intros; Elim (H11 ? H13); Elim (H12 ? H13); Intros; Pose D := (Rmin x2 x3); Assert H16 : ``0 (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end) x). -Unfold derivable_pt; Apply Specif.existT with (f x); Apply H13. -Exists H14; Symmetry; Apply derive_pt_eq_0; Apply H13. -Assert H5 : ``b<=x<=c``. -Split; [Left; Assumption | Assumption]. -Assert H6 := (H0 ? H5); Elim H6; Clear H6; Intros; Assert H7 : (derivable_pt_lim [x:R]Cases (total_order_Rle x b) of (leftT _) => (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end x (f x)). -Unfold derivable_pt_lim; Assert H7 : ``(derive_pt F1 x x0)==(f x)``. -Symmetry; Assumption. -Assert H8 := (derive_pt_eq_1 F1 x (f x) x0 H7); Unfold derivable_pt_lim in H8; Intros; Elim (H8 ? H9); Intros; Pose D := (Rmin x1 ``x-b``); Assert H11 : ``0 (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end x). -Unfold derivable_pt; Apply Specif.existT with (f x); Apply H7. -Exists H8; Symmetry; Apply derive_pt_eq_0; Apply H7. -Qed. - -Lemma antiderivative_P3 : (f,F0,F1:R->R;a,b,c:R) (antiderivative f F0 a b) -> (antiderivative f F1 c b) -> (antiderivative f F1 c a)\/(antiderivative f F0 a c). -Intros; Unfold antiderivative in H H0; Elim H; Clear H; Elim H0; Clear H0; Intros; Case (total_order_T a c); Intro. -Elim s; Intro. -Right; Unfold antiderivative; Split. -Intros; Apply H1; Elim H3; Intros; Split; [Assumption | Apply Rle_trans with c; Assumption]. -Left; Assumption. -Right; Unfold antiderivative; Split. -Intros; Apply H1; Elim H3; Intros; Split; [Assumption | Apply Rle_trans with c; Assumption]. -Right; Assumption. -Left; Unfold antiderivative; Split. -Intros; Apply H; Elim H3; Intros; Split; [Assumption | Apply Rle_trans with a; Assumption]. -Left; Assumption. -Qed. - -Lemma antiderivative_P4 : (f,F0,F1:R->R;a,b,c:R) (antiderivative f F0 a b) -> (antiderivative f F1 a c) -> (antiderivative f F1 b c)\/(antiderivative f F0 c b). -Intros; Unfold antiderivative in H H0; Elim H; Clear H; Elim H0; Clear H0; Intros; Case (total_order_T c b); Intro. -Elim s; Intro. -Right; Unfold antiderivative; Split. -Intros; Apply H1; Elim H3; Intros; Split; [Apply Rle_trans with c; Assumption | Assumption]. -Left; Assumption. -Right; Unfold antiderivative; Split. -Intros; Apply H1; Elim H3; Intros; Split; [Apply Rle_trans with c; Assumption | Assumption]. -Right; Assumption. -Left; Unfold antiderivative; Split. -Intros; Apply H; Elim H3; Intros; Split; [Apply Rle_trans with b; Assumption | Assumption]. -Left; Assumption. -Qed. - -Lemma NewtonInt_P7 : (f:R->R;a,b,c:R) ``a ``b (Newton_integrable f a b) -> (Newton_integrable f b c) -> (Newton_integrable f a c). -Unfold Newton_integrable; Intros f a b c Hab Hbc X X0; Elim X; Clear X; Intros F0 H0; Elim X0; Clear X0; Intros F1 H1; Pose g := [x:R](Cases (total_order_Rle x b) of (leftT _) => (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end); Apply existTT with g; Left; Unfold g; Apply antiderivative_P2. -Elim H0; Intro. -Assumption. -Unfold antiderivative in H; Elim H; Clear H; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 Hab)). -Elim H1; Intro. -Assumption. -Unfold antiderivative in H; Elim H; Clear H; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 Hbc)). -Qed. - -Lemma NewtonInt_P8 : (f:(R->R); a,b,c:R) (Newton_integrable f a b) -> (Newton_integrable f b c) -> (Newton_integrable f a c). -Intros. -Elim X; Intros F0 H0. -Elim X0; Intros F1 H1. -Case (total_order_T a b); Intro. -Elim s; Intro. -Case (total_order_T b c); Intro. -Elim s0; Intro. -(* a (F0 x) | (rightT _) => ``(F1 x)+((F0 b)-(F1 b))`` end). -Elim H0; Intro. -Elim H1; Intro. -Left; Apply antiderivative_P2; Assumption. -Unfold antiderivative in H2; Elim H2; Clear H2; Intros _ H2. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 a1)). -Unfold antiderivative in H; Elim H; Clear H; Intros _ H. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H a0)). -(* ac *) -Case (total_order_T a c); Intro. -Elim s0; Intro. -Unfold Newton_integrable; Apply existTT with F0. -Left. -Elim H1; Intro. -Unfold antiderivative in H; Elim H; Clear H; Intros _ H. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). -Elim H0; Intro. -Assert H3 := (antiderivative_P3 f F0 F1 a b c H2 H). -Elim H3; Intro. -Unfold antiderivative in H4; Elim H4; Clear H4; Intros _ H4. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H4 a1)). -Assumption. -Unfold antiderivative in H2; Elim H2; Clear H2; Intros _ H2. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 a0)). -Rewrite b0; Apply NewtonInt_P1. -Unfold Newton_integrable; Apply existTT with F1. -Right. -Elim H1; Intro. -Unfold antiderivative in H; Elim H; Clear H; Intros _ H. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). -Elim H0; Intro. -Assert H3 := (antiderivative_P3 f F0 F1 a b c H2 H). -Elim H3; Intro. -Assumption. -Unfold antiderivative in H4; Elim H4; Clear H4; Intros _ H4. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H4 r0)). -Unfold antiderivative in H2; Elim H2; Clear H2; Intros _ H2. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H2 a0)). -(* a=b *) -Rewrite b0; Apply X0. -Case (total_order_T b c); Intro. -Elim s; Intro. -(* a>b & bb & b=c *) -Rewrite b0 in X; Apply X. -(* a>b & b>c *) -Assert X1 := (NewtonInt_P3 f a b X). -Assert X2 := (NewtonInt_P3 f b c X0). -Apply NewtonInt_P3. -Apply NewtonInt_P7 with b; Assumption. -Defined. - -(* Chasles' relation *) -Lemma NewtonInt_P9 : (f:R->R;a,b,c:R;pr1:(Newton_integrable f a b);pr2:(Newton_integrable f b c)) ``(NewtonInt f a c (NewtonInt_P8 f a b c pr1 pr2))==(NewtonInt f a b pr1)+(NewtonInt f b c pr2)``. -Intros; Unfold NewtonInt. -Case (NewtonInt_P8 f a b c pr1 pr2); Intros. -Case pr1; Intros. -Case pr2; Intros. -Case (total_order_T a b); Intro. -Elim s; Intro. -Case (total_order_T b c); Intro. -Elim s0; Intro. -(* a (x0 x) - | (rightT _) => ``(x1 x)+((x0 b)-(x1 b))`` - end a c H1 H2). -Elim H3; Intros. -Assert H5 : ``a<=a<=c``. -Split; [Right; Reflexivity | Left; Apply Rlt_trans with b; Assumption]. -Assert H6 : ``a<=c<=c``. -Split; [Left; Apply Rlt_trans with b; Assumption | Right; Reflexivity]. -Rewrite (H4 ? H5); Rewrite (H4 ? H6). -Case (total_order_Rle a b); Intro. -Case (total_order_Rle c b); Intro. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r0 a1)). -Ring. -Elim n; Left; Assumption. -Unfold antiderivative in H1; Elim H1; Clear H1; Intros _ H1. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H1 (Rlt_trans ? ? ? a0 a1))). -Unfold antiderivative in H0; Elim H0; Clear H0; Intros _ H0. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 a1)). -Unfold antiderivative in H; Elim H; Clear H; Intros _ H. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H a0)). -(* ac *) -Elim o1; Intro. -Unfold antiderivative in H; Elim H; Clear H; Intros _ H. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). -Elim o0; Intro. -Elim o; Intro. -Assert H2 := (antiderivative_P2 f x x1 a c b H1 H). -Assert H3 := (antiderivative_Ucte ? ? ? a b H0 H2). -Elim H3; Intros. -Rewrite (H4 a). -Rewrite (H4 b). -Case (total_order_Rle b c); Intro. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r0 r)). -Case (total_order_Rle a c); Intro. -Ring. -Elim n0; Unfold antiderivative in H1; Elim H1; Intros; Assumption. -Split; [Left; Assumption | Right; Reflexivity]. -Split; [Right; Reflexivity | Left; Assumption]. -Assert H2 := (antiderivative_P2 ? ? ? ? ? ? H1 H0). -Assert H3 := (antiderivative_Ucte ? ? ? c b H H2). -Elim H3; Intros. -Rewrite (H4 c). -Rewrite (H4 b). -Case (total_order_Rle b a); Intro. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r0 a0)). -Case (total_order_Rle c a); Intro. -Ring. -Elim n0; Unfold antiderivative in H1; Elim H1; Intros; Assumption. -Split; [Left; Assumption | Right; Reflexivity]. -Split; [Right; Reflexivity | Left; Assumption]. -Unfold antiderivative in H0; Elim H0; Clear H0; Intros _ H0. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 a0)). -(* a=b *) -Rewrite b0 in o; Rewrite b0. -Elim o; Intro. -Elim o1; Intro. -Assert H1 := (antiderivative_Ucte ? ? ? b c H H0). -Elim H1; Intros. -Assert H3 : ``b<=c``. -Unfold antiderivative in H; Elim H; Intros; Assumption. -Rewrite (H2 b). -Rewrite (H2 c). -Ring. -Split; [Assumption | Right; Reflexivity]. -Split; [Right; Reflexivity | Assumption]. -Assert H1 : ``b==c``. -Unfold antiderivative in H H0; Elim H; Elim H0; Intros; Apply Rle_antisym; Assumption. -Rewrite H1; Ring. -Elim o1; Intro. -Assert H1 : ``b==c``. -Unfold antiderivative in H H0; Elim H; Elim H0; Intros; Apply Rle_antisym; Assumption. -Rewrite H1; Ring. -Assert H1 := (antiderivative_Ucte ? ? ? c b H H0). -Elim H1; Intros. -Assert H3 : ``c<=b``. -Unfold antiderivative in H; Elim H; Intros; Assumption. -Rewrite (H2 c). -Rewrite (H2 b). -Ring. -Split; [Assumption | Right; Reflexivity]. -Split; [Right; Reflexivity | Assumption]. -(* a>b & bb & b=c *) -Rewrite <- b0. -Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or. -Rewrite <- b0 in o. -Elim o0; Intro. -Unfold antiderivative in H; Elim H; Clear H; Intros _ H. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). -Elim o; Intro. -Unfold antiderivative in H0; Elim H0; Clear H0; Intros _ H0. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 r)). -Assert H1 := (antiderivative_Ucte f x x0 b a H0 H). -Elim H1; Intros. -Rewrite (H2 b). -Rewrite (H2 a). -Ring. -Split; [Left; Assumption | Right; Reflexivity]. -Split; [Right; Reflexivity | Left; Assumption]. -(* a>b & b>c *) -Elim o0; Intro. -Unfold antiderivative in H; Elim H; Clear H; Intros _ H. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). -Elim o1; Intro. -Unfold antiderivative in H0; Elim H0; Clear H0; Intros _ H0. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 r0)). -Elim o; Intro. -Unfold antiderivative in H1; Elim H1; Clear H1; Intros _ H1. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H1 (Rlt_trans ? ? ? r0 r))). -Assert H2 := (antiderivative_P2 ? ? ? ? ? ? H0 H). -Assert H3 := (antiderivative_Ucte ? ? ? c a H1 H2). -Elim H3; Intros. -Assert H5 : ``c<=a``. -Unfold antiderivative in H1; Elim H1; Intros; Assumption. -Rewrite (H4 c). -Rewrite (H4 a). -Case (total_order_Rle a b); Intro. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r1 r)). -Case (total_order_Rle c b); Intro. -Ring. -Elim n0; Left; Assumption. -Split; [Assumption | Right; Reflexivity]. -Split; [Right; Reflexivity | Assumption]. -Qed. - diff --git a/theories7/Reals/PSeries_reg.v b/theories7/Reals/PSeries_reg.v deleted file mode 100644 index 68645379..00000000 --- a/theories7/Reals/PSeries_reg.v +++ /dev/null @@ -1,194 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* Prop := [y:R]``(Rabsolu (y-x))R->R;f:R->R;x:R;r:posreal] : Prop := (eps:R)``0(EX N:nat | (n:nat;y:R) (le N n)->(Boule x r y)->``(Rabsolu ((f y)-(fn n y)))R->R;r:posreal] : Type := (SigT ? [An:nat->R](sigTT R [l:R]((Un_cv [n:nat](sum_f_R0 [k:nat](Rabsolu (An k)) n) l)/\((n:nat)(y:R)(Boule R0 r y)->(Rle (Rabsolu (fn n y)) (An n)))))). - -Definition CVN_R [fn:nat->R->R] : Type := (r:posreal) (CVN_r fn r). - -Definition SFL [fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l))] : R-> R := [y:R](Cases (cv y) of (existTT a b) => a end). - -(* In a complete space, normal convergence implies uniform convergence *) -Lemma CVN_CVU : (fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l));r:posreal) (CVN_r fn r) -> (CVU [n:nat](SP fn n) (SFL fn cv) ``0`` r). -Intros; Unfold CVU; Intros. -Unfold CVN_r in X. -Elim X; Intros An X0. -Elim X0; Intros s H0. -Elim H0; Intros. -Cut (Un_cv [n:nat](Rminus (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n) s) R0). -Intro; Unfold Un_cv in H3. -Elim (H3 eps H); Intros N0 H4. -Exists N0; Intros. -Apply Rle_lt_trans with (Rabsolu (Rminus (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n) s)). -Rewrite <- (Rabsolu_Ropp (Rminus (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n) s)); Rewrite Ropp_distr3; Rewrite (Rabsolu_right (Rminus s (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n))). -EApply sum_maj1. -Unfold SFL; Case (cv y); Intro. -Trivial. -Apply H1. -Intro; Elim H0; Intros. -Rewrite (Rabsolu_right (An n0)). -Apply H8; Apply H6. -Apply Rle_sym1; Apply Rle_trans with (Rabsolu (fn n0 y)). -Apply Rabsolu_pos. -Apply H8; Apply H6. -Apply Rle_sym1; Apply Rle_anti_compatibility with (sum_f_R0 [k:nat](Rabsolu (An k)) n). -Rewrite Rplus_Or; Unfold Rminus; Rewrite (Rplus_sym s); Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Ol; Apply sum_incr. -Apply H1. -Intro; Apply Rabsolu_pos. -Unfold R_dist in H4; Unfold Rminus in H4; Rewrite Ropp_O in H4. -Assert H7 := (H4 n H5). -Rewrite Rplus_Or in H7; Apply H7. -Unfold Un_cv in H1; Unfold Un_cv; Intros. -Elim (H1? H3); Intros. -Exists x; Intros. -Unfold R_dist; Unfold R_dist in H4. -Rewrite minus_R0; Apply H4; Assumption. -Qed. - -(* Each limit of a sequence of functions which converges uniformly is continue *) -Lemma CVU_continuity : (fn:nat->R->R;f:R->R;x:R;r:posreal) (CVU fn f x r) -> ((n:nat)(y:R) (Boule x r y)->(continuity_pt (fn n) y)) -> ((y:R) (Boule x r y) -> (continuity_pt f y)). -Intros; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros. -Unfold CVU in H. -Cut ``0 (Boule x r ``y+h``) ). -Intro. -Elim H6; Intros del1 H7. -Unfold continuity_pt in H5; Unfold continue_in in H5; Unfold limit1_in in H5; Unfold limit_in in H5; Simpl in H5; Unfold R_dist in H5. -Elim (H5 ? H3); Intros del2 H8. -Pose del := (Rmin del1 del2). -Exists del; Intros. -Split. -Unfold del; Unfold Rmin; Case (total_order_Rle del1 del2); Intro. -Apply (cond_pos del1). -Elim H8; Intros; Assumption. -Intros; Apply Rle_lt_trans with ``(Rabsolu ((f x0)-(fn N0 x0)))+(Rabsolu ((fn N0 x0)-(f y)))``. -Replace ``(f x0)-(f y)`` with ``((f x0)-(fn N0 x0))+((fn N0 x0)-(f y))``; [Apply Rabsolu_triang | Ring]. -Apply Rle_lt_trans with ``(Rabsolu ((f x0)-(fn N0 x0)))+(Rabsolu ((fn N0 x0)-(fn N0 y)))+(Rabsolu ((fn N0 y)-(f y)))``. -Rewrite Rplus_assoc; Apply Rle_compatibility. -Replace ``(fn N0 x0)-(f y)`` with ``((fn N0 x0)-(fn N0 y))+((fn N0 y)-(f y))``; [Apply Rabsolu_triang | Ring]. -Replace ``eps`` with ``eps/3+eps/3+eps/3``. -Repeat Apply Rplus_lt. -Apply H4. -Apply le_n. -Replace x0 with ``y+(x0-y)``; [Idtac | Ring]; Apply H7. -Elim H9; Intros. -Apply Rlt_le_trans with del. -Assumption. -Unfold del; Apply Rmin_l. -Elim H8; Intros. -Apply H11. -Split. -Elim H9; Intros; Assumption. -Elim H9; Intros; Apply Rlt_le_trans with del. -Assumption. -Unfold del; Apply Rmin_r. -Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr3; Apply H4. -Apply le_n. -Assumption. -Apply r_Rmult_mult with ``3``. -Do 2 Rewrite Rmult_Rplus_distr; Unfold Rdiv; Rewrite <- Rmult_assoc; Rewrite Rinv_r_simpl_m. -Ring. -DiscrR. -DiscrR. -Cut ``0R->R;N:nat;x:R) ((n:nat)(le n N)->(continuity_pt (fn n) x)) -> (continuity_pt [y:R](sum_f_R0 [k:nat]``(fn k y)`` N) x). -Intros; Induction N. -Simpl; Apply (H O); Apply le_n. -Simpl; Replace [y:R](Rplus (sum_f_R0 [k:nat](fn k y) N) (fn (S N) y)) with (plus_fct [y:R](sum_f_R0 [k:nat](fn k y) N) [y:R](fn (S N) y)); [Idtac | Reflexivity]. -Apply continuity_pt_plus. -Apply HrecN. -Intros; Apply H. -Apply le_trans with N; [Assumption | Apply le_n_Sn]. -Apply (H (S N)); Apply le_n. -Qed. - -(* Continuity and normal convergence *) -Lemma SFL_continuity_pt : (fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l));r:posreal) (CVN_r fn r) -> ((n:nat)(y:R) (Boule ``0`` r y) -> (continuity_pt (fn n) y)) -> ((y:R) (Boule ``0`` r y) -> (continuity_pt (SFL fn cv) y)). -Intros; EApply CVU_continuity. -Apply CVN_CVU. -Apply X. -Intros; Unfold SP; Apply continuity_pt_finite_SF. -Intros; Apply H. -Apply H1. -Apply H0. -Qed. - -Lemma SFL_continuity : (fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l))) (CVN_R fn) -> ((n:nat)(continuity (fn n))) -> (continuity (SFL fn cv)). -Intros; Unfold continuity; Intro. -Cut ``0<(Rabsolu x)+1``; [Intro | Apply ge0_plus_gt0_is_gt0; [Apply Rabsolu_pos | Apply Rlt_R0_R1]]. -Cut (Boule ``0`` (mkposreal ? H0) x). -Intro; EApply SFL_continuity_pt with (mkposreal ? H0). -Apply X. -Intros; Apply (H n y). -Apply H1. -Unfold Boule; Simpl; Rewrite minus_R0; Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1. -Qed. - -(* As R is complete, normal convergence implies that (fn) is simply-uniformly convergent *) -Lemma CVN_R_CVS : (fn:nat->R->R) (CVN_R fn) -> ((x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l))). -Intros; Apply R_complete. -Unfold SP; Pose An := [N:nat](fn N x). -Change (Cauchy_crit_series An). -Apply cauchy_abs. -Unfold Cauchy_crit_series; Apply CV_Cauchy. -Unfold CVN_R in X; Cut ``0<(Rabsolu x)+1``. -Intro; Assert H0 := (X (mkposreal ? H)). -Unfold CVN_r in H0; Elim H0; Intros Bn H1. -Elim H1; Intros l H2. -Elim H2; Intros. -Apply Rseries_CV_comp with Bn. -Intro; Split. -Apply Rabsolu_pos. -Unfold An; Apply H4; Unfold Boule; Simpl; Rewrite minus_R0. -Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1. -Apply existTT with l. -Cut (n:nat)``0<=(Bn n)``. -Intro; Unfold Un_cv in H3; Unfold Un_cv; Intros. -Elim (H3 ? H6); Intros. -Exists x0; Intros. -Replace (sum_f_R0 Bn n) with (sum_f_R0 [k:nat](Rabsolu (Bn k)) n). -Apply H7; Assumption. -Apply sum_eq; Intros; Apply Rabsolu_right; Apply Rle_sym1; Apply H5. -Intro; Apply Rle_trans with (Rabsolu (An n)). -Apply Rabsolu_pos. -Unfold An; Apply H4; Unfold Boule; Simpl; Rewrite minus_R0; Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1. -Apply ge0_plus_gt0_is_gt0; [Apply Rabsolu_pos | Apply Rlt_R0_R1]. -Qed. diff --git a/theories7/Reals/PartSum.v b/theories7/Reals/PartSum.v deleted file mode 100644 index 4d28bec8..00000000 --- a/theories7/Reals/PartSum.v +++ /dev/null @@ -1,475 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R;N:nat) ((n:nat)``(le n N)``->``0<(An n)``) -> ``0 < (sum_f_R0 An N)``. -Intros; Induction N. -Simpl; Apply H; Apply le_n. -Simpl; Apply gt0_plus_gt0_is_gt0. -Apply HrecN; Intros; Apply H; Apply le_S; Assumption. -Apply H; Apply le_n. -Qed. - -(* Chasles' relation *) -Lemma tech2 : (An:nat->R;m,n:nat) (lt m n) -> (sum_f_R0 An n) == (Rplus (sum_f_R0 An m) (sum_f_R0 [i:nat]``(An (plus (S m) i))`` (minus n (S m)))). -Intros; Induction n. -Elim (lt_n_O ? H). -Cut (lt m n)\/m=n. -Intro; Elim H0; Intro. -Replace (sum_f_R0 An (S n)) with ``(sum_f_R0 An n)+(An (S n))``; [Idtac | Reflexivity]. -Replace (minus (S n) (S m)) with (S (minus n (S m))). -Replace (sum_f_R0 [i:nat](An (plus (S m) i)) (S (minus n (S m)))) with (Rplus (sum_f_R0 [i:nat](An (plus (S m) i)) (minus n (S m))) (An (plus (S m) (S (minus n (S m)))))); [Idtac | Reflexivity]. -Replace (plus (S m) (S (minus n (S m)))) with (S n). -Rewrite (Hrecn H1). -Ring. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Do 2 Rewrite S_INR; Rewrite minus_INR. -Rewrite S_INR; Ring. -Apply lt_le_S; Assumption. -Apply INR_eq; Rewrite S_INR; Repeat Rewrite minus_INR. -Repeat Rewrite S_INR; Ring. -Apply le_n_S; Apply lt_le_weak; Assumption. -Apply lt_le_S; Assumption. -Rewrite H1; Rewrite <- minus_n_n; Simpl. -Replace (plus n O) with n; [Reflexivity | Ring]. -Inversion H. -Right; Reflexivity. -Left; Apply lt_le_trans with (S m); [Apply lt_n_Sn | Assumption]. -Qed. - -(* Sum of geometric sequences *) -Lemma tech3 : (k:R;N:nat) ``k<>1`` -> (sum_f_R0 [i:nat](pow k i) N)==``(1-(pow k (S N)))/(1-k)``. -Intros; Cut ``1-k<>0``. -Intro; Induction N. -Simpl; Rewrite Rmult_1r; Unfold Rdiv; Rewrite <- Rinv_r_sym. -Reflexivity. -Apply H0. -Replace (sum_f_R0 ([i:nat](pow k i)) (S N)) with (Rplus (sum_f_R0 [i:nat](pow k i) N) (pow k (S N))); [Idtac | Reflexivity]; Rewrite HrecN; Replace ``(1-(pow k (S N)))/(1-k)+(pow k (S N))`` with ``((1-(pow k (S N)))+(1-k)*(pow k (S N)))/(1-k)``. -Apply r_Rmult_mult with ``1-k``. -Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(1-k)``); Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [ Do 2 Rewrite Rmult_1l; Simpl; Ring | Apply H0]. -Apply H0. -Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Rewrite (Rmult_sym ``1-k``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Reflexivity. -Apply H0. -Apply Rminus_eq_contra; Red; Intro; Elim H; Symmetry; Assumption. -Qed. - -Lemma tech4 : (An:nat->R;k:R;N:nat) ``0<=k`` -> ((i:nat)``(An (S i)) ``(An N)<=(An O)*(pow k N)``. -Intros; Induction N. -Simpl; Right; Ring. -Apply Rle_trans with ``k*(An N)``. -Left; Apply (H0 N). -Replace (S N) with (plus N (1)); [Idtac | Ring]. -Rewrite pow_add; Simpl; Rewrite Rmult_1r; Replace ``(An O)*((pow k N)*k)`` with ``k*((An O)*(pow k N))``; [Idtac | Ring]; Apply Rle_monotony. -Assumption. -Apply HrecN. -Qed. - -Lemma tech5 : (An:nat->R;N:nat) (sum_f_R0 An (S N))==``(sum_f_R0 An N)+(An (S N))``. -Intros; Reflexivity. -Qed. - -Lemma tech6 : (An:nat->R;k:R;N:nat) ``0<=k`` -> ((i:nat)``(An (S i)) (Rle (sum_f_R0 An N) (Rmult (An O) (sum_f_R0 [i:nat](pow k i) N))). -Intros; Induction N. -Simpl; Right; Ring. -Apply Rle_trans with (Rplus (Rmult (An O) (sum_f_R0 [i:nat](pow k i) N)) (An (S N))). -Rewrite tech5; Do 2 Rewrite <- (Rplus_sym (An (S N))); Apply Rle_compatibility. -Apply HrecN. -Rewrite tech5 ; Rewrite Rmult_Rplus_distr; Apply Rle_compatibility. -Apply tech4; Assumption. -Qed. - -Lemma tech7 : (r1,r2:R) ``r1<>0`` -> ``r2<>0`` -> ``r1<>r2`` -> ``/r1<>/r2``. -Intros; Red; Intro. -Assert H3 := (Rmult_mult_r r1 ? ? H2). -Rewrite <- Rinv_r_sym in H3; [Idtac | Assumption]. -Assert H4 := (Rmult_mult_r r2 ? ? H3). -Rewrite Rmult_1r in H4; Rewrite <- Rmult_assoc in H4. -Rewrite Rinv_r_simpl_m in H4; [Idtac | Assumption]. -Elim H1; Symmetry; Assumption. -Qed. - -Lemma tech11 : (An,Bn,Cn:nat->R;N:nat) ((i:nat) (An i)==``(Bn i)-(Cn i)``) -> (sum_f_R0 An N)==``(sum_f_R0 Bn N)-(sum_f_R0 Cn N)``. -Intros; Induction N. -Simpl; Apply H. -Do 3 Rewrite tech5; Rewrite HrecN; Rewrite (H (S N)); Ring. -Qed. - -Lemma tech12 : (An:nat->R;x:R;l:R) (Un_cv [N:nat](sum_f_R0 [i:nat]``(An i)*(pow x i)`` N) l) -> (Pser An x l). -Intros; Unfold Pser; Unfold infinit_sum; Unfold Un_cv in H; Assumption. -Qed. - -Lemma scal_sum : (An:nat->R;N:nat;x:R) (Rmult x (sum_f_R0 An N))==(sum_f_R0 [i:nat]``(An i)*x`` N). -Intros; Induction N. -Simpl; Ring. -Do 2 Rewrite tech5. -Rewrite Rmult_Rplus_distr; Rewrite <- HrecN; Ring. -Qed. - -Lemma decomp_sum : (An:nat->R;N:nat) (lt O N) -> (sum_f_R0 An N)==(Rplus (An O) (sum_f_R0 [i:nat](An (S i)) (pred N))). -Intros; Induction N. -Elim (lt_n_n ? H). -Cut (lt O N)\/N=O. -Intro; Elim H0; Intro. -Cut (S (pred N))=(pred (S N)). -Intro; Rewrite <- H2. -Do 2 Rewrite tech5. -Replace (S (S (pred N))) with (S N). -Rewrite (HrecN H1); Ring. -Rewrite H2; Simpl; Reflexivity. -Assert H2 := (O_or_S N). -Elim H2; Intros. -Elim a; Intros. -Rewrite <- p. -Simpl; Reflexivity. -Rewrite <- b in H1; Elim (lt_n_n ? H1). -Rewrite H1; Simpl; Reflexivity. -Inversion H. -Right; Reflexivity. -Left; Apply lt_le_trans with (1); [Apply lt_O_Sn | Assumption]. -Qed. - -Lemma plus_sum : (An,Bn:nat->R;N:nat) (sum_f_R0 [i:nat]``(An i)+(Bn i)`` N)==``(sum_f_R0 An N)+(sum_f_R0 Bn N)``. -Intros; Induction N. -Simpl; Ring. -Do 3 Rewrite tech5; Rewrite HrecN; Ring. -Qed. - -Lemma sum_eq : (An,Bn:nat->R;N:nat) ((i:nat)(le i N)->(An i)==(Bn i)) -> (sum_f_R0 An N)==(sum_f_R0 Bn N). -Intros; Induction N. -Simpl; Apply H; Apply le_n. -Do 2 Rewrite tech5; Rewrite HrecN. -Rewrite (H (S N)); [Reflexivity | Apply le_n]. -Intros; Apply H; Apply le_trans with N; [Assumption | Apply le_n_Sn]. -Qed. - -(* Unicity of the limit defined by convergent series *) -Lemma unicity_sum : (An:nat->R;l1,l2:R) (infinit_sum An l1) -> (infinit_sum An l2) -> l1 == l2. -Unfold infinit_sum; Intros. -Case (Req_EM l1 l2); Intro. -Assumption. -Cut ``0<(Rabsolu ((l1-l2)/2))``; [Intro | Apply Rabsolu_pos_lt]. -Elim (H ``(Rabsolu ((l1-l2)/2))`` H2); Intros. -Elim (H0 ``(Rabsolu ((l1-l2)/2))`` H2); Intros. -Pose N := (max x0 x); Cut (ge N x0). -Cut (ge N x). -Intros; Assert H7 := (H3 N H5); Assert H8 := (H4 N H6). -Cut ``(Rabsolu (l1-l2)) <= (R_dist (sum_f_R0 An N) l1) + (R_dist (sum_f_R0 An N) l2)``. -Intro; Assert H10 := (Rplus_lt ? ? ? ? H7 H8); Assert H11 := (Rle_lt_trans ? ? ? H9 H10); Unfold Rdiv in H11; Rewrite Rabsolu_mult in H11. -Cut ``(Rabsolu (/2))==/2``. -Intro; Rewrite H12 in H11; Assert H13 := double_var; Unfold Rdiv in H13; Rewrite <- H13 in H11. -Elim (Rlt_antirefl ? H11). -Apply Rabsolu_right; Left; Change ``0R;N:nat) (sum_f_R0 [i:nat]``(An i)-(Bn i)`` N)==``(sum_f_R0 An N)-(sum_f_R0 Bn N)``. -Intros; Induction N. -Simpl; Ring. -Do 3 Rewrite tech5; Rewrite HrecN; Ring. -Qed. - -Lemma sum_decomposition : (An:nat->R;N:nat) (Rplus (sum_f_R0 [l:nat](An (mult (2) l)) (S N)) (sum_f_R0 [l:nat](An (S (mult (2) l))) N))==(sum_f_R0 An (mult (2) (S N))). -Intros. -Induction N. -Simpl; Ring. -Rewrite tech5. -Rewrite (tech5 [l:nat](An (S (mult (2) l))) N). -Replace (mult (2) (S (S N))) with (S (S (mult (2) (S N)))). -Rewrite (tech5 An (S (mult (2) (S N)))). -Rewrite (tech5 An (mult (2) (S N))). -Rewrite <- HrecN. -Ring. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR;Repeat Rewrite S_INR. -Ring. -Qed. - -Lemma sum_Rle : (An,Bn:nat->R;N:nat) ((n:nat)(le n N)->``(An n)<=(Bn n)``) -> ``(sum_f_R0 An N)<=(sum_f_R0 Bn N)``. -Intros. -Induction N. -Simpl; Apply H. -Apply le_n. -Do 2 Rewrite tech5. -Apply Rle_trans with ``(sum_f_R0 An N)+(Bn (S N))``. -Apply Rle_compatibility. -Apply H. -Apply le_n. -Do 2 Rewrite <- (Rplus_sym ``(Bn (S N))``). -Apply Rle_compatibility. -Apply HrecN. -Intros; Apply H. -Apply le_trans with N; [Assumption | Apply le_n_Sn]. -Qed. - -Lemma sum_Rabsolu : (An:nat->R;N:nat) (Rle (Rabsolu (sum_f_R0 An N)) (sum_f_R0 [l:nat](Rabsolu (An l)) N)). -Intros. -Induction N. -Simpl. -Right; Reflexivity. -Do 2 Rewrite tech5. -Apply Rle_trans with ``(Rabsolu (sum_f_R0 An N))+(Rabsolu (An (S N)))``. -Apply Rabsolu_triang. -Do 2 Rewrite <- (Rplus_sym (Rabsolu (An (S N)))). -Apply Rle_compatibility. -Apply HrecN. -Qed. - -Lemma sum_cte : (x:R;N:nat) (sum_f_R0 [_:nat]x N) == ``x*(INR (S N))``. -Intros. -Induction N. -Simpl; Ring. -Rewrite tech5. -Rewrite HrecN; Repeat Rewrite S_INR; Ring. -Qed. - -(**********) -Lemma sum_growing : (An,Bn:nat->R;N:nat) ((n:nat)``(An n)<=(Bn n)``)->``(sum_f_R0 An N)<=(sum_f_R0 Bn N)``. -Intros. -Induction N. -Simpl; Apply H. -Do 2 Rewrite tech5. -Apply Rle_trans with ``(sum_f_R0 An N)+(Bn (S N))``. -Apply Rle_compatibility; Apply H. -Do 2 Rewrite <- (Rplus_sym (Bn (S N))). -Apply Rle_compatibility; Apply HrecN. -Qed. - -(**********) -Lemma Rabsolu_triang_gen : (An:nat->R;N:nat) (Rle (Rabsolu (sum_f_R0 An N)) (sum_f_R0 [i:nat](Rabsolu (An i)) N)). -Intros. -Induction N. -Simpl. -Right; Reflexivity. -Do 2 Rewrite tech5. -Apply Rle_trans with ``(Rabsolu ((sum_f_R0 An N)))+(Rabsolu (An (S N)))``. -Apply Rabsolu_triang. -Do 2 Rewrite <- (Rplus_sym (Rabsolu (An (S N)))). -Apply Rle_compatibility; Apply HrecN. -Qed. - -(**********) -Lemma cond_pos_sum : (An:nat->R;N:nat) ((n:nat)``0<=(An n)``) -> ``0<=(sum_f_R0 An N)``. -Intros. -Induction N. -Simpl; Apply H. -Rewrite tech5. -Apply ge0_plus_ge0_is_ge0. -Apply HrecN. -Apply H. -Qed. - -(* Cauchy's criterion for series *) -Definition Cauchy_crit_series [An:nat->R] : Prop := (Cauchy_crit [N:nat](sum_f_R0 An N)). - -(* If (|An|) satisfies the Cauchy's criterion for series, then (An) too *) -Lemma cauchy_abs : (An:nat->R) (Cauchy_crit_series [i:nat](Rabsolu (An i))) -> (Cauchy_crit_series An). -Unfold Cauchy_crit_series; Unfold Cauchy_crit. -Intros. -Elim (H eps H0); Intros. -Exists x. -Intros. -Cut (Rle (R_dist (sum_f_R0 An n) (sum_f_R0 An m)) (R_dist (sum_f_R0 [i:nat](Rabsolu (An i)) n) (sum_f_R0 [i:nat](Rabsolu (An i)) m))). -Intro. -Apply Rle_lt_trans with (R_dist (sum_f_R0 [i:nat](Rabsolu (An i)) n) (sum_f_R0 [i:nat](Rabsolu (An i)) m)). -Assumption. -Apply H1; Assumption. -Assert H4 := (lt_eq_lt_dec n m). -Elim H4; Intro. -Elim a; Intro. -Rewrite (tech2 An n m); [Idtac | Assumption]. -Rewrite (tech2 [i:nat](Rabsolu (An i)) n m); [Idtac | Assumption]. -Unfold R_dist. -Unfold Rminus. -Do 2 Rewrite Ropp_distr1. -Do 2 Rewrite <- Rplus_assoc. -Do 2 Rewrite Rplus_Ropp_r. -Do 2 Rewrite Rplus_Ol. -Do 2 Rewrite Rabsolu_Ropp. -Rewrite (Rabsolu_right (sum_f_R0 [i:nat](Rabsolu (An (plus (S n) i))) (minus m (S n)))). -Pose Bn:=[i:nat](An (plus (S n) i)). -Replace [i:nat](Rabsolu (An (plus (S n) i))) with [i:nat](Rabsolu (Bn i)). -Apply Rabsolu_triang_gen. -Unfold Bn; Reflexivity. -Apply Rle_sym1. -Apply cond_pos_sum. -Intro; Apply Rabsolu_pos. -Rewrite b. -Unfold R_dist. -Unfold Rminus; Do 2 Rewrite Rplus_Ropp_r. -Rewrite Rabsolu_R0; Right; Reflexivity. -Rewrite (tech2 An m n); [Idtac | Assumption]. -Rewrite (tech2 [i:nat](Rabsolu (An i)) m n); [Idtac | Assumption]. -Unfold R_dist. -Unfold Rminus. -Do 2 Rewrite Rplus_assoc. -Rewrite (Rplus_sym (sum_f_R0 An m)). -Rewrite (Rplus_sym (sum_f_R0 [i:nat](Rabsolu (An i)) m)). -Do 2 Rewrite Rplus_assoc. -Do 2 Rewrite Rplus_Ropp_l. -Do 2 Rewrite Rplus_Or. -Rewrite (Rabsolu_right (sum_f_R0 [i:nat](Rabsolu (An (plus (S m) i))) (minus n (S m)))). -Pose Bn:=[i:nat](An (plus (S m) i)). -Replace [i:nat](Rabsolu (An (plus (S m) i))) with [i:nat](Rabsolu (Bn i)). -Apply Rabsolu_triang_gen. -Unfold Bn; Reflexivity. -Apply Rle_sym1. -Apply cond_pos_sum. -Intro; Apply Rabsolu_pos. -Qed. - -(**********) -Lemma cv_cauchy_1 : (An:nat->R) (sigTT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)) -> (Cauchy_crit_series An). -Intros. -Elim X; Intros. -Unfold Un_cv in p. -Unfold Cauchy_crit_series; Unfold Cauchy_crit. -Intros. -Cut ``0R) (Cauchy_crit_series An) -> (sigTT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intros. -Apply R_complete. -Unfold Cauchy_crit_series in H. -Exact H. -Qed. - -(**********) -Lemma sum_eq_R0 : (An:nat->R;N:nat) ((n:nat)(le n N)->``(An n)==0``) -> (sum_f_R0 An N)==R0. -Intros; Induction N. -Simpl; Apply H; Apply le_n. -Rewrite tech5; Rewrite HrecN; [Rewrite Rplus_Ol; Apply H; Apply le_n | Intros; Apply H; Apply le_trans with N; [Assumption | Apply le_n_Sn]]. -Qed. - -Definition SP [fn:nat->R->R;N:nat] : R->R := [x:R](sum_f_R0 [k:nat]``(fn k x)`` N). - -(**********) -Lemma sum_incr : (An:nat->R;N:nat;l:R) (Un_cv [n:nat](sum_f_R0 An n) l) -> ((n:nat)``0<=(An n)``) -> ``(sum_f_R0 An N)<=l``. -Intros; Case (total_order_T (sum_f_R0 An N) l); Intro. -Elim s; Intro. -Left; Apply a. -Right; Apply b. -Cut (Un_growing [n:nat](sum_f_R0 An n)). -Intro; LetTac l1 := (sum_f_R0 An N) in r. -Unfold Un_cv in H; Cut ``0R;fn:nat->R->R;x,l1,l2:R) (Un_cv [n:nat](SP fn n x) l1) -> (Un_cv [n:nat](sum_f_R0 An n) l2) -> ((n:nat)``(Rabsolu (fn n x))<=(An n)``) -> ``(Rabsolu l1)<=l2``. -Intros; Case (total_order_T (Rabsolu l1) l2); Intro. -Elim s; Intro. -Left; Apply a. -Right; Apply b. -Cut (n0:nat)``(Rabsolu (SP fn n0 x))<=(sum_f_R0 An n0)``. -Intro; Cut ``0<((Rabsolu l1)-l2)/2``. -Intro; Unfold Un_cv in H H0. -Elim (H ? H3); Intros Na H4. -Elim (H0 ? H3); Intros Nb H5. -Pose N := (max Na Nb). -Unfold R_dist in H4 H5. -Cut ``(Rabsolu ((sum_f_R0 An N)-l2))<((Rabsolu l1)-l2)/2``. -Intro; Cut ``(Rabsolu ((Rabsolu l1)-(Rabsolu (SP fn N x))))<((Rabsolu l1)-l2)/2``. -Intro; Cut ``(sum_f_R0 An N)<((Rabsolu l1)+l2)/2``. -Intro; Cut ``((Rabsolu l1)+l2)/2<(Rabsolu (SP fn N x))``. -Intro; Cut ``(sum_f_R0 An N)<(Rabsolu (SP fn N x))``. -Intro; Assert H11 := (H2 N). -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H11 H10)). -Apply Rlt_trans with ``((Rabsolu l1)+l2)/2``; Assumption. -Case (case_Rabsolu ``(Rabsolu l1)-(Rabsolu (SP fn N x))``); Intro. -Apply Rlt_trans with (Rabsolu l1). -Apply Rlt_monotony_contra with ``2``. -Sup0. -Unfold Rdiv; Rewrite (Rmult_sym ``2``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite double; Apply Rlt_compatibility; Apply r. -DiscrR. -Apply (Rminus_lt ? ? r0). -Rewrite (Rabsolu_right ? r0) in H7. -Apply Rlt_anti_compatibility with ``((Rabsolu l1)-l2)/2-(Rabsolu (SP fn N x))``. -Replace ``((Rabsolu l1)-l2)/2-(Rabsolu (SP fn N x))+((Rabsolu l1)+l2)/2`` with ``(Rabsolu l1)-(Rabsolu (SP fn N x))``. -Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Apply H7. -Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Rewrite <- (Rmult_sym ``/2``); Rewrite Rminus_distr; Repeat Rewrite (Rmult_sym ``/2``); Pattern 1 (Rabsolu l1); Rewrite double_var; Unfold Rdiv; Ring. -Case (case_Rabsolu ``(sum_f_R0 An N)-l2``); Intro. -Apply Rlt_trans with l2. -Apply (Rminus_lt ? ? r0). -Apply Rlt_monotony_contra with ``2``. -Sup0. -Rewrite (double l2); Unfold Rdiv; Rewrite (Rmult_sym ``2``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite (Rplus_sym (Rabsolu l1)); Apply Rlt_compatibility; Apply r. -DiscrR. -Rewrite (Rabsolu_right ? r0) in H6; Apply Rlt_anti_compatibility with ``-l2``. -Replace ``-l2+((Rabsolu l1)+l2)/2`` with ``((Rabsolu l1)-l2)/2``. -Rewrite Rplus_sym; Apply H6. -Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite Rminus_distr; Rewrite Rmult_Rplus_distrl; Pattern 2 l2; Rewrite double_var; Repeat Rewrite (Rmult_sym ``/2``); Rewrite Ropp_distr1; Unfold Rdiv; Ring. -Apply Rle_lt_trans with ``(Rabsolu ((SP fn N x)-l1))``. -Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr3; Apply Rabsolu_triang_inv2. -Apply H4; Unfold ge N; Apply le_max_l. -Apply H5; Unfold ge N; Apply le_max_r. -Unfold Rdiv; Apply Rmult_lt_pos. -Apply Rlt_anti_compatibility with l2. -Rewrite Rplus_Or; Replace ``l2+((Rabsolu l1)-l2)`` with (Rabsolu l1); [Apply r | Ring]. -Apply Rlt_Rinv; Sup0. -Intros; Induction n0. -Unfold SP; Simpl; Apply H1. -Unfold SP; Simpl. -Apply Rle_trans with (Rplus (Rabsolu (sum_f_R0 [k:nat](fn k x) n0)) (Rabsolu (fn (S n0) x))). -Apply Rabsolu_triang. -Apply Rle_trans with ``(sum_f_R0 An n0)+(Rabsolu (fn (S n0) x))``. -Do 2 Rewrite <- (Rplus_sym (Rabsolu (fn (S n0) x))). -Apply Rle_compatibility; Apply Hrecn0. -Apply Rle_compatibility; Apply H1. -Qed. diff --git a/theories7/Reals/RIneq.v b/theories7/Reals/RIneq.v deleted file mode 100644 index 00d41c70..00000000 --- a/theories7/Reals/RIneq.v +++ /dev/null @@ -1,1631 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* ``r1<>r2``. - Red; Intros r1 r2 H H0; Apply (Rlt_antirefl r1). - Pattern 2 r1; Rewrite H0; Trivial. -Qed. - -Lemma Rgt_not_eq:(r1,r2:R)``r1>r2``->``r1<>r2``. -Intros; Apply sym_not_eqT; Apply Rlt_not_eq; Auto with real. -Qed. - -(**********) -Lemma imp_not_Req:(r1,r2:R)(``r1r2``) -> ``r1<>r2``. -Generalize Rlt_not_eq Rgt_not_eq. Intuition EAuto. -Qed. -Hints Resolve imp_not_Req : real. - -(** Reasoning by case on equalities and order *) - -(**********) -Lemma Req_EM:(r1,r2:R)(r1==r2)\/``r1<>r2``. -Intros ; Generalize (total_order_T r1 r2) imp_not_Req ; Intuition EAuto 3. -Qed. -Hints Resolve Req_EM : real. - -(**********) -Lemma total_order:(r1,r2:R)``r1r2``. -Intros;Generalize (total_order_T r1 r2);Tauto. -Qed. - -(**********) -Lemma not_Req:(r1,r2:R)``r1<>r2``->(``r1r2``). -Intros; Generalize (total_order_T r1 r2) ; Tauto. -Qed. - - -(*********************************************************************************) -(** Order Lemma : relating [<], [>], [<=] and [>=] *) -(*********************************************************************************) - -(**********) -Lemma Rlt_le:(r1,r2:R)``r1 ``r1<=r2``. -Intros ; Red ; Tauto. -Qed. -Hints Resolve Rlt_le : real. - -(**********) -Lemma Rle_ge : (r1,r2:R)``r1<=r2`` -> ``r2>=r1``. -NewDestruct 1; Red; Auto with real. -Qed. - -Hints Immediate Rle_ge : real. - -(**********) -Lemma Rge_le : (r1,r2:R)``r1>=r2`` -> ``r2<=r1``. -NewDestruct 1; Red; Auto with real. -Qed. - -Hints Resolve Rge_le : real. - -(**********) -Lemma not_Rle:(r1,r2:R)~``r1<=r2`` -> ``r2=r2`` -> ``r1 ~``r1<=r2``. -Generalize Rlt_antisym imp_not_Req ; Unfold Rle. -Intuition EAuto 3. -Qed. - -Lemma Rle_not:(r1,r2:R)``r1>r2`` -> ~``r1<=r2``. -Proof Rlt_le_not. - -Hints Immediate Rlt_le_not : real. - -Lemma Rle_not_lt: (r1, r2:R) ``r2 <= r1`` -> ~``r1 ~``r1>=r2``. -Generalize Rlt_le_not. Unfold Rle Rge. Intuition EAuto 3. -Qed. - -Hints Immediate Rlt_ge_not : real. - -(**********) -Lemma eq_Rle:(r1,r2:R)r1==r2->``r1<=r2``. -Unfold Rle; Tauto. -Qed. -Hints Immediate eq_Rle : real. - -Lemma eq_Rge:(r1,r2:R)r1==r2->``r1>=r2``. -Unfold Rge; Tauto. -Qed. -Hints Immediate eq_Rge : real. - -Lemma eq_Rle_sym:(r1,r2:R)r2==r1->``r1<=r2``. -Unfold Rle; Auto. -Qed. -Hints Immediate eq_Rle_sym : real. - -Lemma eq_Rge_sym:(r1,r2:R)r2==r1->``r1>=r2``. -Unfold Rge; Auto. -Qed. -Hints Immediate eq_Rge_sym : real. - -Lemma Rle_antisym : (r1,r2:R)``r1<=r2`` -> ``r2<=r1``-> r1==r2. -Intros r1 r2; Generalize (Rlt_antisym r1 r2) ; Unfold Rle ; Intuition. -Qed. -Hints Resolve Rle_antisym : real. - -(**********) -Lemma Rle_le_eq:(r1,r2:R)(``r1<=r2``/\``r2<=r1``)<->(r1==r2). -Intuition. -Qed. - -Lemma Rlt_rew : (x,x',y,y':R)``x==x'``->``x' `` y' == y`` -> ``x < y``. -Intros x x' y y'; Intros; Replace x with x'; Replace y with y'; Assumption. -Qed. - -(**********) -Lemma Rle_trans:(r1,r2,r3:R) ``r1<=r2``->``r2<=r3``->``r1<=r3``. -Generalize trans_eqT Rlt_trans Rlt_rew. -Unfold Rle. -Intuition EAuto 2. -Qed. - -(**********) -Lemma Rle_lt_trans:(r1,r2,r3:R)``r1<=r2``->``r2``r1``r2<=r3``->``r1r2`` ~(``r1>r2``)). -Intros;Unfold Rgt;Intros;Apply total_order_Rlt. -Qed. - -(**********) -Lemma total_order_Rge:(r1,r2:R)(sumboolT (``r1>=r2``) ~(``r1>=r2``)). -Intros;Generalize (total_order_Rle r2 r1);Intuition. -Qed. - -Lemma total_order_Rlt_Rle:(r1,r2:R)(sumboolT ``r1 - (sumboolT ``r1 (sumboolT ``n<=m``y== -x``. - Intros x y H; Replace y with ``(-x+x)+y``; - [ Rewrite -> Rplus_assoc; Rewrite -> H; Ring - | Ring ]. -Qed. - -(*i New i*) -Hint eqT_R_congr : real := Resolve (congr_eqT R). - -Lemma Rplus_plus_r:(r,r1,r2:R)(r1==r2)->``r+r1==r+r2``. - Auto with real. -Qed. - -(*i Old i*)Hints Resolve Rplus_plus_r : v62. - -(**********) -Lemma r_Rplus_plus:(r,r1,r2:R)``r+r1==r+r2``->r1==r2. - Intros; Transitivity ``(-r+r)+r1``. - Ring. - Transitivity ``(-r+r)+r2``. - Repeat Rewrite -> Rplus_assoc; Rewrite <- H; Reflexivity. - Ring. -Qed. -Hints Resolve r_Rplus_plus : real. - -(**********) -Lemma Rplus_ne_i:(r,b:R)``r+b==r`` -> ``b==0``. - Intros r b; Pattern 2 r; Replace r with ``r+0``; - EAuto with real. -Qed. - -(***********************************************************) -(** Multiplication *) -(***********************************************************) - -(**********) -Lemma Rinv_r:(r:R)``r<>0``->``r* (/r)==1``. - Intros; Rewrite -> Rmult_sym; Auto with real. -Qed. -Hints Resolve Rinv_r : real. - -Lemma Rinv_l_sym:(r:R)``r<>0``->``1==(/r) * r``. - Symmetry; Auto with real. -Qed. - -Lemma Rinv_r_sym:(r:R)``r<>0``->``1==r* (/r)``. - Symmetry; Auto with real. -Qed. -Hints Resolve Rinv_l_sym Rinv_r_sym : real. - - -(**********) -Lemma Rmult_Or :(r:R) ``r*0==0``. -Intro; Ring. -Qed. -Hints Resolve Rmult_Or : real v62. - -(**********) -Lemma Rmult_Ol:(r:R) ``0*r==0``. -Intro; Ring. -Qed. -Hints Resolve Rmult_Ol : real v62. - -(**********) -Lemma Rmult_ne:(r:R)``r*1==r``/\``1*r==r``. -Intro;Split;Ring. -Qed. -Hints Resolve Rmult_ne : real v62. - -(**********) -Lemma Rmult_1r:(r:R)(``r*1==r``). -Intro; Ring. -Qed. -Hints Resolve Rmult_1r : real. - -(**********) -Lemma Rmult_mult_r:(r,r1,r2:R)r1==r2->``r*r1==r*r2``. - Auto with real. -Qed. - -(*i OLD i*)Hints Resolve Rmult_mult_r : v62. - -(**********) -Lemma r_Rmult_mult:(r,r1,r2:R)(``r*r1==r*r2``)->``r<>0``->(r1==r2). - Intros; Transitivity ``(/r * r)*r1``. - Rewrite Rinv_l; Auto with real. - Transitivity ``(/r * r)*r2``. - Repeat Rewrite Rmult_assoc; Rewrite H; Trivial. - Rewrite Rinv_l; Auto with real. -Qed. - -(**********) -Lemma without_div_Od:(r1,r2:R)``r1*r2==0`` -> ``r1==0`` \/ ``r2==0``. - Intros; Case (Req_EM r1 ``0``); [Intro Hz | Intro Hnotz]. - Auto. - Right; Apply r_Rmult_mult with r1; Trivial. - Rewrite H; Auto with real. -Qed. - -(**********) -Lemma without_div_Oi:(r1,r2:R) ``r1==0``\/``r2==0`` -> ``r1*r2==0``. - Intros r1 r2 [H | H]; Rewrite H; Auto with real. -Qed. - -Hints Resolve without_div_Oi : real. - -(**********) -Lemma without_div_Oi1:(r1,r2:R) ``r1==0`` -> ``r1*r2==0``. - Auto with real. -Qed. - -(**********) -Lemma without_div_Oi2:(r1,r2:R) ``r2==0`` -> ``r1*r2==0``. - Auto with real. -Qed. - - -(**********) -Lemma without_div_O_contr:(r1,r2:R)``r1*r2<>0`` -> ``r1<>0`` /\ ``r2<>0``. -Intros r1 r2 H; Split; Red; Intro; Apply H; Auto with real. -Qed. - -(**********) -Lemma mult_non_zero :(r1,r2:R)``r1<>0`` /\ ``r2<>0`` -> ``r1*r2<>0``. -Red; Intros r1 r2 (H1,H2) H. -Case (without_div_Od r1 r2); Auto with real. -Qed. -Hints Resolve mult_non_zero : real. - -(**********) -Lemma Rmult_Rplus_distrl: - (r1,r2,r3:R) ``(r1+r2)*r3 == (r1*r3)+(r2*r3)``. -Intros; Ring. -Qed. - -(** Square function *) - -(***********) -Definition Rsqr:R->R:=[r:R]``r*r``. -V7only[Notation "x ²" := (Rsqr x) (at level 2,left associativity).]. - -(***********) -Lemma Rsqr_O:(Rsqr ``0``)==``0``. - Unfold Rsqr; Auto with real. -Qed. - -(***********) -Lemma Rsqr_r_R0:(r:R)(Rsqr r)==``0``->``r==0``. -Unfold Rsqr;Intros;Elim (without_div_Od r r H);Trivial. -Qed. - -(*********************************************************) -(** Opposite *) -(*********************************************************) - -(**********) -Lemma eq_Ropp:(r1,r2:R)(r1==r2)->``-r1 == -r2``. - Auto with real. -Qed. -Hints Resolve eq_Ropp : real. - -(**********) -Lemma Ropp_O:``-0==0``. - Ring. -Qed. -Hints Resolve Ropp_O : real v62. - -(**********) -Lemma eq_RoppO:(r:R)``r==0``-> ``-r==0``. - Intros; Rewrite -> H; Auto with real. -Qed. -Hints Resolve eq_RoppO : real. - -(**********) -Lemma Ropp_Ropp:(r:R)``-(-r)==r``. - Intro; Ring. -Qed. -Hints Resolve Ropp_Ropp : real. - -(*********) -Lemma Ropp_neq:(r:R)``r<>0``->``-r<>0``. -Red;Intros r H H0. -Apply H. -Transitivity ``-(-r)``; Auto with real. -Qed. -Hints Resolve Ropp_neq : real. - -(**********) -Lemma Ropp_distr1:(r1,r2:R)``-(r1+r2)==(-r1 + -r2)``. - Intros; Ring. -Qed. -Hints Resolve Ropp_distr1 : real. - -(** Opposite and multiplication *) - -Lemma Ropp_mul1:(r1,r2:R)``(-r1)*r2 == -(r1*r2)``. - Intros; Ring. -Qed. -Hints Resolve Ropp_mul1 : real. - -(**********) -Lemma Ropp_mul2:(r1,r2:R)``(-r1)*(-r2)==r1*r2``. - Intros; Ring. -Qed. -Hints Resolve Ropp_mul2 : real. - -Lemma Ropp_mul3 : (r1,r2:R) ``r1*(-r2) == -(r1*r2)``. -Intros; Rewrite <- Ropp_mul1; Ring. -Qed. - -(** Substraction *) - -Lemma minus_R0:(r:R)``r-0==r``. -Intro;Ring. -Qed. -Hints Resolve minus_R0 : real. - -Lemma Rminus_Ropp:(r:R)``0-r==-r``. -Intro;Ring. -Qed. -Hints Resolve Rminus_Ropp : real. - -(**********) -Lemma Ropp_distr2:(r1,r2:R)``-(r1-r2)==r2-r1``. - Intros; Ring. -Qed. -Hints Resolve Ropp_distr2 : real. - -Lemma Ropp_distr3:(r1,r2:R)``-(r2-r1)==r1-r2``. -Intros; Ring. -Qed. -Hints Resolve Ropp_distr3 : real. - -(**********) -Lemma eq_Rminus:(r1,r2:R)(r1==r2)->``r1-r2==0``. - Intros; Rewrite H; Ring. -Qed. -Hints Resolve eq_Rminus : real. - -(**********) -Lemma Rminus_eq:(r1,r2:R)``r1-r2==0`` -> r1==r2. - Intros r1 r2; Unfold Rminus; Rewrite -> Rplus_sym; Intro. - Rewrite <- (Ropp_Ropp r2); Apply (Rplus_Ropp (Ropp r2) r1 H). -Qed. -Hints Immediate Rminus_eq : real. - -Lemma Rminus_eq_right:(r1,r2:R)``r2-r1==0`` -> r1==r2. -Intros;Generalize (Rminus_eq r2 r1 H);Clear H;Intro H;Rewrite H;Ring. -Qed. -Hints Immediate Rminus_eq_right : real. - -Lemma Rplus_Rminus: (p,q:R)``p+(q-p)``==q. -Intros; Ring. -Qed. -Hints Resolve Rplus_Rminus:real. - -(**********) -Lemma Rminus_eq_contra:(r1,r2:R)``r1<>r2``->``r1-r2<>0``. -Red; Intros r1 r2 H H0. -Apply H; Auto with real. -Qed. -Hints Resolve Rminus_eq_contra : real. - -Lemma Rminus_not_eq:(r1,r2:R)``r1-r2<>0``->``r1<>r2``. -Red; Intros; Elim H; Apply eq_Rminus; Auto. -Qed. -Hints Resolve Rminus_not_eq : real. - -Lemma Rminus_not_eq_right:(r1,r2:R)``r2-r1<>0`` -> ``r1<>r2``. -Red; Intros;Elim H;Rewrite H0; Ring. -Qed. -Hints Resolve Rminus_not_eq_right : real. - -V7only [Notation not_sym := (sym_not_eq R).]. - -(**********) -Lemma Rminus_distr: (x,y,z:R) ``x*(y-z)==(x*y) - (x*z)``. -Intros; Ring. -Qed. - -(** Inverse *) -Lemma Rinv_R1:``/1==1``. -Field;Auto with real. -Qed. -Hints Resolve Rinv_R1 : real. - -(*********) -Lemma Rinv_neq_R0:(r:R)``r<>0``->``(/r)<>0``. -Red; Intros; Apply R1_neq_R0. -Replace ``1`` with ``(/r) * r``; Auto with real. -Qed. -Hints Resolve Rinv_neq_R0 : real. - -(*********) -Lemma Rinv_Rinv:(r:R)``r<>0``->``/(/r)==r``. -Intros;Field;Auto with real. -Qed. -Hints Resolve Rinv_Rinv : real. - -(*********) -Lemma Rinv_Rmult:(r1,r2:R)``r1<>0``->``r2<>0``->``/(r1*r2)==(/r1)*(/r2)``. -Intros;Field;Auto with real. -Qed. - -(*********) -Lemma Ropp_Rinv:(r:R)``r<>0``->``-(/r)==/(-r)``. -Intros;Field;Auto with real. -Qed. - -Lemma Rinv_r_simpl_r : (r1,r2:R)``r1<>0``->``r1*(/r1)*r2==r2``. -Intros; Transitivity ``1*r2``; Auto with real. -Rewrite Rinv_r; Auto with real. -Qed. - -Lemma Rinv_r_simpl_l : (r1,r2:R)``r1<>0``->``r2*r1*(/r1)==r2``. -Intros; Transitivity ``r2*1``; Auto with real. -Transitivity ``r2*(r1*/r1)``; Auto with real. -Qed. - -Lemma Rinv_r_simpl_m : (r1,r2:R)``r1<>0``->``r1*r2*(/r1)==r2``. -Intros; Transitivity ``r2*1``; Auto with real. -Transitivity ``r2*(r1*/r1)``; Auto with real. -Ring. -Qed. -Hints Resolve Rinv_r_simpl_l Rinv_r_simpl_r Rinv_r_simpl_m : real. - -(*********) -Lemma Rinv_Rmult_simpl:(a,b,c:R)``a<>0``->``(a*(/b))*(c*(/a))==c*(/b)``. -Intros a b c; Intros. -Transitivity ``(a*/a)*(c*(/b))``; Auto with real. -Ring. -Qed. - -(** Order and addition *) - -Lemma Rlt_compatibility_r:(r,r1,r2:R)``r1``r1+r ``r1 Rplus_Ropp_l. -Elim (Rplus_ne r1); Elim (Rplus_ne r2); Intros; Rewrite <- H3; - Rewrite <- H1; Auto with zarith real. -Rewrite -> Rplus_assoc; Rewrite -> Rplus_assoc; - Apply (Rlt_compatibility ``-r`` ``r+r1`` ``r+r2`` H). -Qed. - -(**********) -Lemma Rle_compatibility:(r,r1,r2:R)``r1<=r2`` -> ``r+r1 <= r+r2 ``. -Unfold Rle; Intros; Elim H; Intro. -Left; Apply (Rlt_compatibility r r1 r2 H0). -Right; Rewrite <- H0; Auto with zarith real. -Qed. - -(**********) -Lemma Rle_compatibility_r:(r,r1,r2:R)``r1<=r2`` -> ``r1+r<=r2+r``. -Unfold Rle; Intros; Elim H; Intro. -Left; Apply (Rlt_compatibility_r r r1 r2 H0). -Right; Rewrite <- H0; Auto with real. -Qed. - -Hints Resolve Rle_compatibility Rle_compatibility_r : real. - -(**********) -Lemma Rle_anti_compatibility: (r,r1,r2:R)``r+r1<=r+r2`` -> ``r1<=r2``. -Unfold Rle; Intros; Elim H; Intro. -Left; Apply (Rlt_anti_compatibility r r1 r2 H0). -Right; Apply (r_Rplus_plus r r1 r2 H0). -Qed. - -(**********) -Lemma sum_inequa_Rle_lt:(a,x,b,c,y,d:R)``a<=x`` -> ``x - ``c ``y<=d`` -> ``a+c < x+y < b+d``. -Intros;Split. -Apply Rlt_le_trans with ``a+y``; Auto with real. -Apply Rlt_le_trans with ``b+y``; Auto with real. -Qed. - -(*********) -Lemma Rplus_lt:(r1,r2,r3,r4:R)``r1 ``r3 ``r1+r3 < r2+r4``. -Intros; Apply Rlt_trans with ``r2+r3``; Auto with real. -Qed. - -Lemma Rplus_le:(r1,r2,r3,r4:R)``r1<=r2`` -> ``r3<=r4`` -> ``r1+r3 <= r2+r4``. -Intros; Apply Rle_trans with ``r2+r3``; Auto with real. -Qed. - -(*********) -Lemma Rplus_lt_le_lt:(r1,r2,r3,r4:R)``r1 ``r3<=r4`` -> - ``r1+r3 < r2+r4``. -Intros; Apply Rlt_le_trans with ``r2+r3``; Auto with real. -Qed. - -(*********) -Lemma Rplus_le_lt_lt:(r1,r2,r3,r4:R)``r1<=r2`` -> ``r3 - ``r1+r3 < r2+r4``. -Intros; Apply Rle_lt_trans with ``r2+r3``; Auto with real. -Qed. - -Hints Immediate Rplus_lt Rplus_le Rplus_lt_le_lt Rplus_le_lt_lt : real. - -(** Order and Opposite *) - -(**********) -Lemma Rgt_Ropp:(r1,r2:R) ``r1 > r2`` -> ``-r1 < -r2``. -Unfold Rgt; Intros. -Apply (Rlt_anti_compatibility ``r2+r1``). -Replace ``r2+r1+(-r1)`` with r2. -Replace ``r2+r1+(-r2)`` with r1. -Trivial. -Ring. -Ring. -Qed. -Hints Resolve Rgt_Ropp. - -(**********) -Lemma Rlt_Ropp:(r1,r2:R) ``r1 < r2`` -> ``-r1 > -r2``. -Unfold Rgt; Auto with real. -Qed. -Hints Resolve Rlt_Ropp : real. - -Lemma Ropp_Rlt: (x,y:R) ``-y < -x`` ->``x ``-r1 < -r2``. -Auto with real. -Qed. -Hints Resolve Rlt_Ropp1 : real. - -(**********) -Lemma Rle_Ropp:(r1,r2:R) ``r1 <= r2`` -> ``-r1 >= -r2``. -Unfold Rge; Intros r1 r2 [H|H]; Auto with real. -Qed. -Hints Resolve Rle_Ropp : real. - -Lemma Ropp_Rle: (x,y:R) ``-y <= -x`` ->``x <= y``. -Intros x y H. -Elim H;Auto with real. -Intro H1;Rewrite <-(Ropp_Ropp x);Rewrite <-(Ropp_Ropp y);Rewrite H1; - Auto with real. -Qed. -Hints Immediate Ropp_Rle : real. - -Lemma Rle_Ropp1:(r1,r2:R) ``r2 <= r1`` -> ``-r1 <= -r2``. -Intros r1 r2 H;Elim H;Auto with real. -Qed. -Hints Resolve Rle_Ropp1 : real. - -(**********) -Lemma Rge_Ropp:(r1,r2:R) ``r1 >= r2`` -> ``-r1 <= -r2``. -Unfold Rge; Intros r1 r2 [H|H]; Auto with real. -Qed. -Hints Resolve Rge_Ropp : real. - -(**********) -Lemma Rlt_RO_Ropp:(r:R) ``0 < r`` -> ``0 > -r``. -Intros; Replace ``0`` with ``-0``; Auto with real. -Qed. -Hints Resolve Rlt_RO_Ropp : real. - -(**********) -Lemma Rgt_RO_Ropp:(r:R) ``0 > r`` -> ``0 < -r``. -Intros; Replace ``0`` with ``-0``; Auto with real. -Qed. -Hints Resolve Rgt_RO_Ropp : real. - -(**********) -Lemma Rgt_RoppO:(r:R)``r>0``->``(-r)<0``. -Intros; Rewrite <- Ropp_O; Auto with real. -Qed. - -(**********) -Lemma Rlt_RoppO:(r:R)``r<0``->``-r>0``. -Intros; Rewrite <- Ropp_O; Auto with real. -Qed. -Hints Resolve Rgt_RoppO Rlt_RoppO: real. - -(**********) -Lemma Rle_RO_Ropp:(r:R) ``0 <= r`` -> ``0 >= -r``. -Intros; Replace ``0`` with ``-0``; Auto with real. -Qed. -Hints Resolve Rle_RO_Ropp : real. - -(**********) -Lemma Rge_RO_Ropp:(r:R) ``0 >= r`` -> ``0 <= -r``. -Intros; Replace ``0`` with ``-0``; Auto with real. -Qed. -Hints Resolve Rge_RO_Ropp : real. - -(** Order and multiplication *) - -Lemma Rlt_monotony_r:(r,r1,r2:R)``0 ``r1 < r2`` -> ``r1*r < r2*r``. -Intros; Rewrite (Rmult_sym r1 r); Rewrite (Rmult_sym r2 r); Auto with real. -Qed. -Hints Resolve Rlt_monotony_r. - -Lemma Rlt_monotony_contra: (z, x, y:R) ``0``z*x``x ``r1 < r2`` -> ``r*r1 > r*r2``. -Intros; Replace r with ``-(-r)``; Auto with real. -Rewrite (Ropp_mul1 ``-r``); Rewrite (Ropp_mul1 ``-r``). -Apply Rlt_Ropp; Auto with real. -Qed. - -(**********) -Lemma Rle_monotony: - (r,r1,r2:R)``0 <= r`` -> ``r1 <= r2`` -> ``r*r1 <= r*r2``. -Intros r r1 r2 H H0; NewDestruct H; NewDestruct H0; Unfold Rle; Auto with real. -Right; Rewrite <- H; Do 2 Rewrite Rmult_Ol; Reflexivity. -Qed. -Hints Resolve Rle_monotony : real. - -Lemma Rle_monotony_r: - (r,r1,r2:R)``0 <= r`` -> ``r1 <= r2`` -> ``r1*r <= r2*r``. -Intros r r1 r2 H; -Rewrite (Rmult_sym r1 r); Rewrite (Rmult_sym r2 r); Auto with real. -Qed. -Hints Resolve Rle_monotony_r : real. - -Lemma Rmult_le_reg_l: - (z, x, y:R) ``0``z*x<=z*y`` ->``x<=y``. -Intros z x y H H0;Case H0; Auto with real. -Intros H1; Apply Rlt_le. -Apply Rlt_monotony_contra with z := z;Auto. -Intros H1;Replace x with (Rmult (Rinv z) (Rmult z x)); Auto with real. -Replace y with (Rmult (Rinv z) (Rmult z y)). - Rewrite H1;Auto with real. -Rewrite <- Rmult_assoc; Rewrite Rinv_l; Auto with real. -Rewrite <- Rmult_assoc; Rewrite Rinv_l; Auto with real. -Qed. - -V7only [ -Notation "'Rle_monotony_contra' a b c" := (Rmult_le_reg_l c a b) - (at level 10, a,b,c at level 9, only parsing). -Notation Rle_monotony_contra := Rmult_le_reg_l. -]. - - -Lemma Rle_anti_monotony1 - :(r,r1,r2:R)``r <= 0`` -> ``r1 <= r2`` -> ``r*r2 <= r*r1``. -Intros; Replace r with ``-(-r)``; Auto with real. -Do 2 Rewrite (Ropp_mul1 ``-r``). -Apply Rle_Ropp1; Auto with real. -Qed. -Hints Resolve Rle_anti_monotony1 : real. - -Lemma Rle_anti_monotony - :(r,r1,r2:R)``r <= 0`` -> ``r1 <= r2`` -> ``r*r1 >= r*r2``. -Intros; Apply Rle_ge; Auto with real. -Qed. -Hints Resolve Rle_anti_monotony : real. - -Lemma Rle_Rmult_comp: - (x, y, z, t:R) ``0 <= x`` -> ``0 <= z`` -> ``x <= y`` -> ``z <= t`` -> - ``x*z <= y*t``. -Intros x y z t H' H'0 H'1 H'2. -Apply Rle_trans with r2 := ``x*t``; Auto with real. -Repeat Rewrite [x:?](Rmult_sym x t). -Apply Rle_monotony; Auto. -Apply Rle_trans with z; Auto. -Qed. -Hints Resolve Rle_Rmult_comp :real. - -Lemma Rmult_lt:(r1,r2,r3,r4:R)``r3>0`` -> ``r2>0`` -> - `` r1 < r2`` -> ``r3 < r4`` -> ``r1*r3 < r2*r4``. -Intros; Apply Rlt_trans with ``r2*r3``; Auto with real. -Qed. - -(*********) -Lemma Rmult_lt_0 - :(r1,r2,r3,r4:R)``r3>=0``->``r2>0``->``r1``r3``r1*r3 ``r1-r2 < 0``. -Intros; Apply (Rlt_anti_compatibility ``r2``). -Replace ``r2+(r1-r2)`` with r1. -Replace ``r2+0`` with r2; Auto with real. -Ring. -Qed. -Hints Resolve Rlt_minus : real. - -(**********) -Lemma Rle_minus:(r1,r2:R)``r1 <= r2`` -> ``r1-r2 <= 0``. -NewDestruct 1; Unfold Rle; Auto with real. -Qed. - -(**********) -Lemma Rminus_lt:(r1,r2:R)``r1-r2 < 0`` -> ``r1 < r2``. -Intros; Replace r1 with ``r1-r2+r2``. -Pattern 3 r2; Replace r2 with ``0+r2``; Auto with real. -Ring. -Qed. - -(**********) -Lemma Rminus_le:(r1,r2:R)``r1-r2 <= 0`` -> ``r1 <= r2``. -Intros; Replace r1 with ``r1-r2+r2``. -Pattern 3 r2; Replace r2 with ``0+r2``; Auto with real. -Ring. -Qed. - -(**********) -Lemma tech_Rplus:(r,s:R)``0<=r`` -> ``0 ``r+s<>0``. -Intros; Apply sym_not_eqT; Apply Rlt_not_eq. -Rewrite Rplus_sym; Replace ``0`` with ``0+0``; Auto with real. -Qed. -Hints Immediate tech_Rplus : real. - -(** Order and the square function *) -Lemma pos_Rsqr:(r:R)``0<=(Rsqr r)``. -Intro; Case (total_order_Rlt_Rle r ``0``); Unfold Rsqr; Intro. -Replace ``r*r`` with ``(-r)*(-r)``; Auto with real. -Replace ``0`` with ``-r*0``; Auto with real. -Replace ``0`` with ``0*r``; Auto with real. -Qed. - -(***********) -Lemma pos_Rsqr1:(r:R)``r<>0``->``0<(Rsqr r)``. -Intros; Case (not_Req r ``0``); Trivial; Unfold Rsqr; Intro. -Replace ``r*r`` with ``(-r)*(-r)``; Auto with real. -Replace ``0`` with ``-r*0``; Auto with real. -Replace ``0`` with ``0*r``; Auto with real. -Qed. -Hints Resolve pos_Rsqr pos_Rsqr1 : real. - -(** Zero is less than one *) -Lemma Rlt_R0_R1:``0<1``. -Replace ``1`` with ``(Rsqr 1)``; Auto with real. -Unfold Rsqr; Auto with real. -Qed. -Hints Resolve Rlt_R0_R1 : real. - -Lemma Rle_R0_R1:``0<=1``. -Left. -Exact Rlt_R0_R1. -Qed. - -(** Order and inverse *) -Lemma Rlt_Rinv:(r:R)``0``0``/r < 0``. -Intros; Apply not_Rle; Red; Intros. -Absurd ``1<=0``; Auto with real. -Replace ``1`` with ``r*(/r)``; Auto with real. -Replace ``0`` with ``r*0``; Auto with real. -Qed. -Hints Resolve Rlt_Rinv2 : real. - -(*********) -Lemma Rinv_lt:(r1,r2:R)``0 < r1*r2`` -> ``r1 < r2`` -> ``/r2 < /r1``. -Intros; Apply Rlt_monotony_rev with ``r1*r2``; Auto with real. -Case (without_div_O_contr r1 r2 ); Intros; Auto with real. -Replace ``r1*r2*/r2`` with r1. -Replace ``r1*r2*/r1`` with r2; Trivial. -Symmetry; Auto with real. -Symmetry; Auto with real. -Qed. - -Lemma Rlt_Rinv_R1: (x, y:R) ``1 <= x`` -> ``x``/y< /x``. -Intros x y H' H'0. -Cut (Rlt R0 x); [Intros Lt0 | Apply Rlt_le_trans with r2 := R1]; - Auto with real. -Apply Rlt_monotony_contra with z := x; Auto with real. -Rewrite (Rmult_sym x (Rinv x)); Rewrite Rinv_l; Auto with real. -Apply Rlt_monotony_contra with z := y; Auto with real. -Apply Rlt_trans with r2:=x;Auto. -Cut ``y*(x*/y)==x``. -Intro H1;Rewrite H1;Rewrite (Rmult_1r y);Auto. -Rewrite (Rmult_sym x); Rewrite <- Rmult_assoc; Rewrite (Rmult_sym y (Rinv y)); - Rewrite Rinv_l; Auto with real. -Apply imp_not_Req; Right. -Red; Apply Rlt_trans with r2 := x; Auto with real. -Qed. -Hints Resolve Rlt_Rinv_R1 :real. - -(*********************************************************) -(** Greater *) -(*********************************************************) - -(**********) -Lemma Rge_ge_eq:(r1,r2:R)``r1 >= r2`` -> ``r2 >= r1`` -> r1==r2. -Intros; Apply Rle_antisym; Auto with real. -Qed. - -(**********) -Lemma Rlt_not_ge:(r1,r2:R)~(``r1``r1>=r2``. -Intros; Unfold Rge; Elim (total_order r1 r2); Intro. -Absurd ``r1``r2<=r1``. -Intros; Apply Rge_le; Apply Rlt_not_ge; Assumption. -Qed. - -(**********) -Lemma Rgt_not_le:(r1,r2:R)~(``r1>r2``)->``r1<=r2``. -Intros r1 r2 H; Apply Rge_le. -Exact (Rlt_not_ge r2 r1 H). -Qed. - -(**********) -Lemma Rgt_ge:(r1,r2:R)``r1>r2`` -> ``r1 >= r2``. -Red; Auto with real. -Qed. - -V7only [ -(**********) -Lemma Rlt_sym:(r1,r2:R)``r1 ``r2>r1``. -Split; Unfold Rgt; Auto with real. -Qed. - -(**********) -Lemma Rle_sym1:(r1,r2:R)``r1<=r2``->``r2>=r1``. -Proof Rle_ge. - -Notation "'Rle_sym2' a b" := (Rge_le b a) - (at level 10, a,b at next level). -Notation "'Rle_sym2' a" := [b:R](Rge_le b a) - (at level 10, a at next level). -Notation Rle_sym2 := Rge_le. -(* -(**********) -Lemma Rle_sym2:(r1,r2:R)``r2>=r1`` -> ``r1<=r2``. -Proof [r1,r2](Rge_le r2 r1). -*) - -(**********) -Lemma Rle_sym:(r1,r2:R)``r1<=r2``<->``r2>=r1``. -Split; Auto with real. -Qed. -]. - -(**********) -Lemma Rge_gt_trans:(r1,r2,r3:R)``r1>=r2``->``r2>r3``->``r1>r3``. -Unfold Rgt; Intros; Apply Rlt_le_trans with r2; Auto with real. -Qed. - -(**********) -Lemma Rgt_ge_trans:(r1,r2,r3:R)``r1>r2`` -> ``r2>=r3`` -> ``r1>r3``. -Unfold Rgt; Intros; Apply Rle_lt_trans with r2; Auto with real. -Qed. - -(**********) -Lemma Rgt_trans:(r1,r2,r3:R)``r1>r2`` -> ``r2>r3`` -> ``r1>r3``. -Unfold Rgt; Intros; Apply Rlt_trans with r2; Auto with real. -Qed. - -(**********) -Lemma Rge_trans:(r1,r2,r3:R)``r1>=r2`` -> ``r2>=r3`` -> ``r1>=r3``. -Intros; Apply Rle_ge. -Apply Rle_trans with r2; Auto with real. -Qed. - -(**********) -Lemma Rlt_r_plus_R1:(r:R)``0<=r`` -> ``0``r1>r1-r2``. -Red; Unfold Rminus; Intros. -Pattern 2 r1; Replace r1 with ``r1+0``; Auto with real. -Qed. - -(***********) -Lemma Rgt_plus_plus_r:(r,r1,r2:R)``r1>r2``->``r+r1 > r+r2``. -Unfold Rgt; Auto with real. -Qed. -Hints Resolve Rgt_plus_plus_r : real. - -(***********) -Lemma Rgt_r_plus_plus:(r,r1,r2:R)``r+r1 > r+r2`` -> ``r1 > r2``. -Unfold Rgt; Intros; Apply (Rlt_anti_compatibility r r2 r1 H). -Qed. - -(***********) -Lemma Rge_plus_plus_r:(r,r1,r2:R)``r1>=r2`` -> ``r+r1 >= r+r2``. -Intros; Apply Rle_ge; Auto with real. -Qed. -Hints Resolve Rge_plus_plus_r : real. - -(***********) -Lemma Rge_r_plus_plus:(r,r1,r2:R)``r+r1 >= r+r2`` -> ``r1>=r2``. -Intros; Apply Rle_ge; Apply Rle_anti_compatibility with r; Auto with real. -Qed. - -(***********) -Lemma Rmult_ge_compat_r: - (z,x,y:R) ``z>=0`` -> ``x>=y`` -> ``x*z >= y*z``. -Intros z x y; Intros; Apply Rle_ge; Apply Rle_monotony_r; Apply Rge_le; Assumption. -Qed. - -V7only [ -Notation "'Rge_monotony' a b c" := (Rmult_ge_compat_r c a b) - (at level 10, a,b,c at level 9, only parsing). -Notation Rge_monotony := Rmult_ge_compat_r. -]. - -(***********) -Lemma Rgt_minus:(r1,r2:R)``r1>r2`` -> ``r1-r2 > 0``. -Intros; Replace ``0`` with ``r2-r2``; Auto with real. -Unfold Rgt Rminus; Auto with real. -Qed. - -(*********) -Lemma minus_Rgt:(r1,r2:R)``r1-r2 > 0`` -> ``r1>r2``. -Intros; Replace r2 with ``r2+0``; Auto with real. -Intros; Replace r1 with ``r2+(r1-r2)``; Auto with real. -Qed. - -(**********) -Lemma Rge_minus:(r1,r2:R)``r1>=r2`` -> ``r1-r2 >= 0``. -Unfold Rge; Intros; Elim H; Intro. -Left; Apply (Rgt_minus r1 r2 H0). -Right; Apply (eq_Rminus r1 r2 H0). -Qed. - -(*********) -Lemma minus_Rge:(r1,r2:R)``r1-r2 >= 0`` -> ``r1>=r2``. -Intros; Replace r2 with ``r2+0``; Auto with real. -Intros; Replace r1 with ``r2+(r1-r2)``; Auto with real. -Qed. - - -(*********) -Lemma Rmult_gt:(r1,r2:R)``r1>0`` -> ``r2>0`` -> ``r1*r2>0``. -Unfold Rgt;Intros. -Replace ``0`` with ``0*r2``; Auto with real. -Qed. - -(*********) -Lemma Rmult_lt_pos:(x,y:R)``0 ``0 ``0 ``0<=b`` -> ``a+b==0`` -> ``a==0``. -Intros a b [H|H] H0 H1; Auto with real. -Absurd ``0 ``0<=b`` -> ``a+b==0`` -> ``a==0``/\``b==0``. -Intros a b; Split. -Apply Rplus_eq_R0_l with b; Auto with real. -Apply Rplus_eq_R0_l with a; Auto with real. -Rewrite Rplus_sym; Auto with real. -Qed. - - -(***********) -Lemma Rplus_Rsr_eq_R0_l:(a,b:R)``(Rsqr a)+(Rsqr b)==0``->``a==0``. -Intros a b; Intros; Apply Rsqr_r_R0; Apply Rplus_eq_R0_l with (Rsqr b); Auto with real. -Qed. - -Lemma Rplus_Rsr_eq_R0:(a,b:R)``(Rsqr a)+(Rsqr b)==0``->``a==0``/\``b==0``. -Intros a b; Split. -Apply Rplus_Rsr_eq_R0_l with b; Auto with real. -Apply Rplus_Rsr_eq_R0_l with a; Auto with real. -Rewrite Rplus_sym; Auto with real. -Qed. - - -(**********************************************************) -(** Injection from [N] to [R] *) -(**********************************************************) - -(**********) -Lemma S_INR:(n:nat)(INR (S n))==``(INR n)+1``. -Intro; Case n; Auto with real. -Qed. - -(**********) -Lemma S_O_plus_INR:(n:nat) - (INR (plus (S O) n))==``(INR (S O))+(INR n)``. -Intro; Simpl; Case n; Intros; Auto with real. -Qed. - -(**********) -Lemma plus_INR:(n,m:nat)(INR (plus n m))==``(INR n)+(INR m)``. -Intros n m; Induction n. -Simpl; Auto with real. -Replace (plus (S n) m) with (S (plus n m)); Auto with arith. -Repeat Rewrite S_INR. -Rewrite Hrecn; Ring. -Qed. - -(**********) -Lemma minus_INR:(n,m:nat)(le m n)->(INR (minus n m))==``(INR n)-(INR m)``. -Intros n m le; Pattern m n; Apply le_elim_rel; Auto with real. -Intros; Rewrite <- minus_n_O; Auto with real. -Intros; Repeat Rewrite S_INR; Simpl. -Rewrite H0; Ring. -Qed. - -(*********) -Lemma mult_INR:(n,m:nat)(INR (mult n m))==(Rmult (INR n) (INR m)). -Intros n m; Induction n. -Simpl; Auto with real. -Intros; Repeat Rewrite S_INR; Simpl. -Rewrite plus_INR; Rewrite Hrecn; Ring. -Qed. - -Hints Resolve plus_INR minus_INR mult_INR : real. - -(*********) -Lemma lt_INR_0:(n:nat)(lt O n)->``0 < (INR n)``. -Induction 1; Intros; Auto with real. -Rewrite S_INR; Auto with real. -Qed. -Hints Resolve lt_INR_0: real. - -Lemma lt_INR:(n,m:nat)(lt n m)->``(INR n) < (INR m)``. -Induction 1; Intros; Auto with real. -Rewrite S_INR; Auto with real. -Rewrite S_INR; Apply Rlt_trans with (INR m0); Auto with real. -Qed. -Hints Resolve lt_INR: real. - -Lemma INR_lt_1:(n:nat)(lt (S O) n)->``1 < (INR n)``. -Intros;Replace ``1`` with (INR (S O));Auto with real. -Qed. -Hints Resolve INR_lt_1: real. - -(**********) -Lemma INR_pos : (p:positive)``0<(INR (convert p))``. -Intro; Apply lt_INR_0. -Simpl; Auto with real. -Apply compare_convert_O. -Qed. -Hints Resolve INR_pos : real. - -(**********) -Lemma pos_INR:(n:nat)``0 <= (INR n)``. -Intro n; Case n. -Simpl; Auto with real. -Auto with arith real. -Qed. -Hints Resolve pos_INR: real. - -Lemma INR_lt:(n,m:nat)``(INR n) < (INR m)``->(lt n m). -Double Induction n m;Intros. -Simpl;ElimType False;Apply (Rlt_antirefl R0);Auto. -Auto with arith. -Generalize (pos_INR (S n0));Intro;Cut (INR O)==R0; - [Intro H2;Rewrite H2 in H0;Idtac|Simpl;Trivial]. -Generalize (Rle_lt_trans ``0`` (INR (S n0)) ``0`` H1 H0);Intro; - ElimType False;Apply (Rlt_antirefl R0);Auto. -Do 2 Rewrite S_INR in H1;Cut ``(INR n1) < (INR n0)``. -Intro H2;Generalize (H0 n0 H2);Intro;Auto with arith. -Apply (Rlt_anti_compatibility ``1`` (INR n1) (INR n0)). -Rewrite Rplus_sym;Rewrite (Rplus_sym ``1`` (INR n0));Trivial. -Qed. -Hints Resolve INR_lt: real. - -(*********) -Lemma le_INR:(n,m:nat)(le n m)->``(INR n)<=(INR m)``. -Induction 1; Intros; Auto with real. -Rewrite S_INR. -Apply Rle_trans with (INR m0); Auto with real. -Qed. -Hints Resolve le_INR: real. - -(**********) -Lemma not_INR_O:(n:nat)``(INR n)<>0``->~n=O. -Red; Intros n H H1. -Apply H. -Rewrite H1; Trivial. -Qed. -Hints Immediate not_INR_O : real. - -(**********) -Lemma not_O_INR:(n:nat)~n=O->``(INR n)<>0``. -Intro n; Case n. -Intro; Absurd (0)=(0); Trivial. -Intros; Rewrite S_INR. -Apply Rgt_not_eq; Red; Auto with real. -Qed. -Hints Resolve not_O_INR : real. - -Lemma not_nm_INR:(n,m:nat)~n=m->``(INR n)<>(INR m)``. -Intros n m H; Case (le_or_lt n m); Intros H1. -Case (le_lt_or_eq ? ? H1); Intros H2. -Apply imp_not_Req; Auto with real. -ElimType False;Auto. -Apply sym_not_eqT; Apply imp_not_Req; Auto with real. -Qed. -Hints Resolve not_nm_INR : real. - -Lemma INR_eq: (n,m:nat)(INR n)==(INR m)->n=m. -Intros;Case (le_or_lt n m); Intros H1. -Case (le_lt_or_eq ? ? H1); Intros H2;Auto. -Cut ~n=m. -Intro H3;Generalize (not_nm_INR n m H3);Intro H4; - ElimType False;Auto. -Omega. -Symmetry;Cut ~m=n. -Intro H3;Generalize (not_nm_INR m n H3);Intro H4; - ElimType False;Auto. -Omega. -Qed. -Hints Resolve INR_eq : real. - -Lemma INR_le: (n, m : nat) (Rle (INR n) (INR m)) -> (le n m). -Intros;Elim H;Intro. -Generalize (INR_lt n m H0);Intro;Auto with arith. -Generalize (INR_eq n m H0);Intro;Rewrite H1;Auto. -Qed. -Hints Resolve INR_le : real. - -Lemma not_1_INR:(n:nat)~n=(S O)->``(INR n)<>1``. -Replace ``1`` with (INR (S O)); Auto with real. -Qed. -Hints Resolve not_1_INR : real. - -(**********************************************************) -(** Injection from [Z] to [R] *) -(**********************************************************) - -V7only [ -(**********) -Definition Z_of_nat := inject_nat. -Notation INZ:=Z_of_nat. -]. - -(**********) -Lemma IZN:(z:Z)(`0<=z`)->(Ex [m:nat] z=(INZ m)). -Intros z; Unfold INZ; Apply inject_nat_complete; Assumption. -Qed. - -(**********) -Lemma INR_IZR_INZ:(n:nat)(INR n)==(IZR (INZ n)). -Induction n; Auto with real. -Intros; Simpl; Rewrite bij1; Auto with real. -Qed. - -Lemma plus_IZR_NEG_POS : - (p,q:positive)(IZR `(POS p)+(NEG q)`)==``(IZR (POS p))+(IZR (NEG q))``. -Intros. -Case (lt_eq_lt_dec (convert p) (convert q)). -Intros [H | H]; Simpl. -Rewrite convert_compare_INFERIEUR; Simpl; Trivial. -Rewrite (true_sub_convert q p). -Rewrite minus_INR; Auto with arith; Ring. -Apply ZC2; Apply convert_compare_INFERIEUR; Trivial. -Rewrite (convert_intro p q); Trivial. -Rewrite convert_compare_EGAL; Simpl; Auto with real. -Intro H; Simpl. -Rewrite convert_compare_SUPERIEUR; Simpl; Auto with arith. -Rewrite (true_sub_convert p q). -Rewrite minus_INR; Auto with arith; Ring. -Apply ZC2; Apply convert_compare_INFERIEUR; Trivial. -Qed. - -(**********) -Lemma plus_IZR:(z,t:Z)(IZR `z+t`)==``(IZR z)+(IZR t)``. -Intro z; NewDestruct z; Intro t; NewDestruct t; Intros; Auto with real. -Simpl; Intros; Rewrite convert_add; Auto with real. -Apply plus_IZR_NEG_POS. -Rewrite Zplus_sym; Rewrite Rplus_sym; Apply plus_IZR_NEG_POS. -Simpl; Intros; Rewrite convert_add; Rewrite plus_INR; Auto with real. -Qed. - -(**********) -Lemma mult_IZR:(z,t:Z)(IZR `z*t`)==``(IZR z)*(IZR t)``. -Intros z t; Case z; Case t; Simpl; Auto with real. -Intros t1 z1; Rewrite times_convert; Auto with real. -Intros t1 z1; Rewrite times_convert; Auto with real. -Rewrite Rmult_sym. -Rewrite Ropp_mul1; Auto with real. -Apply eq_Ropp; Rewrite mult_sym; Auto with real. -Intros t1 z1; Rewrite times_convert; Auto with real. -Rewrite Ropp_mul1; Auto with real. -Intros t1 z1; Rewrite times_convert; Auto with real. -Rewrite Ropp_mul2; Auto with real. -Qed. - -(**********) -Lemma Ropp_Ropp_IZR:(z:Z)(IZR (`-z`))==``-(IZR z)``. -Intro z; Case z; Simpl; Auto with real. -Qed. - -(**********) -Lemma Z_R_minus:(z1,z2:Z)``(IZR z1)-(IZR z2)``==(IZR `z1-z2`). -Intros z1 z2; Unfold Rminus; Unfold Zminus. -Rewrite <-(Ropp_Ropp_IZR z2); Symmetry; Apply plus_IZR. -Qed. - -(**********) -Lemma lt_O_IZR:(z:Z)``0 < (IZR z)``->`0`z1`z=0`. -Intro z; NewDestruct z; Simpl; Intros; Auto with zarith. -Case (Rlt_not_eq ``0`` (INR (convert p))); Auto with real. -Case (Rlt_not_eq ``-(INR (convert p))`` ``0`` ); Auto with real. -Apply Rgt_RoppO. Unfold Rgt; Apply INR_pos. -Qed. - -(**********) -Lemma eq_IZR:(z1,z2:Z)(IZR z1)==(IZR z2)->z1=z2. -Intros z1 z2 H;Generalize (eq_Rminus (IZR z1) (IZR z2) H); - Rewrite (Z_R_minus z1 z2);Intro;Generalize (eq_IZR_R0 `z1-z2` H0); - Intro;Omega. -Qed. - -(**********) -Lemma not_O_IZR:(z:Z)`z<>0`->``(IZR z)<>0``. -Intros z H; Red; Intros H0; Case H. -Apply eq_IZR; Auto. -Qed. - -(*********) -Lemma le_O_IZR:(z:Z)``0<= (IZR z)``->`0<=z`. -Unfold Rle; Intros z [H|H]. -Red;Intro;Apply (Zlt_le_weak `0` z (lt_O_IZR z H)); Assumption. -Rewrite (eq_IZR_R0 z); Auto with zarith real. -Qed. - -(**********) -Lemma le_IZR:(z1,z2:Z)``(IZR z1)<=(IZR z2)``->`z1<=z2`. -Unfold Rle; Intros z1 z2 [H|H]. -Apply (Zlt_le_weak z1 z2); Auto with real. -Apply lt_IZR; Trivial. -Rewrite (eq_IZR z1 z2); Auto with zarith real. -Qed. - -(**********) -Lemma le_IZR_R1:(z:Z)``(IZR z)<=1``-> `z<=1`. -Pattern 1 ``1``; Replace ``1`` with (IZR `1`); Intros; Auto. -Apply le_IZR; Trivial. -Qed. - -(**********) -Lemma IZR_ge: (m,n:Z) `m>= n` -> ``(IZR m)>=(IZR n)``. -Intros m n H; Apply Rlt_not_ge;Red;Intro. -Generalize (lt_IZR m n H0); Intro; Omega. -Qed. - -Lemma IZR_le: (m,n:Z) `m<= n` -> ``(IZR m)<=(IZR n)``. -Intros m n H;Apply Rgt_not_le;Red;Intro. -Unfold Rgt in H0;Generalize (lt_IZR n m H0); Intro; Omega. -Qed. - -Lemma IZR_lt: (m,n:Z) `m< n` -> ``(IZR m)<(IZR n)``. -Intros m n H;Cut `m<=n`. -Intro H0;Elim (IZR_le m n H0);Intro;Auto. -Generalize (eq_IZR m n H1);Intro;ElimType False;Omega. -Omega. -Qed. - -Lemma one_IZR_lt1 : (z:Z)``-1<(IZR z)<1``->`z=0`. -Intros z (H1,H2). -Apply Zle_antisym. -Apply Zlt_n_Sm_le; Apply lt_IZR; Trivial. -Replace `0` with (Zs `-1`); Trivial. -Apply Zlt_le_S; Apply lt_IZR; Trivial. -Qed. - -Lemma one_IZR_r_R1 - : (r:R)(z,x:Z)``r<(IZR z)<=r+1``->``r<(IZR x)<=r+1``->z=x. -Intros r z x (H1,H2) (H3,H4). -Cut `z-x=0`; Auto with zarith. -Apply one_IZR_lt1. -Rewrite <- Z_R_minus; Split. -Replace ``-1`` with ``r-(r+1)``. -Unfold Rminus; Apply Rplus_lt_le_lt; Auto with real. -Ring. -Replace ``1`` with ``(r+1)-r``. -Unfold Rminus; Apply Rplus_le_lt_lt; Auto with real. -Ring. -Qed. - - -(**********) -Lemma single_z_r_R1: - (r:R)(z,x:Z)``r<(IZR z)``->``(IZR z)<=r+1``->``r<(IZR x)``-> - ``(IZR x)<=r+1``->z=x. -Intros; Apply one_IZR_r_R1 with r; Auto. -Qed. - -(**********) -Lemma tech_single_z_r_R1 - :(r:R)(z:Z)``r<(IZR z)``->``(IZR z)<=r+1`` - -> (Ex [s:Z] (~s=z/\``r<(IZR s)``/\``(IZR s)<=r+1``))->False. -Intros r z H1 H2 (s, (H3,(H4,H5))). -Apply H3; Apply single_z_r_R1 with r; Trivial. -Qed. - -(*****************************************************************) -(** Definitions of new types *) -(*****************************************************************) - -Record nonnegreal : Type := mknonnegreal { -nonneg :> R; -cond_nonneg : ``0<=nonneg`` }. - -Record posreal : Type := mkposreal { -pos :> R; -cond_pos : ``0 R; -cond_nonpos : ``nonpos<=0`` }. - -Record negreal : Type := mknegreal { -neg :> R; -cond_neg : ``neg<0`` }. - -Record nonzeroreal : Type := mknonzeroreal { -nonzero :> R; -cond_nonzero : ~``nonzero==0`` }. - -(**********) -Lemma prod_neq_R0 : (x,y:R) ~``x==0``->~``y==0``->~``x*y==0``. -Intros x y; Intros; Red; Intro; Generalize (without_div_Od x y H1); Intro; Elim H2; Intro; [Rewrite H3 in H; Elim H | Rewrite H3 in H0; Elim H0]; Reflexivity. -Qed. - -(*********) -Lemma Rmult_le_pos : (x,y:R) ``0<=x`` -> ``0<=y`` -> ``0<=x*y``. -Intros x y H H0; Rewrite <- (Rmult_Ol x); Rewrite <- (Rmult_sym x); Apply (Rle_monotony x R0 y H H0). -Qed. - -Lemma double : (x:R) ``2*x==x+x``. -Intro; Ring. -Qed. - -Lemma double_var : (x:R) ``x == x/2 + x/2``. -Intro; Rewrite <- double; Unfold Rdiv; Rewrite <- Rmult_assoc; Symmetry; Apply Rinv_r_simpl_m. -Replace ``2`` with (INR (2)); [Apply not_O_INR; Discriminate | Unfold INR; Ring]. -Qed. - -(**********************************************************) -(** Other rules about < and <= *) -(**********************************************************) - -Lemma gt0_plus_gt0_is_gt0 : (x,y:R) ``0 ``0 ``0 ``0 ``0 ``0<=y`` -> ``0 ``0<=y`` -> ``0<=x+y``. -Intros x y; Intros; Apply Rle_trans with x; [Assumption | Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Assumption]. -Qed. - -Lemma plus_le_is_le : (x,y,z:R) ``0<=y`` -> ``x+y<=z`` -> ``x<=z``. -Intros x y z; Intros; Apply Rle_trans with ``x+y``; [Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Assumption | Assumption]. -Qed. - -Lemma plus_lt_is_lt : (x,y,z:R) ``0<=y`` -> ``x+y ``x ``0<=r3`` -> ``r1 ``r3 ``r1*r3``x<=y+eps``) -> ``x<=y``. -Intros x y; Intros; Elim (total_order x y); Intro. -Left; Assumption. -Elim H0; Intro. -Right; Assumption. -Clear H0; Generalize (Rgt_minus x y H1); Intro H2; Change ``0Prop) (bound E) -> (ExT [x:R] (E x)) -> (ExT [m:R] (is_lub E m)). -Intros; Elim (complet E H H0); Intros; Split with x; Assumption. -Qed. diff --git a/theories7/Reals/RList.v b/theories7/Reals/RList.v deleted file mode 100644 index b89296fb..00000000 --- a/theories7/Reals/RList.v +++ /dev/null @@ -1,427 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* Rlist -> Rlist. - -Fixpoint In [x:R;l:Rlist] : Prop := -Cases l of -| nil => False -| (cons a l') => ``x==a``\/(In x l') end. - -Fixpoint Rlength [l:Rlist] : nat := -Cases l of -| nil => O -| (cons a l') => (S (Rlength l')) end. - -Fixpoint MaxRlist [l:Rlist] : R := - Cases l of - | nil => R0 - | (cons a l1) => - Cases l1 of - | nil => a - | (cons a' l2) => (Rmax a (MaxRlist l1)) - end -end. - -Fixpoint MinRlist [l:Rlist] : R := -Cases l of - | nil => R1 - | (cons a l1) => - Cases l1 of - | nil => a - | (cons a' l2) => (Rmin a (MinRlist l1)) - end -end. - -Lemma MaxRlist_P1 : (l:Rlist;x:R) (In x l)->``x<=(MaxRlist l)``. -Intros; Induction l. -Simpl in H; Elim H. -Induction l. -Simpl in H; Elim H; Intro. -Simpl; Right; Assumption. -Elim H0. -Replace (MaxRlist (cons r (cons r0 l))) with (Rmax r (MaxRlist (cons r0 l))). -Simpl in H; Decompose [or] H. -Rewrite H0; Apply RmaxLess1. -Unfold Rmax; Case (total_order_Rle r (MaxRlist (cons r0 l))); Intro. -Apply Hrecl; Simpl; Tauto. -Apply Rle_trans with (MaxRlist (cons r0 l)); [Apply Hrecl; Simpl; Tauto | Left; Auto with real]. -Unfold Rmax; Case (total_order_Rle r (MaxRlist (cons r0 l))); Intro. -Apply Hrecl; Simpl; Tauto. -Apply Rle_trans with (MaxRlist (cons r0 l)); [Apply Hrecl; Simpl; Tauto | Left; Auto with real]. -Reflexivity. -Qed. - -Fixpoint AbsList [l:Rlist] : R->Rlist := -[x:R] Cases l of -| nil => nil -| (cons a l') => (cons ``(Rabsolu (a-x))/2`` (AbsList l' x)) -end. - -Lemma MinRlist_P1 : (l:Rlist;x:R) (In x l)->``(MinRlist l)<=x``. -Intros; Induction l. -Simpl in H; Elim H. -Induction l. -Simpl in H; Elim H; Intro. -Simpl; Right; Symmetry; Assumption. -Elim H0. -Replace (MinRlist (cons r (cons r0 l))) with (Rmin r (MinRlist (cons r0 l))). -Simpl in H; Decompose [or] H. -Rewrite H0; Apply Rmin_l. -Unfold Rmin; Case (total_order_Rle r (MinRlist (cons r0 l))); Intro. -Apply Rle_trans with (MinRlist (cons r0 l)). -Assumption. -Apply Hrecl; Simpl; Tauto. -Apply Hrecl; Simpl; Tauto. -Apply Rle_trans with (MinRlist (cons r0 l)). -Apply Rmin_r. -Apply Hrecl; Simpl; Tauto. -Reflexivity. -Qed. - -Lemma AbsList_P1 : (l:Rlist;x,y:R) (In y l) -> (In ``(Rabsolu (y-x))/2`` (AbsList l x)). -Intros; Induction l. -Elim H. -Simpl; Simpl in H; Elim H; Intro. -Left; Rewrite H0; Reflexivity. -Right; Apply Hrecl; Assumption. -Qed. - -Lemma MinRlist_P2 : (l:Rlist) ((y:R)(In y l)->``0``0<(MinRlist l)``. -Intros; Induction l. -Apply Rlt_R0_R1. -Induction l. -Simpl; Apply H; Simpl; Tauto. -Replace (MinRlist (cons r (cons r0 l))) with (Rmin r (MinRlist (cons r0 l))). -Unfold Rmin; Case (total_order_Rle r (MinRlist (cons r0 l))); Intro. -Apply H; Simpl; Tauto. -Apply Hrecl; Intros; Apply H; Simpl; Simpl in H0; Tauto. -Reflexivity. -Qed. - -Lemma AbsList_P2 : (l:Rlist;x,y:R) (In y (AbsList l x)) -> (EXT z : R | (In z l)/\``y==(Rabsolu (z-x))/2``). -Intros; Induction l. -Elim H. -Elim H; Intro. -Exists r; Split. -Simpl; Tauto. -Assumption. -Assert H1 := (Hrecl H0); Elim H1; Intros; Elim H2; Clear H2; Intros; Exists x0; Simpl; Simpl in H2; Tauto. -Qed. - -Lemma MaxRlist_P2 : (l:Rlist) (EXT y:R | (In y l)) -> (In (MaxRlist l) l). -Intros; Induction l. -Simpl in H; Elim H; Trivial. -Induction l. -Simpl; Left; Reflexivity. -Change (In (Rmax r (MaxRlist (cons r0 l))) (cons r (cons r0 l))); Unfold Rmax; Case (total_order_Rle r (MaxRlist (cons r0 l))); Intro. -Right; Apply Hrecl; Exists r0; Left; Reflexivity. -Left; Reflexivity. -Qed. - -Fixpoint pos_Rl [l:Rlist] : nat->R := -[i:nat] Cases l of -| nil => R0 -| (cons a l') => - Cases i of - | O => a - | (S i') => (pos_Rl l' i') - end -end. - -Lemma pos_Rl_P1 : (l:Rlist;a:R) (lt O (Rlength l)) -> (pos_Rl (cons a l) (Rlength l))==(pos_Rl l (pred (Rlength l))). -Intros; Induction l; [Elim (lt_n_O ? H) | Simpl; Case (Rlength l); [Reflexivity | Intro; Reflexivity]]. -Qed. - -Lemma pos_Rl_P2 : (l:Rlist;x:R) (In x l)<->(EX i:nat | (lt i (Rlength l))/\x==(pos_Rl l i)). -Intros; Induction l. -Split; Intro; [Elim H | Elim H; Intros; Elim H0; Intros; Elim (lt_n_O ? H1)]. -Split; Intro. -Elim H; Intro. -Exists O; Split; [Simpl; Apply lt_O_Sn | Simpl; Apply H0]. -Elim Hrecl; Intros; Assert H3 := (H1 H0); Elim H3; Intros; Elim H4; Intros; Exists (S x0); Split; [Simpl; Apply lt_n_S; Assumption | Simpl; Assumption]. -Elim H; Intros; Elim H0; Intros; Elim (zerop x0); Intro. -Rewrite a in H2; Simpl in H2; Left; Assumption. -Right; Elim Hrecl; Intros; Apply H4; Assert H5 : (S (pred x0))=x0. -Symmetry; Apply S_pred with O; Assumption. -Exists (pred x0); Split; [Simpl in H1; Apply lt_S_n; Rewrite H5; Assumption | Rewrite <- H5 in H2; Simpl in H2; Assumption]. -Qed. - -Lemma Rlist_P1 : (l:Rlist;P:R->R->Prop) ((x:R)(In x l)->(EXT y:R | (P x y))) -> (EXT l':Rlist | (Rlength l)=(Rlength l')/\(i:nat) (lt i (Rlength l))->(P (pos_Rl l i) (pos_Rl l' i))). -Intros; Induction l. -Exists nil; Intros; Split; [Reflexivity | Intros; Simpl in H0; Elim (lt_n_O ? H0)]. -Assert H0 : (In r (cons r l)). -Simpl; Left; Reflexivity. -Assert H1 := (H ? H0); Assert H2 : (x:R)(In x l)->(EXT y:R | (P x y)). -Intros; Apply H; Simpl; Right; Assumption. -Assert H3 := (Hrecl H2); Elim H1; Intros; Elim H3; Intros; Exists (cons x x0); Intros; Elim H5; Clear H5; Intros; Split. -Simpl; Rewrite H5; Reflexivity. -Intros; Elim (zerop i); Intro. -Rewrite a; Simpl; Assumption. -Assert H8 : i=(S (pred i)). -Apply S_pred with O; Assumption. -Rewrite H8; Simpl; Apply H6; Simpl in H7; Apply lt_S_n; Rewrite <- H8; Assumption. -Qed. - -Definition ordered_Rlist [l:Rlist] : Prop := (i:nat) (lt i (pred (Rlength l))) -> (Rle (pos_Rl l i) (pos_Rl l (S i))). - -Fixpoint insert [l:Rlist] : R->Rlist := -[x:R] Cases l of -| nil => (cons x nil) -| (cons a l') => - Cases (total_order_Rle a x) of - | (leftT _) => (cons a (insert l' x)) - | (rightT _) => (cons x l) - end -end. - -Fixpoint cons_Rlist [l:Rlist] : Rlist->Rlist := -[k:Rlist] Cases l of -| nil => k -| (cons a l') => (cons a (cons_Rlist l' k)) end. - -Fixpoint cons_ORlist [k:Rlist] : Rlist->Rlist := -[l:Rlist] Cases k of -| nil => l -| (cons a k') => (cons_ORlist k' (insert l a)) -end. - -Fixpoint app_Rlist [l:Rlist] : (R->R)->Rlist := -[f:R->R] Cases l of -| nil => nil -| (cons a l') => (cons (f a) (app_Rlist l' f)) -end. - -Fixpoint mid_Rlist [l:Rlist] : R->Rlist := -[x:R] Cases l of -| nil => nil -| (cons a l') => (cons ``(x+a)/2`` (mid_Rlist l' a)) -end. - -Definition Rtail [l:Rlist] : Rlist := -Cases l of -| nil => nil -| (cons a l') => l' -end. - -Definition FF [l:Rlist;f:R->R] : Rlist := -Cases l of -| nil => nil -| (cons a l') => (app_Rlist (mid_Rlist l' a) f) -end. - -Lemma RList_P0 : (l:Rlist;a:R) ``(pos_Rl (insert l a) O) == a`` \/ ``(pos_Rl (insert l a) O) == (pos_Rl l O)``. -Intros; Induction l; [Left; Reflexivity | Simpl; Case (total_order_Rle r a); Intro; [Right; Reflexivity | Left; Reflexivity]]. -Qed. - -Lemma RList_P1 : (l:Rlist;a:R) (ordered_Rlist l) -> (ordered_Rlist (insert l a)). -Intros; Induction l. -Simpl; Unfold ordered_Rlist; Intros; Simpl in H0; Elim (lt_n_O ? H0). -Simpl; Case (total_order_Rle r a); Intro. -Assert H1 : (ordered_Rlist l). -Unfold ordered_Rlist; Unfold ordered_Rlist in H; Intros; Assert H1 : (lt (S i) (pred (Rlength (cons r l)))); [Simpl; Replace (Rlength l) with (S (pred (Rlength l))); [Apply lt_n_S; Assumption | Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H1 in H0; Simpl in H0; Elim (lt_n_O ? H0)] | Apply (H ? H1)]. -Assert H2 := (Hrecl H1); Unfold ordered_Rlist; Intros; Induction i. -Simpl; Assert H3 := (RList_P0 l a); Elim H3; Intro. -Rewrite H4; Assumption. -Induction l; [Simpl; Assumption | Rewrite H4; Apply (H O); Simpl; Apply lt_O_Sn]. -Simpl; Apply H2; Simpl in H0; Apply lt_S_n; Replace (S (pred (Rlength (insert l a)))) with (Rlength (insert l a)); [Assumption | Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H3 in H0; Elim (lt_n_O ? H0)]. -Unfold ordered_Rlist; Intros; Induction i; [Simpl; Auto with real | Change ``(pos_Rl (cons r l) i)<=(pos_Rl (cons r l) (S i))``; Apply H; Simpl in H0; Simpl; Apply (lt_S_n ? ? H0)]. -Qed. - -Lemma RList_P2 : (l1,l2:Rlist) (ordered_Rlist l2) ->(ordered_Rlist (cons_ORlist l1 l2)). -Induction l1; [Intros; Simpl; Apply H | Intros; Simpl; Apply H; Apply RList_P1; Assumption]. -Qed. - -Lemma RList_P3 : (l:Rlist;x:R) (In x l) <-> (EX i:nat | x==(pos_Rl l i)/\(lt i (Rlength l))). -Intros; Split; Intro; Induction l. -Elim H. -Elim H; Intro; [Exists O; Split; [Apply H0 | Simpl; Apply lt_O_Sn] | Elim (Hrecl H0); Intros; Elim H1; Clear H1; Intros; Exists (S x0); Split; [Apply H1 | Simpl; Apply lt_n_S; Assumption]]. -Elim H; Intros; Elim H0; Intros; Elim (lt_n_O ? H2). -Simpl; Elim H; Intros; Elim H0; Clear H0; Intros; Induction x0; [Left; Apply H0 | Right; Apply Hrecl; Exists x0; Split; [Apply H0 | Simpl in H1; Apply lt_S_n; Assumption]]. -Qed. - -Lemma RList_P4 : (l1:Rlist;a:R) (ordered_Rlist (cons a l1)) -> (ordered_Rlist l1). -Intros; Unfold ordered_Rlist; Intros; Apply (H (S i)); Simpl; Replace (Rlength l1) with (S (pred (Rlength l1))); [Apply lt_n_S; Assumption | Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H1 in H0; Elim (lt_n_O ? H0)]. -Qed. - -Lemma RList_P5 : (l:Rlist;x:R) (ordered_Rlist l) -> (In x l) -> ``(pos_Rl l O)<=x``. -Intros; Induction l; [Elim H0 | Simpl; Elim H0; Intro; [Rewrite H1; Right; Reflexivity | Apply Rle_trans with (pos_Rl l O); [Apply (H O); Simpl; Induction l; [Elim H1 | Simpl; Apply lt_O_Sn] | Apply Hrecl; [EApply RList_P4; Apply H | Assumption]]]]. -Qed. - -Lemma RList_P6 : (l:Rlist) (ordered_Rlist l)<->((i,j:nat)(le i j)->(lt j (Rlength l))->``(pos_Rl l i)<=(pos_Rl l j)``). -Induction l; Split; Intro. -Intros; Right; Reflexivity. -Unfold ordered_Rlist; Intros; Simpl in H0; Elim (lt_n_O ? H0). -Intros; Induction i; [Induction j; [Right; Reflexivity | Simpl; Apply Rle_trans with (pos_Rl r0 O); [Apply (H0 O); Simpl; Simpl in H2; Apply neq_O_lt; Red; Intro; Rewrite <- H3 in H2; Assert H4 := (lt_S_n ? ? H2); Elim (lt_n_O ? H4) | Elim H; Intros; Apply H3; [Apply RList_P4 with r; Assumption | Apply le_O_n | Simpl in H2; Apply lt_S_n; Assumption]]] | Induction j; [Elim (le_Sn_O ? H1) | Simpl; Elim H; Intros; Apply H3; [Apply RList_P4 with r; Assumption | Apply le_S_n; Assumption | Simpl in H2; Apply lt_S_n; Assumption]]]. -Unfold ordered_Rlist; Intros; Apply H0; [Apply le_n_Sn | Simpl; Simpl in H1; Apply lt_n_S; Assumption]. -Qed. - -Lemma RList_P7 : (l:Rlist;x:R) (ordered_Rlist l) -> (In x l) -> ``x<=(pos_Rl l (pred (Rlength l)))``. -Intros; Assert H1 := (RList_P6 l); Elim H1; Intros H2 _; Assert H3 := (H2 H); Clear H1 H2; Assert H1 := (RList_P3 l x); Elim H1; Clear H1; Intros; Assert H4 := (H1 H0); Elim H4; Clear H4; Intros; Elim H4; Clear H4; Intros; Rewrite H4; Assert H6 : (Rlength l)=(S (pred (Rlength l))). -Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H6 in H5; Elim (lt_n_O ? H5). -Apply H3; [Rewrite H6 in H5; Apply lt_n_Sm_le; Assumption | Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H7 in H5; Elim (lt_n_O ? H5)]. -Qed. - -Lemma RList_P8 : (l:Rlist;a,x:R) (In x (insert l a)) <-> x==a\/(In x l). -Induction l. -Intros; Split; Intro; Simpl in H; Apply H. -Intros; Split; Intro; [Simpl in H0; Generalize H0; Case (total_order_Rle r a); Intros; [Simpl in H1; Elim H1; Intro; [Right; Left; Assumption |Elim (H a x); Intros; Elim (H3 H2); Intro; [Left; Assumption | Right; Right; Assumption]] | Simpl in H1; Decompose [or] H1; [Left; Assumption | Right; Left; Assumption | Right; Right; Assumption]] | Simpl; Case (total_order_Rle r a); Intro; [Simpl in H0; Decompose [or] H0; [Right; Elim (H a x); Intros; Apply H3; Left | Left | Right; Elim (H a x); Intros; Apply H3; Right] | Simpl in H0; Decompose [or] H0; [Left | Right; Left | Right; Right]]; Assumption]. -Qed. - -Lemma RList_P9 : (l1,l2:Rlist;x:R) (In x (cons_ORlist l1 l2)) <-> (In x l1)\/(In x l2). -Induction l1. -Intros; Split; Intro; [Simpl in H; Right; Assumption | Simpl; Elim H; Intro; [Elim H0 | Assumption]]. -Intros; Split. -Simpl; Intros; Elim (H (insert l2 r) x); Intros; Assert H3 := (H1 H0); Elim H3; Intro; [Left; Right; Assumption | Elim (RList_P8 l2 r x); Intros H5 _; Assert H6 := (H5 H4); Elim H6; Intro; [Left; Left; Assumption | Right; Assumption]]. -Intro; Simpl; Elim (H (insert l2 r) x); Intros _ H1; Apply H1; Elim H0; Intro; [Elim H2; Intro; [Right; Elim (RList_P8 l2 r x); Intros _ H4; Apply H4; Left; Assumption | Left; Assumption] | Right; Elim (RList_P8 l2 r x); Intros _ H3; Apply H3; Right; Assumption]. -Qed. - -Lemma RList_P10 : (l:Rlist;a:R) (Rlength (insert l a))==(S (Rlength l)). -Intros; Induction l; [Reflexivity | Simpl; Case (total_order_Rle r a); Intro; [Simpl; Rewrite Hrecl; Reflexivity | Reflexivity]]. -Qed. - -Lemma RList_P11 : (l1,l2:Rlist) (Rlength (cons_ORlist l1 l2))=(plus (Rlength l1) (Rlength l2)). -Induction l1; [Intro; Reflexivity | Intros; Simpl; Rewrite (H (insert l2 r)); Rewrite RList_P10; Apply INR_eq; Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring]. -Qed. - -Lemma RList_P12 : (l:Rlist;i:nat;f:R->R) (lt i (Rlength l)) -> (pos_Rl (app_Rlist l f) i)==(f (pos_Rl l i)). -Induction l; [Intros; Elim (lt_n_O ? H) | Intros; Induction i; [Reflexivity | Simpl; Apply H; Apply lt_S_n; Apply H0]]. -Qed. - -Lemma RList_P13 : (l:Rlist;i:nat;a:R) (lt i (pred (Rlength l))) -> ``(pos_Rl (mid_Rlist l a) (S i)) == ((pos_Rl l i)+(pos_Rl l (S i)))/2``. -Induction l. -Intros; Simpl in H; Elim (lt_n_O ? H). -Induction r0. -Intros; Simpl in H0; Elim (lt_n_O ? H0). -Intros; Simpl in H1; Induction i. -Reflexivity. -Change ``(pos_Rl (mid_Rlist (cons r1 r2) r) (S i)) == ((pos_Rl (cons r1 r2) i)+(pos_Rl (cons r1 r2) (S i)))/2``; Apply H0; Simpl; Apply lt_S_n; Assumption. -Qed. - -Lemma RList_P14 : (l:Rlist;a:R) (Rlength (mid_Rlist l a))=(Rlength l). -Induction l; Intros; [Reflexivity | Simpl; Rewrite (H r); Reflexivity]. -Qed. - -Lemma RList_P15 : (l1,l2:Rlist) (ordered_Rlist l1) -> (ordered_Rlist l2) -> (pos_Rl l1 O)==(pos_Rl l2 O) -> (pos_Rl (cons_ORlist l1 l2) O)==(pos_Rl l1 O). -Intros; Apply Rle_antisym. -Induction l1; [Simpl; Simpl in H1; Right; Symmetry; Assumption | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (0))); Intros; Assert H4 : (In (pos_Rl (cons r l1) (0)) (cons r l1))\/(In (pos_Rl (cons r l1) (0)) l2); [Left; Left; Reflexivity | Assert H5 := (H3 H4); Apply RList_P5; [Apply RList_P2; Assumption | Assumption]]]. -Induction l1; [Simpl; Simpl in H1; Right; Assumption | Assert H2 : (In (pos_Rl (cons_ORlist (cons r l1) l2) (0)) (cons_ORlist (cons r l1) l2)); [Elim (RList_P3 (cons_ORlist (cons r l1) l2) (pos_Rl (cons_ORlist (cons r l1) l2) (0))); Intros; Apply H3; Exists O; Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_O_Sn] | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons_ORlist (cons r l1) l2) (0))); Intros; Assert H5 := (H3 H2); Elim H5; Intro; [Apply RList_P5; Assumption | Rewrite H1; Apply RList_P5; Assumption]]]. -Qed. - -Lemma RList_P16 : (l1,l2:Rlist) (ordered_Rlist l1) -> (ordered_Rlist l2) -> (pos_Rl l1 (pred (Rlength l1)))==(pos_Rl l2 (pred (Rlength l2))) -> (pos_Rl (cons_ORlist l1 l2) (pred (Rlength (cons_ORlist l1 l2))))==(pos_Rl l1 (pred (Rlength l1))). -Intros; Apply Rle_antisym. -Induction l1. -Simpl; Simpl in H1; Right; Symmetry; Assumption. -Assert H2 : (In (pos_Rl (cons_ORlist (cons r l1) l2) (pred (Rlength (cons_ORlist (cons r l1) l2)))) (cons_ORlist (cons r l1) l2)); [Elim (RList_P3 (cons_ORlist (cons r l1) l2) (pos_Rl (cons_ORlist (cons r l1) l2) (pred (Rlength (cons_ORlist (cons r l1) l2))))); Intros; Apply H3; Exists (pred (Rlength (cons_ORlist (cons r l1) l2))); Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_n_Sn] | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons_ORlist (cons r l1) l2) (pred (Rlength (cons_ORlist (cons r l1) l2))))); Intros; Assert H5 := (H3 H2); Elim H5; Intro; [Apply RList_P7; Assumption | Rewrite H1; Apply RList_P7; Assumption]]. -Induction l1. -Simpl; Simpl in H1; Right; Assumption. -Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (pred (Rlength (cons r l1))))); Intros; Assert H4 : (In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) (cons r l1))\/(In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) l2); [Left; Change (In (pos_Rl (cons r l1) (Rlength l1)) (cons r l1)); Elim (RList_P3 (cons r l1) (pos_Rl (cons r l1) (Rlength l1))); Intros; Apply H5; Exists (Rlength l1); Split; [Reflexivity | Simpl; Apply lt_n_Sn] | Assert H5 := (H3 H4); Apply RList_P7; [Apply RList_P2; Assumption | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (pred (Rlength (cons r l1))))); Intros; Apply H7; Left; Elim (RList_P3 (cons r l1) (pos_Rl (cons r l1) (pred (Rlength (cons r l1))))); Intros; Apply H9; Exists (pred (Rlength (cons r l1))); Split; [Reflexivity | Simpl; Apply lt_n_Sn]]]. -Qed. - -Lemma RList_P17 : (l1:Rlist;x:R;i:nat) (ordered_Rlist l1) -> (In x l1) -> ``(pos_Rl l1 i) (lt i (pred (Rlength l1))) -> ``(pos_Rl l1 (S i))<=x``. -Induction l1. -Intros; Elim H0. -Intros; Induction i. -Simpl; Elim H1; Intro; [Simpl in H2; Rewrite H4 in H2; Elim (Rlt_antirefl ? H2) | Apply RList_P5; [Apply RList_P4 with r; Assumption | Assumption]]. -Simpl; Simpl in H2; Elim H1; Intro. -Rewrite H4 in H2; Assert H5 : ``r<=(pos_Rl r0 i)``; [Apply Rle_trans with (pos_Rl r0 O); [Apply (H0 O); Simpl; Simpl in H3; Apply neq_O_lt; Red; Intro; Rewrite <- H5 in H3; Elim (lt_n_O ? H3) | Elim (RList_P6 r0); Intros; Apply H5; [Apply RList_P4 with r; Assumption | Apply le_O_n | Simpl in H3; Apply lt_S_n; Apply lt_trans with (Rlength r0); [Apply H3 | Apply lt_n_Sn]]] | Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H5 H2))]. -Apply H; Try Assumption; [Apply RList_P4 with r; Assumption | Simpl in H3; Apply lt_S_n; Replace (S (pred (Rlength r0))) with (Rlength r0); [Apply H3 | Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H5 in H3; Elim (lt_n_O ? H3)]]. -Qed. - -Lemma RList_P18 : (l:Rlist;f:R->R) (Rlength (app_Rlist l f))=(Rlength l). -Induction l; Intros; [Reflexivity | Simpl; Rewrite H; Reflexivity]. -Qed. - -Lemma RList_P19 : (l:Rlist) ~l==nil -> (EXT r:R | (EXT r0:Rlist | l==(cons r r0))). -Intros; Induction l; [Elim H; Reflexivity | Exists r; Exists l; Reflexivity]. -Qed. - -Lemma RList_P20 : (l:Rlist) (le (2) (Rlength l)) -> (EXT r:R | (EXT r1:R | (EXT l':Rlist | l==(cons r (cons r1 l'))))). -Intros; Induction l; [Simpl in H; Elim (le_Sn_O ? H) | Induction l; [Simpl in H; Elim (le_Sn_O ? (le_S_n ? ? H)) | Exists r; Exists r0; Exists l; Reflexivity]]. -Qed. - -Lemma RList_P21 : (l,l':Rlist) l==l' -> (Rtail l)==(Rtail l'). -Intros; Rewrite H; Reflexivity. -Qed. - -Lemma RList_P22 : (l1,l2:Rlist) ~l1==nil -> (pos_Rl (cons_Rlist l1 l2) O)==(pos_Rl l1 O). -Induction l1; [Intros; Elim H; Reflexivity | Intros; Reflexivity]. -Qed. - -Lemma RList_P23 : (l1,l2:Rlist) (Rlength (cons_Rlist l1 l2))==(plus (Rlength l1) (Rlength l2)). -Induction l1; [Intro; Reflexivity | Intros; Simpl; Rewrite H; Reflexivity]. -Qed. - -Lemma RList_P24 : (l1,l2:Rlist) ~l2==nil -> (pos_Rl (cons_Rlist l1 l2) (pred (Rlength (cons_Rlist l1 l2)))) == (pos_Rl l2 (pred (Rlength l2))). -Induction l1. -Intros; Reflexivity. -Intros; Rewrite <- (H l2 H0); Induction l2. -Elim H0; Reflexivity. -Do 2 Rewrite RList_P23; Replace (plus (Rlength (cons r r0)) (Rlength (cons r1 l2))) with (S (S (plus (Rlength r0) (Rlength l2)))); [Replace (plus (Rlength r0) (Rlength (cons r1 l2))) with (S (plus (Rlength r0) (Rlength l2))); [Reflexivity | Simpl; Apply INR_eq; Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring] | Simpl; Apply INR_eq; Do 3 Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring]. -Qed. - -Lemma RList_P25 : (l1,l2:Rlist) (ordered_Rlist l1) -> (ordered_Rlist l2) -> ``(pos_Rl l1 (pred (Rlength l1)))<=(pos_Rl l2 O)`` -> (ordered_Rlist (cons_Rlist l1 l2)). -Induction l1. -Intros; Simpl; Assumption. -Induction r0. -Intros; Simpl; Simpl in H2; Unfold ordered_Rlist; Intros; Simpl in H3. -Induction i. -Simpl; Assumption. -Change ``(pos_Rl l2 i)<=(pos_Rl l2 (S i))``; Apply (H1 i); Apply lt_S_n; Replace (S (pred (Rlength l2))) with (Rlength l2); [Assumption | Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H4 in H3; Elim (lt_n_O ? H3)]. -Intros; Clear H; Assert H : (ordered_Rlist (cons_Rlist (cons r1 r2) l2)). -Apply H0; Try Assumption. -Apply RList_P4 with r; Assumption. -Unfold ordered_Rlist; Intros; Simpl in H4; Induction i. -Simpl; Apply (H1 O); Simpl; Apply lt_O_Sn. -Change ``(pos_Rl (cons_Rlist (cons r1 r2) l2) i)<=(pos_Rl (cons_Rlist (cons r1 r2) l2) (S i))``; Apply (H i); Simpl; Apply lt_S_n; Assumption. -Qed. - -Lemma RList_P26 : (l1,l2:Rlist;i:nat) (lt i (Rlength l1)) -> (pos_Rl (cons_Rlist l1 l2) i)==(pos_Rl l1 i). -Induction l1. -Intros; Elim (lt_n_O ? H). -Intros; Induction i. -Apply RList_P22; Discriminate. -Apply (H l2 i); Simpl in H0; Apply lt_S_n; Assumption. -Qed. - -Lemma RList_P27 : (l1,l2,l3:Rlist) (cons_Rlist l1 (cons_Rlist l2 l3))==(cons_Rlist (cons_Rlist l1 l2) l3). -Induction l1; Intros; [Reflexivity | Simpl; Rewrite (H l2 l3); Reflexivity]. -Qed. - -Lemma RList_P28 : (l:Rlist) (cons_Rlist l nil)==l. -Induction l; [Reflexivity | Intros; Simpl; Rewrite H; Reflexivity]. -Qed. - -Lemma RList_P29 : (l2,l1:Rlist;i:nat) (le (Rlength l1) i) -> (lt i (Rlength (cons_Rlist l1 l2))) -> (pos_Rl (cons_Rlist l1 l2) i)==(pos_Rl l2 (minus i (Rlength l1))). -Induction l2. -Intros; Rewrite RList_P28 in H0; Elim (lt_n_n ? (le_lt_trans ? ? ? H H0)). -Intros; Replace (cons_Rlist l1 (cons r r0)) with (cons_Rlist (cons_Rlist l1 (cons r nil)) r0). -Inversion H0. -Rewrite <- minus_n_n; Simpl; Rewrite RList_P26. -Clear l2 r0 H i H0 H1 H2; Induction l1. -Reflexivity. -Simpl; Assumption. -Rewrite RList_P23; Rewrite plus_sym; Simpl; Apply lt_n_Sn. -Replace (minus (S m) (Rlength l1)) with (S (minus (S m) (S (Rlength l1)))). -Rewrite H3; Simpl; Replace (S (Rlength l1)) with (Rlength (cons_Rlist l1 (cons r nil))). -Apply (H (cons_Rlist l1 (cons r nil)) i). -Rewrite RList_P23; Rewrite plus_sym; Simpl; Rewrite <- H3; Apply le_n_S; Assumption. -Repeat Rewrite RList_P23; Simpl; Rewrite RList_P23 in H1; Rewrite plus_sym in H1; Simpl in H1; Rewrite (plus_sym (Rlength l1)); Simpl; Rewrite plus_sym; Apply H1. -Rewrite RList_P23; Rewrite plus_sym; Reflexivity. -Change (S (minus m (Rlength l1)))=(minus (S m) (Rlength l1)); Apply minus_Sn_m; Assumption. -Replace (cons r r0) with (cons_Rlist (cons r nil) r0); [Symmetry; Apply RList_P27 | Reflexivity]. -Qed. diff --git a/theories7/Reals/R_Ifp.v b/theories7/Reals/R_Ifp.v deleted file mode 100644 index 621cca64..00000000 --- a/theories7/Reals/R_Ifp.v +++ /dev/null @@ -1,552 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* Z:=[r:R](`(up r)-1`). - -(**********) -Definition frac_part:R->R:=[r:R](Rminus r (IZR (Int_part r))). - -(**********) -Lemma tech_up:(r:R)(z:Z)(Rlt r (IZR z))->(Rle (IZR z) (Rplus r R1))-> - z=(up r). -Intros;Generalize (archimed r);Intro;Elim H1;Intros;Clear H1; - Unfold Rgt in H2;Unfold Rminus in H3; -Generalize (Rle_compatibility r (Rplus (IZR (up r)) - (Ropp r)) R1 H3);Intro;Clear H3; - Rewrite (Rplus_sym (IZR (up r)) (Ropp r)) in H1; - Rewrite <-(Rplus_assoc r (Ropp r) (IZR (up r))) in H1; - Rewrite (Rplus_Ropp_r r) in H1;Elim (Rplus_ne (IZR (up r)));Intros a b; - Rewrite b in H1;Clear a b;Apply (single_z_r_R1 r z (up r));Auto with zarith real. -Qed. - -(**********) -Lemma up_tech:(r:R)(z:Z)(Rle (IZR z) r)->(Rlt r (IZR `z+1`))-> - `z+1`=(up r). -Intros;Generalize (Rle_compatibility R1 (IZR z) r H);Intro;Clear H; - Rewrite (Rplus_sym R1 (IZR z)) in H1;Rewrite (Rplus_sym R1 r) in H1; - Cut (R1==(IZR `1`));Auto with zarith real. -Intro;Generalize H1;Pattern 1 R1;Rewrite H;Intro;Clear H H1; - Rewrite <-(plus_IZR z `1`) in H2;Apply (tech_up r `z+1`);Auto with zarith real. -Qed. - -(**********) -Lemma fp_R0:(frac_part R0)==R0. -Unfold frac_part; Unfold Int_part; Elim (archimed R0); - Intros; Unfold Rminus; - Elim (Rplus_ne (Ropp (IZR `(up R0)-1`))); Intros a b; - Rewrite b;Clear a b;Rewrite <- Z_R_minus;Cut (up R0)=`1`. -Intro;Rewrite H1; - Rewrite (eq_Rminus (IZR `1`) (IZR `1`) (refl_eqT R (IZR `1`))); - Apply Ropp_O. -Elim (archimed R0);Intros;Clear H2;Unfold Rgt in H1; - Rewrite (minus_R0 (IZR (up R0))) in H0; - Generalize (lt_O_IZR (up R0) H1);Intro;Clear H1; - Generalize (le_IZR_R1 (up R0) H0);Intro;Clear H H0;Omega. -Qed. - -(**********) -Lemma for_base_fp:(r:R)(Rgt (Rminus (IZR (up r)) r) R0)/\ - (Rle (Rminus (IZR (up r)) r) R1). -Intro; Split; - Cut (Rgt (IZR (up r)) r)/\(Rle (Rminus (IZR (up r)) r) R1). -Intro; Elim H; Intros. -Apply (Rgt_minus (IZR (up r)) r H0). -Apply archimed. -Intro; Elim H; Intros. -Exact H1. -Apply archimed. -Qed. - -(**********) -Lemma base_fp:(r:R)(Rge (frac_part r) R0)/\(Rlt (frac_part r) R1). -Intro; Unfold frac_part; Unfold Int_part; Split. - (*sup a O*) -Cut (Rge (Rminus r (IZR (up r))) (Ropp R1)). -Rewrite <- Z_R_minus;Simpl;Intro; Unfold Rminus; - Rewrite Ropp_distr1;Rewrite <-Rplus_assoc; - Fold (Rminus r (IZR (up r))); - Fold (Rminus (Rminus r (IZR (up r))) (Ropp R1)); - Apply Rge_minus;Auto with zarith real. -Rewrite <- Ropp_distr2;Apply Rle_Ropp;Elim (for_base_fp r); Auto with zarith real. - (*inf a 1*) -Cut (Rlt (Rminus r (IZR (up r))) R0). -Rewrite <- Z_R_minus; Simpl;Intro; Unfold Rminus; - Rewrite Ropp_distr1;Rewrite <-Rplus_assoc; - Fold (Rminus r (IZR (up r)));Rewrite Ropp_Ropp; - Elim (Rplus_ne R1);Intros a b;Pattern 2 R1;Rewrite <-a;Clear a b; - Rewrite (Rplus_sym (Rminus r (IZR (up r))) R1); - Apply Rlt_compatibility;Auto with zarith real. -Elim (for_base_fp r);Intros;Rewrite <-Ropp_O; - Rewrite<-Ropp_distr2;Apply Rgt_Ropp;Auto with zarith real. -Qed. - -(*********************************************************) -(** Properties *) -(*********************************************************) - -(**********) -Lemma base_Int_part:(r:R)(Rle (IZR (Int_part r)) r)/\ - (Rgt (Rminus (IZR (Int_part r)) r) (Ropp R1)). -Intro;Unfold Int_part;Elim (archimed r);Intros. -Split;Rewrite <- (Z_R_minus (up r) `1`);Simpl. -Generalize (Rle_minus (Rminus (IZR (up r)) r) R1 H0);Intro; - Unfold Rminus in H1; - Rewrite (Rplus_assoc (IZR (up r)) (Ropp r) (Ropp R1)) in - H1;Rewrite (Rplus_sym (Ropp r) (Ropp R1)) in H1; - Rewrite <-(Rplus_assoc (IZR (up r)) (Ropp R1) (Ropp r)) in - H1;Fold (Rminus (IZR (up r)) R1) in H1; - Fold (Rminus (Rminus (IZR (up r)) R1) r) in H1; - Apply Rminus_le;Auto with zarith real. -Generalize (Rgt_plus_plus_r (Ropp R1) (IZR (up r)) r H);Intro; - Rewrite (Rplus_sym (Ropp R1) (IZR (up r))) in H1; - Generalize (Rgt_plus_plus_r (Ropp r) - (Rplus (IZR (up r)) (Ropp R1)) (Rplus (Ropp R1) r) H1); - Intro;Clear H H0 H1; - Rewrite (Rplus_sym (Ropp r) (Rplus (IZR (up r)) (Ropp R1))) - in H2;Fold (Rminus (IZR (up r)) R1) in H2; - Fold (Rminus (Rminus (IZR (up r)) R1) r) in H2; - Rewrite (Rplus_sym (Ropp r) (Rplus (Ropp R1) r)) in H2; - Rewrite (Rplus_assoc (Ropp R1) r (Ropp r)) in H2; - Rewrite (Rplus_Ropp_r r) in H2;Elim (Rplus_ne (Ropp R1));Intros a b; - Rewrite a in H2;Clear a b;Auto with zarith real. -Qed. - -(**********) -Lemma Int_part_INR:(n : nat) (Int_part (INR n)) = (inject_nat n). -Intros n; Unfold Int_part. -Cut (up (INR n)) = (Zplus (inject_nat n) (inject_nat (1))). -Intros H'; Rewrite H'; Simpl; Ring. -Apply sym_equal; Apply tech_up; Auto. -Replace (Zplus (inject_nat n) (inject_nat (1))) with (INZ (S n)). -Repeat Rewrite <- INR_IZR_INZ. -Apply lt_INR; Auto. -Rewrite Zplus_sym; Rewrite <- inj_plus; Simpl; Auto. -Rewrite plus_IZR; Simpl; Auto with real. -Repeat Rewrite <- INR_IZR_INZ; Auto with real. -Qed. - -(**********) -Lemma fp_nat:(r:R)(frac_part r)==R0->(Ex [c:Z](r==(IZR c))). -Unfold frac_part;Intros;Split with (Int_part r);Apply Rminus_eq; Auto with zarith real. -Qed. - -(**********) -Lemma R0_fp_O:(r:R)~R0==(frac_part r)->~R0==r. -Red;Intros;Rewrite <- H0 in H;Generalize fp_R0;Intro;Auto with zarith real. -Qed. - -(**********) -Lemma Rminus_Int_part1:(r1,r2:R)(Rge (frac_part r1) (frac_part r2))-> - (Int_part (Rminus r1 r2))=(Zminus (Int_part r1) (Int_part r2)). -Intros;Elim (base_fp r1);Elim (base_fp r2);Intros; - Generalize (Rle_sym2 R0 (frac_part r2) H0);Intro;Clear H0; - Generalize (Rle_Ropp R0 (frac_part r2) H4);Intro;Clear H4; - Rewrite (Ropp_O) in H0; - Generalize (Rle_sym2 (Ropp (frac_part r2)) R0 H0);Intro;Clear H0; - Generalize (Rle_sym2 R0 (frac_part r1) H2);Intro;Clear H2; - Generalize (Rlt_Ropp (frac_part r2) R1 H1);Intro;Clear H1; - Unfold Rgt in H2; - Generalize (sum_inequa_Rle_lt R0 (frac_part r1) R1 (Ropp R1) - (Ropp (frac_part r2)) R0 H0 H3 H2 H4);Intro;Elim H1;Intros; - Clear H1;Elim (Rplus_ne R1);Intros a b;Rewrite a in H6;Clear a b H5; - Generalize (Rge_minus (frac_part r1) (frac_part r2) H);Intro;Clear H; - Fold (Rminus (frac_part r1) (frac_part r2)) in H6; - Generalize (Rle_sym2 R0 (Rminus (frac_part r1) (frac_part r2)) H1); - Intro;Clear H1 H3 H4 H0 H2;Unfold frac_part in H6 H; - Unfold Rminus in H6 H; - Rewrite (Ropp_distr1 r2 (Ropp (IZR (Int_part r2)))) in H; - Rewrite (Ropp_Ropp (IZR (Int_part r2))) in H; - Rewrite (Rplus_assoc r1 (Ropp (IZR (Int_part r1))) - (Rplus (Ropp r2) (IZR (Int_part r2)))) in H; - Rewrite <-(Rplus_assoc (Ropp (IZR (Int_part r1))) (Ropp r2) - (IZR (Int_part r2))) in H; - Rewrite (Rplus_sym (Ropp (IZR (Int_part r1))) (Ropp r2)) in H; - Rewrite (Rplus_assoc (Ropp r2) (Ropp (IZR (Int_part r1))) - (IZR (Int_part r2))) in H; - Rewrite <-(Rplus_assoc r1 (Ropp r2) - (Rplus (Ropp (IZR (Int_part r1))) (IZR (Int_part r2)))) in H; - Rewrite (Rplus_sym (Ropp (IZR (Int_part r1))) (IZR (Int_part r2))) in H; - Fold (Rminus r1 r2) in H;Fold (Rminus (IZR (Int_part r2)) (IZR (Int_part r1))) - in H;Generalize (Rle_compatibility - (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) R0 - (Rplus (Rminus r1 r2) (Rminus (IZR (Int_part r2)) (IZR (Int_part r1)))) H);Intro; - Clear H;Rewrite (Rplus_sym (Rminus r1 r2) - (Rminus (IZR (Int_part r2)) (IZR (Int_part r1)))) in H0; - Rewrite <-(Rplus_assoc (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Rminus (IZR (Int_part r2)) (IZR (Int_part r1))) (Rminus r1 r2)) in H0; - Unfold Rminus in H0;Fold (Rminus r1 r2) in H0; - Rewrite (Rplus_assoc (IZR (Int_part r1)) (Ropp (IZR (Int_part r2))) - (Rplus (IZR (Int_part r2)) (Ropp (IZR (Int_part r1))))) in H0; - Rewrite <-(Rplus_assoc (Ropp (IZR (Int_part r2))) (IZR (Int_part r2)) - (Ropp (IZR (Int_part r1)))) in H0;Rewrite (Rplus_Ropp_l (IZR (Int_part r2))) in - H0;Elim (Rplus_ne (Ropp (IZR (Int_part r1))));Intros a b;Rewrite b in H0; - Clear a b; - Elim (Rplus_ne (Rplus (IZR (Int_part r1)) (Ropp (IZR (Int_part r2))))); - Intros a b;Rewrite a in H0;Clear a b;Rewrite (Rplus_Ropp_r (IZR (Int_part r1))) - in H0;Elim (Rplus_ne (Rminus r1 r2));Intros a b;Rewrite b in H0; - Clear a b;Fold (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) in H0; - Rewrite (Ropp_distr1 r2 (Ropp (IZR (Int_part r2)))) in H6; - Rewrite (Ropp_Ropp (IZR (Int_part r2))) in H6; - Rewrite (Rplus_assoc r1 (Ropp (IZR (Int_part r1))) - (Rplus (Ropp r2) (IZR (Int_part r2)))) in H6; - Rewrite <-(Rplus_assoc (Ropp (IZR (Int_part r1))) (Ropp r2) - (IZR (Int_part r2))) in H6; - Rewrite (Rplus_sym (Ropp (IZR (Int_part r1))) (Ropp r2)) in H6; - Rewrite (Rplus_assoc (Ropp r2) (Ropp (IZR (Int_part r1))) - (IZR (Int_part r2))) in H6; - Rewrite <-(Rplus_assoc r1 (Ropp r2) - (Rplus (Ropp (IZR (Int_part r1))) (IZR (Int_part r2)))) in H6; - Rewrite (Rplus_sym (Ropp (IZR (Int_part r1))) (IZR (Int_part r2))) in H6; - Fold (Rminus r1 r2) in H6;Fold (Rminus (IZR (Int_part r2)) (IZR (Int_part r1))) - in H6;Generalize (Rlt_compatibility - (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Rplus (Rminus r1 r2) (Rminus (IZR (Int_part r2)) (IZR (Int_part r1)))) R1 H6); - Intro;Clear H6; - Rewrite (Rplus_sym (Rminus r1 r2) - (Rminus (IZR (Int_part r2)) (IZR (Int_part r1)))) in H; - Rewrite <-(Rplus_assoc (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Rminus (IZR (Int_part r2)) (IZR (Int_part r1))) (Rminus r1 r2)) in H; - Rewrite <-(Ropp_distr2 (IZR (Int_part r1)) (IZR (Int_part r2))) in H; - Rewrite (Rplus_Ropp_r (Rminus (IZR (Int_part r1)) (IZR (Int_part r2)))) in H; - Elim (Rplus_ne (Rminus r1 r2));Intros a b;Rewrite b in H;Clear a b; - Rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H0; - Rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H; - Cut R1==(IZR `1`);Auto with zarith real. -Intro;Rewrite H1 in H;Clear H1; - Rewrite <-(plus_IZR `(Int_part r1)-(Int_part r2)` `1`) in H; - Generalize (up_tech (Rminus r1 r2) `(Int_part r1)-(Int_part r2)` - H0 H);Intros;Clear H H0;Unfold 1 Int_part;Omega. -Qed. - -(**********) -Lemma Rminus_Int_part2:(r1,r2:R)(Rlt (frac_part r1) (frac_part r2))-> - (Int_part (Rminus r1 r2))=(Zminus (Zminus (Int_part r1) (Int_part r2)) `1`). -Intros;Elim (base_fp r1);Elim (base_fp r2);Intros; - Generalize (Rle_sym2 R0 (frac_part r2) H0);Intro;Clear H0; - Generalize (Rle_Ropp R0 (frac_part r2) H4);Intro;Clear H4; - Rewrite (Ropp_O) in H0; - Generalize (Rle_sym2 (Ropp (frac_part r2)) R0 H0);Intro;Clear H0; - Generalize (Rle_sym2 R0 (frac_part r1) H2);Intro;Clear H2; - Generalize (Rlt_Ropp (frac_part r2) R1 H1);Intro;Clear H1; - Unfold Rgt in H2; - Generalize (sum_inequa_Rle_lt R0 (frac_part r1) R1 (Ropp R1) - (Ropp (frac_part r2)) R0 H0 H3 H2 H4);Intro;Elim H1;Intros; - Clear H1;Elim (Rplus_ne (Ropp R1));Intros a b;Rewrite b in H5; - Clear a b H6;Generalize (Rlt_minus (frac_part r1) (frac_part r2) H); - Intro;Clear H;Fold (Rminus (frac_part r1) (frac_part r2)) in H5; - Clear H3 H4 H0 H2;Unfold frac_part in H5 H1; - Unfold Rminus in H5 H1; - Rewrite (Ropp_distr1 r2 (Ropp (IZR (Int_part r2)))) in H5; - Rewrite (Ropp_Ropp (IZR (Int_part r2))) in H5; - Rewrite (Rplus_assoc r1 (Ropp (IZR (Int_part r1))) - (Rplus (Ropp r2) (IZR (Int_part r2)))) in H5; - Rewrite <-(Rplus_assoc (Ropp (IZR (Int_part r1))) (Ropp r2) - (IZR (Int_part r2))) in H5; - Rewrite (Rplus_sym (Ropp (IZR (Int_part r1))) (Ropp r2)) in H5; - Rewrite (Rplus_assoc (Ropp r2) (Ropp (IZR (Int_part r1))) - (IZR (Int_part r2))) in H5; - Rewrite <-(Rplus_assoc r1 (Ropp r2) - (Rplus (Ropp (IZR (Int_part r1))) (IZR (Int_part r2)))) in H5; - Rewrite (Rplus_sym (Ropp (IZR (Int_part r1))) (IZR (Int_part r2))) in H5; - Fold (Rminus r1 r2) in H5;Fold (Rminus (IZR (Int_part r2)) (IZR (Int_part r1))) - in H5;Generalize (Rlt_compatibility - (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) (Ropp R1) - (Rplus (Rminus r1 r2) (Rminus (IZR (Int_part r2)) (IZR (Int_part r1)))) H5); - Intro;Clear H5;Rewrite (Rplus_sym (Rminus r1 r2) - (Rminus (IZR (Int_part r2)) (IZR (Int_part r1)))) in H; - Rewrite <-(Rplus_assoc (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Rminus (IZR (Int_part r2)) (IZR (Int_part r1))) (Rminus r1 r2)) in H; - Unfold Rminus in H;Fold (Rminus r1 r2) in H; - Rewrite (Rplus_assoc (IZR (Int_part r1)) (Ropp (IZR (Int_part r2))) - (Rplus (IZR (Int_part r2)) (Ropp (IZR (Int_part r1))))) in H; - Rewrite <-(Rplus_assoc (Ropp (IZR (Int_part r2))) (IZR (Int_part r2)) - (Ropp (IZR (Int_part r1)))) in H;Rewrite (Rplus_Ropp_l (IZR (Int_part r2))) in - H;Elim (Rplus_ne (Ropp (IZR (Int_part r1))));Intros a b;Rewrite b in H; - Clear a b;Rewrite (Rplus_Ropp_r (IZR (Int_part r1))) in H; - Elim (Rplus_ne (Rminus r1 r2));Intros a b;Rewrite b in H; - Clear a b;Fold (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) in H; - Fold (Rminus (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) R1) in H; - Rewrite (Ropp_distr1 r2 (Ropp (IZR (Int_part r2)))) in H1; - Rewrite (Ropp_Ropp (IZR (Int_part r2))) in H1; - Rewrite (Rplus_assoc r1 (Ropp (IZR (Int_part r1))) - (Rplus (Ropp r2) (IZR (Int_part r2)))) in H1; - Rewrite <-(Rplus_assoc (Ropp (IZR (Int_part r1))) (Ropp r2) - (IZR (Int_part r2))) in H1; - Rewrite (Rplus_sym (Ropp (IZR (Int_part r1))) (Ropp r2)) in H1; - Rewrite (Rplus_assoc (Ropp r2) (Ropp (IZR (Int_part r1))) - (IZR (Int_part r2))) in H1; - Rewrite <-(Rplus_assoc r1 (Ropp r2) - (Rplus (Ropp (IZR (Int_part r1))) (IZR (Int_part r2)))) in H1; - Rewrite (Rplus_sym (Ropp (IZR (Int_part r1))) (IZR (Int_part r2))) in H1; - Fold (Rminus r1 r2) in H1;Fold (Rminus (IZR (Int_part r2)) (IZR (Int_part r1))) - in H1;Generalize (Rlt_compatibility - (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Rplus (Rminus r1 r2) (Rminus (IZR (Int_part r2)) (IZR (Int_part r1)))) R0 H1); - Intro;Clear H1; - Rewrite (Rplus_sym (Rminus r1 r2) - (Rminus (IZR (Int_part r2)) (IZR (Int_part r1)))) in H0; - Rewrite <-(Rplus_assoc (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Rminus (IZR (Int_part r2)) (IZR (Int_part r1))) (Rminus r1 r2)) in H0; - Rewrite <-(Ropp_distr2 (IZR (Int_part r1)) (IZR (Int_part r2))) in H0; - Rewrite (Rplus_Ropp_r (Rminus (IZR (Int_part r1)) (IZR (Int_part r2)))) in H0; - Elim (Rplus_ne (Rminus r1 r2));Intros a b;Rewrite b in H0;Clear a b; - Rewrite <-(Rplus_Ropp_l R1) in H0; - Rewrite <-(Rplus_assoc (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Ropp R1) R1) in H0; - Fold (Rminus (Rminus (IZR (Int_part r1)) (IZR (Int_part r2))) R1) in H0; - Rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H0; - Rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H; - Cut R1==(IZR `1`);Auto with zarith real. -Intro;Rewrite H1 in H;Rewrite H1 in H0;Clear H1; - Rewrite (Z_R_minus `(Int_part r1)-(Int_part r2)` `1`) in H; - Rewrite (Z_R_minus `(Int_part r1)-(Int_part r2)` `1`) in H0; - Rewrite <-(plus_IZR `(Int_part r1)-(Int_part r2)-1` `1`) in H0; - Generalize (Rlt_le (IZR `(Int_part r1)-(Int_part r2)-1`) (Rminus r1 r2) H); - Intro;Clear H; - Generalize (up_tech (Rminus r1 r2) `(Int_part r1)-(Int_part r2)-1` - H1 H0);Intros;Clear H0 H1;Unfold 1 Int_part;Omega. -Qed. - -(**********) -Lemma Rminus_fp1:(r1,r2:R)(Rge (frac_part r1) (frac_part r2))-> - (frac_part (Rminus r1 r2))==(Rminus (frac_part r1) (frac_part r2)). -Intros;Unfold frac_part; - Generalize (Rminus_Int_part1 r1 r2 H);Intro;Rewrite -> H0; - Rewrite <- (Z_R_minus (Int_part r1) (Int_part r2));Unfold Rminus; - Rewrite -> (Ropp_distr1 (IZR (Int_part r1)) (Ropp (IZR (Int_part r2)))); - Rewrite -> (Ropp_distr1 r2 (Ropp (IZR (Int_part r2)))); - Rewrite -> (Ropp_Ropp (IZR (Int_part r2))); - Rewrite -> (Rplus_assoc r1 (Ropp r2) - (Rplus (Ropp (IZR (Int_part r1))) (IZR (Int_part r2)))); - Rewrite -> (Rplus_assoc r1 (Ropp (IZR (Int_part r1))) - (Rplus (Ropp r2) (IZR (Int_part r2)))); - Rewrite <- (Rplus_assoc (Ropp r2) (Ropp (IZR (Int_part r1))) - (IZR (Int_part r2))); - Rewrite <- (Rplus_assoc (Ropp (IZR (Int_part r1))) (Ropp r2) - (IZR (Int_part r2))); - Rewrite -> (Rplus_sym (Ropp r2) (Ropp (IZR (Int_part r1))));Auto with zarith real. -Qed. - -(**********) -Lemma Rminus_fp2:(r1,r2:R)(Rlt (frac_part r1) (frac_part r2))-> - (frac_part (Rminus r1 r2))== - (Rplus (Rminus (frac_part r1) (frac_part r2)) R1). -Intros;Unfold frac_part;Generalize (Rminus_Int_part2 r1 r2 H);Intro; - Rewrite -> H0; - Rewrite <- (Z_R_minus (Zminus (Int_part r1) (Int_part r2)) `1`); - Rewrite <- (Z_R_minus (Int_part r1) (Int_part r2));Unfold Rminus; - Rewrite -> (Ropp_distr1 (Rplus (IZR (Int_part r1)) (Ropp (IZR (Int_part r2)))) - (Ropp (IZR `1`))); - Rewrite -> (Ropp_distr1 r2 (Ropp (IZR (Int_part r2)))); - Rewrite -> (Ropp_Ropp (IZR `1`)); - Rewrite -> (Ropp_Ropp (IZR (Int_part r2))); - Rewrite -> (Ropp_distr1 (IZR (Int_part r1))); - Rewrite -> (Ropp_Ropp (IZR (Int_part r2)));Simpl; - Rewrite <- (Rplus_assoc (Rplus r1 (Ropp r2)) - (Rplus (Ropp (IZR (Int_part r1))) (IZR (Int_part r2))) R1); - Rewrite -> (Rplus_assoc r1 (Ropp r2) - (Rplus (Ropp (IZR (Int_part r1))) (IZR (Int_part r2)))); - Rewrite -> (Rplus_assoc r1 (Ropp (IZR (Int_part r1))) - (Rplus (Ropp r2) (IZR (Int_part r2)))); - Rewrite <- (Rplus_assoc (Ropp r2) (Ropp (IZR (Int_part r1))) - (IZR (Int_part r2))); - Rewrite <- (Rplus_assoc (Ropp (IZR (Int_part r1))) (Ropp r2) - (IZR (Int_part r2))); - Rewrite -> (Rplus_sym (Ropp r2) (Ropp (IZR (Int_part r1))));Auto with zarith real. -Qed. - -(**********) -Lemma plus_Int_part1:(r1,r2:R)(Rge (Rplus (frac_part r1) (frac_part r2)) R1)-> - (Int_part (Rplus r1 r2))=(Zplus (Zplus (Int_part r1) (Int_part r2)) `1`). -Intros; - Generalize (Rle_sym2 R1 (Rplus (frac_part r1) (frac_part r2)) H); - Intro;Clear H;Elim (base_fp r1);Elim (base_fp r2);Intros;Clear H H2; - Generalize (Rlt_compatibility (frac_part r2) (frac_part r1) R1 H3); - Intro;Clear H3; - Generalize (Rlt_compatibility R1 (frac_part r2) R1 H1);Intro;Clear H1; - Rewrite (Rplus_sym R1 (frac_part r2)) in H2; - Generalize (Rlt_trans (Rplus (frac_part r2) (frac_part r1)) - (Rplus (frac_part r2) R1) (Rplus R1 R1) H H2);Intro;Clear H H2; - Rewrite (Rplus_sym (frac_part r2) (frac_part r1)) in H1; - Unfold frac_part in H0 H1;Unfold Rminus in H0 H1; - Rewrite (Rplus_assoc r1 (Ropp (IZR (Int_part r1))) - (Rplus r2 (Ropp (IZR (Int_part r2))))) in H1; - Rewrite (Rplus_sym r2 (Ropp (IZR (Int_part r2)))) in H1; - Rewrite <-(Rplus_assoc (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2))) - r2) in H1; - Rewrite (Rplus_sym - (Rplus (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2)))) r2) in H1; - Rewrite <-(Rplus_assoc r1 r2 - (Rplus (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2))))) in H1; - Rewrite <-(Ropp_distr1 (IZR (Int_part r1)) (IZR (Int_part r2))) in H1; - Rewrite (Rplus_assoc r1 (Ropp (IZR (Int_part r1))) - (Rplus r2 (Ropp (IZR (Int_part r2))))) in H0; - Rewrite (Rplus_sym r2 (Ropp (IZR (Int_part r2)))) in H0; - Rewrite <-(Rplus_assoc (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2))) - r2) in H0; - Rewrite (Rplus_sym - (Rplus (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2)))) r2) in H0; - Rewrite <-(Rplus_assoc r1 r2 - (Rplus (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2))))) in H0; - Rewrite <-(Ropp_distr1 (IZR (Int_part r1)) (IZR (Int_part r2))) in H0; - Generalize (Rle_compatibility (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))) - R1 (Rplus (Rplus r1 r2) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))))) H0);Intro; - Clear H0; - Generalize (Rlt_compatibility (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Rplus (Rplus r1 r2) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))))) (Rplus R1 R1) H1); - Intro;Clear H1; - Rewrite (Rplus_sym (Rplus r1 r2) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))))) in H; - Rewrite <-(Rplus_assoc (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2)))) (Rplus r1 r2)) in H; - Rewrite (Rplus_Ropp_r (Rplus (IZR (Int_part r1)) (IZR (Int_part r2)))) in H; - Elim (Rplus_ne (Rplus r1 r2));Intros a b;Rewrite b in H;Clear a b; - Rewrite (Rplus_sym (Rplus r1 r2) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))))) in H0; - Rewrite <-(Rplus_assoc (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2)))) (Rplus r1 r2)) in H0; - Rewrite (Rplus_Ropp_r (Rplus (IZR (Int_part r1)) (IZR (Int_part r2)))) in H0; - Elim (Rplus_ne (Rplus r1 r2));Intros a b;Rewrite b in H0;Clear a b; - Rewrite <-(Rplus_assoc (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))) R1 R1) in - H0;Cut R1==(IZR `1`);Auto with zarith real. -Intro;Rewrite H1 in H0;Rewrite H1 in H;Clear H1; - Rewrite <-(plus_IZR (Int_part r1) (Int_part r2)) in H; - Rewrite <-(plus_IZR (Int_part r1) (Int_part r2)) in H0; - Rewrite <-(plus_IZR `(Int_part r1)+(Int_part r2)` `1`) in H; - Rewrite <-(plus_IZR `(Int_part r1)+(Int_part r2)` `1`) in H0; - Rewrite <-(plus_IZR `(Int_part r1)+(Int_part r2)+1` `1`) in H0; - Generalize (up_tech (Rplus r1 r2) `(Int_part r1)+(Int_part r2)+1` H H0);Intro; - Clear H H0;Unfold 1 Int_part;Omega. -Qed. - -(**********) -Lemma plus_Int_part2:(r1,r2:R)(Rlt (Rplus (frac_part r1) (frac_part r2)) R1)-> - (Int_part (Rplus r1 r2))=(Zplus (Int_part r1) (Int_part r2)). -Intros;Elim (base_fp r1);Elim (base_fp r2);Intros;Clear H1 H3; - Generalize (Rle_sym2 R0 (frac_part r2) H0);Intro;Clear H0; - Generalize (Rle_sym2 R0 (frac_part r1) H2);Intro;Clear H2; - Generalize (Rle_compatibility (frac_part r1) R0 (frac_part r2) H1); - Intro;Clear H1;Elim (Rplus_ne (frac_part r1));Intros a b; - Rewrite a in H2;Clear a b;Generalize (Rle_trans R0 (frac_part r1) - (Rplus (frac_part r1) (frac_part r2)) H0 H2);Intro;Clear H0 H2; - Unfold frac_part in H H1;Unfold Rminus in H H1; - Rewrite (Rplus_assoc r1 (Ropp (IZR (Int_part r1))) - (Rplus r2 (Ropp (IZR (Int_part r2))))) in H1; - Rewrite (Rplus_sym r2 (Ropp (IZR (Int_part r2)))) in H1; - Rewrite <-(Rplus_assoc (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2))) - r2) in H1; - Rewrite (Rplus_sym - (Rplus (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2)))) r2) in H1; - Rewrite <-(Rplus_assoc r1 r2 - (Rplus (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2))))) in H1; - Rewrite <-(Ropp_distr1 (IZR (Int_part r1)) (IZR (Int_part r2))) in H1; - Rewrite (Rplus_assoc r1 (Ropp (IZR (Int_part r1))) - (Rplus r2 (Ropp (IZR (Int_part r2))))) in H; - Rewrite (Rplus_sym r2 (Ropp (IZR (Int_part r2)))) in H; - Rewrite <-(Rplus_assoc (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2))) - r2) in H; - Rewrite (Rplus_sym - (Rplus (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2)))) r2) in H; - Rewrite <-(Rplus_assoc r1 r2 - (Rplus (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2))))) in H; - Rewrite <-(Ropp_distr1 (IZR (Int_part r1)) (IZR (Int_part r2))) in H; - Generalize (Rle_compatibility (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))) - R0 (Rplus (Rplus r1 r2) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))))) H1);Intro; - Clear H1; - Generalize (Rlt_compatibility (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Rplus (Rplus r1 r2) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))))) R1 H); - Intro;Clear H; - Rewrite (Rplus_sym (Rplus r1 r2) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))))) in H1; - Rewrite <-(Rplus_assoc (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2)))) (Rplus r1 r2)) in H1; - Rewrite (Rplus_Ropp_r (Rplus (IZR (Int_part r1)) (IZR (Int_part r2)))) in H1; - Elim (Rplus_ne (Rplus r1 r2));Intros a b;Rewrite b in H1;Clear a b; - Rewrite (Rplus_sym (Rplus r1 r2) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))))) in H0; - Rewrite <-(Rplus_assoc (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2)))) (Rplus r1 r2)) in H0; - Rewrite (Rplus_Ropp_r (Rplus (IZR (Int_part r1)) (IZR (Int_part r2)))) in H0; - Elim (Rplus_ne (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))));Intros a b; - Rewrite a in H0;Clear a b;Elim (Rplus_ne (Rplus r1 r2));Intros a b; - Rewrite b in H0;Clear a b;Cut R1==(IZR `1`);Auto with zarith real. -Intro;Rewrite H in H1;Clear H; - Rewrite <-(plus_IZR (Int_part r1) (Int_part r2)) in H0; - Rewrite <-(plus_IZR (Int_part r1) (Int_part r2)) in H1; - Rewrite <-(plus_IZR `(Int_part r1)+(Int_part r2)` `1`) in H1; - Generalize (up_tech (Rplus r1 r2) `(Int_part r1)+(Int_part r2)` H0 H1);Intro; - Clear H0 H1;Unfold 1 Int_part;Omega. -Qed. - -(**********) -Lemma plus_frac_part1:(r1,r2:R) - (Rge (Rplus (frac_part r1) (frac_part r2)) R1)-> - (frac_part (Rplus r1 r2))== - (Rminus (Rplus (frac_part r1) (frac_part r2)) R1). -Intros;Unfold frac_part; - Generalize (plus_Int_part1 r1 r2 H);Intro;Rewrite H0; - Rewrite (plus_IZR `(Int_part r1)+(Int_part r2)` `1`); - Rewrite (plus_IZR (Int_part r1) (Int_part r2));Simpl;Unfold 3 4 Rminus; - Rewrite (Rplus_assoc r1 (Ropp (IZR (Int_part r1))) - (Rplus r2 (Ropp (IZR (Int_part r2))))); - Rewrite (Rplus_sym r2 (Ropp (IZR (Int_part r2)))); - Rewrite <-(Rplus_assoc (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2))) - r2); - Rewrite (Rplus_sym - (Rplus (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2)))) r2); - Rewrite <-(Rplus_assoc r1 r2 - (Rplus (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2))))); - Rewrite <-(Ropp_distr1 (IZR (Int_part r1)) (IZR (Int_part r2))); - Unfold Rminus; - Rewrite (Rplus_assoc (Rplus r1 r2) - (Ropp (Rplus (IZR (Int_part r1)) (IZR (Int_part r2)))) - (Ropp R1)); - Rewrite <-(Ropp_distr1 (Rplus (IZR (Int_part r1)) (IZR (Int_part r2))) R1); - Trivial with zarith real. -Qed. - -(**********) -Lemma plus_frac_part2:(r1,r2:R) - (Rlt (Rplus (frac_part r1) (frac_part r2)) R1)-> -(frac_part (Rplus r1 r2))==(Rplus (frac_part r1) (frac_part r2)). -Intros;Unfold frac_part; - Generalize (plus_Int_part2 r1 r2 H);Intro;Rewrite H0; - Rewrite (plus_IZR (Int_part r1) (Int_part r2));Unfold 2 3 Rminus; - Rewrite (Rplus_assoc r1 (Ropp (IZR (Int_part r1))) - (Rplus r2 (Ropp (IZR (Int_part r2))))); - Rewrite (Rplus_sym r2 (Ropp (IZR (Int_part r2)))); - Rewrite <-(Rplus_assoc (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2))) - r2); - Rewrite (Rplus_sym - (Rplus (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2)))) r2); - Rewrite <-(Rplus_assoc r1 r2 - (Rplus (Ropp (IZR (Int_part r1))) (Ropp (IZR (Int_part r2))))); - Rewrite <-(Ropp_distr1 (IZR (Int_part r1)) (IZR (Int_part r2)));Unfold Rminus; - Trivial with zarith real. -Qed. diff --git a/theories7/Reals/R_sqr.v b/theories7/Reals/R_sqr.v deleted file mode 100644 index fc01a164..00000000 --- a/theories7/Reals/R_sqr.v +++ /dev/null @@ -1,232 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* ~``x==0``. -Intros; Red; Intro; Rewrite H0 in H; Rewrite Rsqr_O in H; Elim (Rlt_antirefl ``0`` H). -Qed. - -Lemma Rsqr_pos_lt : (x:R) ~(x==R0)->``0<(Rsqr x)``. -Intros; Case (total_order R0 x); Intro; [Unfold Rsqr; Apply Rmult_lt_pos; Assumption | Elim H0; Intro; [Elim H; Symmetry; Exact H1 | Rewrite Rsqr_neg; Generalize (Rlt_Ropp x ``0`` H1); Rewrite Ropp_O; Intro; Unfold Rsqr; Apply Rmult_lt_pos; Assumption]]. -Qed. - -Lemma Rsqr_div : (x,y:R) ~``y==0`` -> ``(Rsqr (x/y))==(Rsqr x)/(Rsqr y)``. -Intros; Unfold Rsqr. -Unfold Rdiv. -Rewrite Rinv_Rmult. -Repeat Rewrite Rmult_assoc. -Apply Rmult_mult_r. -Pattern 2 x; Rewrite Rmult_sym. -Repeat Rewrite Rmult_assoc. -Apply Rmult_mult_r. -Reflexivity. -Assumption. -Assumption. -Qed. - -Lemma Rsqr_eq_0 : (x:R) ``(Rsqr x)==0`` -> ``x==0``. -Unfold Rsqr; Intros; Generalize (without_div_Od x x H); Intro; Elim H0; Intro ; Assumption. -Qed. - -Lemma Rsqr_minus_plus : (a,b:R) ``(a-b)*(a+b)==(Rsqr a)-(Rsqr b)``. -Intros; SqRing. -Qed. - -Lemma Rsqr_plus_minus : (a,b:R) ``(a+b)*(a-b)==(Rsqr a)-(Rsqr b)``. -Intros; SqRing. -Qed. - -Lemma Rsqr_incr_0 : (x,y:R) ``(Rsqr x)<=(Rsqr y)`` -> ``0<=x`` -> ``0<=y`` -> ``x<=y``. -Intros; Case (total_order_Rle x y); Intro; [Assumption | Cut ``y ``0<=y`` -> ``x<=y``. -Intros; Case (total_order_Rle x y); Intro; [Assumption | Cut ``y``0<=x``->``0<= y``->``(Rsqr x)<=(Rsqr y)``. -Intros; Unfold Rsqr; Apply Rle_Rmult_comp; Assumption. -Qed. - -Lemma Rsqr_incrst_0 : (x,y:R) ``(Rsqr x)<(Rsqr y)``->``0<=x``->``0<=y``-> ``x``0<=x``->``0<=y``->``(Rsqr x)<(Rsqr y)``. -Intros; Unfold Rsqr; Apply Rmult_lt2; Assumption. -Qed. - -Lemma Rsqr_neg_pos_le_0 : (x,y:R) ``(Rsqr x)<=(Rsqr y)``->``0<=y``->``-y<=x``. -Intros; Case (case_Rabsolu x); Intro. -Generalize (Rlt_Ropp x ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-x`` H1); Intro; Rewrite (Rsqr_neg x) in H; Generalize (Rsqr_incr_0 (Ropp x) y H H2 H0); Intro; Rewrite <- (Ropp_Ropp x); Apply Rge_Ropp; Apply Rle_sym1; Assumption. -Apply Rle_trans with ``0``; [Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Assumption | Apply Rle_sym2; Assumption]. -Qed. - -Lemma Rsqr_neg_pos_le_1 : (x,y:R) ``(-y)<=x`` -> ``x<=y`` -> ``0<=y`` -> ``(Rsqr x)<=(Rsqr y)``. -Intros; Case (case_Rabsolu x); Intro. -Generalize (Rlt_Ropp x ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-x`` H2); Intro; Generalize (Rle_Ropp ``-y`` x H); Rewrite Ropp_Ropp; Intro; Generalize (Rle_sym2 ``-x`` y H4); Intro; Rewrite (Rsqr_neg x); Apply Rsqr_incr_1; Assumption. -Generalize (Rle_sym2 ``0`` x r); Intro; Apply Rsqr_incr_1; Assumption. -Qed. - -Lemma neg_pos_Rsqr_le : (x,y:R) ``(-y)<=x``->``x<=y``->``(Rsqr x)<=(Rsqr y)``. -Intros; Case (case_Rabsolu x); Intro. -Generalize (Rlt_Ropp x ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rle_Ropp ``-y`` x H); Rewrite Ropp_Ropp; Intro; Generalize (Rle_sym2 ``-x`` y H2); Intro; Generalize (Rlt_le ``0`` ``-x`` H1); Intro; Generalize (Rle_trans ``0`` ``-x`` y H4 H3); Intro; Rewrite (Rsqr_neg x); Apply Rsqr_incr_1; Assumption. -Generalize (Rle_sym2 ``0`` x r); Intro; Generalize (Rle_trans ``0`` x y H1 H0); Intro; Apply Rsqr_incr_1; Assumption. -Qed. - -Lemma Rsqr_abs : (x:R) ``(Rsqr x)==(Rsqr (Rabsolu x))``. -Intro; Unfold Rabsolu; Case (case_Rabsolu x); Intro; [Apply Rsqr_neg | Reflexivity]. -Qed. - -Lemma Rsqr_le_abs_0 : (x,y:R) ``(Rsqr x)<=(Rsqr y)`` -> ``(Rabsolu x)<=(Rabsolu y)``. -Intros; Apply Rsqr_incr_0; Repeat Rewrite <- Rsqr_abs; [Assumption | Apply Rabsolu_pos | Apply Rabsolu_pos]. -Qed. - -Lemma Rsqr_le_abs_1 : (x,y:R) ``(Rabsolu x)<=(Rabsolu y)`` -> ``(Rsqr x)<=(Rsqr y)``. -Intros; Rewrite (Rsqr_abs x); Rewrite (Rsqr_abs y); Apply (Rsqr_incr_1 (Rabsolu x) (Rabsolu y) H (Rabsolu_pos x) (Rabsolu_pos y)). -Qed. - -Lemma Rsqr_lt_abs_0 : (x,y:R) ``(Rsqr x)<(Rsqr y)`` -> ``(Rabsolu x)<(Rabsolu y)``. -Intros; Apply Rsqr_incrst_0; Repeat Rewrite <- Rsqr_abs; [Assumption | Apply Rabsolu_pos | Apply Rabsolu_pos]. -Qed. - -Lemma Rsqr_lt_abs_1 : (x,y:R) ``(Rabsolu x)<(Rabsolu y)`` -> ``(Rsqr x)<(Rsqr y)``. -Intros; Rewrite (Rsqr_abs x); Rewrite (Rsqr_abs y); Apply (Rsqr_incrst_1 (Rabsolu x) (Rabsolu y) H (Rabsolu_pos x) (Rabsolu_pos y)). -Qed. - -Lemma Rsqr_inj : (x,y:R) ``0<=x`` -> ``0<=y`` -> (Rsqr x)==(Rsqr y) -> x==y. -Intros; Generalize (Rle_le_eq (Rsqr x) (Rsqr y)); Intro; Elim H2; Intros _ H3; Generalize (H3 H1); Intro; Elim H4; Intros; Apply Rle_antisym; Apply Rsqr_incr_0; Assumption. -Qed. - -Lemma Rsqr_eq_abs_0 : (x,y:R) (Rsqr x)==(Rsqr y) -> (Rabsolu x)==(Rabsolu y). -Intros; Unfold Rabsolu; Case (case_Rabsolu x); Case (case_Rabsolu y); Intros. -Rewrite -> (Rsqr_neg x) in H; Rewrite -> (Rsqr_neg y) in H; Generalize (Rlt_Ropp y ``0`` r); Generalize (Rlt_Ropp x ``0`` r0); Rewrite Ropp_O; Intros; Generalize (Rlt_le ``0`` ``-x`` H0); Generalize (Rlt_le ``0`` ``-y`` H1); Intros; Apply Rsqr_inj; Assumption. -Rewrite -> (Rsqr_neg x) in H; Generalize (Rle_sym2 ``0`` y r); Intro; Generalize (Rlt_Ropp x ``0`` r0); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-x`` H1); Intro; Apply Rsqr_inj; Assumption. -Rewrite -> (Rsqr_neg y) in H; Generalize (Rle_sym2 ``0`` x r0); Intro; Generalize (Rlt_Ropp y ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-y`` H1); Intro; Apply Rsqr_inj; Assumption. -Generalize (Rle_sym2 ``0`` x r0); Generalize (Rle_sym2 ``0`` y r); Intros; Apply Rsqr_inj; Assumption. -Qed. - -Lemma Rsqr_eq_asb_1 : (x,y:R) (Rabsolu x)==(Rabsolu y) -> (Rsqr x)==(Rsqr y). -Intros; Cut ``(Rsqr (Rabsolu x))==(Rsqr (Rabsolu y))``. -Intro; Repeat Rewrite <- Rsqr_abs in H0; Assumption. -Rewrite H; Reflexivity. -Qed. - -Lemma triangle_rectangle : (x,y,z:R) ``0<=z``->``(Rsqr x)+(Rsqr y)<=(Rsqr z)``->``-z<=x<=z`` /\``-z<=y<=z``. -Intros; Generalize (plus_le_is_le (Rsqr x) (Rsqr y) (Rsqr z) (pos_Rsqr y) H0); Rewrite Rplus_sym in H0; Generalize (plus_le_is_le (Rsqr y) (Rsqr x) (Rsqr z) (pos_Rsqr x) H0); Intros; Split; [Split; [Apply Rsqr_neg_pos_le_0; Assumption | Apply Rsqr_incr_0_var; Assumption] | Split; [Apply Rsqr_neg_pos_le_0; Assumption | Apply Rsqr_incr_0_var; Assumption]]. -Qed. - -Lemma triangle_rectangle_lt : (x,y,z:R) ``(Rsqr x)+(Rsqr y)<(Rsqr z)`` -> ``(Rabsolu x)<(Rabsolu z)``/\``(Rabsolu y)<(Rabsolu z)``. -Intros; Split; [Generalize (plus_lt_is_lt (Rsqr x) (Rsqr y) (Rsqr z) (pos_Rsqr y) H); Intro; Apply Rsqr_lt_abs_0; Assumption | Rewrite Rplus_sym in H; Generalize (plus_lt_is_lt (Rsqr y) (Rsqr x) (Rsqr z) (pos_Rsqr x) H); Intro; Apply Rsqr_lt_abs_0; Assumption]. -Qed. - -Lemma triangle_rectangle_le : (x,y,z:R) ``(Rsqr x)+(Rsqr y)<=(Rsqr z)`` -> ``(Rabsolu x)<=(Rabsolu z)``/\``(Rabsolu y)<=(Rabsolu z)``. -Intros; Split; [Generalize (plus_le_is_le (Rsqr x) (Rsqr y) (Rsqr z) (pos_Rsqr y) H); Intro; Apply Rsqr_le_abs_0; Assumption | Rewrite Rplus_sym in H; Generalize (plus_le_is_le (Rsqr y) (Rsqr x) (Rsqr z) (pos_Rsqr x) H); Intro; Apply Rsqr_le_abs_0; Assumption]. -Qed. - -Lemma Rsqr_inv : (x:R) ~``x==0`` -> ``(Rsqr (/x))==/(Rsqr x)``. -Intros; Unfold Rsqr. -Rewrite Rinv_Rmult; Try Reflexivity Orelse Assumption. -Qed. - -Lemma canonical_Rsqr : (a:nonzeroreal;b,c,x:R) ``a*(Rsqr x)+b*x+c == a* (Rsqr (x+b/(2*a))) + (4*a*c - (Rsqr b))/(4*a)``. -Intros. -Rewrite Rsqr_plus. -Repeat Rewrite Rmult_Rplus_distr. -Repeat Rewrite Rplus_assoc. -Apply Rplus_plus_r. -Unfold Rdiv Rminus. -Replace ``2*1+2*1`` with ``4``; [Idtac | Ring]. -Rewrite (Rmult_Rplus_distrl ``4*a*c`` ``-(Rsqr b)`` ``/(4*a)``). -Rewrite Rsqr_times. -Repeat Rewrite Rinv_Rmult. -Repeat Rewrite (Rmult_sym a). -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Rewrite (Rmult_sym ``2``). -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Rewrite (Rmult_sym ``/2``). -Rewrite (Rmult_sym ``2``). -Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Rewrite (Rmult_sym a). -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Rewrite (Rmult_sym ``2``). -Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Repeat Rewrite Rplus_assoc. -Rewrite (Rplus_sym ``(Rsqr b)*((Rsqr (/a*/2))*a)``). -Repeat Rewrite Rplus_assoc. -Rewrite (Rmult_sym x). -Apply Rplus_plus_r. -Rewrite (Rmult_sym ``/a``). -Unfold Rsqr; Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Ring. -Apply (cond_nonzero a). -DiscrR. -Apply (cond_nonzero a). -DiscrR. -DiscrR. -Apply (cond_nonzero a). -DiscrR. -DiscrR. -DiscrR. -Apply (cond_nonzero a). -DiscrR. -Apply (cond_nonzero a). -Qed. - -Lemma Rsqr_eq : (x,y:R) (Rsqr x)==(Rsqr y) -> x==y \/ x==``-y``. -Intros; Unfold Rsqr in H; Generalize (Rplus_plus_r ``-(y*y)`` ``x*x`` ``y*y`` H); Rewrite Rplus_Ropp_l; Replace ``-(y*y)+x*x`` with ``(x-y)*(x+y)``. -Intro; Generalize (without_div_Od ``x-y`` ``x+y`` H0); Intro; Elim H1; Intros. -Left; Apply Rminus_eq; Assumption. -Right; Apply Rminus_eq; Unfold Rminus; Rewrite Ropp_Ropp; Assumption. -Ring. -Qed. diff --git a/theories7/Reals/R_sqrt.v b/theories7/Reals/R_sqrt.v deleted file mode 100644 index 8c87659b..00000000 --- a/theories7/Reals/R_sqrt.v +++ /dev/null @@ -1,251 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R := [x:R](Cases (case_Rabsolu x) of - (leftT _) => R0 - | (rightT a) => (Rsqrt (mknonnegreal x (Rle_sym2 ? ? a))) end). - -Lemma sqrt_positivity : (x:R) ``0<=x`` -> ``0<=(sqrt x)``. -Intros. -Unfold sqrt. -Case (case_Rabsolu x); Intro. -Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? r H)). -Apply Rsqrt_positivity. -Qed. - -Lemma sqrt_sqrt : (x:R) ``0<=x`` -> ``(sqrt x)*(sqrt x)==x``. -Intros. -Unfold sqrt. -Case (case_Rabsolu x); Intro. -Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? r H)). -Rewrite Rsqrt_Rsqrt; Reflexivity. -Qed. - -Lemma sqrt_0 : ``(sqrt 0)==0``. -Apply Rsqr_eq_0; Unfold Rsqr; Apply sqrt_sqrt; Right; Reflexivity. -Qed. - -Lemma sqrt_1 : ``(sqrt 1)==1``. -Apply (Rsqr_inj (sqrt R1) R1); [Apply sqrt_positivity; Left | Left | Unfold Rsqr; Rewrite -> sqrt_sqrt; [Ring | Left]]; Apply Rlt_R0_R1. -Qed. - -Lemma sqrt_eq_0 : (x:R) ``0<=x``->``(sqrt x)==0``->``x==0``. -Intros; Cut ``(Rsqr (sqrt x))==0``. -Intro; Unfold Rsqr in H1; Rewrite -> sqrt_sqrt in H1; Assumption. -Rewrite H0; Apply Rsqr_O. -Qed. - -Lemma sqrt_lem_0 : (x,y:R) ``0<=x``->``0<=y``->(sqrt x)==y->``y*y==x``. -Intros; Rewrite <- H1; Apply (sqrt_sqrt x H). -Qed. - -Lemma sqtr_lem_1 : (x,y:R) ``0<=x``->``0<=y``->``y*y==x``->(sqrt x)==y. -Intros; Apply Rsqr_inj; [Apply (sqrt_positivity x H) | Assumption | Unfold Rsqr; Rewrite -> H1; Apply (sqrt_sqrt x H)]. -Qed. - -Lemma sqrt_def : (x:R) ``0<=x``->``(sqrt x)*(sqrt x)==x``. -Intros; Apply (sqrt_sqrt x H). -Qed. - -Lemma sqrt_square : (x:R) ``0<=x``->``(sqrt (x*x))==x``. -Intros; Apply (Rsqr_inj (sqrt (Rsqr x)) x (sqrt_positivity (Rsqr x) (pos_Rsqr x)) H); Unfold Rsqr; Apply (sqrt_sqrt (Rsqr x) (pos_Rsqr x)). -Qed. - -Lemma sqrt_Rsqr : (x:R) ``0<=x``->``(sqrt (Rsqr x))==x``. -Intros; Unfold Rsqr; Apply sqrt_square; Assumption. -Qed. - -Lemma sqrt_Rsqr_abs : (x:R) (sqrt (Rsqr x))==(Rabsolu x). -Intro x; Rewrite -> Rsqr_abs; Apply sqrt_Rsqr; Apply Rabsolu_pos. -Qed. - -Lemma Rsqr_sqrt : (x:R) ``0<=x``->(Rsqr (sqrt x))==x. -Intros x H1; Unfold Rsqr; Apply (sqrt_sqrt x H1). -Qed. - -Lemma sqrt_times : (x,y:R) ``0<=x``->``0<=y``->``(sqrt (x*y))==(sqrt x)*(sqrt y)``. -Intros x y H1 H2; Apply (Rsqr_inj (sqrt (Rmult x y)) (Rmult (sqrt x) (sqrt y)) (sqrt_positivity (Rmult x y) (Rmult_le_pos x y H1 H2)) (Rmult_le_pos (sqrt x) (sqrt y) (sqrt_positivity x H1) (sqrt_positivity y H2))); Rewrite Rsqr_times; Repeat Rewrite Rsqr_sqrt; [Ring | Assumption |Assumption | Apply (Rmult_le_pos x y H1 H2)]. -Qed. - -Lemma sqrt_lt_R0 : (x:R) ``0 ``0<(sqrt x)``. -Intros x H1; Apply Rsqr_incrst_0; [Rewrite Rsqr_O; Rewrite Rsqr_sqrt ; [Assumption | Left; Assumption] | Right; Reflexivity | Apply (sqrt_positivity x (Rlt_le R0 x H1))]. -Qed. - -Lemma sqrt_div : (x,y:R) ``0<=x``->``0``(sqrt (x/y))==(sqrt x)/(sqrt y)``. -Intros x y H1 H2; Apply Rsqr_inj; [ Apply sqrt_positivity; Apply (Rmult_le_pos x (Rinv y)); [ Assumption | Generalize (Rlt_Rinv y H2); Clear H2; Intro H2; Left; Assumption] | Apply (Rmult_le_pos (sqrt x) (Rinv (sqrt y))) ; [ Apply (sqrt_positivity x H1) | Generalize (sqrt_lt_R0 y H2); Clear H2; Intro H2; Generalize (Rlt_Rinv (sqrt y) H2); Clear H2; Intro H2; Left; Assumption] | Rewrite Rsqr_div; Repeat Rewrite Rsqr_sqrt; [ Reflexivity | Left; Assumption | Assumption | Generalize (Rlt_Rinv y H2); Intro H3; Generalize (Rlt_le R0 (Rinv y) H3); Intro H4; Apply (Rmult_le_pos x (Rinv y) H1 H4) |Red; Intro H3; Generalize (Rlt_le R0 y H2); Intro H4; Generalize (sqrt_eq_0 y H4 H3); Intro H5; Rewrite H5 in H2; Elim (Rlt_antirefl R0 H2)]]. -Qed. - -Lemma sqrt_lt_0 : (x,y:R) ``0<=x``->``0<=y``->``(sqrt x)<(sqrt y)``->``x``0<=y``->``x``(sqrt x)<(sqrt y)``. -Intros x y H1 H2 H3; Apply Rsqr_incrst_0; [Rewrite (Rsqr_sqrt x H1); Rewrite (Rsqr_sqrt y H2); Assumption | Apply (sqrt_positivity x H1) | Apply (sqrt_positivity y H2)]. -Qed. - -Lemma sqrt_le_0 : (x,y:R) ``0<=x``->``0<=y``->``(sqrt x)<=(sqrt y)``->``x<=y``. -Intros x y H1 H2 H3; Generalize (Rsqr_incr_1 (sqrt x) (sqrt y) H3 (sqrt_positivity x H1) (sqrt_positivity y H2)); Intro H4; Rewrite (Rsqr_sqrt x H1) in H4; Rewrite (Rsqr_sqrt y H2) in H4; Assumption. -Qed. - -Lemma sqrt_le_1 : (x,y:R) ``0<=x``->``0<=y``->``x<=y``->``(sqrt x)<=(sqrt y)``. -Intros x y H1 H2 H3; Apply Rsqr_incr_0; [ Rewrite (Rsqr_sqrt x H1); Rewrite (Rsqr_sqrt y H2); Assumption | Apply (sqrt_positivity x H1) | Apply (sqrt_positivity y H2)]. -Qed. - -Lemma sqrt_inj : (x,y:R) ``0<=x``->``0<=y``->(sqrt x)==(sqrt y)->x==y. -Intros; Cut ``(Rsqr (sqrt x))==(Rsqr (sqrt y))``. -Intro; Rewrite (Rsqr_sqrt x H) in H2; Rewrite (Rsqr_sqrt y H0) in H2; Assumption. -Rewrite H1; Reflexivity. -Qed. - -Lemma sqrt_less : (x:R) ``0<=x``->``1``(sqrt x)``x<1``->``x<(sqrt x)``. -Intros x H1 H2; Generalize (sqrt_lt_1 x R1 (Rlt_le R0 x H1) (Rlt_le R0 R1 (Rlt_R0_R1)) H2); Intro H3; Rewrite sqrt_1 in H3; Generalize (Rmult_ne (sqrt x)); Intro H4; Elim H4; Intros H5 H6; Rewrite <- H5; Pattern 1 x; Rewrite <- (sqrt_def x (Rlt_le R0 x H1)); Apply (Rlt_monotony (sqrt x) (sqrt x) R1 (sqrt_lt_R0 x H1) H3). -Qed. - -Lemma sqrt_cauchy : (a,b,c,d:R) ``a*c+b*d<=(sqrt ((Rsqr a)+(Rsqr b)))*(sqrt ((Rsqr c)+(Rsqr d)))``. -Intros a b c d; Apply Rsqr_incr_0_var; [Rewrite Rsqr_times; Repeat Rewrite Rsqr_sqrt; Unfold Rsqr; [Replace ``(a*c+b*d)*(a*c+b*d)`` with ``(a*a*c*c+b*b*d*d)+(2*a*b*c*d)``; [Replace ``(a*a+b*b)*(c*c+d*d)`` with ``(a*a*c*c+b*b*d*d)+(a*a*d*d+b*b*c*c)``; [Apply Rle_compatibility; Replace ``a*a*d*d+b*b*c*c`` with ``(2*a*b*c*d)+(a*a*d*d+b*b*c*c-2*a*b*c*d)``; [Pattern 1 ``2*a*b*c*d``; Rewrite <- Rplus_Or; Apply Rle_compatibility; Replace ``a*a*d*d+b*b*c*c-2*a*b*c*d`` with (Rsqr (Rminus (Rmult a d) (Rmult b c))); [Apply pos_Rsqr | Unfold Rsqr; Ring] | Ring] | Ring] | Ring] | Apply (ge0_plus_ge0_is_ge0 (Rsqr c) (Rsqr d) (pos_Rsqr c) (pos_Rsqr d)) | Apply (ge0_plus_ge0_is_ge0 (Rsqr a) (Rsqr b) (pos_Rsqr a) (pos_Rsqr b))] | Apply Rmult_le_pos; Apply sqrt_positivity; Apply ge0_plus_ge0_is_ge0; Apply pos_Rsqr]. -Qed. - -(************************************************************) -(* Resolution of [a*X^2+b*X+c=0] *) -(************************************************************) - -Definition Delta [a:nonzeroreal;b,c:R] : R := ``(Rsqr b)-4*a*c``. - -Definition Delta_is_pos [a:nonzeroreal;b,c:R] : Prop := ``0<=(Delta a b c)``. - -Definition sol_x1 [a:nonzeroreal;b,c:R] : R := ``(-b+(sqrt (Delta a b c)))/(2*a)``. - -Definition sol_x2 [a:nonzeroreal;b,c:R] : R := ``(-b-(sqrt (Delta a b c)))/(2*a)``. - -Lemma Rsqr_sol_eq_0_1 : (a:nonzeroreal;b,c,x:R) (Delta_is_pos a b c) -> (x==(sol_x1 a b c))\/(x==(sol_x2 a b c)) -> ``a*(Rsqr x)+b*x+c==0``. -Intros; Elim H0; Intro. -Unfold sol_x1 in H1; Unfold Delta in H1; Rewrite H1; Unfold Rdiv; Repeat Rewrite Rsqr_times; Rewrite Rsqr_plus; Rewrite <- Rsqr_neg; Rewrite Rsqr_sqrt. -Rewrite Rsqr_inv. -Unfold Rsqr; Repeat Rewrite Rinv_Rmult. -Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym a). -Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite Rmult_Rplus_distrl. -Repeat Rewrite Rmult_assoc. -Pattern 2 ``2``; Rewrite (Rmult_sym ``2``). -Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Rewrite (Rmult_Rplus_distrl ``-b`` ``(sqrt (b*b-(2*(2*(a*c)))))`` ``(/2*/a)``). -Rewrite Rmult_Rplus_distr; Repeat Rewrite Rplus_assoc. -Replace ``( -b*((sqrt (b*b-(2*(2*(a*c)))))*(/2*/a))+(b*( -b*(/2*/a))+(b*((sqrt (b*b-(2*(2*(a*c)))))*(/2*/a))+c)))`` with ``(b*( -b*(/2*/a)))+c``. -Unfold Rminus; Repeat Rewrite <- Rplus_assoc. -Replace ``b*b+b*b`` with ``2*(b*b)``. -Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_assoc. -Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Rewrite Ropp_mul1; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``2``). -Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite (Rmult_sym ``/2``); Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``2``). -Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Repeat Rewrite Rmult_assoc. -Rewrite (Rmult_sym a); Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite <- Ropp_mul2. -Ring. -Apply (cond_nonzero a). -DiscrR. -DiscrR. -DiscrR. -Ring. -Ring. -DiscrR. -Apply (cond_nonzero a). -DiscrR. -Apply (cond_nonzero a). -Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)]. -Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)]. -Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)]. -Assumption. -Unfold sol_x2 in H1; Unfold Delta in H1; Rewrite H1; Unfold Rdiv; Repeat Rewrite Rsqr_times; Rewrite Rsqr_minus; Rewrite <- Rsqr_neg; Rewrite Rsqr_sqrt. -Rewrite Rsqr_inv. -Unfold Rsqr; Repeat Rewrite Rinv_Rmult; Repeat Rewrite Rmult_assoc. -Rewrite (Rmult_sym a); Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Unfold Rminus; Rewrite Rmult_Rplus_distrl. -Rewrite Ropp_mul1; Repeat Rewrite Rmult_assoc; Pattern 2 ``2``; Rewrite (Rmult_sym ``2``). -Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite (Rmult_Rplus_distrl ``-b`` ``-(sqrt (b*b+ -(2*(2*(a*c))))) `` ``(/2*/a)``). -Rewrite Rmult_Rplus_distr; Repeat Rewrite Rplus_assoc. -Rewrite Ropp_mul1; Rewrite Ropp_Ropp. -Replace ``(b*((sqrt (b*b+ -(2*(2*(a*c)))))*(/2*/a))+(b*( -b*(/2*/a))+(b*( -(sqrt (b*b+ -(2*(2*(a*c)))))*(/2*/a))+c)))`` with ``(b*( -b*(/2*/a)))+c``. -Repeat Rewrite <- Rplus_assoc; Replace ``b*b+b*b`` with ``2*(b*b)``. -Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Ropp_mul1; Repeat Rewrite Rmult_assoc. -Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite (Rmult_sym ``/2``); Repeat Rewrite Rmult_assoc. -Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym a); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite <- Ropp_mul2; Ring. -Apply (cond_nonzero a). -DiscrR. -DiscrR. -DiscrR. -Ring. -Ring. -DiscrR. -Apply (cond_nonzero a). -DiscrR. -DiscrR. -Apply (cond_nonzero a). -Apply prod_neq_R0; DiscrR Orelse Apply (cond_nonzero a). -Apply prod_neq_R0; DiscrR Orelse Apply (cond_nonzero a). -Apply prod_neq_R0; DiscrR Orelse Apply (cond_nonzero a). -Assumption. -Qed. - -Lemma Rsqr_sol_eq_0_0 : (a:nonzeroreal;b,c,x:R) (Delta_is_pos a b c) -> ``a*(Rsqr x)+b*x+c==0`` -> (x==(sol_x1 a b c))\/(x==(sol_x2 a b c)). -Intros; Rewrite (canonical_Rsqr a b c x) in H0; Rewrite Rplus_sym in H0; Generalize (Rplus_Ropp ``(4*a*c-(Rsqr b))/(4*a)`` ``a*(Rsqr (x+b/(2*a)))`` H0); Cut ``(Rsqr b)-4*a*c==(Delta a b c)``. -Intro; Replace ``-((4*a*c-(Rsqr b))/(4*a))`` with ``((Rsqr b)-4*a*c)/(4*a)``. -Rewrite H1; Intro; Generalize (Rmult_mult_r ``/a`` ``a*(Rsqr (x+b/(2*a)))`` ``(Delta a b c)/(4*a)`` H2); Replace ``/a*(a*(Rsqr (x+b/(2*a))))`` with ``(Rsqr (x+b/(2*a)))``. -Replace ``/a*(Delta a b c)/(4*a)`` with ``(Rsqr ((sqrt (Delta a b c))/(2*a)))``. -Intro; Generalize (Rsqr_eq ``(x+b/(2*a))`` ``((sqrt (Delta a b c))/(2*a))`` H3); Intro; Elim H4; Intro. -Left; Unfold sol_x1; Generalize (Rplus_plus_r ``-(b/(2*a))`` ``x+b/(2*a)`` ``(sqrt (Delta a b c))/(2*a)`` H5); Replace `` -(b/(2*a))+(x+b/(2*a))`` with x. -Intro; Rewrite H6; Unfold Rdiv; Ring. -Ring. -Right; Unfold sol_x2; Generalize (Rplus_plus_r ``-(b/(2*a))`` ``x+b/(2*a)`` ``-((sqrt (Delta a b c))/(2*a))`` H5); Replace `` -(b/(2*a))+(x+b/(2*a))`` with x. -Intro; Rewrite H6; Unfold Rdiv; Ring. -Ring. -Rewrite Rsqr_div. -Rewrite Rsqr_sqrt. -Unfold Rdiv. -Repeat Rewrite Rmult_assoc. -Rewrite (Rmult_sym ``/a``). -Rewrite Rmult_assoc. -Rewrite <- Rinv_Rmult. -Replace ``(2*(2*a))*a`` with ``(Rsqr (2*a))``. -Reflexivity. -SqRing. -Rewrite <- Rmult_assoc; Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)]. -Apply (cond_nonzero a). -Assumption. -Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)]. -Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. -Symmetry; Apply Rmult_1l. -Apply (cond_nonzero a). -Unfold Rdiv; Rewrite <- Ropp_mul1. -Rewrite Ropp_distr2. -Reflexivity. -Reflexivity. -Qed. diff --git a/theories7/Reals/Ranalysis.v b/theories7/Reals/Ranalysis.v deleted file mode 100644 index d5d84f50..00000000 --- a/theories7/Reals/Ranalysis.v +++ /dev/null @@ -1,477 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* - (Match Context With - |[|-(derivable ?)] -> IntroHypG ?1; IntroHypG ?2 - |[|-(continuity ?)] -> IntroHypG ?1; IntroHypG ?2 - | _ -> Idtac) -|[(minus_fct ?1 ?2)] -> - (Match Context With - |[|-(derivable ?)] -> IntroHypG ?1; IntroHypG ?2 - |[|-(continuity ?)] -> IntroHypG ?1; IntroHypG ?2 - | _ -> Idtac) -|[(mult_fct ?1 ?2)] -> - (Match Context With - |[|-(derivable ?)] -> IntroHypG ?1; IntroHypG ?2 - |[|-(continuity ?)] -> IntroHypG ?1; IntroHypG ?2 - | _ -> Idtac) -|[(div_fct ?1 ?2)] -> Let aux = ?2 In - (Match Context With - |[_:(x0:R)``(aux x0)<>0``|-(derivable ?)] -> IntroHypG ?1; IntroHypG ?2 - |[_:(x0:R)``(aux x0)<>0``|-(continuity ?)] -> IntroHypG ?1; IntroHypG ?2 - |[|-(derivable ?)] -> Cut ((x0:R)``(aux x0)<>0``); [Intro; IntroHypG ?1; IntroHypG ?2 | Try Assumption] - |[|-(continuity ?)] -> Cut ((x0:R)``(aux x0)<>0``); [Intro; IntroHypG ?1; IntroHypG ?2 | Try Assumption] - | _ -> Idtac) -|[(comp ?1 ?2)] -> - (Match Context With - |[|-(derivable ?)] -> IntroHypG ?1; IntroHypG ?2 - |[|-(continuity ?)] -> IntroHypG ?1; IntroHypG ?2 - | _ -> Idtac) -|[(opp_fct ?1)] -> - (Match Context With - |[|-(derivable ?)] -> IntroHypG ?1 - |[|-(continuity ?)] -> IntroHypG ?1 - | _ -> Idtac) -|[(inv_fct ?1)] -> Let aux = ?1 In - (Match Context With - |[_:(x0:R)``(aux x0)<>0``|-(derivable ?)] -> IntroHypG ?1 - |[_:(x0:R)``(aux x0)<>0``|-(continuity ?)] -> IntroHypG ?1 - |[|-(derivable ?)] -> Cut ((x0:R)``(aux x0)<>0``); [Intro; IntroHypG ?1 | Try Assumption] - |[|-(continuity ?)] -> Cut ((x0:R)``(aux x0)<>0``); [Intro; IntroHypG ?1| Try Assumption] - | _ -> Idtac) -|[cos] -> Idtac -|[sin] -> Idtac -|[cosh] -> Idtac -|[sinh] -> Idtac -|[exp] -> Idtac -|[Rsqr] -> Idtac -|[sqrt] -> Idtac -|[id] -> Idtac -|[(fct_cte ?)] -> Idtac -|[(pow_fct ?)] -> Idtac -|[Rabsolu] -> Idtac -|[?1] -> Let p = ?1 In - (Match Context With - |[_:(derivable p)|- ?] -> Idtac - |[|-(derivable p)] -> Idtac - |[|-(derivable ?)] -> Cut True -> (derivable p); [Intro HYPPD; Cut (derivable p); [Intro; Clear HYPPD | Apply HYPPD; Clear HYPPD; Trivial] | Idtac] - | [_:(continuity p)|- ?] -> Idtac - |[|-(continuity p)] -> Idtac - |[|-(continuity ?)] -> Cut True -> (continuity p); [Intro HYPPD; Cut (continuity p); [Intro; Clear HYPPD | Apply HYPPD; Clear HYPPD; Trivial] | Idtac] - | _ -> Idtac). - -(**********) -Recursive Tactic Definition IntroHypL trm pt := -Match trm With -|[(plus_fct ?1 ?2)] -> - (Match Context With - |[|-(derivable_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt - |[|-(continuity_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt - |[|-(eqT ? (derive_pt ? ? ?) ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt - | _ -> Idtac) -|[(minus_fct ?1 ?2)] -> - (Match Context With - |[|-(derivable_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt - |[|-(continuity_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt - |[|-(eqT ? (derive_pt ? ? ?) ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt - | _ -> Idtac) -|[(mult_fct ?1 ?2)] -> - (Match Context With - |[|-(derivable_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt - |[|-(continuity_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt - |[|-(eqT ? (derive_pt ? ? ?) ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt - | _ -> Idtac) -|[(div_fct ?1 ?2)] -> Let aux = ?2 In - (Match Context With - |[_:``(aux pt)<>0``|-(derivable_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt - |[_:``(aux pt)<>0``|-(continuity_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt - |[_:``(aux pt)<>0``|-(eqT ? (derive_pt ? ? ?) ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt - |[id:(x0:R)``(aux x0)<>0``|-(derivable_pt ? ?)] -> Generalize (id pt); Intro; IntroHypL ?1 pt; IntroHypL ?2 pt - |[id:(x0:R)``(aux x0)<>0``|-(continuity_pt ? ?)] -> Generalize (id pt); Intro; IntroHypL ?1 pt; IntroHypL ?2 pt - |[id:(x0:R)``(aux x0)<>0``|-(eqT ? (derive_pt ? ? ?) ?)] -> Generalize (id pt); Intro; IntroHypL ?1 pt; IntroHypL ?2 pt - |[|-(derivable_pt ? ?)] -> Cut ``(aux pt)<>0``; [Intro; IntroHypL ?1 pt; IntroHypL ?2 pt | Try Assumption] - |[|-(continuity_pt ? ?)] -> Cut ``(aux pt)<>0``; [Intro; IntroHypL ?1 pt; IntroHypL ?2 pt | Try Assumption] - |[|-(eqT ? (derive_pt ? ? ?) ?)] -> Cut ``(aux pt)<>0``; [Intro; IntroHypL ?1 pt; IntroHypL ?2 pt | Try Assumption] - | _ -> Idtac) -|[(comp ?1 ?2)] -> - (Match Context With - |[|-(derivable_pt ? ?)] -> Let pt_f1 = (Eval Cbv Beta in (?2 pt)) In IntroHypL ?1 pt_f1; IntroHypL ?2 pt - |[|-(continuity_pt ? ?)] -> Let pt_f1 = (Eval Cbv Beta in (?2 pt)) In IntroHypL ?1 pt_f1; IntroHypL ?2 pt - |[|-(eqT ? (derive_pt ? ? ?) ?)] -> Let pt_f1 = (Eval Cbv Beta in (?2 pt)) In IntroHypL ?1 pt_f1; IntroHypL ?2 pt - | _ -> Idtac) -|[(opp_fct ?1)] -> - (Match Context With - |[|-(derivable_pt ? ?)] -> IntroHypL ?1 pt - |[|-(continuity_pt ? ?)] -> IntroHypL ?1 pt - |[|-(eqT ? (derive_pt ? ? ?) ?)] -> IntroHypL ?1 pt - | _ -> Idtac) -|[(inv_fct ?1)] -> Let aux = ?1 In - (Match Context With - |[_:``(aux pt)<>0``|-(derivable_pt ? ?)] -> IntroHypL ?1 pt - |[_:``(aux pt)<>0``|-(continuity_pt ? ?)] -> IntroHypL ?1 pt - |[_:``(aux pt)<>0``|-(eqT ? (derive_pt ? ? ?) ?)] -> IntroHypL ?1 pt - |[id:(x0:R)``(aux x0)<>0``|-(derivable_pt ? ?)] -> Generalize (id pt); Intro; IntroHypL ?1 pt - |[id:(x0:R)``(aux x0)<>0``|-(continuity_pt ? ?)] -> Generalize (id pt); Intro; IntroHypL ?1 pt - |[id:(x0:R)``(aux x0)<>0``|-(eqT ? (derive_pt ? ? ?) ?)] -> Generalize (id pt); Intro; IntroHypL ?1 pt - |[|-(derivable_pt ? ?)] -> Cut ``(aux pt)<>0``; [Intro; IntroHypL ?1 pt | Try Assumption] - |[|-(continuity_pt ? ?)] -> Cut ``(aux pt)<>0``; [Intro; IntroHypL ?1 pt| Try Assumption] - |[|-(eqT ? (derive_pt ? ? ?) ?)] -> Cut ``(aux pt)<>0``; [Intro; IntroHypL ?1 pt | Try Assumption] - | _ -> Idtac) -|[cos] -> Idtac -|[sin] -> Idtac -|[cosh] -> Idtac -|[sinh] -> Idtac -|[exp] -> Idtac -|[Rsqr] -> Idtac -|[id] -> Idtac -|[(fct_cte ?)] -> Idtac -|[(pow_fct ?)] -> Idtac -|[sqrt] -> - (Match Context With - |[|-(derivable_pt ? ?)] -> Cut ``0 Cut ``0<=pt``; [Intro | Try Assumption] - |[|-(eqT ? (derive_pt ? ? ?) ?)] -> Cut ``0 Idtac) -|[Rabsolu] -> - (Match Context With - |[|-(derivable_pt ? ?)] -> Cut ``pt<>0``; [Intro | Try Assumption] - | _ -> Idtac) -|[?1] -> Let p = ?1 In - (Match Context With - |[_:(derivable_pt p pt)|- ?] -> Idtac - |[|-(derivable_pt p pt)] -> Idtac - |[|-(derivable_pt ? ?)] -> Cut True -> (derivable_pt p pt); [Intro HYPPD; Cut (derivable_pt p pt); [Intro; Clear HYPPD | Apply HYPPD; Clear HYPPD; Trivial] | Idtac] - |[_:(continuity_pt p pt)|- ?] -> Idtac - |[|-(continuity_pt p pt)] -> Idtac - |[|-(continuity_pt ? ?)] -> Cut True -> (continuity_pt p pt); [Intro HYPPD; Cut (continuity_pt p pt); [Intro; Clear HYPPD | Apply HYPPD; Clear HYPPD; Trivial] | Idtac] - |[|-(eqT ? (derive_pt ? ? ?) ?)] -> Cut True -> (derivable_pt p pt); [Intro HYPPD; Cut (derivable_pt p pt); [Intro; Clear HYPPD | Apply HYPPD; Clear HYPPD; Trivial] | Idtac] - | _ -> Idtac). - -(**********) -Recursive Tactic Definition IsDiff_pt := -Match Context With - (* fonctions de base *) - [|-(derivable_pt Rsqr ?)] -> Apply derivable_pt_Rsqr -|[|-(derivable_pt id ?1)] -> Apply (derivable_pt_id ?1) -|[|-(derivable_pt (fct_cte ?) ?)] -> Apply derivable_pt_const -|[|-(derivable_pt sin ?)] -> Apply derivable_pt_sin -|[|-(derivable_pt cos ?)] -> Apply derivable_pt_cos -|[|-(derivable_pt sinh ?)] -> Apply derivable_pt_sinh -|[|-(derivable_pt cosh ?)] -> Apply derivable_pt_cosh -|[|-(derivable_pt exp ?)] -> Apply derivable_pt_exp -|[|-(derivable_pt (pow_fct ?) ?)] -> Unfold pow_fct; Apply derivable_pt_pow -|[|-(derivable_pt sqrt ?1)] -> Apply (derivable_pt_sqrt ?1); Assumption Orelse Unfold plus_fct minus_fct opp_fct mult_fct div_fct inv_fct comp id fct_cte pow_fct -|[|-(derivable_pt Rabsolu ?1)] -> Apply (derivable_pt_Rabsolu ?1); Assumption Orelse Unfold plus_fct minus_fct opp_fct mult_fct div_fct inv_fct comp id fct_cte pow_fct - (* regles de differentiabilite *) - (* PLUS *) -|[|-(derivable_pt (plus_fct ?1 ?2) ?3)] -> Apply (derivable_pt_plus ?1 ?2 ?3); IsDiff_pt - (* MOINS *) -|[|-(derivable_pt (minus_fct ?1 ?2) ?3)] -> Apply (derivable_pt_minus ?1 ?2 ?3); IsDiff_pt - (* OPPOSE *) -|[|-(derivable_pt (opp_fct ?1) ?2)] -> Apply (derivable_pt_opp ?1 ?2); IsDiff_pt - (* MULTIPLICATION PAR UN SCALAIRE *) -|[|-(derivable_pt (mult_real_fct ?1 ?2) ?3)] -> Apply (derivable_pt_scal ?2 ?1 ?3); IsDiff_pt - (* MULTIPLICATION *) -|[|-(derivable_pt (mult_fct ?1 ?2) ?3)] -> Apply (derivable_pt_mult ?1 ?2 ?3); IsDiff_pt - (* DIVISION *) - |[|-(derivable_pt (div_fct ?1 ?2) ?3)] -> Apply (derivable_pt_div ?1 ?2 ?3); [IsDiff_pt | IsDiff_pt | Try Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct comp pow_fct id fct_cte] - (* INVERSION *) - |[|-(derivable_pt (inv_fct ?1) ?2)] -> Apply (derivable_pt_inv ?1 ?2); [Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct comp pow_fct id fct_cte | IsDiff_pt] - (* COMPOSITION *) -|[|-(derivable_pt (comp ?1 ?2) ?3)] -> Apply (derivable_pt_comp ?2 ?1 ?3); IsDiff_pt -|[_:(derivable_pt ?1 ?2)|-(derivable_pt ?1 ?2)] -> Assumption -|[_:(derivable ?1) |- (derivable_pt ?1 ?2)] -> Cut (derivable ?1); [Intro HypDDPT; Apply HypDDPT | Assumption] -|[|-True->(derivable_pt ? ?)] -> Intro HypTruE; Clear HypTruE; IsDiff_pt -| _ -> Try Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte comp pow_fct. - -(**********) -Recursive Tactic Definition IsDiff_glob := -Match Context With - (* fonctions de base *) - [|-(derivable Rsqr)] -> Apply derivable_Rsqr - |[|-(derivable id)] -> Apply derivable_id - |[|-(derivable (fct_cte ?))] -> Apply derivable_const - |[|-(derivable sin)] -> Apply derivable_sin - |[|-(derivable cos)] -> Apply derivable_cos - |[|-(derivable cosh)] -> Apply derivable_cosh - |[|-(derivable sinh)] -> Apply derivable_sinh - |[|-(derivable exp)] -> Apply derivable_exp - |[|-(derivable (pow_fct ?))] -> Unfold pow_fct; Apply derivable_pow - (* regles de differentiabilite *) - (* PLUS *) - |[|-(derivable (plus_fct ?1 ?2))] -> Apply (derivable_plus ?1 ?2); IsDiff_glob - (* MOINS *) - |[|-(derivable (minus_fct ?1 ?2))] -> Apply (derivable_minus ?1 ?2); IsDiff_glob - (* OPPOSE *) - |[|-(derivable (opp_fct ?1))] -> Apply (derivable_opp ?1); IsDiff_glob - (* MULTIPLICATION PAR UN SCALAIRE *) - |[|-(derivable (mult_real_fct ?1 ?2))] -> Apply (derivable_scal ?2 ?1); IsDiff_glob - (* MULTIPLICATION *) - |[|-(derivable (mult_fct ?1 ?2))] -> Apply (derivable_mult ?1 ?2); IsDiff_glob - (* DIVISION *) - |[|-(derivable (div_fct ?1 ?2))] -> Apply (derivable_div ?1 ?2); [IsDiff_glob | IsDiff_glob | Try Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte comp pow_fct] - (* INVERSION *) - |[|-(derivable (inv_fct ?1))] -> Apply (derivable_inv ?1); [Try Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte comp pow_fct | IsDiff_glob] - (* COMPOSITION *) - |[|-(derivable (comp sqrt ?))] -> Unfold derivable; Intro; Try IsDiff_pt - |[|-(derivable (comp Rabsolu ?))] -> Unfold derivable; Intro; Try IsDiff_pt - |[|-(derivable (comp ?1 ?2))] -> Apply (derivable_comp ?2 ?1); IsDiff_glob - |[_:(derivable ?1)|-(derivable ?1)] -> Assumption - |[|-True->(derivable ?)] -> Intro HypTruE; Clear HypTruE; IsDiff_glob - | _ -> Try Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte comp pow_fct. - -(**********) -Recursive Tactic Definition IsCont_pt := -Match Context With - (* fonctions de base *) - [|-(continuity_pt Rsqr ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_Rsqr -|[|-(continuity_pt id ?1)] -> Apply derivable_continuous_pt; Apply (derivable_pt_id ?1) -|[|-(continuity_pt (fct_cte ?) ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_const -|[|-(continuity_pt sin ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_sin -|[|-(continuity_pt cos ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_cos -|[|-(continuity_pt sinh ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_sinh -|[|-(continuity_pt cosh ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_cosh -|[|-(continuity_pt exp ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_exp -|[|-(continuity_pt (pow_fct ?) ?)] -> Unfold pow_fct; Apply derivable_continuous_pt; Apply derivable_pt_pow -|[|-(continuity_pt sqrt ?1)] -> Apply continuity_pt_sqrt; Assumption Orelse Unfold plus_fct minus_fct opp_fct mult_fct div_fct inv_fct comp id fct_cte pow_fct -|[|-(continuity_pt Rabsolu ?1)] -> Apply (continuity_Rabsolu ?1) - (* regles de differentiabilite *) - (* PLUS *) -|[|-(continuity_pt (plus_fct ?1 ?2) ?3)] -> Apply (continuity_pt_plus ?1 ?2 ?3); IsCont_pt - (* MOINS *) -|[|-(continuity_pt (minus_fct ?1 ?2) ?3)] -> Apply (continuity_pt_minus ?1 ?2 ?3); IsCont_pt - (* OPPOSE *) -|[|-(continuity_pt (opp_fct ?1) ?2)] -> Apply (continuity_pt_opp ?1 ?2); IsCont_pt - (* MULTIPLICATION PAR UN SCALAIRE *) -|[|-(continuity_pt (mult_real_fct ?1 ?2) ?3)] -> Apply (continuity_pt_scal ?2 ?1 ?3); IsCont_pt - (* MULTIPLICATION *) -|[|-(continuity_pt (mult_fct ?1 ?2) ?3)] -> Apply (continuity_pt_mult ?1 ?2 ?3); IsCont_pt - (* DIVISION *) - |[|-(continuity_pt (div_fct ?1 ?2) ?3)] -> Apply (continuity_pt_div ?1 ?2 ?3); [IsCont_pt | IsCont_pt | Try Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct comp id fct_cte pow_fct] - (* INVERSION *) - |[|-(continuity_pt (inv_fct ?1) ?2)] -> Apply (continuity_pt_inv ?1 ?2); [IsCont_pt | Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct comp id fct_cte pow_fct] - (* COMPOSITION *) -|[|-(continuity_pt (comp ?1 ?2) ?3)] -> Apply (continuity_pt_comp ?2 ?1 ?3); IsCont_pt -|[_:(continuity_pt ?1 ?2)|-(continuity_pt ?1 ?2)] -> Assumption -|[_:(continuity ?1) |- (continuity_pt ?1 ?2)] -> Cut (continuity ?1); [Intro HypDDPT; Apply HypDDPT | Assumption] -|[_:(derivable_pt ?1 ?2)|-(continuity_pt ?1 ?2)] -> Apply derivable_continuous_pt; Assumption -|[_:(derivable ?1)|-(continuity_pt ?1 ?2)] -> Cut (continuity ?1); [Intro HypDDPT; Apply HypDDPT | Apply derivable_continuous; Assumption] -|[|-True->(continuity_pt ? ?)] -> Intro HypTruE; Clear HypTruE; IsCont_pt -| _ -> Try Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte comp pow_fct. - -(**********) -Recursive Tactic Definition IsCont_glob := -Match Context With - (* fonctions de base *) - [|-(continuity Rsqr)] -> Apply derivable_continuous; Apply derivable_Rsqr - |[|-(continuity id)] -> Apply derivable_continuous; Apply derivable_id - |[|-(continuity (fct_cte ?))] -> Apply derivable_continuous; Apply derivable_const - |[|-(continuity sin)] -> Apply derivable_continuous; Apply derivable_sin - |[|-(continuity cos)] -> Apply derivable_continuous; Apply derivable_cos - |[|-(continuity exp)] -> Apply derivable_continuous; Apply derivable_exp - |[|-(continuity (pow_fct ?))] -> Unfold pow_fct; Apply derivable_continuous; Apply derivable_pow - |[|-(continuity sinh)] -> Apply derivable_continuous; Apply derivable_sinh - |[|-(continuity cosh)] -> Apply derivable_continuous; Apply derivable_cosh - |[|-(continuity Rabsolu)] -> Apply continuity_Rabsolu - (* regles de continuite *) - (* PLUS *) -|[|-(continuity (plus_fct ?1 ?2))] -> Apply (continuity_plus ?1 ?2); Try IsCont_glob Orelse Assumption - (* MOINS *) -|[|-(continuity (minus_fct ?1 ?2))] -> Apply (continuity_minus ?1 ?2); Try IsCont_glob Orelse Assumption - (* OPPOSE *) -|[|-(continuity (opp_fct ?1))] -> Apply (continuity_opp ?1); Try IsCont_glob Orelse Assumption - (* INVERSE *) -|[|-(continuity (inv_fct ?1))] -> Apply (continuity_inv ?1); Try IsCont_glob Orelse Assumption - (* MULTIPLICATION PAR UN SCALAIRE *) -|[|-(continuity (mult_real_fct ?1 ?2))] -> Apply (continuity_scal ?2 ?1); Try IsCont_glob Orelse Assumption - (* MULTIPLICATION *) -|[|-(continuity (mult_fct ?1 ?2))] -> Apply (continuity_mult ?1 ?2); Try IsCont_glob Orelse Assumption - (* DIVISION *) - |[|-(continuity (div_fct ?1 ?2))] -> Apply (continuity_div ?1 ?2); [Try IsCont_glob Orelse Assumption | Try IsCont_glob Orelse Assumption | Try Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte pow_fct] - (* COMPOSITION *) - |[|-(continuity (comp sqrt ?))] -> Unfold continuity_pt; Intro; Try IsCont_pt - |[|-(continuity (comp ?1 ?2))] -> Apply (continuity_comp ?2 ?1); Try IsCont_glob Orelse Assumption - |[_:(continuity ?1)|-(continuity ?1)] -> Assumption - |[|-True->(continuity ?)] -> Intro HypTruE; Clear HypTruE; IsCont_glob - |[_:(derivable ?1)|-(continuity ?1)] -> Apply derivable_continuous; Assumption - | _ -> Try Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte comp pow_fct. - -(**********) -Recursive Tactic Definition RewTerm trm := -Match trm With -| [(Rplus ?1 ?2)] -> Let p1= (RewTerm ?1) And p2 = (RewTerm ?2) In - (Match p1 With - [(fct_cte ?3)] -> - (Match p2 With - | [(fct_cte ?4)] -> '(fct_cte (Rplus ?3 ?4)) - | _ -> '(plus_fct p1 p2)) - | _ -> '(plus_fct p1 p2)) -| [(Rminus ?1 ?2)] -> Let p1 = (RewTerm ?1) And p2 = (RewTerm ?2) In - (Match p1 With - [(fct_cte ?3)] -> - (Match p2 With - | [(fct_cte ?4)] -> '(fct_cte (Rminus ?3 ?4)) - | _ -> '(minus_fct p1 p2)) - | _ -> '(minus_fct p1 p2)) -| [(Rdiv ?1 ?2)] -> Let p1 = (RewTerm ?1) And p2 = (RewTerm ?2) In - (Match p1 With - [(fct_cte ?3)] -> - (Match p2 With - | [(fct_cte ?4)] -> '(fct_cte (Rdiv ?3 ?4)) - | _ -> '(div_fct p1 p2)) - | _ -> - (Match p2 With - | [(fct_cte ?4)] -> '(mult_fct p1 (fct_cte (Rinv ?4))) - | _ -> '(div_fct p1 p2))) -| [(Rmult ?1 (Rinv ?2))] -> Let p1 = (RewTerm ?1) And p2 = (RewTerm ?2) In - (Match p1 With - [(fct_cte ?3)] -> - (Match p2 With - | [(fct_cte ?4)] -> '(fct_cte (Rdiv ?3 ?4)) - | _ -> '(div_fct p1 p2)) - | _ -> - (Match p2 With - | [(fct_cte ?4)] -> '(mult_fct p1 (fct_cte (Rinv ?4))) - | _ -> '(div_fct p1 p2))) -| [(Rmult ?1 ?2)] -> Let p1 = (RewTerm ?1) And p2 = (RewTerm ?2) In - (Match p1 With - [(fct_cte ?3)] -> - (Match p2 With - | [(fct_cte ?4)] -> '(fct_cte (Rmult ?3 ?4)) - | _ -> '(mult_fct p1 p2)) - | _ -> '(mult_fct p1 p2)) -| [(Ropp ?1)] -> Let p = (RewTerm ?1) In - (Match p With - [(fct_cte ?2)] -> '(fct_cte (Ropp ?2)) - | _ -> '(opp_fct p)) -| [(Rinv ?1)] -> Let p = (RewTerm ?1) In - (Match p With - [(fct_cte ?2)] -> '(fct_cte (Rinv ?2)) - | _ -> '(inv_fct p)) -| [(?1 AppVar)] -> '?1 -| [(?1 ?2)] -> Let p = (RewTerm ?2) In - (Match p With - | [(fct_cte ?3)] -> '(fct_cte (?1 ?3)) - | _ -> '(comp ?1 p)) -| [AppVar] -> 'id -| [(pow AppVar ?1)] -> '(pow_fct ?1) -| [(pow ?1 ?2)] -> Let p = (RewTerm ?1) In - (Match p With - | [(fct_cte ?3)] -> '(fct_cte (pow_fct ?2 ?3)) - | _ -> '(comp (pow_fct ?2) p)) -| [?1]-> '(fct_cte ?1). - -(**********) -Recursive Tactic Definition ConsProof trm pt := -Match trm With -| [(plus_fct ?1 ?2)] -> Let p1 = (ConsProof ?1 pt) And p2 = (ConsProof ?2 pt) In '(derivable_pt_plus ?1 ?2 pt p1 p2) -| [(minus_fct ?1 ?2)] -> Let p1 = (ConsProof ?1 pt) And p2 = (ConsProof ?2 pt) In '(derivable_pt_minus ?1 ?2 pt p1 p2) -| [(mult_fct ?1 ?2)] -> Let p1 = (ConsProof ?1 pt) And p2 = (ConsProof ?2 pt) In '(derivable_pt_mult ?1 ?2 pt p1 p2) -| [(div_fct ?1 ?2)] -> - (Match Context With - |[id:~((?2 pt)==R0) |- ?] -> Let p1 = (ConsProof ?1 pt) And p2 = (ConsProof ?2 pt) In '(derivable_pt_div ?1 ?2 pt p1 p2 id) - | _ -> 'False) -| [(inv_fct ?1)] -> - (Match Context With - |[id:~((?1 pt)==R0) |- ?] -> Let p1 = (ConsProof ?1 pt) In '(derivable_pt_inv ?1 pt p1 id) - | _ -> 'False) -| [(comp ?1 ?2)] -> Let pt_f1 = (Eval Cbv Beta in (?2 pt)) In Let p1 = (ConsProof ?1 pt_f1) And p2 = (ConsProof ?2 pt) In '(derivable_pt_comp ?2 ?1 pt p2 p1) -| [(opp_fct ?1)] -> Let p1 = (ConsProof ?1 pt) In '(derivable_pt_opp ?1 pt p1) -| [sin] -> '(derivable_pt_sin pt) -| [cos] -> '(derivable_pt_cos pt) -| [sinh] -> '(derivable_pt_sinh pt) -| [cosh] -> '(derivable_pt_cosh pt) -| [exp] -> '(derivable_pt_exp pt) -| [id] -> '(derivable_pt_id pt) -| [Rsqr] -> '(derivable_pt_Rsqr pt) -| [sqrt] -> - (Match Context With - |[id:(Rlt R0 pt) |- ?] -> '(derivable_pt_sqrt pt id) - | _ -> 'False) -| [(fct_cte ?1)] -> '(derivable_pt_const ?1 pt) -| [?1] -> Let aux = ?1 In - (Match Context With - [ id : (derivable_pt aux pt) |- ?] -> 'id - |[ id : (derivable aux) |- ?] -> '(id pt) - | _ -> 'False). - -(**********) -Recursive Tactic Definition SimplifyDerive trm pt := -Match trm With -| [(plus_fct ?1 ?2)] -> Try Rewrite derive_pt_plus; SimplifyDerive ?1 pt; SimplifyDerive ?2 pt -| [(minus_fct ?1 ?2)] -> Try Rewrite derive_pt_minus; SimplifyDerive ?1 pt; SimplifyDerive ?2 pt -| [(mult_fct ?1 ?2)] -> Try Rewrite derive_pt_mult; SimplifyDerive ?1 pt; SimplifyDerive ?2 pt -| [(div_fct ?1 ?2)] -> Try Rewrite derive_pt_div; SimplifyDerive ?1 pt; SimplifyDerive ?2 pt -| [(comp ?1 ?2)] -> Let pt_f1 = (Eval Cbv Beta in (?2 pt)) In Try Rewrite derive_pt_comp; SimplifyDerive ?1 pt_f1; SimplifyDerive ?2 pt -| [(opp_fct ?1)] -> Try Rewrite derive_pt_opp; SimplifyDerive ?1 pt -| [(inv_fct ?1)] -> Try Rewrite derive_pt_inv; SimplifyDerive ?1 pt -| [(fct_cte ?1)] -> Try Rewrite derive_pt_const -| [id] -> Try Rewrite derive_pt_id -| [sin] -> Try Rewrite derive_pt_sin -| [cos] -> Try Rewrite derive_pt_cos -| [sinh] -> Try Rewrite derive_pt_sinh -| [cosh] -> Try Rewrite derive_pt_cosh -| [exp] -> Try Rewrite derive_pt_exp -| [Rsqr] -> Try Rewrite derive_pt_Rsqr -| [sqrt] -> Try Rewrite derive_pt_sqrt -| [?1] -> Let aux = ?1 In - (Match Context With - [ id : (eqT ? (derive_pt aux pt ?2) ?); H : (derivable aux) |- ? ] -> Try Replace (derive_pt aux pt (H pt)) with (derive_pt aux pt ?2); [Rewrite id | Apply pr_nu] - |[ id : (eqT ? (derive_pt aux pt ?2) ?); H : (derivable_pt aux pt) |- ? ] -> Try Replace (derive_pt aux pt H) with (derive_pt aux pt ?2); [Rewrite id | Apply pr_nu] - | _ -> Idtac ) -| _ -> Idtac. - -(**********) -Tactic Definition Reg := -Match Context With -| [|-(derivable_pt ?1 ?2)] -> -Let trm = Eval Cbv Beta in (?1 AppVar) In -Let aux = (RewTerm trm) In IntroHypL aux ?2; Try (Change (derivable_pt aux ?2); IsDiff_pt) Orelse IsDiff_pt -| [|-(derivable ?1)] -> -Let trm = Eval Cbv Beta in (?1 AppVar) In -Let aux = (RewTerm trm) In IntroHypG aux; Try (Change (derivable aux); IsDiff_glob) Orelse IsDiff_glob -| [|-(continuity ?1)] -> -Let trm = Eval Cbv Beta in (?1 AppVar) In -Let aux = (RewTerm trm) In IntroHypG aux; Try (Change (continuity aux); IsCont_glob) Orelse IsCont_glob -| [|-(continuity_pt ?1 ?2)] -> -Let trm = Eval Cbv Beta in (?1 AppVar) In -Let aux = (RewTerm trm) In IntroHypL aux ?2; Try (Change (continuity_pt aux ?2); IsCont_pt) Orelse IsCont_pt -| [|-(eqT ? (derive_pt ?1 ?2 ?3) ?4)] -> -Let trm = Eval Cbv Beta in (?1 AppVar) In -Let aux = (RewTerm trm) In -IntroHypL aux ?2; Let aux2 = (ConsProof aux ?2) In Try (Replace (derive_pt ?1 ?2 ?3) with (derive_pt aux ?2 aux2); [SimplifyDerive aux ?2; Try Unfold plus_fct minus_fct mult_fct div_fct id fct_cte inv_fct opp_fct; Try Ring | Try Apply pr_nu]) Orelse IsDiff_pt. diff --git a/theories7/Reals/Ranalysis1.v b/theories7/Reals/Ranalysis1.v deleted file mode 100644 index 8cb4c358..00000000 --- a/theories7/Reals/Ranalysis1.v +++ /dev/null @@ -1,1046 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R. - -(****************************************************) -(** Basic operations on functions *) -(****************************************************) -Definition plus_fct [f1,f2:R->R] : R->R := [x:R] ``(f1 x)+(f2 x)``. -Definition opp_fct [f:R->R] : R->R := [x:R] ``-(f x)``. -Definition mult_fct [f1,f2:R->R] : R->R := [x:R] ``(f1 x)*(f2 x)``. -Definition mult_real_fct [a:R;f:R->R] : R->R := [x:R] ``a*(f x)``. -Definition minus_fct [f1,f2:R->R] : R->R := [x:R] ``(f1 x)-(f2 x)``. -Definition div_fct [f1,f2:R->R] : R->R := [x:R] ``(f1 x)/(f2 x)``. -Definition div_real_fct [a:R;f:R->R] : R->R := [x:R] ``a/(f x)``. -Definition comp [f1,f2:R->R] : R->R := [x:R] ``(f1 (f2 x))``. -Definition inv_fct [f:R->R] : R->R := [x:R]``/(f x)``. - -V8Infix "+" plus_fct : Rfun_scope. -V8Notation "- x" := (opp_fct x) : Rfun_scope. -V8Infix "*" mult_fct : Rfun_scope. -V8Infix "-" minus_fct : Rfun_scope. -V8Infix "/" div_fct : Rfun_scope. -Notation Local "f1 'o' f2" := (comp f1 f2) (at level 2, right associativity) - : Rfun_scope - V8only (at level 20, right associativity). -V8Notation "/ x" := (inv_fct x) : Rfun_scope. - -Delimits Scope Rfun_scope with F. - -Definition fct_cte [a:R] : R->R := [x:R]a. -Definition id := [x:R]x. - -(****************************************************) -(** Variations of functions *) -(****************************************************) -Definition increasing [f:R->R] : Prop := (x,y:R) ``x<=y``->``(f x)<=(f y)``. -Definition decreasing [f:R->R] : Prop := (x,y:R) ``x<=y``->``(f y)<=(f x)``. -Definition strict_increasing [f:R->R] : Prop := (x,y:R) ``x``(f x)<(f y)``. -Definition strict_decreasing [f:R->R] : Prop := (x,y:R) ``x``(f y)<(f x)``. -Definition constant [f:R->R] : Prop := (x,y:R) ``(f x)==(f y)``. - -(**********) -Definition no_cond : R->Prop := [x:R] True. - -(**********) -Definition constant_D_eq [f:R->R;D:R->Prop;c:R] : Prop := (x:R) (D x) -> (f x)==c. - -(***************************************************) -(** Definition of continuity as a limit *) -(***************************************************) - -(**********) -Definition continuity_pt [f:R->R; x0:R] : Prop := (continue_in f no_cond x0). -Definition continuity [f:R->R] : Prop := (x:R) (continuity_pt f x). - -Arguments Scope continuity_pt [Rfun_scope R_scope]. -Arguments Scope continuity [Rfun_scope]. - -(**********) -Lemma continuity_pt_plus : (f1,f2:R->R; x0:R) (continuity_pt f1 x0) -> (continuity_pt f2 x0) -> (continuity_pt (plus_fct f1 f2) x0). -Unfold continuity_pt plus_fct; Unfold continue_in; Intros; Apply limit_plus; Assumption. -Qed. - -Lemma continuity_pt_opp : (f:R->R; x0:R) (continuity_pt f x0) -> (continuity_pt (opp_fct f) x0). -Unfold continuity_pt opp_fct; Unfold continue_in; Intros; Apply limit_Ropp; Assumption. -Qed. - -Lemma continuity_pt_minus : (f1,f2:R->R; x0:R) (continuity_pt f1 x0) -> (continuity_pt f2 x0) -> (continuity_pt (minus_fct f1 f2) x0). -Unfold continuity_pt minus_fct; Unfold continue_in; Intros; Apply limit_minus; Assumption. -Qed. - -Lemma continuity_pt_mult : (f1,f2:R->R; x0:R) (continuity_pt f1 x0) -> (continuity_pt f2 x0) -> (continuity_pt (mult_fct f1 f2) x0). -Unfold continuity_pt mult_fct; Unfold continue_in; Intros; Apply limit_mul; Assumption. -Qed. - -Lemma continuity_pt_const : (f:R->R; x0:R) (constant f) -> (continuity_pt f x0). -Unfold constant continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Intros; Exists ``1``; Split; [Apply Rlt_R0_R1 | Intros; Generalize (H x x0); Intro; Rewrite H2; Simpl; Rewrite R_dist_eq; Assumption]. -Qed. - -Lemma continuity_pt_scal : (f:R->R;a:R; x0:R) (continuity_pt f x0) -> (continuity_pt (mult_real_fct a f) x0). -Unfold continuity_pt mult_real_fct; Unfold continue_in; Intros; Apply (limit_mul ([x:R] a) f (D_x no_cond x0) a (f x0) x0). -Unfold limit1_in; Unfold limit_in; Intros; Exists ``1``; Split. -Apply Rlt_R0_R1. -Intros; Rewrite R_dist_eq; Assumption. -Assumption. -Qed. - -Lemma continuity_pt_inv : (f:R->R; x0:R) (continuity_pt f x0) -> ~``(f x0)==0`` -> (continuity_pt (inv_fct f) x0). -Intros. -Replace (inv_fct f) with [x:R]``/(f x)``. -Unfold continuity_pt; Unfold continue_in; Intros; Apply limit_inv; Assumption. -Unfold inv_fct; Reflexivity. -Qed. - -Lemma div_eq_inv : (f1,f2:R->R) (div_fct f1 f2)==(mult_fct f1 (inv_fct f2)). -Intros; Reflexivity. -Qed. - -Lemma continuity_pt_div : (f1,f2:R->R; x0:R) (continuity_pt f1 x0) -> (continuity_pt f2 x0) -> ~``(f2 x0)==0`` -> (continuity_pt (div_fct f1 f2) x0). -Intros; Rewrite -> (div_eq_inv f1 f2); Apply continuity_pt_mult; [Assumption | Apply continuity_pt_inv; Assumption]. -Qed. - -Lemma continuity_pt_comp : (f1,f2:R->R;x:R) (continuity_pt f1 x) -> (continuity_pt f2 (f1 x)) -> (continuity_pt (comp f2 f1) x). -Unfold continuity_pt; Unfold continue_in; Intros; Unfold comp. -Cut (limit1_in [x0:R](f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) -(f2 (f1 x)) x) -> (limit1_in [x0:R](f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x). -Intro; Apply H1. -EApply limit_comp. -Apply H. -Apply H0. -Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros. -Assert H3 := (H1 eps H2). -Elim H3; Intros. -Exists x0. -Split. -Elim H4; Intros; Assumption. -Intros; Case (Req_EM (f1 x) (f1 x1)); Intro. -Rewrite H6; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. -Elim H4; Intros; Apply H8. -Split. -Unfold Dgf D_x no_cond. -Split. -Split. -Trivial. -Elim H5; Unfold D_x no_cond; Intros. -Elim H9; Intros; Assumption. -Split. -Trivial. -Assumption. -Elim H5; Intros; Assumption. -Qed. - -(**********) -Lemma continuity_plus : (f1,f2:R->R) (continuity f1)->(continuity f2)->(continuity (plus_fct f1 f2)). -Unfold continuity; Intros; Apply (continuity_pt_plus f1 f2 x (H x) (H0 x)). -Qed. - -Lemma continuity_opp : (f:R->R) (continuity f)->(continuity (opp_fct f)). -Unfold continuity; Intros; Apply (continuity_pt_opp f x (H x)). -Qed. - -Lemma continuity_minus : (f1,f2:R->R) (continuity f1)->(continuity f2)->(continuity (minus_fct f1 f2)). -Unfold continuity; Intros; Apply (continuity_pt_minus f1 f2 x (H x) (H0 x)). -Qed. - -Lemma continuity_mult : (f1,f2:R->R) (continuity f1)->(continuity f2)->(continuity (mult_fct f1 f2)). -Unfold continuity; Intros; Apply (continuity_pt_mult f1 f2 x (H x) (H0 x)). -Qed. - -Lemma continuity_const : (f:R->R) (constant f) -> (continuity f). -Unfold continuity; Intros; Apply (continuity_pt_const f x H). -Qed. - -Lemma continuity_scal : (f:R->R;a:R) (continuity f) -> (continuity (mult_real_fct a f)). -Unfold continuity; Intros; Apply (continuity_pt_scal f a x (H x)). -Qed. - -Lemma continuity_inv : (f:R->R) (continuity f)->((x:R) ~``(f x)==0``)->(continuity (inv_fct f)). -Unfold continuity; Intros; Apply (continuity_pt_inv f x (H x) (H0 x)). -Qed. - -Lemma continuity_div : (f1,f2:R->R) (continuity f1)->(continuity f2)->((x:R) ~``(f2 x)==0``)->(continuity (div_fct f1 f2)). -Unfold continuity; Intros; Apply (continuity_pt_div f1 f2 x (H x) (H0 x) (H1 x)). -Qed. - -Lemma continuity_comp : (f1,f2:R->R) (continuity f1) -> (continuity f2) -> (continuity (comp f2 f1)). -Unfold continuity; Intros. -Apply (continuity_pt_comp f1 f2 x (H x) (H0 (f1 x))). -Qed. - - -(*****************************************************) -(** Derivative's definition using Landau's kernel *) -(*****************************************************) - -Definition derivable_pt_lim [f:R->R;x,l:R] : Prop := ((eps:R) ``0(EXT delta : posreal | ((h:R) ~``h==0``->``(Rabsolu h) ``(Rabsolu ((((f (x+h))-(f x))/h)-l))R;x:R] : R -> Prop := [l:R](derivable_pt_lim f x l). - -Definition derivable_pt [f:R->R;x:R] := (SigT R (derivable_pt_abs f x)). -Definition derivable [f:R->R] := (x:R)(derivable_pt f x). - -Definition derive_pt [f:R->R;x:R;pr:(derivable_pt f x)] := (projT1 ? ? pr). -Definition derive [f:R->R;pr:(derivable f)] := [x:R](derive_pt f x (pr x)). - -Arguments Scope derivable_pt_lim [Rfun_scope R_scope]. -Arguments Scope derivable_pt_abs [Rfun_scope R_scope R_scope]. -Arguments Scope derivable_pt [Rfun_scope R_scope]. -Arguments Scope derivable [Rfun_scope]. -Arguments Scope derive_pt [Rfun_scope R_scope _]. -Arguments Scope derive [Rfun_scope _]. - -Definition antiderivative [f,g:R->R;a,b:R] : Prop := ((x:R)``a<=x<=b``->(EXT pr : (derivable_pt g x) | (f x)==(derive_pt g x pr)))/\``a<=b``. -(************************************) -(** Class of differential functions *) -(************************************) -Record Differential : Type := mkDifferential { -d1 :> R->R; -cond_diff : (derivable d1) }. - -Record Differential_D2 : Type := mkDifferential_D2 { -d2 :> R->R; -cond_D1 : (derivable d2); -cond_D2 : (derivable (derive d2 cond_D1)) }. - -(**********) -Lemma unicite_step1 : (f:R->R;x,l1,l2:R) (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l1 R0) -> (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l2 R0) -> l1 == l2. -Intros; Apply (single_limit [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l1 l2 R0); Try Assumption. -Unfold adhDa; Intros; Exists ``alp/2``. -Split. -Unfold Rdiv; Apply prod_neq_R0. -Red; Intro; Rewrite H2 in H1; Elim (Rlt_antirefl ? H1). -Apply Rinv_neq_R0; DiscrR. -Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Unfold Rdiv; Rewrite Rabsolu_mult. -Replace ``(Rabsolu (/2))`` with ``/2``. -Replace (Rabsolu alp) with alp. -Apply Rlt_monotony_contra with ``2``. -Sup0. -Rewrite (Rmult_sym ``2``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Idtac | DiscrR]; Rewrite Rmult_1r; Rewrite double; Pattern 1 alp; Replace alp with ``alp+0``; [Idtac | Ring]; Apply Rlt_compatibility; Assumption. -Symmetry; Apply Rabsolu_right; Left; Assumption. -Symmetry; Apply Rabsolu_right; Left; Change ``0R;x,l:R) (derivable_pt_lim f x l) -> (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l R0). -Unfold derivable_pt_lim; Intros; Unfold limit1_in; Unfold limit_in; Intros. -Assert H1 := (H eps H0). -Elim H1 ; Intros. -Exists (pos x0). -Split. -Apply (cond_pos x0). -Simpl; Unfold R_dist; Intros. -Elim H3; Intros. -Apply H2; [Assumption |Unfold Rminus in H5; Rewrite Ropp_O in H5; Rewrite Rplus_Or in H5; Assumption]. -Qed. - -Lemma unicite_step3 : (f:R->R;x,l:R) (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l R0) -> (derivable_pt_lim f x l). -Unfold limit1_in derivable_pt_lim; Unfold limit_in; Unfold dist; Simpl; Intros. -Elim (H eps H0). -Intros; Elim H1; Intros. -Exists (mkposreal x0 H2). -Simpl; Intros; Unfold R_dist in H3; Apply (H3 h). -Split; [Assumption | Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Assumption]. -Qed. - -Lemma unicite_limite : (f:R->R;x,l1,l2:R) (derivable_pt_lim f x l1) -> (derivable_pt_lim f x l2) -> l1==l2. -Intros. -Assert H1 := (unicite_step2 ? ? ? H). -Assert H2 := (unicite_step2 ? ? ? H0). -Assert H3 := (unicite_step1 ? ? ? ? H1 H2). -Assumption. -Qed. - -Lemma derive_pt_eq : (f:R->R;x,l:R;pr:(derivable_pt f x)) (derive_pt f x pr)==l <-> (derivable_pt_lim f x l). -Intros; Split. -Intro; Assert H1 := (projT2 ? ? pr); Unfold derive_pt in H; Rewrite H in H1; Assumption. -Intro; Assert H1 := (projT2 ? ? pr); Unfold derivable_pt_abs in H1. -Assert H2 := (unicite_limite ? ? ? ? H H1). -Unfold derive_pt; Unfold derivable_pt_abs. -Symmetry; Assumption. -Qed. - -(**********) -Lemma derive_pt_eq_0 : (f:R->R;x,l:R;pr:(derivable_pt f x)) (derivable_pt_lim f x l) -> (derive_pt f x pr)==l. -Intros; Elim (derive_pt_eq f x l pr); Intros. -Apply (H1 H). -Qed. - -(**********) -Lemma derive_pt_eq_1 : (f:R->R;x,l:R;pr:(derivable_pt f x)) (derive_pt f x pr)==l -> (derivable_pt_lim f x l). -Intros; Elim (derive_pt_eq f x l pr); Intros. -Apply (H0 H). -Qed. - - -(********************************************************************) -(** Equivalence of this definition with the one using limit concept *) -(********************************************************************) -Lemma derive_pt_D_in : (f,df:R->R;x:R;pr:(derivable_pt f x)) (D_in f df no_cond x) <-> (derive_pt f x pr)==(df x). -Intros; Split. -Unfold D_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros. -Apply derive_pt_eq_0. -Unfold derivable_pt_lim. -Intros; Elim (H eps H0); Intros alpha H1; Elim H1; Intros; Exists (mkposreal alpha H2); Intros; Generalize (H3 ``x+h``); Intro; Cut ``x+h-x==h``; [Intro; Cut ``(D_x no_cond x (x+h))``/\``(Rabsolu (x+h-x)) < alpha``; [Intro; Generalize (H6 H8); Rewrite H7; Intro; Assumption | Split; [Unfold D_x; Split; [Unfold no_cond; Trivial | Apply Rminus_not_eq_right; Rewrite H7; Assumption] | Rewrite H7; Assumption]] | Ring]. -Intro. -Assert H0 := (derive_pt_eq_1 f x (df x) pr H). -Unfold D_in; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros. -Elim (H0 eps H1); Intros alpha H2; Exists (pos alpha); Split. -Apply (cond_pos alpha). -Intros; Elim H3; Intros; Unfold D_x in H4; Elim H4; Intros; Cut ``x0-x<>0``. -Intro; Generalize (H2 ``x0-x`` H8 H5); Replace ``x+(x0-x)`` with x0. -Intro; Assumption. -Ring. -Auto with real. -Qed. - -Lemma derivable_pt_lim_D_in : (f,df:R->R;x:R) (D_in f df no_cond x) <-> (derivable_pt_lim f x (df x)). -Intros; Split. -Unfold D_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros. -Unfold derivable_pt_lim. -Intros; Elim (H eps H0); Intros alpha H1; Elim H1; Intros; Exists (mkposreal alpha H2); Intros; Generalize (H3 ``x+h``); Intro; Cut ``x+h-x==h``; [Intro; Cut ``(D_x no_cond x (x+h))``/\``(Rabsolu (x+h-x)) < alpha``; [Intro; Generalize (H6 H8); Rewrite H7; Intro; Assumption | Split; [Unfold D_x; Split; [Unfold no_cond; Trivial | Apply Rminus_not_eq_right; Rewrite H7; Assumption] | Rewrite H7; Assumption]] | Ring]. -Intro. -Unfold derivable_pt_lim in H. -Unfold D_in; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros. -Elim (H eps H0); Intros alpha H2; Exists (pos alpha); Split. -Apply (cond_pos alpha). -Intros. -Elim H1; Intros; Unfold D_x in H3; Elim H3; Intros; Cut ``x0-x<>0``. -Intro; Generalize (H2 ``x0-x`` H7 H4); Replace ``x+(x0-x)`` with x0. -Intro; Assumption. -Ring. -Auto with real. -Qed. - - -(***********************************) -(** derivability -> continuity *) -(***********************************) -(**********) -Lemma derivable_derive : (f:R->R;x:R;pr:(derivable_pt f x)) (EXT l : R | (derive_pt f x pr)==l). -Intros; Exists (projT1 ? ? pr). -Unfold derive_pt; Reflexivity. -Qed. - -Theorem derivable_continuous_pt : (f:R->R;x:R) (derivable_pt f x) -> (continuity_pt f x). -Intros. -Generalize (derivable_derive f x X); Intro. -Elim H; Intros l H1. -Cut l==((fct_cte l) x). -Intro. -Rewrite H0 in H1. -Generalize (derive_pt_D_in f (fct_cte l) x); Intro. -Elim (H2 X); Intros. -Generalize (H4 H1); Intro. -Unfold continuity_pt. -Apply (cont_deriv f (fct_cte l) no_cond x H5). -Unfold fct_cte; Reflexivity. -Qed. - -Theorem derivable_continuous : (f:R->R) (derivable f) -> (continuity f). -Unfold derivable continuity; Intros. -Apply (derivable_continuous_pt f x (X x)). -Qed. - -(****************************************************************) -(** Main rules *) -(****************************************************************) - -Lemma derivable_pt_lim_plus : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> (derivable_pt_lim (plus_fct f1 f2) x ``l1+l2``). -Intros. -Apply unicite_step3. -Assert H1 := (unicite_step2 ? ? ? H). -Assert H2 := (unicite_step2 ? ? ? H0). -Unfold plus_fct. -Cut (h:R)``((f1 (x+h))+(f2 (x+h))-((f1 x)+(f2 x)))/h``==``((f1 (x+h))-(f1 x))/h+((f2 (x+h))-(f2 x))/h``. -Intro. -Generalize(limit_plus [h':R]``((f1 (x+h'))-(f1 x))/h'`` [h':R]``((f2 (x+h'))-(f2 x))/h'`` [h:R]``h <> 0`` l1 l2 ``0`` H1 H2). -Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros. -Elim (H4 eps H5); Intros. -Exists x0. -Elim H6; Intros. -Split. -Assumption. -Intros; Rewrite H3; Apply H8; Assumption. -Intro; Unfold Rdiv; Ring. -Qed. - -Lemma derivable_pt_lim_opp : (f:R->R;x,l:R) (derivable_pt_lim f x l) -> (derivable_pt_lim (opp_fct f) x (Ropp l)). -Intros. -Apply unicite_step3. -Assert H1 := (unicite_step2 ? ? ? H). -Unfold opp_fct. -Cut (h:R) ``( -(f (x+h))- -(f x))/h``==(Ropp ``((f (x+h))-(f x))/h``). -Intro. -Generalize (limit_Ropp [h:R]``((f (x+h))-(f x))/h``[h:R]``h <> 0`` l ``0`` H1). -Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros. -Elim (H2 eps H3); Intros. -Exists x0. -Elim H4; Intros. -Split. -Assumption. -Intros; Rewrite H0; Apply H6; Assumption. -Intro; Unfold Rdiv; Ring. -Qed. - -Lemma derivable_pt_lim_minus : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> (derivable_pt_lim (minus_fct f1 f2) x ``l1-l2``). -Intros. -Apply unicite_step3. -Assert H1 := (unicite_step2 ? ? ? H). -Assert H2 := (unicite_step2 ? ? ? H0). -Unfold minus_fct. -Cut (h:R)``((f1 (x+h))-(f1 x))/h-((f2 (x+h))-(f2 x))/h``==``((f1 (x+h))-(f2 (x+h))-((f1 x)-(f2 x)))/h``. -Intro. -Generalize (limit_minus [h':R]``((f1 (x+h'))-(f1 x))/h'`` [h':R]``((f2 (x+h'))-(f2 x))/h'`` [h:R]``h <> 0`` l1 l2 ``0`` H1 H2). -Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros. -Elim (H4 eps H5); Intros. -Exists x0. -Elim H6; Intros. -Split. -Assumption. -Intros; Rewrite <- H3; Apply H8; Assumption. -Intro; Unfold Rdiv; Ring. -Qed. - -Lemma derivable_pt_lim_mult : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> (derivable_pt_lim (mult_fct f1 f2) x ``l1*(f2 x)+(f1 x)*l2``). -Intros. -Assert H1 := (derivable_pt_lim_D_in f1 [y:R]l1 x). -Elim H1; Intros. -Assert H4 := (H3 H). -Assert H5 := (derivable_pt_lim_D_in f2 [y:R]l2 x). -Elim H5; Intros. -Assert H8 := (H7 H0). -Clear H1 H2 H3 H5 H6 H7. -Assert H1 := (derivable_pt_lim_D_in (mult_fct f1 f2) [y:R]``l1*(f2 x)+(f1 x)*l2`` x). -Elim H1; Intros. -Clear H1 H3. -Apply H2. -Unfold mult_fct. -Apply (Dmult no_cond [y:R]l1 [y:R]l2 f1 f2 x); Assumption. -Qed. - -Lemma derivable_pt_lim_const : (a,x:R) (derivable_pt_lim (fct_cte a) x ``0``). -Intros; Unfold fct_cte derivable_pt_lim. -Intros; Exists (mkposreal ``1`` Rlt_R0_R1); Intros; Unfold Rminus; Rewrite Rplus_Ropp_r; Unfold Rdiv; Rewrite Rmult_Ol; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. -Qed. - -Lemma derivable_pt_lim_scal : (f:R->R;a,x,l:R) (derivable_pt_lim f x l) -> (derivable_pt_lim (mult_real_fct a f) x ``a*l``). -Intros. -Assert H0 := (derivable_pt_lim_const a x). -Replace (mult_real_fct a f) with (mult_fct (fct_cte a) f). -Replace ``a*l`` with ``0*(f x)+a*l``; [Idtac | Ring]. -Apply (derivable_pt_lim_mult (fct_cte a) f x ``0`` l); Assumption. -Unfold mult_real_fct mult_fct fct_cte; Reflexivity. -Qed. - -Lemma derivable_pt_lim_id : (x:R) (derivable_pt_lim id x ``1``). -Intro; Unfold derivable_pt_lim. -Intros eps Heps; Exists (mkposreal eps Heps); Intros h H1 H2; Unfold id; Replace ``(x+h-x)/h-1`` with ``0``. -Rewrite Rabsolu_R0; Apply Rle_lt_trans with ``(Rabsolu h)``. -Apply Rabsolu_pos. -Assumption. -Unfold Rminus; Rewrite Rplus_assoc; Rewrite (Rplus_sym x); Rewrite Rplus_assoc. -Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Unfold Rdiv; Rewrite <- Rinv_r_sym. -Symmetry; Apply Rplus_Ropp_r. -Assumption. -Qed. - -Lemma derivable_pt_lim_Rsqr : (x:R) (derivable_pt_lim Rsqr x ``2*x``). -Intro; Unfold derivable_pt_lim. -Unfold Rsqr; Intros eps Heps; Exists (mkposreal eps Heps); Intros h H1 H2; Replace ``((x+h)*(x+h)-x*x)/h-2*x`` with ``h``. -Assumption. -Replace ``(x+h)*(x+h)-x*x`` with ``2*x*h+h*h``; [Idtac | Ring]. -Unfold Rdiv; Rewrite Rmult_Rplus_distrl. -Repeat Rewrite Rmult_assoc. -Repeat Rewrite <- Rinv_r_sym; [Idtac | Assumption]. -Ring. -Qed. - -Lemma derivable_pt_lim_comp : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 (f1 x) l2) -> (derivable_pt_lim (comp f2 f1) x ``l2*l1``). -Intros; Assert H1 := (derivable_pt_lim_D_in f1 [y:R]l1 x). -Elim H1; Intros. -Assert H4 := (H3 H). -Assert H5 := (derivable_pt_lim_D_in f2 [y:R]l2 (f1 x)). -Elim H5; Intros. -Assert H8 := (H7 H0). -Clear H1 H2 H3 H5 H6 H7. -Assert H1 := (derivable_pt_lim_D_in (comp f2 f1) [y:R]``l2*l1`` x). -Elim H1; Intros. -Clear H1 H3; Apply H2. -Unfold comp; Cut (D_in [x0:R](f2 (f1 x0)) [y:R]``l2*l1`` (Dgf no_cond no_cond f1) x) -> (D_in [x0:R](f2 (f1 x0)) [y:R]``l2*l1`` no_cond x). -Intro; Apply H1. -Rewrite Rmult_sym; Apply (Dcomp no_cond no_cond [y:R]l1 [y:R]l2 f1 f2 x); Assumption. -Unfold Dgf D_in no_cond; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros. -Elim (H1 eps H3); Intros. -Exists x0; Intros; Split. -Elim H5; Intros; Assumption. -Intros; Elim H5; Intros; Apply H9; Split. -Unfold D_x; Split. -Split; Trivial. -Elim H6; Intros; Unfold D_x in H10; Elim H10; Intros; Assumption. -Elim H6; Intros; Assumption. -Qed. - -Lemma derivable_pt_plus : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> (derivable_pt (plus_fct f1 f2) x). -Unfold derivable_pt; Intros. -Elim X; Intros. -Elim X0; Intros. -Apply Specif.existT with ``x0+x1``. -Apply derivable_pt_lim_plus; Assumption. -Qed. - -Lemma derivable_pt_opp : (f:R->R;x:R) (derivable_pt f x) -> (derivable_pt (opp_fct f) x). -Unfold derivable_pt; Intros. -Elim X; Intros. -Apply Specif.existT with ``-x0``. -Apply derivable_pt_lim_opp; Assumption. -Qed. - -Lemma derivable_pt_minus : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> (derivable_pt (minus_fct f1 f2) x). -Unfold derivable_pt; Intros. -Elim X; Intros. -Elim X0; Intros. -Apply Specif.existT with ``x0-x1``. -Apply derivable_pt_lim_minus; Assumption. -Qed. - -Lemma derivable_pt_mult : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> (derivable_pt (mult_fct f1 f2) x). -Unfold derivable_pt; Intros. -Elim X; Intros. -Elim X0; Intros. -Apply Specif.existT with ``x0*(f2 x)+(f1 x)*x1``. -Apply derivable_pt_lim_mult; Assumption. -Qed. - -Lemma derivable_pt_const : (a,x:R) (derivable_pt (fct_cte a) x). -Intros; Unfold derivable_pt. -Apply Specif.existT with ``0``. -Apply derivable_pt_lim_const. -Qed. - -Lemma derivable_pt_scal : (f:R->R;a,x:R) (derivable_pt f x) -> (derivable_pt (mult_real_fct a f) x). -Unfold derivable_pt; Intros. -Elim X; Intros. -Apply Specif.existT with ``a*x0``. -Apply derivable_pt_lim_scal; Assumption. -Qed. - -Lemma derivable_pt_id : (x:R) (derivable_pt id x). -Unfold derivable_pt; Intro. -Exists ``1``. -Apply derivable_pt_lim_id. -Qed. - -Lemma derivable_pt_Rsqr : (x:R) (derivable_pt Rsqr x). -Unfold derivable_pt; Intro; Apply Specif.existT with ``2*x``. -Apply derivable_pt_lim_Rsqr. -Qed. - -Lemma derivable_pt_comp : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 (f1 x)) -> (derivable_pt (comp f2 f1) x). -Unfold derivable_pt; Intros. -Elim X; Intros. -Elim X0 ;Intros. -Apply Specif.existT with ``x1*x0``. -Apply derivable_pt_lim_comp; Assumption. -Qed. - -Lemma derivable_plus : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> (derivable (plus_fct f1 f2)). -Unfold derivable; Intros. -Apply (derivable_pt_plus ? ? x (X ?) (X0 ?)). -Qed. - -Lemma derivable_opp : (f:R->R) (derivable f) -> (derivable (opp_fct f)). -Unfold derivable; Intros. -Apply (derivable_pt_opp ? x (X ?)). -Qed. - -Lemma derivable_minus : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> (derivable (minus_fct f1 f2)). -Unfold derivable; Intros. -Apply (derivable_pt_minus ? ? x (X ?) (X0 ?)). -Qed. - -Lemma derivable_mult : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> (derivable (mult_fct f1 f2)). -Unfold derivable; Intros. -Apply (derivable_pt_mult ? ? x (X ?) (X0 ?)). -Qed. - -Lemma derivable_const : (a:R) (derivable (fct_cte a)). -Unfold derivable; Intros. -Apply derivable_pt_const. -Qed. - -Lemma derivable_scal : (f:R->R;a:R) (derivable f) -> (derivable (mult_real_fct a f)). -Unfold derivable; Intros. -Apply (derivable_pt_scal ? a x (X ?)). -Qed. - -Lemma derivable_id : (derivable id). -Unfold derivable; Intro; Apply derivable_pt_id. -Qed. - -Lemma derivable_Rsqr : (derivable Rsqr). -Unfold derivable; Intro; Apply derivable_pt_Rsqr. -Qed. - -Lemma derivable_comp : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> (derivable (comp f2 f1)). -Unfold derivable; Intros. -Apply (derivable_pt_comp ? ? x (X ?) (X0 ?)). -Qed. - -Lemma derive_pt_plus : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x)) ``(derive_pt (plus_fct f1 f2) x (derivable_pt_plus ? ? ? pr1 pr2)) == (derive_pt f1 x pr1) + (derive_pt f2 x pr2)``. -Intros. -Assert H := (derivable_derive f1 x pr1). -Assert H0 := (derivable_derive f2 x pr2). -Assert H1 := (derivable_derive (plus_fct f1 f2) x (derivable_pt_plus ? ? ? pr1 pr2)). -Elim H; Clear H; Intros l1 H. -Elim H0; Clear H0; Intros l2 H0. -Elim H1; Clear H1; Intros l H1. -Rewrite H; Rewrite H0; Apply derive_pt_eq_0. -Assert H3 := (projT2 ? ? pr1). -Unfold derive_pt in H; Rewrite H in H3. -Assert H4 := (projT2 ? ? pr2). -Unfold derive_pt in H0; Rewrite H0 in H4. -Apply derivable_pt_lim_plus; Assumption. -Qed. - -Lemma derive_pt_opp : (f:R->R;x:R;pr1:(derivable_pt f x)) ``(derive_pt (opp_fct f) x (derivable_pt_opp ? ? pr1)) == -(derive_pt f x pr1)``. -Intros. -Assert H := (derivable_derive f x pr1). -Assert H0 := (derivable_derive (opp_fct f) x (derivable_pt_opp ? ? pr1)). -Elim H; Clear H; Intros l1 H. -Elim H0; Clear H0; Intros l2 H0. -Rewrite H; Apply derive_pt_eq_0. -Assert H3 := (projT2 ? ? pr1). -Unfold derive_pt in H; Rewrite H in H3. -Apply derivable_pt_lim_opp; Assumption. -Qed. - -Lemma derive_pt_minus : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x)) ``(derive_pt (minus_fct f1 f2) x (derivable_pt_minus ? ? ? pr1 pr2)) == (derive_pt f1 x pr1) - (derive_pt f2 x pr2)``. -Intros. -Assert H := (derivable_derive f1 x pr1). -Assert H0 := (derivable_derive f2 x pr2). -Assert H1 := (derivable_derive (minus_fct f1 f2) x (derivable_pt_minus ? ? ? pr1 pr2)). -Elim H; Clear H; Intros l1 H. -Elim H0; Clear H0; Intros l2 H0. -Elim H1; Clear H1; Intros l H1. -Rewrite H; Rewrite H0; Apply derive_pt_eq_0. -Assert H3 := (projT2 ? ? pr1). -Unfold derive_pt in H; Rewrite H in H3. -Assert H4 := (projT2 ? ? pr2). -Unfold derive_pt in H0; Rewrite H0 in H4. -Apply derivable_pt_lim_minus; Assumption. -Qed. - -Lemma derive_pt_mult : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x)) ``(derive_pt (mult_fct f1 f2) x (derivable_pt_mult ? ? ? pr1 pr2)) == (derive_pt f1 x pr1)*(f2 x) + (f1 x)*(derive_pt f2 x pr2)``. -Intros. -Assert H := (derivable_derive f1 x pr1). -Assert H0 := (derivable_derive f2 x pr2). -Assert H1 := (derivable_derive (mult_fct f1 f2) x (derivable_pt_mult ? ? ? pr1 pr2)). -Elim H; Clear H; Intros l1 H. -Elim H0; Clear H0; Intros l2 H0. -Elim H1; Clear H1; Intros l H1. -Rewrite H; Rewrite H0; Apply derive_pt_eq_0. -Assert H3 := (projT2 ? ? pr1). -Unfold derive_pt in H; Rewrite H in H3. -Assert H4 := (projT2 ? ? pr2). -Unfold derive_pt in H0; Rewrite H0 in H4. -Apply derivable_pt_lim_mult; Assumption. -Qed. - -Lemma derive_pt_const : (a,x:R) (derive_pt (fct_cte a) x (derivable_pt_const a x)) == R0. -Intros. -Apply derive_pt_eq_0. -Apply derivable_pt_lim_const. -Qed. - -Lemma derive_pt_scal : (f:R->R;a,x:R;pr:(derivable_pt f x)) ``(derive_pt (mult_real_fct a f) x (derivable_pt_scal ? ? ? pr)) == a * (derive_pt f x pr)``. -Intros. -Assert H := (derivable_derive f x pr). -Assert H0 := (derivable_derive (mult_real_fct a f) x (derivable_pt_scal ? ? ? pr)). -Elim H; Clear H; Intros l1 H. -Elim H0; Clear H0; Intros l2 H0. -Rewrite H; Apply derive_pt_eq_0. -Assert H3 := (projT2 ? ? pr). -Unfold derive_pt in H; Rewrite H in H3. -Apply derivable_pt_lim_scal; Assumption. -Qed. - -Lemma derive_pt_id : (x:R) (derive_pt id x (derivable_pt_id ?))==R1. -Intros. -Apply derive_pt_eq_0. -Apply derivable_pt_lim_id. -Qed. - -Lemma derive_pt_Rsqr : (x:R) (derive_pt Rsqr x (derivable_pt_Rsqr ?)) == ``2*x``. -Intros. -Apply derive_pt_eq_0. -Apply derivable_pt_lim_Rsqr. -Qed. - -Lemma derive_pt_comp : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 (f1 x))) ``(derive_pt (comp f2 f1) x (derivable_pt_comp ? ? ? pr1 pr2)) == (derive_pt f2 (f1 x) pr2) * (derive_pt f1 x pr1)``. -Intros. -Assert H := (derivable_derive f1 x pr1). -Assert H0 := (derivable_derive f2 (f1 x) pr2). -Assert H1 := (derivable_derive (comp f2 f1) x (derivable_pt_comp ? ? ? pr1 pr2)). -Elim H; Clear H; Intros l1 H. -Elim H0; Clear H0; Intros l2 H0. -Elim H1; Clear H1; Intros l H1. -Rewrite H; Rewrite H0; Apply derive_pt_eq_0. -Assert H3 := (projT2 ? ? pr1). -Unfold derive_pt in H; Rewrite H in H3. -Assert H4 := (projT2 ? ? pr2). -Unfold derive_pt in H0; Rewrite H0 in H4. -Apply derivable_pt_lim_comp; Assumption. -Qed. - -(* Pow *) -Definition pow_fct [n:nat] : R->R := [y:R](pow y n). - -Lemma derivable_pt_lim_pow_pos : (x:R;n:nat) (lt O n) -> (derivable_pt_lim [y:R](pow y n) x ``(INR n)*(pow x (pred n))``). -Intros. -Induction n. -Elim (lt_n_n ? H). -Cut n=O\/(lt O n). -Intro; Elim H0; Intro. -Rewrite H1; Simpl. -Replace [y:R]``y*1`` with (mult_fct id (fct_cte R1)). -Replace ``1*1`` with ``1*(fct_cte R1 x)+(id x)*0``. -Apply derivable_pt_lim_mult. -Apply derivable_pt_lim_id. -Apply derivable_pt_lim_const. -Unfold fct_cte id; Ring. -Reflexivity. -Replace [y:R](pow y (S n)) with [y:R]``y*(pow y n)``. -Replace (pred (S n)) with n; [Idtac | Reflexivity]. -Replace [y:R]``y*(pow y n)`` with (mult_fct id [y:R](pow y n)). -Pose f := [y:R](pow y n). -Replace ``(INR (S n))*(pow x n)`` with (Rplus (Rmult R1 (f x)) (Rmult (id x) (Rmult (INR n) (pow x (pred n))))). -Apply derivable_pt_lim_mult. -Apply derivable_pt_lim_id. -Unfold f; Apply Hrecn; Assumption. -Unfold f. -Pattern 1 5 n; Replace n with (S (pred n)). -Unfold id; Rewrite S_INR; Simpl. -Ring. -Symmetry; Apply S_pred with O; Assumption. -Unfold mult_fct id; Reflexivity. -Reflexivity. -Inversion H. -Left; Reflexivity. -Right. -Apply lt_le_trans with (1). -Apply lt_O_Sn. -Assumption. -Qed. - -Lemma derivable_pt_lim_pow : (x:R; n:nat) (derivable_pt_lim [y:R](pow y n) x ``(INR n)*(pow x (pred n))``). -Intros. -Induction n. -Simpl. -Rewrite Rmult_Ol. -Replace [_:R]``1`` with (fct_cte R1); [Apply derivable_pt_lim_const | Reflexivity]. -Apply derivable_pt_lim_pow_pos. -Apply lt_O_Sn. -Qed. - -Lemma derivable_pt_pow : (n:nat;x:R) (derivable_pt [y:R](pow y n) x). -Intros; Unfold derivable_pt. -Apply Specif.existT with ``(INR n)*(pow x (pred n))``. -Apply derivable_pt_lim_pow. -Qed. - -Lemma derivable_pow : (n:nat) (derivable [y:R](pow y n)). -Intro; Unfold derivable; Intro; Apply derivable_pt_pow. -Qed. - -Lemma derive_pt_pow : (n:nat;x:R) (derive_pt [y:R](pow y n) x (derivable_pt_pow n x))==``(INR n)*(pow x (pred n))``. -Intros; Apply derive_pt_eq_0. -Apply derivable_pt_lim_pow. -Qed. - -Lemma pr_nu : (f:R->R;x:R;pr1,pr2:(derivable_pt f x)) (derive_pt f x pr1)==(derive_pt f x pr2). -Intros. -Unfold derivable_pt in pr1. -Unfold derivable_pt in pr2. -Elim pr1; Intros. -Elim pr2; Intros. -Unfold derivable_pt_abs in p. -Unfold derivable_pt_abs in p0. -Simpl. -Apply (unicite_limite f x x0 x1 p p0). -Qed. - - -(************************************************************) -(** Local extremum's condition *) -(************************************************************) - -Theorem deriv_maximum : (f:R->R;a,b,c:R;pr:(derivable_pt f c)) ``a``c((x:R) ``a``x``(f x)<=(f c)``)->``(derive_pt f c pr)==0``. -Intros; Case (total_order R0 (derive_pt f c pr)); Intro. -Assert H3 := (derivable_derive f c pr). -Elim H3; Intros l H4; Rewrite H4 in H2. -Assert H5 := (derive_pt_eq_1 f c l pr H4). -Cut ``00``. -Intro; Cut ``(Rabsolu (Rmin delta/2 ((b-c)/2)))0``. -Intro; Cut ``(Rabsolu (Rmax (-(delta/2)) ((a-c)/2)))R;a,b,c:R;pr:(derivable_pt f c)) ``a``c((x:R) ``a``x``(f c)<=(f x)``)->``(derive_pt f c pr)==0``. -Intros. -Rewrite <- (Ropp_Ropp (derive_pt f c pr)). -Apply eq_RoppO. -Rewrite <- (derive_pt_opp f c pr). -Cut (x:R)(``a``x``((opp_fct f) x)<=((opp_fct f) c)``). -Intro. -Apply (deriv_maximum (opp_fct f) a b c (derivable_pt_opp ? ? pr) H H0 H2). -Intros; Unfold opp_fct; Apply Rge_Ropp; Apply Rle_sym1. -Apply (H1 x H2 H3). -Qed. - -Theorem deriv_constant2 : (f:R->R;a,b,c:R;pr:(derivable_pt f c)) ``a``c((x:R) ``a``x``(f x)==(f c)``)->``(derive_pt f c pr)==0``. -Intros. -EApply deriv_maximum with a b; Try Assumption. -Intros; Right; Apply (H1 x H2 H3). -Qed. - -(**********) -Lemma nonneg_derivative_0 : (f:R->R;pr:(derivable f)) (increasing f) -> ((x:R) ``0<=(derive_pt f x (pr x))``). -Intros; Unfold increasing in H. -Assert H0 := (derivable_derive f x (pr x)). -Elim H0; Intros l H1. -Rewrite H1; Case (total_order R0 l); Intro. -Left; Assumption. -Elim H2; Intro. -Right; Assumption. -Assert H4 := (derive_pt_eq_1 f x l (pr x) H1). -Cut ``0< -(l/2)``. -Intro; Elim (H4 ``-(l/2)`` H5); Intros delta H6. -Cut ``delta/2<>0``/\``0R) ``h<>0`` -> ``(f2 x)<>0`` -> ``(f2 (x+h))<>0`` -> ``((f1 (x+h))/(f2 (x+h))-(f1 x)/(f2 x))/h-(l1*(f2 x)-l2*(f1 x))/(Rsqr (f2 x))`` == ``/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1) + l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))) - (f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2) + (l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))``. -Intros; Unfold Rdiv Rminus Rsqr. -Repeat Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_Rplus_distr; Repeat Rewrite Rinv_Rmult; Try Assumption. -Replace ``l1*(f2 x)*(/(f2 x)*/(f2 x))`` with ``l1*/(f2 x)*((f2 x)*/(f2 x))``; [Idtac | Ring]. -Replace ``l1*(/(f2 x)*/(f2 (x+h)))*(f2 x)`` with ``l1*/(f2 (x+h))*((f2 x)*/(f2 x))``; [Idtac | Ring]. -Replace ``l1*(/(f2 x)*/(f2 (x+h)))* -(f2 (x+h))`` with ``-(l1*/(f2 x)*((f2 (x+h))*/(f2 (x+h))))``; [Idtac | Ring]. -Replace ``(f1 x)*(/(f2 x)*/(f2 (x+h)))*((f2 (x+h))*/h)`` with ``(f1 x)*/(f2 x)*/h*((f2 (x+h))*/(f2 (x+h)))``; [Idtac | Ring]. -Replace ``(f1 x)*(/(f2 x)*/(f2 (x+h)))*( -(f2 x)*/h)`` with ``-((f1 x)*/(f2 (x+h))*/h*((f2 x)*/(f2 x)))``; [Idtac | Ring]. -Replace ``(l2*(f1 x)*(/(f2 x)*/(f2 x)*/(f2 (x+h)))*(f2 (x+h)))`` with ``l2*(f1 x)*/(f2 x)*/(f2 x)*((f2 (x+h))*/(f2 (x+h)))``; [Idtac | Ring]. -Replace ``l2*(f1 x)*(/(f2 x)*/(f2 x)*/(f2 (x+h)))* -(f2 x)`` with ``-(l2*(f1 x)*/(f2 x)*/(f2 (x+h))*((f2 x)*/(f2 x)))``; [Idtac | Ring]. -Repeat Rewrite <- Rinv_r_sym; Try Assumption Orelse Ring. -Apply prod_neq_R0; Assumption. -Qed. - -Lemma Rmin_pos : (x,y:R) ``0 ``0 ``0 < (Rmin x y)``. -Intros; Unfold Rmin. -Case (total_order_Rle x y); Intro; Assumption. -Qed. - -Lemma maj_term1 : (x,h,eps,l1,alp_f2:R;eps_f2,alp_f1d:posreal;f1,f2:R->R) ``0 < eps`` -> ``(f2 x)<>0`` -> ``(f2 (x+h))<>0`` -> ((h:R)``h <> 0``->``(Rabsolu h) < alp_f1d``->``(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < (Rabsolu ((eps*(f2 x))/8))``) -> ((a:R)``(Rabsolu a) < (Rmin eps_f2 alp_f2)``->``/(Rabsolu (f2 (x+a))) < 2/(Rabsolu (f2 x))``) -> ``h<>0`` -> ``(Rabsolu h) ``(Rabsolu h) < (Rmin eps_f2 alp_f2)`` -> ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) < eps/4``. -Intros. -Assert H7 := (H3 h H6). -Assert H8 := (H2 h H4 H5). -Apply Rle_lt_trans with ``2/(Rabsolu (f2 x))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1))``. -Rewrite Rabsolu_mult. -Apply Rle_monotony_r. -Apply Rabsolu_pos. -Rewrite Rabsolu_Rinv; [Left; Exact H7 | Assumption]. -Apply Rlt_le_trans with ``2/(Rabsolu (f2 x))*(Rabsolu ((eps*(f2 x))/8))``. -Apply Rlt_monotony. -Unfold Rdiv; Apply Rmult_lt_pos; [Sup0 | Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption]. -Exact H8. -Right; Unfold Rdiv. -Repeat Rewrite Rabsolu_mult. -Rewrite Rabsolu_Rinv; DiscrR. -Replace ``(Rabsolu 8)`` with ``8``. -Replace ``8`` with ``2*4``; [Idtac | Ring]. -Rewrite Rinv_Rmult; [Idtac | DiscrR | DiscrR]. -Replace ``2*/(Rabsolu (f2 x))*((Rabsolu eps)*(Rabsolu (f2 x))*(/2*/4))`` with ``(Rabsolu eps)*/4*(2*/2)*((Rabsolu (f2 x))*/(Rabsolu (f2 x)))``; [Idtac | Ring]. -Replace (Rabsolu eps) with eps. -Repeat Rewrite <- Rinv_r_sym; Try DiscrR Orelse (Apply Rabsolu_no_R0; Assumption). -Ring. -Symmetry; Apply Rabsolu_right; Left; Assumption. -Symmetry; Apply Rabsolu_right; Left; Sup. -Qed. - -Lemma maj_term2 : (x,h,eps,l1,alp_f2,alp_f2t2:R;eps_f2:posreal;f2:R->R) ``0 < eps`` -> ``(f2 x)<>0`` -> ``(f2 (x+h))<>0`` -> ((a:R)``(Rabsolu a) < alp_f2t2``->``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``)-> ((a:R)``(Rabsolu a) < (Rmin eps_f2 alp_f2)``->``/(Rabsolu (f2 (x+a))) < 2/(Rabsolu (f2 x))``) -> ``h<>0`` -> ``(Rabsolu h) ``(Rabsolu h) < (Rmin eps_f2 alp_f2)`` -> ``l1<>0`` -> ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) < eps/4``. -Intros. -Assert H8 := (H3 h H6). -Assert H9 := (H2 h H5). -Apply Rle_lt_trans with ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``. -Rewrite Rabsolu_mult; Apply Rle_monotony. -Apply Rabsolu_pos. -Rewrite <- (Rabsolu_Ropp ``(f2 x)-(f2 (x+h))``); Rewrite Ropp_distr2. -Left; Apply H9. -Apply Rlt_le_trans with ``(Rabsolu (2*l1/((f2 x)*(f2 x))))*(Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``. -Apply Rlt_monotony_r. -Apply Rabsolu_pos_lt. -Unfold Rdiv; Unfold Rsqr; Repeat Apply prod_neq_R0; Try Assumption Orelse DiscrR. -Red; Intro H10; Rewrite H10 in H; Elim (Rlt_antirefl ? H). -Apply Rinv_neq_R0; Apply prod_neq_R0; Try Assumption Orelse DiscrR. -Unfold Rdiv. -Repeat Rewrite Rinv_Rmult; Try Assumption. -Repeat Rewrite Rabsolu_mult. -Replace ``(Rabsolu 2)`` with ``2``. -Rewrite (Rmult_sym ``2``). -Replace ``(Rabsolu l1)*((Rabsolu (/(f2 x)))*(Rabsolu (/(f2 x))))*2`` with ``(Rabsolu l1)*((Rabsolu (/(f2 x)))*((Rabsolu (/(f2 x)))*2))``; [Idtac | Ring]. -Repeat Apply Rlt_monotony. -Apply Rabsolu_pos_lt; Assumption. -Apply Rabsolu_pos_lt; Apply Rinv_neq_R0; Assumption. -Repeat Rewrite Rabsolu_Rinv; Try Assumption. -Rewrite <- (Rmult_sym ``2``). -Unfold Rdiv in H8; Exact H8. -Symmetry; Apply Rabsolu_right; Left; Sup0. -Right. -Unfold Rsqr Rdiv. -Do 1 Rewrite Rinv_Rmult; Try Assumption Orelse DiscrR. -Do 1 Rewrite Rinv_Rmult; Try Assumption Orelse DiscrR. -Repeat Rewrite Rabsolu_mult. -Repeat Rewrite Rabsolu_Rinv; Try Assumption Orelse DiscrR. -Replace (Rabsolu eps) with eps. -Replace ``(Rabsolu (8))`` with ``8``. -Replace ``(Rabsolu 2)`` with ``2``. -Replace ``8`` with ``4*2``; [Idtac | Ring]. -Rewrite Rinv_Rmult; DiscrR. -Replace ``2*((Rabsolu l1)*(/(Rabsolu (f2 x))*/(Rabsolu (f2 x))))*(eps*((Rabsolu (f2 x))*(Rabsolu (f2 x)))*(/4*/2*/(Rabsolu l1)))`` with ``eps*/4*((Rabsolu l1)*/(Rabsolu l1))*((Rabsolu (f2 x))*/(Rabsolu (f2 x)))*((Rabsolu (f2 x))*/(Rabsolu (f2 x)))*(2*/2)``; [Idtac | Ring]. -Repeat Rewrite <- Rinv_r_sym; Try (Apply Rabsolu_no_R0; Assumption) Orelse DiscrR. -Ring. -Symmetry; Apply Rabsolu_right; Left; Sup0. -Symmetry; Apply Rabsolu_right; Left; Sup. -Symmetry; Apply Rabsolu_right; Left; Assumption. -Qed. - -Lemma maj_term3 : (x,h,eps,l2,alp_f2:R;eps_f2,alp_f2d:posreal;f1,f2:R->R) ``0 < eps`` -> ``(f2 x)<>0`` -> ``(f2 (x+h))<>0`` -> ((h:R)``h <> 0``->``(Rabsolu h) < alp_f2d``->``(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < (Rabsolu (((Rsqr (f2 x))*eps)/(8*(f1 x))))``) -> ((a:R)``(Rabsolu a) < (Rmin eps_f2 alp_f2)``->``/(Rabsolu (f2 (x+a))) < 2/(Rabsolu (f2 x))``) -> ``h<>0`` -> ``(Rabsolu h) ``(Rabsolu h) < (Rmin eps_f2 alp_f2)`` -> ``(f1 x)<>0`` -> ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) < eps/4``. -Intros. -Assert H8 := (H2 h H4 H5). -Assert H9 := (H3 h H6). -Apply Rle_lt_trans with ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((Rsqr (f2 x))*eps)/(8*(f1 x))))``. -Rewrite Rabsolu_mult. -Apply Rle_monotony. -Apply Rabsolu_pos. -Left; Apply H8. -Apply Rlt_le_trans with ``(Rabsolu (2*(f1 x)/((f2 x)*(f2 x))))*(Rabsolu (((Rsqr (f2 x))*eps)/(8*(f1 x))))``. -Apply Rlt_monotony_r. -Apply Rabsolu_pos_lt. -Unfold Rdiv; Unfold Rsqr; Repeat Apply prod_neq_R0; Try Assumption. -Red; Intro H10; Rewrite H10 in H; Elim (Rlt_antirefl ? H). -Apply Rinv_neq_R0; Apply prod_neq_R0; DiscrR Orelse Assumption. -Unfold Rdiv. -Repeat Rewrite Rinv_Rmult; Try Assumption. -Repeat Rewrite Rabsolu_mult. -Replace ``(Rabsolu 2)`` with ``2``. -Rewrite (Rmult_sym ``2``). -Replace ``(Rabsolu (f1 x))*((Rabsolu (/(f2 x)))*(Rabsolu (/(f2 x))))*2`` with ``(Rabsolu (f1 x))*((Rabsolu (/(f2 x)))*((Rabsolu (/(f2 x)))*2))``; [Idtac | Ring]. -Repeat Apply Rlt_monotony. -Apply Rabsolu_pos_lt; Assumption. -Apply Rabsolu_pos_lt; Apply Rinv_neq_R0; Assumption. -Repeat Rewrite Rabsolu_Rinv; Assumption Orelse Idtac. -Rewrite <- (Rmult_sym ``2``). -Unfold Rdiv in H9; Exact H9. -Symmetry; Apply Rabsolu_right; Left; Sup0. -Right. -Unfold Rsqr Rdiv. -Rewrite Rinv_Rmult; Try Assumption Orelse DiscrR. -Rewrite Rinv_Rmult; Try Assumption Orelse DiscrR. -Repeat Rewrite Rabsolu_mult. -Repeat Rewrite Rabsolu_Rinv; Try Assumption Orelse DiscrR. -Replace (Rabsolu eps) with eps. -Replace ``(Rabsolu (8))`` with ``8``. -Replace ``(Rabsolu 2)`` with ``2``. -Replace ``8`` with ``4*2``; [Idtac | Ring]. -Rewrite Rinv_Rmult; DiscrR. -Replace ``2*((Rabsolu (f1 x))*(/(Rabsolu (f2 x))*/(Rabsolu (f2 x))))*((Rabsolu (f2 x))*(Rabsolu (f2 x))*eps*(/4*/2*/(Rabsolu (f1 x))))`` with ``eps*/4*((Rabsolu (f2 x))*/(Rabsolu (f2 x)))*((Rabsolu (f2 x))*/(Rabsolu (f2 x)))*((Rabsolu (f1 x))*/(Rabsolu (f1 x)))*(2*/2)``; [Idtac | Ring]. -Repeat Rewrite <- Rinv_r_sym; Try DiscrR Orelse (Apply Rabsolu_no_R0; Assumption). -Ring. -Symmetry; Apply Rabsolu_right; Left; Sup0. -Symmetry; Apply Rabsolu_right; Left; Sup. -Symmetry; Apply Rabsolu_right; Left; Assumption. -Qed. - -Lemma maj_term4 : (x,h,eps,l2,alp_f2,alp_f2c:R;eps_f2:posreal;f1,f2:R->R) ``0 < eps`` -> ``(f2 x)<>0`` -> ``(f2 (x+h))<>0`` -> ((a:R)``(Rabsolu a) < alp_f2c`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``) -> ((a:R)``(Rabsolu a) < (Rmin eps_f2 alp_f2)``->``/(Rabsolu (f2 (x+a))) < 2/(Rabsolu (f2 x))``) -> ``h<>0`` -> ``(Rabsolu h) ``(Rabsolu h) < (Rmin eps_f2 alp_f2)`` -> ``(f1 x)<>0`` -> ``l2<>0`` -> ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x)))) < eps/4``. -Intros. -Assert H9 := (H2 h H5). -Assert H10 := (H3 h H6). -Apply Rle_lt_trans with ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``. -Rewrite Rabsolu_mult. -Apply Rle_monotony. -Apply Rabsolu_pos. -Left; Apply H9. -Apply Rlt_le_trans with ``(Rabsolu (2*l2*(f1 x)/((Rsqr (f2 x))*(f2 x))))*(Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``. -Apply Rlt_monotony_r. -Apply Rabsolu_pos_lt. -Unfold Rdiv; Unfold Rsqr; Repeat Apply prod_neq_R0; Assumption Orelse Idtac. -Red; Intro H11; Rewrite H11 in H; Elim (Rlt_antirefl ? H). -Apply Rinv_neq_R0; Apply prod_neq_R0. -Apply prod_neq_R0. -DiscrR. -Assumption. -Assumption. -Unfold Rdiv. -Repeat Rewrite Rinv_Rmult; Try Assumption Orelse (Unfold Rsqr; Apply prod_neq_R0; Assumption). -Repeat Rewrite Rabsolu_mult. -Replace ``(Rabsolu 2)`` with ``2``. -Replace ``2*(Rabsolu l2)*((Rabsolu (f1 x))*((Rabsolu (/(Rsqr (f2 x))))*(Rabsolu (/(f2 x)))))`` with ``(Rabsolu l2)*((Rabsolu (f1 x))*((Rabsolu (/(Rsqr (f2 x))))*((Rabsolu (/(f2 x)))*2)))``; [Idtac | Ring]. -Replace ``(Rabsolu l2)*(Rabsolu (f1 x))*((Rabsolu (/(Rsqr (f2 x))))*(Rabsolu (/(f2 (x+h)))))`` with ``(Rabsolu l2)*((Rabsolu (f1 x))*(((Rabsolu (/(Rsqr (f2 x))))*(Rabsolu (/(f2 (x+h)))))))``; [Idtac | Ring]. -Repeat Apply Rlt_monotony. -Apply Rabsolu_pos_lt; Assumption. -Apply Rabsolu_pos_lt; Assumption. -Apply Rabsolu_pos_lt; Apply Rinv_neq_R0; Unfold Rsqr; Apply prod_neq_R0; Assumption. -Repeat Rewrite Rabsolu_Rinv; [Idtac | Assumption | Assumption]. -Rewrite <- (Rmult_sym ``2``). -Unfold Rdiv in H10; Exact H10. -Symmetry; Apply Rabsolu_right; Left; Sup0. -Right; Unfold Rsqr Rdiv. -Rewrite Rinv_Rmult; Try Assumption Orelse DiscrR. -Rewrite Rinv_Rmult; Try Assumption Orelse DiscrR. -Rewrite Rinv_Rmult; Try Assumption Orelse DiscrR. -Rewrite Rinv_Rmult; Try Assumption Orelse DiscrR. -Repeat Rewrite Rabsolu_mult. -Repeat Rewrite Rabsolu_Rinv; Try Assumption Orelse DiscrR. -Replace (Rabsolu eps) with eps. -Replace ``(Rabsolu (8))`` with ``8``. -Replace ``(Rabsolu 2)`` with ``2``. -Replace ``8`` with ``4*2``; [Idtac | Ring]. -Rewrite Rinv_Rmult; DiscrR. -Replace ``2*(Rabsolu l2)*((Rabsolu (f1 x))*(/(Rabsolu (f2 x))*/(Rabsolu (f2 x))*/(Rabsolu (f2 x))))*((Rabsolu (f2 x))*(Rabsolu (f2 x))*(Rabsolu (f2 x))*eps*(/4*/2*/(Rabsolu (f1 x))*/(Rabsolu l2)))`` with ``eps*/4*((Rabsolu l2)*/(Rabsolu l2))*((Rabsolu (f1 x))*/(Rabsolu (f1 x)))*((Rabsolu (f2 x))*/(Rabsolu (f2 x)))*((Rabsolu (f2 x))*/(Rabsolu (f2 x)))*((Rabsolu (f2 x))*/(Rabsolu (f2 x)))*(2*/2)``; [Idtac | Ring]. -Repeat Rewrite <- Rinv_r_sym; Try DiscrR Orelse (Apply Rabsolu_no_R0; Assumption). -Ring. -Symmetry; Apply Rabsolu_right; Left; Sup0. -Symmetry; Apply Rabsolu_right; Left; Sup. -Symmetry; Apply Rabsolu_right; Left; Assumption. -Apply prod_neq_R0; Assumption Orelse DiscrR. -Apply prod_neq_R0; Assumption. -Qed. - -Lemma D_x_no_cond : (x,a:R) ``a<>0`` -> (D_x no_cond x ``x+a``). -Intros. -Unfold D_x no_cond. -Split. -Trivial. -Apply Rminus_not_eq. -Unfold Rminus. -Rewrite Ropp_distr1. -Rewrite <- Rplus_assoc. -Rewrite Rplus_Ropp_r. -Rewrite Rplus_Ol. -Apply Ropp_neq; Assumption. -Qed. - -Lemma Rabsolu_4 : (a,b,c,d:R) ``(Rabsolu (a+b+c+d)) <= (Rabsolu a) + (Rabsolu b) + (Rabsolu c) + (Rabsolu d)``. -Intros. -Apply Rle_trans with ``(Rabsolu (a+b)) + (Rabsolu (c+d))``. -Replace ``a+b+c+d`` with ``(a+b)+(c+d)``; [Apply Rabsolu_triang | Ring]. -Apply Rle_trans with ``(Rabsolu a) + (Rabsolu b) + (Rabsolu (c+d))``. -Apply Rle_compatibility_r. -Apply Rabsolu_triang. -Repeat Rewrite Rplus_assoc; Repeat Apply Rle_compatibility. -Apply Rabsolu_triang. -Qed. - -Lemma Rlt_4 : (a,b,c,d,e,f,g,h:R) ``a < b`` -> ``c < d`` -> ``e < f `` -> ``g < h`` -> ``a+c+e+g < b+d+f+h``. -Intros; Apply Rlt_trans with ``b+c+e+g``. -Repeat Apply Rlt_compatibility_r; Assumption. -Repeat Rewrite Rplus_assoc; Apply Rlt_compatibility. -Apply Rlt_trans with ``d+e+g``. -Rewrite Rplus_assoc; Apply Rlt_compatibility_r; Assumption. -Rewrite Rplus_assoc; Apply Rlt_compatibility; Apply Rlt_trans with ``f+g``. -Apply Rlt_compatibility_r; Assumption. -Apply Rlt_compatibility; Assumption. -Qed. - -Lemma Rmin_2 : (a,b,c:R) ``a < b`` -> ``a < c`` -> ``a < (Rmin b c)``. -Intros; Unfold Rmin; Case (total_order_Rle b c); Intro; Assumption. -Qed. - -Lemma quadruple : (x:R) ``4*x == x + x + x + x``. -Intro; Ring. -Qed. - -Lemma quadruple_var : (x:R) `` x == x/4 + x/4 + x/4 + x/4``. -Intro; Rewrite <- quadruple. -Unfold Rdiv; Rewrite <- Rmult_assoc; Rewrite Rinv_r_simpl_m; DiscrR. -Reflexivity. -Qed. - -(**********) -Lemma continuous_neq_0 : (f:R->R; x0:R) (continuity_pt f x0) -> ~``(f x0)==0`` -> (EXT eps : posreal | (h:R) ``(Rabsolu h) < eps`` -> ~``(f (x0+h))==0``). -Intros; Unfold continuity_pt in H; Unfold continue_in in H; Unfold limit1_in in H; Unfold limit_in in H; Elim (H ``(Rabsolu ((f x0)/2))``). -Intros; Elim H1; Intros. -Exists (mkposreal x H2). -Intros; Assert H5 := (H3 ``x0+h``). -Cut ``(dist R_met (x0+h) x0) < x`` -> ``(dist R_met (f (x0+h)) (f x0)) < (Rabsolu ((f x0)/2))``. -Unfold dist; Simpl; Unfold R_dist; Replace ``x0+h-x0`` with h. -Intros; Assert H7 := (H6 H4). -Red; Intro. -Rewrite H8 in H7; Unfold Rminus in H7; Rewrite Rplus_Ol in H7; Rewrite Rabsolu_Ropp in H7; Unfold Rdiv in H7; Rewrite Rabsolu_mult in H7; Pattern 1 ``(Rabsolu (f x0)) `` in H7; Rewrite <- Rmult_1r in H7. -Cut ``0<(Rabsolu (f x0))``. -Intro; Assert H10 := (Rlt_monotony_contra ? ? ? H9 H7). -Cut ``(Rabsolu (/2))==/2``. -Assert Hyp:``0<2``. -Sup0. -Intro; Rewrite H11 in H10; Assert H12 := (Rlt_monotony ``2`` ? ? Hyp H10); Rewrite Rmult_1r in H12; Rewrite <- Rinv_r_sym in H12; [Idtac | DiscrR]. -Cut (Rlt (IZR `1`) (IZR `2`)). -Unfold IZR; Unfold INR convert; Simpl; Intro; Elim (Rlt_antirefl ``1`` (Rlt_trans ? ? ? H13 H12)). -Apply IZR_lt; Omega. -Unfold Rabsolu; Case (case_Rabsolu ``/2``); Intro. -Assert Hyp:``0<2``. -Sup0. -Assert H11 := (Rlt_monotony ``2`` ? ? Hyp r); Rewrite Rmult_Or in H11; Rewrite <- Rinv_r_sym in H11; [Idtac | DiscrR]. -Elim (Rlt_antirefl ``0`` (Rlt_trans ? ? ? Rlt_R0_R1 H11)). -Reflexivity. -Apply (Rabsolu_pos_lt ? H0). -Ring. -Assert H6 := (Req_EM ``x0`` ``x0+h``); Elim H6; Intro. -Intro; Rewrite <- H7; Unfold dist R_met; Unfold R_dist; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rabsolu_pos_lt. -Unfold Rdiv; Apply prod_neq_R0; [Assumption | Apply Rinv_neq_R0; DiscrR]. -Intro; Apply H5. -Split. -Unfold D_x no_cond. -Split; Trivial Orelse Assumption. -Assumption. -Change ``0 < (Rabsolu ((f x0)/2))``. -Apply Rabsolu_pos_lt; Unfold Rdiv; Apply prod_neq_R0. -Assumption. -Apply Rinv_neq_R0; DiscrR. -Qed. diff --git a/theories7/Reals/Ranalysis3.v b/theories7/Reals/Ranalysis3.v deleted file mode 100644 index 6ce63bbc..00000000 --- a/theories7/Reals/Ranalysis3.v +++ /dev/null @@ -1,617 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> ~``(f2 x)==0``-> (derivable_pt_lim (div_fct f1 f2) x ``(l1*(f2 x)-l2*(f1 x))/(Rsqr (f2 x))``). -Intros. -Cut (derivable_pt f2 x); [Intro | Unfold derivable_pt; Apply Specif.existT with l2; Exact H0]. -Assert H2 := ((continuous_neq_0 ? ? (derivable_continuous_pt ? ? X)) H1). -Elim H2; Clear H2; Intros eps_f2 H2. -Unfold div_fct. -Assert H3 := (derivable_continuous_pt ? ? X). -Unfold continuity_pt in H3; Unfold continue_in in H3; Unfold limit1_in in H3; Unfold limit_in in H3; Unfold dist in H3. -Simpl in H3; Unfold R_dist in H3. -Elim (H3 ``(Rabsolu (f2 x))/2``); [Idtac | Unfold Rdiv; Change ``0 < (Rabsolu (f2 x))*/2``; Apply Rmult_lt_pos; [Apply Rabsolu_pos_lt; Assumption | Apply Rlt_Rinv; Sup0]]. -Clear H3; Intros alp_f2 H3. -Cut (x0:R) ``(Rabsolu (x0-x)) < alp_f2`` ->``(Rabsolu ((f2 x0)-(f2 x))) < (Rabsolu (f2 x))/2``. -Intro H4. -Cut (a:R) ``(Rabsolu (a-x)) < alp_f2``->``(Rabsolu (f2 x))/2 < (Rabsolu (f2 a))``. -Intro H5. -Cut (a:R) ``(Rabsolu (a)) < (Rmin eps_f2 alp_f2)`` -> ``/(Rabsolu (f2 (x+a))) < 2/(Rabsolu (f2 x))``. -Intro Maj. -Unfold derivable_pt_lim; Intros. -Elim (H ``(Rabsolu ((eps*(f2 x))/8))``); [Idtac | Unfold Rdiv; Change ``0 < (Rabsolu (eps*(f2 x)*/8))``; Apply Rabsolu_pos_lt; Repeat Apply prod_neq_R0; [Red; Intro H7; Rewrite H7 in H6; Elim (Rlt_antirefl ? H6) | Assumption | Apply Rinv_neq_R0; DiscrR]]. -Intros alp_f1d H7. -Case (Req_EM (f1 x) R0); Intro. -Case (Req_EM l1 R0); Intro. -(***********************************) -(* Cas n° 1 *) -(* (f1 x)=0 l1 =0 *) -(***********************************) -Cut ``0 < (Rmin eps_f2 (Rmin alp_f2 alp_f1d))``; [Intro | Repeat Apply Rmin_pos; [Apply (cond_pos eps_f2) | Elim H3; Intros; Assumption | Apply (cond_pos alp_f1d)]]. -Exists (mkposreal (Rmin eps_f2 (Rmin alp_f2 alp_f1d)) H10). -Simpl; Intros. -Assert H13 := (Rlt_le_trans ? ? ? H12 (Rmin_r ? ?)). -Assert H14 := (Rlt_le_trans ? ? ? H12 (Rmin_l ? ?)). -Assert H15 := (Rlt_le_trans ? ? ? H13 (Rmin_r ? ?)). -Assert H16 := (Rlt_le_trans ? ? ? H13 (Rmin_l ? ?)). -Assert H17 := (H7 ? H11 H15). -Rewrite formule; [Idtac | Assumption | Assumption | Apply H2; Apply H14]. -Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``. -Unfold Rminus. -Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``). -Apply Rabsolu_4. -Repeat Rewrite Rabsolu_mult. -Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``. -Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``. -Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``. -Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``. -Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``. -Intros. -Apply Rlt_4; Assumption. -Rewrite H8. -Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol. -Rewrite Rabsolu_R0; Rewrite Rmult_Ol. -Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup]. -Rewrite H8. -Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol. -Rewrite Rabsolu_R0; Rewrite Rmult_Ol. -Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup]. -Rewrite H9. -Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol. -Rewrite Rabsolu_R0; Rewrite Rmult_Ol. -Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup]. -Rewrite <- Rabsolu_mult. -Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption Orelse Apply H2. -Apply H14. -Apply Rmin_2; Assumption. -Right; Symmetry; Apply quadruple_var. -(***********************************) -(* Cas n° 2 *) -(* (f1 x)=0 l1<>0 *) -(***********************************) -Assert H10 := (derivable_continuous_pt ? ? X). -Unfold continuity_pt in H10. -Unfold continue_in in H10. -Unfold limit1_in in H10. -Unfold limit_in in H10. -Unfold dist in H10. -Simpl in H10. -Unfold R_dist in H10. -Elim (H10 ``(Rabsolu (eps*(Rsqr (f2 x)))/(8*l1))``). -Clear H10; Intros alp_f2t2 H10. -Cut (a:R) ``(Rabsolu a) < alp_f2t2`` -> ``(Rabsolu ((f2 (x+a)) - (f2 x))) < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``. -Intro H11. -Cut ``0 < (Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2))``. -Intro. -Exists (mkposreal (Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2)) H12). -Simpl. -Intros. -Assert H15 := (Rlt_le_trans ? ? ? H14 (Rmin_r ? ?)). -Assert H16 := (Rlt_le_trans ? ? ? H14 (Rmin_l ? ?)). -Assert H17 := (Rlt_le_trans ? ? ? H15 (Rmin_l ? ?)). -Assert H18 := (Rlt_le_trans ? ? ? H15 (Rmin_r ? ?)). -Assert H19 := (Rlt_le_trans ? ? ? H16 (Rmin_l ? ?)). -Assert H20 := (Rlt_le_trans ? ? ? H16 (Rmin_r ? ?)). -Clear H14 H15 H16. -Rewrite formule; Try Assumption. -Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``. -Unfold Rminus. -Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``). -Apply Rabsolu_4. -Repeat Rewrite Rabsolu_mult. -Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``. -Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``. -Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``. -Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``. -Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``. -Intros. -Apply Rlt_4; Assumption. -Rewrite H8. -Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol. -Rewrite Rabsolu_R0; Rewrite Rmult_Ol. -Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup]. -Rewrite H8. -Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol. -Rewrite Rabsolu_R0; Rewrite Rmult_Ol. -Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup]. -Rewrite <- Rabsolu_mult. -Apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Rewrite <- Rabsolu_mult. -Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Right; Symmetry; Apply quadruple_var. -Apply H2; Assumption. -Repeat Apply Rmin_pos. -Apply (cond_pos eps_f2). -Apply (cond_pos alp_f1d). -Elim H3; Intros; Assumption. -Elim H10; Intros; Assumption. -Intros. -Elim H10; Intros. -Case (Req_EM a R0); Intro. -Rewrite H14; Rewrite Rplus_Or. -Unfold Rminus; Rewrite Rplus_Ropp_r. -Rewrite Rabsolu_R0. -Apply Rabsolu_pos_lt. -Unfold Rdiv Rsqr; Repeat Rewrite Rmult_assoc. -Repeat Apply prod_neq_R0; Try Assumption. -Red; Intro; Rewrite H15 in H6; Elim (Rlt_antirefl ? H6). -Apply Rinv_neq_R0; Repeat Apply prod_neq_R0; DiscrR Orelse Assumption. -Apply H13. -Split. -Apply D_x_no_cond; Assumption. -Replace ``x+a-x`` with a; [Assumption | Ring]. -Change ``0<(Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``. -Apply Rabsolu_pos_lt; Unfold Rdiv Rsqr; Repeat Rewrite Rmult_assoc; Repeat Apply prod_neq_R0. -Red; Intro; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6). -Assumption. -Assumption. -Apply Rinv_neq_R0; Repeat Apply prod_neq_R0; [DiscrR | DiscrR | DiscrR | Assumption]. -(***********************************) -(* Cas n° 3 *) -(* (f1 x)<>0 l1=0 l2=0 *) -(***********************************) -Case (Req_EM l1 R0); Intro. -Case (Req_EM l2 R0); Intro. -Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``); [Idtac | Apply Rabsolu_pos_lt; Unfold Rdiv Rsqr; Repeat Rewrite Rmult_assoc; Repeat Apply prod_neq_R0; [Assumption | Assumption | Red; Intro; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6) | Apply Rinv_neq_R0; Repeat Apply prod_neq_R0; DiscrR Orelse Assumption]]. -Intros alp_f2d H12. -Cut ``0 < (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d))``. -Intro. -Exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) H11). -Simpl. -Intros. -Assert H15 := (Rlt_le_trans ? ? ? H14 (Rmin_l ? ?)). -Assert H16 := (Rlt_le_trans ? ? ? H14 (Rmin_r ? ?)). -Assert H17 := (Rlt_le_trans ? ? ? H15 (Rmin_l ? ?)). -Assert H18 := (Rlt_le_trans ? ? ? H15 (Rmin_r ? ?)). -Assert H19 := (Rlt_le_trans ? ? ? H16 (Rmin_l ? ?)). -Assert H20 := (Rlt_le_trans ? ? ? H16 (Rmin_r ? ?)). -Clear H15 H16. -Rewrite formule; Try Assumption. -Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``. -Unfold Rminus. -Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``). -Apply Rabsolu_4. -Repeat Rewrite Rabsolu_mult. -Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``. -Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``. -Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``. -Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``. -Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``. -Intros. -Apply Rlt_4; Assumption. -Rewrite H10. -Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol. -Rewrite Rabsolu_R0; Rewrite Rmult_Ol. -Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup]. -Rewrite <- Rabsolu_mult. -Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Rewrite H9. -Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol. -Rewrite Rabsolu_R0; Rewrite Rmult_Ol. -Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup]. -Rewrite <- Rabsolu_mult. -Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Assumption Orelse Idtac. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Right; Symmetry; Apply quadruple_var. -Apply H2; Assumption. -Repeat Apply Rmin_pos. -Apply (cond_pos eps_f2). -Elim H3; Intros; Assumption. -Apply (cond_pos alp_f1d). -Apply (cond_pos alp_f2d). -(***********************************) -(* Cas n° 4 *) -(* (f1 x)<>0 l1=0 l2<>0 *) -(***********************************) -Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``); [Idtac | Apply Rabsolu_pos_lt; Unfold Rsqr Rdiv; Repeat Rewrite Rinv_Rmult; Repeat Apply prod_neq_R0; Try Assumption Orelse DiscrR]. -Intros alp_f2d H11. -Assert H12 := (derivable_continuous_pt ? ? X). -Unfold continuity_pt in H12. -Unfold continue_in in H12. -Unfold limit1_in in H12. -Unfold limit_in in H12. -Unfold dist in H12. -Simpl in H12. -Unfold R_dist in H12. -Elim (H12 ``(Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``). -Intros alp_f2c H13. -Cut ``0 < (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c)))``. -Intro. -Exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c))) H14). -Simpl; Intros. -Assert H17 := (Rlt_le_trans ? ? ? H16 (Rmin_l ? ?)). -Assert H18 := (Rlt_le_trans ? ? ? H16 (Rmin_r ? ?)). -Assert H19 := (Rlt_le_trans ? ? ? H18 (Rmin_r ? ?)). -Assert H20 := (Rlt_le_trans ? ? ? H19 (Rmin_l ? ?)). -Assert H21 := (Rlt_le_trans ? ? ? H19 (Rmin_r ? ?)). -Assert H22 := (Rlt_le_trans ? ? ? H18 (Rmin_l ? ?)). -Assert H23 := (Rlt_le_trans ? ? ? H17 (Rmin_l ? ?)). -Assert H24 := (Rlt_le_trans ? ? ? H17 (Rmin_r ? ?)). -Clear H16 H17 H18 H19. -Cut (a:R) ``(Rabsolu a) < alp_f2c`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``. -Intro. -Rewrite formule; Try Assumption. -Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``. -Unfold Rminus. -Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``). -Apply Rabsolu_4. -Repeat Rewrite Rabsolu_mult. -Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``. -Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``. -Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``. -Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``. -Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``. -Intros. -Apply Rlt_4; Assumption. -Rewrite <- Rabsolu_mult. -Apply (maj_term4 x h eps l2 alp_f2 alp_f2c eps_f2 f1 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Rewrite <- Rabsolu_mult. -Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Rewrite H9. -Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol. -Rewrite Rabsolu_R0; Rewrite Rmult_Ol. -Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup]. -Rewrite <- Rabsolu_mult. -Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Right; Symmetry; Apply quadruple_var. -Apply H2; Assumption. -Intros. -Case (Req_EM a R0); Intro. -Rewrite H17; Rewrite Rplus_Or. -Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0. -Apply Rabsolu_pos_lt. -Unfold Rdiv Rsqr. -Repeat Rewrite Rinv_Rmult; Try Assumption. -Repeat Apply prod_neq_R0; Try Assumption. -Red; Intro H18; Rewrite H18 in H6; Elim (Rlt_antirefl ? H6). -Apply Rinv_neq_R0; DiscrR. -Apply Rinv_neq_R0; DiscrR. -Apply Rinv_neq_R0; DiscrR. -Apply Rinv_neq_R0; Assumption. -Apply Rinv_neq_R0; Assumption. -DiscrR. -DiscrR. -DiscrR. -DiscrR. -DiscrR. -Apply prod_neq_R0; [DiscrR | Assumption]. -Elim H13; Intros. -Apply H19. -Split. -Apply D_x_no_cond; Assumption. -Replace ``x+a-x`` with a; [Assumption | Ring]. -Repeat Apply Rmin_pos. -Apply (cond_pos eps_f2). -Elim H3; Intros; Assumption. -Apply (cond_pos alp_f1d). -Apply (cond_pos alp_f2d). -Elim H13; Intros; Assumption. -Change ``0 < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``. -Apply Rabsolu_pos_lt. -Unfold Rsqr Rdiv. -Repeat Rewrite Rinv_Rmult; Try Assumption Orelse DiscrR. -Repeat Apply prod_neq_R0; Try Assumption. -Red; Intro H13; Rewrite H13 in H6; Elim (Rlt_antirefl ? H6). -Apply Rinv_neq_R0; DiscrR. -Apply Rinv_neq_R0; DiscrR. -Apply Rinv_neq_R0; DiscrR. -Apply Rinv_neq_R0; Assumption. -Apply Rinv_neq_R0; Assumption. -Apply prod_neq_R0; [DiscrR | Assumption]. -Red; Intro H11; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6). -Apply Rinv_neq_R0; DiscrR. -Apply Rinv_neq_R0; DiscrR. -Apply Rinv_neq_R0; DiscrR. -Apply Rinv_neq_R0; Assumption. -(***********************************) -(* Cas n° 5 *) -(* (f1 x)<>0 l1<>0 l2=0 *) -(***********************************) -Case (Req_EM l2 R0); Intro. -Assert H11 := (derivable_continuous_pt ? ? X). -Unfold continuity_pt in H11. -Unfold continue_in in H11. -Unfold limit1_in in H11. -Unfold limit_in in H11. -Unfold dist in H11. -Simpl in H11. -Unfold R_dist in H11. -Elim (H11 ``(Rabsolu (eps*(Rsqr (f2 x)))/(8*l1))``). -Clear H11; Intros alp_f2t2 H11. -Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``). -Intros alp_f2d H12. -Cut ``0 < (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2)))``. -Intro. -Exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2))) H13). -Simpl. -Intros. -Cut (a:R) ``(Rabsolu a) ``(Rabsolu ((f2 (x+a))-(f2 x)))<(Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``. -Intro. -Assert H17 := (Rlt_le_trans ? ? ? H15 (Rmin_l ? ?)). -Assert H18 := (Rlt_le_trans ? ? ? H15 (Rmin_r ? ?)). -Assert H19 := (Rlt_le_trans ? ? ? H17 (Rmin_r ? ?)). -Assert H20 := (Rlt_le_trans ? ? ? H17 (Rmin_l ? ?)). -Assert H21 := (Rlt_le_trans ? ? ? H18 (Rmin_r ? ?)). -Assert H22 := (Rlt_le_trans ? ? ? H18 (Rmin_l ? ?)). -Assert H23 := (Rlt_le_trans ? ? ? H21 (Rmin_l ? ?)). -Assert H24 := (Rlt_le_trans ? ? ? H21 (Rmin_r ? ?)). -Clear H15 H17 H18 H21. -Rewrite formule; Try Assumption. -Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``. -Unfold Rminus. -Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``). -Apply Rabsolu_4. -Repeat Rewrite Rabsolu_mult. -Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``. -Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``. -Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``. -Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``. -Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``. -Intros. -Apply Rlt_4; Assumption. -Rewrite H10. -Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol. -Rewrite Rabsolu_R0; Rewrite Rmult_Ol. -Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup]. -Rewrite <- Rabsolu_mult. -Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Rewrite <- Rabsolu_mult. -Apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Rewrite <- Rabsolu_mult. -Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Right; Symmetry; Apply quadruple_var. -Apply H2; Assumption. -Intros. -Case (Req_EM a R0); Intro. -Rewrite H17; Rewrite Rplus_Or; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0. -Apply Rabsolu_pos_lt. -Unfold Rdiv; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption. -Unfold Rsqr. -Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H18; Rewrite H18 in H6; Elim (Rlt_antirefl ? H6)). -Elim H11; Intros. -Apply H19. -Split. -Apply D_x_no_cond; Assumption. -Replace ``x+a-x`` with a; [Assumption | Ring]. -Repeat Apply Rmin_pos. -Apply (cond_pos eps_f2). -Elim H3; Intros; Assumption. -Apply (cond_pos alp_f1d). -Apply (cond_pos alp_f2d). -Elim H11; Intros; Assumption. -Apply Rabsolu_pos_lt. -Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption. -Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H12; Rewrite H12 in H6; Elim (Rlt_antirefl ? H6)). -Change ``0 < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``. -Apply Rabsolu_pos_lt. -Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption. -Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H12; Rewrite H12 in H6; Elim (Rlt_antirefl ? H6)). -(***********************************) -(* Cas n° 6 *) -(* (f1 x)<>0 l1<>0 l2<>0 *) -(***********************************) -Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``). -Intros alp_f2d H11. -Assert H12 := (derivable_continuous_pt ? ? X). -Unfold continuity_pt in H12. -Unfold continue_in in H12. -Unfold limit1_in in H12. -Unfold limit_in in H12. -Unfold dist in H12. -Simpl in H12. -Unfold R_dist in H12. -Elim (H12 ``(Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``). -Intros alp_f2c H13. -Elim (H12 ``(Rabsolu (eps*(Rsqr (f2 x)))/(8*l1))``). -Intros alp_f2t2 H14. -Cut ``0 < (Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) (Rmin alp_f2c alp_f2t2))``. -Intro. -Exists (mkposreal (Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) (Rmin alp_f2c alp_f2t2)) H15). -Simpl. -Intros. -Assert H18 := (Rlt_le_trans ? ? ? H17 (Rmin_l ? ?)). -Assert H19 := (Rlt_le_trans ? ? ? H17 (Rmin_r ? ?)). -Assert H20 := (Rlt_le_trans ? ? ? H18 (Rmin_l ? ?)). -Assert H21 := (Rlt_le_trans ? ? ? H18 (Rmin_r ? ?)). -Assert H22 := (Rlt_le_trans ? ? ? H19 (Rmin_l ? ?)). -Assert H23 := (Rlt_le_trans ? ? ? H19 (Rmin_r ? ?)). -Assert H24 := (Rlt_le_trans ? ? ? H20 (Rmin_l ? ?)). -Assert H25 := (Rlt_le_trans ? ? ? H20 (Rmin_r ? ?)). -Assert H26 := (Rlt_le_trans ? ? ? H21 (Rmin_l ? ?)). -Assert H27 := (Rlt_le_trans ? ? ? H21 (Rmin_r ? ?)). -Clear H17 H18 H19 H20 H21. -Cut (a:R) ``(Rabsolu a) < alp_f2t2`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``. -Cut (a:R) ``(Rabsolu a) < alp_f2c`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``. -Intros. -Rewrite formule; Try Assumption. -Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``. -Unfold Rminus. -Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``). -Apply Rabsolu_4. -Repeat Rewrite Rabsolu_mult. -Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``. -Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``. -Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``. -Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``. -Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``. -Intros. -Apply Rlt_4; Assumption. -Rewrite <- Rabsolu_mult. -Apply (maj_term4 x h eps l2 alp_f2 alp_f2c eps_f2 f1 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Rewrite <- Rabsolu_mult. -Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Rewrite <- Rabsolu_mult. -Apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Rewrite <- Rabsolu_mult. -Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption. -Apply H2; Assumption. -Apply Rmin_2; Assumption. -Right; Symmetry; Apply quadruple_var. -Apply H2; Assumption. -Intros. -Case (Req_EM a R0); Intro. -Rewrite H18; Rewrite Rplus_Or; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rabsolu_pos_lt. -Unfold Rdiv Rsqr; Rewrite Rinv_Rmult. -Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H28; Rewrite H28 in H6; Elim (Rlt_antirefl ? H6)). -Apply prod_neq_R0; [DiscrR | Assumption]. -Apply prod_neq_R0; [DiscrR | Assumption]. -Assumption. -Elim H13; Intros. -Apply H20. -Split. -Apply D_x_no_cond; Assumption. -Replace ``x+a-x`` with a; [Assumption | Ring]. -Intros. -Case (Req_EM a R0); Intro. -Rewrite H18; Rewrite Rplus_Or; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rabsolu_pos_lt. -Unfold Rdiv Rsqr; Rewrite Rinv_Rmult. -Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H28; Rewrite H28 in H6; Elim (Rlt_antirefl ? H6)). -DiscrR. -Assumption. -Elim H14; Intros. -Apply H20. -Split. -Unfold D_x no_cond; Split. -Trivial. -Apply Rminus_not_eq_right. -Replace ``x+a-x`` with a; [Assumption | Ring]. -Replace ``x+a-x`` with a; [Assumption | Ring]. -Repeat Apply Rmin_pos. -Apply (cond_pos eps_f2). -Elim H3; Intros; Assumption. -Apply (cond_pos alp_f1d). -Apply (cond_pos alp_f2d). -Elim H13; Intros; Assumption. -Elim H14; Intros; Assumption. -Change ``0 < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``; Apply Rabsolu_pos_lt. -Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption. -Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H14; Rewrite H14 in H6; Elim (Rlt_antirefl ? H6)). -Change ``0 < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``; Apply Rabsolu_pos_lt. -Unfold Rdiv Rsqr; Rewrite Rinv_Rmult. -Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H13; Rewrite H13 in H6; Elim (Rlt_antirefl ? H6)). -Apply prod_neq_R0; [DiscrR | Assumption]. -Apply prod_neq_R0; [DiscrR | Assumption]. -Assumption. -Apply Rabsolu_pos_lt. -Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; [Idtac | DiscrR | Assumption]. -Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H11; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6)). -Intros. -Unfold Rdiv. -Apply Rlt_monotony_contra with ``(Rabsolu (f2 (x+a)))``. -Apply Rabsolu_pos_lt; Apply H2. -Apply Rlt_le_trans with (Rmin eps_f2 alp_f2). -Assumption. -Apply Rmin_l. -Rewrite <- Rinv_r_sym. -Apply Rlt_monotony_contra with (Rabsolu (f2 x)). -Apply Rabsolu_pos_lt; Assumption. -Rewrite Rmult_1r. -Rewrite (Rmult_sym (Rabsolu (f2 x))). -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Apply Rlt_monotony_contra with ``/2``. -Apply Rlt_Rinv; Sup0. -Repeat Rewrite (Rmult_sym ``/2``). -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r. -Unfold Rdiv in H5; Apply H5. -Replace ``x+a-x`` with a. -Assert H7 := (Rlt_le_trans ? ? ? H6 (Rmin_r ? ?)); Assumption. -Ring. -DiscrR. -Apply Rabsolu_no_R0; Assumption. -Apply Rabsolu_no_R0; Apply H2. -Assert H7 := (Rlt_le_trans ? ? ? H6 (Rmin_l ? ?)); Assumption. -Intros. -Assert H6 := (H4 a H5). -Rewrite <- (Rabsolu_Ropp ``(f2 a)-(f2 x)``) in H6. -Rewrite Ropp_distr2 in H6. -Assert H7 := (Rle_lt_trans ? ? ? (Rabsolu_triang_inv ? ?) H6). -Apply Rlt_anti_compatibility with ``-(Rabsolu (f2 a)) + (Rabsolu (f2 x))/2``. -Rewrite Rplus_assoc. -Rewrite <- double_var. -Do 2 Rewrite (Rplus_sym ``-(Rabsolu (f2 a))``). -Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or. -Unfold Rminus in H7; Assumption. -Intros. -Case (Req_EM x x0); Intro. -Rewrite <- H5; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Unfold Rdiv; Apply Rmult_lt_pos; [Apply Rabsolu_pos_lt; Assumption | Apply Rlt_Rinv; Sup0]. -Elim H3; Intros. -Apply H7. -Split. -Unfold D_x no_cond; Split. -Trivial. -Assumption. -Assumption. -Qed. - -Lemma derivable_pt_div : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> ``(f2 x)<>0`` -> (derivable_pt (div_fct f1 f2) x). -Unfold derivable_pt. -Intros. -Elim X; Intros. -Elim X0; Intros. -Apply Specif.existT with ``(x0*(f2 x)-x1*(f1 x))/(Rsqr (f2 x))``. -Apply derivable_pt_lim_div; Assumption. -Qed. - -Lemma derivable_div : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> ((x:R)``(f2 x)<>0``) -> (derivable (div_fct f1 f2)). -Unfold derivable; Intros. -Apply (derivable_pt_div ? ? ? (X x) (X0 x) (H x)). -Qed. - -Lemma derive_pt_div : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x);na:``(f2 x)<>0``) ``(derive_pt (div_fct f1 f2) x (derivable_pt_div ? ? ? pr1 pr2 na)) == ((derive_pt f1 x pr1)*(f2 x)-(derive_pt f2 x pr2)*(f1 x))/(Rsqr (f2 x))``. -Intros. -Assert H := (derivable_derive f1 x pr1). -Assert H0 := (derivable_derive f2 x pr2). -Assert H1 := (derivable_derive (div_fct f1 f2) x (derivable_pt_div ? ? ? pr1 pr2 na)). -Elim H; Clear H; Intros l1 H. -Elim H0; Clear H0; Intros l2 H0. -Elim H1; Clear H1; Intros l H1. -Rewrite H; Rewrite H0; Apply derive_pt_eq_0. -Assert H3 := (projT2 ? ? pr1). -Unfold derive_pt in H; Rewrite H in H3. -Assert H4 := (projT2 ? ? pr2). -Unfold derive_pt in H0; Rewrite H0 in H4. -Apply derivable_pt_lim_div; Assumption. -Qed. diff --git a/theories7/Reals/Ranalysis4.v b/theories7/Reals/Ranalysis4.v deleted file mode 100644 index 061854dc..00000000 --- a/theories7/Reals/Ranalysis4.v +++ /dev/null @@ -1,313 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R;x:R) ``(f x)<>0`` -> (derivable_pt f x) -> (derivable_pt (inv_fct f) x). -Intros; Cut (derivable_pt (div_fct (fct_cte R1) f) x) -> (derivable_pt (inv_fct f) x). -Intro; Apply X0. -Apply derivable_pt_div. -Apply derivable_pt_const. -Assumption. -Assumption. -Unfold div_fct inv_fct fct_cte; Intro; Elim X0; Intros; Unfold derivable_pt; Apply Specif.existT with x0; Unfold derivable_pt_abs; Unfold derivable_pt_lim; Unfold derivable_pt_abs in p; Unfold derivable_pt_lim in p; Intros; Elim (p eps H0); Intros; Exists x1; Intros; Unfold Rdiv in H1; Unfold Rdiv; Rewrite <- (Rmult_1l ``/(f x)``); Rewrite <- (Rmult_1l ``/(f (x+h))``). -Apply H1; Assumption. -Qed. - -(**********) -Lemma pr_nu_var : (f,g:R->R;x:R;pr1:(derivable_pt f x);pr2:(derivable_pt g x)) f==g -> (derive_pt f x pr1) == (derive_pt g x pr2). -Unfold derivable_pt derive_pt; Intros. -Elim pr1; Intros. -Elim pr2; Intros. -Simpl. -Rewrite H in p. -Apply unicite_limite with g x; Assumption. -Qed. - -(**********) -Lemma pr_nu_var2 : (f,g:R->R;x:R;pr1:(derivable_pt f x);pr2:(derivable_pt g x)) ((h:R)(f h)==(g h)) -> (derive_pt f x pr1) == (derive_pt g x pr2). -Unfold derivable_pt derive_pt; Intros. -Elim pr1; Intros. -Elim pr2; Intros. -Simpl. -Assert H0 := (unicite_step2 ? ? ? p). -Assert H1 := (unicite_step2 ? ? ? p0). -Cut (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h <> 0`` x1 ``0``). -Intro; Assert H3 := (unicite_step1 ? ? ? ? H0 H2). -Assumption. -Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Unfold limit1_in in H1; Unfold limit_in in H1; Unfold dist in H1; Simpl in H1; Unfold R_dist in H1. -Intros; Elim (H1 eps H2); Intros. -Elim H3; Intros. -Exists x2. -Split. -Assumption. -Intros; Do 2 Rewrite H; Apply H5; Assumption. -Qed. - -(**********) -Lemma derivable_inv : (f:R->R) ((x:R)``(f x)<>0``)->(derivable f)->(derivable (inv_fct f)). -Intros. -Unfold derivable; Intro. -Apply derivable_pt_inv. -Apply (H x). -Apply (X x). -Qed. - -Lemma derive_pt_inv : (f:R->R;x:R;pr:(derivable_pt f x);na:``(f x)<>0``) (derive_pt (inv_fct f) x (derivable_pt_inv f x na pr)) == ``-(derive_pt f x pr)/(Rsqr (f x))``. -Intros; Replace (derive_pt (inv_fct f) x (derivable_pt_inv f x na pr)) with (derive_pt (div_fct (fct_cte R1) f) x (derivable_pt_div (fct_cte R1) f x (derivable_pt_const R1 x) pr na)). -Rewrite derive_pt_div; Rewrite derive_pt_const; Unfold fct_cte; Rewrite Rmult_Ol; Rewrite Rmult_1r; Unfold Rminus; Rewrite Rplus_Ol; Reflexivity. -Apply pr_nu_var2. -Intro; Unfold div_fct fct_cte inv_fct. -Unfold Rdiv; Ring. -Qed. - -(* Rabsolu *) -Lemma Rabsolu_derive_1 : (x:R) ``0 (derivable_pt_lim Rabsolu x ``1``). -Intros. -Unfold derivable_pt_lim; Intros. -Exists (mkposreal x H); Intros. -Rewrite (Rabsolu_right x). -Rewrite (Rabsolu_right ``x+h``). -Rewrite Rplus_sym. -Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r. -Rewrite Rplus_Or; Unfold Rdiv; Rewrite <- Rinv_r_sym. -Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply H0. -Apply H1. -Apply Rle_sym1. -Case (case_Rabsolu h); Intro. -Rewrite (Rabsolu_left h r) in H2. -Left; Rewrite Rplus_sym; Apply Rlt_anti_compatibility with ``-h``; Rewrite Rplus_Or; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Apply H2. -Apply ge0_plus_ge0_is_ge0. -Left; Apply H. -Apply Rle_sym2; Apply r. -Left; Apply H. -Qed. - -Lemma Rabsolu_derive_2 : (x:R) ``x<0`` -> (derivable_pt_lim Rabsolu x ``-1``). -Intros. -Unfold derivable_pt_lim; Intros. -Cut ``0< -x``. -Intro; Exists (mkposreal ``-x`` H1); Intros. -Rewrite (Rabsolu_left x). -Rewrite (Rabsolu_left ``x+h``). -Rewrite Rplus_sym. -Rewrite Ropp_distr1. -Unfold Rminus; Rewrite Ropp_Ropp; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l. -Rewrite Rplus_Or; Unfold Rdiv. -Rewrite Ropp_mul1. -Rewrite <- Rinv_r_sym. -Rewrite Ropp_Ropp; Rewrite Rplus_Ropp_l; Rewrite Rabsolu_R0; Apply H0. -Apply H2. -Case (case_Rabsolu h); Intro. -Apply Ropp_Rlt. -Rewrite Ropp_O; Rewrite Ropp_distr1; Apply gt0_plus_gt0_is_gt0. -Apply H1. -Apply Rgt_RO_Ropp; Apply r. -Rewrite (Rabsolu_right h r) in H3. -Apply Rlt_anti_compatibility with ``-x``; Rewrite Rplus_Or; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Apply H3. -Apply H. -Apply Rgt_RO_Ropp; Apply H. -Qed. - -(* Rabsolu is derivable for all x <> 0 *) -Lemma derivable_pt_Rabsolu : (x:R) ``x<>0`` -> (derivable_pt Rabsolu x). -Intros. -Case (total_order_T x R0); Intro. -Elim s; Intro. -Unfold derivable_pt; Apply Specif.existT with ``-1``. -Apply (Rabsolu_derive_2 x a). -Elim H; Exact b. -Unfold derivable_pt; Apply Specif.existT with ``1``. -Apply (Rabsolu_derive_1 x r). -Qed. - -(* Rabsolu is continuous for all x *) -Lemma continuity_Rabsolu : (continuity Rabsolu). -Unfold continuity; Intro. -Case (Req_EM x R0); Intro. -Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Exists eps; Split. -Apply H0. -Intros; Rewrite H; Rewrite Rabsolu_R0; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Elim H1; Intros; Rewrite H in H3; Unfold Rminus in H3; Rewrite Ropp_O in H3; Rewrite Rplus_Or in H3; Apply H3. -Apply derivable_continuous_pt; Apply (derivable_pt_Rabsolu x H). -Qed. - -(* Finite sums : Sum a_k x^k *) -Lemma continuity_finite_sum : (An:nat->R;N:nat) (continuity [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N)). -Intros; Unfold continuity; Intro. -Induction N. -Simpl. -Apply continuity_pt_const. -Unfold constant; Intros; Reflexivity. -Replace [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` (S N)) with (plus_fct [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) [y:R]``(An (S N))*(pow y (S N))``). -Apply continuity_pt_plus. -Apply HrecN. -Replace [y:R]``(An (S N))*(pow y (S N))`` with (mult_real_fct (An (S N)) [y:R](pow y (S N))). -Apply continuity_pt_scal. -Apply derivable_continuous_pt. -Apply derivable_pt_pow. -Reflexivity. -Reflexivity. -Qed. - -Lemma derivable_pt_lim_fs : (An:nat->R;x:R;N:nat) (lt O N) -> (derivable_pt_lim [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N))). -Intros; Induction N. -Elim (lt_n_n ? H). -Cut N=O\/(lt O N). -Intro; Elim H0; Intro. -Rewrite H1. -Simpl. -Replace [y:R]``(An O)*1+(An (S O))*(y*1)`` with (plus_fct (fct_cte ``(An O)*1``) (mult_real_fct ``(An (S O))`` (mult_fct id (fct_cte R1)))). -Replace ``1*(An (S O))*1`` with ``0+(An (S O))*(1*(fct_cte R1 x)+(id x)*0)``. -Apply derivable_pt_lim_plus. -Apply derivable_pt_lim_const. -Apply derivable_pt_lim_scal. -Apply derivable_pt_lim_mult. -Apply derivable_pt_lim_id. -Apply derivable_pt_lim_const. -Unfold fct_cte id; Ring. -Reflexivity. -Replace [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` (S N)) with (plus_fct [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) [y:R]``(An (S N))*(pow y (S N))``). -Replace (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred (S N))) with (Rplus (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N)) ``(An (S N))*((INR (S (pred (S N))))*(pow x (pred (S N))))``). -Apply derivable_pt_lim_plus. -Apply HrecN. -Assumption. -Replace [y:R]``(An (S N))*(pow y (S N))`` with (mult_real_fct (An (S N)) [y:R](pow y (S N))). -Apply derivable_pt_lim_scal. -Replace (pred (S N)) with N; [Idtac | Reflexivity]. -Pattern 3 N; Replace N with (pred (S N)). -Apply derivable_pt_lim_pow. -Reflexivity. -Reflexivity. -Cut (pred (S N)) = (S (pred N)). -Intro; Rewrite H2. -Rewrite tech5. -Apply Rplus_plus_r. -Rewrite <- H2. -Replace (pred (S N)) with N; [Idtac | Reflexivity]. -Ring. -Simpl. -Apply S_pred with O; Assumption. -Unfold plus_fct. -Simpl; Reflexivity. -Inversion H. -Left; Reflexivity. -Right; Apply lt_le_trans with (1); [Apply lt_O_Sn | Assumption]. -Qed. - -Lemma derivable_pt_lim_finite_sum : (An:(nat->R); x:R; N:nat) (derivable_pt_lim [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x (Cases N of O => R0 | _ => (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N)) end)). -Intros. -Induction N. -Simpl. -Rewrite Rmult_1r. -Replace [_:R]``(An O)`` with (fct_cte (An O)); [Apply derivable_pt_lim_const | Reflexivity]. -Apply derivable_pt_lim_fs; Apply lt_O_Sn. -Qed. - -Lemma derivable_pt_finite_sum : (An:nat->R;N:nat;x:R) (derivable_pt [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x). -Intros. -Unfold derivable_pt. -Assert H := (derivable_pt_lim_finite_sum An x N). -Induction N. -Apply Specif.existT with R0; Apply H. -Apply Specif.existT with (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred (S N))); Apply H. -Qed. - -Lemma derivable_finite_sum : (An:nat->R;N:nat) (derivable [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N)). -Intros; Unfold derivable; Intro; Apply derivable_pt_finite_sum. -Qed. - -(* Regularity of hyperbolic functions *) -Lemma derivable_pt_lim_cosh : (x:R) (derivable_pt_lim cosh x ``(sinh x)``). -Intro. -Unfold cosh sinh; Unfold Rdiv. -Replace [x0:R]``((exp x0)+(exp ( -x0)))*/2`` with (mult_fct (plus_fct exp (comp exp (opp_fct id))) (fct_cte ``/2``)); [Idtac | Reflexivity]. -Replace ``((exp x)-(exp ( -x)))*/2`` with ``((exp x)+((exp (-x))*-1))*((fct_cte (Rinv 2)) x)+((plus_fct exp (comp exp (opp_fct id))) x)*0``. -Apply derivable_pt_lim_mult. -Apply derivable_pt_lim_plus. -Apply derivable_pt_lim_exp. -Apply derivable_pt_lim_comp. -Apply derivable_pt_lim_opp. -Apply derivable_pt_lim_id. -Apply derivable_pt_lim_exp. -Apply derivable_pt_lim_const. -Unfold plus_fct mult_real_fct comp opp_fct id fct_cte; Ring. -Qed. - -Lemma derivable_pt_lim_sinh : (x:R) (derivable_pt_lim sinh x ``(cosh x)``). -Intro. -Unfold cosh sinh; Unfold Rdiv. -Replace [x0:R]``((exp x0)-(exp ( -x0)))*/2`` with (mult_fct (minus_fct exp (comp exp (opp_fct id))) (fct_cte ``/2``)); [Idtac | Reflexivity]. -Replace ``((exp x)+(exp ( -x)))*/2`` with ``((exp x)-((exp (-x))*-1))*((fct_cte (Rinv 2)) x)+((minus_fct exp (comp exp (opp_fct id))) x)*0``. -Apply derivable_pt_lim_mult. -Apply derivable_pt_lim_minus. -Apply derivable_pt_lim_exp. -Apply derivable_pt_lim_comp. -Apply derivable_pt_lim_opp. -Apply derivable_pt_lim_id. -Apply derivable_pt_lim_exp. -Apply derivable_pt_lim_const. -Unfold plus_fct mult_real_fct comp opp_fct id fct_cte; Ring. -Qed. - -Lemma derivable_pt_exp : (x:R) (derivable_pt exp x). -Intro. -Unfold derivable_pt. -Apply Specif.existT with (exp x). -Apply derivable_pt_lim_exp. -Qed. - -Lemma derivable_pt_cosh : (x:R) (derivable_pt cosh x). -Intro. -Unfold derivable_pt. -Apply Specif.existT with (sinh x). -Apply derivable_pt_lim_cosh. -Qed. - -Lemma derivable_pt_sinh : (x:R) (derivable_pt sinh x). -Intro. -Unfold derivable_pt. -Apply Specif.existT with (cosh x). -Apply derivable_pt_lim_sinh. -Qed. - -Lemma derivable_exp : (derivable exp). -Unfold derivable; Apply derivable_pt_exp. -Qed. - -Lemma derivable_cosh : (derivable cosh). -Unfold derivable; Apply derivable_pt_cosh. -Qed. - -Lemma derivable_sinh : (derivable sinh). -Unfold derivable; Apply derivable_pt_sinh. -Qed. - -Lemma derive_pt_exp : (x:R) (derive_pt exp x (derivable_pt_exp x))==(exp x). -Intro; Apply derive_pt_eq_0. -Apply derivable_pt_lim_exp. -Qed. - -Lemma derive_pt_cosh : (x:R) (derive_pt cosh x (derivable_pt_cosh x))==(sinh x). -Intro; Apply derive_pt_eq_0. -Apply derivable_pt_lim_cosh. -Qed. - -Lemma derive_pt_sinh : (x:R) (derive_pt sinh x (derivable_pt_sinh x))==(cosh x). -Intro; Apply derive_pt_eq_0. -Apply derivable_pt_lim_sinh. -Qed. diff --git a/theories7/Reals/Raxioms.v b/theories7/Reals/Raxioms.v deleted file mode 100644 index caf8524c..00000000 --- a/theories7/Reals/Raxioms.v +++ /dev/null @@ -1,172 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0``->``(/r)*r==1``. -Hints Resolve Rinv_l : real. - -(**********) -Axiom Rmult_1l:(r:R)``1*r==r``. -Hints Resolve Rmult_1l : real. - -(**********) -Axiom R1_neq_R0:``1<>0``. -Hints Resolve R1_neq_R0 : real. - -(*********************************************************) -(** Distributivity *) -(*********************************************************) - -(**********) -Axiom Rmult_Rplus_distr:(r1,r2,r3:R)``r1*(r2+r3)==(r1*r2)+(r1*r3)``. -Hints Resolve Rmult_Rplus_distr : real v62. - -(*********************************************************) -(** Order axioms *) -(*********************************************************) -(*********************************************************) -(** Total Order *) -(*********************************************************) - -(**********) -Axiom total_order_T:(r1,r2:R)(sumorT (sumboolT ``r1r2``). - -(*********************************************************) -(** Lower *) -(*********************************************************) - -(**********) -Axiom Rlt_antisym:(r1,r2:R)``r1 ~ ``r2``r2``r1``r+r1``r1``r*r1 ``0`` - |(S O) => ``1`` - |(S n) => ``(INR n)+1`` - end). -Arguments Scope INR [nat_scope]. - - -(**********************************************************) -(** Injection from [Z] to [R] *) -(**********************************************************) - -(**********) -Definition IZR:Z->R:=[z:Z](Cases z of - ZERO => ``0`` - |(POS n) => (INR (convert n)) - |(NEG n) => ``-(INR (convert n))`` - end). -Arguments Scope IZR [Z_scope]. - -(**********************************************************) -(** [R] Archimedian *) -(**********************************************************) - -(**********) -Axiom archimed:(r:R)``(IZR (up r)) > r``/\``(IZR (up r))-r <= 1``. - -(**********************************************************) -(** [R] Complete *) -(**********************************************************) - -(**********) -Definition is_upper_bound:=[E:R->Prop][m:R](x:R)(E x)->``x <= m``. - -(**********) -Definition bound:=[E:R->Prop](ExT [m:R](is_upper_bound E m)). - -(**********) -Definition is_lub:=[E:R->Prop][m:R] - (is_upper_bound E m)/\(b:R)(is_upper_bound E b)->``m <= b``. - -(**********) -Axiom complet:(E:R->Prop)(bound E)-> - (ExT [x:R] (E x))-> - (sigTT R [m:R](is_lub E m)). - diff --git a/theories7/Reals/Rbase.v b/theories7/Reals/Rbase.v deleted file mode 100644 index 54226206..00000000 --- a/theories7/Reals/Rbase.v +++ /dev/null @@ -1,14 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R->R:=[x,y:R] - Cases (total_order_Rle x y) of - (leftT _) => x - | (rightT _) => y - end. - -(*********) -Lemma Rmin_Rgt_l:(r1,r2,r:R)(Rgt (Rmin r1 r2) r) -> - ((Rgt r1 r)/\(Rgt r2 r)). -Intros r1 r2 r;Unfold Rmin;Case (total_order_Rle r1 r2);Intros. -Split. -Assumption. -Unfold Rgt;Unfold Rgt in H;Exact (Rlt_le_trans r r1 r2 H r0). -Split. -Generalize (not_Rle r1 r2 n);Intro;Exact (Rgt_trans r1 r2 r H0 H). -Assumption. -Qed. - -(*********) -Lemma Rmin_Rgt_r:(r1,r2,r:R)(((Rgt r1 r)/\(Rgt r2 r)) -> - (Rgt (Rmin r1 r2) r)). -Intros;Unfold Rmin;Case (total_order_Rle r1 r2);Elim H;Clear H;Intros; - Assumption. -Qed. - -(*********) -Lemma Rmin_Rgt:(r1,r2,r:R)(Rgt (Rmin r1 r2) r)<-> - ((Rgt r1 r)/\(Rgt r2 r)). -Intros; Split. -Exact (Rmin_Rgt_l r1 r2 r). -Exact (Rmin_Rgt_r r1 r2 r). -Qed. - -(*********) -Lemma Rmin_l : (x,y:R) ``(Rmin x y)<=x``. -Intros; Unfold Rmin; Case (total_order_Rle x y); Intro H1; [Right; Reflexivity | Auto with real]. -Qed. - -(*********) -Lemma Rmin_r : (x,y:R) ``(Rmin x y)<=y``. -Intros; Unfold Rmin; Case (total_order_Rle x y); Intro H1; [Assumption | Auto with real]. -Qed. - -(*********) -Lemma Rmin_sym : (a,b:R) (Rmin a b)==(Rmin b a). -Intros; Unfold Rmin; Case (total_order_Rle a b); Case (total_order_Rle b a); Intros; Try Reflexivity Orelse (Apply Rle_antisym; Assumption Orelse Auto with real). -Qed. - -(*********) -Lemma Rmin_stable_in_posreal : (x,y:posreal) ``0<(Rmin x y)``. -Intros; Apply Rmin_Rgt_r; Split; [Apply (cond_pos x) | Apply (cond_pos y)]. -Qed. - -(*******************************) -(** Rmax *) -(*******************************) - -(*********) -Definition Rmax :R->R->R:=[x,y:R] - Cases (total_order_Rle x y) of - (leftT _) => y - | (rightT _) => x - end. - -(*********) -Lemma Rmax_Rle:(r1,r2,r:R)(Rle r (Rmax r1 r2))<-> - ((Rle r r1)\/(Rle r r2)). -Intros;Split. -Unfold Rmax;Case (total_order_Rle r1 r2);Intros;Auto. -Intro;Unfold Rmax;Case (total_order_Rle r1 r2);Elim H;Clear H;Intros;Auto. -Apply (Rle_trans r r1 r2);Auto. -Generalize (not_Rle r1 r2 n);Clear n;Intro;Unfold Rgt in H0; - Apply (Rlt_le r r1 (Rle_lt_trans r r2 r1 H H0)). -Qed. - -Lemma RmaxLess1: (r1, r2 : R) (Rle r1 (Rmax r1 r2)). -Intros r1 r2; Unfold Rmax; Case (total_order_Rle r1 r2); Auto with real. -Qed. - -Lemma RmaxLess2: (r1, r2 : R) (Rle r2 (Rmax r1 r2)). -Intros r1 r2; Unfold Rmax; Case (total_order_Rle r1 r2); Auto with real. -Qed. - -Lemma RmaxSym: (p, q : R) (Rmax p q) == (Rmax q p). -Intros p q; Unfold Rmax; - Case (total_order_Rle p q); Case (total_order_Rle q p); Auto; Intros H1 H2; - Apply Rle_antisym; Auto with real. -Qed. - -Lemma RmaxRmult: - (p, q, r : R) - (Rle R0 r) -> (Rmax (Rmult r p) (Rmult r q)) == (Rmult r (Rmax p q)). -Intros p q r H; Unfold Rmax. -Case (total_order_Rle p q); Case (total_order_Rle (Rmult r p) (Rmult r q)); - Auto; Intros H1 H2; Auto. -Case H; Intros E1. -Case H1; Auto with real. -Rewrite <- E1; Repeat Rewrite Rmult_Ol; Auto. -Case H; Intros E1. -Case H2; Auto with real. -Apply Rle_monotony_contra with z := r; Auto. -Rewrite <- E1; Repeat Rewrite Rmult_Ol; Auto. -Qed. - -Lemma Rmax_stable_in_negreal : (x,y:negreal) ``(Rmax x y)<0``. -Intros; Unfold Rmax; Case (total_order_Rle x y); Intro; [Apply (cond_neg y) | Apply (cond_neg x)]. -Qed. - -(*******************************) -(** Rabsolu *) -(*******************************) - -(*********) -Lemma case_Rabsolu:(r:R)(sumboolT (Rlt r R0) (Rge r R0)). -Intro;Generalize (total_order_Rle R0 r);Intro X;Elim X;Intro;Clear X. -Right;Apply (Rle_sym1 R0 r a). -Left;Fold (Rgt R0 r);Apply (not_Rle R0 r b). -Qed. - -(*********) -Definition Rabsolu:R->R:= - [r:R](Cases (case_Rabsolu r) of - (leftT _) => (Ropp r) - |(rightT _) => r - end). - -(*********) -Lemma Rabsolu_R0:(Rabsolu R0)==R0. -Unfold Rabsolu;Case (case_Rabsolu R0);Auto;Intro. -Generalize (Rlt_antirefl R0);Intro;ElimType False;Auto. -Qed. - -Lemma Rabsolu_R1: (Rabsolu R1)==R1. -Unfold Rabsolu; Case (case_Rabsolu R1); Auto with real. -Intros H; Absurd ``1 < 0``;Auto with real. -Qed. - -(*********) -Lemma Rabsolu_no_R0:(r:R)~r==R0->~(Rabsolu r)==R0. -Intros;Unfold Rabsolu;Case (case_Rabsolu r);Intro;Auto. -Apply Ropp_neq;Auto. -Qed. - -(*********) -Lemma Rabsolu_left: (r:R)(Rlt r R0)->((Rabsolu r) == (Ropp r)). -Intros;Unfold Rabsolu;Case (case_Rabsolu r);Trivial;Intro;Absurd (Rge r R0). -Exact (Rlt_ge_not r R0 H). -Assumption. -Qed. - -(*********) -Lemma Rabsolu_right: (r:R)(Rge r R0)->((Rabsolu r) == r). -Intros;Unfold Rabsolu;Case (case_Rabsolu r);Intro. -Absurd (Rge r R0). -Exact (Rlt_ge_not r R0 r0). -Assumption. -Trivial. -Qed. - -Lemma Rabsolu_left1: (a : R) (Rle a R0) -> (Rabsolu a) == (Ropp a). -Intros a H; Case H; Intros H1. -Apply Rabsolu_left; Auto. -Rewrite H1; Simpl; Rewrite Rabsolu_right; Auto with real. -Qed. - -(*********) -Lemma Rabsolu_pos:(x:R)(Rle R0 (Rabsolu x)). -Intros;Unfold Rabsolu;Case (case_Rabsolu x);Intro. -Generalize (Rlt_Ropp x R0 r);Intro;Unfold Rgt in H; - Rewrite Ropp_O in H;Unfold Rle;Left;Assumption. -Apply Rle_sym2;Assumption. -Qed. - -Lemma Rle_Rabsolu: - (x:R) (Rle x (Rabsolu x)). -Intro; Unfold Rabsolu;Case (case_Rabsolu x);Intros;Fourier. -Qed. - -(*********) -Lemma Rabsolu_pos_eq:(x:R)(Rle R0 x)->(Rabsolu x)==x. -Intros;Unfold Rabsolu;Case (case_Rabsolu x);Intro; - [Generalize (Rle_not R0 x r);Intro;ElimType False;Auto|Trivial]. -Qed. - -(*********) -Lemma Rabsolu_Rabsolu:(x:R)(Rabsolu (Rabsolu x))==(Rabsolu x). -Intro;Apply (Rabsolu_pos_eq (Rabsolu x) (Rabsolu_pos x)). -Qed. - -(*********) -Lemma Rabsolu_pos_lt:(x:R)(~x==R0)->(Rlt R0 (Rabsolu x)). -Intros;Generalize (Rabsolu_pos x);Intro;Unfold Rle in H0; - Elim H0;Intro;Auto. -ElimType False;Clear H0;Elim H;Clear H;Generalize H1; - Unfold Rabsolu;Case (case_Rabsolu x);Intros;Auto. -Clear r H1; Generalize (Rplus_plus_r x R0 (Ropp x) H0); - Rewrite (let (H1,H2)=(Rplus_ne x) in H1);Rewrite (Rplus_Ropp_r x);Trivial. -Qed. - -(*********) -Lemma Rabsolu_minus_sym:(x,y:R) - (Rabsolu (Rminus x y))==(Rabsolu (Rminus y x)). -Intros;Unfold Rabsolu;Case (case_Rabsolu (Rminus x y)); - Case (case_Rabsolu (Rminus y x));Intros. - Generalize (Rminus_lt y x r);Generalize (Rminus_lt x y r0);Intros; - Generalize (Rlt_antisym x y H);Intro;ElimType False;Auto. -Rewrite (Ropp_distr2 x y);Trivial. -Rewrite (Ropp_distr2 y x);Trivial. -Unfold Rge in r r0;Elim r;Elim r0;Intros;Clear r r0. -Generalize (Rgt_RoppO (Rminus x y) H);Rewrite (Ropp_distr2 x y); - Intro;Unfold Rgt in H0;Generalize (Rlt_antisym R0 (Rminus y x) H0); - Intro;ElimType False;Auto. -Rewrite (Rminus_eq x y H);Trivial. -Rewrite (Rminus_eq y x H0);Trivial. -Rewrite (Rminus_eq y x H0);Trivial. -Qed. - -(*********) -Lemma Rabsolu_mult:(x,y:R) - (Rabsolu (Rmult x y))==(Rmult (Rabsolu x) (Rabsolu y)). -Intros;Unfold Rabsolu;Case (case_Rabsolu (Rmult x y)); - Case (case_Rabsolu x);Case (case_Rabsolu y);Intros;Auto. -Generalize (Rlt_anti_monotony y x R0 r r0);Intro; - Rewrite (Rmult_Or y) in H;Generalize (Rlt_antisym (Rmult x y) R0 r1); - Intro;Unfold Rgt in H;ElimType False;Rewrite (Rmult_sym y x) in H; - Auto. -Rewrite (Ropp_mul1 x y);Trivial. -Rewrite (Rmult_sym x (Ropp y));Rewrite (Ropp_mul1 y x); - Rewrite (Rmult_sym x y);Trivial. -Unfold Rge in r r0;Elim r;Elim r0;Clear r r0;Intros;Unfold Rgt in H H0. -Generalize (Rlt_monotony x R0 y H H0);Intro;Rewrite (Rmult_Or x) in H1; - Generalize (Rlt_antisym (Rmult x y) R0 r1);Intro;ElimType False;Auto. -Rewrite H in r1;Rewrite (Rmult_Ol y) in r1;Generalize (Rlt_antirefl R0); - Intro;ElimType False;Auto. -Rewrite H0 in r1;Rewrite (Rmult_Or x) in r1;Generalize (Rlt_antirefl R0); - Intro;ElimType False;Auto. -Rewrite H0 in r1;Rewrite (Rmult_Or x) in r1;Generalize (Rlt_antirefl R0); - Intro;ElimType False;Auto. -Rewrite (Ropp_mul2 x y);Trivial. -Unfold Rge in r r1;Elim r;Elim r1;Clear r r1;Intros;Unfold Rgt in H0 H. -Generalize (Rlt_monotony y x R0 H0 r0);Intro;Rewrite (Rmult_Or y) in H1; - Rewrite (Rmult_sym y x) in H1; - Generalize (Rlt_antisym (Rmult x y) R0 H1);Intro;ElimType False;Auto. -Generalize (imp_not_Req x R0 (or_introl (Rlt x R0) (Rgt x R0) r0)); - Generalize (imp_not_Req y R0 (or_intror (Rlt y R0) (Rgt y R0) H0));Intros; - Generalize (without_div_Od x y H);Intro;Elim H3;Intro;ElimType False; - Auto. -Rewrite H0 in H;Rewrite (Rmult_Or x) in H;Unfold Rgt in H; - Generalize (Rlt_antirefl R0);Intro;ElimType False;Auto. -Rewrite H0;Rewrite (Rmult_Or x);Rewrite (Rmult_Or (Ropp x));Trivial. -Unfold Rge in r0 r1;Elim r0;Elim r1;Clear r0 r1;Intros;Unfold Rgt in H0 H. -Generalize (Rlt_monotony x y R0 H0 r);Intro;Rewrite (Rmult_Or x) in H1; - Generalize (Rlt_antisym (Rmult x y) R0 H1);Intro;ElimType False;Auto. -Generalize (imp_not_Req y R0 (or_introl (Rlt y R0) (Rgt y R0) r)); - Generalize (imp_not_Req R0 x (or_introl (Rlt R0 x) (Rgt R0 x) H0));Intros; - Generalize (without_div_Od x y H);Intro;Elim H3;Intro;ElimType False; - Auto. -Rewrite H0 in H;Rewrite (Rmult_Ol y) in H;Unfold Rgt in H; - Generalize (Rlt_antirefl R0);Intro;ElimType False;Auto. -Rewrite H0;Rewrite (Rmult_Ol y);Rewrite (Rmult_Ol (Ropp y));Trivial. -Qed. - -(*********) -Lemma Rabsolu_Rinv:(r:R)(~r==R0)->(Rabsolu (Rinv r))== - (Rinv (Rabsolu r)). -Intro;Unfold Rabsolu;Case (case_Rabsolu r); - Case (case_Rabsolu (Rinv r));Auto;Intros. -Apply Ropp_Rinv;Auto. -Generalize (Rlt_Rinv2 r r1);Intro;Unfold Rge in r0;Elim r0;Intros. -Unfold Rgt in H1;Generalize (Rlt_antisym R0 (Rinv r) H1);Intro; - ElimType False;Auto. -Generalize - (imp_not_Req (Rinv r) R0 - (or_introl (Rlt (Rinv r) R0) (Rgt (Rinv r) R0) H0));Intro; - ElimType False;Auto. -Unfold Rge in r1;Elim r1;Clear r1;Intro. -Unfold Rgt in H0;Generalize (Rlt_antisym R0 (Rinv r) - (Rlt_Rinv r H0));Intro;ElimType False;Auto. -ElimType False;Auto. -Qed. - -Lemma Rabsolu_Ropp: - (x:R) (Rabsolu (Ropp x))==(Rabsolu x). -Intro;Cut (Ropp x)==(Rmult (Ropp R1) x). -Intros; Rewrite H. -Rewrite Rabsolu_mult. -Cut (Rabsolu (Ropp R1))==R1. -Intros; Rewrite H0. -Ring. -Unfold Rabsolu; Case (case_Rabsolu (Ropp R1)). -Intro; Ring. -Intro H0;Generalize (Rle_sym2 R0 (Ropp R1) H0);Intros. -Generalize (Rle_Ropp R0 (Ropp R1) H1). -Rewrite Ropp_Ropp; Rewrite Ropp_O. -Intro;Generalize (Rle_not R1 R0 Rlt_R0_R1);Intro; - Generalize (Rle_sym2 R1 R0 H2);Intro; - ElimType False;Auto. -Ring. -Qed. - -(*********) -Lemma Rabsolu_triang:(a,b:R)(Rle (Rabsolu (Rplus a b)) - (Rplus (Rabsolu a) (Rabsolu b))). -Intros a b;Unfold Rabsolu;Case (case_Rabsolu (Rplus a b)); - Case (case_Rabsolu a);Case (case_Rabsolu b);Intros. -Apply (eq_Rle (Ropp (Rplus a b)) (Rplus (Ropp a) (Ropp b))); - Rewrite (Ropp_distr1 a b);Reflexivity. -(**) -Rewrite (Ropp_distr1 a b); - Apply (Rle_compatibility (Ropp a) (Ropp b) b); - Unfold Rle;Unfold Rge in r;Elim r;Intro. -Left;Unfold Rgt in H;Generalize (Rlt_compatibility (Ropp b) R0 b H); - Intro;Elim (Rplus_ne (Ropp b));Intros v w;Rewrite v in H0;Clear v w; - Rewrite (Rplus_Ropp_l b) in H0;Apply (Rlt_trans (Ropp b) R0 b H0 H). -Right;Rewrite H;Apply Ropp_O. -(**) -Rewrite (Ropp_distr1 a b); - Rewrite (Rplus_sym (Ropp a) (Ropp b)); - Rewrite (Rplus_sym a (Ropp b)); - Apply (Rle_compatibility (Ropp b) (Ropp a) a); - Unfold Rle;Unfold Rge in r0;Elim r0;Intro. -Left;Unfold Rgt in H;Generalize (Rlt_compatibility (Ropp a) R0 a H); - Intro;Elim (Rplus_ne (Ropp a));Intros v w;Rewrite v in H0;Clear v w; - Rewrite (Rplus_Ropp_l a) in H0;Apply (Rlt_trans (Ropp a) R0 a H0 H). -Right;Rewrite H;Apply Ropp_O. -(**) -ElimType False;Generalize (Rge_plus_plus_r a b R0 r);Intro; - Elim (Rplus_ne a);Intros v w;Rewrite v in H;Clear v w; - Generalize (Rge_trans (Rplus a b) a R0 H r0);Intro;Clear H; - Unfold Rge in H0;Elim H0;Intro;Clear H0. -Unfold Rgt in H;Generalize (Rlt_antisym (Rplus a b) R0 r1);Intro;Auto. -Absurd (Rplus a b)==R0;Auto. -Apply (imp_not_Req (Rplus a b) R0);Left;Assumption. -(**) -ElimType False;Generalize (Rlt_compatibility a b R0 r);Intro; - Elim (Rplus_ne a);Intros v w;Rewrite v in H;Clear v w; - Generalize (Rlt_trans (Rplus a b) a R0 H r0);Intro;Clear H; - Unfold Rge in r1;Elim r1;Clear r1;Intro. -Unfold Rgt in H; - Generalize (Rlt_trans (Rplus a b) R0 (Rplus a b) H0 H);Intro; - Apply (Rlt_antirefl (Rplus a b));Assumption. -Rewrite H in H0;Apply (Rlt_antirefl R0);Assumption. -(**) -Rewrite (Rplus_sym a b);Rewrite (Rplus_sym (Ropp a) b); - Apply (Rle_compatibility b a (Ropp a)); - Apply (Rminus_le a (Ropp a));Unfold Rminus;Rewrite (Ropp_Ropp a); - Generalize (Rlt_compatibility a a R0 r0);Clear r r1;Intro; - Elim (Rplus_ne a);Intros v w;Rewrite v in H;Clear v w; - Generalize (Rlt_trans (Rplus a a) a R0 H r0);Intro; - Apply (Rlt_le (Rplus a a) R0 H0). -(**) -Apply (Rle_compatibility a b (Ropp b)); - Apply (Rminus_le b (Ropp b));Unfold Rminus;Rewrite (Ropp_Ropp b); - Generalize (Rlt_compatibility b b R0 r);Clear r0 r1;Intro; - Elim (Rplus_ne b);Intros v w;Rewrite v in H;Clear v w; - Generalize (Rlt_trans (Rplus b b) b R0 H r);Intro; - Apply (Rlt_le (Rplus b b) R0 H0). -(**) -Unfold Rle;Right;Reflexivity. -Qed. - -(*********) -Lemma Rabsolu_triang_inv:(a,b:R)(Rle (Rminus (Rabsolu a) (Rabsolu b)) - (Rabsolu (Rminus a b))). -Intros; - Apply (Rle_anti_compatibility (Rabsolu b) - (Rminus (Rabsolu a) (Rabsolu b)) (Rabsolu (Rminus a b))); - Unfold Rminus; - Rewrite <- (Rplus_assoc (Rabsolu b) (Rabsolu a) (Ropp (Rabsolu b))); - Rewrite (Rplus_sym (Rabsolu b) (Rabsolu a)); - Rewrite (Rplus_assoc (Rabsolu a) (Rabsolu b) (Ropp (Rabsolu b))); - Rewrite (Rplus_Ropp_r (Rabsolu b)); - Rewrite (proj1 ? ? (Rplus_ne (Rabsolu a))); - Replace (Rabsolu a) with (Rabsolu (Rplus a R0)). - Rewrite <- (Rplus_Ropp_r b); - Rewrite <- (Rplus_assoc a b (Ropp b)); - Rewrite (Rplus_sym a b); - Rewrite (Rplus_assoc b a (Ropp b)). - Exact (Rabsolu_triang b (Rplus a (Ropp b))). - Rewrite (proj1 ? ? (Rplus_ne a));Trivial. -Qed. - -(* ||a|-|b||<=|a-b| *) -Lemma Rabsolu_triang_inv2 : (a,b:R) ``(Rabsolu ((Rabsolu a)-(Rabsolu b)))<=(Rabsolu (a-b))``. -Cut (a,b:R) ``(Rabsolu b)<=(Rabsolu a)``->``(Rabsolu ((Rabsolu a)-(Rabsolu b))) <= (Rabsolu (a-b))``. -Intros; NewDestruct (total_order (Rabsolu a) (Rabsolu b)) as [Hlt|[Heq|Hgt]]. -Rewrite <- (Rabsolu_Ropp ``(Rabsolu a)-(Rabsolu b)``); Rewrite <- (Rabsolu_Ropp ``a-b``); Do 2 Rewrite Ropp_distr2. -Apply H; Left; Assumption. -Rewrite Heq; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rabsolu_pos. -Apply H; Left; Assumption. -Intros; Replace ``(Rabsolu ((Rabsolu a)-(Rabsolu b)))`` with ``(Rabsolu a)-(Rabsolu b)``. -Apply Rabsolu_triang_inv. -Rewrite (Rabsolu_right ``(Rabsolu a)-(Rabsolu b)``); [Reflexivity | Apply Rle_sym1; Apply Rle_anti_compatibility with (Rabsolu b); Rewrite Rplus_Or; Replace ``(Rabsolu b)+((Rabsolu a)-(Rabsolu b))`` with (Rabsolu a); [Assumption | Ring]]. -Qed. - -(*********) -Lemma Rabsolu_def1:(x,a:R)(Rlt x a)->(Rlt (Ropp a) x)->(Rlt (Rabsolu x) a). -Unfold Rabsolu;Intros;Case (case_Rabsolu x);Intro. -Generalize (Rlt_Ropp (Ropp a) x H0);Unfold Rgt;Rewrite Ropp_Ropp;Intro; - Assumption. -Assumption. -Qed. - -(*********) -Lemma Rabsolu_def2:(x,a:R)(Rlt (Rabsolu x) a)->(Rlt x a)/\(Rlt (Ropp a) x). -Unfold Rabsolu;Intro x;Case (case_Rabsolu x);Intros. -Generalize (Rlt_RoppO x r);Unfold Rgt;Intro; - Generalize (Rlt_trans R0 (Ropp x) a H0 H);Intro;Split. -Apply (Rlt_trans x R0 a r H1). -Generalize (Rlt_Ropp (Ropp x) a H);Rewrite (Ropp_Ropp x);Unfold Rgt;Trivial. -Fold (Rgt a x) in H;Generalize (Rgt_ge_trans a x R0 H r);Intro; - Generalize (Rgt_RoppO a H0);Intro;Fold (Rgt R0 (Ropp a)); - Generalize (Rge_gt_trans x R0 (Ropp a) r H1);Unfold Rgt;Intro;Split; - Assumption. -Qed. - -Lemma RmaxAbs: - (p, q, r : R) - (Rle p q) -> (Rle q r) -> (Rle (Rabsolu q) (Rmax (Rabsolu p) (Rabsolu r))). -Intros p q r H' H'0; Case (Rle_or_lt R0 p); Intros H'1. -Repeat Rewrite Rabsolu_right; Auto with real. -Apply Rle_trans with r; Auto with real. -Apply RmaxLess2; Auto. -Apply Rge_trans with p; Auto with real; Apply Rge_trans with q; Auto with real. -Apply Rge_trans with p; Auto with real. -Rewrite (Rabsolu_left p); Auto. -Case (Rle_or_lt R0 q); Intros H'2. -Repeat Rewrite Rabsolu_right; Auto with real. -Apply Rle_trans with r; Auto. -Apply RmaxLess2; Auto. -Apply Rge_trans with q; Auto with real. -Rewrite (Rabsolu_left q); Auto. -Case (Rle_or_lt R0 r); Intros H'3. -Repeat Rewrite Rabsolu_right; Auto with real. -Apply Rle_trans with (Ropp p); Auto with real. -Apply RmaxLess1; Auto. -Rewrite (Rabsolu_left r); Auto. -Apply Rle_trans with (Ropp p); Auto with real. -Apply RmaxLess1; Auto. -Qed. - -Lemma Rabsolu_Zabs: (z : Z) (Rabsolu (IZR z)) == (IZR (Zabs z)). -Intros z; Case z; Simpl; Auto with real. -Apply Rabsolu_right; Auto with real. -Intros p0; Apply Rabsolu_right; Auto with real zarith. -Intros p0; Rewrite Rabsolu_Ropp. -Apply Rabsolu_right; Auto with real zarith. -Qed. - diff --git a/theories7/Reals/Rcomplete.v b/theories7/Reals/Rcomplete.v deleted file mode 100644 index 5985a382..00000000 --- a/theories7/Reals/Rcomplete.v +++ /dev/null @@ -1,175 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R) (Cauchy_crit Un) -> (sigTT R [l:R](Un_cv Un l)). -Intros. -Pose Vn := (sequence_minorant Un (cauchy_min Un H)). -Pose Wn := (sequence_majorant Un (cauchy_maj Un H)). -Assert H0 := (maj_cv Un H). -Fold Wn in H0. -Assert H1 := (min_cv Un H). -Fold Vn in H1. -Elim H0; Intros. -Elim H1; Intros. -Cut x==x0. -Intros. -Apply existTT with x. -Rewrite <- H2 in p0. -Unfold Un_cv. -Intros. -Unfold Un_cv in p; Unfold Un_cv in p0. -Cut ``0R->R. -Parameter Rmult:R->R->R. -Parameter Ropp:R->R. -Parameter Rinv:R->R. -Parameter Rlt:R->R->Prop. -Parameter up:R->Z. - -V8Infix "+" Rplus : R_scope. -V8Infix "*" Rmult : R_scope. -V8Notation "- x" := (Ropp x) : R_scope. -V8Notation "/ x" := (Rinv x) : R_scope. - -V8Infix "<" Rlt : R_scope. - -(*i*******************************************************i*) - -(**********) -Definition Rgt:R->R->Prop:=[r1,r2:R](Rlt r2 r1). - -(**********) -Definition Rle:R->R->Prop:=[r1,r2:R]((Rlt r1 r2)\/(r1==r2)). - -(**********) -Definition Rge:R->R->Prop:=[r1,r2:R]((Rgt r1 r2)\/(r1==r2)). - -(**********) -Definition Rminus:R->R->R:=[r1,r2:R](Rplus r1 (Ropp r2)). - -(**********) -Definition Rdiv:R->R->R:=[r1,r2:R](Rmult r1 (Rinv r2)). - -V8Infix "-" Rminus : R_scope. -V8Infix "/" Rdiv : R_scope. - -V8Infix "<=" Rle : R_scope. -V8Infix ">=" Rge : R_scope. -V8Infix ">" Rgt : R_scope. - -V8Notation "x <= y <= z" := (Rle x y)/\(Rle y z) : R_scope. -V8Notation "x <= y < z" := (Rle x y)/\(Rlt y z) : R_scope. -V8Notation "x < y < z" := (Rlt x y)/\(Rlt y z) : R_scope. -V8Notation "x < y <= z" := (Rlt x y)/\(Rle y z) : R_scope. diff --git a/theories7/Reals/Rderiv.v b/theories7/Reals/Rderiv.v deleted file mode 100644 index b55aa6ea..00000000 --- a/theories7/Reals/Rderiv.v +++ /dev/null @@ -1,453 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* Prop)->R->R->Prop:=[D:R->Prop][y:R][x:R] - (D x)/\(~y==x). - -(*********) -Definition continue_in:(R->R)->(R->Prop)->R->Prop:= - [f:R->R; D:R->Prop; x0:R](limit1_in f (D_x D x0) (f x0) x0). - -(*********) -Definition D_in:(R->R)->(R->R)->(R->Prop)->R->Prop:= - [f:R->R; d:R->R; D:R->Prop; x0:R](limit1_in - [x:R] (Rdiv (Rminus (f x) (f x0)) (Rminus x x0)) - (D_x D x0) (d x0) x0). - -(*********) -Lemma cont_deriv:(f,d:R->R;D:R->Prop;x0:R) - (D_in f d D x0)->(continue_in f D x0). -Unfold continue_in;Unfold D_in;Unfold limit1_in;Unfold limit_in; - Unfold Rdiv;Simpl;Intros;Elim (H eps H0); Clear H;Intros; - Elim H;Clear H;Intros; Elim (Req_EM (d x0) R0);Intro. -Split with (Rmin R1 x);Split. -Elim (Rmin_Rgt R1 x R0);Intros a b; - Apply (b (conj (Rgt R1 R0) (Rgt x R0) Rlt_R0_R1 H)). -Intros;Elim H3;Clear H3;Intros; -Generalize (let (H1,H2)=(Rmin_Rgt R1 x (R_dist x1 x0)) in H1); - Unfold Rgt;Intro;Elim (H5 H4);Clear H5;Intros; - Generalize (H1 x1 (conj (D_x D x0 x1) (Rlt (R_dist x1 x0) x) H3 H6)); - Clear H1;Intro;Unfold D_x in H3;Elim H3;Intros. -Rewrite H2 in H1;Unfold R_dist; Unfold R_dist in H1; - Cut (Rlt (Rabsolu (Rminus (f x1) (f x0))) - (Rmult eps (Rabsolu (Rminus x1 x0)))). -Intro;Unfold R_dist in H5; - Generalize (Rlt_monotony eps ``(Rabsolu (x1-x0))`` ``1`` H0 H5); -Rewrite Rmult_1r;Intro;Apply Rlt_trans with r2:=``eps*(Rabsolu (x1-x0))``; - Assumption. -Rewrite (minus_R0 ``((f x1)-(f x0))*/(x1-x0)``) in H1; - Rewrite Rabsolu_mult in H1; Cut ``x1-x0 <> 0``. -Intro;Rewrite (Rabsolu_Rinv (Rminus x1 x0) H9) in H1; - Generalize (Rlt_monotony ``(Rabsolu (x1-x0))`` - ``(Rabsolu ((f x1)-(f x0)))*/(Rabsolu (x1-x0))`` eps - (Rabsolu_pos_lt ``x1-x0`` H9) H1);Intro; Rewrite Rmult_sym in H10; - Rewrite Rmult_assoc in H10;Rewrite Rinv_l in H10. -Rewrite Rmult_1r in H10;Rewrite Rmult_sym;Assumption. -Apply Rabsolu_no_R0;Auto. -Apply Rminus_eq_contra;Auto. -(**) - Split with (Rmin (Rmin (Rinv (Rplus R1 R1)) x) - (Rmult eps (Rinv (Rabsolu (Rmult (Rplus R1 R1) (d x0)))))); - Split. -Cut (Rgt (Rmin (Rinv (Rplus R1 R1)) x) R0). -Cut (Rgt (Rmult eps (Rinv (Rabsolu (Rmult (Rplus R1 R1) (d x0))))) R0). -Intros;Elim (Rmin_Rgt (Rmin (Rinv (Rplus R1 R1)) x) - (Rmult eps (Rinv (Rabsolu (Rmult (Rplus R1 R1) (d x0))))) R0); - Intros a b; - Apply (b (conj (Rgt (Rmin (Rinv (Rplus R1 R1)) x) R0) - (Rgt (Rmult eps (Rinv (Rabsolu (Rmult (Rplus R1 R1) (d x0))))) R0) - H4 H3)). -Apply Rmult_gt;Auto. -Unfold Rgt;Apply Rlt_Rinv;Apply Rabsolu_pos_lt;Apply mult_non_zero; - Split. -DiscrR. -Assumption. -Elim (Rmin_Rgt (Rinv (Rplus R1 R1)) x R0);Intros a b; - Cut (Rlt R0 (Rplus R1 R1)). -Intro;Generalize (Rlt_Rinv (Rplus R1 R1) H3);Intro; - Fold (Rgt (Rinv (Rplus R1 R1)) R0) in H4; - Apply (b (conj (Rgt (Rinv (Rplus R1 R1)) R0) (Rgt x R0) H4 H)). -Fourier. -Intros;Elim H3;Clear H3;Intros; - Generalize (let (H1,H2)=(Rmin_Rgt (Rmin (Rinv (Rplus R1 R1)) x) - (Rmult eps (Rinv (Rabsolu (Rmult (Rplus R1 R1) (d x0))))) - (R_dist x1 x0)) in H1);Unfold Rgt;Intro;Elim (H5 H4);Clear H5; - Intros; - Generalize (let (H1,H2)=(Rmin_Rgt (Rinv (Rplus R1 R1)) x - (R_dist x1 x0)) in H1);Unfold Rgt;Intro;Elim (H7 H5);Clear H7; - Intros;Clear H4 H5; - Generalize (H1 x1 (conj (D_x D x0 x1) (Rlt (R_dist x1 x0) x) H3 H8)); - Clear H1;Intro;Unfold D_x in H3;Elim H3;Intros; - Generalize (sym_not_eqT R x0 x1 H5);Clear H5;Intro H5; - Generalize (Rminus_eq_contra x1 x0 H5); - Intro;Generalize H1;Pattern 1 (d x0); - Rewrite <-(let (H1,H2)=(Rmult_ne (d x0)) in H2); - Rewrite <-(Rinv_l (Rminus x1 x0) H9); Unfold R_dist;Unfold 1 Rminus; - Rewrite (Rmult_sym (Rminus (f x1) (f x0)) (Rinv (Rminus x1 x0))); - Rewrite (Rmult_sym (Rmult (Rinv (Rminus x1 x0)) (Rminus x1 x0)) (d x0)); - Rewrite <-(Ropp_mul1 (d x0) (Rmult (Rinv (Rminus x1 x0)) (Rminus x1 x0))); - Rewrite (Rmult_sym (Ropp (d x0)) - (Rmult (Rinv (Rminus x1 x0)) (Rminus x1 x0))); - Rewrite (Rmult_assoc (Rinv (Rminus x1 x0)) (Rminus x1 x0) (Ropp (d x0))); - Rewrite <-(Rmult_Rplus_distr (Rinv (Rminus x1 x0)) (Rminus (f x1) (f x0)) - (Rmult (Rminus x1 x0) (Ropp (d x0)))); - Rewrite (Rabsolu_mult (Rinv (Rminus x1 x0)) - (Rplus (Rminus (f x1) (f x0)) - (Rmult (Rminus x1 x0) (Ropp (d x0))))); - Clear H1;Intro;Generalize (Rlt_monotony (Rabsolu (Rminus x1 x0)) - (Rmult (Rabsolu (Rinv (Rminus x1 x0))) - (Rabsolu - (Rplus (Rminus (f x1) (f x0)) - (Rmult (Rminus x1 x0) (Ropp (d x0)))))) eps - (Rabsolu_pos_lt (Rminus x1 x0) H9) H1); - Rewrite <-(Rmult_assoc (Rabsolu (Rminus x1 x0)) - (Rabsolu (Rinv (Rminus x1 x0))) - (Rabsolu - (Rplus (Rminus (f x1) (f x0)) - (Rmult (Rminus x1 x0) (Ropp (d x0)))))); - Rewrite (Rabsolu_Rinv (Rminus x1 x0) H9); - Rewrite (Rinv_r (Rabsolu (Rminus x1 x0)) - (Rabsolu_no_R0 (Rminus x1 x0) H9)); - Rewrite (let (H1,H2)=(Rmult_ne (Rabsolu - (Rplus (Rminus (f x1) (f x0)) - (Rmult (Rminus x1 x0) (Ropp (d x0)))))) in H2); - Generalize (Rabsolu_triang_inv (Rminus (f x1) (f x0)) - (Rmult (Rminus x1 x0) (d x0)));Intro; - Rewrite (Rmult_sym (Rminus x1 x0) (Ropp (d x0))); - Rewrite (Ropp_mul1 (d x0) (Rminus x1 x0)); - Fold (Rminus (Rminus (f x1) (f x0)) (Rmult (d x0) (Rminus x1 x0))); - Rewrite (Rmult_sym (Rminus x1 x0) (d x0)) in H10; - Clear H1;Intro;Generalize (Rle_lt_trans - (Rminus (Rabsolu (Rminus (f x1) (f x0))) - (Rabsolu (Rmult (d x0) (Rminus x1 x0)))) - (Rabsolu - (Rminus (Rminus (f x1) (f x0)) (Rmult (d x0) (Rminus x1 x0)))) - (Rmult (Rabsolu (Rminus x1 x0)) eps) H10 H1); - Clear H1;Intro; - Generalize (Rlt_compatibility (Rabsolu (Rmult (d x0) (Rminus x1 x0))) - (Rminus (Rabsolu (Rminus (f x1) (f x0))) - (Rabsolu (Rmult (d x0) (Rminus x1 x0)))) - (Rmult (Rabsolu (Rminus x1 x0)) eps) H1); - Unfold 2 Rminus;Rewrite (Rplus_sym (Rabsolu (Rminus (f x1) (f x0))) - (Ropp (Rabsolu (Rmult (d x0) (Rminus x1 x0))))); - Rewrite <-(Rplus_assoc (Rabsolu (Rmult (d x0) (Rminus x1 x0))) - (Ropp (Rabsolu (Rmult (d x0) (Rminus x1 x0)))) - (Rabsolu (Rminus (f x1) (f x0)))); - Rewrite (Rplus_Ropp_r (Rabsolu (Rmult (d x0) (Rminus x1 x0)))); - Rewrite (let (H1,H2)=(Rplus_ne (Rabsolu (Rminus (f x1) (f x0)))) in H2); - Clear H1;Intro;Cut (Rlt (Rplus (Rabsolu (Rmult (d x0) (Rminus x1 x0))) - (Rmult (Rabsolu (Rminus x1 x0)) eps)) eps). -Intro;Apply (Rlt_trans (Rabsolu (Rminus (f x1) (f x0))) - (Rplus (Rabsolu (Rmult (d x0) (Rminus x1 x0))) - (Rmult (Rabsolu (Rminus x1 x0)) eps)) eps H1 H11). -Clear H1 H5 H3 H10;Generalize (Rabsolu_pos_lt (d x0) H2); - Intro;Unfold Rgt in H0;Generalize (Rlt_monotony eps (R_dist x1 x0) - (Rinv (Rplus R1 R1)) H0 H7);Clear H7;Intro; - Generalize (Rlt_monotony (Rabsolu (d x0)) (R_dist x1 x0) - (Rmult eps (Rinv (Rabsolu (Rmult (Rplus R1 R1) (d x0))))) H1 H6); - Clear H6;Intro;Rewrite (Rmult_sym eps (R_dist x1 x0)) in H3; - Unfold R_dist in H3 H5; - Rewrite <-(Rabsolu_mult (d x0) (Rminus x1 x0)) in H5; - Rewrite (Rabsolu_mult (Rplus R1 R1) (d x0)) in H5; - Cut ~(Rabsolu (Rplus R1 R1))==R0. -Intro;Fold (Rgt (Rabsolu (d x0)) R0) in H1; - Rewrite (Rinv_Rmult (Rabsolu (Rplus R1 R1)) (Rabsolu (d x0)) - H6 (imp_not_Req (Rabsolu (d x0)) R0 - (or_intror (Rlt (Rabsolu (d x0)) R0) (Rgt (Rabsolu (d x0)) R0) H1))) - in H5; - Rewrite (Rmult_sym (Rabsolu (d x0)) (Rmult eps - (Rmult (Rinv (Rabsolu (Rplus R1 R1))) - (Rinv (Rabsolu (d x0)))))) in H5; - Rewrite <-(Rmult_assoc eps (Rinv (Rabsolu (Rplus R1 R1))) - (Rinv (Rabsolu (d x0)))) in H5; - Rewrite (Rmult_assoc (Rmult eps (Rinv (Rabsolu (Rplus R1 R1)))) - (Rinv (Rabsolu (d x0))) (Rabsolu (d x0))) in H5; - Rewrite (Rinv_l (Rabsolu (d x0)) (imp_not_Req (Rabsolu (d x0)) R0 - (or_intror (Rlt (Rabsolu (d x0)) R0) (Rgt (Rabsolu (d x0)) R0) H1))) - in H5; - Rewrite (let (H1,H2)=(Rmult_ne (Rmult eps (Rinv (Rabsolu (Rplus R1 R1))))) - in H1) in H5;Cut (Rabsolu (Rplus R1 R1))==(Rplus R1 R1). -Intro;Rewrite H7 in H5; - Generalize (Rplus_lt (Rabsolu (Rmult (d x0) (Rminus x1 x0))) - (Rmult eps (Rinv (Rplus R1 R1))) - (Rmult (Rabsolu (Rminus x1 x0)) eps) - (Rmult eps (Rinv (Rplus R1 R1))) H5 H3);Intro; - Rewrite eps2 in H10;Assumption. -Unfold Rabsolu;Case (case_Rabsolu (Rplus R1 R1));Auto. - Intro;Cut (Rlt R0 (Rplus R1 R1)). -Intro;Generalize (Rlt_antisym R0 (Rplus R1 R1) H7);Intro;ElimType False; - Auto. -Fourier. -Apply Rabsolu_no_R0. -DiscrR. -Qed. - - -(*********) -Lemma Dconst:(D:R->Prop)(y:R)(x0:R)(D_in [x:R]y [x:R]R0 D x0). -Unfold D_in;Intros;Unfold limit1_in;Unfold limit_in;Unfold Rdiv;Intros;Simpl; - Split with eps;Split;Auto. -Intros;Rewrite (eq_Rminus y y (refl_eqT R y)); - Rewrite Rmult_Ol;Unfold R_dist; - Rewrite (eq_Rminus R0 R0 (refl_eqT R R0));Unfold Rabsolu; - Case (case_Rabsolu R0);Intro. -Absurd (Rlt R0 R0);Auto. -Red;Intro;Apply (Rlt_antirefl R0 H1). -Unfold Rgt in H0;Assumption. -Qed. - -(*********) -Lemma Dx:(D:R->Prop)(x0:R)(D_in [x:R]x [x:R]R1 D x0). -Unfold D_in;Unfold Rdiv;Intros;Unfold limit1_in;Unfold limit_in;Intros;Simpl; - Split with eps;Split;Auto. -Intros;Elim H0;Clear H0;Intros;Unfold D_x in H0; - Elim H0;Intros; - Rewrite (Rinv_r (Rminus x x0) (Rminus_eq_contra x x0 - (sym_not_eqT R x0 x H3))); - Unfold R_dist; - Rewrite (eq_Rminus R1 R1 (refl_eqT R R1));Unfold Rabsolu; - Case (case_Rabsolu R0);Intro. -Absurd (Rlt R0 R0);Auto. -Red;Intro;Apply (Rlt_antirefl R0 r). -Unfold Rgt in H;Assumption. -Qed. - -(*********) -Lemma Dadd:(D:R->Prop)(df,dg:R->R)(f,g:R->R)(x0:R) - (D_in f df D x0)->(D_in g dg D x0)-> - (D_in [x:R](Rplus (f x) (g x)) [x:R](Rplus (df x) (dg x)) D x0). -Unfold D_in;Intros;Generalize (limit_plus - [x:R](Rmult (Rminus (f x) (f x0)) (Rinv (Rminus x x0))) - [x:R](Rmult (Rminus (g x) (g x0)) (Rinv (Rminus x x0))) - (D_x D x0) (df x0) (dg x0) x0 H H0);Clear H H0; - Unfold limit1_in;Unfold limit_in;Simpl;Intros; - Elim (H eps H0);Clear H;Intros;Elim H;Clear H;Intros; - Split with x;Split;Auto;Intros;Generalize (H1 x1 H2);Clear H1;Intro; - Rewrite (Rmult_sym (Rminus (f x1) (f x0)) (Rinv (Rminus x1 x0))) in H1; - Rewrite (Rmult_sym (Rminus (g x1) (g x0)) (Rinv (Rminus x1 x0))) in H1; - Rewrite <-(Rmult_Rplus_distr (Rinv (Rminus x1 x0)) - (Rminus (f x1) (f x0)) - (Rminus (g x1) (g x0))) in H1; - Rewrite (Rmult_sym (Rinv (Rminus x1 x0)) - (Rplus (Rminus (f x1) (f x0)) (Rminus (g x1) (g x0)))) in H1; - Cut (Rplus (Rminus (f x1) (f x0)) (Rminus (g x1) (g x0)))== - (Rminus (Rplus (f x1) (g x1)) (Rplus (f x0) (g x0))). -Intro;Rewrite H3 in H1;Assumption. -Ring. -Qed. - -(*********) -Lemma Dmult:(D:R->Prop)(df,dg:R->R)(f,g:R->R)(x0:R) - (D_in f df D x0)->(D_in g dg D x0)-> - (D_in [x:R](Rmult (f x) (g x)) - [x:R](Rplus (Rmult (df x) (g x)) (Rmult (f x) (dg x))) D x0). -Intros;Unfold D_in;Generalize H H0;Intros;Unfold D_in in H H0; - Generalize (cont_deriv f df D x0 H1);Unfold continue_in;Intro; - Generalize (limit_mul - [x:R](Rmult (Rminus (g x) (g x0)) (Rinv (Rminus x x0))) - [x:R](f x) (D_x D x0) (dg x0) (f x0) x0 H0 H3);Intro; - Cut (limit1_in [x:R](g x0) (D_x D x0) (g x0) x0). -Intro;Generalize (limit_mul - [x:R](Rmult (Rminus (f x) (f x0)) (Rinv (Rminus x x0))) - [_:R](g x0) (D_x D x0) (df x0) (g x0) x0 H H5);Clear H H0 H1 H2 H3 H5; - Intro;Generalize (limit_plus - [x:R](Rmult (Rmult (Rminus (f x) (f x0)) (Rinv (Rminus x x0))) (g x0)) - [x:R](Rmult (Rmult (Rminus (g x) (g x0)) (Rinv (Rminus x x0))) - (f x)) (D_x D x0) (Rmult (df x0) (g x0)) - (Rmult (dg x0) (f x0)) x0 H H4); - Clear H4 H;Intro;Unfold limit1_in in H;Unfold limit_in in H; - Simpl in H;Unfold limit1_in;Unfold limit_in;Simpl;Intros; - Elim (H eps H0);Clear H;Intros;Elim H;Clear H;Intros; - Split with x;Split;Auto;Intros;Generalize (H1 x1 H2);Clear H1;Intro; - Rewrite (Rmult_sym (Rminus (f x1) (f x0)) (Rinv (Rminus x1 x0))) in H1; - Rewrite (Rmult_sym (Rminus (g x1) (g x0)) (Rinv (Rminus x1 x0))) in H1; - Rewrite (Rmult_assoc (Rinv (Rminus x1 x0)) (Rminus (f x1) (f x0)) - (g x0)) in H1; - Rewrite (Rmult_assoc (Rinv (Rminus x1 x0)) (Rminus (g x1) (g x0)) - (f x1)) in H1; - Rewrite <-(Rmult_Rplus_distr (Rinv (Rminus x1 x0)) - (Rmult (Rminus (f x1) (f x0)) (g x0)) - (Rmult (Rminus (g x1) (g x0)) (f x1))) in H1; - Rewrite (Rmult_sym (Rinv (Rminus x1 x0)) - (Rplus (Rmult (Rminus (f x1) (f x0)) (g x0)) - (Rmult (Rminus (g x1) (g x0)) (f x1)))) in H1; - Rewrite (Rmult_sym (dg x0) (f x0)) in H1; - Cut (Rplus (Rmult (Rminus (f x1) (f x0)) (g x0)) - (Rmult (Rminus (g x1) (g x0)) (f x1)))== - (Rminus (Rmult (f x1) (g x1)) (Rmult (f x0) (g x0))). -Intro;Rewrite H3 in H1;Assumption. -Ring. -Unfold limit1_in;Unfold limit_in;Simpl;Intros; - Split with eps;Split;Auto;Intros;Elim (R_dist_refl (g x0) (g x0)); - Intros a b;Rewrite (b (refl_eqT R (g x0)));Unfold Rgt in H;Assumption. -Qed. - -(*********) -Lemma Dmult_const:(D:R->Prop)(f,df:R->R)(x0:R)(a:R)(D_in f df D x0)-> - (D_in [x:R](Rmult a (f x)) ([x:R](Rmult a (df x))) D x0). -Intros;Generalize (Dmult D [_:R]R0 df [_:R]a f x0 (Dconst D a x0) H); - Unfold D_in;Intros; - Rewrite (Rmult_Ol (f x0)) in H0; - Rewrite (let (H1,H2)=(Rplus_ne (Rmult a (df x0))) in H2) in H0; - Assumption. -Qed. - -(*********) -Lemma Dopp:(D:R->Prop)(f,df:R->R)(x0:R)(D_in f df D x0)-> - (D_in [x:R](Ropp (f x)) ([x:R](Ropp (df x))) D x0). -Intros;Generalize (Dmult_const D f df x0 (Ropp R1) H); Unfold D_in; - Unfold limit1_in;Unfold limit_in;Intros; - Generalize (H0 eps H1);Clear H0;Intro;Elim H0;Clear H0;Intros; - Elim H0;Clear H0;Simpl;Intros;Split with x;Split;Auto. -Intros;Generalize (H2 x1 H3);Clear H2;Intro;Rewrite Ropp_mul1 in H2; - Rewrite Ropp_mul1 in H2;Rewrite Ropp_mul1 in H2; - Rewrite (let (H1,H2)=(Rmult_ne (f x1)) in H2) in H2; - Rewrite (let (H1,H2)=(Rmult_ne (f x0)) in H2) in H2; - Rewrite (let (H1,H2)=(Rmult_ne (df x0)) in H2) in H2;Assumption. -Qed. - -(*********) -Lemma Dminus:(D:R->Prop)(df,dg:R->R)(f,g:R->R)(x0:R) - (D_in f df D x0)->(D_in g dg D x0)-> - (D_in [x:R](Rminus (f x) (g x)) [x:R](Rminus (df x) (dg x)) D x0). -Unfold Rminus;Intros;Generalize (Dopp D g dg x0 H0);Intro; - Apply (Dadd D df [x:R](Ropp (dg x)) f [x:R](Ropp (g x)) x0);Assumption. -Qed. - -(*********) -Lemma Dx_pow_n:(n:nat)(D:R->Prop)(x0:R) - (D_in [x:R](pow x n) - [x:R](Rmult (INR n) (pow x (minus n (1)))) D x0). -Induction n;Intros. -Simpl; Rewrite Rmult_Ol; Apply Dconst. -Intros;Cut n0=(minus (S n0) (1)); - [ Intro a; Rewrite <- a;Clear a | Simpl; Apply minus_n_O ]. -Generalize (Dmult D [_:R]R1 - [x:R](Rmult (INR n0) (pow x (minus n0 (1)))) [x:R]x [x:R](pow x n0) - x0 (Dx D x0) (H D x0));Unfold D_in;Unfold limit1_in;Unfold limit_in; - Simpl;Intros; - Elim (H0 eps H1);Clear H0;Intros;Elim H0;Clear H0;Intros; - Split with x;Split;Auto. -Intros;Generalize (H2 x1 H3);Clear H2 H3;Intro; - Rewrite (let (H1,H2)=(Rmult_ne (pow x0 n0)) in H2) in H2; - Rewrite (tech_pow_Rmult x1 n0) in H2; - Rewrite (tech_pow_Rmult x0 n0) in H2; - Rewrite (Rmult_sym (INR n0) (pow x0 (minus n0 (1)))) in H2; - Rewrite <-(Rmult_assoc x0 (pow x0 (minus n0 (1))) (INR n0)) in H2; - Rewrite (tech_pow_Rmult x0 (minus n0 (1))) in H2; - Elim (classic (n0=O));Intro cond. -Rewrite cond in H2;Rewrite cond;Simpl in H2;Simpl; - Cut (Rplus R1 (Rmult (Rmult x0 R1) R0))==(Rmult R1 R1); - [Intro A; Rewrite A in H2; Assumption|Ring]. -Cut ~(n0=O)->(S (minus n0 (1)))=n0;[Intro|Omega]; - Rewrite (H3 cond) in H2; Rewrite (Rmult_sym (pow x0 n0) (INR n0)) in H2; - Rewrite (tech_pow_Rplus x0 n0 n0) in H2; Assumption. -Qed. - -(*********) -Lemma Dcomp:(Df,Dg:R->Prop)(df,dg:R->R)(f,g:R->R)(x0:R) - (D_in f df Df x0)->(D_in g dg Dg (f x0))-> - (D_in [x:R](g (f x)) [x:R](Rmult (df x) (dg (f x))) - (Dgf Df Dg f) x0). -Intros Df Dg df dg f g x0 H H0;Generalize H H0;Unfold D_in;Unfold Rdiv;Intros; -Generalize (limit_comp f [x:R](Rmult (Rminus (g x) (g (f x0))) - (Rinv (Rminus x (f x0)))) (D_x Df x0) - (D_x Dg (f x0)) - (f x0) (dg (f x0)) x0);Intro; - Generalize (cont_deriv f df Df x0 H);Intro;Unfold continue_in in H4; - Generalize (H3 H4 H2);Clear H3;Intro; - Generalize (limit_mul [x:R](Rmult (Rminus (g (f x)) (g (f x0))) - (Rinv (Rminus (f x) (f x0)))) - [x:R](Rmult (Rminus (f x) (f x0)) - (Rinv (Rminus x x0))) - (Dgf (D_x Df x0) (D_x Dg (f x0)) f) - (dg (f x0)) (df x0) x0 H3);Intro; - Cut (limit1_in - [x:R](Rmult (Rminus (f x) (f x0)) (Rinv (Rminus x x0))) - (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0). -Intro;Generalize (H5 H6);Clear H5;Intro; - Generalize (limit_mul - [x:R](Rmult (Rminus (f x) (f x0)) (Rinv (Rminus x x0))) - [x:R](dg (f x0)) - (D_x Df x0) (df x0) (dg (f x0)) x0 H1 - (limit_free [x:R](dg (f x0)) (D_x Df x0) x0 x0)); - Intro; - Unfold limit1_in;Unfold limit_in;Simpl;Unfold limit1_in in H5 H7; - Unfold limit_in in H5 H7;Simpl in H5 H7;Intros;Elim (H5 eps H8); - Elim (H7 eps H8);Clear H5 H7;Intros;Elim H5;Elim H7;Clear H5 H7; - Intros;Split with (Rmin x x1);Split. -Elim (Rmin_Rgt x x1 R0);Intros a b; - Apply (b (conj (Rgt x R0) (Rgt x1 R0) H9 H5));Clear a b. -Intros;Elim H11;Clear H11;Intros;Elim (Rmin_Rgt x x1 (R_dist x2 x0)); - Intros a b;Clear b;Unfold Rgt in a;Elim (a H12);Clear H5 a;Intros; - Unfold D_x Dgf in H11 H7 H10;Clear H12; - Elim (classic (f x2)==(f x0));Intro. -Elim H11;Clear H11;Intros;Elim H11;Clear H11;Intros; - Generalize (H10 x2 (conj (Df x2)/\~x0==x2 (Rlt (R_dist x2 x0) x) - (conj (Df x2) ~x0==x2 H11 H14) H5));Intro; - Rewrite (eq_Rminus (f x2) (f x0) H12) in H16; - Rewrite (Rmult_Ol (Rinv (Rminus x2 x0))) in H16; - Rewrite (Rmult_Ol (dg (f x0))) in H16; - Rewrite H12; - Rewrite (eq_Rminus (g (f x0)) (g (f x0)) (refl_eqT R (g (f x0)))); - Rewrite (Rmult_Ol (Rinv (Rminus x2 x0)));Assumption. -Clear H10 H5;Elim H11;Clear H11;Intros;Elim H5;Clear H5;Intros; -Cut (((Df x2)/\~x0==x2)/\(Dg (f x2))/\~(f x0)==(f x2)) - /\(Rlt (R_dist x2 x0) x1);Auto;Intro; - Generalize (H7 x2 H14);Intro; - Generalize (Rminus_eq_contra (f x2) (f x0) H12);Intro; - Rewrite (Rmult_assoc (Rminus (g (f x2)) (g (f x0))) - (Rinv (Rminus (f x2) (f x0))) - (Rmult (Rminus (f x2) (f x0)) (Rinv (Rminus x2 x0)))) in H15; - Rewrite <-(Rmult_assoc (Rinv (Rminus (f x2) (f x0))) - (Rminus (f x2) (f x0)) (Rinv (Rminus x2 x0))) in H15; - Rewrite (Rinv_l (Rminus (f x2) (f x0)) H16) in H15; - Rewrite (let (H1,H2)=(Rmult_ne (Rinv (Rminus x2 x0))) in H2) in H15; - Rewrite (Rmult_sym (df x0) (dg (f x0)));Assumption. -Clear H5 H3 H4 H2;Unfold limit1_in;Unfold limit_in;Simpl; - Unfold limit1_in in H1;Unfold limit_in in H1;Simpl in H1;Intros; - Elim (H1 eps H2);Clear H1;Intros;Elim H1;Clear H1;Intros; - Split with x;Split;Auto;Intros;Unfold D_x Dgf in H4 H3; - Elim H4;Clear H4;Intros;Elim H4;Clear H4;Intros; - Exact (H3 x1 (conj (Df x1)/\~x0==x1 (Rlt (R_dist x1 x0) x) H4 H5)). -Qed. - -(*********) -Lemma D_pow_n:(n:nat)(D:R->Prop)(x0:R)(expr,dexpr:R->R) - (D_in expr dexpr D x0)-> (D_in [x:R](pow (expr x) n) - [x:R](Rmult (Rmult (INR n) (pow (expr x) (minus n (1)))) (dexpr x)) - (Dgf D D expr) x0). -Intros n D x0 expr dexpr H; - Generalize (Dcomp D D dexpr [x:R](Rmult (INR n) (pow x (minus n (1)))) - expr [x:R](pow x n) x0 H (Dx_pow_n n D (expr x0))); - Intro; Unfold D_in; Unfold limit1_in; Unfold limit_in;Simpl;Intros; - Unfold D_in in H0; Unfold limit1_in in H0; Unfold limit_in in H0;Simpl in H0; - Elim (H0 eps H1);Clear H0;Intros;Elim H0;Clear H0;Intros;Split with x;Split; - Intros; Auto. -Cut ``((dexpr x0)*((INR n)*(pow (expr x0) (minus n (S O)))))== - ((INR n)*(pow (expr x0) (minus n (S O)))*(dexpr x0))``; - [Intro Rew;Rewrite <- Rew;Exact (H2 x1 H3)|Ring]. -Qed. - diff --git a/theories7/Reals/Reals.v b/theories7/Reals/Reals.v deleted file mode 100644 index d0f879ab..00000000 --- a/theories7/Reals/Reals.v +++ /dev/null @@ -1,32 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0`` - - Sup: for goals like ``?1 R1 - |(S n) => (Rmult r (pow r n)) - end. - -V8Infix "^" pow : R_scope. - -Lemma pow_O: (x : R) (pow x O) == R1. -Proof. -Reflexivity. -Qed. - -Lemma pow_1: (x : R) (pow x (1)) == x. -Proof. -Simpl; Auto with real. -Qed. - -Lemma pow_add: - (x : R) (n, m : nat) (pow x (plus n m)) == (Rmult (pow x n) (pow x m)). -Proof. -Intros x n; Elim n; Simpl; Auto with real. -Intros n0 H' m; Rewrite H'; Auto with real. -Qed. - -Lemma pow_nonzero: - (x:R) (n:nat) ~(x==R0) -> ~((pow x n)==R0). -Proof. -Intro; Induction n; Simpl. -Intro; Red;Intro;Apply R1_neq_R0;Assumption. -Intros;Red; Intro;Elim (without_div_Od x (pow x n0) H1). -Intro; Auto. -Apply H;Assumption. -Qed. - -Hints Resolve pow_O pow_1 pow_add pow_nonzero:real. - -Lemma pow_RN_plus: - (x : R) - (n, m : nat) - ~ x == R0 -> (pow x n) == (Rmult (pow x (plus n m)) (Rinv (pow x m))). -Proof. -Intros x n; Elim n; Simpl; Auto with real. -Intros n0 H' m H'0. -Rewrite Rmult_assoc; Rewrite <- H'; Auto. -Qed. - -Lemma pow_lt: (x : R) (n : nat) (Rlt R0 x) -> (Rlt R0 (pow x n)). -Proof. -Intros x n; Elim n; Simpl; Auto with real. -Intros n0 H' H'0; Replace R0 with (Rmult x R0); Auto with real. -Qed. -Hints Resolve pow_lt :real. - -Lemma Rlt_pow_R1: - (x : R) (n : nat) (Rlt R1 x) -> (lt O n) -> (Rlt R1 (pow x n)). -Proof. -Intros x n; Elim n; Simpl; Auto with real. -Intros H' H'0; ElimType False; Omega. -Intros n0; Case n0. -Simpl; Rewrite Rmult_1r; Auto. -Intros n1 H' H'0 H'1. -Replace R1 with (Rmult R1 R1); Auto with real. -Apply Rlt_trans with r2 := (Rmult x R1); Auto with real. -Apply Rlt_monotony; Auto with real. -Apply Rlt_trans with r2 := R1; Auto with real. -Apply H'; Auto with arith. -Qed. -Hints Resolve Rlt_pow_R1 :real. - -Lemma Rlt_pow: - (x : R) (n, m : nat) (Rlt R1 x) -> (lt n m) -> (Rlt (pow x n) (pow x m)). -Proof. -Intros x n m H' H'0; Replace m with (plus (minus m n) n). -Rewrite pow_add. -Pattern 1 (pow x n); Replace (pow x n) with (Rmult R1 (pow x n)); - Auto with real. -Apply Rminus_lt. -Repeat Rewrite [y : R] (Rmult_sym y (pow x n)); Rewrite <- Rminus_distr. -Replace R0 with (Rmult (pow x n) R0); Auto with real. -Apply Rlt_monotony; Auto with real. -Apply pow_lt; Auto with real. -Apply Rlt_trans with r2 := R1; Auto with real. -Apply Rlt_minus; Auto with real. -Apply Rlt_pow_R1; Auto with arith. -Apply simpl_lt_plus_l with p := n; Auto with arith. -Rewrite le_plus_minus_r; Auto with arith; Rewrite <- plus_n_O; Auto. -Rewrite plus_sym; Auto with arith. -Qed. -Hints Resolve Rlt_pow :real. - -(*********) -Lemma tech_pow_Rmult:(x:R)(n:nat)(Rmult x (pow x n))==(pow x (S n)). -Proof. -Induction n; Simpl; Trivial. -Qed. - -(*********) -Lemma tech_pow_Rplus:(x:R)(a,n:nat) - (Rplus (pow x a) (Rmult (INR n) (pow x a)))== - (Rmult (INR (S n)) (pow x a)). -Proof. -Intros; Pattern 1 (pow x a); - Rewrite <-(let (H1,H2)=(Rmult_ne (pow x a)) in H1); - Rewrite (Rmult_sym (INR n) (pow x a)); - Rewrite <- (Rmult_Rplus_distr (pow x a) R1 (INR n)); - Rewrite (Rplus_sym R1 (INR n)); Rewrite <-(S_INR n); - Apply Rmult_sym. -Qed. - -Lemma poly: (n:nat)(x:R)(Rlt R0 x)-> - (Rle (Rplus R1 (Rmult (INR n) x)) (pow (Rplus R1 x) n)). -Proof. -Intros;Elim n. -Simpl;Cut (Rplus R1 (Rmult R0 x))==R1. -Intro;Rewrite H0;Unfold Rle;Right; Reflexivity. -Ring. -Intros;Unfold pow; Fold pow; - Apply (Rle_trans (Rplus R1 (Rmult (INR (S n0)) x)) - (Rmult (Rplus R1 x) (Rplus R1 (Rmult (INR n0) x))) - (Rmult (Rplus R1 x) (pow (Rplus R1 x) n0))). -Cut (Rmult (Rplus R1 x) (Rplus R1 (Rmult (INR n0) x)))== - (Rplus (Rplus R1 (Rmult (INR (S n0)) x)) - (Rmult (INR n0) (Rmult x x))). -Intro;Rewrite H1;Pattern 1 (Rplus R1 (Rmult (INR (S n0)) x)); - Rewrite <-(let (H1,H2)= - (Rplus_ne (Rplus R1 (Rmult (INR (S n0)) x))) in H1); - Apply Rle_compatibility;Elim n0;Intros. -Simpl;Rewrite Rmult_Ol;Unfold Rle;Right;Auto. -Unfold Rle;Left;Generalize Rmult_gt;Unfold Rgt;Intro; - Fold (Rsqr x);Apply (H3 (INR (S n1)) (Rsqr x) - (lt_INR_0 (S n1) (lt_O_Sn n1)));Fold (Rgt x R0) in H; - Apply (pos_Rsqr1 x (imp_not_Req x R0 - (or_intror (Rlt x R0) (Rgt x R0) H))). -Rewrite (S_INR n0);Ring. -Unfold Rle in H0;Elim H0;Intro. -Unfold Rle;Left;Apply Rlt_monotony. -Rewrite Rplus_sym; - Apply (Rlt_r_plus_R1 x (Rlt_le R0 x H)). -Assumption. -Rewrite H1;Unfold Rle;Right;Trivial. -Qed. - -Lemma Power_monotonic: - (x:R) (m,n:nat) (Rgt (Rabsolu x) R1) - -> (le m n) - -> (Rle (Rabsolu (pow x m)) (Rabsolu (pow x n))). -Proof. -Intros x m n H;Induction n;Intros;Inversion H0. -Unfold Rle; Right; Reflexivity. -Unfold Rle; Right; Reflexivity. -Apply (Rle_trans (Rabsolu (pow x m)) - (Rabsolu (pow x n)) - (Rabsolu (pow x (S n)))). -Apply Hrecn; Assumption. -Simpl;Rewrite Rabsolu_mult. -Pattern 1 (Rabsolu (pow x n)). -Rewrite <-Rmult_1r. -Rewrite (Rmult_sym (Rabsolu x) (Rabsolu (pow x n))). -Apply Rle_monotony. -Apply Rabsolu_pos. -Unfold Rgt in H. -Apply Rlt_le; Assumption. -Qed. - -Lemma Pow_Rabsolu: (x:R) (n:nat) - (pow (Rabsolu x) n)==(Rabsolu (pow x n)). -Proof. -Intro;Induction n;Simpl. -Apply sym_eqT;Apply Rabsolu_pos_eq;Apply Rlt_le;Apply Rlt_R0_R1. -Intros; Rewrite H;Apply sym_eqT;Apply Rabsolu_mult. -Qed. - - -Lemma Pow_x_infinity: - (x:R) (Rgt (Rabsolu x) R1) - -> (b:R) (Ex [N:nat] ((n:nat) (ge n N) - -> (Rge (Rabsolu (pow x n)) b ))). -Proof. -Intros;Elim (archimed (Rmult b (Rinv (Rminus (Rabsolu x) R1))));Intros; - Clear H1; - Cut (Ex[N:nat] (Rge (INR N) (Rmult b (Rinv (Rminus (Rabsolu x) R1))))). -Intro; Elim H1;Clear H1;Intros;Exists x0;Intros; - Apply (Rge_trans (Rabsolu (pow x n)) (Rabsolu (pow x x0)) b). -Apply Rle_sym1;Apply Power_monotonic;Assumption. -Rewrite <- Pow_Rabsolu;Cut (Rabsolu x)==(Rplus R1 (Rminus (Rabsolu x) R1)). -Intro; Rewrite H3; - Apply (Rge_trans (pow (Rplus R1 (Rminus (Rabsolu x) R1)) x0) - (Rplus R1 (Rmult (INR x0) - (Rminus (Rabsolu x) R1))) - b). -Apply Rle_sym1;Apply poly;Fold (Rgt (Rminus (Rabsolu x) R1) R0); - Apply Rgt_minus;Assumption. -Apply (Rge_trans - (Rplus R1 (Rmult (INR x0) (Rminus (Rabsolu x) R1))) - (Rmult (INR x0) (Rminus (Rabsolu x) R1)) - b). -Apply Rle_sym1; Apply Rlt_le;Rewrite (Rplus_sym R1 - (Rmult (INR x0) (Rminus (Rabsolu x) R1))); - Pattern 1 (Rmult (INR x0) (Rminus (Rabsolu x) R1)); - Rewrite <- (let (H1,H2) = (Rplus_ne - (Rmult (INR x0) (Rminus (Rabsolu x) R1))) in - H1); - Apply Rlt_compatibility; - Apply Rlt_R0_R1. -Cut b==(Rmult (Rmult b (Rinv (Rminus (Rabsolu x) R1))) - (Rminus (Rabsolu x) R1)). -Intros; Rewrite H4;Apply Rge_monotony. -Apply Rge_minus;Unfold Rge; Left; Assumption. -Assumption. -Rewrite Rmult_assoc;Rewrite Rinv_l. -Ring. -Apply imp_not_Req; Right;Apply Rgt_minus;Assumption. -Ring. -Cut `0<= (up (Rmult b (Rinv (Rminus (Rabsolu x) R1))))`\/ - `(up (Rmult b (Rinv (Rminus (Rabsolu x) R1)))) <= 0`. -Intros;Elim H1;Intro. -Elim (IZN (up (Rmult b (Rinv (Rminus (Rabsolu x) R1)))) H2);Intros;Exists x0; - Apply (Rge_trans - (INR x0) - (IZR (up (Rmult b (Rinv (Rminus (Rabsolu x) R1))))) - (Rmult b (Rinv (Rminus (Rabsolu x) R1)))). -Rewrite INR_IZR_INZ;Apply IZR_ge;Omega. -Unfold Rge; Left; Assumption. -Exists O;Apply (Rge_trans (INR (0)) - (IZR (up (Rmult b (Rinv (Rminus (Rabsolu x) R1))))) - (Rmult b (Rinv (Rminus (Rabsolu x) R1)))). -Rewrite INR_IZR_INZ;Apply IZR_ge;Simpl;Omega. -Unfold Rge; Left; Assumption. -Omega. -Qed. - -Lemma pow_ne_zero: - (n:nat) ~(n=(0))-> (pow R0 n) == R0. -Proof. -Induction n. -Simpl;Auto. -Intros;Elim H;Reflexivity. -Intros; Simpl;Apply Rmult_Ol. -Qed. - -Lemma Rinv_pow: - (x:R) (n:nat) ~(x==R0) -> (Rinv (pow x n))==(pow (Rinv x) n). -Proof. -Intros; Elim n; Simpl. -Apply Rinv_R1. -Intro m;Intro;Rewrite Rinv_Rmult. -Rewrite H0; Reflexivity;Assumption. -Assumption. -Apply pow_nonzero;Assumption. -Qed. - -Lemma pow_lt_1_zero: - (x:R) (Rlt (Rabsolu x) R1) - -> (y:R) (Rlt R0 y) - -> (Ex[N:nat] (n:nat) (ge n N) - -> (Rlt (Rabsolu (pow x n)) y)). -Proof. -Intros;Elim (Req_EM x R0);Intro. -Exists (1);Rewrite H1;Intros n GE;Rewrite pow_ne_zero. -Rewrite Rabsolu_R0;Assumption. -Inversion GE;Auto. -Cut (Rgt (Rabsolu (Rinv x)) R1). -Intros;Elim (Pow_x_infinity (Rinv x) H2 (Rplus (Rinv y) R1));Intros N. -Exists N;Intros;Rewrite <- (Rinv_Rinv y). -Rewrite <- (Rinv_Rinv (Rabsolu (pow x n))). -Apply Rinv_lt. -Apply Rmult_lt_pos. -Apply Rlt_Rinv. -Assumption. -Apply Rlt_Rinv. -Apply Rabsolu_pos_lt. -Apply pow_nonzero. -Assumption. -Rewrite <- Rabsolu_Rinv. -Rewrite Rinv_pow. -Apply (Rlt_le_trans (Rinv y) - (Rplus (Rinv y) R1) - (Rabsolu (pow (Rinv x) n))). -Pattern 1 (Rinv y). -Rewrite <- (let (H1,H2) = - (Rplus_ne (Rinv y)) in H1). -Apply Rlt_compatibility. -Apply Rlt_R0_R1. -Apply Rle_sym2. -Apply H3. -Assumption. -Assumption. -Apply pow_nonzero. -Assumption. -Apply Rabsolu_no_R0. -Apply pow_nonzero. -Assumption. -Apply imp_not_Req. -Right; Unfold Rgt; Assumption. -Rewrite <- (Rinv_Rinv R1). -Rewrite Rabsolu_Rinv. -Unfold Rgt; Apply Rinv_lt. -Apply Rmult_lt_pos. -Apply Rabsolu_pos_lt. -Assumption. -Rewrite Rinv_R1; Apply Rlt_R0_R1. -Rewrite Rinv_R1; Assumption. -Assumption. -Red;Intro; Apply R1_neq_R0;Assumption. -Qed. - -Lemma pow_R1: - (r : R) (n : nat) (pow r n) == R1 -> (Rabsolu r) == R1 \/ n = O. -Proof. -Intros r n H'. -Case (Req_EM (Rabsolu r) R1); Auto; Intros H'1. -Case (not_Req ? ? H'1); Intros H'2. -Generalize H'; Case n; Auto. -Intros n0 H'0. -Cut ~ r == R0; [Intros Eq1 | Idtac]. -Cut ~ (Rabsolu r) == R0; [Intros Eq2 | Apply Rabsolu_no_R0]; Auto. -Absurd (Rlt (pow (Rabsolu (Rinv r)) O) (pow (Rabsolu (Rinv r)) (S n0))); Auto. -Replace (pow (Rabsolu (Rinv r)) (S n0)) with R1. -Simpl; Apply Rlt_antirefl; Auto. -Rewrite Rabsolu_Rinv; Auto. -Rewrite <- Rinv_pow; Auto. -Rewrite Pow_Rabsolu; Auto. -Rewrite H'0; Rewrite Rabsolu_right; Auto with real. -Apply Rle_ge; Auto with real. -Apply Rlt_pow; Auto with arith. -Rewrite Rabsolu_Rinv; Auto. -Apply Rlt_monotony_contra with z := (Rabsolu r). -Case (Rabsolu_pos r); Auto. -Intros H'3; Case Eq2; Auto. -Rewrite Rmult_1r; Rewrite Rinv_r; Auto with real. -Red;Intro;Absurd ``(pow r (S n0)) == 1``;Auto. -Simpl; Rewrite H; Rewrite Rmult_Ol; Auto with real. -Generalize H'; Case n; Auto. -Intros n0 H'0. -Cut ~ r == R0; [Intros Eq1 | Auto with real]. -Cut ~ (Rabsolu r) == R0; [Intros Eq2 | Apply Rabsolu_no_R0]; Auto. -Absurd (Rlt (pow (Rabsolu r) O) (pow (Rabsolu r) (S n0))); - Auto with real arith. -Repeat Rewrite Pow_Rabsolu; Rewrite H'0; Simpl; Auto with real. -Red;Intro;Absurd ``(pow r (S n0)) == 1``;Auto. -Simpl; Rewrite H; Rewrite Rmult_Ol; Auto with real. -Qed. - -Lemma pow_Rsqr : (x:R;n:nat) (pow x (mult (2) n))==(pow (Rsqr x) n). -Proof. -Intros; Induction n. -Reflexivity. -Replace (mult (2) (S n)) with (S (S (mult (2) n))). -Replace (pow x (S (S (mult (2) n)))) with ``x*x*(pow x (mult (S (S O)) n))``. -Rewrite Hrecn; Reflexivity. -Simpl; Ring. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Qed. - -Lemma pow_le : (a:R;n:nat) ``0<=a`` -> ``0<=(pow a n)``. -Proof. -Intros; Induction n. -Simpl; Left; Apply Rlt_R0_R1. -Simpl; Apply Rmult_le_pos; Assumption. -Qed. - -(**********) -Lemma pow_1_even : (n:nat) ``(pow (-1) (mult (S (S O)) n))==1``. -Proof. -Intro; Induction n. -Reflexivity. -Replace (mult (2) (S n)) with (plus (2) (mult (2) n)). -Rewrite pow_add; Rewrite Hrecn; Simpl; Ring. -Replace (S n) with (plus n (1)); [Ring | Ring]. -Qed. - -(**********) -Lemma pow_1_odd : (n:nat) ``(pow (-1) (S (mult (S (S O)) n)))==-1``. -Proof. -Intro; Replace (S (mult (2) n)) with (plus (mult (2) n) (1)); [Idtac | Ring]. -Rewrite pow_add; Rewrite pow_1_even; Simpl; Ring. -Qed. - -(**********) -Lemma pow_1_abs : (n:nat) ``(Rabsolu (pow (-1) n))==1``. -Proof. -Intro; Induction n. -Simpl; Apply Rabsolu_R1. -Replace (S n) with (plus n (1)); [Rewrite pow_add | Ring]. -Rewrite Rabsolu_mult. -Rewrite Hrecn; Rewrite Rmult_1l; Simpl; Rewrite Rmult_1r; Rewrite Rabsolu_Ropp; Apply Rabsolu_R1. -Qed. - -Lemma pow_mult : (x:R;n1,n2:nat) (pow x (mult n1 n2))==(pow (pow x n1) n2). -Proof. -Intros; Induction n2. -Simpl; Replace (mult n1 O) with O; [Reflexivity | Ring]. -Replace (mult n1 (S n2)) with (plus (mult n1 n2) n1). -Replace (S n2) with (plus n2 (1)); [Idtac | Ring]. -Do 2 Rewrite pow_add. -Rewrite Hrecn2. -Simpl. -Ring. -Apply INR_eq; Rewrite plus_INR; Do 2 Rewrite mult_INR; Rewrite S_INR; Ring. -Qed. - -Lemma pow_incr : (x,y:R;n:nat) ``0<=x<=y`` -> ``(pow x n)<=(pow y n)``. -Proof. -Intros. -Induction n. -Right; Reflexivity. -Simpl. -Elim H; Intros. -Apply Rle_trans with ``y*(pow x n)``. -Do 2 Rewrite <- (Rmult_sym (pow x n)). -Apply Rle_monotony. -Apply pow_le; Assumption. -Assumption. -Apply Rle_monotony. -Apply Rle_trans with x; Assumption. -Apply Hrecn. -Qed. - -Lemma pow_R1_Rle : (x:R;k:nat) ``1<=x`` -> ``1<=(pow x k)``. -Proof. -Intros. -Induction k. -Right; Reflexivity. -Simpl. -Apply Rle_trans with ``x*1``. -Rewrite Rmult_1r; Assumption. -Apply Rle_monotony. -Left; Apply Rlt_le_trans with R1; [Apply Rlt_R0_R1 | Assumption]. -Exact Hreck. -Qed. - -Lemma Rle_pow : (x:R;m,n:nat) ``1<=x`` -> (le m n) -> ``(pow x m)<=(pow x n)``. -Proof. -Intros. -Replace n with (plus (minus n m) m). -Rewrite pow_add. -Rewrite Rmult_sym. -Pattern 1 (pow x m); Rewrite <- Rmult_1r. -Apply Rle_monotony. -Apply pow_le; Left; Apply Rlt_le_trans with R1; [Apply Rlt_R0_R1 | Assumption]. -Apply pow_R1_Rle; Assumption. -Rewrite plus_sym. -Symmetry; Apply le_plus_minus; Assumption. -Qed. - -Lemma pow1 : (n:nat) (pow R1 n)==R1. -Proof. -Intro; Induction n. -Reflexivity. -Simpl; Rewrite Hrecn; Rewrite Rmult_1r; Reflexivity. -Qed. - -Lemma pow_Rabs : (x:R;n:nat) ``(pow x n)<=(pow (Rabsolu x) n)``. -Proof. -Intros; Induction n. -Right; Reflexivity. -Simpl; Case (case_Rabsolu x); Intro. -Apply Rle_trans with (Rabsolu ``x*(pow x n)``). -Apply Rle_Rabsolu. -Rewrite Rabsolu_mult. -Apply Rle_monotony. -Apply Rabsolu_pos. -Right; Symmetry; Apply Pow_Rabsolu. -Pattern 1 (Rabsolu x); Rewrite (Rabsolu_right x r); Apply Rle_monotony. -Apply Rle_sym2; Exact r. -Apply Hrecn. -Qed. - -Lemma pow_maj_Rabs : (x,y:R;n:nat) ``(Rabsolu y)<=x`` -> ``(pow y n)<=(pow x n)``. -Proof. -Intros; Cut ``0<=x``. -Intro; Apply Rle_trans with (pow (Rabsolu y) n). -Apply pow_Rabs. -Induction n. -Right; Reflexivity. -Simpl; Apply Rle_trans with ``x*(pow (Rabsolu y) n)``. -Do 2 Rewrite <- (Rmult_sym (pow (Rabsolu y) n)). -Apply Rle_monotony. -Apply pow_le; Apply Rabsolu_pos. -Assumption. -Apply Rle_monotony. -Apply H0. -Apply Hrecn. -Apply Rle_trans with (Rabsolu y); [Apply Rabsolu_pos | Exact H]. -Qed. - -(*******************************) -(** PowerRZ *) -(*******************************) -(*i Due to L.Thery i*) - -Tactic Definition CaseEqk name := -Generalize (refl_equal ? name); Pattern -1 name; Case name. - -Definition powerRZ := - [x : R] [n : Z] Cases n of - ZERO => R1 - | (POS p) => (pow x (convert p)) - | (NEG p) => (Rinv (pow x (convert p))) - end. - -Infix Local "^Z" powerRZ (at level 2, left associativity) : R_scope. - -Lemma Zpower_NR0: - (x : Z) (n : nat) (Zle ZERO x) -> (Zle ZERO (Zpower_nat x n)). -Proof. -NewInduction n; Unfold Zpower_nat; Simpl; Auto with zarith. -Qed. - -Lemma powerRZ_O: (x : R) (powerRZ x ZERO) == R1. -Proof. -Reflexivity. -Qed. - -Lemma powerRZ_1: (x : R) (powerRZ x (Zs ZERO)) == x. -Proof. -Simpl; Auto with real. -Qed. - -Lemma powerRZ_NOR: (x : R) (z : Z) ~ x == R0 -> ~ (powerRZ x z) == R0. -Proof. -NewDestruct z; Simpl; Auto with real. -Qed. - -Lemma powerRZ_add: - (x : R) - (n, m : Z) - ~ x == R0 -> (powerRZ x (Zplus n m)) == (Rmult (powerRZ x n) (powerRZ x m)). -Proof. -Intro x; NewDestruct n as [|n1|n1]; NewDestruct m as [|m1|m1]; Simpl; - Auto with real. -(* POS/POS *) -Rewrite convert_add; Auto with real. -(* POS/NEG *) -(CaseEqk '(compare n1 m1 EGAL)); Simpl; Auto with real. -Intros H' H'0; Rewrite compare_convert_EGAL with 1 := H'; Auto with real. -Intros H' H'0; Rewrite (true_sub_convert m1 n1); Auto with real. -Rewrite (pow_RN_plus x (minus (convert m1) (convert n1)) (convert n1)); - Auto with real. -Rewrite plus_sym; Rewrite le_plus_minus_r; Auto with real. -Rewrite Rinv_Rmult; Auto with real. -Rewrite Rinv_Rinv; Auto with real. -Apply lt_le_weak. -Apply compare_convert_INFERIEUR; Auto. -Apply ZC2; Auto. -Intros H' H'0; Rewrite (true_sub_convert n1 m1); Auto with real. -Rewrite (pow_RN_plus x (minus (convert n1) (convert m1)) (convert m1)); - Auto with real. -Rewrite plus_sym; Rewrite le_plus_minus_r; Auto with real. -Apply lt_le_weak. -Change (gt (convert n1) (convert m1)). -Apply compare_convert_SUPERIEUR; Auto. -(* NEG/POS *) -(CaseEqk '(compare n1 m1 EGAL)); Simpl; Auto with real. -Intros H' H'0; Rewrite compare_convert_EGAL with 1 := H'; Auto with real. -Intros H' H'0; Rewrite (true_sub_convert m1 n1); Auto with real. -Rewrite (pow_RN_plus x (minus (convert m1) (convert n1)) (convert n1)); - Auto with real. -Rewrite plus_sym; Rewrite le_plus_minus_r; Auto with real. -Apply lt_le_weak. -Apply compare_convert_INFERIEUR; Auto. -Apply ZC2; Auto. -Intros H' H'0; Rewrite (true_sub_convert n1 m1); Auto with real. -Rewrite (pow_RN_plus x (minus (convert n1) (convert m1)) (convert m1)); - Auto with real. -Rewrite plus_sym; Rewrite le_plus_minus_r; Auto with real. -Rewrite Rinv_Rmult; Auto with real. -Apply lt_le_weak. -Change (gt (convert n1) (convert m1)). -Apply compare_convert_SUPERIEUR; Auto. -(* NEG/NEG *) -Rewrite convert_add; Auto with real. -Intros H'; Rewrite pow_add; Auto with real. -Apply Rinv_Rmult; Auto. -Apply pow_nonzero; Auto. -Apply pow_nonzero; Auto. -Qed. -Hints Resolve powerRZ_O powerRZ_1 powerRZ_NOR powerRZ_add :real. - -Lemma Zpower_nat_powerRZ: - (n, m : nat) - (IZR (Zpower_nat (inject_nat n) m)) == (powerRZ (INR n) (inject_nat m)). -Proof. -Intros n m; Elim m; Simpl; Auto with real. -Intros m1 H'; Rewrite bij1; Simpl. -Replace (Zpower_nat (inject_nat n) (S m1)) - with (Zmult (inject_nat n) (Zpower_nat (inject_nat n) m1)). -Rewrite mult_IZR; Auto with real. -Repeat Rewrite <- INR_IZR_INZ; Simpl. -Rewrite H'; Simpl. -Case m1; Simpl; Auto with real. -Intros m2; Rewrite bij1; Auto. -Unfold Zpower_nat; Auto. -Qed. - -Lemma powerRZ_lt: (x : R) (z : Z) (Rlt R0 x) -> (Rlt R0 (powerRZ x z)). -Proof. -Intros x z; Case z; Simpl; Auto with real. -Qed. -Hints Resolve powerRZ_lt :real. - -Lemma powerRZ_le: (x : R) (z : Z) (Rlt R0 x) -> (Rle R0 (powerRZ x z)). -Proof. -Intros x z H'; Apply Rlt_le; Auto with real. -Qed. -Hints Resolve powerRZ_le :real. - -Lemma Zpower_nat_powerRZ_absolu: - (n, m : Z) - (Zle ZERO m) -> (IZR (Zpower_nat n (absolu m))) == (powerRZ (IZR n) m). -Proof. -Intros n m; Case m; Simpl; Auto with zarith. -Intros p H'; Elim (convert p); Simpl; Auto with zarith. -Intros n0 H'0; Rewrite <- H'0; Simpl; Auto with zarith. -Rewrite <- mult_IZR; Auto. -Intros p H'; Absurd `0 <= (NEG p)`;Auto with zarith. -Qed. - -Lemma powerRZ_R1: (n : Z) (powerRZ R1 n) == R1. -Proof. -Intros n; Case n; Simpl; Auto. -Intros p; Elim (convert p); Simpl; Auto; Intros n0 H'; Rewrite H'; Ring. -Intros p; Elim (convert p); Simpl. -Exact Rinv_R1. -Intros n1 H'; Rewrite Rinv_Rmult; Try Rewrite Rinv_R1; Try Rewrite H'; - Auto with real. -Qed. - -(*******************************) -(** Sum of n first naturals *) -(*******************************) -(*********) -Fixpoint sum_nat_f_O [f:nat->nat;n:nat]:nat:= - Cases n of - O => (f O) - |(S n') => (plus (sum_nat_f_O f n') (f (S n'))) - end. - -(*********) -Definition sum_nat_f [s,n:nat;f:nat->nat]:nat:= - (sum_nat_f_O [x:nat](f (plus x s)) (minus n s)). - -(*********) -Definition sum_nat_O [n:nat]:nat:= - (sum_nat_f_O [x:nat]x n). - -(*********) -Definition sum_nat [s,n:nat]:nat:= - (sum_nat_f s n [x:nat]x). - -(*******************************) -(** Sum *) -(*******************************) -(*********) -Fixpoint sum_f_R0 [f:nat->R;N:nat]:R:= - Cases N of - O => (f O) - |(S i) => (Rplus (sum_f_R0 f i) (f (S i))) - end. - -(*********) -Definition sum_f [s,n:nat;f:nat->R]:R:= - (sum_f_R0 [x:nat](f (plus x s)) (minus n s)). - -Lemma GP_finite: - (x:R) (n:nat) (Rmult (sum_f_R0 [n:nat] (pow x n) n) - (Rminus x R1)) == - (Rminus (pow x (plus n (1))) R1). -Proof. -Intros; Induction n; Simpl. -Ring. -Rewrite Rmult_Rplus_distrl;Rewrite Hrecn;Cut (plus n (1))=(S n). -Intro H;Rewrite H;Simpl;Ring. -Omega. -Qed. - -Lemma sum_f_R0_triangle: - (x:nat->R)(n:nat) (Rle (Rabsolu (sum_f_R0 x n)) - (sum_f_R0 [i:nat] (Rabsolu (x i)) n)). -Proof. -Intro; Induction n; Simpl. -Unfold Rle; Right; Reflexivity. -Intro m; Intro;Apply (Rle_trans - (Rabsolu (Rplus (sum_f_R0 x m) (x (S m)))) - (Rplus (Rabsolu (sum_f_R0 x m)) - (Rabsolu (x (S m)))) - (Rplus (sum_f_R0 [i:nat](Rabsolu (x i)) m) - (Rabsolu (x (S m))))). -Apply Rabsolu_triang. -Rewrite Rplus_sym;Rewrite (Rplus_sym - (sum_f_R0 [i:nat](Rabsolu (x i)) m) (Rabsolu (x (S m)))); - Apply Rle_compatibility;Assumption. -Qed. - -(*******************************) -(* Distance in R *) -(*******************************) - -(*********) -Definition R_dist:R->R->R:=[x,y:R](Rabsolu (Rminus x y)). - -(*********) -Lemma R_dist_pos:(x,y:R)(Rge (R_dist x y) R0). -Proof. -Intros;Unfold R_dist;Unfold Rabsolu;Case (case_Rabsolu (Rminus x y));Intro l. -Unfold Rge;Left;Apply (Rlt_RoppO (Rminus x y) l). -Trivial. -Qed. - -(*********) -Lemma R_dist_sym:(x,y:R)(R_dist x y)==(R_dist y x). -Proof. -Unfold R_dist;Intros;SplitAbsolu;Ring. -Generalize (Rlt_RoppO (Rminus y x) r); Intro; - Rewrite (Ropp_distr2 y x) in H; - Generalize (Rlt_antisym (Rminus x y) R0 r0); Intro;Unfold Rgt in H; - ElimType False; Auto. -Generalize (minus_Rge y x r); Intro; - Generalize (minus_Rge x y r0); Intro; - Generalize (Rge_ge_eq x y H0 H); Intro;Rewrite H1;Ring. -Qed. - -(*********) -Lemma R_dist_refl:(x,y:R)((R_dist x y)==R0<->x==y). -Proof. -Unfold R_dist;Intros;SplitAbsolu;Split;Intros. -Rewrite (Ropp_distr2 x y) in H;Apply sym_eqT; - Apply (Rminus_eq y x H). -Rewrite (Ropp_distr2 x y);Generalize (sym_eqT R x y H);Intro; - Apply (eq_Rminus y x H0). -Apply (Rminus_eq x y H). -Apply (eq_Rminus x y H). -Qed. - -Lemma R_dist_eq:(x:R)(R_dist x x)==R0. -Proof. -Unfold R_dist;Intros;SplitAbsolu;Intros;Ring. -Qed. - -(***********) -Lemma R_dist_tri:(x,y,z:R)(Rle (R_dist x y) - (Rplus (R_dist x z) (R_dist z y))). -Proof. -Intros;Unfold R_dist; Replace ``x-y`` with ``(x-z)+(z-y)``; - [Apply (Rabsolu_triang ``x-z`` ``z-y``)|Ring]. -Qed. - -(*********) -Lemma R_dist_plus: (a,b,c,d:R)(Rle (R_dist (Rplus a c) (Rplus b d)) - (Rplus (R_dist a b) (R_dist c d))). -Proof. -Intros;Unfold R_dist; - Replace (Rminus (Rplus a c) (Rplus b d)) - with (Rplus (Rminus a b) (Rminus c d)). -Exact (Rabsolu_triang (Rminus a b) (Rminus c d)). -Ring. -Qed. - -(*******************************) -(** Infinit Sum *) -(*******************************) -(*********) -Definition infinit_sum:(nat->R)->R->Prop:=[s:nat->R;l:R] - (eps:R)(Rgt eps R0)-> - (Ex[N:nat](n:nat)(ge n N)->(Rlt (R_dist (sum_f_R0 s n) l) eps)). diff --git a/theories7/Reals/Rgeom.v b/theories7/Reals/Rgeom.v deleted file mode 100644 index 12c52e37..00000000 --- a/theories7/Reals/Rgeom.v +++ /dev/null @@ -1,84 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* ``(Rsqr b)==(Rsqr c)+(Rsqr a)-2*(a*c*(cos ac))`` ). -Unfold dist_euc; Intros; Repeat Rewrite -> Rsqr_sqrt; [ Rewrite H; Unfold Rsqr; Ring | Apply ge0_plus_ge0_is_ge0 | Apply ge0_plus_ge0_is_ge0 | Apply ge0_plus_ge0_is_ge0]; Apply pos_Rsqr. -Qed. - -Lemma triangle : (x0,y0,x1,y1,x2,y2:R) ``(dist_euc x0 y0 x1 y1)<=(dist_euc x0 y0 x2 y2)+(dist_euc x2 y2 x1 y1)``. -Intros; Unfold dist_euc; Apply Rsqr_incr_0; [Rewrite Rsqr_plus; Repeat Rewrite Rsqr_sqrt; [Replace ``(Rsqr (x0-x1))`` with ``(Rsqr (x0-x2))+(Rsqr (x2-x1))+2*(x0-x2)*(x2-x1)``; [Replace ``(Rsqr (y0-y1))`` with ``(Rsqr (y0-y2))+(Rsqr (y2-y1))+2*(y0-y2)*(y2-y1)``; [Apply Rle_anti_compatibility with ``-(Rsqr (x0-x2))-(Rsqr (x2-x1))-(Rsqr (y0-y2))-(Rsqr (y2-y1))``; Replace `` -(Rsqr (x0-x2))-(Rsqr (x2-x1))-(Rsqr (y0-y2))-(Rsqr (y2-y1))+((Rsqr (x0-x2))+(Rsqr (x2-x1))+2*(x0-x2)*(x2-x1)+((Rsqr (y0-y2))+(Rsqr (y2-y1))+2*(y0-y2)*(y2-y1)))`` with ``2*((x0-x2)*(x2-x1)+(y0-y2)*(y2-y1))``; [Replace ``-(Rsqr (x0-x2))-(Rsqr (x2-x1))-(Rsqr (y0-y2))-(Rsqr (y2-y1))+((Rsqr (x0-x2))+(Rsqr (y0-y2))+((Rsqr (x2-x1))+(Rsqr (y2-y1)))+2*(sqrt ((Rsqr (x0-x2))+(Rsqr (y0-y2))))*(sqrt ((Rsqr (x2-x1))+(Rsqr (y2-y1)))))`` with ``2*((sqrt ((Rsqr (x0-x2))+(Rsqr (y0-y2))))*(sqrt ((Rsqr (x2-x1))+(Rsqr (y2-y1)))))``; [Apply Rle_monotony; [Left; Cut ~(O=(2)); [Intros; Generalize (lt_INR_0 (2) (neq_O_lt (2) H)); Intro H0; Assumption | Discriminate] | Apply sqrt_cauchy] | Ring] | Ring] | SqRing] | SqRing] | Apply ge0_plus_ge0_is_ge0; Apply pos_Rsqr | Apply ge0_plus_ge0_is_ge0; Apply pos_Rsqr | Apply ge0_plus_ge0_is_ge0; Apply pos_Rsqr] | Apply sqrt_positivity; Apply ge0_plus_ge0_is_ge0; Apply pos_Rsqr | Apply ge0_plus_ge0_is_ge0; Apply sqrt_positivity; Apply ge0_plus_ge0_is_ge0; Apply pos_Rsqr]. -Qed. - -(******************************************************************) -(** Translation *) -(******************************************************************) - -Definition xt[x,tx:R] : R := ``x+tx``. -Definition yt[y,ty:R] : R := ``y+ty``. - -Lemma translation_0 : (x,y:R) ``(xt x 0)==x``/\``(yt y 0)==y``. -Intros x y; Split; [Unfold xt | Unfold yt]; Ring. -Qed. - -Lemma isometric_translation : (x1,x2,y1,y2,tx,ty:R) ``(Rsqr (x1-x2))+(Rsqr (y1-y2))==(Rsqr ((xt x1 tx)-(xt x2 tx)))+(Rsqr ((yt y1 ty)-(yt y2 ty)))``. -Intros; Unfold Rsqr xt yt; Ring. -Qed. - -(******************************************************************) -(** Rotation *) -(******************************************************************) - -Definition xr [x,y,theta:R] : R := ``x*(cos theta)+y*(sin theta)``. -Definition yr [x,y,theta:R] : R := ``-x*(sin theta)+y*(cos theta)``. - -Lemma rotation_0 : (x,y:R) ``(xr x y 0)==x`` /\ ``(yr x y 0)==y``. -Intros x y; Unfold xr yr; Split; Rewrite cos_0; Rewrite sin_0; Ring. -Qed. - -Lemma rotation_PI2 : (x,y:R) ``(xr x y PI/2)==y`` /\ ``(yr x y PI/2)==-x``. -Intros x y; Unfold xr yr; Split; Rewrite cos_PI2; Rewrite sin_PI2; Ring. -Qed. - -Lemma isometric_rotation_0 : (x1,y1,x2,y2,theta:R) ``(Rsqr (x1-x2))+(Rsqr (y1-y2)) == (Rsqr ((xr x1 y1 theta))-(xr x2 y2 theta)) + (Rsqr ((yr x1 y1 theta))-(yr x2 y2 theta))``. -Intros; Unfold xr yr; Replace ``x1*(cos theta)+y1*(sin theta)-(x2*(cos theta)+y2*(sin theta))`` with ``(cos theta)*(x1-x2)+(sin theta)*(y1-y2)``; [Replace ``-x1*(sin theta)+y1*(cos theta)-( -x2*(sin theta)+y2*(cos theta))`` with ``(cos theta)*(y1-y2)+(sin theta)*(x2-x1)``; [Repeat Rewrite Rsqr_plus; Repeat Rewrite Rsqr_times; Repeat Rewrite cos2; Ring; Replace ``x2-x1`` with ``-(x1-x2)``; [Rewrite <- Rsqr_neg; Ring | Ring] |Ring] | Ring]. -Qed. - -Lemma isometric_rotation : (x1,y1,x2,y2,theta:R) ``(dist_euc x1 y1 x2 y2) == (dist_euc (xr x1 y1 theta) (yr x1 y1 theta) (xr x2 y2 theta) (yr x2 y2 theta))``. -Unfold dist_euc; Intros; Apply Rsqr_inj; [Apply sqrt_positivity; Apply ge0_plus_ge0_is_ge0 | Apply sqrt_positivity; Apply ge0_plus_ge0_is_ge0 | Repeat Rewrite Rsqr_sqrt; [ Apply isometric_rotation_0 | Apply ge0_plus_ge0_is_ge0 | Apply ge0_plus_ge0_is_ge0]]; Apply pos_Rsqr. -Qed. - -(******************************************************************) -(** Similarity *) -(******************************************************************) - -Lemma isometric_rot_trans : (x1,y1,x2,y2,tx,ty,theta:R) ``(Rsqr (x1-x2))+(Rsqr (y1-y2)) == (Rsqr ((xr (xt x1 tx) (yt y1 ty) theta)-(xr (xt x2 tx) (yt y2 ty) theta))) + (Rsqr ((yr (xt x1 tx) (yt y1 ty) theta)-(yr (xt x2 tx) (yt y2 ty) theta)))``. -Intros; Rewrite <- isometric_rotation_0; Apply isometric_translation. -Qed. - -Lemma isometric_trans_rot : (x1,y1,x2,y2,tx,ty,theta:R) ``(Rsqr (x1-x2))+(Rsqr (y1-y2)) == (Rsqr ((xt (xr x1 y1 theta) tx)-(xt (xr x2 y2 theta) tx))) + (Rsqr ((yt (yr x1 y1 theta) ty)-(yt (yr x2 y2 theta) ty)))``. -Intros; Rewrite <- isometric_translation; Apply isometric_rotation_0. -Qed. diff --git a/theories7/Reals/RiemannInt.v b/theories7/Reals/RiemannInt.v deleted file mode 100644 index cc537c6d..00000000 --- a/theories7/Reals/RiemannInt.v +++ /dev/null @@ -1,1699 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R;a,b:R] : Type := (eps:posreal) (SigT ? [phi:(StepFun a b)](SigT ? [psi:(StepFun a b)]((t:R)``(Rmin a b)<=t<=(Rmax a b)``->``(Rabsolu ((f t)-(phi t)))<=(psi t)``)/\``(Rabsolu (RiemannInt_SF psi))posreal;f:R->R;a,b:R;pr:(Riemann_integrable f a b)] := [n:nat](projT1 ? ? (pr (un n))). - -Lemma phi_sequence_prop : (un:nat->posreal;f:R->R;a,b:R;pr:(Riemann_integrable f a b);N:nat) (SigT ? [psi:(StepFun a b)]((t:R)``(Rmin a b)<=t<=(Rmax a b)``->``(Rabsolu ((f t)-[(phi_sequence un pr N t)]))<=(psi t)``)/\``(Rabsolu (RiemannInt_SF psi))<(un N)``). -Intros; Apply (projT2 ? ? (pr (un N))). -Qed. - -Lemma RiemannInt_P1 : (f:R->R;a,b:R) (Riemann_integrable f a b) -> (Riemann_integrable f b a). -Unfold Riemann_integrable; Intros; Elim (X eps); Clear X; Intros; Elim p; Clear p; Intros; Apply Specif.existT with (mkStepFun (StepFun_P6 (pre x))); Apply Specif.existT with (mkStepFun (StepFun_P6 (pre x0))); Elim p; Clear p; Intros; Split. -Intros; Apply (H t); Elim H1; Clear H1; Intros; Split; [Apply Rle_trans with (Rmin b a); Try Assumption; Right; Unfold Rmin | Apply Rle_trans with (Rmax b a); Try Assumption; Right; Unfold Rmax]; (Case (total_order_Rle a b); Case (total_order_Rle b a); Intros; Try Reflexivity Orelse Apply Rle_antisym; [Assumption | Assumption | Auto with real | Auto with real]). -Generalize H0; Unfold RiemannInt_SF; Case (total_order_Rle a b); Case (total_order_Rle b a); Intros; (Replace (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre x0)))) (subdivision (mkStepFun (StepFun_P6 (pre x0))))) with (Int_SF (subdivision_val x0) (subdivision x0)); [Idtac | Apply StepFun_P17 with (fe x0) a b; [Apply StepFun_P1 | Apply StepFun_P2; Apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre x0))))]]). -Apply H1. -Rewrite Rabsolu_Ropp; Apply H1. -Rewrite Rabsolu_Ropp in H1; Apply H1. -Apply H1. -Qed. - -Lemma RiemannInt_P2 : (f:R->R;a,b:R;un:nat->posreal;vn,wn:nat->(StepFun a b)) (Un_cv un R0) -> ``a<=b`` -> ((n:nat)((t:R)``(Rmin a b)<=t<=(Rmax a b)``->``(Rabsolu ((f t)-(vn n t)))<=(wn n t)``)/\``(Rabsolu (RiemannInt_SF (wn n)))<(un n)``) -> (sigTT ? [l:R](Un_cv [N:nat](RiemannInt_SF (vn N)) l)). -Intros; Apply R_complete; Unfold Un_cv in H; Unfold Cauchy_crit; Intros; Assert H3 : ``0R;a,b:R;un:nat->posreal;vn,wn:nat->(StepFun a b)) (Un_cv un R0) -> ((n:nat)((t:R)``(Rmin a b)<=t<=(Rmax a b)``->``(Rabsolu ((f t)-(vn n t)))<=(wn n t)``)/\``(Rabsolu (RiemannInt_SF (wn n)))<(un n)``)->(sigTT R ([l:R](Un_cv ([N:nat](RiemannInt_SF (vn N))) l))). -Intros; Case (total_order_Rle a b); Intro. -Apply RiemannInt_P2 with f un wn; Assumption. -Assert H1 : ``b<=a``; Auto with real. -Pose vn' := [n:nat](mkStepFun (StepFun_P6 (pre (vn n)))); Pose wn' := [n:nat](mkStepFun (StepFun_P6 (pre (wn n)))); Assert H2 : (n:nat)((t:R)``(Rmin b a)<=t<=(Rmax b a)``->``(Rabsolu ((f t)-(vn' n t)))<=(wn' n t)``)/\``(Rabsolu (RiemannInt_SF (wn' n)))<(un n)``. -Intro; Elim (H0 n0); Intros; Split. -Intros; Apply (H2 t); Elim H4; Clear H4; Intros; Split; [Apply Rle_trans with (Rmin b a); Try Assumption; Right; Unfold Rmin | Apply Rle_trans with (Rmax b a); Try Assumption; Right; Unfold Rmax]; (Case (total_order_Rle a b); Case (total_order_Rle b a); Intros; Try Reflexivity Orelse Apply Rle_antisym; [Assumption | Assumption | Auto with real | Auto with real]). -Generalize H3; Unfold RiemannInt_SF; Case (total_order_Rle a b); Case (total_order_Rle b a); Unfold wn'; Intros; (Replace (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (wn n0))))) (subdivision (mkStepFun (StepFun_P6 (pre (wn n0)))))) with (Int_SF (subdivision_val (wn n0)) (subdivision (wn n0))); [Idtac | Apply StepFun_P17 with (fe (wn n0)) a b; [Apply StepFun_P1 | Apply StepFun_P2; Apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (wn n0)))))]]). -Apply H4. -Rewrite Rabsolu_Ropp; Apply H4. -Rewrite Rabsolu_Ropp in H4; Apply H4. -Apply H4. -Assert H3 := (RiemannInt_P2 H H1 H2); Elim H3; Intros; Apply existTT with ``-x``; Unfold Un_cv; Unfold Un_cv in p; Intros; Elim (p ? H4); Intros; Exists x0; Intros; Generalize (H5 ? H6); Unfold R_dist RiemannInt_SF; Case (total_order_Rle b a); Case (total_order_Rle a b); Intros. -Elim n; Assumption. -Unfold vn' in H7; Replace (Int_SF (subdivision_val (vn n0)) (subdivision (vn n0))) with (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (vn n0))))) (subdivision (mkStepFun (StepFun_P6 (pre (vn n0)))))); [Unfold Rminus; Rewrite Ropp_Ropp; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr1; Rewrite Ropp_Ropp; Apply H7 | Symmetry; Apply StepFun_P17 with (fe (vn n0)) a b; [Apply StepFun_P1 | Apply StepFun_P2; Apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (vn n0)))))]]. -Elim n1; Assumption. -Elim n2; Assumption. -Qed. - -Lemma RiemannInt_exists : (f:R->R;a,b:R;pr:(Riemann_integrable f a b);un:nat->posreal) (Un_cv un R0) -> (sigTT ? [l:R](Un_cv [N:nat](RiemannInt_SF (phi_sequence un pr N)) l)). -Intros f; Intros; Apply RiemannInt_P3 with f un [n:nat](projT1 ? ? (phi_sequence_prop un pr n)); [Apply H | Intro; Apply (projT2 ? ? (phi_sequence_prop un pr n))]. -Qed. - -Lemma RiemannInt_P4 : (f:R->R;a,b,l:R;pr1,pr2:(Riemann_integrable f a b);un,vn:nat->posreal) (Un_cv un R0) -> (Un_cv vn R0) -> (Un_cv [N:nat](RiemannInt_SF (phi_sequence un pr1 N)) l) -> (Un_cv [N:nat](RiemannInt_SF (phi_sequence vn pr2 N)) l). -Unfold Un_cv; Unfold R_dist; Intros f; Intros; Assert H3 : ``0posreal := [N:nat](mkposreal ? (RinvN_pos N)). - -Lemma RinvN_cv : (Un_cv RinvN R0). -Unfold Un_cv; Intros; Assert H0 := (archimed ``/eps``); Elim H0; Clear H0; Intros; Assert H2 : `0<=(up (Rinv eps))`. -Apply le_IZR; Left; Apply Rlt_trans with ``/eps``; [Apply Rlt_Rinv; Assumption | Assumption]. -Elim (IZN ? H2); Intros; Exists x; Intros; Unfold R_dist; Simpl; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Assert H5 : ``0<(INR n)+1``. -Apply ge0_plus_gt0_is_gt0; [Apply pos_INR | Apply Rlt_R0_R1]. -Rewrite Rabsolu_right; [Idtac | Left; Change ``0R;a,b:R;pr:(Riemann_integrable f a b)] : R := Cases -(RiemannInt_exists pr 5!RinvN RinvN_cv) of (existTT a' b') => a' end. - -Lemma RiemannInt_P5 : (f:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable f a b)) (RiemannInt pr1)==(RiemannInt pr2). -Intros; Unfold RiemannInt; Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists pr2 5!RinvN RinvN_cv); Intros; EApply UL_sequence; [Apply u0 | Apply RiemannInt_P4 with pr2 RinvN; Apply RinvN_cv Orelse Assumption]. -Qed. - -(**************************************) -(* C°([a,b]) is included in L1([a,b]) *) -(**************************************) - -Lemma maxN : (a,b:R;del:posreal) ``a (sigTT ? [n:nat]``a+(INR n)*delR->posreal->Rlist := -[x:R][y:R][del:posreal] Cases N of -| O => (cons y nil) -| (S p) => (cons x (SubEquiN p ``x+del`` y del)) -end. - -Definition max_N [a,b:R;del:posreal;h:``a N end. - -Definition SubEqui [a,b:R;del:posreal;h:``aR;a,b:R) ``a ((x:R)``a<=x<=b``->(continuity_pt f x)) -> (eps:posreal) (sigTT ? [delta:posreal]``delta<=b-a``/\(x,y:R)``a<=x<=b``->``a<=y<=b``->``(Rabsolu (x-y)) < delta``->``(Rabsolu ((f x)-(f y))) < eps``). -Intro f; Intros; Pose E := [l:R]``0``a <= y <= b``->``(Rabsolu (x-y)) < l``->``(Rabsolu ((f x)-(f y))) < eps``; Assert H1 : (bound E). -Unfold bound; Exists ``b-a``; Unfold is_upper_bound; Intros; Unfold E in H1; Elim H1; Clear H1; Intros H1 _; Elim H1; Intros; Assumption. -Assert H2 : (EXT x:R | (E x)). -Assert H2 := (Heine f [x:R]``a<=x<=b`` (compact_P3 a b) H0 eps); Elim H2; Intros; Exists (Rmin x ``b-a``); Unfold E; Split; [Split; [Unfold Rmin; Case (total_order_Rle x ``b-a``); Intro; [Apply (cond_pos x) | Apply Rlt_Rminus; Assumption] | Apply Rmin_r] | Intros; Apply H3; Try Assumption; Apply Rlt_le_trans with (Rmin x ``b-a``); [Assumption | Apply Rmin_l]]. -Assert H3 := (complet E H1 H2); Elim H3; Intros; Cut ``0R); a,b:R) ((x:R)``a <= x <= b``->(continuity_pt f x))->(eps:posreal)(sigTT posreal [delta:posreal]((x,y:R)``a <= x <= b``->``a <= y <= b``->``(Rabsolu (x-y)) < delta``->``(Rabsolu ((f x)-(f y))) < eps``)). -Intro f; Intros; Case (total_order_T a b); Intro. -Elim s; Intro. -Assert H0 := (Heine_cor1 a0 H eps); Elim H0; Intros; Apply existTT with x; Elim p; Intros; Apply H2; Assumption. -Apply existTT with (mkposreal ? Rlt_R0_R1); Intros; Assert H3 : x==y; [Elim H0; Elim H1; Intros; Rewrite b0 in H3; Rewrite b0 in H5; Apply Rle_antisym; Apply Rle_trans with b; Assumption | Rewrite H3; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (cond_pos eps)]. -Apply existTT with (mkposreal ? Rlt_R0_R1); Intros; Elim H0; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? (Rle_trans ? ? ? H3 H4) r)). -Qed. - -Lemma SubEqui_P1 : (a,b:R;del:posreal;h:``a (pos_Rl (SubEquiN (S N) a b del) i)==``a+(INR i)*del``. -Induction N; [Intros; Inversion H; [Simpl; Ring | Elim (le_Sn_O ? H1)] | Intros; Induction i; [Simpl; Ring | Change (pos_Rl (SubEquiN (S n) ``a+del`` b del) i)==``a+(INR (S i))*del``; Rewrite H; [Rewrite S_INR; Ring | Apply lt_S_n; Apply H0]]]. -Qed. - -Lemma SubEqui_P5 : (a,b:R;del:posreal;h:``a (pos_Rl (SubEqui del h) i)==``a+(INR i)*del``. -Intros; Unfold SubEqui; Apply SubEqui_P4; Assumption. -Qed. - -Lemma SubEqui_P7 : (a,b:R;del:posreal;h:``a ``a<=(pos_Rl (SubEqui del h) i)<=b``. -Intros; Split. -Pattern 1 a; Rewrite <- (SubEqui_P1 del h); Apply RList_P5. -Apply SubEqui_P7. -Elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); Intros; Apply H1; Exists i; Split; [Reflexivity | Assumption]. -Pattern 2 b; Rewrite <- (SubEqui_P2 del h); Apply RList_P7; [Apply SubEqui_P7 | Elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); Intros; Apply H1; Exists i; Split; [Reflexivity | Assumption]]. -Qed. - -Lemma SubEqui_P9 : (a,b:R;del:posreal;f:R->R;h:``a(constant_D_eq g (co_interval (pos_Rl (SubEqui del h) i) (pos_Rl (SubEqui del h) (S i))) (f (pos_Rl (SubEqui del h) i)))). -Intros; Apply StepFun_P38; [Apply SubEqui_P7 | Apply SubEqui_P1 | Apply SubEqui_P2]. -Qed. - -Lemma RiemannInt_P6 : (f:R->R;a,b:R) ``a ((x:R)``a<=x<=b``->(continuity_pt f x)) -> (Riemann_integrable f a b). -Intros; Unfold Riemann_integrable; Intro; Assert H1 : ``0t==b\/(EX i:nat | (lt i (pred (Rlength (SubEqui del H))))/\(co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t)). -Intro; Elim (H8 ? H7); Intro. -Rewrite H9; Rewrite H5; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Left; Assumption. -Elim H9; Clear H9; Intros I [H9 H10]; Assert H11 := (H6 I H9 t H10); Rewrite H11; Left; Apply H4. -Assumption. -Apply SubEqui_P8; Apply lt_trans with (pred (Rlength (SubEqui del H))). -Assumption. -Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H12 in H9; Elim (lt_n_O ? H9). -Unfold co_interval in H10; Elim H10; Clear H10; Intros; Rewrite Rabsolu_right. -Rewrite SubEqui_P5 in H9; Simpl in H9; Inversion H9. -Apply Rlt_anti_compatibility with (pos_Rl (SubEqui del H) (max_N del H)). -Replace ``(pos_Rl (SubEqui del H) (max_N del H))+(t-(pos_Rl (SubEqui del H) (max_N del H)))`` with t; [Idtac | Ring]; Apply Rlt_le_trans with b. -Rewrite H14 in H12; Assert H13 : (S (max_N del H))=(pred (Rlength (SubEqui del H))). -Rewrite SubEqui_P5; Reflexivity. -Rewrite H13 in H12; Rewrite SubEqui_P2 in H12; Apply H12. -Rewrite SubEqui_P6. -2:Apply lt_n_Sn. -Unfold max_N; Case (maxN del H); Intros; Elim a0; Clear a0; Intros _ H13; Replace ``a+(INR x)*del+del`` with ``a+(INR (S x))*del``; [Assumption | Rewrite S_INR; Ring]. -Apply Rlt_anti_compatibility with (pos_Rl (SubEqui del H) I); Replace ``(pos_Rl (SubEqui del H) I)+(t-(pos_Rl (SubEqui del H) I))`` with t; [Idtac | Ring]; Replace ``(pos_Rl (SubEqui del H) I)+del`` with (pos_Rl (SubEqui del H) (S I)). -Assumption. -Repeat Rewrite SubEqui_P6. -Rewrite S_INR; Ring. -Assumption. -Apply le_lt_n_Sm; Assumption. -Apply Rge_minus; Apply Rle_sym1; Assumption. -Intros; Clear H0 H1 H4 phi H5 H6 t H7; Case (Req_EM t0 b); Intro. -Left; Assumption. -Right; Pose I := [j:nat]``a+(INR j)*del<=t0``; Assert H1 : (EX n:nat | (I n)). -Exists O; Unfold I; Rewrite Rmult_Ol; Rewrite Rplus_Or; Elim H8; Intros; Assumption. -Assert H4 : (Nbound I). -Unfold Nbound; Exists (S (max_N del H)); Intros; Unfold max_N; Case (maxN del H); Intros; Elim a0; Clear a0; Intros _ H5; Apply INR_le; Apply Rle_monotony_contra with (pos del). -Apply (cond_pos del). -Apply Rle_anti_compatibility with a; Do 2 Rewrite (Rmult_sym del); Apply Rle_trans with t0; Unfold I in H4; Try Assumption; Apply Rle_trans with b; Try Assumption; Elim H8; Intros; Assumption. -Elim (Nzorn H1 H4); Intros N [H5 H6]; Assert H7 : (lt N (S (max_N del H))). -Unfold max_N; Case (maxN del H); Intros; Apply INR_lt; Apply Rlt_monotony_contra with (pos del). -Apply (cond_pos del). -Apply Rlt_anti_compatibility with a; Do 2 Rewrite (Rmult_sym del); Apply Rle_lt_trans with t0; Unfold I in H5; Try Assumption; Elim a0; Intros; Apply Rlt_le_trans with b; Try Assumption; Elim H8; Intros. -Elim H11; Intro. -Assumption. -Elim H0; Assumption. -Exists N; Split. -Rewrite SubEqui_P5; Simpl; Assumption. -Unfold co_interval; Split. -Rewrite SubEqui_P6. -Apply H5. -Assumption. -Inversion H7. -Replace (S (max_N del H)) with (pred (Rlength (SubEqui del H))). -Rewrite (SubEqui_P2 del H); Elim H8; Intros. -Elim H11; Intro. -Assumption. -Elim H0; Assumption. -Rewrite SubEqui_P5; Reflexivity. -Rewrite SubEqui_P6. -Case (total_order_Rle ``a+(INR (S N))*del`` t0); Intro. -Assert H11 := (H6 (S N) r); Elim (le_Sn_n ? H11). -Auto with real. -Apply le_lt_n_Sm; Assumption. -Qed. - -Lemma RiemannInt_P7 : (f:R->R;a:R) (Riemann_integrable f a a). -Unfold Riemann_integrable; Intro f; Intros; Split with (mkStepFun (StepFun_P4 a a (f a))); Split with (mkStepFun (StepFun_P4 a a R0)); Split. -Intros; Simpl; Unfold fct_cte; Replace t with a. -Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Right; Reflexivity. -Generalize H; Unfold Rmin Rmax; Case (total_order_Rle a a); Intros; Elim H0; Intros; Apply Rle_antisym; Assumption. -Rewrite StepFun_P18; Rewrite Rmult_Ol; Rewrite Rabsolu_R0; Apply (cond_pos eps). -Qed. - -Lemma continuity_implies_RiemannInt : (f:R->R;a,b:R) ``a<=b`` -> ((x:R)``a<=x<=b``->(continuity_pt f x)) -> (Riemann_integrable f a b). -Intros; Case (total_order_T a b); Intro; [Elim s; Intro; [Apply RiemannInt_P6; Assumption | Rewrite b0; Apply RiemannInt_P7] | Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r))]. -Qed. - -Lemma RiemannInt_P8 : (f:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable f b a)) ``(RiemannInt pr1)==-(RiemannInt pr2)``. -Intro f; Intros; EApply UL_sequence. -Unfold RiemannInt; Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Intros; Apply u. -Unfold RiemannInt; Case (RiemannInt_exists pr2 5!RinvN RinvN_cv); Intros; Cut (EXT psi1:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr1 n)] t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``). -Cut (EXT psi2:nat->(StepFun b a) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr2 n)] t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``). -Intros; Elim H; Clear H; Intros psi2 H; Elim H0; Clear H0; Intros psi1 H0; Assert H1 := RinvN_cv; Unfold Un_cv; Intros; Assert H3 : ``0``(RinvN n)R;a:R;pr:(Riemann_integrable f a a)) ``(RiemannInt pr)==0``. -Intros; Assert H := (RiemannInt_P8 pr pr); Apply r_Rmult_mult with ``2``; [Rewrite Rmult_Or; Rewrite double; Pattern 2 (RiemannInt pr); Rewrite H; Apply Rplus_Ropp_r | DiscrR]. -Qed. - -Lemma Req_EM_T :(r1,r2:R) (sumboolT (r1==r2) ``r1<>r2``). -Intros; Elim (total_order_T r1 r2);Intros; [Elim a;Intro; [Right; Red; Intro; Rewrite H in a0; Elim (Rlt_antirefl ``r2`` a0) | Left;Assumption] | Right; Red; Intro; Rewrite H in b; Elim (Rlt_antirefl ``r2`` b)]. -Qed. - -(* L1([a,b]) is a vectorial space *) -Lemma RiemannInt_P10 : (f,g:R->R;a,b,l:R) (Riemann_integrable f a b) -> (Riemann_integrable g a b) -> (Riemann_integrable [x:R]``(f x)+l*(g x)`` a b). -Unfold Riemann_integrable; Intros f g; Intros; Case (Req_EM_T l R0); Intro. -Elim (X eps); Intros; Split with x; Elim p; Intros; Split with x0; Elim p0; Intros; Split; Try Assumption; Rewrite e; Intros; Rewrite Rmult_Ol; Rewrite Rplus_Or; Apply H; Assumption. -Assert H : ``0R;a,b,l:R;un:nat->posreal;phi1,phi2,psi1,psi2:nat->(StepFun a b)) (Un_cv un R0) -> ((n:nat)((t:R)``(Rmin a b)<=t<=(Rmax a b)``->``(Rabsolu ((f t)-(phi1 n t)))<=(psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n)))<(un n)``) -> ((n:nat)((t:R)``(Rmin a b)<=t<=(Rmax a b)``->``(Rabsolu ((f t)-(phi2 n t)))<=(psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n)))<(un n)``) -> (Un_cv [N:nat](RiemannInt_SF (phi1 N)) l) -> (Un_cv [N:nat](RiemannInt_SF (phi2 N)) l). -Unfold Un_cv; Intro f; Intros; Intros. -Case (total_order_Rle a b); Intro Hyp. -Assert H4 : ``0R;a,b,l:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable g a b);pr3:(Riemann_integrable [x:R]``(f x)+l*(g x)`` a b)) ``a<=b`` -> ``(RiemannInt pr3)==(RiemannInt pr1)+l*(RiemannInt pr2)``. -Intro f; Intros; Case (Req_EM l R0); Intro. -Pattern 2 l; Rewrite H0; Rewrite Rmult_Ol; Rewrite Rplus_Or; Unfold RiemannInt; Case (RiemannInt_exists pr3 5!RinvN RinvN_cv); Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Intros; EApply UL_sequence; [Apply u0 | Pose psi1 := [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Pose psi2 := [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr3 n)); Apply RiemannInt_P11 with f RinvN (phi_sequence RinvN pr1) psi1 psi2; [Apply RinvN_cv | Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n)) | Intro; Assert H1 : ((t:R) ``(Rmin a b) <= t``/\``t <= (Rmax a b)`` -> (Rle (Rabsolu (Rminus ``(f t)+l*(g t)`` (phi_sequence RinvN pr3 n t))) (psi2 n t))) /\ ``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``; [Apply (projT2 ? ? (phi_sequence_prop RinvN pr3 n)) | Elim H1; Intros; Split; Try Assumption; Intros; Replace (f t) with ``(f t)+l*(g t)``; [Apply H2; Assumption | Rewrite H0; Ring]] | Assumption]]. -EApply UL_sequence. -Unfold RiemannInt; Case (RiemannInt_exists pr3 5!RinvN RinvN_cv); Intros; Apply u. -Unfold Un_cv; Intros; Unfold RiemannInt; Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists pr2 5!RinvN RinvN_cv); Unfold Un_cv; Intros; Assert H2 : ``0``(RinvN n)< eps/5``. -Intros; Replace (pos (RinvN n)) with ``(Rabsolu ((RinvN n)-0))``; [Unfold RinvN; Apply H4; Assumption | Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Left; Apply (cond_pos (RinvN n))]. -Clear H4; Assert H4 := H7; Clear H7; Assert H7 : (n:nat) (ge n N3)->``(RinvN n)< eps/(5*(Rabsolu l))``. -Intros; Replace (pos (RinvN n)) with ``(Rabsolu ((RinvN n)-0))``; [Unfold RinvN; Apply H5; Assumption | Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Left; Apply (cond_pos (RinvN n))]. -Clear H5; Assert H5 := H7; Clear H7; Exists N; Intros; Unfold R_dist. -Apply Rle_lt_trans with ``(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr3 n)])-((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+l*(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))))+(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr1 n)])-x0))+(Rabsolu l)*(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x))``. -Apply Rle_trans with ``(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr3 n)])-((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+l*(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))))+(Rabsolu (((RiemannInt_SF [(phi_sequence RinvN pr1 n)])-x0)+l*((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x)))``. -Replace ``(RiemannInt_SF [(phi_sequence RinvN pr3 n)])-(x0+l*x)`` with ``(((RiemannInt_SF [(phi_sequence RinvN pr3 n)])-((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+l*(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))))+(((RiemannInt_SF [(phi_sequence RinvN pr1 n)])-x0)+l*((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x))``; [Apply Rabsolu_triang | Ring]. -Rewrite Rplus_assoc; Apply Rle_compatibility; Rewrite <- Rabsolu_mult; Replace ``(RiemannInt_SF [(phi_sequence RinvN pr1 n)])-x0+l*((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x)`` with ``((RiemannInt_SF [(phi_sequence RinvN pr1 n)])-x0)+(l*((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x))``; [Apply Rabsolu_triang | Ring]. -Replace eps with ``3*eps/5+eps/5+eps/5``. -Repeat Apply Rplus_lt. -Assert H7 : (EXT psi1:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr1 n)] t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``). -Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n0)). -Assert H8 : (EXT psi2:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((g t)-([(phi_sequence RinvN pr2 n)] t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``). -Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr2 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr2 n0)). -Assert H9 : (EXT psi3:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu (((f t)+l*(g t))-([(phi_sequence RinvN pr3 n)] t)))<= (psi3 n t)``)/\``(Rabsolu (RiemannInt_SF (psi3 n))) < (RinvN n)``). -Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr3 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr3 n0)). -Elim H7; Clear H7; Intros psi1 H7; Elim H8; Clear H8; Intros psi2 H8; Elim H9; Clear H9; Intros psi3 H9; Replace ``(RiemannInt_SF [(phi_sequence RinvN pr3 n)])-((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+l*(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))`` with ``(RiemannInt_SF [(phi_sequence RinvN pr3 n)])+(-1)*((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+l*(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))``; [Idtac | Ring]; Do 2 Rewrite <- StepFun_P30; Assert H10 : (Rmin a b)==a. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption]. -Assert H11 : (Rmax a b)==b. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption]. -Rewrite H10 in H7; Rewrite H10 in H8; Rewrite H10 in H9; Rewrite H11 in H7; Rewrite H11 in H8; Rewrite H11 in H9; Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 ``-1`` (phi_sequence RinvN pr3 n) (mkStepFun (StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n)))))))). -Apply StepFun_P34; Assumption. -Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P28 R1 (psi3 n) (mkStepFun (StepFun_P28 (Rabsolu l) (psi1 n) (psi2 n)))))). -Apply StepFun_P37; Try Assumption. -Intros; Simpl; Rewrite Rmult_1l. -Apply Rle_trans with ``(Rabsolu (([(phi_sequence RinvN pr3 n)] x1)-((f x1)+l*(g x1))))+(Rabsolu (((f x1)+l*(g x1))+ -1*(([(phi_sequence RinvN pr1 n)] x1)+l*([(phi_sequence RinvN pr2 n)] x1))))``. -Replace ``([(phi_sequence RinvN pr3 n)] x1)+ -1*(([(phi_sequence RinvN pr1 n)] x1)+l*([(phi_sequence RinvN pr2 n)] x1))`` with ``(([(phi_sequence RinvN pr3 n)] x1)-((f x1)+l*(g x1)))+(((f x1)+l*(g x1))+ -1*(([(phi_sequence RinvN pr1 n)] x1)+l*([(phi_sequence RinvN pr2 n)] x1)))``; [Apply Rabsolu_triang | Ring]. -Rewrite Rplus_assoc; Apply Rplus_le. -Elim (H9 n); Intros; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply H13. -Elim H12; Intros; Split; Left; Assumption. -Apply Rle_trans with ``(Rabsolu ((f x1)-([(phi_sequence RinvN pr1 n)] x1)))+(Rabsolu l)*(Rabsolu ((g x1)-([(phi_sequence RinvN pr2 n)] x1)))``. -Rewrite <- Rabsolu_mult; Replace ``((f x1)+(l*(g x1)+ -1*(([(phi_sequence RinvN pr1 n)] x1)+l*([(phi_sequence RinvN pr2 n)] x1))))`` with ``((f x1)-([(phi_sequence RinvN pr1 n)] x1))+l*((g x1)-([(phi_sequence RinvN pr2 n)] x1))``; [Apply Rabsolu_triang | Ring]. -Apply Rplus_le. -Elim (H7 n); Intros; Apply H13. -Elim H12; Intros; Split; Left; Assumption. -Apply Rle_monotony; [Apply Rabsolu_pos | Elim (H8 n); Intros; Apply H13; Elim H12; Intros; Split; Left; Assumption]. -Do 2 Rewrite StepFun_P30; Rewrite Rmult_1l; Replace ``3*eps/5`` with ``eps/5+(eps/5+eps/5)``; [Repeat Apply Rplus_lt | Ring]. -Apply Rlt_trans with (pos (RinvN n)); [Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi3 n))); [Apply Rle_Rabsolu | Elim (H9 n); Intros; Assumption] | Apply H4; Unfold ge; Apply le_trans with N; [Apply le_trans with (max N0 N1); [Apply le_max_r | Unfold N; Apply le_max_l] | Assumption]]. -Apply Rlt_trans with (pos (RinvN n)); [Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi1 n))); [Apply Rle_Rabsolu | Elim (H7 n); Intros; Assumption] | Apply H4; Unfold ge; Apply le_trans with N; [Apply le_trans with (max N0 N1); [Apply le_max_r | Unfold N; Apply le_max_l] | Assumption]]. -Apply Rlt_monotony_contra with ``/(Rabsolu l)``. -Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption. -Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l; Replace ``/(Rabsolu l)*eps/5`` with ``eps/(5*(Rabsolu l))``. -Apply Rlt_trans with (pos (RinvN n)); [Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi2 n))); [Apply Rle_Rabsolu | Elim (H8 n); Intros; Assumption] | Apply H5; Unfold ge; Apply le_trans with N; [Apply le_trans with (max N2 N3); [Apply le_max_r | Unfold N; Apply le_max_r] | Assumption]]. -Unfold Rdiv; Rewrite Rinv_Rmult; [Ring | DiscrR | Apply Rabsolu_no_R0; Assumption]. -Apply Rabsolu_no_R0; Assumption. -Apply H3; Unfold ge; Apply le_trans with (max N0 N1); [Apply le_max_l | Apply le_trans with N; [Unfold N; Apply le_max_l | Assumption]]. -Apply Rlt_monotony_contra with ``/(Rabsolu l)``. -Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption. -Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l; Replace ``/(Rabsolu l)*eps/5`` with ``eps/(5*(Rabsolu l))``. -Apply H6; Unfold ge; Apply le_trans with (max N2 N3); [Apply le_max_l | Apply le_trans with N; [Unfold N; Apply le_max_r | Assumption]]. -Unfold Rdiv; Rewrite Rinv_Rmult; [Ring | DiscrR | Apply Rabsolu_no_R0; Assumption]. -Apply Rabsolu_no_R0; Assumption. -Apply r_Rmult_mult with ``5``; [Unfold Rdiv; Do 2 Rewrite Rmult_Rplus_distr; Do 3 Rewrite (Rmult_sym ``5``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Ring | DiscrR] | DiscrR]. -Qed. - -Lemma RiemannInt_P13 : (f,g:R->R;a,b,l:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable g a b);pr3:(Riemann_integrable [x:R]``(f x)+l*(g x)`` a b)) ``(RiemannInt pr3)==(RiemannInt pr1)+l*(RiemannInt pr2)``. -Intros; Case (total_order_Rle a b); Intro; [Apply RiemannInt_P12; Assumption | Assert H : ``b<=a``; [Auto with real | Replace (RiemannInt pr3) with (Ropp (RiemannInt (RiemannInt_P1 pr3))); [Idtac | Symmetry; Apply RiemannInt_P8]; Replace (RiemannInt pr2) with (Ropp (RiemannInt (RiemannInt_P1 pr2))); [Idtac | Symmetry; Apply RiemannInt_P8]; Replace (RiemannInt pr1) with (Ropp (RiemannInt (RiemannInt_P1 pr1))); [Idtac | Symmetry; Apply RiemannInt_P8]; Rewrite (RiemannInt_P12 (RiemannInt_P1 pr1) (RiemannInt_P1 pr2) (RiemannInt_P1 pr3) H); Ring]]. -Qed. - -Lemma RiemannInt_P14 : (a,b,c:R) (Riemann_integrable (fct_cte c) a b). -Unfold Riemann_integrable; Intros; Split with (mkStepFun (StepFun_P4 a b c)); Split with (mkStepFun (StepFun_P4 a b R0)); Split; [Intros; Simpl; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Unfold fct_cte; Right; Reflexivity | Rewrite StepFun_P18; Rewrite Rmult_Ol; Rewrite Rabsolu_R0; Apply (cond_pos eps)]. -Qed. - -Lemma RiemannInt_P15 : (a,b,c:R;pr:(Riemann_integrable (fct_cte c) a b)) ``(RiemannInt pr)==c*(b-a)``. -Intros; Unfold RiemannInt; Case (RiemannInt_exists 1!(fct_cte c) 2!a 3!b pr 5!RinvN RinvN_cv); Intros; EApply UL_sequence. -Apply u. -Pose phi1 := [N:nat](phi_sequence RinvN 2!(fct_cte c) 3!a 4!b pr N); Change (Un_cv [N:nat](RiemannInt_SF (phi1 N)) ``c*(b-a)``); Pose f := (fct_cte c); Assert H1 : (EXT psi1:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr n)] t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``). -Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr n)). -Elim H1; Clear H1; Intros psi1 H1; Pose phi2 := [n:nat](mkStepFun (StepFun_P4 a b c)); Pose psi2 := [n:nat](mkStepFun (StepFun_P4 a b R0)); Apply RiemannInt_P11 with f RinvN phi2 psi2 psi1; Try Assumption. -Apply RinvN_cv. -Intro; Split. -Intros; Unfold f; Simpl; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Unfold fct_cte; Right; Reflexivity. -Unfold psi2; Rewrite StepFun_P18; Rewrite Rmult_Ol; Rewrite Rabsolu_R0; Apply (cond_pos (RinvN n)). -Unfold Un_cv; Intros; Split with O; Intros; Unfold R_dist; Unfold phi2; Rewrite StepFun_P18; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply H. -Qed. - -Lemma RiemannInt_P16 : (f:R->R;a,b:R) (Riemann_integrable f a b) -> (Riemann_integrable [x:R](Rabsolu (f x)) a b). -Unfold Riemann_integrable; Intro f; Intros; Elim (X eps); Clear X; Intros phi [psi [H H0]]; Split with (mkStepFun (StepFun_P32 phi)); Split with psi; Split; Try Assumption; Intros; Simpl; Apply Rle_trans with ``(Rabsolu ((f t)-(phi t)))``; [Apply Rabsolu_triang_inv2 | Apply H; Assumption]. -Qed. - -Lemma Rle_cv_lim : (Un,Vn:nat->R;l1,l2:R) ((n:nat)``(Un n)<=(Vn n)``) -> (Un_cv Un l1) -> (Un_cv Vn l2) -> ``l1<=l2``. -Intros; Case (total_order_Rle l1 l2); Intro. -Assumption. -Assert H2 : ``l2 (Rmult_sym ``2``); Rewrite (Rmult_Rplus_distrl ``-l2`` ``(l1+l2)*/2`` ``2``); Repeat Rewrite -> Rmult_assoc; Rewrite <- Rinv_l_sym; [ Ring | DiscrR ] | DiscrR]. -Apply Ropp_Rlt; Apply Rlt_anti_compatibility with l1; Replace ``l1+ -((l1+l2)/2)`` with ``(l1-l2)/2``. -Apply Rle_lt_trans with ``(Rabsolu ((Un N)-l1))``. -Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply Rle_Rabsolu. -Apply H0; Unfold ge; Unfold N; Apply le_max_l. -Apply r_Rmult_mult with ``2``; [Unfold Rdiv; Do 2 Rewrite -> (Rmult_sym ``2``); Rewrite (Rmult_Rplus_distrl ``l1`` ``-((l1+l2)*/2)`` ``2``); Rewrite <- Ropp_mul1; Repeat Rewrite -> Rmult_assoc; Rewrite <- Rinv_l_sym; [ Ring | DiscrR ] | DiscrR]. -Qed. - -Lemma RiemannInt_P17 : (f:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable [x:R](Rabsolu (f x)) a b)) ``a<=b`` -> ``(Rabsolu (RiemannInt pr1))<=(RiemannInt pr2)``. -Intro f; Intros; Unfold RiemannInt; Case (RiemannInt_exists 1!f 2!a 3!b pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!([x0:R](Rabsolu (f x0))) 2!a 3!b pr2 5!RinvN RinvN_cv); Intros; LetTac phi1 := (phi_sequence RinvN pr1) in u0; Pose phi2 := [N:nat](mkStepFun (StepFun_P32 (phi1 N))); Apply Rle_cv_lim with [N:nat](Rabsolu (RiemannInt_SF (phi1 N))) [N:nat](RiemannInt_SF (phi2 N)). -Intro; Unfold phi2; Apply StepFun_P34; Assumption. -Apply (continuity_seq Rabsolu [N:nat](RiemannInt_SF (phi1 N)) x0); Try Assumption. -Apply continuity_Rabsolu. -Pose phi3 := (phi_sequence RinvN pr2); Assert H0 : (EXT psi3:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((Rabsolu (f t))-((phi3 n) t)))<= (psi3 n t)``)/\``(Rabsolu (RiemannInt_SF (psi3 n))) < (RinvN n)``). -Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr2 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr2 n)). -Assert H1 : (EXT psi2:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((Rabsolu (f t))-((phi2 n) t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``). -Assert H1 : (EXT psi2:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-((phi1 n) t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``). -Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n)). -Elim H1; Clear H1; Intros psi2 H1; Split with psi2; Intros; Elim (H1 n); Clear H1; Intros; Split; Try Assumption. -Intros; Unfold phi2; Simpl; Apply Rle_trans with ``(Rabsolu ((f t)-((phi1 n) t)))``. -Apply Rabsolu_triang_inv2. -Apply H1; Assumption. -Elim H0; Clear H0; Intros psi3 H0; Elim H1; Clear H1; Intros psi2 H1; Apply RiemannInt_P11 with [x:R](Rabsolu (f x)) RinvN phi3 psi3 psi2; Try Assumption; Apply RinvN_cv. -Qed. - -Lemma RiemannInt_P18 : (f,g:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable g a b)) ``a<=b`` -> ((x:R)``a``(f x)==(g x)``) -> ``(RiemannInt pr1)==(RiemannInt pr2)``. -Intro f; Intros; Unfold RiemannInt; Case (RiemannInt_exists 1!f 2!a 3!b pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!g 2!a 3!b pr2 5!RinvN RinvN_cv); Intros; EApply UL_sequence. -Apply u0. -Pose phi1 := [N:nat](phi_sequence RinvN 2!f 3!a 4!b pr1 N); Change (Un_cv [N:nat](RiemannInt_SF (phi1 N)) x); Assert H1 : (EXT psi1:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-((phi1 n) t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``). -Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n)). -Elim H1; Clear H1; Intros psi1 H1; Pose phi2 := [N:nat](phi_sequence RinvN 2!g 3!a 4!b pr2 N). -Pose phi2_aux := [N:nat][x:R](Cases (Req_EM_T x a) of - | (leftT _) => (f a) - | (rightT _) => (Cases (Req_EM_T x b) of - | (leftT _) => (f b) - | (rightT _) => (phi2 N x) end) end). -Cut (N:nat)(IsStepFun (phi2_aux N) a b). -Intro; Pose phi2_m := [N:nat](mkStepFun (X N)). -Assert H2 : (EXT psi2:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((g t)-((phi2 n) t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``). -Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr2 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr2 n)). -Elim H2; Clear H2; Intros psi2 H2; Apply RiemannInt_P11 with f RinvN phi2_m psi2 psi1; Try Assumption. -Apply RinvN_cv. -Intro; Elim (H2 n); Intros; Split; Try Assumption. -Intros; Unfold phi2_m; Simpl; Unfold phi2_aux; Case (Req_EM_T t a); Case (Req_EM_T t b); Intros. -Rewrite e0; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rle_trans with ``(Rabsolu ((g t)-((phi2 n) t)))``. -Apply Rabsolu_pos. -Pattern 3 a; Rewrite <- e0; Apply H3; Assumption. -Rewrite e; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rle_trans with ``(Rabsolu ((g t)-((phi2 n) t)))``. -Apply Rabsolu_pos. -Pattern 3 a; Rewrite <- e; Apply H3; Assumption. -Rewrite e; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rle_trans with ``(Rabsolu ((g t)-((phi2 n) t)))``. -Apply Rabsolu_pos. -Pattern 3 b; Rewrite <- e; Apply H3; Assumption. -Replace (f t) with (g t). -Apply H3; Assumption. -Symmetry; Apply H0; Elim H5; Clear H5; Intros. -Assert H7 : (Rmin a b)==a. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n2; Assumption]. -Assert H8 : (Rmax a b)==b. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n2; Assumption]. -Rewrite H7 in H5; Rewrite H8 in H6; Split. -Elim H5; Intro; [Assumption | Elim n1; Symmetry; Assumption]. -Elim H6; Intro; [Assumption | Elim n0; Assumption]. -Cut (N:nat)(RiemannInt_SF (phi2_m N))==(RiemannInt_SF (phi2 N)). -Intro; Unfold Un_cv; Intros; Elim (u ? H4); Intros; Exists x1; Intros; Rewrite (H3 n); Apply H5; Assumption. -Intro; Apply Rle_antisym. -Apply StepFun_P37; Try Assumption. -Intros; Unfold phi2_m; Simpl; Unfold phi2_aux; Case (Req_EM_T x1 a); Case (Req_EM_T x1 b); Intros. -Elim H3; Intros; Rewrite e0 in H4; Elim (Rlt_antirefl ? H4). -Elim H3; Intros; Rewrite e in H4; Elim (Rlt_antirefl ? H4). -Elim H3; Intros; Rewrite e in H5; Elim (Rlt_antirefl ? H5). -Right; Reflexivity. -Apply StepFun_P37; Try Assumption. -Intros; Unfold phi2_m; Simpl; Unfold phi2_aux; Case (Req_EM_T x1 a); Case (Req_EM_T x1 b); Intros. -Elim H3; Intros; Rewrite e0 in H4; Elim (Rlt_antirefl ? H4). -Elim H3; Intros; Rewrite e in H4; Elim (Rlt_antirefl ? H4). -Elim H3; Intros; Rewrite e in H5; Elim (Rlt_antirefl ? H5). -Right; Reflexivity. -Intro; Assert H2 := (pre (phi2 N)); Unfold IsStepFun in H2; Unfold is_subdivision in H2; Elim H2; Clear H2; Intros l [lf H2]; Split with l; Split with lf; Unfold adapted_couple in H2; Decompose [and] H2; Clear H2; Unfold adapted_couple; Repeat Split; Try Assumption. -Intros; Assert H9 := (H8 i H2); Unfold constant_D_eq open_interval in H9; Unfold constant_D_eq open_interval; Intros; Rewrite <- (H9 x1 H7); Assert H10 : ``a<=(pos_Rl l i)``. -Replace a with (Rmin a b). -Rewrite <- H5; Elim (RList_P6 l); Intros; Apply H10. -Assumption. -Apply le_O_n. -Apply lt_trans with (pred (Rlength l)); [Assumption | Apply lt_pred_n_n]. -Apply neq_O_lt; Intro; Rewrite <- H12 in H6; Discriminate. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Assert H11 : ``(pos_Rl l (S i))<=b``. -Replace b with (Rmax a b). -Rewrite <- H4; Elim (RList_P6 l); Intros; Apply H11. -Assumption. -Apply lt_le_S; Assumption. -Apply lt_pred_n_n; Apply neq_O_lt; Intro; Rewrite <- H13 in H6; Discriminate. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Elim H7; Clear H7; Intros; Unfold phi2_aux; Case (Req_EM_T x1 a); Case (Req_EM_T x1 b); Intros. -Rewrite e in H12; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H11 H12)). -Rewrite e in H7; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H10 H7)). -Rewrite e in H12; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H11 H12)). -Reflexivity. -Qed. - -Lemma RiemannInt_P19 : (f,g:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable g a b)) ``a<=b`` -> ((x:R)``a``(f x)<=(g x)``) -> ``(RiemannInt pr1)<=(RiemannInt pr2)``. -Intro f; Intros; Apply Rle_anti_compatibility with ``-(RiemannInt pr1)``; Rewrite Rplus_Ropp_l; Rewrite Rplus_sym; Apply Rle_trans with (Rabsolu (RiemannInt (RiemannInt_P10 ``-1`` pr2 pr1))). -Apply Rabsolu_pos. -Replace ``(RiemannInt pr2)+ -(RiemannInt pr1)`` with (RiemannInt (RiemannInt_P16 (RiemannInt_P10 ``-1`` pr2 pr1))). -Apply (RiemannInt_P17 (RiemannInt_P10 ``-1`` pr2 pr1) (RiemannInt_P16 (RiemannInt_P10 ``-1`` pr2 pr1))); Assumption. -Replace ``(RiemannInt pr2)+-(RiemannInt pr1)`` with (RiemannInt (RiemannInt_P10 ``-1`` pr2 pr1)). -Apply RiemannInt_P18; Try Assumption. -Intros; Apply Rabsolu_right. -Apply Rle_sym1; Apply Rle_anti_compatibility with (f x); Rewrite Rplus_Or; Replace ``(f x)+((g x)+ -1*(f x))`` with (g x); [Apply H0; Assumption | Ring]. -Rewrite (RiemannInt_P12 pr2 pr1 (RiemannInt_P10 ``-1`` pr2 pr1)); [Ring | Assumption]. -Qed. - -Lemma FTC_P1 : (f:R->R;a,b:R) ``a<=b`` -> ((x:R)``a<=x<=b``->(continuity_pt f x)) -> ((x:R)``a<=x``->``x<=b``->(Riemann_integrable f a x)). -Intros; Apply continuity_implies_RiemannInt; [Assumption | Intros; Apply H0; Elim H3; Intros; Split; Assumption Orelse Apply Rle_trans with x; Assumption]. -Qed. -V7only [Notation FTC_P2 := Rle_refl.]. - -Definition primitive [f:R->R;a,b:R;h:``a<=b``;pr:((x:R)``a<=x``->``x<=b``->(Riemann_integrable f a x))] : R->R := [x:R] Cases (total_order_Rle a x) of - | (leftT r) => Cases (total_order_Rle x b) of - | (leftT r0) => (RiemannInt (pr x r r0)) - | (rightT _) => ``(f b)*(x-b)+(RiemannInt (pr b h (FTC_P2 b)))`` end - | (rightT _) => ``(f a)*(x-a)`` end. - -Lemma RiemannInt_P20 : (f:R->R;a,b:R;h:``a<=b``;pr:((x:R)``a<=x``->``x<=b``->(Riemann_integrable f a x));pr0:(Riemann_integrable f a b)) ``(RiemannInt pr0)==(primitive h pr b)-(primitive h pr a)``. -Intros; Replace (primitive h pr a) with R0. -Replace (RiemannInt pr0) with (primitive h pr b). -Ring. -Unfold primitive; Case (total_order_Rle a b); Case (total_order_Rle b b); Intros; [Apply RiemannInt_P5 | Elim n; Right; Reflexivity | Elim n; Assumption | Elim n0; Assumption]. -Symmetry; Unfold primitive; Case (total_order_Rle a a); Case (total_order_Rle a b); Intros; [Apply RiemannInt_P9 | Elim n; Assumption | Elim n; Right; Reflexivity | Elim n0; Right; Reflexivity]. -Qed. - -Lemma RiemannInt_P21 : (f:R->R;a,b,c:R) ``a<=b``-> ``b<=c`` -> (Riemann_integrable f a b) -> (Riemann_integrable f b c) -> (Riemann_integrable f a c). -Unfold Riemann_integrable; Intros f a b c Hyp1 Hyp2 X X0 eps. -Assert H : ``0 Cases (total_order_Rle x b) of - | (leftT _) => (phi1 x) - | (rightT _) => (phi2 x) end - | (rightT _) => R0 end. -Pose psi3 := [x:R] Cases (total_order_Rle a x) of - | (leftT _) => Cases (total_order_Rle x b) of - | (leftT _) => (psi1 x) - | (rightT _) => (psi2 x) end - | (rightT _) => R0 end. -Cut (IsStepFun phi3 a c). -Intro; Cut (IsStepFun psi3 a b). -Intro; Cut (IsStepFun psi3 b c). -Intro; Cut (IsStepFun psi3 a c). -Intro; Split with (mkStepFun X); Split with (mkStepFun X2); Simpl; Split. -Intros; Unfold phi3 psi3; Case (total_order_Rle t b); Case (total_order_Rle a t); Intros. -Elim H1; Intros; Apply H3. -Replace (Rmin a b) with a. -Replace (Rmax a b) with b. -Split; Assumption. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Elim n; Replace a with (Rmin a c). -Elim H0; Intros; Assumption. -Unfold Rmin; Case (total_order_Rle a c); Intro; [Reflexivity | Elim n0; Apply Rle_trans with b; Assumption]. -Elim H2; Intros; Apply H3. -Replace (Rmax b c) with (Rmax a c). -Elim H0; Intros; Split; Try Assumption. -Replace (Rmin b c) with b. -Auto with real. -Unfold Rmin; Case (total_order_Rle b c); Intro; [Reflexivity | Elim n0; Assumption]. -Unfold Rmax; Case (total_order_Rle a c); Case (total_order_Rle b c); Intros; Try (Elim n0; Assumption Orelse Elim n0; Apply Rle_trans with b; Assumption). -Reflexivity. -Elim n; Replace a with (Rmin a c). -Elim H0; Intros; Assumption. -Unfold Rmin; Case (total_order_Rle a c); Intro; [Reflexivity | Elim n1; Apply Rle_trans with b; Assumption]. -Rewrite <- (StepFun_P43 X0 X1 X2). -Apply Rle_lt_trans with ``(Rabsolu (RiemannInt_SF (mkStepFun X0)))+(Rabsolu (RiemannInt_SF (mkStepFun X1)))``. -Apply Rabsolu_triang. -Rewrite (double_var eps); Replace (RiemannInt_SF (mkStepFun X0)) with (RiemannInt_SF psi1). -Replace (RiemannInt_SF (mkStepFun X1)) with (RiemannInt_SF psi2). -Apply Rplus_lt. -Elim H1; Intros; Assumption. -Elim H2; Intros; Assumption. -Apply Rle_antisym. -Apply StepFun_P37; Try Assumption. -Simpl; Intros; Unfold psi3; Elim H0; Clear H0; Intros; Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; [Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H0)) | Right; Reflexivity | Elim n; Apply Rle_trans with b; [Assumption | Left; Assumption] | Elim n0; Apply Rle_trans with b; [Assumption | Left; Assumption]]. -Apply StepFun_P37; Try Assumption. -Simpl; Intros; Unfold psi3; Elim H0; Clear H0; Intros; Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; [Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H0)) | Right; Reflexivity | Elim n; Apply Rle_trans with b; [Assumption | Left; Assumption] | Elim n0; Apply Rle_trans with b; [Assumption | Left; Assumption]]. -Apply Rle_antisym. -Apply StepFun_P37; Try Assumption. -Simpl; Intros; Unfold psi3; Elim H0; Clear H0; Intros; Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; [Right; Reflexivity | Elim n; Left; Assumption | Elim n; Left; Assumption | Elim n0; Left; Assumption]. -Apply StepFun_P37; Try Assumption. -Simpl; Intros; Unfold psi3; Elim H0; Clear H0; Intros; Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; [Right; Reflexivity | Elim n; Left; Assumption | Elim n; Left; Assumption | Elim n0; Left; Assumption]. -Apply StepFun_P46 with b; Assumption. -Assert H3 := (pre psi2); Unfold IsStepFun in H3; Unfold is_subdivision in H3; Elim H3; Clear H3; Intros l1 [lf1 H3]; Split with l1; Split with lf1; Unfold adapted_couple in H3; Decompose [and] H3; Clear H3; Unfold adapted_couple; Repeat Split; Try Assumption. -Intros; Assert H9 := (H8 i H3); Unfold constant_D_eq open_interval; Unfold constant_D_eq open_interval in H9; Intros; Rewrite <- (H9 x H7); Unfold psi3; Assert H10 : ``bR;a,b,c:R) (Riemann_integrable f a b) -> ``a<=c<=b`` -> (Riemann_integrable f a c). -Unfold Riemann_integrable; Intros; Elim (X eps); Clear X; Intros phi [psi H0]; Elim H; Elim H0; Clear H H0; Intros; Assert H3 : (IsStepFun phi a c). -Apply StepFun_P44 with b. -Apply (pre phi). -Split; Assumption. -Assert H4 : (IsStepFun psi a c). -Apply StepFun_P44 with b. -Apply (pre psi). -Split; Assumption. -Split with (mkStepFun H3); Split with (mkStepFun H4); Split. -Simpl; Intros; Apply H. -Replace (Rmin a b) with (Rmin a c). -Elim H5; Intros; Split; Try Assumption. -Apply Rle_trans with (Rmax a c); Try Assumption. -Replace (Rmax a b) with b. -Replace (Rmax a c) with c. -Assumption. -Unfold Rmax; Case (total_order_Rle a c); Intro; [Reflexivity | Elim n; Assumption]. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption]. -Unfold Rmin; Case (total_order_Rle a c); Case (total_order_Rle a b); Intros; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption | Elim n; Assumption | Elim n0; Assumption]. -Rewrite Rabsolu_right. -Assert H5 : (IsStepFun psi c b). -Apply StepFun_P46 with a. -Apply StepFun_P6; Assumption. -Apply (pre psi). -Replace (RiemannInt_SF (mkStepFun H4)) with ``(RiemannInt_SF psi)-(RiemannInt_SF (mkStepFun H5))``. -Apply Rle_lt_trans with (RiemannInt_SF psi). -Unfold Rminus; Pattern 2 (RiemannInt_SF psi); Rewrite <- Rplus_Or; Apply Rle_compatibility; Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Replace R0 with (RiemannInt_SF (mkStepFun (StepFun_P4 c b R0))). -Apply StepFun_P37; Try Assumption. -Intros; Simpl; Unfold fct_cte; Apply Rle_trans with ``(Rabsolu ((f x)-(phi x)))``. -Apply Rabsolu_pos. -Apply H. -Replace (Rmin a b) with a. -Replace (Rmax a b) with b. -Elim H6; Intros; Split; Left. -Apply Rle_lt_trans with c; Assumption. -Assumption. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption]. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption]. -Rewrite StepFun_P18; Ring. -Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF psi)). -Apply Rle_Rabsolu. -Assumption. -Assert H6 : (IsStepFun psi a b). -Apply (pre psi). -Replace (RiemannInt_SF psi) with (RiemannInt_SF (mkStepFun H6)). -Rewrite <- (StepFun_P43 H4 H5 H6); Ring. -Unfold RiemannInt_SF; Case (total_order_Rle a b); Intro. -EApply StepFun_P17. -Apply StepFun_P1. -Simpl; Apply StepFun_P1. -Apply eq_Ropp; EApply StepFun_P17. -Apply StepFun_P1. -Simpl; Apply StepFun_P1. -Apply Rle_sym1; Replace R0 with (RiemannInt_SF (mkStepFun (StepFun_P4 a c R0))). -Apply StepFun_P37; Try Assumption. -Intros; Simpl; Unfold fct_cte; Apply Rle_trans with ``(Rabsolu ((f x)-(phi x)))``. -Apply Rabsolu_pos. -Apply H. -Replace (Rmin a b) with a. -Replace (Rmax a b) with b. -Elim H5; Intros; Split; Left. -Assumption. -Apply Rlt_le_trans with c; Assumption. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption]. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption]. -Rewrite StepFun_P18; Ring. -Qed. - -Lemma RiemannInt_P23 : (f:R->R;a,b,c:R) (Riemann_integrable f a b) -> ``a<=c<=b`` -> (Riemann_integrable f c b). -Unfold Riemann_integrable; Intros; Elim (X eps); Clear X; Intros phi [psi H0]; Elim H; Elim H0; Clear H H0; Intros; Assert H3 : (IsStepFun phi c b). -Apply StepFun_P45 with a. -Apply (pre phi). -Split; Assumption. -Assert H4 : (IsStepFun psi c b). -Apply StepFun_P45 with a. -Apply (pre psi). -Split; Assumption. -Split with (mkStepFun H3); Split with (mkStepFun H4); Split. -Simpl; Intros; Apply H. -Replace (Rmax a b) with (Rmax c b). -Elim H5; Intros; Split; Try Assumption. -Apply Rle_trans with (Rmin c b); Try Assumption. -Replace (Rmin a b) with a. -Replace (Rmin c b) with c. -Assumption. -Unfold Rmin; Case (total_order_Rle c b); Intro; [Reflexivity | Elim n; Assumption]. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption]. -Unfold Rmax; Case (total_order_Rle c b); Case (total_order_Rle a b); Intros; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption | Elim n; Assumption | Elim n0; Assumption]. -Rewrite Rabsolu_right. -Assert H5 : (IsStepFun psi a c). -Apply StepFun_P46 with b. -Apply (pre psi). -Apply StepFun_P6; Assumption. -Replace (RiemannInt_SF (mkStepFun H4)) with ``(RiemannInt_SF psi)-(RiemannInt_SF (mkStepFun H5))``. -Apply Rle_lt_trans with (RiemannInt_SF psi). -Unfold Rminus; Pattern 2 (RiemannInt_SF psi); Rewrite <- Rplus_Or; Apply Rle_compatibility; Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Replace R0 with (RiemannInt_SF (mkStepFun (StepFun_P4 a c R0))). -Apply StepFun_P37; Try Assumption. -Intros; Simpl; Unfold fct_cte; Apply Rle_trans with ``(Rabsolu ((f x)-(phi x)))``. -Apply Rabsolu_pos. -Apply H. -Replace (Rmin a b) with a. -Replace (Rmax a b) with b. -Elim H6; Intros; Split; Left. -Assumption. -Apply Rlt_le_trans with c; Assumption. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption]. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption]. -Rewrite StepFun_P18; Ring. -Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF psi)). -Apply Rle_Rabsolu. -Assumption. -Assert H6 : (IsStepFun psi a b). -Apply (pre psi). -Replace (RiemannInt_SF psi) with (RiemannInt_SF (mkStepFun H6)). -Rewrite <- (StepFun_P43 H5 H4 H6); Ring. -Unfold RiemannInt_SF; Case (total_order_Rle a b); Intro. -EApply StepFun_P17. -Apply StepFun_P1. -Simpl; Apply StepFun_P1. -Apply eq_Ropp; EApply StepFun_P17. -Apply StepFun_P1. -Simpl; Apply StepFun_P1. -Apply Rle_sym1; Replace R0 with (RiemannInt_SF (mkStepFun (StepFun_P4 c b R0))). -Apply StepFun_P37; Try Assumption. -Intros; Simpl; Unfold fct_cte; Apply Rle_trans with ``(Rabsolu ((f x)-(phi x)))``. -Apply Rabsolu_pos. -Apply H. -Replace (Rmin a b) with a. -Replace (Rmax a b) with b. -Elim H5; Intros; Split; Left. -Apply Rle_lt_trans with c; Assumption. -Assumption. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption]. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption]. -Rewrite StepFun_P18; Ring. -Qed. - -Lemma RiemannInt_P24 : (f:R->R;a,b,c:R) (Riemann_integrable f a b) -> (Riemann_integrable f b c) -> (Riemann_integrable f a c). -Intros; Case (total_order_Rle a b); Case (total_order_Rle b c); Intros. -Apply RiemannInt_P21 with b; Assumption. -Case (total_order_Rle a c); Intro. -Apply RiemannInt_P22 with b; Try Assumption. -Split; [Assumption | Auto with real]. -Apply RiemannInt_P1; Apply RiemannInt_P22 with b. -Apply RiemannInt_P1; Assumption. -Split; Auto with real. -Case (total_order_Rle a c); Intro. -Apply RiemannInt_P23 with b; Try Assumption. -Split; Auto with real. -Apply RiemannInt_P1; Apply RiemannInt_P23 with b. -Apply RiemannInt_P1; Assumption. -Split; [Assumption | Auto with real]. -Apply RiemannInt_P1; Apply RiemannInt_P21 with b; Auto with real Orelse Apply RiemannInt_P1; Assumption. -Qed. - -Lemma RiemannInt_P25 : (f:R->R;a,b,c:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable f b c);pr3:(Riemann_integrable f a c)) ``a<=b``->``b<=c``->``(RiemannInt pr1)+(RiemannInt pr2)==(RiemannInt pr3)``. -Intros f a b c pr1 pr2 pr3 Hyp1 Hyp2; Unfold RiemannInt; Case (RiemannInt_exists 1!f 2!a 3!b pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!f 2!b 3!c pr2 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!f 2!a 3!c pr3 5!RinvN RinvN_cv); Intros; Symmetry; EApply UL_sequence. -Apply u. -Unfold Un_cv; Intros; Assert H0 : ``0(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr1 n)] t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``). -Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n)). -Assert H2 : (EXT psi2:nat->(StepFun b c) | (n:nat) ((t:R)``(Rmin b c) <= t``/\``t <= (Rmax b c)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr2 n)] t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``). -Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr2 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr2 n)). -Assert H3 : (EXT psi3:nat->(StepFun a c) | (n:nat) ((t:R)``(Rmin a c) <= t``/\``t <= (Rmax a c)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr3 n)] t)))<= (psi3 n t)``)/\``(Rabsolu (RiemannInt_SF (psi3 n))) < (RinvN n)``). -Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr3 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr3 n)). -Elim H1; Clear H1; Intros psi1 H1; Elim H2; Clear H2; Intros psi2 H2; Elim H3; Clear H3; Intros psi3 H3; Assert H := RinvN_cv; Unfold Un_cv; Intros; Assert H4 : ``0``(RinvN n)R;a,b,c:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable f b c);pr3:(Riemann_integrable f a c)) ``(RiemannInt pr1)+(RiemannInt pr2)==(RiemannInt pr3)``. -Intros; Case (total_order_Rle a b); Case (total_order_Rle b c); Intros. -Apply RiemannInt_P25; Assumption. -Case (total_order_Rle a c); Intro. -Assert H : ``c<=b``. -Auto with real. -Rewrite <- (RiemannInt_P25 pr3 (RiemannInt_P1 pr2) pr1 r0 H); Rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2)); Ring. -Assert H : ``c<=a``. -Auto with real. -Rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2)); Rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr3) pr1 (RiemannInt_P1 pr2) H r); Rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); Ring. -Assert H : ``b<=a``. -Auto with real. -Case (total_order_Rle a c); Intro. -Rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr1) pr3 pr2 H r0); Rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1)); Ring. -Assert H0 : ``c<=a``. -Auto with real. -Rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1)); Rewrite <- (RiemannInt_P25 pr2 (RiemannInt_P1 pr3) (RiemannInt_P1 pr1) r H0); Rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); Ring. -Rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1)); Rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2)); Rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); Rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr2) (RiemannInt_P1 pr1) (RiemannInt_P1 pr3)); [Ring | Auto with real | Auto with real]. -Qed. - -Lemma RiemannInt_P27 : (f:R->R;a,b,x:R;h:``a<=b``;C0:((x:R)``a<=x<=b``->(continuity_pt f x))) ``a (derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)). -Intro f; Intros; Elim H; Clear H; Intros; Assert H1 : (continuity_pt f x). -Apply C0; Split; Left; Assumption. -Unfold derivable_pt_lim; Intros; Assert Hyp : ``0 (Rmult_sym h0); Repeat Rewrite -> Rmult_assoc; Rewrite <- Rinv_l_sym; [Ring | Assumption] | Assumption]. -Cut ``a<=x+h0``. -Cut ``x+h0<=b``. -Intros; Unfold primitive. -Case (total_order_Rle a ``x+h0``); Case (total_order_Rle ``x+h0`` b); Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; Try (Elim n; Assumption Orelse Left; Assumption). -Rewrite <- (RiemannInt_P26 (FTC_P1 h C0 r0 r) H7 (FTC_P1 h C0 r2 r1)); Ring. -Apply Rle_anti_compatibility with ``-x``; Replace ``-x+(x+h0)`` with h0; [Idtac | Ring]. -Rewrite Rplus_sym; Apply Rle_trans with (Rabsolu h0). -Apply Rle_Rabsolu. -Apply Rle_trans with del; [Left; Assumption | Unfold del; Apply Rle_trans with ``(Rmin (b-x) (x-a))``; [Apply Rmin_r | Apply Rmin_l]]. -Apply Ropp_Rle; Apply Rle_anti_compatibility with ``x``; Replace ``x+-(x+h0)`` with ``-h0``; [Idtac | Ring]. -Apply Rle_trans with (Rabsolu h0); [Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu | Apply Rle_trans with del; [Left; Assumption | Unfold del; Apply Rle_trans with ``(Rmin (b-x) (x-a))``; Apply Rmin_r]]. -Qed. - -Lemma RiemannInt_P28 : (f:R->R;a,b,x:R;h:``a<=b``;C0:((x:R)``a<=x<=b``->(continuity_pt f x))) ``a<=x<=b`` -> (derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)). -Intro f; Intros; Elim h; Intro. -Elim H; Clear H; Intros; Elim H; Intro. -Elim H1; Intro. -Apply RiemannInt_P27; Split; Assumption. -Pose f_b := [x:R]``(f b)*(x-b)+(RiemannInt [(FTC_P1 h C0 h (FTC_P2 b))])``; Rewrite H3. -Assert H4 : (derivable_pt_lim f_b b (f b)). -Unfold f_b; Pattern 2 (f b); Replace (f b) with ``(f b)+0``. -Change (derivable_pt_lim (plus_fct (mult_fct (fct_cte (f b)) (minus_fct id (fct_cte b))) (fct_cte (RiemannInt (FTC_P1 h C0 h (FTC_P2 b))))) b ``(f b)+0``). -Apply derivable_pt_lim_plus. -Pattern 2 (f b); Replace (f b) with ``0*((minus_fct id (fct_cte b)) b)+((fct_cte (f b)) b)*1``. -Apply derivable_pt_lim_mult. -Apply derivable_pt_lim_const. -Replace R1 with ``1-0``; [Idtac | Ring]. -Apply derivable_pt_lim_minus. -Apply derivable_pt_lim_id. -Apply derivable_pt_lim_const. -Unfold fct_cte; Ring. -Apply derivable_pt_lim_const. -Ring. -Unfold derivable_pt_lim; Intros; Elim (H4 ? H5); Intros; Assert H7 : (continuity_pt f b). -Apply C0; Split; [Left; Assumption | Right; Reflexivity]. -Assert H8 : ``0R;a,b;h:``a<=b``;C0:((x:R)``a<=x<=b``->(continuity_pt f x))) (antiderivative f (primitive h (FTC_P1 h C0)) a b). -Intro f; Intros; Unfold antiderivative; Split; Try Assumption; Intros; Assert H0 := (RiemannInt_P28 h C0 H); Assert H1 : (derivable_pt (primitive h (FTC_P1 h C0)) x); [Unfold derivable_pt; Split with (f x); Apply H0 | Split with H1; Symmetry; Apply derive_pt_eq_0; Apply H0]. -Qed. - -Lemma RiemannInt_P30 : (f:R->R;a,b:R) ``a<=b`` -> ((x:R)``a<=x<=b``->(continuity_pt f x)) -> (sigTT ? [g:R->R](antiderivative f g a b)). -Intros; Split with (primitive H (FTC_P1 H H0)); Apply RiemannInt_P29. -Qed. - -Record C1_fun : Type := mkC1 { -c1 :> R->R; -diff0 : (derivable c1); -cont1 : (continuity (derive c1 diff0)) }. - -Lemma RiemannInt_P31 : (f:C1_fun;a,b:R) ``a<=b`` -> (antiderivative (derive f (diff0 f)) f a b). -Intro f; Intros; Unfold antiderivative; Split; Try Assumption; Intros; Split with (diff0 f x); Reflexivity. -Qed. - -Lemma RiemannInt_P32 : (f:C1_fun;a,b:R) (Riemann_integrable (derive f (diff0 f)) a b). -Intro f; Intros; Case (total_order_Rle a b); Intro; [Apply continuity_implies_RiemannInt; Try Assumption; Intros; Apply (cont1 f) | Assert H : ``b<=a``; [Auto with real | Apply RiemannInt_P1; Apply continuity_implies_RiemannInt; Try Assumption; Intros; Apply (cont1 f)]]. -Qed. - -Lemma RiemannInt_P33 : (f:C1_fun;a,b:R;pr:(Riemann_integrable (derive f (diff0 f)) a b)) ``a<=b`` -> (RiemannInt pr)==``(f b)-(f a)``. -Intro f; Intros; Assert H0 : (x:R)``a<=x<=b``->(continuity_pt (derive f (diff0 f)) x). -Intros; Apply (cont1 f). -Rewrite (RiemannInt_P20 H (FTC_P1 H H0) pr); Assert H1 := (RiemannInt_P29 H H0); Assert H2 := (RiemannInt_P31 f H); Elim (antiderivative_Ucte (derive f (diff0 f)) ? ? ? ? H1 H2); Intros C H3; Repeat Rewrite H3; [Ring | Split; [Right; Reflexivity | Assumption] | Split; [Assumption | Right; Reflexivity]]. -Qed. - -Lemma FTC_Riemann : (f:C1_fun;a,b:R;pr:(Riemann_integrable (derive f (diff0 f)) a b)) (RiemannInt pr)==``(f b)-(f a)``. -Intro f; Intros; Case (total_order_Rle a b); Intro; [Apply RiemannInt_P33; Assumption | Assert H : ``b<=a``; [Auto with real | Assert H0 := (RiemannInt_P1 pr); Rewrite (RiemannInt_P8 pr H0); Rewrite (RiemannInt_P33 H0 H); Ring]]. -Qed. diff --git a/theories7/Reals/RiemannInt_SF.v b/theories7/Reals/RiemannInt_SF.v deleted file mode 100644 index 3e2cc457..00000000 --- a/theories7/Reals/RiemannInt_SF.v +++ /dev/null @@ -1,1400 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* Prop] : Prop := (EX n:nat | (i:nat)(I i)->(le i n)). - -Lemma IZN_var:(z:Z)(`0<=z`)->{ n:nat | z=(INZ n)}. -Intros; Apply inject_nat_complete_inf; Assumption. -Qed. - -Lemma Nzorn : (I:nat->Prop) (EX n:nat | (I n)) -> (Nbound I) -> (sigTT ? [n:nat](I n)/\(i:nat)(I i)->(le i n)). -Intros I H H0; Pose E := [x:R](EX i:nat | (I i)/\(INR i)==x); Assert H1 : (bound E). -Unfold Nbound in H0; Elim H0; Intros N H1; Unfold bound; Exists (INR N); Unfold is_upper_bound; Intros; Unfold E in H2; Elim H2; Intros; Elim H3; Intros; Rewrite <- H5; Apply le_INR; Apply H1; Assumption. -Assert H2 : (EXT x:R | (E x)). -Elim H; Intros; Exists (INR x); Unfold E; Exists x; Split; [Assumption | Reflexivity]. -Assert H3 := (complet E H1 H2); Elim H3; Intros; Unfold is_lub in p; Elim p; Clear p; Intros; Unfold is_upper_bound in H4 H5; Assert H6 : ``0<=x``. -Elim H2; Intros; Unfold E in H6; Elim H6; Intros; Elim H7; Intros; Apply Rle_trans with x0; [Rewrite <- H9; Change ``(INR O)<=(INR x1)``; Apply le_INR; Apply le_O_n | Apply H4; Assumption]. -Assert H7 := (archimed x); Elim H7; Clear H7; Intros; Assert H9 : ``x<=(IZR (up x))-1``. -Apply H5; Intros; Assert H10 := (H4 ? H9); Unfold E in H9; Elim H9; Intros; Elim H11; Intros; Rewrite <- H13; Apply Rle_anti_compatibility with R1; Replace ``1+((IZR (up x))-1)`` with (IZR (up x)); [Idtac | Ring]; Replace ``1+(INR x1)`` with (INR (S x1)); [Idtac | Rewrite S_INR; Ring]. -Assert H14 : `0<=(up x)`. -Apply le_IZR; Apply Rle_trans with x; [Apply H6 | Left; Assumption]. -Assert H15 := (IZN ? H14); Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- INR_IZR_INZ; Apply le_INR; Apply lt_le_S; Apply INR_lt; Rewrite H13; Apply Rle_lt_trans with x; [Assumption | Rewrite INR_IZR_INZ; Rewrite <- H15; Assumption]. -Assert H10 : ``x==(IZR (up x))-1``. -Apply Rle_antisym; [Assumption | Apply Rle_anti_compatibility with ``-x+1``; Replace `` -x+1+((IZR (up x))-1)`` with ``(IZR (up x))-x``; [Idtac | Ring]; Replace ``-x+1+x`` with R1; [Assumption | Ring]]. -Assert H11 : `0<=(up x)`. -Apply le_IZR; Apply Rle_trans with x; [Apply H6 | Left; Assumption]. -Assert H12 := (IZN_var H11); Elim H12; Clear H12; Intros; Assert H13 : (E x). -Elim (classic (E x)); Intro; Try Assumption. -Cut ((y:R)(E y)->``y<=x-1``). -Intro; Assert H14 := (H5 ? H13); Cut ``x-1Prop := [x:R]``aProp := [x:R]``a<=xR;a,b:R;l,lf:Rlist] : Prop := (ordered_Rlist l)/\``(pos_Rl l O)==(Rmin a b)``/\``(pos_Rl l (pred (Rlength l)))==(Rmax a b)``/\(Rlength l)=(S (Rlength lf))/\(i:nat)(lt i (pred (Rlength l)))->(constant_D_eq f (open_interval (pos_Rl l i) (pos_Rl l (S i))) (pos_Rl lf i)). - -Definition adapted_couple_opt [f:R->R;a,b:R;l,lf:Rlist] := (adapted_couple f a b l lf)/\((i:nat)(lt i (pred (Rlength lf)))->(``(pos_Rl lf i)<>(pos_Rl lf (S i))``\/``(f (pos_Rl l (S i)))<>(pos_Rl lf i)``))/\((i:nat)(lt i (pred (Rlength l)))->``(pos_Rl l i)<>(pos_Rl l (S i))``). - -Definition is_subdivision [f:R->R;a,b:R;l:Rlist] : Type := (sigTT ? [l0:Rlist](adapted_couple f a b l l0)). - -Definition IsStepFun [f:R->R;a,b:R] : Type := (SigT ? [l:Rlist](is_subdivision f a b l)). - -(* Class of step functions *) -Record StepFun [a,b:R] : Type := mkStepFun { - fe:> R->R; - pre:(IsStepFun fe a b)}. - -Definition subdivision [a,b:R;f:(StepFun a b)] : Rlist := (projT1 ? ? (pre f)). - -Definition subdivision_val [a,b:R;f:(StepFun a b)] : Rlist := Cases (projT2 ? ? (pre f)) of (existTT a b) => a end. - -Fixpoint Int_SF [l:Rlist] : Rlist -> R := -[k:Rlist] Cases l of -| nil => R0 -| (cons a l') => Cases k of - | nil => R0 - | (cons x nil) => R0 - | (cons x (cons y k')) => ``a*(y-x)+(Int_SF l' (cons y k'))`` - end -end. - -(* Integral of step functions *) -Definition RiemannInt_SF [a,b:R;f:(StepFun a b)] : R := -Cases (total_order_Rle a b) of - (leftT _) => (Int_SF (subdivision_val f) (subdivision f)) -| (rightT _) => ``-(Int_SF (subdivision_val f) (subdivision f))`` -end. - -(********************************) -(* Properties of step functions *) -(********************************) - -Lemma StepFun_P1 : (a,b:R;f:(StepFun a b)) (adapted_couple f a b (subdivision f) (subdivision_val f)). -Intros a b f; Unfold subdivision_val; Case (projT2 Rlist ([l:Rlist](is_subdivision f a b l)) (pre f)); Intros; Apply a0. -Qed. - -Lemma StepFun_P2 : (a,b:R;f:R->R;l,lf:Rlist) (adapted_couple f a b l lf) -> (adapted_couple f b a l lf). -Unfold adapted_couple; Intros; Decompose [and] H; Clear H; Repeat Split; Try Assumption. -Rewrite H2; Unfold Rmin; Case (total_order_Rle a b); Intro; Case (total_order_Rle b a); Intro; Try Reflexivity. -Apply Rle_antisym; Assumption. -Apply Rle_antisym; Auto with real. -Rewrite H1; Unfold Rmax; Case (total_order_Rle a b); Intro; Case (total_order_Rle b a); Intro; Try Reflexivity. -Apply Rle_antisym; Assumption. -Apply Rle_antisym; Auto with real. -Qed. - -Lemma StepFun_P3 : (a,b,c:R) ``a<=b`` -> (adapted_couple (fct_cte c) a b (cons a (cons b nil)) (cons c nil)). -Intros; Unfold adapted_couple; Repeat Split. -Unfold ordered_Rlist; Intros; Simpl in H0; Inversion H0; [Simpl; Assumption | Elim (le_Sn_O ? H2)]. -Simpl; Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Simpl; Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Unfold constant_D_eq open_interval; Intros; Simpl in H0; Inversion H0; [Reflexivity | Elim (le_Sn_O ? H3)]. -Qed. - -Lemma StepFun_P4 : (a,b,c:R) (IsStepFun (fct_cte c) a b). -Intros; Unfold IsStepFun; Case (total_order_Rle a b); Intro. -Apply Specif.existT with (cons a (cons b nil)); Unfold is_subdivision; Apply existTT with (cons c nil); Apply (StepFun_P3 c r). -Apply Specif.existT with (cons b (cons a nil)); Unfold is_subdivision; Apply existTT with (cons c nil); Apply StepFun_P2; Apply StepFun_P3; Auto with real. -Qed. - -Lemma StepFun_P5 : (a,b:R;f:R->R;l:Rlist) (is_subdivision f a b l) -> (is_subdivision f b a l). -Unfold is_subdivision; Intros; Elim X; Intros; Exists x; Unfold adapted_couple in p; Decompose [and] p; Clear p; Unfold adapted_couple; Repeat Split; Try Assumption. -Rewrite H1; Unfold Rmin; Case (total_order_Rle a b); Intro; Case (total_order_Rle b a); Intro; Try Reflexivity. -Apply Rle_antisym; Assumption. -Apply Rle_antisym; Auto with real. -Rewrite H0; Unfold Rmax; Case (total_order_Rle a b); Intro; Case (total_order_Rle b a); Intro; Try Reflexivity. -Apply Rle_antisym; Assumption. -Apply Rle_antisym; Auto with real. -Qed. - -Lemma StepFun_P6 : (f:R->R;a,b:R) (IsStepFun f a b) -> (IsStepFun f b a). -Unfold IsStepFun; Intros; Elim X; Intros; Apply Specif.existT with x; Apply StepFun_P5; Assumption. -Qed. - -Lemma StepFun_P7 : (a,b,r1,r2,r3:R;f:R->R;l,lf:Rlist) ``a<=b`` -> (adapted_couple f a b (cons r1 (cons r2 l)) (cons r3 lf)) -> (adapted_couple f r2 b (cons r2 l) lf). -Unfold adapted_couple; Intros; Decompose [and] H0; Clear H0; Assert H5 : (Rmax a b)==b. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Assert H7 : ``r2<=b``. -Rewrite H5 in H2; Rewrite <- H2; Apply RList_P7; [Assumption | Simpl; Right; Left; Reflexivity]. -Repeat Split. -Apply RList_P4 with r1; Assumption. -Rewrite H5 in H2; Unfold Rmin; Case (total_order_Rle r2 b); Intro; [Reflexivity | Elim n; Assumption]. -Unfold Rmax; Case (total_order_Rle r2 b); Intro; [Rewrite H5 in H2; Rewrite <- H2; Reflexivity | Elim n; Assumption]. -Simpl in H4; Simpl; Apply INR_eq; Apply r_Rplus_plus with R1; Do 2 Rewrite (Rplus_sym R1); Do 2 Rewrite <- S_INR; Rewrite H4; Reflexivity. -Intros; Unfold constant_D_eq open_interval; Intros; Unfold constant_D_eq open_interval in H6; Assert H9 : (lt (S i) (pred (Rlength (cons r1 (cons r2 l))))). -Simpl; Simpl in H0; Apply lt_n_S; Assumption. -Assert H10 := (H6 ? H9); Apply H10; Assumption. -Qed. - -Lemma StepFun_P8 : (f:R->R;l1,lf1:Rlist;a,b:R) (adapted_couple f a b l1 lf1) -> a==b -> (Int_SF lf1 l1)==R0. -Induction l1. -Intros; Induction lf1; Reflexivity. -Induction r0. -Intros; Induction lf1. -Reflexivity. -Unfold adapted_couple in H0; Decompose [and] H0; Clear H0; Simpl in H5; Discriminate. -Intros; Induction lf1. -Reflexivity. -Simpl; Cut r==r1. -Intro; Rewrite H3; Rewrite (H0 lf1 r b). -Ring. -Rewrite H3; Apply StepFun_P7 with a r r3; [Right; Assumption | Assumption]. -Clear H H0 Hreclf1 r0; Unfold adapted_couple in H1; Decompose [and] H1; Intros; Simpl in H4; Rewrite H4; Unfold Rmin; Case (total_order_Rle a b); Intro; [Assumption | Reflexivity]. -Unfold adapted_couple in H1; Decompose [and] H1; Intros; Apply Rle_antisym. -Apply (H3 O); Simpl; Apply lt_O_Sn. -Simpl in H5; Rewrite H2 in H5; Rewrite H5; Replace (Rmin b b) with (Rmax a b); [Rewrite <- H4; Apply RList_P7; [Assumption | Simpl; Right; Left; Reflexivity] | Unfold Rmin Rmax; Case (total_order_Rle b b); Case (total_order_Rle a b); Intros; Try Assumption Orelse Reflexivity]. -Qed. - -Lemma StepFun_P9 : (a,b:R;f:R->R;l,lf:Rlist) (adapted_couple f a b l lf) -> ``a<>b`` -> (le (2) (Rlength l)). -Intros; Unfold adapted_couple in H; Decompose [and] H; Clear H; Induction l; [Simpl in H4; Discriminate | Induction l; [Simpl in H3; Simpl in H2; Generalize H3; Generalize H2; Unfold Rmin Rmax; Case (total_order_Rle a b); Intros; Elim H0; Rewrite <- H5; Rewrite <- H7; Reflexivity | Simpl; Do 2 Apply le_n_S; Apply le_O_n]]. -Qed. - -Lemma StepFun_P10 : (f:R->R;l,lf:Rlist;a,b:R) ``a<=b`` -> (adapted_couple f a b l lf) -> (EXT l':Rlist | (EXT lf':Rlist | (adapted_couple_opt f a b l' lf'))). -Induction l. -Intros; Unfold adapted_couple in H0; Decompose [and] H0; Simpl in H4; Discriminate. -Intros; Case (Req_EM a b); Intro. -Exists (cons a nil); Exists nil; Unfold adapted_couple_opt; Unfold adapted_couple; Unfold ordered_Rlist; Repeat Split; Try (Intros; Simpl in H3; Elim (lt_n_O ? H3)). -Simpl; Rewrite <- H2; Unfold Rmin; Case (total_order_Rle a a); Intro; Reflexivity. -Simpl; Rewrite <- H2; Unfold Rmax; Case (total_order_Rle a a); Intro; Reflexivity. -Elim (RList_P20 ? (StepFun_P9 H1 H2)); Intros t1 [t2 [t3 H3]]; Induction lf. -Unfold adapted_couple in H1; Decompose [and] H1; Rewrite H3 in H7; Simpl in H7; Discriminate. -Clear Hreclf; Assert H4 : (adapted_couple f t2 b r0 lf). -Rewrite H3 in H1; Assert H4 := (RList_P21 ? ? H3); Simpl in H4; Rewrite H4; EApply StepFun_P7; [Apply H0 | Apply H1]. -Cut ``t2<=b``. -Intro; Assert H6 := (H ? ? ? H5 H4); Case (Req_EM t1 t2); Intro Hyp_eq. -Replace a with t2. -Apply H6. -Rewrite <- Hyp_eq; Rewrite H3 in H1; Unfold adapted_couple in H1; Decompose [and] H1; Clear H1; Simpl in H9; Rewrite H9; Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Elim H6; Clear H6; Intros l' [lf' H6]; Case (Req_EM t2 b); Intro. -Exists (cons a (cons b nil)); Exists (cons r1 nil); Unfold adapted_couple_opt; Unfold adapted_couple; Repeat Split. -Unfold ordered_Rlist; Intros; Simpl in H8; Inversion H8; [Simpl; Assumption | Elim (le_Sn_O ? H10)]. -Simpl; Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Simpl; Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Intros; Simpl in H8; Inversion H8. -Unfold constant_D_eq open_interval; Intros; Simpl; Simpl in H9; Rewrite H3 in H1; Unfold adapted_couple in H1; Decompose [and] H1; Apply (H16 O). -Simpl; Apply lt_O_Sn. -Unfold open_interval; Simpl; Rewrite H7; Simpl in H13; Rewrite H13; Unfold Rmin; Case (total_order_Rle a b); Intro; [Assumption | Elim n; Assumption]. -Elim (le_Sn_O ? H10). -Intros; Simpl in H8; Elim (lt_n_O ? H8). -Intros; Simpl in H8; Inversion H8; [Simpl; Assumption | Elim (le_Sn_O ? H10)]. -Assert Hyp_min : (Rmin t2 b)==t2. -Unfold Rmin; Case (total_order_Rle t2 b); Intro; [Reflexivity | Elim n; Assumption]. -Unfold adapted_couple in H6; Elim H6; Clear H6; Intros; Elim (RList_P20 ? (StepFun_P9 H6 H7)); Intros s1 [s2 [s3 H9]]; Induction lf'. -Unfold adapted_couple in H6; Decompose [and] H6; Rewrite H9 in H13; Simpl in H13; Discriminate. -Clear Hreclf'; Case (Req_EM r1 r2); Intro. -Case (Req_EM (f t2) r1); Intro. -Exists (cons t1 (cons s2 s3)); Exists (cons r1 lf'); Rewrite H3 in H1; Rewrite H9 in H6; Unfold adapted_couple in H6 H1; Decompose [and] H1; Decompose [and] H6; Clear H1 H6; Unfold adapted_couple_opt; Unfold adapted_couple; Repeat Split. -Unfold ordered_Rlist; Intros; Simpl in H1; Induction i. -Simpl; Apply Rle_trans with s1. -Replace s1 with t2. -Apply (H12 O). -Simpl; Apply lt_O_Sn. -Simpl in H19; Rewrite H19; Symmetry; Apply Hyp_min. -Apply (H16 O); Simpl; Apply lt_O_Sn. -Change ``(pos_Rl (cons s2 s3) i)<=(pos_Rl (cons s2 s3) (S i))``; Apply (H16 (S i)); Simpl; Assumption. -Simpl; Simpl in H14; Rewrite H14; Reflexivity. -Simpl; Simpl in H18; Rewrite H18; Unfold Rmax; Case (total_order_Rle a b); Case (total_order_Rle t2 b); Intros; Reflexivity Orelse Elim n; Assumption. -Simpl; Simpl in H20; Apply H20. -Intros; Simpl in H1; Unfold constant_D_eq open_interval; Intros; Induction i. -Simpl; Simpl in H6; Case (total_order_T x t2); Intro. -Elim s; Intro. -Apply (H17 O); [Simpl; Apply lt_O_Sn | Unfold open_interval; Simpl; Elim H6; Intros; Split; Assumption]. -Rewrite b0; Assumption. -Rewrite H10; Apply (H22 O); [Simpl; Apply lt_O_Sn | Unfold open_interval; Simpl; Replace s1 with t2; [Elim H6; Intros; Split; Assumption | Simpl in H19; Rewrite H19; Rewrite Hyp_min; Reflexivity]]. -Simpl; Simpl in H6; Apply (H22 (S i)); [Simpl; Assumption | Unfold open_interval; Simpl; Apply H6]. -Intros; Simpl in H1; Rewrite H10; Change ``(pos_Rl (cons r2 lf') i)<>(pos_Rl (cons r2 lf') (S i))``\/``(f (pos_Rl (cons s1 (cons s2 s3)) (S i)))<>(pos_Rl (cons r2 lf') i)``; Rewrite <- H9; Elim H8; Intros; Apply H6; Simpl; Apply H1. -Intros; Induction i. -Simpl; Red; Intro; Elim Hyp_eq; Apply Rle_antisym. -Apply (H12 O); Simpl; Apply lt_O_Sn. -Rewrite <- Hyp_min; Rewrite H6; Simpl in H19; Rewrite <- H19; Apply (H16 O); Simpl; Apply lt_O_Sn. -Elim H8; Intros; Rewrite H9 in H21; Apply (H21 (S i)); Simpl; Simpl in H1; Apply H1. -Exists (cons t1 l'); Exists (cons r1 (cons r2 lf')); Rewrite H9 in H6; Rewrite H3 in H1; Unfold adapted_couple in H1 H6; Decompose [and] H6; Decompose [and] H1; Clear H6 H1; Unfold adapted_couple_opt; Unfold adapted_couple; Repeat Split. -Rewrite H9; Unfold ordered_Rlist; Intros; Simpl in H1; Induction i. -Simpl; Replace s1 with t2. -Apply (H16 O); Simpl; Apply lt_O_Sn. -Simpl in H14; Rewrite H14; Rewrite Hyp_min; Reflexivity. -Change ``(pos_Rl (cons s1 (cons s2 s3)) i)<=(pos_Rl (cons s1 (cons s2 s3)) (S i))``; Apply (H12 i); Simpl; Apply lt_S_n; Assumption. -Simpl; Simpl in H19; Apply H19. -Rewrite H9; Simpl; Simpl in H13; Rewrite H13; Unfold Rmax; Case (total_order_Rle t2 b); Case (total_order_Rle a b); Intros; Reflexivity Orelse Elim n; Assumption. -Rewrite H9; Simpl; Simpl in H15; Rewrite H15; Reflexivity. -Intros; Simpl in H1; Unfold constant_D_eq open_interval; Intros; Induction i. -Simpl; Rewrite H9 in H6; Simpl in H6; Apply (H22 O). -Simpl; Apply lt_O_Sn. -Unfold open_interval; Simpl. -Replace t2 with s1. -Assumption. -Simpl in H14; Rewrite H14; Rewrite Hyp_min; Reflexivity. -Change (f x)==(pos_Rl (cons r2 lf') i); Clear Hreci; Apply (H17 i). -Simpl; Rewrite H9 in H1; Simpl in H1; Apply lt_S_n; Apply H1. -Rewrite H9 in H6; Unfold open_interval; Apply H6. -Intros; Simpl in H1; Induction i. -Simpl; Rewrite H9; Right; Simpl; Replace s1 with t2. -Assumption. -Simpl in H14; Rewrite H14; Rewrite Hyp_min; Reflexivity. -Elim H8; Intros; Apply (H6 i). -Simpl; Apply lt_S_n; Apply H1. -Intros; Rewrite H9; Induction i. -Simpl; Red; Intro; Elim Hyp_eq; Apply Rle_antisym. -Apply (H16 O); Simpl; Apply lt_O_Sn. -Rewrite <- Hyp_min; Rewrite H6; Simpl in H14; Rewrite <- H14; Right; Reflexivity. -Elim H8; Intros; Rewrite <- H9; Apply (H21 i); Rewrite H9; Rewrite H9 in H1; Simpl; Simpl in H1; Apply lt_S_n; Apply H1. -Exists (cons t1 l'); Exists (cons r1 (cons r2 lf')); Rewrite H9 in H6; Rewrite H3 in H1; Unfold adapted_couple in H1 H6; Decompose [and] H6; Decompose [and] H1; Clear H6 H1; Unfold adapted_couple_opt; Unfold adapted_couple; Repeat Split. -Rewrite H9; Unfold ordered_Rlist; Intros; Simpl in H1; Induction i. -Simpl; Replace s1 with t2. -Apply (H15 O); Simpl; Apply lt_O_Sn. -Simpl in H13; Rewrite H13; Rewrite Hyp_min; Reflexivity. -Change ``(pos_Rl (cons s1 (cons s2 s3)) i)<=(pos_Rl (cons s1 (cons s2 s3)) (S i))``; Apply (H11 i); Simpl; Apply lt_S_n; Assumption. -Simpl; Simpl in H18; Apply H18. -Rewrite H9; Simpl; Simpl in H12; Rewrite H12; Unfold Rmax; Case (total_order_Rle t2 b); Case (total_order_Rle a b); Intros; Reflexivity Orelse Elim n; Assumption. -Rewrite H9; Simpl; Simpl in H14; Rewrite H14; Reflexivity. -Intros; Simpl in H1; Unfold constant_D_eq open_interval; Intros; Induction i. -Simpl; Rewrite H9 in H6; Simpl in H6; Apply (H21 O). -Simpl; Apply lt_O_Sn. -Unfold open_interval; Simpl; Replace t2 with s1. -Assumption. -Simpl in H13; Rewrite H13; Rewrite Hyp_min; Reflexivity. -Change (f x)==(pos_Rl (cons r2 lf') i); Clear Hreci; Apply (H16 i). -Simpl; Rewrite H9 in H1; Simpl in H1; Apply lt_S_n; Apply H1. -Rewrite H9 in H6; Unfold open_interval; Apply H6. -Intros; Simpl in H1; Induction i. -Simpl; Left; Assumption. -Elim H8; Intros; Apply (H6 i). -Simpl; Apply lt_S_n; Apply H1. -Intros; Rewrite H9; Induction i. -Simpl; Red; Intro; Elim Hyp_eq; Apply Rle_antisym. -Apply (H15 O); Simpl; Apply lt_O_Sn. -Rewrite <- Hyp_min; Rewrite H6; Simpl in H13; Rewrite <- H13; Right; Reflexivity. -Elim H8; Intros; Rewrite <- H9; Apply (H20 i); Rewrite H9; Rewrite H9 in H1; Simpl; Simpl in H1; Apply lt_S_n; Apply H1. -Rewrite H3 in H1; Clear H4; Unfold adapted_couple in H1; Decompose [and] H1; Clear H1; Clear H H7 H9; Cut (Rmax a b)==b; [Intro; Rewrite H in H5; Rewrite <- H5; Apply RList_P7; [Assumption | Simpl; Right; Left; Reflexivity] | Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]]. -Qed. - -Lemma StepFun_P11 : (a,b,r,r1,r3,s1,s2,r4:R;r2,lf1,s3,lf2:Rlist;f:R->R) ``a (adapted_couple f a b (cons r (cons r1 r2)) (cons r3 lf1)) -> (adapted_couple_opt f a b (cons s1 (cons s2 s3)) (cons r4 lf2)) -> ``r1<=s2``. -Intros; Unfold adapted_couple_opt in H1; Elim H1; Clear H1; Intros; Unfold adapted_couple in H0 H1; Decompose [and] H0; Decompose [and] H1; Clear H0 H1; Assert H12 : r==s1. -Simpl in H10; Simpl in H5; Rewrite H10; Rewrite H5; Reflexivity. -Assert H14 := (H3 O (lt_O_Sn ?)); Simpl in H14; Elim H14; Intro. -Assert H15 := (H7 O (lt_O_Sn ?)); Simpl in H15; Elim H15; Intro. -Rewrite <- H12 in H1; Case (total_order_Rle r1 s2); Intro; Try Assumption. -Assert H16 : ``s2R;l,lf:Rlist) (adapted_couple_opt f a b l lf) -> (adapted_couple_opt f b a l lf). -Unfold adapted_couple_opt; Unfold adapted_couple; Intros; Decompose [and] H; Clear H; Repeat Split; Try Assumption. -Rewrite H0; Unfold Rmin; Case (total_order_Rle a b); Intro; Case (total_order_Rle b a); Intro; Try Reflexivity. -Apply Rle_antisym; Assumption. -Apply Rle_antisym; Auto with real. -Rewrite H3; Unfold Rmax; Case (total_order_Rle a b); Intro; Case (total_order_Rle b a); Intro; Try Reflexivity. -Apply Rle_antisym; Assumption. -Apply Rle_antisym; Auto with real. -Qed. - -Lemma StepFun_P13 : (a,b,r,r1,r3,s1,s2,r4:R;r2,lf1,s3,lf2:Rlist;f:R->R) ``a<>b`` -> (adapted_couple f a b (cons r (cons r1 r2)) (cons r3 lf1)) -> (adapted_couple_opt f a b (cons s1 (cons s2 s3)) (cons r4 lf2)) -> ``r1<=s2``. -Intros; Case (total_order_T a b); Intro. -Elim s; Intro. -EApply StepFun_P11; [Apply a0 | Apply H0 | Apply H1]. -Elim H; Assumption. -EApply StepFun_P11; [Apply r0 | Apply StepFun_P2; Apply H0 | Apply StepFun_P12; Apply H1]. -Qed. - -Lemma StepFun_P14 : (f:R->R;l1,l2,lf1,lf2:Rlist;a,b:R) ``a<=b`` -> (adapted_couple f a b l1 lf1) -> (adapted_couple_opt f a b l2 lf2) -> (Int_SF lf1 l1)==(Int_SF lf2 l2). -Induction l1. -Intros l2 lf1 lf2 a b Hyp H H0; Unfold adapted_couple in H; Decompose [and] H; Clear H H0 H2 H3 H1 H6; Simpl in H4; Discriminate. -Induction r0. -Intros; Case (Req_EM a b); Intro. -Unfold adapted_couple_opt in H2; Elim H2; Intros; Rewrite (StepFun_P8 H4 H3); Rewrite (StepFun_P8 H1 H3); Reflexivity. -Assert H4 := (StepFun_P9 H1 H3); Simpl in H4; Elim (le_Sn_O ? (le_S_n ? ? H4)). -Intros; Clear H; Unfold adapted_couple_opt in H3; Elim H3; Clear H3; Intros; Case (Req_EM a b); Intro. -Rewrite (StepFun_P8 H2 H4); Rewrite (StepFun_P8 H H4); Reflexivity. -Assert Hyp_min : (Rmin a b)==a. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Assert Hyp_max : (Rmax a b)==b. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Elim (RList_P20 ? (StepFun_P9 H H4)); Intros s1 [s2 [s3 H5]]; Rewrite H5 in H; Rewrite H5; Induction lf1. -Unfold adapted_couple in H2; Decompose [and] H2; Clear H H2 H4 H5 H3 H6 H8 H7 H11; Simpl in H9; Discriminate. -Clear Hreclf1; Induction lf2. -Unfold adapted_couple in H; Decompose [and] H; Clear H H2 H4 H5 H3 H6 H8 H7 H11; Simpl in H9; Discriminate. -Clear Hreclf2; Assert H6 : r==s1. -Unfold adapted_couple in H H2; Decompose [and] H; Decompose [and] H2; Clear H H2; Simpl in H13; Simpl in H8; Rewrite H13; Rewrite H8; Reflexivity. -Assert H7 : r3==r4\/r==r1. -Case (Req_EM r r1); Intro. -Right; Assumption. -Left; Cut ``r1<=s2``. -Intro; Unfold adapted_couple in H2 H; Decompose [and] H; Decompose [and] H2; Clear H H2; Pose x := ``(r+r1)/2``; Assert H18 := (H14 O); Assert H20 := (H19 O); Unfold constant_D_eq open_interval in H18 H20; Simpl in H18; Simpl in H20; Rewrite <- (H18 (lt_O_Sn ?) x). -Rewrite <- (H20 (lt_O_Sn ?) x). -Reflexivity. -Assert H21 := (H13 O (lt_O_Sn ?)); Simpl in H21; Elim H21; Intro; [Idtac | Elim H7; Assumption]; Unfold x; Split. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Apply H | DiscrR]]. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite <- (Rplus_sym r1); Rewrite double; Apply Rlt_compatibility; Apply H | DiscrR]]. -Rewrite <- H6; Assert H21 := (H13 O (lt_O_Sn ?)); Simpl in H21; Elim H21; Intro; [Idtac | Elim H7; Assumption]; Unfold x; Split. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Apply H | DiscrR]]. -Apply Rlt_le_trans with r1; [Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite <- (Rplus_sym r1); Rewrite double; Apply Rlt_compatibility; Apply H | DiscrR]] | Assumption]. -EApply StepFun_P13. -Apply H4. -Apply H2. -Unfold adapted_couple_opt; Split. -Apply H. -Rewrite H5 in H3; Apply H3. -Assert H8 : ``r1<=s2``. -EApply StepFun_P13. -Apply H4. -Apply H2. -Unfold adapted_couple_opt; Split. -Apply H. -Rewrite H5 in H3; Apply H3. -Elim H7; Intro. -Simpl; Elim H8; Intro. -Replace ``r4*(s2-s1)`` with ``r3*(r1-r)+r3*(s2-r1)``; [Idtac | Rewrite H9; Rewrite H6; Ring]. -Rewrite Rplus_assoc; Apply Rplus_plus_r; Change (Int_SF lf1 (cons r1 r2))==(Int_SF (cons r3 lf2) (cons r1 (cons s2 s3))); Apply H0 with r1 b. -Unfold adapted_couple in H2; Decompose [and] H2; Clear H2; Replace b with (Rmax a b). -Rewrite <- H12; Apply RList_P7; [Assumption | Simpl; Right; Left; Reflexivity]. -EApply StepFun_P7. -Apply H1. -Apply H2. -Unfold adapted_couple_opt; Split. -Apply StepFun_P7 with a a r3. -Apply H1. -Unfold adapted_couple in H2 H; Decompose [and] H2; Decompose [and] H; Clear H H2; Assert H20 : r==a. -Simpl in H13; Rewrite H13; Apply Hyp_min. -Unfold adapted_couple; Repeat Split. -Unfold ordered_Rlist; Intros; Simpl in H; Induction i. -Simpl; Rewrite <- H20; Apply (H11 O). -Simpl; Apply lt_O_Sn. -Induction i. -Simpl; Assumption. -Change ``(pos_Rl (cons s2 s3) i)<=(pos_Rl (cons s2 s3) (S i))``; Apply (H15 (S i)); Simpl; Apply lt_S_n; Assumption. -Simpl; Symmetry; Apply Hyp_min. -Rewrite <- H17; Reflexivity. -Simpl in H19; Simpl; Rewrite H19; Reflexivity. -Intros; Simpl in H; Unfold constant_D_eq open_interval; Intros; Induction i. -Simpl; Apply (H16 O). -Simpl; Apply lt_O_Sn. -Simpl in H2; Rewrite <- H20 in H2; Unfold open_interval; Simpl; Apply H2. -Clear Hreci; Induction i. -Simpl; Simpl in H2; Rewrite H9; Apply (H21 O). -Simpl; Apply lt_O_Sn. -Unfold open_interval; Simpl; Elim H2; Intros; Split. -Apply Rle_lt_trans with r1; Try Assumption; Rewrite <- H6; Apply (H11 O); Simpl; Apply lt_O_Sn. -Assumption. -Clear Hreci; Simpl; Apply (H21 (S i)). -Simpl; Apply lt_S_n; Assumption. -Unfold open_interval; Apply H2. -Elim H3; Clear H3; Intros; Split. -Rewrite H9; Change (i:nat) (lt i (pred (Rlength (cons r4 lf2)))) ->``(pos_Rl (cons r4 lf2) i)<>(pos_Rl (cons r4 lf2) (S i))``\/``(f (pos_Rl (cons s1 (cons s2 s3)) (S i)))<>(pos_Rl (cons r4 lf2) i)``; Rewrite <- H5; Apply H3. -Rewrite H5 in H11; Intros; Simpl in H12; Induction i. -Simpl; Red; Intro; Rewrite H13 in H10; Elim (Rlt_antirefl ? H10). -Clear Hreci; Apply (H11 (S i)); Simpl; Apply H12. -Rewrite H9; Rewrite H10; Rewrite H6; Apply Rplus_plus_r; Rewrite <- H10; Apply H0 with r1 b. -Unfold adapted_couple in H2; Decompose [and] H2; Clear H2; Replace b with (Rmax a b). -Rewrite <- H12; Apply RList_P7; [Assumption | Simpl; Right; Left; Reflexivity]. -EApply StepFun_P7. -Apply H1. -Apply H2. -Unfold adapted_couple_opt; Split. -Apply StepFun_P7 with a a r3. -Apply H1. -Unfold adapted_couple in H2 H; Decompose [and] H2; Decompose [and] H; Clear H H2; Assert H20 : r==a. -Simpl in H13; Rewrite H13; Apply Hyp_min. -Unfold adapted_couple; Repeat Split. -Unfold ordered_Rlist; Intros; Simpl in H; Induction i. -Simpl; Rewrite <- H20; Apply (H11 O); Simpl; Apply lt_O_Sn. -Rewrite H10; Apply (H15 (S i)); Simpl; Assumption. -Simpl; Symmetry; Apply Hyp_min. -Rewrite <- H17; Rewrite H10; Reflexivity. -Simpl in H19; Simpl; Apply H19. -Intros; Simpl in H; Unfold constant_D_eq open_interval; Intros; Induction i. -Simpl; Apply (H16 O). -Simpl; Apply lt_O_Sn. -Simpl in H2; Rewrite <- H20 in H2; Unfold open_interval; Simpl; Apply H2. -Clear Hreci; Simpl; Apply (H21 (S i)). -Simpl; Assumption. -Rewrite <- H10; Unfold open_interval; Apply H2. -Elim H3; Clear H3; Intros; Split. -Rewrite H5 in H3; Intros; Apply (H3 (S i)). -Simpl; Replace (Rlength lf2) with (S (pred (Rlength lf2))). -Apply lt_n_S; Apply H12. -Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H12; Elim (lt_n_O ? H12). -Intros; Simpl in H12; Rewrite H10; Rewrite H5 in H11; Apply (H11 (S i)); Simpl; Apply lt_n_S; Apply H12. -Simpl; Rewrite H9; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rmult_Or; Rewrite Rplus_Ol; Change (Int_SF lf1 (cons r1 r2))==(Int_SF (cons r4 lf2) (cons s1 (cons s2 s3))); EApply H0. -Apply H1. -2: Rewrite H5 in H3; Unfold adapted_couple_opt; Split; Assumption. -Assert H10 : r==a. -Unfold adapted_couple in H2; Decompose [and] H2; Clear H2; Simpl in H12; Rewrite H12; Apply Hyp_min. -Rewrite <- H9; Rewrite H10; Apply StepFun_P7 with a r r3; [Apply H1 | Pattern 2 a; Rewrite <- H10; Pattern 2 r; Rewrite H9; Apply H2]. -Qed. - -Lemma StepFun_P15 : (f:R->R;l1,l2,lf1,lf2:Rlist;a,b:R) (adapted_couple f a b l1 lf1) -> (adapted_couple_opt f a b l2 lf2) -> (Int_SF lf1 l1)==(Int_SF lf2 l2). -Intros; Case (total_order_Rle a b); Intro; [Apply (StepFun_P14 r H H0) | Assert H1 : ``b<=a``; [Auto with real | EApply StepFun_P14; [Apply H1 | Apply StepFun_P2; Apply H | Apply StepFun_P12; Apply H0]]]. -Qed. - -Lemma StepFun_P16 : (f:R->R;l,lf:Rlist;a,b:R) (adapted_couple f a b l lf) -> (EXT l':Rlist | (EXT lf':Rlist | (adapted_couple_opt f a b l' lf'))). -Intros; Case (total_order_Rle a b); Intro; [Apply (StepFun_P10 r H) | Assert H1 : ``b<=a``; [Auto with real | Assert H2 := (StepFun_P10 H1 (StepFun_P2 H)); Elim H2; Intros l' [lf' H3]; Exists l'; Exists lf'; Apply StepFun_P12; Assumption]]. -Qed. - -Lemma StepFun_P17 : (f:R->R;l1,l2,lf1,lf2:Rlist;a,b:R) (adapted_couple f a b l1 lf1) -> (adapted_couple f a b l2 lf2) -> (Int_SF lf1 l1)==(Int_SF lf2 l2). -Intros; Elim (StepFun_P16 H); Intros l' [lf' H1]; Rewrite (StepFun_P15 H H1); Rewrite (StepFun_P15 H0 H1); Reflexivity. -Qed. - -Lemma StepFun_P18 : (a,b,c:R) (RiemannInt_SF (mkStepFun (StepFun_P4 a b c)))==``c*(b-a)``. -Intros; Unfold RiemannInt_SF; Case (total_order_Rle a b); Intro. -Replace (Int_SF (subdivision_val (mkStepFun (StepFun_P4 a b c))) (subdivision (mkStepFun (StepFun_P4 a b c)))) with (Int_SF (cons c nil) (cons a (cons b nil))); [Simpl; Ring | Apply StepFun_P17 with (fct_cte c) a b; [Apply StepFun_P3; Assumption | Apply (StepFun_P1 (mkStepFun (StepFun_P4 a b c)))]]. -Replace (Int_SF (subdivision_val (mkStepFun (StepFun_P4 a b c))) (subdivision (mkStepFun (StepFun_P4 a b c)))) with (Int_SF (cons c nil) (cons b (cons a nil))); [Simpl; Ring | Apply StepFun_P17 with (fct_cte c) a b; [Apply StepFun_P2; Apply StepFun_P3; Auto with real | Apply (StepFun_P1 (mkStepFun (StepFun_P4 a b c)))]]. -Qed. - -Lemma StepFun_P19 : (l1:Rlist;f,g:R->R;l:R) (Int_SF (FF l1 [x:R]``(f x)+l*(g x)``) l1)==``(Int_SF (FF l1 f) l1)+l*(Int_SF (FF l1 g) l1)``. -Intros; Induction l1; [Simpl; Ring | Induction l1; Simpl; [Ring | Simpl in Hrecl1; Rewrite Hrecl1; Ring]]. -Qed. - -Lemma StepFun_P20 : (l:Rlist;f:R->R) (lt O (Rlength l)) -> (Rlength l)=(S (Rlength (FF l f))). -Intros l f H; NewInduction l; [Elim (lt_n_n ? H) | Simpl; Rewrite RList_P18; Rewrite RList_P14; Reflexivity]. -Qed. - -Lemma StepFun_P21 : (a,b:R;f:R->R;l:Rlist) (is_subdivision f a b l) -> (adapted_couple f a b l (FF l f)). -Intros; Unfold adapted_couple; Unfold is_subdivision in X; Unfold adapted_couple in X; Elim X; Clear X; Intros; Decompose [and] p; Clear p; Repeat Split; Try Assumption. -Apply StepFun_P20; Rewrite H2; Apply lt_O_Sn. -Intros; Assert H5 := (H4 ? H3); Unfold constant_D_eq open_interval in H5; Unfold constant_D_eq open_interval; Intros; Induction l. -Discriminate. -Unfold FF; Rewrite RList_P12. -Simpl; Change (f x0)==(f (pos_Rl (mid_Rlist (cons r l) r) (S i))); Rewrite RList_P13; Try Assumption; Rewrite (H5 x0 H6); Rewrite H5. -Reflexivity. -Split. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Elim H6; Intros; Apply Rlt_trans with x0; Assumption | DiscrR]]. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Rewrite (Rplus_sym (pos_Rl (cons r l) i)); Apply Rlt_compatibility; Elim H6; Intros; Apply Rlt_trans with x0; Assumption | DiscrR]]. -Rewrite RList_P14; Simpl in H3; Apply H3. -Qed. - -Lemma StepFun_P22 : (a,b:R;f,g:R->R;lf,lg:Rlist) ``a<=b`` -> (is_subdivision f a b lf) -> (is_subdivision g a b lg) -> (is_subdivision f a b (cons_ORlist lf lg)). -Unfold is_subdivision; Intros a b f g lf lg Hyp X X0; Elim X; Elim X0; Clear X X0; Intros lg0 p lf0 p0; Assert Hyp_min : (Rmin a b)==a. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Assert Hyp_max : (Rmax a b)==b. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Apply existTT with (FF (cons_ORlist lf lg) f); Unfold adapted_couple in p p0; Decompose [and] p; Decompose [and] p0; Clear p p0; Rewrite Hyp_min in H6; Rewrite Hyp_min in H1; Rewrite Hyp_max in H0; Rewrite Hyp_max in H5; Unfold adapted_couple; Repeat Split. -Apply RList_P2; Assumption. -Rewrite Hyp_min; Symmetry; Apply Rle_antisym. -Induction lf. -Simpl; Right; Symmetry; Assumption. -Assert H10 : (In (pos_Rl (cons_ORlist (cons r lf) lg) (0)) (cons_ORlist (cons r lf) lg)). -Elim (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros _ H10; Apply H10; Exists O; Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_O_Sn]. -Elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros H12 _; Assert H13 := (H12 H10); Elim H13; Intro. -Elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros H11 _; Assert H14 := (H11 H8); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H6; Elim (RList_P6 (cons r lf)); Intros; Apply H17; [Assumption | Apply le_O_n | Assumption]. -Elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros H11 _; Assert H14 := (H11 H8); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H1; Elim (RList_P6 lg); Intros; Apply H17; [Assumption | Apply le_O_n | Assumption]. -Induction lf. -Simpl; Right; Assumption. -Assert H8 : (In a (cons_ORlist (cons r lf) lg)). -Elim (RList_P9 (cons r lf) lg a); Intros; Apply H10; Left; Elim (RList_P3 (cons r lf) a); Intros; Apply H12; Exists O; Split; [Symmetry; Assumption | Simpl; Apply lt_O_Sn]. -Apply RList_P5; [Apply RList_P2; Assumption | Assumption]. -Rewrite Hyp_max; Apply Rle_antisym. -Induction lf. -Simpl; Right; Assumption. -Assert H8 : (In (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg)))) (cons_ORlist (cons r lf) lg)). -Elim (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros _ H10; Apply H10; Exists (pred (Rlength (cons_ORlist (cons r lf) lg))); Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_n_Sn]. -Elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H10 _. -Assert H11 := (H10 H8); Elim H11; Intro. -Elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H5; Elim (RList_P6 (cons r lf)); Intros; Apply H17; [Assumption | Simpl; Simpl in H14; Apply lt_n_Sm_le; Assumption | Simpl; Apply lt_n_Sn]. -Elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros. -Rewrite H15; Assert H17 : (Rlength lg)=(S (pred (Rlength lg))). -Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H17 in H16; Elim (lt_n_O ? H16). -Rewrite <- H0; Elim (RList_P6 lg); Intros; Apply H18; [Assumption | Rewrite H17 in H16; Apply lt_n_Sm_le; Assumption | Apply lt_pred_n_n; Rewrite H17; Apply lt_O_Sn]. -Induction lf. -Simpl; Right; Symmetry; Assumption. -Assert H8 : (In b (cons_ORlist (cons r lf) lg)). -Elim (RList_P9 (cons r lf) lg b); Intros; Apply H10; Left; Elim (RList_P3 (cons r lf) b); Intros; Apply H12; Exists (pred (Rlength (cons r lf))); Split; [Symmetry; Assumption | Simpl; Apply lt_n_Sn]. -Apply RList_P7; [Apply RList_P2; Assumption | Assumption]. -Apply StepFun_P20; Rewrite RList_P11; Rewrite H2; Rewrite H7; Simpl; Apply lt_O_Sn. -Intros; Unfold constant_D_eq open_interval; Intros; Cut (EXT l:R | (constant_D_eq f (open_interval (pos_Rl (cons_ORlist lf lg) i) (pos_Rl (cons_ORlist lf lg) (S i))) l)). -Intros; Elim H11; Clear H11; Intros; Assert H12 := H11; Assert Hyp_cons : (EXT r:R | (EXT r0:Rlist | (cons_ORlist lf lg)==(cons r r0))). -Apply RList_P19; Red; Intro; Rewrite H13 in H8; Elim (lt_n_O ? H8). -Elim Hyp_cons; Clear Hyp_cons; Intros r [r0 Hyp_cons]; Rewrite Hyp_cons; Unfold FF; Rewrite RList_P12. -Change (f x)==(f (pos_Rl (mid_Rlist (cons r r0) r) (S i))); Rewrite <- Hyp_cons; Rewrite RList_P13. -Assert H13 := (RList_P2 ? ? H ? H8); Elim H13; Intro. -Unfold constant_D_eq open_interval in H11 H12; Rewrite (H11 x H10); Assert H15 : ``(pos_Rl (cons_ORlist lf lg) i)<((pos_Rl (cons_ORlist lf lg) i)+(pos_Rl (cons_ORlist lf lg) (S i)))/2<(pos_Rl (cons_ORlist lf lg) (S i))``. -Split. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]]. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Rewrite (Rplus_sym (pos_Rl (cons_ORlist lf lg) i)); Apply Rlt_compatibility; Assumption | DiscrR]]. -Rewrite (H11 ? H15); Reflexivity. -Elim H10; Intros; Rewrite H14 in H15; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H16 H15)). -Apply H8. -Rewrite RList_P14; Rewrite Hyp_cons in H8; Simpl in H8; Apply H8. -Assert H11 : ``aR;lf,lg:Rlist) (is_subdivision f a b lf) -> (is_subdivision g a b lg) -> (is_subdivision f a b (cons_ORlist lf lg)). -Intros; Case (total_order_Rle a b); Intro; [Apply StepFun_P22 with g; Assumption | Apply StepFun_P5; Apply StepFun_P22 with g; [Auto with real | Apply StepFun_P5; Assumption | Apply StepFun_P5; Assumption]]. -Qed. - -Lemma StepFun_P24 : (a,b:R;f,g:R->R;lf,lg:Rlist) ``a<=b`` -> (is_subdivision f a b lf) -> (is_subdivision g a b lg) -> (is_subdivision g a b (cons_ORlist lf lg)). -Unfold is_subdivision; Intros a b f g lf lg Hyp X X0; Elim X; Elim X0; Clear X X0; Intros lg0 p lf0 p0; Assert Hyp_min : (Rmin a b)==a. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Assert Hyp_max : (Rmax a b)==b. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Apply existTT with (FF (cons_ORlist lf lg) g); Unfold adapted_couple in p p0; Decompose [and] p; Decompose [and] p0; Clear p p0; Rewrite Hyp_min in H1; Rewrite Hyp_min in H6; Rewrite Hyp_max in H0; Rewrite Hyp_max in H5; Unfold adapted_couple; Repeat Split. -Apply RList_P2; Assumption. -Rewrite Hyp_min; Symmetry; Apply Rle_antisym. -Induction lf. -Simpl; Right; Symmetry; Assumption. -Assert H10 : (In (pos_Rl (cons_ORlist (cons r lf) lg) (0)) (cons_ORlist (cons r lf) lg)). -Elim (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros _ H10; Apply H10; Exists O; Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_O_Sn]. -Elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros H12 _; Assert H13 := (H12 H10); Elim H13; Intro. -Elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros H11 _; Assert H14 := (H11 H8); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H6; Elim (RList_P6 (cons r lf)); Intros; Apply H17; [Assumption | Apply le_O_n | Assumption]. -Elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros H11 _; Assert H14 := (H11 H8); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H1; Elim (RList_P6 lg); Intros; Apply H17; [Assumption | Apply le_O_n | Assumption]. -Induction lf. -Simpl; Right; Assumption. -Assert H8 : (In a (cons_ORlist (cons r lf) lg)). -Elim (RList_P9 (cons r lf) lg a); Intros; Apply H10; Left; Elim (RList_P3 (cons r lf) a); Intros; Apply H12; Exists O; Split; [Symmetry; Assumption | Simpl; Apply lt_O_Sn]. -Apply RList_P5; [Apply RList_P2; Assumption | Assumption]. -Rewrite Hyp_max; Apply Rle_antisym. -Induction lf. -Simpl; Right; Assumption. -Assert H8 : (In (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg)))) (cons_ORlist (cons r lf) lg)). -Elim (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros _ H10; Apply H10; Exists (pred (Rlength (cons_ORlist (cons r lf) lg))); Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_n_Sn]. -Elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H10 _; Assert H11 := (H10 H8); Elim H11; Intro. -Elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H5; Elim (RList_P6 (cons r lf)); Intros; Apply H17; [Assumption | Simpl; Simpl in H14; Apply lt_n_Sm_le; Assumption | Simpl; Apply lt_n_Sn]. -Elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Assert H17 : (Rlength lg)=(S (pred (Rlength lg))). -Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H17 in H16; Elim (lt_n_O ? H16). -Rewrite <- H0; Elim (RList_P6 lg); Intros; Apply H18; [Assumption | Rewrite H17 in H16; Apply lt_n_Sm_le; Assumption | Apply lt_pred_n_n; Rewrite H17; Apply lt_O_Sn]. -Induction lf. -Simpl; Right; Symmetry; Assumption. -Assert H8 : (In b (cons_ORlist (cons r lf) lg)). -Elim (RList_P9 (cons r lf) lg b); Intros; Apply H10; Left; Elim (RList_P3 (cons r lf) b); Intros; Apply H12; Exists (pred (Rlength (cons r lf))); Split; [Symmetry; Assumption | Simpl; Apply lt_n_Sn]. -Apply RList_P7; [Apply RList_P2; Assumption | Assumption]. -Apply StepFun_P20; Rewrite RList_P11; Rewrite H7; Rewrite H2; Simpl; Apply lt_O_Sn. -Unfold constant_D_eq open_interval; Intros; Cut (EXT l:R | (constant_D_eq g (open_interval (pos_Rl (cons_ORlist lf lg) i) (pos_Rl (cons_ORlist lf lg) (S i))) l)). -Intros; Elim H11; Clear H11; Intros; Assert H12 := H11; Assert Hyp_cons : (EXT r:R | (EXT r0:Rlist | (cons_ORlist lf lg)==(cons r r0))). -Apply RList_P19; Red; Intro; Rewrite H13 in H8; Elim (lt_n_O ? H8). -Elim Hyp_cons; Clear Hyp_cons; Intros r [r0 Hyp_cons]; Rewrite Hyp_cons; Unfold FF; Rewrite RList_P12. -Change (g x)==(g (pos_Rl (mid_Rlist (cons r r0) r) (S i))); Rewrite <- Hyp_cons; Rewrite RList_P13. -Assert H13 := (RList_P2 ? ? H ? H8); Elim H13; Intro. -Unfold constant_D_eq open_interval in H11 H12; Rewrite (H11 x H10); Assert H15 : ``(pos_Rl (cons_ORlist lf lg) i)<((pos_Rl (cons_ORlist lf lg) i)+(pos_Rl (cons_ORlist lf lg) (S i)))/2<(pos_Rl (cons_ORlist lf lg) (S i))``. -Split. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]]. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Rewrite (Rplus_sym (pos_Rl (cons_ORlist lf lg) i)); Apply Rlt_compatibility; Assumption | DiscrR]]. -Rewrite (H11 ? H15); Reflexivity. -Elim H10; Intros; Rewrite H14 in H15; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H16 H15)). -Apply H8. -Rewrite RList_P14; Rewrite Hyp_cons in H8; Simpl in H8; Apply H8. -Assert H11 : ``aR;lf,lg:Rlist) (is_subdivision f a b lf) -> (is_subdivision g a b lg) -> (is_subdivision g a b (cons_ORlist lf lg)). -Intros a b f g lf lg H H0; Case (total_order_Rle a b); Intro; [Apply StepFun_P24 with f; Assumption | Apply StepFun_P5; Apply StepFun_P24 with f; [Auto with real | Apply StepFun_P5; Assumption | Apply StepFun_P5; Assumption]]. -Qed. - -Lemma StepFun_P26 : (a,b,l:R;f,g:R->R;l1:Rlist) (is_subdivision f a b l1) -> (is_subdivision g a b l1) -> (is_subdivision [x:R]``(f x)+l*(g x)`` a b l1). -Intros a b l f g l1; Unfold is_subdivision; Intros; Elim X; Elim X0; Intros; Clear X X0; Unfold adapted_couple in p p0; Decompose [and] p; Decompose [and] p0; Clear p p0; Apply existTT with (FF l1 [x:R]``(f x)+l*(g x)``); Unfold adapted_couple; Repeat Split; Try Assumption. -Apply StepFun_P20; Apply neq_O_lt; Red; Intro; Rewrite <- H8 in H7; Discriminate. -Intros; Unfold constant_D_eq open_interval; Unfold constant_D_eq open_interval in H9 H4; Intros; Rewrite (H9 ? H8 ? H10); Rewrite (H4 ? H8 ? H10); Assert H11 : ~l1==nil. -Red; Intro; Rewrite H11 in H8; Elim (lt_n_O ? H8). -Assert H12 := (RList_P19 ? H11); Elim H12; Clear H12; Intros r [r0 H12]; Rewrite H12; Unfold FF; Change ``(pos_Rl x0 i)+l*(pos_Rl x i)`` == (pos_Rl (app_Rlist (mid_Rlist (cons r r0) r) [x2:R]``(f x2)+l*(g x2)``) (S i)); Rewrite RList_P12. -Rewrite RList_P13. -Rewrite <- H12; Rewrite (H9 ? H8); Try Rewrite (H4 ? H8); Reflexivity Orelse (Elim H10; Clear H10; Intros; Split; [Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Apply Rlt_trans with x1; Assumption | DiscrR]] | Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Rewrite (Rplus_sym (pos_Rl l1 i)); Apply Rlt_compatibility; Apply Rlt_trans with x1; Assumption | DiscrR]]]). -Rewrite <- H12; Assumption. -Rewrite RList_P14; Simpl; Rewrite H12 in H8; Simpl in H8; Apply lt_n_S; Apply H8. -Qed. - -Lemma StepFun_P27 : (a,b,l:R;f,g:R->R;lf,lg:Rlist) (is_subdivision f a b lf) -> (is_subdivision g a b lg) -> (is_subdivision [x:R]``(f x)+l*(g x)`` a b (cons_ORlist lf lg)). -Intros a b l f g lf lg H H0; Apply StepFun_P26; [Apply StepFun_P23 with g; Assumption | Apply StepFun_P25 with f; Assumption]. -Qed. - -(* The set of step functions on [a,b] is a vectorial space *) -Lemma StepFun_P28 : (a,b,l:R;f,g:(StepFun a b)) (IsStepFun [x:R]``(f x)+l*(g x)`` a b). -Intros a b l f g; Unfold IsStepFun; Assert H := (pre f); Assert H0 := (pre g); Unfold IsStepFun in H H0; Elim H; Elim H0; Intros; Apply Specif.existT with (cons_ORlist x0 x); Apply StepFun_P27; Assumption. -Qed. - -Lemma StepFun_P29 : (a,b:R;f:(StepFun a b)) (is_subdivision f a b (subdivision f)). -Intros a b f; Unfold is_subdivision; Apply existTT with (subdivision_val f); Apply StepFun_P1. -Qed. - -Lemma StepFun_P30 : (a,b,l:R;f,g:(StepFun a b)) ``(RiemannInt_SF (mkStepFun (StepFun_P28 l f g)))==(RiemannInt_SF f)+l*(RiemannInt_SF g)``. -Intros a b l f g; Unfold RiemannInt_SF; Case (total_order_Rle a b); (Intro; Replace ``(Int_SF (subdivision_val (mkStepFun (StepFun_P28 l f g))) (subdivision (mkStepFun (StepFun_P28 l f g))))`` with (Int_SF (FF (cons_ORlist (subdivision f) (subdivision g)) [x:R]``(f x)+l*(g x)``) (cons_ORlist (subdivision f) (subdivision g))); [Rewrite StepFun_P19; Replace (Int_SF (FF (cons_ORlist (subdivision f) (subdivision g)) f) (cons_ORlist (subdivision f) (subdivision g))) with (Int_SF (subdivision_val f) (subdivision f)); [Replace (Int_SF (FF (cons_ORlist (subdivision f) (subdivision g)) g) (cons_ORlist (subdivision f) (subdivision g))) with (Int_SF (subdivision_val g) (subdivision g)); [Ring | Apply StepFun_P17 with (fe g) a b; [Apply StepFun_P1 | Apply StepFun_P21; Apply StepFun_P25 with (fe f); Apply StepFun_P29]] | Apply StepFun_P17 with (fe f) a b; [Apply StepFun_P1 | Apply StepFun_P21; Apply StepFun_P23 with (fe g); Apply StepFun_P29]] | Apply StepFun_P17 with [x:R]``(f x)+l*(g x)`` a b; [Apply StepFun_P21; Apply StepFun_P27; Apply StepFun_P29 | Apply (StepFun_P1 (mkStepFun (StepFun_P28 l f g)))]]). -Qed. - -Lemma StepFun_P31 : (a,b:R;f:R->R;l,lf:Rlist) (adapted_couple f a b l lf) -> (adapted_couple [x:R](Rabsolu (f x)) a b l (app_Rlist lf Rabsolu)). -Unfold adapted_couple; Intros; Decompose [and] H; Clear H; Repeat Split; Try Assumption. -Symmetry; Rewrite H3; Rewrite RList_P18; Reflexivity. -Intros; Unfold constant_D_eq open_interval; Unfold constant_D_eq open_interval in H5; Intros; Rewrite (H5 ? H ? H4); Rewrite RList_P12; [Reflexivity | Rewrite H3 in H; Simpl in H; Apply H]. -Qed. - -Lemma StepFun_P32 : (a,b:R;f:(StepFun a b)) (IsStepFun [x:R](Rabsolu (f x)) a b). -Intros a b f; Unfold IsStepFun; Apply Specif.existT with (subdivision f); Unfold is_subdivision; Apply existTT with (app_Rlist (subdivision_val f) Rabsolu); Apply StepFun_P31; Apply StepFun_P1. -Qed. - -Lemma StepFun_P33 : (l2,l1:Rlist) (ordered_Rlist l1) -> ``(Rabsolu (Int_SF l2 l1))<=(Int_SF (app_Rlist l2 Rabsolu) l1)``. -Induction l2; Intros. -Simpl; Rewrite Rabsolu_R0; Right; Reflexivity. -Simpl; Induction l1. -Rewrite Rabsolu_R0; Right; Reflexivity. -Induction l1. -Rewrite Rabsolu_R0; Right; Reflexivity. -Apply Rle_trans with ``(Rabsolu (r*(r2-r1)))+(Rabsolu (Int_SF r0 (cons r2 l1)))``. -Apply Rabsolu_triang. -Rewrite Rabsolu_mult; Rewrite (Rabsolu_right ``r2-r1``); [Apply Rle_compatibility; Apply H; Apply RList_P4 with r1; Assumption | Apply Rge_minus; Apply Rle_sym1; Apply (H0 O); Simpl; Apply lt_O_Sn]. -Qed. - -Lemma StepFun_P34 : (a,b:R;f:(StepFun a b)) ``a<=b`` -> ``(Rabsolu (RiemannInt_SF f))<=(RiemannInt_SF (mkStepFun (StepFun_P32 f)))``. -Intros; Unfold RiemannInt_SF; Case (total_order_Rle a b); Intro. -Replace (Int_SF (subdivision_val (mkStepFun (StepFun_P32 f))) (subdivision (mkStepFun (StepFun_P32 f)))) with (Int_SF (app_Rlist (subdivision_val f) Rabsolu) (subdivision f)). -Apply StepFun_P33; Assert H0 := (StepFun_P29 f); Unfold is_subdivision in H0; Elim H0; Intros; Unfold adapted_couple in p; Decompose [and] p; Assumption. -Apply StepFun_P17 with [x:R](Rabsolu (f x)) a b; [Apply StepFun_P31; Apply StepFun_P1 | Apply (StepFun_P1 (mkStepFun (StepFun_P32 f)))]. -Elim n; Assumption. -Qed. - -Lemma StepFun_P35 : (l:Rlist;a,b:R;f,g:R->R) (ordered_Rlist l) -> (pos_Rl l O)==a -> (pos_Rl l (pred (Rlength l)))==b -> ((x:R)``a``(f x)<=(g x)``) -> ``(Int_SF (FF l f) l)<=(Int_SF (FF l g) l)``. -Induction l; Intros. -Right; Reflexivity. -Simpl; Induction r0. -Right; Reflexivity. -Simpl; Apply Rplus_le. -Case (Req_EM r r0); Intro. -Rewrite H4; Right; Ring. -Do 2 Rewrite <- (Rmult_sym ``r0-r``); Apply Rle_monotony. -Apply Rle_sym2; Apply Rge_minus; Apply Rle_sym1; Apply (H0 O); Simpl; Apply lt_O_Sn. -Apply H3; Split. -Apply Rlt_monotony_contra with ``2``. -Sup0. -Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Assert H5 : r==a. -Apply H1. -Rewrite H5; Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility. -Assert H6 := (H0 O (lt_O_Sn ?)). -Simpl in H6. -Elim H6; Intro. -Rewrite H5 in H7; Apply H7. -Elim H4; Assumption. -DiscrR. -Apply Rlt_monotony_contra with ``2``. -Sup0. -Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l; Rewrite double; Assert H5 : ``r0<=b``. -Replace b with (pos_Rl (cons r (cons r0 r1)) (pred (Rlength (cons r (cons r0 r1))))). -Replace r0 with (pos_Rl (cons r (cons r0 r1)) (S O)). -Elim (RList_P6 (cons r (cons r0 r1))); Intros; Apply H5. -Assumption. -Simpl; Apply le_n_S. -Apply le_O_n. -Simpl; Apply lt_n_Sn. -Reflexivity. -Apply Rle_lt_trans with ``r+b``. -Apply Rle_compatibility; Assumption. -Rewrite (Rplus_sym r); Apply Rlt_compatibility. -Apply Rlt_le_trans with r0. -Assert H6 := (H0 O (lt_O_Sn ?)). -Simpl in H6. -Elim H6; Intro. -Apply H7. -Elim H4; Assumption. -Assumption. -DiscrR. -Simpl in H; Apply H with r0 b. -Apply RList_P4 with r; Assumption. -Reflexivity. -Rewrite <- H2; Reflexivity. -Intros; Apply H3; Elim H4; Intros; Split; Try Assumption. -Apply Rle_lt_trans with r0; Try Assumption. -Rewrite <- H1. -Simpl; Apply (H0 O); Simpl; Apply lt_O_Sn. -Qed. - -Lemma StepFun_P36 : (a,b:R;f,g:(StepFun a b);l:Rlist) ``a<=b`` -> (is_subdivision f a b l) -> (is_subdivision g a b l) -> ((x:R)``a``(f x)<=(g x)``) -> ``(RiemannInt_SF f) <= (RiemannInt_SF g)``. -Intros; Unfold RiemannInt_SF; Case (total_order_Rle a b); Intro. -Replace (Int_SF (subdivision_val f) (subdivision f)) with (Int_SF (FF l f) l). -Replace (Int_SF (subdivision_val g) (subdivision g)) with (Int_SF (FF l g) l). -Unfold is_subdivision in X; Elim X; Clear X; Intros; Unfold adapted_couple in p; Decompose [and] p; Clear p; Assert H5 : (Rmin a b)==a; [Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption] | Assert H7 : (Rmax a b)==b; [Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption] | Rewrite H5 in H3; Rewrite H7 in H2; EApply StepFun_P35 with a b; Assumption]]. -Apply StepFun_P17 with (fe g) a b; [Apply StepFun_P21; Assumption | Apply StepFun_P1]. -Apply StepFun_P17 with (fe f) a b; [Apply StepFun_P21; Assumption | Apply StepFun_P1]. -Elim n; Assumption. -Qed. - -Lemma StepFun_P37 : (a,b:R;f,g:(StepFun a b)) ``a<=b`` -> ((x:R)``a``(f x)<=(g x)``) -> ``(RiemannInt_SF f) <= (RiemannInt_SF g)``. -Intros; EApply StepFun_P36; Try Assumption. -EApply StepFun_P25; Apply StepFun_P29. -EApply StepFun_P23; Apply StepFun_P29. -Qed. - -Lemma StepFun_P38 : (l:Rlist;a,b:R;f:R->R) (ordered_Rlist l) -> (pos_Rl l O)==a -> (pos_Rl l (pred (Rlength l)))==b -> (sigTT ? [g:(StepFun a b)](g b)==(f b)/\(i:nat)(lt i (pred (Rlength l)))->(constant_D_eq g (co_interval (pos_Rl l i) (pos_Rl l (S i))) (f (pos_Rl l i)))). -Intros l a b f; Generalize a; Clear a; NewInduction l. -Intros a H H0 H1; Simpl in H0; Simpl in H1; Exists (mkStepFun (StepFun_P4 a b (f b))); Split. -Reflexivity. -Intros; Elim (lt_n_O ? H2). -Intros; NewDestruct l as [|r1 l]. -Simpl in H1; Simpl in H0; Exists (mkStepFun (StepFun_P4 a b (f b))); Split. -Reflexivity. -Intros i H2; Elim (lt_n_O ? H2). -Intros; Assert H2 : (ordered_Rlist (cons r1 l)). -Apply RList_P4 with r; Assumption. -Assert H3 : (pos_Rl (cons r1 l) O)==r1. -Reflexivity. -Assert H4 : (pos_Rl (cons r1 l) (pred (Rlength (cons r1 l))))==b. -Rewrite <- H1; Reflexivity. -Elim (IHl r1 H2 H3 H4); Intros g [H5 H6]. -Pose g' := [x:R]Cases (total_order_Rle r1 x) of - | (leftT _) => (g x) - | (rightT _) => (f a) end. -Assert H7 : ``r1<=b``. -Rewrite <- H4; Apply RList_P7; [Assumption | Left; Reflexivity]. -Assert H8 : (IsStepFun g' a b). -Unfold IsStepFun; Assert H8 := (pre g); Unfold IsStepFun in H8; Elim H8; Intros lg H9; Unfold is_subdivision in H9; Elim H9; Clear H9; Intros lg2 H9; Split with (cons a lg); Unfold is_subdivision; Split with (cons (f a) lg2); Unfold adapted_couple in H9; Decompose [and] H9; Clear H9; Unfold adapted_couple; Repeat Split. -Unfold ordered_Rlist; Intros; Simpl in H9; Induction i. -Simpl; Rewrite H12; Replace (Rmin r1 b) with r1. -Simpl in H0; Rewrite <- H0; Apply (H O); Simpl; Apply lt_O_Sn. -Unfold Rmin; Case (total_order_Rle r1 b); Intro; [Reflexivity | Elim n; Assumption]. -Apply (H10 i); Apply lt_S_n. -Replace (S (pred (Rlength lg))) with (Rlength lg). -Apply H9. -Apply S_pred with O; Apply neq_O_lt; Intro; Rewrite <- H14 in H9; Elim (lt_n_O ? H9). -Simpl; Assert H14 : ``a<=b``. -Rewrite <- H1; Simpl in H0; Rewrite <- H0; Apply RList_P7; [Assumption | Left; Reflexivity]. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Assert H14 : ``a<=b``. -Rewrite <- H1; Simpl in H0; Rewrite <- H0; Apply RList_P7; [Assumption | Left; Reflexivity]. -Replace (Rmax a b) with (Rmax r1 b). -Rewrite <- H11; Induction lg. -Simpl in H13; Discriminate. -Reflexivity. -Unfold Rmax; Case (total_order_Rle a b); Case (total_order_Rle r1 b); Intros; Reflexivity Orelse Elim n; Assumption. -Simpl; Rewrite H13; Reflexivity. -Intros; Simpl in H9; Induction i. -Unfold constant_D_eq open_interval; Simpl; Intros; Assert H16 : (Rmin r1 b)==r1. -Unfold Rmin; Case (total_order_Rle r1 b); Intro; [Reflexivity | Elim n; Assumption]. -Rewrite H16 in H12; Rewrite H12 in H14; Elim H14; Clear H14; Intros _ H14; Unfold g'; Case (total_order_Rle r1 x); Intro r3. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r3 H14)). -Reflexivity. -Change (constant_D_eq g' (open_interval (pos_Rl lg i) (pos_Rl lg (S i))) (pos_Rl lg2 i)); Clear Hreci; Assert H16 := (H15 i); Assert H17 : (lt i (pred (Rlength lg))). -Apply lt_S_n. -Replace (S (pred (Rlength lg))) with (Rlength lg). -Assumption. -Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H14 in H9; Elim (lt_n_O ? H9). -Assert H18 := (H16 H17); Unfold constant_D_eq open_interval in H18; Unfold constant_D_eq open_interval; Intros; Assert H19 := (H18 ? H14); Rewrite <- H19; Unfold g'; Case (total_order_Rle r1 x); Intro. -Reflexivity. -Elim n; Replace r1 with (Rmin r1 b). -Rewrite <- H12; Elim H14; Clear H14; Intros H14 _; Left; Apply Rle_lt_trans with (pos_Rl lg i); Try Assumption. -Apply RList_P5. -Assumption. -Elim (RList_P3 lg (pos_Rl lg i)); Intros; Apply H21; Exists i; Split. -Reflexivity. -Apply lt_trans with (pred (Rlength lg)); Try Assumption. -Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H22 in H17; Elim (lt_n_O ? H17). -Unfold Rmin; Case (total_order_Rle r1 b); Intro; [Reflexivity | Elim n0; Assumption]. -Exists (mkStepFun H8); Split. -Simpl; Unfold g'; Case (total_order_Rle r1 b); Intro. -Assumption. -Elim n; Assumption. -Intros; Simpl in H9; Induction i. -Unfold constant_D_eq co_interval; Simpl; Intros; Simpl in H0; Rewrite H0; Elim H10; Clear H10; Intros; Unfold g'; Case (total_order_Rle r1 x); Intro r3. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r3 H11)). -Reflexivity. -Clear Hreci; Change (constant_D_eq (mkStepFun H8) (co_interval (pos_Rl (cons r1 l) i) (pos_Rl (cons r1 l) (S i))) (f (pos_Rl (cons r1 l) i))); Assert H10 := (H6 i); Assert H11 : (lt i (pred (Rlength (cons r1 l)))). -Simpl; Apply lt_S_n; Assumption. -Assert H12 := (H10 H11); Unfold constant_D_eq co_interval in H12; Unfold constant_D_eq co_interval; Intros; Rewrite <- (H12 ? H13); Simpl; Unfold g'; Case (total_order_Rle r1 x); Intro. -Reflexivity. -Elim n; Elim H13; Clear H13; Intros; Apply Rle_trans with (pos_Rl (cons r1 l) i); Try Assumption; Change ``(pos_Rl (cons r1 l) O)<=(pos_Rl (cons r1 l) i)``; Elim (RList_P6 (cons r1 l)); Intros; Apply H15; [Assumption | Apply le_O_n | Simpl; Apply lt_trans with (Rlength l); [Apply lt_S_n; Assumption | Apply lt_n_Sn]]. -Qed. - -Lemma StepFun_P39 : (a,b:R;f:(StepFun a b)) (RiemannInt_SF f)==(Ropp (RiemannInt_SF (mkStepFun (StepFun_P6 (pre f))))). -Intros; Unfold RiemannInt_SF; Case (total_order_Rle a b); Case (total_order_Rle b a); Intros. -Assert H : (adapted_couple f a b (subdivision f) (subdivision_val f)); [Apply StepFun_P1 | Assert H0 : (adapted_couple (mkStepFun (StepFun_P6 (pre f))) b a (subdivision (mkStepFun (StepFun_P6 (pre f)))) (subdivision_val (mkStepFun (StepFun_P6 (pre f))))); [Apply StepFun_P1 | Assert H1 : a==b; [Apply Rle_antisym; Assumption | Rewrite (StepFun_P8 H H1); Assert H2 : b==a; [Symmetry; Apply H1 | Rewrite (StepFun_P8 H0 H2); Ring]]]]. -Rewrite Ropp_Ropp; EApply StepFun_P17; [Apply StepFun_P1 | Apply StepFun_P2; Pose H := (StepFun_P6 (pre f)); Unfold IsStepFun in H; Elim H; Intros; Unfold is_subdivision; Elim p; Intros; Apply p0]. -Apply eq_Ropp; EApply StepFun_P17; [Apply StepFun_P1 | Apply StepFun_P2; Pose H := (StepFun_P6 (pre f)); Unfold IsStepFun in H; Elim H; Intros; Unfold is_subdivision; Elim p; Intros; Apply p0]. -Assert H : ``aR;a,b,c:R;l1,l2,lf1,lf2:Rlist) ``a ``b (adapted_couple f a b l1 lf1) -> (adapted_couple f b c l2 lf2) -> (adapted_couple f a c (cons_Rlist l1 l2) (FF (cons_Rlist l1 l2) f)). -Intros f a b c l1 l2 lf1 lf2 H H0 H1 H2; Unfold adapted_couple in H1 H2; Unfold adapted_couple; Decompose [and] H1; Decompose [and] H2; Clear H1 H2; Repeat Split. -Apply RList_P25; Try Assumption. -Rewrite H10; Rewrite H4; Unfold Rmin Rmax; Case (total_order_Rle a b); Case (total_order_Rle b c); Intros; (Right; Reflexivity) Orelse (Elim n; Left; Assumption). -Rewrite RList_P22. -Rewrite H5; Unfold Rmin Rmax; Case (total_order_Rle a b); Case (total_order_Rle a c); Intros; [Reflexivity | Elim n; Apply Rle_trans with b; Left; Assumption | Elim n; Left; Assumption | Elim n0; Left; Assumption]. -Red; Intro; Rewrite H1 in H6; Discriminate. -Rewrite RList_P24. -Rewrite H9; Unfold Rmin Rmax; Case (total_order_Rle b c); Case (total_order_Rle a c); Intros; [Reflexivity | Elim n; Apply Rle_trans with b; Left; Assumption | Elim n; Left; Assumption | Elim n0; Left; Assumption]. -Red; Intro; Rewrite H1 in H11; Discriminate. -Apply StepFun_P20. -Rewrite RList_P23; Apply neq_O_lt; Red; Intro. -Assert H2 : (plus (Rlength l1) (Rlength l2))=O. -Symmetry; Apply H1. -Elim (plus_is_O ? ? H2); Intros; Rewrite H12 in H6; Discriminate. -Unfold constant_D_eq open_interval; Intros; Elim (le_or_lt (S (S i)) (Rlength l1)); Intro. -Assert H14 : (pos_Rl (cons_Rlist l1 l2) i) == (pos_Rl l1 i). -Apply RList_P26; Apply lt_S_n; Apply le_lt_n_Sm; Apply le_S_n; Apply le_trans with (Rlength l1); [Assumption | Apply le_n_Sn]. -Assert H15 : (pos_Rl (cons_Rlist l1 l2) (S i))==(pos_Rl l1 (S i)). -Apply RList_P26; Apply lt_S_n; Apply le_lt_n_Sm; Assumption. -Rewrite H14 in H2; Rewrite H15 in H2; Assert H16 : (le (2) (Rlength l1)). -Apply le_trans with (S (S i)); [Repeat Apply le_n_S; Apply le_O_n | Assumption]. -Elim (RList_P20 ? H16); Intros r1 [r2 [r3 H17]]; Rewrite H17; Change (f x)==(pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i); Rewrite RList_P12. -Induction i. -Simpl; Assert H18 := (H8 O); Unfold constant_D_eq open_interval in H18; Assert H19 : (lt O (pred (Rlength l1))). -Rewrite H17; Simpl; Apply lt_O_Sn. -Assert H20 := (H18 H19); Repeat Rewrite H20. -Reflexivity. -Assert H21 : ``r1<=r2``. -Rewrite H17 in H3; Apply (H3 O). -Simpl; Apply lt_O_Sn. -Elim H21; Intro. -Split. -Rewrite H17; Simpl; Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]]. -Rewrite H17; Simpl; Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite (Rplus_sym r1); Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]]. -Elim H2; Intros; Rewrite H17 in H23; Rewrite H17 in H24; Simpl in H24; Simpl in H23; Rewrite H22 in H23; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H23 H24)). -Assumption. -Clear Hreci; Rewrite RList_P13. -Rewrite H17 in H14; Rewrite H17 in H15; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) i)== (pos_Rl (cons r1 (cons r2 r3)) (S i)) in H14; Rewrite H14; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) (S i))==(pos_Rl (cons r1 (cons r2 r3)) (S (S i))) in H15; Rewrite H15; Assert H18 := (H8 (S i)); Unfold constant_D_eq open_interval in H18; Assert H19 : (lt (S i) (pred (Rlength l1))). -Apply lt_pred; Apply lt_S_n; Apply le_lt_n_Sm; Assumption. -Assert H20 := (H18 H19); Repeat Rewrite H20. -Reflexivity. -Rewrite <- H17; Assert H21 : ``(pos_Rl l1 (S i))<=(pos_Rl l1 (S (S i)))``. -Apply (H3 (S i)); Apply lt_pred; Apply lt_S_n; Apply le_lt_n_Sm; Assumption. -Elim H21; Intro. -Split. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]]. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite (Rplus_sym (pos_Rl l1 (S i))); Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]]. -Elim H2; Intros; Rewrite H22 in H23; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H23 H24)). -Assumption. -Simpl; Rewrite H17 in H1; Simpl in H1; Apply lt_S_n; Assumption. -Rewrite RList_P14; Rewrite H17 in H1; Simpl in H1; Apply H1. -Inversion H12. -Assert H16 : (pos_Rl (cons_Rlist l1 l2) (S i))==b. -Rewrite RList_P29. -Rewrite H15; Rewrite <- minus_n_n; Rewrite H10; Unfold Rmin; Case (total_order_Rle b c); Intro; [Reflexivity | Elim n; Left; Assumption]. -Rewrite H15; Apply le_n. -Induction l1. -Simpl in H15; Discriminate. -Clear Hrecl1; Simpl in H1; Simpl; Apply lt_n_S; Assumption. -Assert H17 : (pos_Rl (cons_Rlist l1 l2) i)==b. -Rewrite RList_P26. -Replace i with (pred (Rlength l1)); [Rewrite H4; Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Left; Assumption] | Rewrite H15; Reflexivity]. -Rewrite H15; Apply lt_n_Sn. -Rewrite H16 in H2; Rewrite H17 in H2; Elim H2; Intros; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H14 H18)). -Assert H16 : (pos_Rl (cons_Rlist l1 l2) i) == (pos_Rl l2 (minus i (Rlength l1))). -Apply RList_P29. -Apply le_S_n; Assumption. -Apply lt_le_trans with (pred (Rlength (cons_Rlist l1 l2))); [Assumption | Apply le_pred_n]. -Assert H17 : (pos_Rl (cons_Rlist l1 l2) (S i))==(pos_Rl l2 (S (minus i (Rlength l1)))). -Replace (S (minus i (Rlength l1))) with (minus (S i) (Rlength l1)). -Apply RList_P29. -Apply le_S_n; Apply le_trans with (S i); [Assumption | Apply le_n_Sn]. -Induction l1. -Simpl in H6; Discriminate. -Clear Hrecl1; Simpl in H1; Simpl; Apply lt_n_S; Assumption. -Symmetry; Apply minus_Sn_m; Apply le_S_n; Assumption. -Assert H18 : (le (2) (Rlength l1)). -Clear f c l2 lf2 H0 H3 H8 H7 H10 H9 H11 H13 i H1 x H2 H12 m H14 H15 H16 H17; Induction l1. -Discriminate. -Clear Hrecl1; Induction l1. -Simpl in H5; Simpl in H4; Assert H0 : ``(Rmin a b)<(Rmax a b)``. -Unfold Rmin Rmax; Case (total_order_Rle a b); Intro; [Assumption | Elim n; Left; Assumption]. -Rewrite <- H5 in H0; Rewrite <- H4 in H0; Elim (Rlt_antirefl ? H0). -Clear Hrecl1; Simpl; Repeat Apply le_n_S; Apply le_O_n. -Elim (RList_P20 ? H18); Intros r1 [r2 [r3 H19]]; Rewrite H19; Change (f x)==(pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i); Rewrite RList_P12. -Induction i. -Assert H20 := (le_S_n ? ? H15); Assert H21 := (le_trans ? ? ? H18 H20); Elim (le_Sn_O ? H21). -Clear Hreci; Rewrite RList_P13. -Rewrite H19 in H16; Rewrite H19 in H17; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) i)== (pos_Rl l2 (minus (S i) (Rlength (cons r1 (cons r2 r3))))) in H16; Rewrite H16; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) (S i))== (pos_Rl l2 (S (minus (S i) (Rlength (cons r1 (cons r2 r3)))))) in H17; Rewrite H17; Assert H20 := (H13 (minus (S i) (Rlength l1))); Unfold constant_D_eq open_interval in H20; Assert H21 : (lt (minus (S i) (Rlength l1)) (pred (Rlength l2))). -Apply lt_pred; Rewrite minus_Sn_m. -Apply simpl_lt_plus_l with (Rlength l1); Rewrite <- le_plus_minus. -Rewrite H19 in H1; Simpl in H1; Rewrite H19; Simpl; Rewrite RList_P23 in H1; Apply lt_n_S; Assumption. -Apply le_trans with (S i); [Apply le_S_n; Assumption | Apply le_n_Sn]. -Apply le_S_n; Assumption. -Assert H22 := (H20 H21); Repeat Rewrite H22. -Reflexivity. -Rewrite <- H19; Assert H23 : ``(pos_Rl l2 (minus (S i) (Rlength l1)))<=(pos_Rl l2 (S (minus (S i) (Rlength l1))))``. -Apply H7; Apply lt_pred. -Rewrite minus_Sn_m. -Apply simpl_lt_plus_l with (Rlength l1); Rewrite <- le_plus_minus. -Rewrite H19 in H1; Simpl in H1; Rewrite H19; Simpl; Rewrite RList_P23 in H1; Apply lt_n_S; Assumption. -Apply le_trans with (S i); [Apply le_S_n; Assumption | Apply le_n_Sn]. -Apply le_S_n; Assumption. -Elim H23; Intro. -Split. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]]. -Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite (Rplus_sym (pos_Rl l2 (minus (S i) (Rlength l1)))); Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]]. -Rewrite <- H19 in H16; Rewrite <- H19 in H17; Elim H2; Intros; Rewrite H19 in H25; Rewrite H19 in H26; Simpl in H25; Simpl in H16; Rewrite H16 in H25; Simpl in H26; Simpl in H17; Rewrite H17 in H26; Simpl in H24; Rewrite H24 in H25; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H25 H26)). -Assert H23 : (pos_Rl (cons_Rlist l1 l2) (S i))==(pos_Rl l2 (minus (S i) (Rlength l1))). -Rewrite H19; Simpl; Simpl in H16; Apply H16. -Assert H24 : (pos_Rl (cons_Rlist l1 l2) (S (S i)))==(pos_Rl l2 (S (minus (S i) (Rlength l1)))). -Rewrite H19; Simpl; Simpl in H17; Apply H17. -Rewrite <- H23; Rewrite <- H24; Assumption. -Simpl; Rewrite H19 in H1; Simpl in H1; Apply lt_S_n; Assumption. -Rewrite RList_P14; Rewrite H19 in H1; Simpl in H1; Simpl; Apply H1. -Qed. - -Lemma StepFun_P41 : (f:R->R;a,b,c:R) ``a<=b``->``b<=c``->(IsStepFun f a b) -> (IsStepFun f b c) -> (IsStepFun f a c). -Unfold IsStepFun; Unfold is_subdivision; Intros; Elim X; Clear X; Intros l1 [lf1 H1]; Elim X0; Clear X0; Intros l2 [lf2 H2]; Case (total_order_T a b); Intro. -Elim s; Intro. -Case (total_order_T b c); Intro. -Elim s0; Intro. -Split with (cons_Rlist l1 l2); Split with (FF (cons_Rlist l1 l2) f); Apply StepFun_P40 with b lf1 lf2; Assumption. -Split with l1; Split with lf1; Rewrite b0 in H1; Assumption. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 r)). -Split with l2; Split with lf2; Rewrite <- b0 in H2; Assumption. -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)). -Qed. - -Lemma StepFun_P42 : (l1,l2:Rlist;f:R->R) (pos_Rl l1 (pred (Rlength l1)))==(pos_Rl l2 O) -> ``(Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2)) == (Int_SF (FF l1 f) l1) + (Int_SF (FF l2 f) l2)``. -Intros l1 l2 f; NewInduction l1 as [|r l1 IHl1]; Intros H; [ Simpl; Ring | NewDestruct l1; [Simpl in H; Simpl; NewDestruct l2; [Simpl; Ring | Simpl; Simpl in H; Rewrite H; Ring] | Simpl; Rewrite Rplus_assoc; Apply Rplus_plus_r; Apply IHl1; Rewrite <- H; Reflexivity]]. -Qed. - -Lemma StepFun_P43 : (f:R->R;a,b,c:R;pr1:(IsStepFun f a b);pr2:(IsStepFun f b c);pr3:(IsStepFun f a c)) ``(RiemannInt_SF (mkStepFun pr1))+(RiemannInt_SF (mkStepFun pr2))==(RiemannInt_SF (mkStepFun pr3))``. -Intros f; Intros; Assert H1 : (SigT ? [l:Rlist](sigTT ? [l0:Rlist](adapted_couple f a b l l0))). -Apply pr1. -Assert H2 : (SigT ? [l:Rlist](sigTT ? [l0:Rlist](adapted_couple f b c l l0))). -Apply pr2. -Assert H3 : (SigT ? [l:Rlist](sigTT ? [l0:Rlist](adapted_couple f a c l l0))). -Apply pr3. -Elim H1; Clear H1; Intros l1 [lf1 H1]; Elim H2; Clear H2; Intros l2 [lf2 H2]; Elim H3; Clear H3; Intros l3 [lf3 H3]. -Replace (RiemannInt_SF (mkStepFun pr1)) with (Cases (total_order_Rle a b) of (leftT _) => (Int_SF lf1 l1) | (rightT _) => ``-(Int_SF lf1 l1)`` end). -Replace (RiemannInt_SF (mkStepFun pr2)) with (Cases (total_order_Rle b c) of (leftT _) => (Int_SF lf2 l2) | (rightT _) => ``-(Int_SF lf2 l2)`` end). -Replace (RiemannInt_SF (mkStepFun pr3)) with (Cases (total_order_Rle a c) of (leftT _) => (Int_SF lf3 l3) | (rightT _) => ``-(Int_SF lf3 l3)`` end). -Case (total_order_Rle a b); Case (total_order_Rle b c); Case (total_order_Rle a c); Intros. -Elim r1; Intro. -Elim r0; Intro. -Replace (Int_SF lf3 l3) with (Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2)). -Replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1). -Replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2). -Symmetry; Apply StepFun_P42. -Unfold adapted_couple in H1 H2; Decompose [and] H1; Decompose [and] H2; Clear H1 H2; Rewrite H11; Rewrite H5; Unfold Rmax Rmin; Case (total_order_Rle a b); Case (total_order_Rle b c); Intros; Reflexivity Orelse Elim n; Assumption. -EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf2; Apply H2; Assumption | Assumption]. -EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf1; Apply H1 | Assumption]. -EApply StepFun_P17; [Apply (StepFun_P40 H H0 H1 H2) | Apply H3]. -Replace (Int_SF lf2 l2) with R0. -Rewrite Rplus_Or; EApply StepFun_P17; [Apply H1 | Rewrite <- H0 in H3; Apply H3]. -Symmetry; EApply StepFun_P8; [Apply H2 | Assumption]. -Replace (Int_SF lf1 l1) with R0. -Rewrite Rplus_Ol; EApply StepFun_P17; [Apply H2 | Rewrite H in H3; Apply H3]. -Symmetry; EApply StepFun_P8; [Apply H1 | Assumption]. -Elim n; Apply Rle_trans with b; Assumption. -Apply r_Rplus_plus with (Int_SF lf2 l2); Replace ``(Int_SF lf2 l2)+((Int_SF lf1 l1)+ -(Int_SF lf2 l2))`` with (Int_SF lf1 l1); [Idtac | Ring]. -Assert H : ``cR;a,b,c:R) (IsStepFun f a b) -> ``a<=c<=b`` -> (IsStepFun f a c). -Intros f; Intros; Assert H0 : ``a<=b``. -Elim H; Intros; Apply Rle_trans with c; Assumption. -Elim H; Clear H; Intros; Unfold IsStepFun in X; Unfold is_subdivision in X; Elim X; Clear X; Intros l1 [lf1 H2]; Cut (l1,lf1:Rlist;a,b,c:R;f:R->R) (adapted_couple f a b l1 lf1) -> ``a<=c<=b`` -> (SigT ? [l:Rlist](sigTT ? [l0:Rlist](adapted_couple f a c l l0))). -Intros; Unfold IsStepFun; Unfold is_subdivision; EApply X. -Apply H2. -Split; Assumption. -Clear f a b c H0 H H1 H2 l1 lf1; Induction l1. -Intros; Unfold adapted_couple in H; Decompose [and] H; Clear H; Simpl in H4; Discriminate. -Induction r0. -Intros; Assert H1 : ``a==b``. -Unfold adapted_couple in H; Decompose [and] H; Clear H; Simpl in H3; Simpl in H2; Assert H7 : ``a<=b``. -Elim H0; Intros; Apply Rle_trans with c; Assumption. -Replace a with (Rmin a b). -Pattern 2 b; Replace b with (Rmax a b). -Rewrite <- H2; Rewrite H3; Reflexivity. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Split with (cons r nil); Split with lf1; Assert H2 : ``c==b``. -Rewrite H1 in H0; Elim H0; Intros; Apply Rle_antisym; Assumption. -Rewrite H2; Assumption. -Intros; Clear X; Induction lf1. -Unfold adapted_couple in H; Decompose [and] H; Clear H; Simpl in H4; Discriminate. -Clear Hreclf1; Assert H1 : (sumboolT ``c<=r1`` ``r1R;a,b,c:R) (IsStepFun f a b) -> ``a<=c<=b`` -> (IsStepFun f c b). -Intros f; Intros; Assert H0 : ``a<=b``. -Elim H; Intros; Apply Rle_trans with c; Assumption. -Elim H; Clear H; Intros; Unfold IsStepFun in X; Unfold is_subdivision in X; Elim X; Clear X; Intros l1 [lf1 H2]; Cut (l1,lf1:Rlist;a,b,c:R;f:R->R) (adapted_couple f a b l1 lf1) -> ``a<=c<=b`` -> (SigT ? [l:Rlist](sigTT ? [l0:Rlist](adapted_couple f c b l l0))). -Intros; Unfold IsStepFun; Unfold is_subdivision; EApply X; [Apply H2 | Split; Assumption]. -Clear f a b c H0 H H1 H2 l1 lf1; Induction l1. -Intros; Unfold adapted_couple in H; Decompose [and] H; Clear H; Simpl in H4; Discriminate. -Induction r0. -Intros; Assert H1 : ``a==b``. -Unfold adapted_couple in H; Decompose [and] H; Clear H; Simpl in H3; Simpl in H2; Assert H7 : ``a<=b``. -Elim H0; Intros; Apply Rle_trans with c; Assumption. -Replace a with (Rmin a b). -Pattern 2 b; Replace b with (Rmax a b). -Rewrite <- H2; Rewrite H3; Reflexivity. -Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]. -Split with (cons r nil); Split with lf1; Assert H2 : ``c==b``. -Rewrite H1 in H0; Elim H0; Intros; Apply Rle_antisym; Assumption. -Rewrite <- H2 in H1; Rewrite <- H1; Assumption. -Intros; Clear X; Induction lf1. -Unfold adapted_couple in H; Decompose [and] H; Clear H; Simpl in H4; Discriminate. -Clear Hreclf1; Assert H1 : (sumboolT ``c<=r1`` ``r1R;a,b,c:R) (IsStepFun f a b) -> (IsStepFun f b c) -> (IsStepFun f a c). -Intros f; Intros; Case (total_order_Rle a b); Case (total_order_Rle b c); Intros. -Apply StepFun_P41 with b; Assumption. -Case (total_order_Rle a c); Intro. -Apply StepFun_P44 with b; Try Assumption. -Split; [Assumption | Auto with real]. -Apply StepFun_P6; Apply StepFun_P44 with b. -Apply StepFun_P6; Assumption. -Split; Auto with real. -Case (total_order_Rle a c); Intro. -Apply StepFun_P45 with b; Try Assumption. -Split; Auto with real. -Apply StepFun_P6; Apply StepFun_P45 with b. -Apply StepFun_P6; Assumption. -Split; [Assumption | Auto with real]. -Apply StepFun_P6; Apply StepFun_P41 with b; Auto with real Orelse Apply StepFun_P6; Assumption. -Qed. diff --git a/theories7/Reals/Rlimit.v b/theories7/Reals/Rlimit.v deleted file mode 100644 index 3308b2e3..00000000 --- a/theories7/Reals/Rlimit.v +++ /dev/null @@ -1,539 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* - (Rgt (Rmult eps (Rinv (Rplus R1 R1))) R0). -Intros;Fourier. -Qed. - -(*********) -Lemma eps2:(eps:R)(Rplus (Rmult eps (Rinv (Rplus R1 R1))) - (Rmult eps (Rinv (Rplus R1 R1))))==eps. -Intro esp. -Assert H := (double_var esp). -Unfold Rdiv in H. -Symmetry; Exact H. -Qed. - -(*********) -Lemma eps4:(eps:R) - (Rplus (Rmult eps (Rinv (Rplus (Rplus R1 R1) (Rplus R1 R1) ))) - (Rmult eps (Rinv (Rplus (Rplus R1 R1) (Rplus R1 R1) ))))== - (Rmult eps (Rinv (Rplus R1 R1))). -Intro eps. -Replace ``2+2`` with ``2*2``. -Pattern 3 eps; Rewrite double_var. -Rewrite (Rmult_Rplus_distrl ``eps/2`` ``eps/2`` ``/2``). -Unfold Rdiv. -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_Rmult. -Reflexivity. -DiscrR. -DiscrR. -Ring. -Qed. - -(*********) -Lemma Rlt_eps2_eps:(eps:R)(Rgt eps R0)-> - (Rlt (Rmult eps (Rinv (Rplus R1 R1))) eps). -Intros. -Pattern 2 eps; Rewrite <- Rmult_1r. -Repeat Rewrite (Rmult_sym eps). -Apply Rlt_monotony_r. -Exact H. -Apply Rlt_monotony_contra with ``2``. -Fourier. -Rewrite Rmult_1r; Rewrite <- Rinv_r_sym. -Fourier. -DiscrR. -Qed. - -(*********) -Lemma Rlt_eps4_eps:(eps:R)(Rgt eps R0)-> - (Rlt (Rmult eps (Rinv (Rplus (Rplus R1 R1) (Rplus R1 R1)))) eps). -Intros. -Replace ``2+2`` with ``4``. -Pattern 2 eps; Rewrite <- Rmult_1r. -Repeat Rewrite (Rmult_sym eps). -Apply Rlt_monotony_r. -Exact H. -Apply Rlt_monotony_contra with ``4``. -Replace ``4`` with ``2*2``. -Apply Rmult_lt_pos; Fourier. -Ring. -Rewrite Rmult_1r; Rewrite <- Rinv_r_sym. -Fourier. -DiscrR. -Ring. -Qed. - -(*********) -Lemma prop_eps:(r:R)((eps:R)(Rgt eps R0)->(Rlt r eps))->(Rle r R0). -Intros;Elim (total_order r R0); Intro. -Apply Rlt_le; Assumption. -Elim H0; Intro. -Apply eq_Rle; Assumption. -Clear H0;Generalize (H r H1); Intro;Generalize (Rlt_antirefl r); - Intro;ElimType False; Auto. -Qed. - -(*********) -Definition mul_factor := [l,l':R](Rinv (Rplus R1 (Rplus (Rabsolu l) - (Rabsolu l')))). - -(*********) -Lemma mul_factor_wd : (l,l':R) - ~(Rplus R1 (Rplus (Rabsolu l) (Rabsolu l')))==R0. -Intros;Rewrite (Rplus_sym R1 (Rplus (Rabsolu l) (Rabsolu l'))); - Apply tech_Rplus. -Cut (Rle (Rabsolu (Rplus l l')) (Rplus (Rabsolu l) (Rabsolu l'))). -Cut (Rle R0 (Rabsolu (Rplus l l'))). -Exact (Rle_trans ? ? ?). -Exact (Rabsolu_pos (Rplus l l')). -Exact (Rabsolu_triang ? ?). -Exact Rlt_R0_R1. -Qed. - -(*********) -Lemma mul_factor_gt:(eps:R)(l,l':R)(Rgt eps R0)-> - (Rgt (Rmult eps (mul_factor l l')) R0). -Intros;Unfold Rgt;Rewrite <- (Rmult_Or eps);Apply Rlt_monotony. -Assumption. -Unfold mul_factor;Apply Rlt_Rinv; - Cut (Rle R1 (Rplus R1 (Rplus (Rabsolu l) (Rabsolu l')))). -Cut (Rlt R0 R1). -Exact (Rlt_le_trans ? ? ?). -Exact Rlt_R0_R1. -Replace (Rle R1 (Rplus R1 (Rplus (Rabsolu l) (Rabsolu l')))) - with (Rle (Rplus R1 R0) (Rplus R1 (Rplus (Rabsolu l) (Rabsolu l')))). -Apply Rle_compatibility. -Cut (Rle (Rabsolu (Rplus l l')) (Rplus (Rabsolu l) (Rabsolu l'))). -Cut (Rle R0 (Rabsolu (Rplus l l'))). -Exact (Rle_trans ? ? ?). -Exact (Rabsolu_pos ?). -Exact (Rabsolu_triang ? ?). -Rewrite (proj1 ? ? (Rplus_ne R1));Trivial. -Qed. - -(*********) -Lemma mul_factor_gt_f:(eps:R)(l,l':R)(Rgt eps R0)-> - (Rgt (Rmin R1 (Rmult eps (mul_factor l l'))) R0). -Intros;Apply Rmin_Rgt_r;Split. -Exact Rlt_R0_R1. -Exact (mul_factor_gt eps l l' H). -Qed. - - -(*******************************) -(* Metric space *) -(*******************************) - -(*********) -Record Metric_Space:Type:= { - Base:Type; - dist:Base->Base->R; - dist_pos:(x,y:Base)(Rge (dist x y) R0); - dist_sym:(x,y:Base)(dist x y)==(dist y x); - dist_refl:(x,y:Base)((dist x y)==R0<->x==y); - dist_tri:(x,y,z:Base)(Rle (dist x y) - (Rplus (dist x z) (dist z y))) }. - -(*******************************) -(* Limit in Metric space *) -(*******************************) - -(*********) -Definition limit_in:= - [X:Metric_Space; X':Metric_Space; f:(Base X)->(Base X'); - D:(Base X)->Prop; x0:(Base X); l:(Base X')] - (eps:R)(Rgt eps R0)-> - (EXT alp:R | (Rgt alp R0)/\(x:(Base X))(D x)/\ - (Rlt (dist X x x0) alp)-> - (Rlt (dist X' (f x) l) eps)). - -(*******************************) -(* R is a metric space *) -(*******************************) - -(*********) -Definition R_met:Metric_Space:=(Build_Metric_Space R R_dist - R_dist_pos R_dist_sym R_dist_refl R_dist_tri). - -(*******************************) -(* Limit 1 arg *) -(*******************************) -(*********) -Definition Dgf:=[Df,Dg:R->Prop][f:R->R][x:R](Df x)/\(Dg (f x)). - -(*********) -Definition limit1_in:(R->R)->(R->Prop)->R->R->Prop:= - [f:R->R; D:R->Prop; l:R; x0:R](limit_in R_met R_met f D x0 l). - -(*********) -Lemma tech_limit:(f:R->R)(D:R->Prop)(l:R)(x0:R)(D x0)-> - (limit1_in f D l x0)->l==(f x0). -Intros f D l x0 H H0. -Case (Rabsolu_pos (Rminus (f x0) l)); Intros H1. -Absurd (Rlt (dist R_met (f x0) l) (dist R_met (f x0) l)). -Apply Rlt_antirefl. -Case (H0 (dist R_met (f x0) l)); Auto. -Intros alpha1 (H2, H3); Apply H3; Auto; Split; Auto. -Case (dist_refl R_met x0 x0); Intros Hr1 Hr2; Rewrite Hr2; Auto. -Case (dist_refl R_met (f x0) l); Intros Hr1 Hr2; Apply sym_eqT; Auto. -Qed. - -(*********) -Lemma tech_limit_contr:(f:R->R)(D:R->Prop)(l:R)(x0:R)(D x0)->~l==(f x0) - ->~(limit1_in f D l x0). -Intros;Generalize (tech_limit f D l x0);Tauto. -Qed. - -(*********) -Lemma lim_x:(D:R->Prop)(x0:R)(limit1_in [x:R]x D x0 x0). -Unfold limit1_in; Unfold limit_in; Simpl; Intros;Split with eps; - Split; Auto;Intros;Elim H0; Intros; Auto. -Qed. - -(*********) -Lemma limit_plus:(f,g:R->R)(D:R->Prop)(l,l':R)(x0:R) - (limit1_in f D l x0)->(limit1_in g D l' x0)-> - (limit1_in [x:R](Rplus (f x) (g x)) D (Rplus l l') x0). -Intros;Unfold limit1_in; Unfold limit_in; Simpl; Intros; - Elim (H (Rmult eps (Rinv (Rplus R1 R1))) (eps2_Rgt_R0 eps H1)); - Elim (H0 (Rmult eps (Rinv (Rplus R1 R1))) (eps2_Rgt_R0 eps H1)); - Simpl;Clear H H0; Intros; Elim H; Elim H0; Clear H H0; Intros; - Split with (Rmin x1 x); Split. -Exact (Rmin_Rgt_r x1 x R0 (conj ? ? H H2)). -Intros;Elim H4; Clear H4; Intros; - Cut (Rlt (Rplus (R_dist (f x2) l) (R_dist (g x2) l')) eps). - Cut (Rle (R_dist (Rplus (f x2) (g x2)) (Rplus l l')) - (Rplus (R_dist (f x2) l) (R_dist (g x2) l'))). -Exact (Rle_lt_trans ? ? ?). -Exact (R_dist_plus ? ? ? ?). -Elim (Rmin_Rgt_l x1 x (R_dist x2 x0) H5); Clear H5; Intros. -Generalize (H3 x2 (conj (D x2) (Rlt (R_dist x2 x0) x) H4 H6)); - Generalize (H0 x2 (conj (D x2) (Rlt (R_dist x2 x0) x1) H4 H5)); - Intros; - Replace eps - with (Rplus (Rmult eps (Rinv (Rplus R1 R1))) - (Rmult eps (Rinv (Rplus R1 R1)))). -Exact (Rplus_lt ? ? ? ? H7 H8). -Exact (eps2 eps). -Qed. - -(*********) -Lemma limit_Ropp:(f:R->R)(D:R->Prop)(l:R)(x0:R) - (limit1_in f D l x0)->(limit1_in [x:R](Ropp (f x)) D (Ropp l) x0). -Unfold limit1_in;Unfold limit_in;Simpl;Intros;Elim (H eps H0);Clear H; - Intros;Elim H;Clear H;Intros;Split with x;Split;Auto;Intros; - Generalize (H1 x1 H2);Clear H1;Intro;Unfold R_dist;Unfold Rminus; - Rewrite (Ropp_Ropp l);Rewrite (Rplus_sym (Ropp (f x1)) l); - Fold (Rminus l (f x1));Fold (R_dist l (f x1));Rewrite R_dist_sym; - Assumption. -Qed. - -(*********) -Lemma limit_minus:(f,g:R->R)(D:R->Prop)(l,l':R)(x0:R) - (limit1_in f D l x0)->(limit1_in g D l' x0)-> - (limit1_in [x:R](Rminus (f x) (g x)) D (Rminus l l') x0). -Intros;Unfold Rminus;Generalize (limit_Ropp g D l' x0 H0);Intro; - Exact (limit_plus f [x:R](Ropp (g x)) D l (Ropp l') x0 H H1). -Qed. - -(*********) -Lemma limit_free:(f:R->R)(D:R->Prop)(x:R)(x0:R) - (limit1_in [h:R](f x) D (f x) x0). -Unfold limit1_in;Unfold limit_in;Simpl;Intros;Split with eps;Split; - Auto;Intros;Elim (R_dist_refl (f x) (f x));Intros a b; - Rewrite (b (refl_eqT R (f x)));Unfold Rgt in H;Assumption. -Qed. - -(*********) -Lemma limit_mul:(f,g:R->R)(D:R->Prop)(l,l':R)(x0:R) - (limit1_in f D l x0)->(limit1_in g D l' x0)-> - (limit1_in [x:R](Rmult (f x) (g x)) D (Rmult l l') x0). -Intros;Unfold limit1_in; Unfold limit_in; Simpl; Intros; - Elim (H (Rmin R1 (Rmult eps (mul_factor l l'))) - (mul_factor_gt_f eps l l' H1)); - Elim (H0 (Rmult eps (mul_factor l l')) (mul_factor_gt eps l l' H1)); - Clear H H0; Simpl; Intros; Elim H; Elim H0; Clear H H0; Intros; - Split with (Rmin x1 x); Split. -Exact (Rmin_Rgt_r x1 x R0 (conj ? ? H H2)). -Intros; Elim H4; Clear H4; Intros;Unfold R_dist; - Replace (Rminus (Rmult (f x2) (g x2)) (Rmult l l')) with - (Rplus (Rmult (f x2) (Rminus (g x2) l')) (Rmult l' (Rminus (f x2) l))). -Cut (Rlt (Rplus (Rabsolu (Rmult (f x2) (Rminus (g x2) l'))) (Rabsolu (Rmult l' - (Rminus (f x2) l)))) eps). -Cut (Rle (Rabsolu (Rplus (Rmult (f x2) (Rminus (g x2) l')) (Rmult l' (Rminus - (f x2) l)))) (Rplus (Rabsolu (Rmult (f x2) (Rminus (g x2) l'))) (Rabsolu - (Rmult l' (Rminus (f x2) l))))). -Exact (Rle_lt_trans ? ? ?). -Exact (Rabsolu_triang ? ?). -Rewrite (Rabsolu_mult (f x2) (Rminus (g x2) l')); - Rewrite (Rabsolu_mult l' (Rminus (f x2) l)); - Cut (Rle (Rplus (Rmult (Rplus R1 (Rabsolu l)) (Rmult eps (mul_factor l l'))) - (Rmult (Rabsolu l') (Rmult eps (mul_factor l l')))) eps). -Cut (Rlt (Rplus (Rmult (Rabsolu (f x2)) (Rabsolu (Rminus (g x2) l'))) (Rmult - (Rabsolu l') (Rabsolu (Rminus (f x2) l)))) (Rplus (Rmult (Rplus R1 (Rabsolu - l)) (Rmult eps (mul_factor l l'))) (Rmult (Rabsolu l') (Rmult eps - (mul_factor l l'))))). -Exact (Rlt_le_trans ? ? ?). -Elim (Rmin_Rgt_l x1 x (R_dist x2 x0) H5); Clear H5; Intros; - Generalize (H0 x2 (conj (D x2) (Rlt (R_dist x2 x0) x1) H4 H5));Intro; - Generalize (Rmin_Rgt_l ? ? ? H7);Intro;Elim H8;Intros;Clear H0 H8; - Apply Rplus_lt_le_lt. -Apply Rmult_lt_0. -Apply Rle_sym1. -Exact (Rabsolu_pos (Rminus (g x2) l')). -Rewrite (Rplus_sym R1 (Rabsolu l));Unfold Rgt;Apply Rlt_r_plus_R1; - Exact (Rabsolu_pos l). -Unfold R_dist in H9; - Apply (Rlt_anti_compatibility (Ropp (Rabsolu l)) (Rabsolu (f x2)) - (Rplus R1 (Rabsolu l))). -Rewrite <- (Rplus_assoc (Ropp (Rabsolu l)) R1 (Rabsolu l)); - Rewrite (Rplus_sym (Ropp (Rabsolu l)) R1); - Rewrite (Rplus_assoc R1 (Ropp (Rabsolu l)) (Rabsolu l)); - Rewrite (Rplus_Ropp_l (Rabsolu l)); - Rewrite (proj1 ? ? (Rplus_ne R1)); - Rewrite (Rplus_sym (Ropp (Rabsolu l)) (Rabsolu (f x2))); - Generalize H9; -Cut (Rle (Rminus (Rabsolu (f x2)) (Rabsolu l)) (Rabsolu (Rminus (f x2) l))). -Exact (Rle_lt_trans ? ? ?). -Exact (Rabsolu_triang_inv ? ?). -Generalize (H3 x2 (conj (D x2) (Rlt (R_dist x2 x0) x) H4 H6));Trivial. -Apply Rle_monotony. -Exact (Rabsolu_pos l'). -Unfold Rle;Left;Assumption. -Rewrite (Rmult_sym (Rplus R1 (Rabsolu l)) (Rmult eps (mul_factor l l'))); - Rewrite (Rmult_sym (Rabsolu l') (Rmult eps (mul_factor l l'))); - Rewrite <- (Rmult_Rplus_distr - (Rmult eps (mul_factor l l')) - (Rplus R1 (Rabsolu l)) - (Rabsolu l')); - Rewrite (Rmult_assoc eps (mul_factor l l') (Rplus (Rplus R1 (Rabsolu l)) - (Rabsolu l'))); - Rewrite (Rplus_assoc R1 (Rabsolu l) (Rabsolu l'));Unfold mul_factor; - Rewrite (Rinv_l (Rplus R1 (Rplus (Rabsolu l) (Rabsolu l'))) - (mul_factor_wd l l')); - Rewrite (proj1 ? ? (Rmult_ne eps));Apply eq_Rle;Trivial. -Ring. -Qed. - -(*********) -Definition adhDa:(R->Prop)->R->Prop:=[D:R->Prop][a:R] - (alp:R)(Rgt alp R0)->(EXT x:R | (D x)/\(Rlt (R_dist x a) alp)). - -(*********) -Lemma single_limit:(f:R->R)(D:R->Prop)(l:R)(l':R)(x0:R) - (adhDa D x0)->(limit1_in f D l x0)->(limit1_in f D l' x0)->l==l'. -Unfold limit1_in; Unfold limit_in; Intros. -Cut (eps:R)(Rgt eps R0)->(Rlt (dist R_met l l') - (Rmult (Rplus R1 R1) eps)). -Clear H0 H1;Unfold dist; Unfold R_met; Unfold R_dist; - Unfold Rabsolu;Case (case_Rabsolu (Rminus l l')); Intros. -Cut (eps:R)(Rgt eps R0)->(Rlt (Ropp (Rminus l l')) eps). -Intro;Generalize (prop_eps (Ropp (Rminus l l')) H1);Intro; - Generalize (Rlt_RoppO (Rminus l l') r); Intro;Unfold Rgt in H3; - Generalize (Rle_not (Ropp (Rminus l l')) R0 H3); Intro; - ElimType False; Auto. -Intros;Cut (Rgt (Rmult eps (Rinv (Rplus R1 R1))) R0). -Intro;Generalize (H0 (Rmult eps (Rinv (Rplus R1 R1))) H2); - Rewrite (Rmult_sym eps (Rinv (Rplus R1 R1))); - Rewrite <- (Rmult_assoc (Rplus R1 R1) (Rinv (Rplus R1 R1)) eps); - Rewrite (Rinv_r (Rplus R1 R1)). -Elim (Rmult_ne eps);Intros a b;Rewrite b;Clear a b;Trivial. -Apply (imp_not_Req (Rplus R1 R1) R0);Right;Generalize Rlt_R0_R1;Intro; - Unfold Rgt;Generalize (Rlt_compatibility R1 R0 R1 H3);Intro; - Elim (Rplus_ne R1);Intros a b;Rewrite a in H4;Clear a b; - Apply (Rlt_trans R0 R1 (Rplus R1 R1) H3 H4). -Unfold Rgt;Unfold Rgt in H1; - Rewrite (Rmult_sym eps(Rinv (Rplus R1 R1))); - Rewrite <-(Rmult_Or (Rinv (Rplus R1 R1))); - Apply (Rlt_monotony (Rinv (Rplus R1 R1)) R0 eps);Auto. -Apply (Rlt_Rinv (Rplus R1 R1));Cut (Rlt R1 (Rplus R1 R1)). -Intro;Apply (Rlt_trans R0 R1 (Rplus R1 R1) Rlt_R0_R1 H2). -Generalize (Rlt_compatibility R1 R0 R1 Rlt_R0_R1);Elim (Rplus_ne R1); - Intros a b;Rewrite a;Clear a b;Trivial. -(**) -Cut (eps:R)(Rgt eps R0)->(Rlt (Rminus l l') eps). -Intro;Generalize (prop_eps (Rminus l l') H1);Intro; - Elim (Rle_le_eq (Rminus l l') R0);Intros a b;Clear b; - Apply (Rminus_eq l l');Apply a;Split. -Assumption. -Apply (Rle_sym2 R0 (Rminus l l') r). -Intros;Cut (Rgt (Rmult eps (Rinv (Rplus R1 R1))) R0). -Intro;Generalize (H0 (Rmult eps (Rinv (Rplus R1 R1))) H2); - Rewrite (Rmult_sym eps (Rinv (Rplus R1 R1))); - Rewrite <- (Rmult_assoc (Rplus R1 R1) (Rinv (Rplus R1 R1)) eps); - Rewrite (Rinv_r (Rplus R1 R1)). -Elim (Rmult_ne eps);Intros a b;Rewrite b;Clear a b;Trivial. -Apply (imp_not_Req (Rplus R1 R1) R0);Right;Generalize Rlt_R0_R1;Intro; - Unfold Rgt;Generalize (Rlt_compatibility R1 R0 R1 H3);Intro; - Elim (Rplus_ne R1);Intros a b;Rewrite a in H4;Clear a b; - Apply (Rlt_trans R0 R1 (Rplus R1 R1) H3 H4). -Unfold Rgt;Unfold Rgt in H1; - Rewrite (Rmult_sym eps(Rinv (Rplus R1 R1))); - Rewrite <-(Rmult_Or (Rinv (Rplus R1 R1))); - Apply (Rlt_monotony (Rinv (Rplus R1 R1)) R0 eps);Auto. -Apply (Rlt_Rinv (Rplus R1 R1));Cut (Rlt R1 (Rplus R1 R1)). -Intro;Apply (Rlt_trans R0 R1 (Rplus R1 R1) Rlt_R0_R1 H2). -Generalize (Rlt_compatibility R1 R0 R1 Rlt_R0_R1);Elim (Rplus_ne R1); - Intros a b;Rewrite a;Clear a b;Trivial. -(**) -Intros;Unfold adhDa in H;Elim (H0 eps H2);Intros;Elim (H1 eps H2); - Intros;Clear H0 H1;Elim H3;Elim H4;Clear H3 H4;Intros; - Simpl;Simpl in H1 H4;Generalize (Rmin_Rgt x x1 R0);Intro;Elim H5; - Intros;Clear H5; - Elim (H (Rmin x x1) (H7 (conj (Rgt x R0) (Rgt x1 R0) H3 H0))); - Intros; Elim H5;Intros;Clear H5 H H6 H7; - Generalize (Rmin_Rgt x x1 (R_dist x2 x0));Intro;Elim H; - Intros;Clear H H6;Unfold Rgt in H5;Elim (H5 H9);Intros;Clear H5 H9; - Generalize (H1 x2 (conj (D x2) (Rlt (R_dist x2 x0) x1) H8 H6)); - Generalize (H4 x2 (conj (D x2) (Rlt (R_dist x2 x0) x) H8 H)); - Clear H8 H H6 H1 H4 H0 H3;Intros; - Generalize (Rplus_lt (R_dist (f x2) l) eps (R_dist (f x2) l') eps - H H0); Unfold R_dist;Intros; - Rewrite (Rabsolu_minus_sym (f x2) l) in H1; - Rewrite (Rmult_sym (Rplus R1 R1) eps);Rewrite (Rmult_Rplus_distr eps R1 R1); - Elim (Rmult_ne eps);Intros a b;Rewrite a;Clear a b; - Generalize (R_dist_tri l l' (f x2));Unfold R_dist;Intros; - Apply (Rle_lt_trans (Rabsolu (Rminus l l')) - (Rplus (Rabsolu (Rminus l (f x2))) (Rabsolu (Rminus (f x2) l'))) - (Rplus eps eps) H3 H1). -Qed. - -(*********) -Lemma limit_comp:(f,g:R->R)(Df,Dg:R->Prop)(l,l':R)(x0:R) - (limit1_in f Df l x0)->(limit1_in g Dg l' l)-> - (limit1_in [x:R](g (f x)) (Dgf Df Dg f) l' x0). -Unfold limit1_in limit_in Dgf;Simpl. -Intros f g Df Dg l l' x0 Hf Hg eps eps_pos. -Elim (Hg eps eps_pos). -Intros alpg lg. -Elim (Hf alpg). -2: Tauto. -Intros alpf lf. -Exists alpf. -Intuition. -Qed. - -(*********) - -Lemma limit_inv : (f:R->R)(D:R->Prop)(l:R)(x0:R) (limit1_in f D l x0)->~(l==R0)->(limit1_in [x:R](Rinv (f x)) D (Rinv l) x0). -Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Elim (H ``(Rabsolu l)/2``). -Intros delta1 H2; Elim (H ``eps*((Rsqr l)/2)``). -Intros delta2 H3; Elim H2; Elim H3; Intros; Exists (Rmin delta1 delta2); Split. -Unfold Rmin; Case (total_order_Rle delta1 delta2); Intro; Assumption. -Intro; Generalize (H5 x); Clear H5; Intro H5; Generalize (H7 x); Clear H7; Intro H7; Intro H10; Elim H10; Intros; Cut (D x)/\``(Rabsolu (x-x0))R->R; main properties *) -(************************************************************) - -Require Rbase. -Require Rfunctions. -Require SeqSeries. -Require Rtrigo. -Require Ranalysis1. -Require Exp_prop. -Require Rsqrt_def. -Require R_sqrt. -Require MVT. -Require Ranalysis4. -V7only [Import R_scope.]. Open Local Scope R_scope. - -Lemma P_Rmin: (P : R -> Prop) (x, y : R) (P x) -> (P y) -> (P (Rmin x y)). -Intros P x y H1 H2; Unfold Rmin; Case (total_order_Rle x y); Intro; Assumption. -Qed. - -Lemma exp_le_3 : ``(exp 1)<=3``. -Assert exp_1 : ``(exp 1)<>0``. -Assert H0 := (exp_pos R1); Red; Intro; Rewrite H in H0; Elim (Rlt_antirefl ? H0). -Apply Rle_monotony_contra with ``/(exp 1)``. -Apply Rlt_Rinv; Apply exp_pos. -Rewrite <- Rinv_l_sym. -Apply Rle_monotony_contra with ``/3``. -Apply Rlt_Rinv; Sup0. -Rewrite Rmult_1r; Rewrite <- (Rmult_sym ``3``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l; Replace ``/(exp 1)`` with ``(exp (-1))``. -Unfold exp; Case (exist_exp ``-1``); Intros; Simpl; Unfold exp_in in e; Assert H := (alternated_series_ineq [i:nat]``/(INR (fact i))`` x (S O)). -Cut ``(sum_f_R0 (tg_alt [([i:nat]``/(INR (fact i))``)]) (S (mult (S (S O)) (S O)))) <= x <= (sum_f_R0 (tg_alt [([i:nat]``/(INR (fact i))``)]) (mult (S (S O)) (S O)))``. -Intro; Elim H0; Clear H0; Intros H0 _; Simpl in H0; Unfold tg_alt in H0; Simpl in H0. -Replace ``/3`` with ``1*/1+ -1*1*/1+ -1*( -1*1)*/2+ -1*( -1*( -1*1))*/(2+1+1+1+1)``. -Apply H0. -Repeat Rewrite Rinv_R1; Repeat Rewrite Rmult_1r; Rewrite Ropp_mul1; Rewrite Rmult_1l; Rewrite Ropp_Ropp; Rewrite Rplus_Ropp_r; Rewrite Rmult_1r; Rewrite Rplus_Ol; Rewrite Rmult_1l; Apply r_Rmult_mult with ``6``. -Rewrite Rmult_Rplus_distr; Replace ``2+1+1+1+1`` with ``6``. -Rewrite <- (Rmult_sym ``/6``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l; Replace ``6`` with ``2*3``. -Do 2 Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Rewrite (Rmult_sym ``3``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Ring. -DiscrR. -DiscrR. -Ring. -DiscrR. -Ring. -DiscrR. -Apply H. -Unfold Un_decreasing; Intros; Apply Rle_monotony_contra with ``(INR (fact n))``. -Apply INR_fact_lt_0. -Apply Rle_monotony_contra with ``(INR (fact (S n)))``. -Apply INR_fact_lt_0. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Rewrite Rmult_sym; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Apply le_INR; Apply fact_growing; Apply le_n_Sn. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Assert H0 := (cv_speed_pow_fact R1); Unfold Un_cv; Unfold Un_cv in H0; Intros; Elim (H0 ? H1); Intros; Exists x0; Intros; Unfold R_dist in H2; Unfold R_dist; Replace ``/(INR (fact n))`` with ``(pow 1 n)/(INR (fact n))``. -Apply (H2 ? H3). -Unfold Rdiv; Rewrite pow1; Rewrite Rmult_1l; Reflexivity. -Unfold infinit_sum in e; Unfold Un_cv tg_alt; Intros; Elim (e ? H0); Intros; Exists x0; Intros; Replace (sum_f_R0 ([i:nat]``(pow ( -1) i)*/(INR (fact i))``) n) with (sum_f_R0 ([i:nat]``/(INR (fact i))*(pow ( -1) i)``) n). -Apply (H1 ? H2). -Apply sum_eq; Intros; Apply Rmult_sym. -Apply r_Rmult_mult with ``(exp 1)``. -Rewrite <- exp_plus; Rewrite Rplus_Ropp_r; Rewrite exp_0; Rewrite <- Rinv_r_sym. -Reflexivity. -Assumption. -Assumption. -DiscrR. -Assumption. -Qed. - -(******************************************************************) -(* Properties of Exp *) -(******************************************************************) - -Theorem exp_increasing: (x, y : R) ``x ``(exp x)<(exp y)``. -Intros x y H. -Assert H0 : (derivable exp). -Apply derivable_exp. -Assert H1 := (positive_derivative ? H0). -Unfold strict_increasing in H1. -Apply H1. -Intro. -Replace (derive_pt exp x0 (H0 x0)) with (exp x0). -Apply exp_pos. -Symmetry; Apply derive_pt_eq_0. -Apply (derivable_pt_lim_exp x0). -Apply H. -Qed. - -Theorem exp_lt_inv: (x, y : R) ``(exp x)<(exp y)`` -> ``x ``1+x < (exp x)``. -Intros; Apply Rlt_anti_compatibility with ``-(exp 0)``; Rewrite <- (Rplus_sym (exp x)); Assert H0 := (MVT_cor1 exp R0 x derivable_exp H); Elim H0; Intros; Elim H1; Intros; Unfold Rminus in H2; Rewrite H2; Rewrite Ropp_O; Rewrite Rplus_Or; Replace (derive_pt exp x0 (derivable_exp x0)) with (exp x0). -Rewrite exp_0; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Pattern 1 x; Rewrite <- Rmult_1r; Rewrite (Rmult_sym (exp x0)); Apply Rlt_monotony. -Apply H. -Rewrite <- exp_0; Apply exp_increasing; Elim H3; Intros; Assumption. -Symmetry; Apply derive_pt_eq_0; Apply derivable_pt_lim_exp. -Qed. - -Lemma ln_exists1 : (y:R) ``0``1<=y``->(sigTT R [z:R]``y==(exp z)``). -Intros; Pose f := [x:R]``(exp x)-y``; Cut ``(f 0)<=0``. -Intro; Cut (continuity f). -Intro; Cut ``0<=(f y)``. -Intro; Cut ``(f 0)*(f y)<=0``. -Intro; Assert X := (IVT_cor f R0 y H2 (Rlt_le ? ? H) H4); Elim X; Intros t H5; Apply existTT with t; Elim H5; Intros; Unfold f in H7; Apply Rminus_eq_right; Exact H7. -Pattern 2 R0; Rewrite <- (Rmult_Or (f y)); Rewrite (Rmult_sym (f R0)); Apply Rle_monotony; Assumption. -Unfold f; Apply Rle_anti_compatibility with y; Left; Apply Rlt_trans with ``1+y``. -Rewrite <- (Rplus_sym y); Apply Rlt_compatibility; Apply Rlt_R0_R1. -Replace ``y+((exp y)-y)`` with (exp y); [Apply (exp_ineq1 y H) | Ring]. -Unfold f; Change (continuity (minus_fct exp (fct_cte y))); Apply continuity_minus; [Apply derivable_continuous; Apply derivable_exp | Apply derivable_continuous; Apply derivable_const]. -Unfold f; Rewrite exp_0; Apply Rle_anti_compatibility with y; Rewrite Rplus_Or; Replace ``y+(1-y)`` with R1; [Apply H0 | Ring]. -Qed. - -(**********) -Lemma ln_exists : (y:R) ``0 (sigTT R [z:R]``y==(exp z)``). -Intros; Case (total_order_Rle R1 y); Intro. -Apply (ln_exists1 ? H r). -Assert H0 : ``1<=/y``. -Apply Rle_monotony_contra with y. -Apply H. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Left; Apply (not_Rle ? ? n). -Red; Intro; Rewrite H0 in H; Elim (Rlt_antirefl ? H). -Assert H1 : ``0 R *) -Definition Rln [y:posreal] : R := Cases (ln_exists (pos y) (RIneq.cond_pos y)) of (existTT a b) => a end. - -(* Extension on R *) -Definition ln : R->R := [x:R](Cases (total_order_Rlt R0 x) of - (leftT a) => (Rln (mkposreal x a)) - | (rightT a) => R0 end). - -Lemma exp_ln : (x : R) ``0 (exp (ln x)) == x. -Intros; Unfold ln; Case (total_order_Rlt R0 x); Intro. -Unfold Rln; Case (ln_exists (mkposreal x r) (RIneq.cond_pos (mkposreal x r))); Intros. -Simpl in e; Symmetry; Apply e. -Elim n; Apply H. -Qed. - -Theorem exp_inv: (x, y : R) (exp x) == (exp y) -> x == y. -Intros x y H; Case (total_order x y); [Intros H1 | Intros [H1|H1]]; Auto; Assert H2 := (exp_increasing ? ? H1); Rewrite H in H2; Elim (Rlt_antirefl ? H2). -Qed. - -Theorem exp_Ropp: (x : R) ``(exp (-x)) == /(exp x)``. -Intros x; Assert H : ``(exp x)<>0``. -Assert H := (exp_pos x); Red; Intro; Rewrite H0 in H; Elim (Rlt_antirefl ? H). -Apply r_Rmult_mult with r := (exp x). -Rewrite <- exp_plus; Rewrite Rplus_Ropp_r; Rewrite exp_0. -Apply Rinv_r_sym. -Apply H. -Apply H. -Qed. - -(******************************************************************) -(* Properties of Ln *) -(******************************************************************) - -Theorem ln_increasing: - (x, y : R) ``0 ``x ``(ln x) < (ln y)``. -Intros x y H H0; Apply exp_lt_inv. -Repeat Rewrite exp_ln. -Apply H0. -Apply Rlt_trans with x; Assumption. -Apply H. -Qed. - -Theorem ln_exp: (x : R) (ln (exp x)) == x. -Intros x; Apply exp_inv. -Apply exp_ln. -Apply exp_pos. -Qed. - -Theorem ln_1: ``(ln 1) == 0``. -Rewrite <- exp_0; Rewrite ln_exp; Reflexivity. -Qed. - -Theorem ln_lt_inv: - (x, y : R) ``0 ``0 ``(ln x)<(ln y)`` -> ``x ``0 (ln x) == (ln y) -> x == y. -Intros x y H H0 H'0; Case (total_order x y); [Intros H1 | Intros [H1|H1]]; Auto. -Assert H2 := (ln_increasing ? ? H H1); Rewrite H'0 in H2; Elim (Rlt_antirefl ? H2). -Assert H2 := (ln_increasing ? ? H0 H1); Rewrite H'0 in H2; Elim (Rlt_antirefl ? H2). -Qed. - -Theorem ln_mult: (x, y : R) ``0 ``0 ``(ln (x*y)) == (ln x)+(ln y)``. -Intros x y H H0; Apply exp_inv. -Rewrite exp_plus. -Repeat Rewrite exp_ln. -Reflexivity. -Assumption. -Assumption. -Apply Rmult_lt_pos; Assumption. -Qed. - -Theorem ln_Rinv: (x : R) ``0 ``(ln (/x)) == -(ln x)``. -Intros x H; Apply exp_inv; Repeat (Rewrite exp_ln Orelse Rewrite exp_Ropp). -Reflexivity. -Assumption. -Apply Rlt_Rinv; Assumption. -Qed. - -Theorem ln_continue: - (y : R) ``0 (continue_in ln [x : R] (Rlt R0 x) y). -Intros y H. -Unfold continue_in limit1_in limit_in; Intros eps Heps. -Cut (Rlt R1 (exp eps)); [Intros H1 | Idtac]. -Cut (Rlt (exp (Ropp eps)) R1); [Intros H2 | Idtac]. -Exists - (Rmin (Rmult y (Rminus (exp eps) R1)) (Rmult y (Rminus R1 (exp (Ropp eps))))); - Split. -Red; Apply P_Rmin. -Apply Rmult_lt_pos. -Assumption. -Apply Rlt_anti_compatibility with R1. -Rewrite Rplus_Or; Replace ``(1+((exp eps)-1))`` with (exp eps); [Apply H1 | Ring]. -Apply Rmult_lt_pos. -Assumption. -Apply Rlt_anti_compatibility with ``(exp (-eps))``. -Rewrite Rplus_Or; Replace ``(exp ( -eps))+(1-(exp ( -eps)))`` with R1; [Apply H2 | Ring]. -Unfold dist R_met R_dist; Simpl. -Intros x ((H3, H4), H5). -Cut (Rmult y (Rmult x (Rinv y))) == x. -Intro Hxyy. -Replace (Rminus (ln x) (ln y)) with (ln (Rmult x (Rinv y))). -Case (total_order x y); [Intros Hxy | Intros [Hxy|Hxy]]. -Rewrite Rabsolu_left. -Apply Ropp_Rlt; Rewrite Ropp_Ropp. -Apply exp_lt_inv. -Rewrite exp_ln. -Apply Rlt_monotony_contra with z := y. -Apply H. -Rewrite Hxyy. -Apply Ropp_Rlt. -Apply Rlt_anti_compatibility with r := y. -Replace (Rplus y (Ropp (Rmult y (exp (Ropp eps))))) - with (Rmult y (Rminus R1 (exp (Ropp eps)))); [Idtac | Ring]. -Replace (Rplus y (Ropp x)) with (Rabsolu (Rminus x y)); [Idtac | Ring]. -Apply Rlt_le_trans with 1 := H5; Apply Rmin_r. -Rewrite Rabsolu_left; [Ring | Idtac]. -Apply (Rlt_minus ? ? Hxy). -Apply Rmult_lt_pos; [Apply H3 | Apply (Rlt_Rinv ? H)]. -Rewrite <- ln_1. -Apply ln_increasing. -Apply Rmult_lt_pos; [Apply H3 | Apply (Rlt_Rinv ? H)]. -Apply Rlt_monotony_contra with z := y. -Apply H. -Rewrite Hxyy; Rewrite Rmult_1r; Apply Hxy. -Rewrite Hxy; Rewrite Rinv_r. -Rewrite ln_1; Rewrite Rabsolu_R0; Apply Heps. -Red; Intro; Rewrite H0 in H; Elim (Rlt_antirefl ? H). -Rewrite Rabsolu_right. -Apply exp_lt_inv. -Rewrite exp_ln. -Apply Rlt_monotony_contra with z := y. -Apply H. -Rewrite Hxyy. -Apply Rlt_anti_compatibility with r := (Ropp y). -Replace (Rplus (Ropp y) (Rmult y (exp eps))) - with (Rmult y (Rminus (exp eps) R1)); [Idtac | Ring]. -Replace (Rplus (Ropp y) x) with (Rabsolu (Rminus x y)); [Idtac | Ring]. -Apply Rlt_le_trans with 1 := H5; Apply Rmin_l. -Rewrite Rabsolu_right; [Ring | Idtac]. -Left; Apply (Rgt_minus ? ? Hxy). -Apply Rmult_lt_pos; [Apply H3 | Apply (Rlt_Rinv ? H)]. -Rewrite <- ln_1. -Apply Rgt_ge; Red; Apply ln_increasing. -Apply Rlt_R0_R1. -Apply Rlt_monotony_contra with z := y. -Apply H. -Rewrite Hxyy; Rewrite Rmult_1r; Apply Hxy. -Rewrite ln_mult. -Rewrite ln_Rinv. -Ring. -Assumption. -Assumption. -Apply Rlt_Rinv; Assumption. -Rewrite (Rmult_sym x); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Ring. -Red; Intro; Rewrite H0 in H; Elim (Rlt_antirefl ? H). -Apply Rlt_monotony_contra with (exp eps). -Apply exp_pos. -Rewrite <- exp_plus; Rewrite Rmult_1r; Rewrite Rplus_Ropp_r; Rewrite exp_0; Apply H1. -Rewrite <- exp_0. -Apply exp_increasing; Apply Heps. -Qed. - -(******************************************************************) -(* Definition of Rpower *) -(******************************************************************) - -Definition Rpower := [x : R] [y : R] ``(exp (y*(ln x)))``. - -Infix Local "^R" Rpower (at level 2, left associativity) : R_scope. - -(******************************************************************) -(* Properties of Rpower *) -(******************************************************************) - -Theorem Rpower_plus: - (x, y, z : R) ``(Rpower z (x+y)) == (Rpower z x)*(Rpower z y)``. -Intros x y z; Unfold Rpower. -Rewrite Rmult_Rplus_distrl; Rewrite exp_plus; Auto. -Qed. - -Theorem Rpower_mult: - (x, y, z : R) ``(Rpower (Rpower x y) z) == (Rpower x (y*z))``. -Intros x y z; Unfold Rpower. -Rewrite ln_exp. -Replace (Rmult z (Rmult y (ln x))) with (Rmult (Rmult y z) (ln x)). -Reflexivity. -Ring. -Qed. - -Theorem Rpower_O: (x : R) ``0 ``(Rpower x 0) == 1``. -Intros x H; Unfold Rpower. -Rewrite Rmult_Ol; Apply exp_0. -Qed. - -Theorem Rpower_1: (x : R) ``0 ``(Rpower x 1) == x``. -Intros x H; Unfold Rpower. -Rewrite Rmult_1l; Apply exp_ln; Apply H. -Qed. - -Theorem Rpower_pow: - (n : nat) (x : R) ``0 (Rpower x (INR n)) == (pow x n). -Intros n; Elim n; Simpl; Auto; Fold INR. -Intros x H; Apply Rpower_O; Auto. -Intros n1; Case n1. -Intros H x H0; Simpl; Rewrite Rmult_1r; Apply Rpower_1; Auto. -Intros n0 H x H0; Rewrite Rpower_plus; Rewrite H; Try Rewrite Rpower_1; Try Apply Rmult_sym Orelse Assumption. -Qed. - -Theorem Rpower_lt: (x, y, z : R) ``1 ``0<=y`` -> ``y ``(Rpower x y) < (Rpower x z)``. -Intros x y z H H0 H1. -Unfold Rpower. -Apply exp_increasing. -Apply Rlt_monotony_r. -Rewrite <- ln_1; Apply ln_increasing. -Apply Rlt_R0_R1. -Apply H. -Apply H1. -Qed. - -Theorem Rpower_sqrt: (x : R) ``0 ``(Rpower x (/2)) == (sqrt x)``. -Intros x H. -Apply ln_inv. -Unfold Rpower; Apply exp_pos. -Apply sqrt_lt_R0; Apply H. -Apply r_Rmult_mult with (INR (S (S O))). -Apply exp_inv. -Fold Rpower. -Cut (Rpower (Rpower x (Rinv (Rplus R1 R1))) (INR (S (S O)))) == (Rpower (sqrt x) (INR (S (S O)))). -Unfold Rpower; Auto. -Rewrite Rpower_mult. -Rewrite Rinv_l. -Replace R1 with (INR (S O)); Auto. -Repeat Rewrite Rpower_pow; Simpl. -Pattern 1 x; Rewrite <- (sqrt_sqrt x (Rlt_le ? ? H)). -Ring. -Apply sqrt_lt_R0; Apply H. -Apply H. -Apply not_O_INR; Discriminate. -Apply not_O_INR; Discriminate. -Qed. - -Theorem Rpower_Ropp: (x, y : R) ``(Rpower x (-y)) == /(Rpower x y)``. -Unfold Rpower. -Intros x y; Rewrite Ropp_mul1. -Apply exp_Ropp. -Qed. - -Theorem Rle_Rpower: (e,n,m : R) ``1 ``0<=n`` -> ``n<=m`` -> ``(Rpower e n)<=(Rpower e m)``. -Intros e n m H H0 H1; Case H1. -Intros H2; Left; Apply Rpower_lt; Assumption. -Intros H2; Rewrite H2; Right; Reflexivity. -Qed. - -Theorem ln_lt_2: ``/2<(ln 2)``. -Apply Rlt_monotony_contra with z := (Rplus R1 R1). -Sup0. -Rewrite Rinv_r. -Apply exp_lt_inv. -Apply Rle_lt_trans with 1 := exp_le_3. -Change (Rlt (Rplus R1 (Rplus R1 R1)) (Rpower (Rplus R1 R1) (Rplus R1 R1))). -Repeat Rewrite Rpower_plus; Repeat Rewrite Rpower_1. -Repeat Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_Rplus_distr; - Repeat Rewrite Rmult_1l. -Pattern 1 ``3``; Rewrite <- Rplus_Or; Replace ``2+2`` with ``3+1``; [Apply Rlt_compatibility; Apply Rlt_R0_R1 | Ring]. -Sup0. -DiscrR. -Qed. - -(**************************************) -(* Differentiability of Ln and Rpower *) -(**************************************) - -Theorem limit1_ext: (f, g : R -> R)(D : R -> Prop)(l, x : R) ((x : R) (D x) -> (f x) == (g x)) -> (limit1_in f D l x) -> (limit1_in g D l x). -Intros f g D l x H; Unfold limit1_in limit_in. -Intros H0 eps H1; Case (H0 eps); Auto. -Intros x0 (H2, H3); Exists x0; Split; Auto. -Intros x1 (H4, H5); Rewrite <- H; Auto. -Qed. - -Theorem limit1_imp: (f : R -> R)(D, D1 : R -> Prop)(l, x : R) ((x : R) (D1 x) -> (D x)) -> (limit1_in f D l x) -> (limit1_in f D1 l x). -Intros f D D1 l x H; Unfold limit1_in limit_in. -Intros H0 eps H1; Case (H0 eps H1); Auto. -Intros alpha (H2, H3); Exists alpha; Split; Auto. -Intros d (H4, H5); Apply H3; Split; Auto. -Qed. - -Theorem Rinv_Rdiv: (x, y : R) ``x<>0`` -> ``y<>0`` -> ``/(x/y) == y/x``. -Intros x y H1 H2; Unfold Rdiv; Rewrite Rinv_Rmult. -Rewrite Rinv_Rinv. -Apply Rmult_sym. -Assumption. -Assumption. -Apply Rinv_neq_R0; Assumption. -Qed. - -Theorem Dln: (y : R) ``0 (D_in ln Rinv [x:R]``0 (derivable_pt_lim ln x ``/x``). -Intros; Assert H0 := (Dln x H); Unfold D_in in H0; Unfold limit1_in in H0; Unfold limit_in in H0; Simpl in H0; Unfold R_dist in H0; Unfold derivable_pt_lim; Intros; Elim (H0 ? H1); Intros; Elim H2; Clear H2; Intros; Pose alp := (Rmin x0 ``x/2``); Assert H4 : ``0 R)(D, D1 : R -> Prop)(x : R) ((x : R) (D1 x) -> (D x)) -> (D_in f g D x) -> (D_in f g D1 x). -Intros f g D D1 x H; Unfold D_in. -Intros H0; Apply limit1_imp with D := (D_x D x); Auto. -Intros x1 (H1, H2); Split; Auto. -Qed. - -Theorem D_in_ext: (f, g, h : R -> R)(D : R -> Prop) (x : R) (f x) == (g x) -> (D_in h f D x) -> (D_in h g D x). -Intros f g h D x H; Unfold D_in. -Rewrite H; Auto. -Qed. - -Theorem Dpower: (y, z : R) ``0 (D_in [x:R](Rpower x z) [x:R](Rmult z (Rpower x (Rminus z R1))) [x:R]``0 (derivable_pt_lim [x : ?] (Rpower x y) x (Rmult y (Rpower x (Rminus y R1)))). -Intros x y H. -Unfold Rminus; Rewrite Rpower_plus. -Rewrite Rpower_Ropp. -Rewrite Rpower_1; Auto. -Rewrite <- Rmult_assoc. -Unfold Rpower. -Apply derivable_pt_lim_comp with f1 := ln f2 := [x : ?] (exp (Rmult y x)). -Apply derivable_pt_lim_ln; Assumption. -Rewrite (Rmult_sym y). -Apply derivable_pt_lim_comp with f1 := [x : ?] (Rmult y x) f2 := exp. -Pattern 2 y; Replace y with (Rplus (Rmult R0 (ln x)) (Rmult y R1)). -Apply derivable_pt_lim_mult with f1 := [x : R] y f2 := [x : R] x. -Apply derivable_pt_lim_const with a := y. -Apply derivable_pt_lim_id. -Ring. -Apply derivable_pt_lim_exp. -Qed. diff --git a/theories7/Reals/Rprod.v b/theories7/Reals/Rprod.v deleted file mode 100644 index a524a915..00000000 --- a/theories7/Reals/Rprod.v +++ /dev/null @@ -1,164 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R;N:nat] : R := Cases N of - O => R1 -| (S p) => ``(prod_f_SO An p)*(An (S p))`` -end. - -(**********) -Lemma prod_SO_split : (An:nat->R;n,k:nat) (le k n) -> (prod_f_SO An n)==(Rmult (prod_f_SO An k) (prod_f_SO [l:nat](An (plus k l)) (minus n k))). -Intros; Induction n. -Cut k=O; [Intro; Rewrite H0; Simpl; Ring | Inversion H; Reflexivity]. -Cut k=(S n)\/(le k n). -Intro; Elim H0; Intro. -Rewrite H1; Simpl; Rewrite <- minus_n_n; Simpl; Ring. -Replace (minus (S n) k) with (S (minus n k)). -Simpl; Replace (plus k (S (minus n k))) with (S n). -Rewrite Hrecn; [Ring | Assumption]. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite S_INR; Rewrite minus_INR; [Ring | Assumption]. -Apply INR_eq; Rewrite S_INR; Repeat Rewrite minus_INR. -Rewrite S_INR; Ring. -Apply le_trans with n; [Assumption | Apply le_n_Sn]. -Assumption. -Inversion H; [Left; Reflexivity | Right; Assumption]. -Qed. - -(**********) -Lemma prod_SO_pos : (An:nat->R;N:nat) ((n:nat)(le n N)->``0<=(An n)``) -> ``0<=(prod_f_SO An N)``. -Intros; Induction N. -Simpl; Left; Apply Rlt_R0_R1. -Simpl; Apply Rmult_le_pos. -Apply HrecN; Intros; Apply H; Apply le_trans with N; [Assumption | Apply le_n_Sn]. -Apply H; Apply le_n. -Qed. - -(**********) -Lemma prod_SO_Rle : (An,Bn:nat->R;N:nat) ((n:nat)(le n N)->``0<=(An n)<=(Bn n)``) -> ``(prod_f_SO An N)<=(prod_f_SO Bn N)``. -Intros; Induction N. -Right; Reflexivity. -Simpl; Apply Rle_trans with ``(prod_f_SO An N)*(Bn (S N))``. -Apply Rle_monotony. -Apply prod_SO_pos; Intros; Elim (H n (le_trans ? ? ? H0 (le_n_Sn N))); Intros; Assumption. -Elim (H (S N) (le_n (S N))); Intros; Assumption. -Do 2 Rewrite <- (Rmult_sym (Bn (S N))); Apply Rle_monotony. -Elim (H (S N) (le_n (S N))); Intros. -Apply Rle_trans with (An (S N)); Assumption. -Apply HrecN; Intros; Elim (H n (le_trans ? ? ? H0 (le_n_Sn N))); Intros; Split; Assumption. -Qed. - -(* Application to factorial *) -Lemma fact_prodSO : (n:nat) (INR (fact n))==(prod_f_SO [k:nat](INR k) n). -Intro; Induction n. -Reflexivity. -Change (INR (mult (S n) (fact n)))==(prod_f_SO ([k:nat](INR k)) (S n)). -Rewrite mult_INR; Rewrite Rmult_sym; Rewrite Hrecn; Reflexivity. -Qed. - -Lemma le_n_2n : (n:nat) (le n (mult (2) n)). -Induction n. -Replace (mult (2) (O)) with O; [Apply le_n | Ring]. -Intros; Replace (mult (2) (S n0)) with (S (S (mult (2) n0))). -Apply le_n_S; Apply le_S; Assumption. -Replace (S (S (mult (2) n0))) with (plus (mult (2) n0) (2)); [Idtac | Ring]. -Replace (S n0) with (plus n0 (1)); [Idtac | Ring]. -Ring. -Qed. - -(* We prove that (N!)²<=(2N-k)!*k! forall k in [|O;2N|] *) -Lemma RfactN_fact2N_factk : (N,k:nat) (le k (mult (2) N)) -> ``(Rsqr (INR (fact N)))<=(INR (fact (minus (mult (S (S O)) N) k)))*(INR (fact k))``. -Intros; Unfold Rsqr; Repeat Rewrite fact_prodSO. -Cut (le k N)\/(le N k). -Intro; Elim H0; Intro. -Rewrite (prod_SO_split [l:nat](INR l) (minus (mult (2) N) k) N). -Rewrite Rmult_assoc; Apply Rle_monotony. -Apply prod_SO_pos; Intros; Apply pos_INR. -Replace (minus (minus (mult (2) N) k) N) with (minus N k). -Rewrite Rmult_sym; Rewrite (prod_SO_split [l:nat](INR l) N k). -Apply Rle_monotony. -Apply prod_SO_pos; Intros; Apply pos_INR. -Apply prod_SO_Rle; Intros; Split. -Apply pos_INR. -Apply le_INR; Apply le_reg_r; Assumption. -Assumption. -Apply INR_eq; Repeat Rewrite minus_INR. -Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Apply le_trans with N; [Assumption | Apply le_n_2n]. -Apply simpl_le_plus_l with k; Rewrite <- le_plus_minus. -Replace (mult (2) N) with (plus N N); [Idtac | Ring]. -Apply le_reg_r; Assumption. -Assumption. -Assumption. -Apply simpl_le_plus_l with k; Rewrite <- le_plus_minus. -Replace (mult (2) N) with (plus N N); [Idtac | Ring]. -Apply le_reg_r; Assumption. -Assumption. -Rewrite <- (Rmult_sym (prod_f_SO [l:nat](INR l) k)); Rewrite (prod_SO_split [l:nat](INR l) k N). -Rewrite Rmult_assoc; Apply Rle_monotony. -Apply prod_SO_pos; Intros; Apply pos_INR. -Rewrite Rmult_sym; Rewrite (prod_SO_split [l:nat](INR l) N (minus (mult (2) N) k)). -Apply Rle_monotony. -Apply prod_SO_pos; Intros; Apply pos_INR. -Replace (minus N (minus (mult (2) N) k)) with (minus k N). -Apply prod_SO_Rle; Intros; Split. -Apply pos_INR. -Apply le_INR; Apply le_reg_r. -Apply simpl_le_plus_l with k; Rewrite <- le_plus_minus. -Replace (mult (2) N) with (plus N N); [Idtac | Ring]; Apply le_reg_r; Assumption. -Assumption. -Apply INR_eq; Repeat Rewrite minus_INR. -Rewrite mult_INR; Do 2 Rewrite S_INR; Ring. -Assumption. -Apply simpl_le_plus_l with k; Rewrite <- le_plus_minus. -Replace (mult (2) N) with (plus N N); [Idtac | Ring]; Apply le_reg_r; Assumption. -Assumption. -Assumption. -Apply simpl_le_plus_l with k; Rewrite <- le_plus_minus. -Replace (mult (2) N) with (plus N N); [Idtac | Ring]; Apply le_reg_r; Assumption. -Assumption. -Assumption. -Elim (le_dec k N); Intro; [Left; Assumption | Right; Assumption]. -Qed. - -(**********) -Lemma INR_fact_lt_0 : (n:nat) ``0<(INR (fact n))``. -Intro; Apply lt_INR_0; Apply neq_O_lt; Red; Intro; Elim (fact_neq_0 n); Symmetry; Assumption. -Qed. - -(* We have the following inequality : (C 2N k) <= (C 2N N) forall k in [|O;2N|] *) -Lemma C_maj : (N,k:nat) (le k (mult (2) N)) -> ``(C (mult (S (S O)) N) k)<=(C (mult (S (S O)) N) N)``. -Intros; Unfold C; Unfold Rdiv; Apply Rle_monotony. -Apply pos_INR. -Replace (minus (mult (2) N) N) with N. -Apply Rle_monotony_contra with ``((INR (fact N))*(INR (fact N)))``. -Apply Rmult_lt_pos; Apply INR_fact_lt_0. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_sym; Apply Rle_monotony_contra with ``((INR (fact k))* - (INR (fact (minus (mult (S (S O)) N) k))))``. -Apply Rmult_lt_pos; Apply INR_fact_lt_0. -Rewrite Rmult_1r; Rewrite <- mult_INR; Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l; Rewrite mult_INR; Rewrite (Rmult_sym (INR (fact k))); Replace ``(INR (fact N))*(INR (fact N))`` with (Rsqr (INR (fact N))). -Apply RfactN_fact2N_factk. -Assumption. -Reflexivity. -Rewrite mult_INR; Apply prod_neq_R0; Apply INR_fact_neq_0. -Apply prod_neq_R0; Apply INR_fact_neq_0. -Apply INR_eq; Rewrite minus_INR; [Rewrite mult_INR; Do 2 Rewrite S_INR; Ring | Apply le_n_2n]. -Qed. diff --git a/theories7/Reals/Rseries.v b/theories7/Reals/Rseries.v deleted file mode 100644 index a38099dd..00000000 --- a/theories7/Reals/Rseries.v +++ /dev/null @@ -1,279 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R. - -(*********) -Fixpoint Rmax_N [N:nat]:R:= - Cases N of - O => (Un O) - |(S n) => (Rmax (Un (S n)) (Rmax_N n)) - end. - -(*********) -Definition EUn:R->Prop:=[r:R](Ex [i:nat] (r==(Un i))). - -(*********) -Definition Un_cv:R->Prop:=[l:R] - (eps:R)(Rgt eps R0)->(Ex[N:nat](n:nat)(ge n N)-> - (Rlt (R_dist (Un n) l) eps)). - -(*********) -Definition Cauchy_crit:Prop:=(eps:R)(Rgt eps R0)-> - (Ex[N:nat] (n,m:nat)(ge n N)->(ge m N)-> - (Rlt (R_dist (Un n) (Un m)) eps)). - -(*********) -Definition Un_growing:Prop:=(n:nat)(Rle (Un n) (Un (S n))). - -(*********) -Lemma EUn_noempty:(ExT [r:R] (EUn r)). -Unfold EUn;Split with (Un O);Split with O;Trivial. -Qed. - -(*********) -Lemma Un_in_EUn:(n:nat)(EUn (Un n)). -Intro;Unfold EUn;Split with n;Trivial. -Qed. - -(*********) -Lemma Un_bound_imp:(x:R)((n:nat)(Rle (Un n) x))->(is_upper_bound EUn x). -Intros;Unfold is_upper_bound;Intros;Unfold EUn in H0;Elim H0;Clear H0; - Intros;Generalize (H x1);Intro;Rewrite <- H0 in H1;Trivial. -Qed. - -(*********) -Lemma growing_prop:(n,m:nat)Un_growing->(ge n m)->(Rge (Un n) (Un m)). -Double Induction n m;Intros. -Unfold Rge;Right;Trivial. -ElimType False;Unfold ge in H1;Generalize (le_Sn_O n0);Intro;Auto. -Cut (ge n0 (0)). -Generalize H0;Intros;Unfold Un_growing in H0; - Apply (Rge_trans (Un (S n0)) (Un n0) (Un (0)) - (Rle_sym1 (Un n0) (Un (S n0)) (H0 n0)) (H O H2 H3)). -Elim n0;Auto. -Elim (lt_eq_lt_dec n1 n0);Intro y. -Elim y;Clear y;Intro y. -Unfold ge in H2;Generalize (le_not_lt n0 n1 (le_S_n n0 n1 H2));Intro; - ElimType False;Auto. -Rewrite y;Unfold Rge;Right;Trivial. -Unfold ge in H0;Generalize (H0 (S n0) H1 (lt_le_S n0 n1 y));Intro; - Unfold Un_growing in H1; - Apply (Rge_trans (Un (S n1)) (Un n1) (Un (S n0)) - (Rle_sym1 (Un n1) (Un (S n1)) (H1 n1)) H3). -Qed. - - -(* classical is needed: [not_all_not_ex] *) -(*********) -Lemma Un_cv_crit:Un_growing->(bound EUn)->(ExT [l:R] (Un_cv l)). -Unfold Un_growing Un_cv;Intros; - Generalize (complet_weak EUn H0 EUn_noempty);Intro; - Elim H1;Clear H1;Intros;Split with x;Intros; - Unfold is_lub in H1;Unfold bound in H0;Unfold is_upper_bound in H0 H1; - Elim H0;Clear H0;Intros;Elim H1;Clear H1;Intros; - Generalize (H3 x0 H0);Intro;Cut (n:nat)(Rle (Un n) x);Intro. -Cut (Ex [N:nat] (Rlt (Rminus x eps) (Un N))). -Intro;Elim H6;Clear H6;Intros;Split with x1. -Intros;Unfold R_dist;Apply (Rabsolu_def1 (Rminus (Un n) x) eps). -Unfold Rgt in H2; - Apply (Rle_lt_trans (Rminus (Un n) x) R0 eps - (Rle_minus (Un n) x (H5 n)) H2). -Fold Un_growing in H;Generalize (growing_prop n x1 H H7);Intro; - Generalize (Rlt_le_trans (Rminus x eps) (Un x1) (Un n) H6 - (Rle_sym2 (Un x1) (Un n) H8));Intro; - Generalize (Rlt_compatibility (Ropp x) (Rminus x eps) (Un n) H9); - Unfold Rminus;Rewrite <-(Rplus_assoc (Ropp x) x (Ropp eps)); - Rewrite (Rplus_sym (Ropp x) (Un n));Fold (Rminus (Un n) x); - Rewrite Rplus_Ropp_l;Rewrite (let (H1,H2)=(Rplus_ne (Ropp eps)) in H2); - Trivial. -Cut ~((N:nat)(Rge (Rminus x eps) (Un N))). -Intro;Apply (not_all_not_ex nat ([N:nat](Rlt (Rminus x eps) (Un N)))); - Red;Intro;Red in H6;Elim H6;Clear H6;Intro; - Apply (Rlt_not_ge (Rminus x eps) (Un N) (H7 N)). -Red;Intro;Cut (N:nat)(Rle (Un N) (Rminus x eps)). -Intro;Generalize (Un_bound_imp (Rminus x eps) H7);Intro; - Unfold is_upper_bound in H8;Generalize (H3 (Rminus x eps) H8);Intro; - Generalize (Rle_minus x (Rminus x eps) H9);Unfold Rminus; - Rewrite Ropp_distr1;Rewrite <- Rplus_assoc;Rewrite Rplus_Ropp_r; - Rewrite (let (H1,H2)=(Rplus_ne (Ropp (Ropp eps))) in H2); - Rewrite Ropp_Ropp;Intro;Unfold Rgt in H2; - Generalize (Rle_not eps R0 H2);Intro;Auto. -Intro;Elim (H6 N);Intro;Unfold Rle. -Left;Unfold Rgt in H7;Assumption. -Right;Auto. -Apply (H1 (Un n) (Un_in_EUn n)). -Qed. - -(*********) -Lemma finite_greater:(N:nat)(ExT [M:R] (n:nat)(le n N)->(Rle (Un n) M)). -Intro;Induction N. -Split with (Un O);Intros;Rewrite (le_n_O_eq n H); - Apply (eq_Rle (Un (n)) (Un (n)) (refl_eqT R (Un (n)))). -Elim HrecN;Clear HrecN;Intros;Split with (Rmax (Un (S N)) x);Intros; - Elim (Rmax_Rle (Un (S N)) x (Un n));Intros;Clear H1;Inversion H0. -Rewrite <-H1;Rewrite <-H1 in H2; - Apply (H2 (or_introl (Rle (Un n) (Un n)) (Rle (Un n) x) - (eq_Rle (Un n) (Un n) (refl_eqT R (Un n))))). -Apply (H2 (or_intror (Rle (Un n) (Un (S N))) (Rle (Un n) x) - (H n H3))). -Qed. - -(*********) -Lemma cauchy_bound:Cauchy_crit->(bound EUn). -Unfold Cauchy_crit bound;Intros;Unfold is_upper_bound; - Unfold Rgt in H;Elim (H R1 Rlt_R0_R1);Clear H;Intros; - Generalize (H x);Intro;Generalize (le_dec x);Intro; - Elim (finite_greater x);Intros;Split with (Rmax x0 (Rplus (Un x) R1)); - Clear H;Intros;Unfold EUn in H;Elim H;Clear H;Intros;Elim (H1 x2); - Clear H1;Intro y. -Unfold ge in H0;Generalize (H0 x2 (le_n x) y);Clear H0;Intro; - Rewrite <- H in H0;Unfold R_dist in H0; - Elim (Rabsolu_def2 (Rminus (Un x) x1) R1 H0);Clear H0;Intros; - Elim (Rmax_Rle x0 (Rplus (Un x) R1) x1);Intros;Apply H4;Clear H3 H4; - Right;Clear H H0 y;Apply (Rlt_le x1 (Rplus (Un x) R1)); - Generalize (Rlt_minus (Ropp R1) (Rminus (Un x) x1) H1);Clear H1; - Intro;Apply (Rminus_lt x1 (Rplus (Un x) R1)); - Cut (Rminus (Ropp R1) (Rminus (Un x) x1))== - (Rminus x1 (Rplus (Un x) R1));[Intro;Rewrite H0 in H;Assumption|Ring]. -Generalize (H2 x2 y);Clear H2 H0;Intro;Rewrite<-H in H0; - Elim (Rmax_Rle x0 (Rplus (Un x) R1) x1);Intros;Clear H1;Apply H2; - Left;Assumption. -Qed. - -End sequence. - -(*****************************************************************) -(* Definition of Power Series and properties *) -(* *) -(*****************************************************************) - -Section Isequence. - -(*********) -Variable An:nat->R. - -(*********) -Definition Pser:R->R->Prop:=[x,l:R] - (infinit_sum [n:nat](Rmult (An n) (pow x n)) l). - -End Isequence. - -Lemma GP_infinite: - (x:R) (Rlt (Rabsolu x) R1) - -> (Pser ([n:nat] R1) x (Rinv(Rminus R1 x))). -Intros;Unfold Pser; Unfold infinit_sum;Intros;Elim (Req_EM x R0). -Intros;Exists O; Intros;Rewrite H1;Rewrite minus_R0;Rewrite Rinv_R1; - Cut (sum_f_R0 [n0:nat](Rmult R1 (pow R0 n0)) n)==R1. -Intros; Rewrite H3;Rewrite R_dist_eq;Auto. -Elim n; Simpl. -Ring. -Intros;Rewrite H3;Ring. -Intro;Cut (Rlt R0 - (Rmult eps (Rmult (Rabsolu (Rminus R1 x)) - (Rabsolu (Rinv x))))). -Intro;Elim (pow_lt_1_zero x H - (Rmult eps (Rmult (Rabsolu (Rminus R1 x)) - (Rabsolu (Rinv x)))) - H2);Intro N; Intros;Exists N; Intros; - Cut (sum_f_R0 [n0:nat](Rmult R1 (pow x n0)) n)== - (sum_f_R0 [n0:nat](pow x n0) n). -Intros; Rewrite H5;Apply (Rlt_monotony_rev - (Rabsolu (Rminus R1 x)) - (R_dist (sum_f_R0 [n0:nat](pow x n0) n) - (Rinv (Rminus R1 x))) - eps). -Apply Rabsolu_pos_lt. -Apply Rminus_eq_contra. -Apply imp_not_Req. -Right; Unfold Rgt. -Apply (Rle_lt_trans x (Rabsolu x) R1). -Apply Rle_Rabsolu. -Assumption. -Unfold R_dist; Rewrite <- Rabsolu_mult. -Rewrite Rminus_distr. -Cut (Rmult (Rminus R1 x) (sum_f_R0 [n0:nat](pow x n0) n))== - (Ropp (Rmult(sum_f_R0 [n0:nat](pow x n0) n) - (Rminus x R1))). -Intro; Rewrite H6. -Rewrite GP_finite. -Rewrite Rinv_r. -Cut (Rminus (Ropp (Rminus (pow x (plus n (1))) R1)) R1)== - (Ropp (pow x (plus n (1)))). -Intro; Rewrite H7. -Rewrite Rabsolu_Ropp;Cut (plus n (S O))=(S n);Auto. -Intro H8;Rewrite H8;Simpl;Rewrite Rabsolu_mult; - Apply (Rlt_le_trans (Rmult (Rabsolu x) (Rabsolu (pow x n))) - (Rmult (Rabsolu x) - (Rmult eps - (Rmult (Rabsolu (Rminus R1 x)) - (Rabsolu (Rinv x))))) - (Rmult (Rabsolu (Rminus R1 x)) eps)). -Apply Rlt_monotony. -Apply Rabsolu_pos_lt. -Assumption. -Auto. -Cut (Rmult (Rabsolu x) - (Rmult eps (Rmult (Rabsolu (Rminus R1 x)) - (Rabsolu (Rinv x)))))== - (Rmult (Rmult (Rabsolu x) (Rabsolu (Rinv x))) - (Rmult eps (Rabsolu (Rminus R1 x)))). -Clear H8;Intros; Rewrite H8;Rewrite <- Rabsolu_mult;Rewrite Rinv_r. -Rewrite Rabsolu_R1;Cut (Rmult R1 (Rmult eps (Rabsolu (Rminus R1 x))))== - (Rmult (Rabsolu (Rminus R1 x)) eps). -Intros; Rewrite H9;Unfold Rle; Right; Reflexivity. -Ring. -Assumption. -Ring. -Ring. -Ring. -Apply Rminus_eq_contra. -Apply imp_not_Req. -Right; Unfold Rgt. -Apply (Rle_lt_trans x (Rabsolu x) R1). -Apply Rle_Rabsolu. -Assumption. -Ring; Ring. -Elim n; Simpl. -Ring. -Intros; Rewrite H5. -Ring. -Apply Rmult_lt_pos. -Auto. -Apply Rmult_lt_pos. -Apply Rabsolu_pos_lt. -Apply Rminus_eq_contra. -Apply imp_not_Req. -Right; Unfold Rgt. -Apply (Rle_lt_trans x (Rabsolu x) R1). -Apply Rle_Rabsolu. -Assumption. -Apply Rabsolu_pos_lt. -Apply Rinv_neq_R0. -Assumption. -Qed. diff --git a/theories7/Reals/Rsigma.v b/theories7/Reals/Rsigma.v deleted file mode 100644 index f9e8e92b..00000000 --- a/theories7/Reals/Rsigma.v +++ /dev/null @@ -1,117 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R. - -Definition sigma [low,high:nat] : R := (sum_f_R0 [k:nat](f (plus low k)) (minus high low)). - -Theorem sigma_split : (low,high,k:nat) (le low k)->(lt k high)->``(sigma low high)==(sigma low k)+(sigma (S k) high)``. -Intros; Induction k. -Cut low = O. -Intro; Rewrite H1; Unfold sigma; Rewrite <- minus_n_n; Rewrite <- minus_n_O; Simpl; Replace (minus high (S O)) with (pred high). -Apply (decomp_sum [k:nat](f k)). -Assumption. -Apply pred_of_minus. -Inversion H; Reflexivity. -Cut (le low k)\/low=(S k). -Intro; Elim H1; Intro. -Replace (sigma low (S k)) with ``(sigma low k)+(f (S k))``. -Rewrite Rplus_assoc; Replace ``(f (S k))+(sigma (S (S k)) high)`` with (sigma (S k) high). -Apply Hreck. -Assumption. -Apply lt_trans with (S k); [Apply lt_n_Sn | Assumption]. -Unfold sigma; Replace (minus high (S (S k))) with (pred (minus high (S k))). -Pattern 3 (S k); Replace (S k) with (plus (S k) O); [Idtac | Ring]. -Replace (sum_f_R0 [k0:nat](f (plus (S (S k)) k0)) (pred (minus high (S k)))) with (sum_f_R0 [k0:nat](f (plus (S k) (S k0))) (pred (minus high (S k)))). -Apply (decomp_sum [i:nat](f (plus (S k) i))). -Apply lt_minus_O_lt; Assumption. -Apply sum_eq; Intros; Replace (plus (S k) (S i)) with (plus (S (S k)) i). -Reflexivity. -Apply INR_eq; Do 2 Rewrite plus_INR; Do 3 Rewrite S_INR; Ring. -Replace (minus high (S (S k))) with (minus (minus high (S k)) (S O)). -Apply pred_of_minus. -Apply INR_eq; Repeat Rewrite minus_INR. -Do 4 Rewrite S_INR; Ring. -Apply lt_le_S; Assumption. -Apply lt_le_weak; Assumption. -Apply lt_le_S; Apply lt_minus_O_lt; Assumption. -Unfold sigma; Replace (minus (S k) low) with (S (minus k low)). -Pattern 1 (S k); Replace (S k) with (plus low (S (minus k low))). -Symmetry; Apply (tech5 [i:nat](f (plus low i))). -Apply INR_eq; Rewrite plus_INR; Do 2 Rewrite S_INR; Rewrite minus_INR. -Ring. -Assumption. -Apply minus_Sn_m; Assumption. -Rewrite <- H2; Unfold sigma; Rewrite <- minus_n_n; Simpl; Replace (minus high (S low)) with (pred (minus high low)). -Replace (sum_f_R0 [k0:nat](f (S (plus low k0))) (pred (minus high low))) with (sum_f_R0 [k0:nat](f (plus low (S k0))) (pred (minus high low))). -Apply (decomp_sum [k0:nat](f (plus low k0))). -Apply lt_minus_O_lt. -Apply le_lt_trans with (S k); [Rewrite H2; Apply le_n | Assumption]. -Apply sum_eq; Intros; Replace (S (plus low i)) with (plus low (S i)). -Reflexivity. -Apply INR_eq; Rewrite plus_INR; Do 2 Rewrite S_INR; Rewrite plus_INR; Ring. -Replace (minus high (S low)) with (minus (minus high low) (S O)). -Apply pred_of_minus. -Apply INR_eq; Repeat Rewrite minus_INR. -Do 2 Rewrite S_INR; Ring. -Apply lt_le_S; Rewrite H2; Assumption. -Rewrite H2; Apply lt_le_weak; Assumption. -Apply lt_le_S; Apply lt_minus_O_lt; Rewrite H2; Assumption. -Inversion H; [ - Right; Reflexivity -| Left; Assumption]. -Qed. - -Theorem sigma_diff : (low,high,k:nat) (le low k) -> (lt k high )->``(sigma low high)-(sigma low k)==(sigma (S k) high)``. -Intros low high k H1 H2; Symmetry; Rewrite -> (sigma_split H1 H2); Ring. -Qed. - -Theorem sigma_diff_neg : (low,high,k:nat) (le low k) -> (lt k high)-> ``(sigma low k)-(sigma low high)==-(sigma (S k) high)``. -Intros low high k H1 H2; Rewrite -> (sigma_split H1 H2); Ring. -Qed. - -Theorem sigma_first : (low,high:nat) (lt low high) -> ``(sigma low high)==(f low)+(sigma (S low) high)``. -Intros low high H1; Generalize (lt_le_S low high H1); Intro H2; Generalize (lt_le_weak low high H1); Intro H3; Replace ``(f low)`` with ``(sigma low low)``. -Apply sigma_split. -Apply le_n. -Assumption. -Unfold sigma; Rewrite <- minus_n_n. -Simpl. -Replace (plus low O) with low; [Reflexivity | Ring]. -Qed. - -Theorem sigma_last : (low,high:nat) (lt low high) -> ``(sigma low high)==(f high)+(sigma low (pred high))``. -Intros low high H1; Generalize (lt_le_S low high H1); Intro H2; Generalize (lt_le_weak low high H1); Intro H3; Replace ``(f high)`` with ``(sigma high high)``. -Rewrite Rplus_sym; Cut high = (S (pred high)). -Intro; Pattern 3 high; Rewrite H. -Apply sigma_split. -Apply le_S_n; Rewrite <- H; Apply lt_le_S; Assumption. -Apply lt_pred_n_n; Apply le_lt_trans with low; [Apply le_O_n | Assumption]. -Apply S_pred with O; Apply le_lt_trans with low; [Apply le_O_n | Assumption]. -Unfold sigma; Rewrite <- minus_n_n; Simpl; Replace (plus high O) with high; [Reflexivity | Ring]. -Qed. - -Theorem sigma_eq_arg : (low:nat) (sigma low low)==(f low). -Intro; Unfold sigma; Rewrite <- minus_n_n. -Simpl; Replace (plus low O) with low; [Reflexivity | Ring]. -Qed. - -End Sigma. diff --git a/theories7/Reals/Rsqrt_def.v b/theories7/Reals/Rsqrt_def.v deleted file mode 100644 index 17367dce..00000000 --- a/theories7/Reals/Rsqrt_def.v +++ /dev/null @@ -1,688 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* bool;N:nat] : R := -Cases N of - O => x -| (S n) => let down = (Dichotomy_lb x y P n) in let up = (Dichotomy_ub x y P n) in let z = ``(down+up)/2`` in if (P z) then down else z -end -with Dichotomy_ub [x,y:R;P:R->bool;N:nat] : R := -Cases N of - O => y -| (S n) => let down = (Dichotomy_lb x y P n) in let up = (Dichotomy_ub x y P n) in let z = ``(down+up)/2`` in if (P z) then z else up -end. - -Definition dicho_lb [x,y:R;P:R->bool] : nat->R := [N:nat](Dichotomy_lb x y P N). -Definition dicho_up [x,y:R;P:R->bool] : nat->R := [N:nat](Dichotomy_ub x y P N). - -(**********) -Lemma dicho_comp : (x,y:R;P:R->bool;n:nat) ``x<=y`` -> ``(dicho_lb x y P n)<=(dicho_up x y P n)``. -Intros. -Induction n. -Simpl; Assumption. -Simpl. -Case (P ``((Dichotomy_lb x y P n)+(Dichotomy_ub x y P n))/2``). -Unfold Rdiv; Apply Rle_monotony_contra with ``2``. -Sup0. -Pattern 1 ``2``; Rewrite Rmult_sym. -Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Idtac | DiscrR]. -Rewrite Rmult_1r. -Rewrite double. -Apply Rle_compatibility. -Assumption. -Unfold Rdiv; Apply Rle_monotony_contra with ``2``. -Sup0. -Pattern 3 ``2``; Rewrite Rmult_sym. -Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Idtac | DiscrR]. -Rewrite Rmult_1r. -Rewrite double. -Rewrite <- (Rplus_sym (Dichotomy_ub x y P n)). -Apply Rle_compatibility. -Assumption. -Qed. - -Lemma dicho_lb_growing : (x,y:R;P:R->bool) ``x<=y`` -> (Un_growing (dicho_lb x y P)). -Intros. -Unfold Un_growing. -Intro. -Simpl. -Case (P ``((Dichotomy_lb x y P n)+(Dichotomy_ub x y P n))/2``). -Right; Reflexivity. -Unfold Rdiv; Apply Rle_monotony_contra with ``2``. -Sup0. -Pattern 1 ``2``; Rewrite Rmult_sym. -Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Idtac | DiscrR]. -Rewrite Rmult_1r. -Rewrite double. -Apply Rle_compatibility. -Replace (Dichotomy_ub x y P n) with (dicho_up x y P n); [Apply dicho_comp; Assumption | Reflexivity]. -Qed. - -Lemma dicho_up_decreasing : (x,y:R;P:R->bool) ``x<=y`` -> (Un_decreasing (dicho_up x y P)). -Intros. -Unfold Un_decreasing. -Intro. -Simpl. -Case (P ``((Dichotomy_lb x y P n)+(Dichotomy_ub x y P n))/2``). -Unfold Rdiv; Apply Rle_monotony_contra with ``2``. -Sup0. -Pattern 3 ``2``; Rewrite Rmult_sym. -Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Idtac | DiscrR]. -Rewrite Rmult_1r. -Rewrite double. -Replace (Dichotomy_ub x y P n) with (dicho_up x y P n); [Idtac | Reflexivity]. -Replace (Dichotomy_lb x y P n) with (dicho_lb x y P n); [Idtac | Reflexivity]. -Rewrite <- (Rplus_sym ``(dicho_up x y P n)``). -Apply Rle_compatibility. -Apply dicho_comp; Assumption. -Right; Reflexivity. -Qed. - -Lemma dicho_lb_maj_y : (x,y:R;P:R->bool) ``x<=y`` -> (n:nat)``(dicho_lb x y P n)<=y``. -Intros. -Induction n. -Simpl; Assumption. -Simpl. -Case (P ``((Dichotomy_lb x y P n)+(Dichotomy_ub x y P n))/2``). -Assumption. -Unfold Rdiv; Apply Rle_monotony_contra with ``2``. -Sup0. -Pattern 3 ``2``; Rewrite Rmult_sym. -Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Rewrite Rmult_1r | DiscrR]. -Rewrite double; Apply Rplus_le. -Assumption. -Pattern 2 y; Replace y with (Dichotomy_ub x y P O); [Idtac | Reflexivity]. -Apply decreasing_prop. -Assert H0 := (dicho_up_decreasing x y P H). -Assumption. -Apply le_O_n. -Qed. - -Lemma dicho_lb_maj : (x,y:R;P:R->bool) ``x<=y`` -> (has_ub (dicho_lb x y P)). -Intros. -Cut (n:nat)``(dicho_lb x y P n)<=y``. -Intro. -Unfold has_ub. -Unfold bound. -Exists y. -Unfold is_upper_bound. -Intros. -Elim H1; Intros. -Rewrite H2; Apply H0. -Apply dicho_lb_maj_y; Assumption. -Qed. - -Lemma dicho_up_min_x : (x,y:R;P:R->bool) ``x<=y`` -> (n:nat)``x<=(dicho_up x y P n)``. -Intros. -Induction n. -Simpl; Assumption. -Simpl. -Case (P ``((Dichotomy_lb x y P n)+(Dichotomy_ub x y P n))/2``). -Unfold Rdiv; Apply Rle_monotony_contra with ``2``. -Sup0. -Pattern 1 ``2``; Rewrite Rmult_sym. -Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Rewrite Rmult_1r | DiscrR]. -Rewrite double; Apply Rplus_le. -Pattern 1 x; Replace x with (Dichotomy_lb x y P O); [Idtac | Reflexivity]. -Apply tech9. -Assert H0 := (dicho_lb_growing x y P H). -Assumption. -Apply le_O_n. -Assumption. -Assumption. -Qed. - -Lemma dicho_up_min : (x,y:R;P:R->bool) ``x<=y`` -> (has_lb (dicho_up x y P)). -Intros. -Cut (n:nat)``x<=(dicho_up x y P n)``. -Intro. -Unfold has_lb. -Unfold bound. -Exists ``-x``. -Unfold is_upper_bound. -Intros. -Elim H1; Intros. -Rewrite H2. -Unfold opp_seq. -Apply Rle_Ropp1. -Apply H0. -Apply dicho_up_min_x; Assumption. -Qed. - -Lemma dicho_lb_cv : (x,y:R;P:R->bool) ``x<=y`` -> (sigTT R [l:R](Un_cv (dicho_lb x y P) l)). -Intros. -Apply growing_cv. -Apply dicho_lb_growing; Assumption. -Apply dicho_lb_maj; Assumption. -Qed. - -Lemma dicho_up_cv : (x,y:R;P:R->bool) ``x<=y`` -> (sigTT R [l:R](Un_cv (dicho_up x y P) l)). -Intros. -Apply decreasing_cv. -Apply dicho_up_decreasing; Assumption. -Apply dicho_up_min; Assumption. -Qed. - -Lemma dicho_lb_dicho_up : (x,y:R;P:R->bool;n:nat) ``x<=y`` -> ``(dicho_up x y P n)-(dicho_lb x y P n)==(y-x)/(pow 2 n)``. -Intros. -Induction n. -Simpl. -Unfold Rdiv; Rewrite Rinv_R1; Ring. -Simpl. -Case (P ``((Dichotomy_lb x y P n)+(Dichotomy_ub x y P n))/2``). -Unfold Rdiv. -Replace ``((Dichotomy_lb x y P n)+(Dichotomy_ub x y P n))*/2- - (Dichotomy_lb x y P n)`` with ``((dicho_up x y P n)-(dicho_lb x y P n))/2``. -Unfold Rdiv; Rewrite Hrecn. -Unfold Rdiv. -Rewrite Rinv_Rmult. -Ring. -DiscrR. -Apply pow_nonzero; DiscrR. -Pattern 2 (Dichotomy_lb x y P n); Rewrite (double_var (Dichotomy_lb x y P n)); Unfold dicho_up dicho_lb Rminus Rdiv; Ring. -Replace ``(Dichotomy_ub x y P n)-((Dichotomy_lb x y P n)+ - (Dichotomy_ub x y P n))/2`` with ``((dicho_up x y P n)-(dicho_lb x y P n))/2``. -Unfold Rdiv; Rewrite Hrecn. -Unfold Rdiv. -Rewrite Rinv_Rmult. -Ring. -DiscrR. -Apply pow_nonzero; DiscrR. -Pattern 1 (Dichotomy_ub x y P n); Rewrite (double_var (Dichotomy_ub x y P n)); Unfold dicho_up dicho_lb Rminus Rdiv; Ring. -Qed. - -Definition pow_2_n := [n:nat](pow ``2`` n). - -Lemma pow_2_n_neq_R0 : (n:nat) ``(pow_2_n n)<>0``. -Intro. -Unfold pow_2_n. -Apply pow_nonzero. -DiscrR. -Qed. - -Lemma pow_2_n_growing : (Un_growing pow_2_n). -Unfold Un_growing. -Intro. -Replace (S n) with (plus n (1)); [Unfold pow_2_n; Rewrite pow_add | Ring]. -Pattern 1 (pow ``2`` n); Rewrite <- Rmult_1r. -Apply Rle_monotony. -Left; Apply pow_lt; Sup0. -Simpl. -Rewrite Rmult_1r. -Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Apply Rlt_R0_R1. -Qed. - -Lemma pow_2_n_infty : (cv_infty pow_2_n). -Cut (N:nat)``(INR N)<=(pow 2 N)``. -Intros. -Unfold cv_infty. -Intro. -Case (total_order_T R0 M); Intro. -Elim s; Intro. -Pose N := (up M). -Cut `0<=N`. -Intro. -Elim (IZN N H0); Intros N0 H1. -Exists N0. -Intros. -Apply Rlt_le_trans with (INR N0). -Rewrite INR_IZR_INZ. -Rewrite <- H1. -Unfold N. -Assert H3 := (archimed M). -Elim H3; Intros; Assumption. -Apply Rle_trans with (pow_2_n N0). -Unfold pow_2_n; Apply H. -Apply Rle_sym2. -Apply growing_prop. -Apply pow_2_n_growing. -Assumption. -Apply le_IZR. -Unfold N. -Simpl. -Assert H0 := (archimed M); Elim H0; Intros. -Left; Apply Rlt_trans with M; Assumption. -Exists O; Intros. -Rewrite <- b. -Unfold pow_2_n; Apply pow_lt; Sup0. -Exists O; Intros. -Apply Rlt_trans with R0. -Assumption. -Unfold pow_2_n; Apply pow_lt; Sup0. -Induction N. -Simpl. -Left; Apply Rlt_R0_R1. -Intros. -Pattern 2 (S n); Replace (S n) with (plus n (1)); [Idtac | Ring]. -Rewrite S_INR; Rewrite pow_add. -Simpl. -Rewrite Rmult_1r. -Apply Rle_trans with ``(pow 2 n)``. -Rewrite <- (Rplus_sym R1). -Rewrite <- (Rmult_1r (INR n)). -Apply (poly n R1). -Apply Rlt_R0_R1. -Pattern 1 (pow ``2`` n); Rewrite <- Rplus_Or. -Rewrite <- (Rmult_sym ``2``). -Rewrite double. -Apply Rle_compatibility. -Left; Apply pow_lt; Sup0. -Qed. - -Lemma cv_dicho : (x,y,l1,l2:R;P:R->bool) ``x<=y`` -> (Un_cv (dicho_lb x y P) l1) -> (Un_cv (dicho_up x y P) l2) -> l1==l2. -Intros. -Assert H2 := (CV_minus ? ? ? ? H0 H1). -Cut (Un_cv [i:nat]``(dicho_lb x y P i)-(dicho_up x y P i)`` R0). -Intro. -Assert H4 := (UL_sequence ? ? ? H2 H3). -Symmetry; Apply Rminus_eq_right; Assumption. -Unfold Un_cv; Unfold R_dist. -Intros. -Assert H4 := (cv_infty_cv_R0 pow_2_n pow_2_n_neq_R0 pow_2_n_infty). -Case (total_order_T x y); Intro. -Elim s; Intro. -Unfold Un_cv in H4; Unfold R_dist in H4. -Cut ``0 true -| (rightT _) => false end. - -(* Sequential caracterisation of continuity *) -Lemma continuity_seq : (f:R->R;Un:nat->R;l:R) (continuity_pt f l) -> (Un_cv Un l) -> (Un_cv [i:nat](f (Un i)) (f l)). -Unfold continuity_pt Un_cv; Unfold continue_in. -Unfold limit1_in. -Unfold limit_in. -Unfold dist. -Simpl. -Unfold R_dist. -Intros. -Elim (H eps H1); Intros alp H2. -Elim H2; Intros. -Elim (H0 alp H3); Intros N H5. -Exists N; Intros. -Case (Req_EM (Un n) l); Intro. -Rewrite H7; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. -Apply H4. -Split. -Unfold D_x no_cond. -Split. -Trivial. -Apply not_sym; Assumption. -Apply H5; Assumption. -Qed. - -Lemma dicho_lb_car : (x,y:R;P:R->bool;n:nat) (P x)=false -> (P (dicho_lb x y P n))=false. -Intros. -Induction n. -Simpl. -Assumption. -Simpl. -Assert X := (sumbool_of_bool (P ``((Dichotomy_lb x y P n)+(Dichotomy_ub x y P n))/2``)). -Elim X; Intro. -Rewrite a. -Unfold dicho_lb in Hrecn; Assumption. -Rewrite b. -Assumption. -Qed. - -Lemma dicho_up_car : (x,y:R;P:R->bool;n:nat) (P y)=true -> (P (dicho_up x y P n))=true. -Intros. -Induction n. -Simpl. -Assumption. -Simpl. -Assert X := (sumbool_of_bool (P ``((Dichotomy_lb x y P n)+(Dichotomy_ub x y P n))/2``)). -Elim X; Intro. -Rewrite a. -Unfold dicho_lb in Hrecn; Assumption. -Rewrite b. -Assumption. -Qed. - -(* Intermediate Value Theorem *) -Lemma IVT : (f:R->R;x,y:R) (continuity f) -> ``x ``(f x)<0`` -> ``0<(f y)`` -> (sigTT R [z:R]``x<=z<=y``/\``(f z)==0``). -Intros. -Cut ``x<=y``. -Intro. -Generalize (dicho_lb_cv x y [z:R](cond_positivity (f z)) H3). -Generalize (dicho_up_cv x y [z:R](cond_positivity (f z)) H3). -Intros. -Elim X; Intros. -Elim X0; Intros. -Assert H4 := (cv_dicho ? ? ? ? ? H3 p0 p). -Rewrite H4 in p0. -Apply existTT with x0. -Split. -Split. -Apply Rle_trans with (dicho_lb x y [z:R](cond_positivity (f z)) O). -Simpl. -Right; Reflexivity. -Apply growing_ineq. -Apply dicho_lb_growing; Assumption. -Assumption. -Apply Rle_trans with (dicho_up x y [z:R](cond_positivity (f z)) O). -Apply decreasing_ineq. -Apply dicho_up_decreasing; Assumption. -Assumption. -Right; Reflexivity. -2:Left; Assumption. -Pose Vn := [n:nat](dicho_lb x y [z:R](cond_positivity (f z)) n). -Pose Wn := [n:nat](dicho_up x y [z:R](cond_positivity (f z)) n). -Cut ((n:nat)``(f (Vn n))<=0``)->``(f x0)<=0``. -Cut ((n:nat)``0<=(f (Wn n))``)->``0<=(f x0)``. -Intros. -Cut (n:nat)``(f (Vn n))<=0``. -Cut (n:nat)``0<=(f (Wn n))``. -Intros. -Assert H9 := (H6 H8). -Assert H10 := (H5 H7). -Apply Rle_antisym; Assumption. -Intro. -Unfold Wn. -Cut (z:R) (cond_positivity z)=true <-> ``0<=z``. -Intro. -Assert H8 := (dicho_up_car x y [z:R](cond_positivity (f z)) n). -Elim (H7 (f (dicho_up x y [z:R](cond_positivity (f z)) n))); Intros. -Apply H9. -Apply H8. -Elim (H7 (f y)); Intros. -Apply H12. -Left; Assumption. -Intro. -Unfold cond_positivity. -Case (total_order_Rle R0 z); Intro. -Split. -Intro; Assumption. -Intro; Reflexivity. -Split. -Intro; Elim diff_false_true; Assumption. -Intro. -Elim n0; Assumption. -Unfold Vn. -Cut (z:R) (cond_positivity z)=false <-> ``z<0``. -Intros. -Assert H8 := (dicho_lb_car x y [z:R](cond_positivity (f z)) n). -Left. -Elim (H7 (f (dicho_lb x y [z:R](cond_positivity (f z)) n))); Intros. -Apply H9. -Apply H8. -Elim (H7 (f x)); Intros. -Apply H12. -Assumption. -Intro. -Unfold cond_positivity. -Case (total_order_Rle R0 z); Intro. -Split. -Intro; Elim diff_true_false; Assumption. -Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H7)). -Split. -Intro; Auto with real. -Intro; Reflexivity. -Cut (Un_cv Wn x0). -Intros. -Assert H7 := (continuity_seq f Wn x0 (H x0) H5). -Case (total_order_T R0 (f x0)); Intro. -Elim s; Intro. -Left; Assumption. -Rewrite <- b; Right; Reflexivity. -Unfold Un_cv in H7; Unfold R_dist in H7. -Cut ``0< -(f x0)``. -Intro. -Elim (H7 ``-(f x0)`` H8); Intros. -Cut (ge x2 x2); [Intro | Unfold ge; Apply le_n]. -Assert H11 := (H9 x2 H10). -Rewrite Rabsolu_right in H11. -Pattern 1 ``-(f x0)`` in H11; Rewrite <- Rplus_Or in H11. -Unfold Rminus in H11; Rewrite (Rplus_sym (f (Wn x2))) in H11. -Assert H12 := (Rlt_anti_compatibility ? ? ? H11). -Assert H13 := (H6 x2). -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H13 H12)). -Apply Rle_sym1; Left; Unfold Rminus; Apply ge0_plus_gt0_is_gt0. -Apply H6. -Exact H8. -Apply Rgt_RO_Ropp; Assumption. -Unfold Wn; Assumption. -Cut (Un_cv Vn x0). -Intros. -Assert H7 := (continuity_seq f Vn x0 (H x0) H5). -Case (total_order_T R0 (f x0)); Intro. -Elim s; Intro. -Unfold Un_cv in H7; Unfold R_dist in H7. -Elim (H7 ``(f x0)`` a); Intros. -Cut (ge x2 x2); [Intro | Unfold ge; Apply le_n]. -Assert H10 := (H8 x2 H9). -Rewrite Rabsolu_left in H10. -Pattern 2 ``(f x0)`` in H10; Rewrite <- Rplus_Or in H10. -Rewrite Ropp_distr3 in H10. -Unfold Rminus in H10. -Assert H11 := (Rlt_anti_compatibility ? ? ? H10). -Assert H12 := (H6 x2). -Cut ``0<(f (Vn x2))``. -Intro. -Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H13 H12)). -Rewrite <- (Ropp_Ropp (f (Vn x2))). -Apply Rgt_RO_Ropp; Assumption. -Apply Rlt_anti_compatibility with ``(f x0)-(f (Vn x2))``. -Rewrite Rplus_Or; Replace ``(f x0)-(f (Vn x2))+((f (Vn x2))-(f x0))`` with R0; [Unfold Rminus; Apply gt0_plus_ge0_is_gt0 | Ring]. -Assumption. -Apply Rge_RO_Ropp; Apply Rle_sym1; Apply H6. -Right; Rewrite <- b; Reflexivity. -Left; Assumption. -Unfold Vn; Assumption. -Qed. - -Lemma IVT_cor : (f:R->R;x,y:R) (continuity f) -> ``x<=y`` -> ``(f x)*(f y)<=0`` -> (sigTT R [z:R]``x<=z<=y``/\``(f z)==0``). -Intros. -Case (total_order_T R0 (f x)); Intro. -Case (total_order_T R0 (f y)); Intro. -Elim s; Intro. -Elim s0; Intro. -Cut ``0<(f x)*(f y)``; [Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H1 H2)) | Apply Rmult_lt_pos; Assumption]. -Exists y. -Split. -Split; [Assumption | Right; Reflexivity]. -Symmetry; Exact b. -Exists x. -Split. -Split; [Right; Reflexivity | Assumption]. -Symmetry; Exact b. -Elim s; Intro. -Cut ``x (sigTT R [z:R]``0<=z``/\``y==(Rsqr z)``). -Intros. -Pose f := [x:R]``(Rsqr x)-y``. -Cut ``(f 0)<=0``. -Intro. -Cut (continuity f). -Intro. -Case (total_order_T y R1); Intro. -Elim s; Intro. -Cut ``0<=(f 1)``. -Intro. -Cut ``(f 0)*(f 1)<=0``. -Intro. -Assert X := (IVT_cor f R0 R1 H1 (Rlt_le ? ? Rlt_R0_R1) H3). -Elim X; Intros t H4. -Apply existTT with t. -Elim H4; Intros. -Split. -Elim H5; Intros; Assumption. -Unfold f in H6. -Apply Rminus_eq_right; Exact H6. -Rewrite Rmult_sym; Pattern 2 R0; Rewrite <- (Rmult_Or (f R1)). -Apply Rle_monotony; Assumption. -Unfold f. -Rewrite Rsqr_1. -Apply Rle_anti_compatibility with y. -Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Left; Assumption. -Apply existTT with R1. -Split. -Left; Apply Rlt_R0_R1. -Rewrite b; Symmetry; Apply Rsqr_1. -Cut ``0<=(f y)``. -Intro. -Cut ``(f 0)*(f y)<=0``. -Intro. -Assert X := (IVT_cor f R0 y H1 H H3). -Elim X; Intros t H4. -Apply existTT with t. -Elim H4; Intros. -Split. -Elim H5; Intros; Assumption. -Unfold f in H6. -Apply Rminus_eq_right; Exact H6. -Rewrite Rmult_sym; Pattern 2 R0; Rewrite <- (Rmult_Or (f y)). -Apply Rle_monotony; Assumption. -Unfold f. -Apply Rle_anti_compatibility with y. -Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or. -Pattern 1 y; Rewrite <- Rmult_1r. -Unfold Rsqr; Apply Rle_monotony. -Assumption. -Left; Exact r. -Replace f with (minus_fct Rsqr (fct_cte y)). -Apply continuity_minus. -Apply derivable_continuous; Apply derivable_Rsqr. -Apply derivable_continuous; Apply derivable_const. -Reflexivity. -Unfold f; Rewrite Rsqr_O. -Unfold Rminus; Rewrite Rplus_Ol. -Apply Rle_sym2. -Apply Rle_RO_Ropp; Assumption. -Qed. - -(* Definition of the square root: R+->R *) -Definition Rsqrt [y:nonnegreal] : R := Cases (Rsqrt_exists (nonneg y) (cond_nonneg y)) of (existTT a b) => a end. - -(**********) -Lemma Rsqrt_positivity : (x:nonnegreal) ``0<=(Rsqrt x)``. -Intro. -Assert X := (Rsqrt_exists (nonneg x) (cond_nonneg x)). -Elim X; Intros. -Cut x0==(Rsqrt x). -Intros. -Elim p; Intros. -Rewrite H in H0; Assumption. -Unfold Rsqrt. -Case (Rsqrt_exists x (cond_nonneg x)). -Intros. -Elim p; Elim a; Intros. -Apply Rsqr_inj. -Assumption. -Assumption. -Rewrite <- H0; Rewrite <- H2; Reflexivity. -Qed. - -(**********) -Lemma Rsqrt_Rsqrt : (x:nonnegreal) ``(Rsqrt x)*(Rsqrt x)==x``. -Intros. -Assert X := (Rsqrt_exists (nonneg x) (cond_nonneg x)). -Elim X; Intros. -Cut x0==(Rsqrt x). -Intros. -Rewrite <- H. -Elim p; Intros. -Rewrite H1; Reflexivity. -Unfold Rsqrt. -Case (Rsqrt_exists x (cond_nonneg x)). -Intros. -Elim p; Elim a; Intros. -Apply Rsqr_inj. -Assumption. -Assumption. -Rewrite <- H0; Rewrite <- H2; Reflexivity. -Qed. diff --git a/theories7/Reals/Rsyntax.v b/theories7/Reals/Rsyntax.v deleted file mode 100644 index 7b1b6266..00000000 --- a/theories7/Reals/Rsyntax.v +++ /dev/null @@ -1,236 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R. -Axiom NRmult : R->R. - -V7only[ -Grammar rnatural ident := - nat_id [ prim:var($id) ] -> [$id] - -with rnegnumber : constr := - neg_expr [ "-" rnumber ($c) ] -> [ (Ropp $c) ] - -with rnumber := - -with rformula : constr := - form_expr [ rexpr($p) ] -> [ $p ] -(* | form_eq [ rexpr($p) "==" rexpr($c) ] -> [ (eqT R $p $c) ] *) -| form_eq [ rexpr($p) "==" rexpr($c) ] -> [ (eqT ? $p $c) ] -| form_eq2 [ rexpr($p) "=" rexpr($c) ] -> [ (eqT ? $p $c) ] -| form_le [ rexpr($p) "<=" rexpr($c) ] -> [ (Rle $p $c) ] -| form_lt [ rexpr($p) "<" rexpr($c) ] -> [ (Rlt $p $c) ] -| form_ge [ rexpr($p) ">=" rexpr($c) ] -> [ (Rge $p $c) ] -| form_gt [ rexpr($p) ">" rexpr($c) ] -> [ (Rgt $p $c) ] -(* -| form_eq_eq [ rexpr($p) "==" rexpr($c) "==" rexpr($c1) ] - -> [ (eqT R $p $c)/\(eqT R $c $c1) ] -*) -| form_eq_eq [ rexpr($p) "==" rexpr($c) "==" rexpr($c1) ] - -> [ (eqT ? $p $c)/\(eqT ? $c $c1) ] -| form_le_le [ rexpr($p) "<=" rexpr($c) "<=" rexpr($c1) ] - -> [ (Rle $p $c)/\(Rle $c $c1) ] -| form_le_lt [ rexpr($p) "<=" rexpr($c) "<" rexpr($c1) ] - -> [ (Rle $p $c)/\(Rlt $c $c1) ] -| form_lt_le [ rexpr($p) "<" rexpr($c) "<=" rexpr($c1) ] - -> [ (Rlt $p $c)/\(Rle $c $c1) ] -| form_lt_lt [ rexpr($p) "<" rexpr($c) "<" rexpr($c1) ] - -> [ (Rlt $p $c)/\(Rlt $c $c1) ] -| form_neq [ rexpr($p) "<>" rexpr($c) ] -> [ ~(eqT ? $p $c) ] - -with rexpr : constr := - expr_plus [ rexpr($p) "+" rexpr($c) ] -> [ (Rplus $p $c) ] -| expr_minus [ rexpr($p) "-" rexpr($c) ] -> [ (Rminus $p $c) ] -| rexpr2 [ rexpr2($e) ] -> [ $e ] - -with rexpr2 : constr := - expr_mult [ rexpr2($p) "*" rexpr2($c) ] -> [ (Rmult $p $c) ] -| rexpr0 [ rexpr0($e) ] -> [ $e ] - - -with rexpr0 : constr := - expr_id [ constr:global($c) ] -> [ $c ] -| expr_com [ "[" constr:constr($c) "]" ] -> [ $c ] -| expr_appl [ "(" rapplication($a) ")" ] -> [ $a ] -| expr_num [ rnumber($s) ] -> [ $s ] -| expr_negnum [ "-" rnegnumber($n) ] -> [ $n ] -| expr_div [ rexpr0($p) "/" rexpr0($c) ] -> [ (Rdiv $p $c) ] -| expr_opp [ "-" rexpr0($c) ] -> [ (Ropp $c) ] -| expr_inv [ "/" rexpr0($c) ] -> [ (Rinv $c) ] -| expr_meta [ meta($m) ] -> [ $m ] - -with meta := -| rimpl [ "?" ] -> [ ? ] -| rmeta0 [ "?" "0" ] -> [ ?0 ] -| rmeta1 [ "?" "1" ] -> [ ?1 ] -| rmeta2 [ "?" "2" ] -> [ ?2 ] -| rmeta3 [ "?" "3" ] -> [ ?3 ] -| rmeta4 [ "?" "4" ] -> [ ?4 ] -| rmeta5 [ "?" "5" ] -> [ ?5 ] - -with rapplication : constr := - apply [ rapplication($p) rexpr($c1) ] -> [ ($p $c1) ] -| pair [ rexpr($p) "," rexpr($c) ] -> [ ($p, $c) ] -| appl0 [ rexpr($a) ] -> [ $a ]. - -Grammar constr constr0 := - r_in_com [ "``" rnatural:rformula($c) "``" ] -> [ $c ]. - -Grammar constr atomic_pattern := - r_in_pattern [ "``" rnatural:rnumber($c) "``" ] -> [ $c ]. - -(*i* pp **) - -Syntax constr - level 0: - Rle [ (Rle $n1 $n2) ] -> - [[ "``" (REXPR $n1) [1 0] "<= " (REXPR $n2) "``"]] - | Rlt [ (Rlt $n1 $n2) ] -> - [[ "``" (REXPR $n1) [1 0] "< "(REXPR $n2) "``" ]] - | Rge [ (Rge $n1 $n2) ] -> - [[ "``" (REXPR $n1) [1 0] ">= "(REXPR $n2) "``" ]] - | Rgt [ (Rgt $n1 $n2) ] -> - [[ "``" (REXPR $n1) [1 0] "> "(REXPR $n2) "``" ]] - | Req [ (eqT R $n1 $n2) ] -> - [[ "``" (REXPR $n1) [1 0] "= "(REXPR $n2)"``"]] - | Rneq [ ~(eqT R $n1 $n2) ] -> - [[ "``" (REXPR $n1) [1 0] "<> "(REXPR $n2) "``"]] - | Rle_Rle [ (Rle $n1 $n2)/\(Rle $n2 $n3) ] -> - [[ "``" (REXPR $n1) [1 0] "<= " (REXPR $n2) - [1 0] "<= " (REXPR $n3) "``"]] - | Rle_Rlt [ (Rle $n1 $n2)/\(Rlt $n2 $n3) ] -> - [[ "``" (REXPR $n1) [1 0] "<= "(REXPR $n2) - [1 0] "< " (REXPR $n3) "``"]] - | Rlt_Rle [ (Rlt $n1 $n2)/\(Rle $n2 $n3) ] -> - [[ "``" (REXPR $n1) [1 0] "< " (REXPR $n2) - [1 0] "<= " (REXPR $n3) "``"]] - | Rlt_Rlt [ (Rlt $n1 $n2)/\(Rlt $n2 $n3) ] -> - [[ "``" (REXPR $n1) [1 0] "< " (REXPR $n2) - [1 0] "< " (REXPR $n3) "``"]] - | Rzero [ R0 ] -> [ "``0``" ] - | Rone [ R1 ] -> [ "``1``" ] - ; - - level 7: - Rplus [ (Rplus $n1 $n2) ] - -> [ [ "``"(REXPR $n1):E "+" [0 0] (REXPR $n2):L "``"] ] - | Rodd_outside [(Rplus R1 $r)] -> [ $r:"r_printer_odd_outside"] - | Rminus [ (Rminus $n1 $n2) ] - -> [ [ "``"(REXPR $n1):E "-" [0 0] (REXPR $n2):L "``"] ] - ; - - level 6: - Rmult [ (Rmult $n1 $n2) ] - -> [ [ "``"(REXPR $n1):E "*" [0 0] (REXPR $n2):L "``"] ] - | Reven_outside [ (Rmult (Rplus R1 R1) $r) ] -> [ $r:"r_printer_even_outside"] - | Rdiv [ (Rdiv $n1 $n2) ] - -> [ [ "``"(REXPR $n1):E "/" [0 0] (REXPR $n2):L "``"] ] - ; - - level 8: - Ropp [(Ropp $n1)] -> [ [ "``" "-"(REXPR $n1):E "``"] ] - | Rinv [(Rinv $n1)] -> [ [ "``" "/"(REXPR $n1):E "``"] ] - ; - - level 0: - rescape_inside [<< (REXPR $r) >>] -> [ "[" $r:E "]" ] - ; - - level 4: - Rappl_inside [<<(REXPR (APPLIST $h ($LIST $t)))>>] - -> [ [ "("(REXPR $h):E [1 0] (RAPPLINSIDETAIL ($LIST $t)):E ")"] ] - | Rappl_inside_tail [<<(RAPPLINSIDETAIL $h ($LIST $t))>>] - -> [(REXPR $h):E [1 0] (RAPPLINSIDETAIL ($LIST $t)):E] - | Rappl_inside_one [<<(RAPPLINSIDETAIL $e)>>] ->[(REXPR $e):E] - | rpair_inside [<<(REXPR <<(pair $s1 $s2 $r1 $r2)>>)>>] - -> [ [ "("(REXPR $r1):E "," [1 0] (REXPR $r2):E ")"] ] - ; - - level 3: - rvar_inside [<<(REXPR ($VAR $i))>>] -> [$i] - | rsecvar_inside [<<(REXPR (SECVAR $i))>>] -> [(SECVAR $i)] - | rconst_inside [<<(REXPR (CONST $c))>>] -> [(CONST $c)] - | rmutind_inside [<<(REXPR (MUTIND $i $n))>>] - -> [(MUTIND $i $n)] - | rmutconstruct_inside [<<(REXPR (MUTCONSTRUCT $c1 $c2 $c3))>>] - -> [ (MUTCONSTRUCT $c1 $c2 $c3) ] - | rimplicit_head_inside [<<(REXPR (XTRA "!" $c))>>] -> [ $c ] - | rimplicit_arg_inside [<<(REXPR (XTRA "!" $n $c))>>] -> [ ] - - ; - - - level 7: - Rplus_inside - [<<(REXPR <<(Rplus $n1 $n2)>>)>>] - -> [ (REXPR $n1):E "+" [0 0] (REXPR $n2):L ] - | Rminus_inside - [<<(REXPR <<(Rminus $n1 $n2)>>)>>] - -> [ (REXPR $n1):E "-" [0 0] (REXPR $n2):L ] - | NRplus_inside - [<<(REXPR <<(NRplus $r)>>)>>] -> [ "(" "1" "+" (REXPR $r):L ")"] - ; - - level 6: - Rmult_inside - [<<(REXPR <<(Rmult $n1 $n2)>>)>>] - -> [ (REXPR $n1):E "*" (REXPR $n2):L ] - | NRmult_inside - [<<(REXPR <<(NRmult $r)>>)>>] -> [ "(" "2" "*" (REXPR $r):L ")"] - ; - - level 5: - Ropp_inside [<<(REXPR <<(Ropp $n1)>>)>>] -> [ " -" (REXPR $n1):E ] - | Rinv_inside [<<(REXPR <<(Rinv $n1)>>)>>] -> [ "/" (REXPR $n1):E ] - | Rdiv_inside - [<<(REXPR <<(Rdiv $n1 $n2)>>)>>] - -> [ (REXPR $n1):E "/" [0 0] (REXPR $n2):L ] - ; - - level 0: - Rzero_inside [<<(REXPR <>)>>] -> ["0"] - | Rone_inside [<<(REXPR <>)>>] -> ["1"] - | Rodd_inside [<<(REXPR <<(Rplus R1 $r)>>)>>] -> [ $r:"r_printer_odd" ] - | Reven_inside [<<(REXPR <<(Rmult (Rplus R1 R1) $r)>>)>>] -> [ $r:"r_printer_even" ] -. - -(* For parsing/printing based on scopes *) -Module R_scope. - -Infix "<=" Rle (at level 5, no associativity) : R_scope V8only. -Infix "<" Rlt (at level 5, no associativity) : R_scope V8only. -Infix ">=" Rge (at level 5, no associativity) : R_scope V8only. -Infix ">" Rgt (at level 5, no associativity) : R_scope V8only. -Infix "+" Rplus (at level 4) : R_scope V8only. -Infix "-" Rminus (at level 4) : R_scope V8only. -Infix "*" Rmult (at level 3) : R_scope V8only. -Infix "/" Rdiv (at level 3) : R_scope V8only. -Notation "- x" := (Ropp x) (at level 0) : R_scope V8only. -Notation "x == y == z" := (eqT R x y)/\(eqT R y z) - (at level 5, y at level 4, no associtivity): R_scope. -Notation "x <= y <= z" := (Rle x y)/\(Rle y z) - (at level 5, y at level 4) : R_scope - V8only. -Notation "x <= y < z" := (Rle x y)/\(Rlt y z) - (at level 5, y at level 4) : R_scope - V8only. -Notation "x < y < z" := (Rlt x y)/\(Rlt y z) - (at level 5, y at level 4) : R_scope - V8only. -Notation "x < y <= z" := (Rlt x y)/\(Rle y z) - (at level 5, y at level 4) : R_scope - V8only. -Notation "/ x" := (Rinv x) (at level 0): R_scope - V8only. - -Open Local Scope R_scope. -End R_scope. -]. diff --git a/theories7/Reals/Rtopology.v b/theories7/Reals/Rtopology.v deleted file mode 100644 index f2ae19b9..00000000 --- a/theories7/Reals/Rtopology.v +++ /dev/null @@ -1,1178 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* Prop] : Prop := (x:R)(D1 x)->(D2 x). -Definition disc [x:R;delta:posreal] : R->Prop := [y:R]``(Rabsolu (y-x))Prop;x:R] : Prop := (EXT delta:posreal | (included (disc x delta) V)). -Definition open_set [D:R->Prop] : Prop := (x:R) (D x)->(neighbourhood D x). -Definition complementary [D:R->Prop] : R->Prop := [c:R]~(D c). -Definition closed_set [D:R->Prop] : Prop := (open_set (complementary D)). -Definition intersection_domain [D1,D2:R->Prop] : R->Prop := [c:R](D1 c)/\(D2 c). -Definition union_domain [D1,D2:R->Prop] : R->Prop := [c:R](D1 c)\/(D2 c). -Definition interior [D:R->Prop] : R->Prop := [x:R](neighbourhood D x). - -Lemma interior_P1 : (D:R->Prop) (included (interior D) D). -Intros; Unfold included; Unfold interior; Intros; Unfold neighbourhood in H; Elim H; Intros; Unfold included in H0; Apply H0; Unfold disc; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (cond_pos x0). -Qed. - -Lemma interior_P2 : (D:R->Prop) (open_set D) -> (included D (interior D)). -Intros; Unfold open_set in H; Unfold included; Intros; Assert H1 := (H ? H0); Unfold interior; Apply H1. -Qed. - -Definition point_adherent [D:R->Prop;x:R] : Prop := (V:R->Prop) (neighbourhood V x) -> (EXT y:R | (intersection_domain V D y)). -Definition adherence [D:R->Prop] : R->Prop := [x:R](point_adherent D x). - -Lemma adherence_P1 : (D:R->Prop) (included D (adherence D)). -Intro; Unfold included; Intros; Unfold adherence; Unfold point_adherent; Intros; Exists x; Unfold intersection_domain; Split. -Unfold neighbourhood in H0; Elim H0; Intros; Unfold included in H1; Apply H1; Unfold disc; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (cond_pos x0). -Apply H. -Qed. - -Lemma included_trans : (D1,D2,D3:R->Prop) (included D1 D2) -> (included D2 D3) -> (included D1 D3). -Unfold included; Intros; Apply H0; Apply H; Apply H1. -Qed. - -Lemma interior_P3 : (D:R->Prop) (open_set (interior D)). -Intro; Unfold open_set interior; Unfold neighbourhood; Intros; Elim H; Intros. -Exists x0; Unfold included; Intros. -Pose del := ``x0-(Rabsolu (x-x1))``. -Cut ``0Prop) ~(EXT y:R | (intersection_domain D (complementary D) y)). -Intro; Red; Intro; Elim H; Intros; Unfold intersection_domain complementary in H0; Elim H0; Intros; Elim H2; Assumption. -Qed. - -Lemma adherence_P2 : (D:R->Prop) (closed_set D) -> (included (adherence D) D). -Unfold closed_set; Unfold open_set complementary; Intros; Unfold included adherence; Intros; Assert H1 := (classic (D x)); Elim H1; Intro. -Assumption. -Assert H3 := (H ? H2); Assert H4 := (H0 ? H3); Elim H4; Intros; Unfold intersection_domain in H5; Elim H5; Intros; Elim H6; Assumption. -Qed. - -Lemma adherence_P3 : (D:R->Prop) (closed_set (adherence D)). -Intro; Unfold closed_set adherence; Unfold open_set complementary point_adherent; Intros; Pose P := [V:R->Prop](neighbourhood V x)->(EXT y:R | (intersection_domain V D y)); Assert H0 := (not_all_ex_not ? P H); Elim H0; Intros V0 H1; Unfold P in H1; Assert H2 := (imply_to_and ? ? H1); Unfold neighbourhood; Elim H2; Intros; Unfold neighbourhood in H3; Elim H3; Intros; Exists x0; Unfold included; Intros; Red; Intro. -Assert H8 := (H7 V0); Cut (EXT delta:posreal | (x:R)(disc x1 delta x)->(V0 x)). -Intro; Assert H10 := (H8 H9); Elim H4; Assumption. -Cut ``0Prop] : Prop := (included D1 D2)/\(included D2 D1). - -Infix "=_D" eq_Dom (at level 5, no associativity). - -Lemma open_set_P1 : (D:R->Prop) (open_set D) <-> D =_D (interior D). -Intro; Split. -Intro; Unfold eq_Dom; Split. -Apply interior_P2; Assumption. -Apply interior_P1. -Intro; Unfold eq_Dom in H; Elim H; Clear H; Intros; Unfold open_set; Intros; Unfold included interior in H; Unfold included in H0; Apply (H ? H1). -Qed. - -Lemma closed_set_P1 : (D:R->Prop) (closed_set D) <-> D =_D (adherence D). -Intro; Split. -Intro; Unfold eq_Dom; Split. -Apply adherence_P1. -Apply adherence_P2; Assumption. -Unfold eq_Dom; Unfold included; Intros; Assert H0 := (adherence_P3 D); Unfold closed_set in H0; Unfold closed_set; Unfold open_set; Unfold open_set in H0; Intros; Assert H2 : (complementary (adherence D) x). -Unfold complementary; Unfold complementary in H1; Red; Intro; Elim H; Clear H; Intros _ H; Elim H1; Apply (H ? H2). -Assert H3 := (H0 ? H2); Unfold neighbourhood; Unfold neighbourhood in H3; Elim H3; Intros; Exists x0; Unfold included; Unfold included in H4; Intros; Assert H6 := (H4 ? H5); Unfold complementary in H6; Unfold complementary; Red; Intro; Elim H; Clear H; Intros H _; Elim H6; Apply (H ? H7). -Qed. - -Lemma neighbourhood_P1 : (D1,D2:R->Prop;x:R) (included D1 D2) -> (neighbourhood D1 x) -> (neighbourhood D2 x). -Unfold included neighbourhood; Intros; Elim H0; Intros; Exists x0; Intros; Unfold included; Unfold included in H1; Intros; Apply (H ? (H1 ? H2)). -Qed. - -Lemma open_set_P2 : (D1,D2:R->Prop) (open_set D1) -> (open_set D2) -> (open_set (union_domain D1 D2)). -Unfold open_set; Intros; Unfold union_domain in H1; Elim H1; Intro. -Apply neighbourhood_P1 with D1. -Unfold included union_domain; Tauto. -Apply H; Assumption. -Apply neighbourhood_P1 with D2. -Unfold included union_domain; Tauto. -Apply H0; Assumption. -Qed. - -Lemma open_set_P3 : (D1,D2:R->Prop) (open_set D1) -> (open_set D2) -> (open_set (intersection_domain D1 D2)). -Unfold open_set; Intros; Unfold intersection_domain in H1; Elim H1; Intros. -Assert H4 := (H ? H2); Assert H5 := (H0 ? H3); Unfold intersection_domain; Unfold neighbourhood in H4 H5; Elim H4; Clear H; Intros del1 H; Elim H5; Clear H0; Intros del2 H0; Cut ``0<(Rmin del1 del2)``. -Intro; Pose del := (mkposreal ? H6). -Exists del; Unfold included; Intros; Unfold included in H H0; Unfold disc in H H0 H7. -Split. -Apply H; Apply Rlt_le_trans with (pos del). -Apply H7. -Unfold del; Simpl; Apply Rmin_l. -Apply H0; Apply Rlt_le_trans with (pos del). -Apply H7. -Unfold del; Simpl; Apply Rmin_r. -Unfold Rmin; Case (total_order_Rle del1 del2); Intro. -Apply (cond_pos del1). -Apply (cond_pos del2). -Qed. - -Lemma open_set_P4 : (open_set [x:R]False). -Unfold open_set; Intros; Elim H. -Qed. - -Lemma open_set_P5 : (open_set [x:R]True). -Unfold open_set; Intros; Unfold neighbourhood. -Exists (mkposreal R1 Rlt_R0_R1); Unfold included; Intros; Trivial. -Qed. - -Lemma disc_P1 : (x:R;del:posreal) (open_set (disc x del)). -Intros; Assert H := (open_set_P1 (disc x del)). -Elim H; Intros; Apply H1. -Unfold eq_Dom; Split. -Unfold included interior disc; Intros; Cut ``0R;x:R) (continuity_pt f x) <-> (W:R->Prop)(neighbourhood W (f x)) -> (EXT V:R->Prop | (neighbourhood V x) /\ ((y:R)(V y)->(W (f y)))). -Intros; Split. -Intros; Unfold neighbourhood in H0. -Elim H0; Intros del1 H1. -Unfold continuity_pt in H; Unfold continue_in in H; Unfold limit1_in in H; Unfold limit_in in H; Simpl in H; Unfold R_dist in H. -Assert H2 := (H del1 (cond_pos del1)). -Elim H2; Intros del2 H3. -Elim H3; Intros. -Exists (disc x (mkposreal del2 H4)). -Intros; Unfold included in H1; Split. -Unfold neighbourhood disc. -Exists (mkposreal del2 H4). -Unfold included; Intros; Assumption. -Intros; Apply H1; Unfold disc; Case (Req_EM y x); Intro. -Rewrite H7; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (cond_pos del1). -Apply H5; Split. -Unfold D_x no_cond; Split. -Trivial. -Apply not_sym; Apply H7. -Unfold disc in H6; Apply H6. -Intros; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Intros. -Assert H1 := (H (disc (f x) (mkposreal eps H0))). -Cut (neighbourhood (disc (f x) (mkposreal eps H0)) (f x)). -Intro; Assert H3 := (H1 H2). -Elim H3; Intros D H4; Elim H4; Intros; Unfold neighbourhood in H5; Elim H5; Intros del1 H7. -Exists (pos del1); Split. -Apply (cond_pos del1). -Intros; Elim H8; Intros; Simpl in H10; Unfold R_dist in H10; Simpl; Unfold R_dist; Apply (H6 ? (H7 ? H10)). -Unfold neighbourhood disc; Exists (mkposreal eps H0); Unfold included; Intros; Assumption. -Qed. - -Definition image_rec [f:R->R;D:R->Prop] : R->Prop := [x:R](D (f x)). - -(**********) -Lemma continuity_P2 : (f:R->R;D:R->Prop) (continuity f) -> (open_set D) -> (open_set (image_rec f D)). -Intros; Unfold open_set in H0; Unfold open_set; Intros; Assert H2 := (continuity_P1 f x); Elim H2; Intros H3 _; Assert H4 := (H3 (H x)); Unfold neighbourhood image_rec; Unfold image_rec in H1; Assert H5 := (H4 D (H0 (f x) H1)); Elim H5; Intros V0 H6; Elim H6; Intros; Unfold neighbourhood in H7; Elim H7; Intros del H9; Exists del; Unfold included in H9; Unfold included; Intros; Apply (H8 ? (H9 ? H10)). -Qed. - -(**********) -Lemma continuity_P3 : (f:R->R) (continuity f) <-> (D:R->Prop) (open_set D)->(open_set (image_rec f D)). -Intros; Split. -Intros; Apply continuity_P2; Assumption. -Intros; Unfold continuity; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Cut (open_set (disc (f x) (mkposreal ? H0))). -Intro; Assert H2 := (H ? H1). -Unfold open_set image_rec in H2; Cut (disc (f x) (mkposreal ? H0) (f x)). -Intro; Assert H4 := (H2 ? H3). -Unfold neighbourhood in H4; Elim H4; Intros del H5. -Exists (pos del); Split. -Apply (cond_pos del). -Intros; Unfold included in H5; Apply H5; Elim H6; Intros; Apply H8. -Unfold disc; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply H0. -Apply disc_P1. -Qed. - -(**********) -Theorem Rsepare : (x,y:R) ``x<>y``->(EXT V:R->Prop | (EXT W:R->Prop | (neighbourhood V x)/\(neighbourhood W y)/\~(EXT y:R | (intersection_domain V W y)))). -Intros x y Hsep; Pose D := ``(Rabsolu (x-y))``. -Cut ``0Prop; - f :> R->R->Prop; - cond_fam : (x:R)(EXT y:R|(f x y))->(ind x) }. - -Definition family_open_set [f:family] : Prop := (x:R) (open_set (f x)). - -Definition domain_finite [D:R->Prop] : Prop := (EXT l:Rlist | (x:R)(D x)<->(In x l)). - -Definition family_finite [f:family] : Prop := (domain_finite (ind f)). - -Definition covering [D:R->Prop;f:family] : Prop := (x:R) (D x)->(EXT y:R | (f y x)). - -Definition covering_open_set [D:R->Prop;f:family] : Prop := (covering D f)/\(family_open_set f). - -Definition covering_finite [D:R->Prop;f:family] : Prop := (covering D f)/\(family_finite f). - -Lemma restriction_family : (f:family;D:R->Prop) (x:R)(EXT y:R|([z1:R][z2:R](f z1 z2)/\(D z1) x y))->(intersection_domain (ind f) D x). -Intros; Elim H; Intros; Unfold intersection_domain; Elim H0; Intros; Split. -Apply (cond_fam f0); Exists x0; Assumption. -Assumption. -Qed. - -Definition subfamily [f:family;D:R->Prop] : family := (mkfamily (intersection_domain (ind f) D) [x:R][y:R](f x y)/\(D x) (restriction_family f D)). - -Definition compact [X:R->Prop] : Prop := (f:family) (covering_open_set X f) -> (EXT D:R->Prop | (covering_finite X (subfamily f D))). - -(**********) -Lemma family_P1 : (f:family;D:R->Prop) (family_open_set f) -> (family_open_set (subfamily f D)). -Unfold family_open_set; Intros; Unfold subfamily; Simpl; Assert H0 := (classic (D x)). -Elim H0; Intro. -Cut (open_set (f0 x))->(open_set [y:R](f0 x y)/\(D x)). -Intro; Apply H2; Apply H. -Unfold open_set; Unfold neighbourhood; Intros; Elim H3; Intros; Assert H6 := (H2 ? H4); Elim H6; Intros; Exists x1; Unfold included; Intros; Split. -Apply (H7 ? H8). -Assumption. -Cut (open_set [y:R]False) -> (open_set [y:R](f0 x y)/\(D x)). -Intro; Apply H2; Apply open_set_P4. -Unfold open_set; Unfold neighbourhood; Intros; Elim H3; Intros; Elim H1; Assumption. -Qed. - -Definition bounded [D:R->Prop] : Prop := (EXT m:R | (EXT M:R | (x:R)(D x)->``m<=x<=M``)). - -Lemma open_set_P6 : (D1,D2:R->Prop) (open_set D1) -> D1 =_D D2 -> (open_set D2). -Unfold open_set; Unfold neighbourhood; Intros. -Unfold eq_Dom in H0; Elim H0; Intros. -Assert H4 := (H ? (H3 ? H1)). -Elim H4; Intros. -Exists x0; Apply included_trans with D1; Assumption. -Qed. - -(**********) -Lemma compact_P1 : (X:R->Prop) (compact X) -> (bounded X). -Intros; Unfold compact in H; Pose D := [x:R]True; Pose g := [x:R][y:R]``(Rabsolu y)True; [Intro | Intro; Trivial]. -Pose f0 := (mkfamily D g H0); Assert H1 := (H f0); Cut (covering_open_set X f0). -Intro; Assert H3 := (H1 H2); Elim H3; Intros D' H4; Unfold covering_finite in H4; Elim H4; Intros; Unfold family_finite in H6; Unfold domain_finite in H6; Elim H6; Intros l H7; Unfold bounded; Pose r := (MaxRlist l). -Exists ``-r``; Exists r; Intros. -Unfold covering in H5; Assert H9 := (H5 ? H8); Elim H9; Intros; Unfold subfamily in H10; Simpl in H10; Elim H10; Intros; Assert H13 := (H7 x0); Simpl in H13; Cut (intersection_domain D D' x0). -Elim H13; Clear H13; Intros. -Assert H16 := (H13 H15); Unfold g in H11; Split. -Cut ``x0<=r``. -Intro; Cut ``(Rabsolu x)Prop) (compact X) -> (closed_set X). -Intros; Assert H0 := (closed_set_P1 X); Elim H0; Clear H0; Intros _ H0; Apply H0; Clear H0. -Unfold eq_Dom; Split. -Apply adherence_P1. -Unfold included; Unfold adherence; Unfold point_adherent; Intros; Unfold compact in H; Assert H1 := (classic (X x)); Elim H1; Clear H1; Intro. -Assumption. -Cut (y:R)(X y)->``0<(Rabsolu (y-x))/2``. -Intro; Pose D := X; Pose g := [y:R][z:R]``(Rabsolu (y-z))<(Rabsolu (y-x))/2``/\(D y); Cut (x:R)(EXT y|(g x y))->(D x). -Intro; Pose f0 := (mkfamily D g H3); Assert H4 := (H f0); Cut (covering_open_set X f0). -Intro; Assert H6 := (H4 H5); Elim H6; Clear H6; Intros D' H6. -Unfold covering_finite in H6; Decompose [and] H6; Unfold covering subfamily in H7; Simpl in H7; Unfold family_finite subfamily in H8; Simpl in H8; Unfold domain_finite in H8; Elim H8; Clear H8; Intros l H8; Pose alp := (MinRlist (AbsList l x)); Cut ``0Prop) (compact X1) -> X1 =_D X2 -> (compact X2). -Unfold compact; Intros; Unfold eq_Dom in H0; Elim H0; Clear H0; Unfold included; Intros; Assert H3 : (covering_open_set X1 f0). -Unfold covering_open_set; Unfold covering_open_set in H1; Elim H1; Clear H1; Intros; Split. -Unfold covering in H1; Unfold covering; Intros; Apply (H1 ? (H0 ? H4)). -Apply H3. -Elim (H ? H3); Intros D H4; Exists D; Unfold covering_finite; Unfold covering_finite in H4; Elim H4; Intros; Split. -Unfold covering in H5; Unfold covering; Intros; Apply (H5 ? (H2 ? H7)). -Apply H6. -Qed. - -(* Borel-Lebesgue's lemma *) -Lemma compact_P3 : (a,b:R) (compact [c:R]``a<=c<=b``). -Intros; Case (total_order_Rle a b); Intro. -Unfold compact; Intros; Pose A := [x:R]``a<=x<=b``/\(EXT D:R->Prop | (covering_finite [c:R]``a <= c <= x`` (subfamily f0 D))); Cut (A a). -Intro; Cut (bound A). -Intro; Cut (EXT a0:R | (A a0)). -Intro; Assert H3 := (complet A H1 H2); Elim H3; Clear H3; Intros m H3; Unfold is_lub in H3; Cut ``a<=m<=b``. -Intro; Unfold covering_open_set in H; Elim H; Clear H; Intros; Unfold covering in H; Assert H6 := (H m H4); Elim H6; Clear H6; Intros y0 H6; Unfold family_open_set in H5; Assert H7 := (H5 y0); Unfold open_set in H7; Assert H8 := (H7 m H6); Unfold neighbourhood in H8; Elim H8; Clear H8; Intros eps H8; Cut (EXT x:R | (A x)/\``m-epsProp) (compact X) -> (closed_set F) -> (included F X) -> (compact F). -Unfold compact; Intros; Elim (classic (EXT z:R | (F z))); Intro Hyp_F_NE. -Pose D := (ind f0); Pose g := (f f0); Unfold closed_set in H0. -Pose g' := [x:R][y:R](f0 x y)\/((complementary F y)/\(D x)). -Pose D' := D. -Cut (x:R)(EXT y:R | (g' x y))->(D' x). -Intro; Pose f' := (mkfamily D' g' H3); Cut (covering_open_set X f'). -Intro; Elim (H ? H4); Intros DX H5; Exists DX. -Unfold covering_finite; Unfold covering_finite in H5; Elim H5; Clear H5; Intros. -Split. -Unfold covering; Unfold covering in H5; Intros. -Elim (H5 ? (H1 ? H7)); Intros y0 H8; Exists y0; Simpl in H8; Simpl; Elim H8; Clear H8; Intros. -Split. -Unfold g' in H8; Elim H8; Intro. -Apply H10. -Elim H10; Intros H11 _; Unfold complementary in H11; Elim H11; Apply H7. -Apply H9. -Unfold family_finite; Unfold domain_finite; Unfold family_finite in H6; Unfold domain_finite in H6; Elim H6; Clear H6; Intros l H6; Exists l; Intro; Assert H7 := (H6 x); Elim H7; Clear H7; Intros. -Split. -Intro; Apply H7; Simpl; Unfold intersection_domain; Simpl in H9; Unfold intersection_domain in H9; Unfold D'; Apply H9. -Intro; Assert H10 := (H8 H9); Simpl in H10; Unfold intersection_domain in H10; Simpl; Unfold intersection_domain; Unfold D' in H10; Apply H10. -Unfold covering_open_set; Unfold covering_open_set in H2; Elim H2; Clear H2; Intros. -Split. -Unfold covering; Unfold covering in H2; Intros. -Elim (classic (F x)); Intro. -Elim (H2 ? H6); Intros y0 H7; Exists y0; Simpl; Unfold g'; Left; Assumption. -Cut (EXT z:R | (D z)). -Intro; Elim H7; Clear H7; Intros x0 H7; Exists x0; Simpl; Unfold g'; Right. -Split. -Unfold complementary; Apply H6. -Apply H7. -Elim Hyp_F_NE; Intros z0 H7. -Assert H8 := (H2 ? H7). -Elim H8; Clear H8; Intros t H8; Exists t; Apply (cond_fam f0); Exists z0; Apply H8. -Unfold family_open_set; Intro; Simpl; Unfold g'; Elim (classic (D x)); Intro. -Apply open_set_P6 with (union_domain (f0 x) (complementary F)). -Apply open_set_P2. -Unfold family_open_set in H4; Apply H4. -Apply H0. -Unfold eq_Dom; Split. -Unfold included union_domain complementary; Intros. -Elim H6; Intro; [Left; Apply H7 | Right; Split; Assumption]. -Unfold included union_domain complementary; Intros. -Elim H6; Intro; [Left; Apply H7 | Right; Elim H7; Intros; Apply H8]. -Apply open_set_P6 with (f0 x). -Unfold family_open_set in H4; Apply H4. -Unfold eq_Dom; Split. -Unfold included complementary; Intros; Left; Apply H6. -Unfold included complementary; Intros. -Elim H6; Intro. -Apply H7. -Elim H7; Intros _ H8; Elim H5; Apply H8. -Intros; Elim H3; Intros y0 H4; Unfold g' in H4; Elim H4; Intro. -Apply (cond_fam f0); Exists y0; Apply H5. -Elim H5; Clear H5; Intros _ H5; Apply H5. -(* Cas ou F est l'ensemble vide *) -Cut (compact F). -Intro; Apply (H3 f0 H2). -Apply compact_eqDom with [_:R]False. -Apply compact_EMP. -Unfold eq_Dom; Split. -Unfold included; Intros; Elim H3. -Assert H3 := (not_ex_all_not ? ? Hyp_F_NE); Unfold included; Intros; Elim (H3 x); Apply H4. -Qed. - -(**********) -Lemma compact_P5 : (X:R->Prop) (closed_set X)->(bounded X)->(compact X). -Intros; Unfold bounded in H0. -Elim H0; Clear H0; Intros m H0. -Elim H0; Clear H0; Intros M H0. -Assert H1 := (compact_P3 m M). -Apply (compact_P4 [c:R]``m<=c<=M`` X H1 H H0). -Qed. - -(**********) -Lemma compact_carac : (X:R->Prop) (compact X)<->(closed_set X)/\(bounded X). -Intro; Split. -Intro; Split; [Apply (compact_P2 ? H) | Apply (compact_P1 ? H)]. -Intro; Elim H; Clear H; Intros; Apply (compact_P5 ? H H0). -Qed. - -Definition image_dir [f:R->R;D:R->Prop] : R->Prop := [x:R](EXT y:R | x==(f y)/\(D y)). - -(**********) -Lemma continuity_compact : (f:R->R;X:R->Prop) ((x:R)(continuity_pt f x)) -> (compact X) -> (compact (image_dir f X)). -Unfold compact; Intros; Unfold covering_open_set in H1. -Elim H1; Clear H1; Intros. -Pose D := (ind f1). -Pose g := [x:R][y:R](image_rec f0 (f1 x) y). -Cut (x:R)(EXT y:R | (g x y))->(D x). -Intro; Pose f' := (mkfamily D g H3). -Cut (covering_open_set X f'). -Intro; Elim (H0 f' H4); Intros D' H5; Exists D'. -Unfold covering_finite in H5; Elim H5; Clear H5; Intros; Unfold covering_finite; Split. -Unfold covering image_dir; Simpl; Unfold covering in H5; Intros; Elim H7; Intros y H8; Elim H8; Intros; Assert H11 := (H5 ? H10); Simpl in H11; Elim H11; Intros z H12; Exists z; Unfold g in H12; Unfold image_rec in H12; Rewrite H9; Apply H12. -Unfold family_finite in H6; Unfold domain_finite in H6; Unfold family_finite; Unfold domain_finite; Elim H6; Intros l H7; Exists l; Intro; Elim (H7 x); Intros; Split; Intro. -Apply H8; Simpl in H10; Simpl; Apply H10. -Apply (H9 H10). -Unfold covering_open_set; Split. -Unfold covering; Intros; Simpl; Unfold covering in H1; Unfold image_dir in H1; Unfold g; Unfold image_rec; Apply H1. -Exists x; Split; [Reflexivity | Apply H4]. -Unfold family_open_set; Unfold family_open_set in H2; Intro; Simpl; Unfold g; Cut ([y:R](image_rec f0 (f1 x) y))==(image_rec f0 (f1 x)). -Intro; Rewrite H4. -Apply (continuity_P2 f0 (f1 x) H (H2 x)). -Reflexivity. -Intros; Apply (cond_fam f1); Unfold g in H3; Unfold image_rec in H3; Elim H3; Intros; Exists (f0 x0); Apply H4. -Qed. - -Lemma Rlt_Rminus : (a,b:R) ``a ``0R;a,b:R) ``a<=b`` -> ((c:R)``a<=c<=b``->(continuity_pt f c)) -> (EXT g:R->R | (continuity g)/\((c:R)``a<=c<=b``->(g c)==(f c))). -Intros; Elim H; Intro. -Pose h := [x:R](Cases (total_order_Rle x a) of - (leftT _) => (f0 a) -| (rightT _) => (Cases (total_order_Rle x b) of - (leftT _) => (f0 x) - | (rightT _) => (f0 b) end) end). -Assert H2 : ``0R;a,b:R) ``a<=b`` -> ((c:R)``a<=c<=b``->(continuity_pt f c)) -> (EXT Mx : R | ((c:R)``a<=c<=b``->``(f c)<=(f Mx)``)/\``a<=Mx<=b``). -Intros; Cut (EXT g:R->R | (continuity g)/\((c:R)``a<=c<=b``->(g c)==(f0 c))). -Intro HypProl. -Elim HypProl; Intros g Hcont_eq. -Elim Hcont_eq; Clear Hcont_eq; Intros Hcont Heq. -Assert H1 := (compact_P3 a b). -Assert H2 := (continuity_compact g [c:R]``a<=c<=b`` Hcont H1). -Assert H3 := (compact_P2 ? H2). -Assert H4 := (compact_P1 ? H2). -Cut (bound (image_dir g [c:R]``a <= c <= b``)). -Cut (ExT [x:R] ((image_dir g [c:R]``a <= c <= b``) x)). -Intros; Assert H7 := (complet ? H6 H5). -Elim H7; Clear H7; Intros M H7; Cut (image_dir g [c:R]``a <= c <= b`` M). -Intro; Unfold image_dir in H8; Elim H8; Clear H8; Intros Mxx H8; Elim H8; Clear H8; Intros; Exists Mxx; Split. -Intros; Rewrite <- (Heq c H10); Rewrite <- (Heq Mxx H9); Intros; Rewrite <- H8; Unfold is_lub in H7; Elim H7; Clear H7; Intros H7 _; Unfold is_upper_bound in H7; Apply H7; Unfold image_dir; Exists c; Split; [Reflexivity | Apply H10]. -Apply H9. -Elim (classic (image_dir g [c:R]``a <= c <= b`` M)); Intro. -Assumption. -Cut (EXT eps:posreal | (y:R)~(intersection_domain (disc M eps) (image_dir g [c:R]``a <= c <= b``) y)). -Intro; Elim H9; Clear H9; Intros eps H9; Unfold is_lub in H7; Elim H7; Clear H7; Intros; Cut (is_upper_bound (image_dir g [c:R]``a <= c <= b``) ``M-eps``). -Intro; Assert H12 := (H10 ? H11); Cut ``M-epsProp | (neighbourhood V M)/\((y:R)~(intersection_domain V (image_dir g [c:R]``a <= c <= b``) y))). -Intro; Elim H9; Intros V H10; Elim H10; Clear H10; Intros. -Unfold neighbourhood in H10; Elim H10; Intros del H12; Exists del; Intros; Red; Intro; Elim (H11 y). -Unfold intersection_domain; Unfold intersection_domain in H13; Elim H13; Clear H13; Intros; Split. -Apply (H12 ? H13). -Apply H14. -Cut ~(point_adherent (image_dir g [c:R]``a <= c <= b``) M). -Intro; Unfold point_adherent in H9. -Assert H10 := (not_all_ex_not ? [V:R->Prop](neighbourhood V M) - ->(EXT y:R | - (intersection_domain V - (image_dir g [c:R]``a <= c <= b``) y)) H9). -Elim H10; Intros V0 H11; Exists V0; Assert H12 := (imply_to_and ? ? H11); Elim H12; Clear H12; Intros. -Split. -Apply H12. -Apply (not_ex_all_not ? ? H13). -Red; Intro; Cut (adherence (image_dir g [c:R]``a <= c <= b``) M). -Intro; Elim (closed_set_P1 (image_dir g [c:R]``a <= c <= b``)); Intros H11 _; Assert H12 := (H11 H3). -Elim H8. -Unfold eq_Dom in H12; Elim H12; Clear H12; Intros. -Apply (H13 ? H10). -Apply H9. -Exists (g a); Unfold image_dir; Exists a; Split. -Reflexivity. -Split; [Right; Reflexivity | Apply H]. -Unfold bound; Unfold bounded in H4; Elim H4; Clear H4; Intros m H4; Elim H4; Clear H4; Intros M H4; Exists M; Unfold is_upper_bound; Intros; Elim (H4 ? H5); Intros _ H6; Apply H6. -Apply prolongement_C0; Assumption. -Qed. - -(**********) -Lemma continuity_ab_min : (f:(R->R); a,b:R) ``a <= b``->((c:R)``a<=c<=b``->(continuity_pt f c))->(EXT mx:R | ((c:R)``a <= c <= b``->``(f mx) <= (f c)``)/\``a <= mx <= b``). -Intros. -Cut ((c:R)``a<=c<=b``->(continuity_pt (opp_fct f0) c)). -Intro; Assert H2 := (continuity_ab_maj (opp_fct f0) a b H H1); Elim H2; Intros x0 H3; Exists x0; Intros; Split. -Intros; Rewrite <- (Ropp_Ropp (f0 x0)); Rewrite <- (Ropp_Ropp (f0 c)); Apply Rle_Ropp1; Elim H3; Intros; Unfold opp_fct in H5; Apply H5; Apply H4. -Elim H3; Intros; Assumption. -Intros. -Assert H2 := (H0 ? H1). -Apply (continuity_pt_opp ? ? H2). -Qed. - - -(********************************************************) -(* Proof of Bolzano-Weierstrass theorem *) -(********************************************************) - -Definition ValAdh [un:nat->R;x:R] : Prop := (V:R->Prop;N:nat) (neighbourhood V x) -> (EX p:nat | (le N p)/\(V (un p))). - -Definition intersection_family [f:family] : R->Prop := [x:R](y:R)(ind f y)->(f y x). - -Lemma ValAdh_un_exists : (un:nat->R) let D=[x:R](EX n:nat | x==(INR n)) in let f=[x:R](adherence [y:R](EX p:nat | y==(un p)/\``x<=(INR p)``)/\(D x)) in ((x:R)(EXT y:R | (f x y))->(D x)). -Intros; Elim H; Intros; Unfold f in H0; Unfold adherence in H0; Unfold point_adherent in H0; Assert H1 : (neighbourhood (disc x0 (mkposreal ? Rlt_R0_R1)) x0). -Unfold neighbourhood disc; Exists (mkposreal ? Rlt_R0_R1); Unfold included; Trivial. -Elim (H0 ? H1); Intros; Unfold intersection_domain in H2; Elim H2; Intros; Elim H4; Intros; Apply H6. -Qed. - -Definition ValAdh_un [un:nat->R] : R->Prop := let D=[x:R](EX n:nat | x==(INR n)) in let f=[x:R](adherence [y:R](EX p:nat | y==(un p)/\``x<=(INR p)``)/\(D x)) in (intersection_family (mkfamily D f (ValAdh_un_exists un))). - -Lemma ValAdh_un_prop : (un:nat->R;x:R) (ValAdh un x) <-> (ValAdh_un un x). -Intros; Split; Intro. -Unfold ValAdh in H; Unfold ValAdh_un; Unfold intersection_family; Simpl; Intros; Elim H0; Intros N H1; Unfold adherence; Unfold point_adherent; Intros; Elim (H V N H2); Intros; Exists (un x0); Unfold intersection_domain; Elim H3; Clear H3; Intros; Split. -Assumption. -Split. -Exists x0; Split; [Reflexivity | Rewrite H1; Apply (le_INR ? ? H3)]. -Exists N; Assumption. -Unfold ValAdh; Intros; Unfold ValAdh_un in H; Unfold intersection_family in H; Simpl in H; Assert H1 : (adherence [y0:R](EX p:nat | ``y0 == (un p)``/\``(INR N) <= (INR p)``)/\(EX n:nat | ``(INR N) == (INR n)``) x). -Apply H; Exists N; Reflexivity. -Unfold adherence in H1; Unfold point_adherent in H1; Assert H2 := (H1 ? H0); Elim H2; Intros; Unfold intersection_domain in H3; Elim H3; Clear H3; Intros; Elim H4; Clear H4; Intros; Elim H4; Clear H4; Intros; Elim H4; Clear H4; Intros; Exists x1; Split. -Apply (INR_le ? ? H6). -Rewrite H4 in H3; Apply H3. -Qed. - -Lemma adherence_P4 : (F,G:R->Prop) (included F G) -> (included (adherence F) (adherence G)). -Unfold adherence included; Unfold point_adherent; Intros; Elim (H0 ? H1); Unfold intersection_domain; Intros; Elim H2; Clear H2; Intros; Exists x0; Split; [Assumption | Apply (H ? H3)]. -Qed. - -Definition family_closed_set [f:family] : Prop := (x:R) (closed_set (f x)). - -Definition intersection_vide_in [D:R->Prop;f:family] : Prop := ((x:R)((ind f x)->(included (f x) D))/\~(EXT y:R | (intersection_family f y))). - -Definition intersection_vide_finite_in [D:R->Prop;f:family] : Prop := (intersection_vide_in D f)/\(family_finite f). - -(**********) -Lemma compact_P6 : (X:R->Prop) (compact X) -> (EXT z:R | (X z)) -> ((g:family) (family_closed_set g) -> (intersection_vide_in X g) -> (EXT D:R->Prop | (intersection_vide_finite_in X (subfamily g D)))). -Intros X H Hyp g H0 H1. -Pose D' := (ind g). -Pose f' := [x:R][y:R](complementary (g x) y)/\(D' x). -Assert H2 : (x:R)(EXT y:R|(f' x y))->(D' x). -Intros; Elim H2; Intros; Unfold f' in H3; Elim H3; Intros; Assumption. -Pose f0 := (mkfamily D' f' H2). -Unfold compact in H; Assert H3 : (covering_open_set X f0). -Unfold covering_open_set; Split. -Unfold covering; Intros; Unfold intersection_vide_in in H1; Elim (H1 x); Intros; Unfold intersection_family in H5; Assert H6 := (not_ex_all_not ? [y:R](y0:R)(ind g y0)->(g y0 y) H5 x); Assert H7 := (not_all_ex_not ? [y0:R](ind g y0)->(g y0 x) H6); Elim H7; Intros; Exists x0; Elim (imply_to_and ? ? H8); Intros; Unfold f0; Simpl; Unfold f'; Split; [Apply H10 | Apply H9]. -Unfold family_open_set; Intro; Elim (classic (D' x)); Intro. -Apply open_set_P6 with (complementary (g x)). -Unfold family_closed_set in H0; Unfold closed_set in H0; Apply H0. -Unfold f0; Simpl; Unfold f'; Unfold eq_Dom; Split. -Unfold included; Intros; Split; [Apply H4 | Apply H3]. -Unfold included; Intros; Elim H4; Intros; Assumption. -Apply open_set_P6 with [_:R]False. -Apply open_set_P4. -Unfold eq_Dom; Unfold included; Split; Intros; [Elim H4 | Simpl in H4; Unfold f' in H4; Elim H4; Intros; Elim H3; Assumption]. -Elim (H ? H3); Intros SF H4; Exists SF; Unfold intersection_vide_finite_in; Split. -Unfold intersection_vide_in; Simpl; Intros; Split. -Intros; Unfold included; Intros; Unfold intersection_vide_in in H1; Elim (H1 x); Intros; Elim H6; Intros; Apply H7. -Unfold intersection_domain in H5; Elim H5; Intros; Assumption. -Assumption. -Elim (classic (EXT y:R | (intersection_domain (ind g) SF y))); Intro Hyp'. -Red; Intro; Elim H5; Intros; Unfold intersection_family in H6; Simpl in H6. -Cut (X x0). -Intro; Unfold covering_finite in H4; Elim H4; Clear H4; Intros H4 _; Unfold covering in H4; Elim (H4 x0 H7); Intros; Simpl in H8; Unfold intersection_domain in H6; Cut (ind g x1)/\(SF x1). -Intro; Assert H10 := (H6 x1 H9); Elim H10; Clear H10; Intros H10 _; Elim H8; Clear H8; Intros H8 _; Unfold f' in H8; Unfold complementary in H8; Elim H8; Clear H8; Intros H8 _; Elim H8; Assumption. -Split. -Apply (cond_fam f0). -Exists x0; Elim H8; Intros; Assumption. -Elim H8; Intros; Assumption. -Unfold intersection_vide_in in H1; Elim Hyp'; Intros; Assert H8 := (H6 ? H7); Elim H8; Intros; Cut (ind g x1). -Intro; Elim (H1 x1); Intros; Apply H12. -Apply H11. -Apply H9. -Apply (cond_fam g); Exists x0; Assumption. -Unfold covering_finite in H4; Elim H4; Clear H4; Intros H4 _; Cut (EXT z:R | (X z)). -Intro; Elim H5; Clear H5; Intros; Unfold covering in H4; Elim (H4 x0 H5); Intros; Simpl in H6; Elim Hyp'; Exists x1; Elim H6; Intros; Unfold intersection_domain; Split. -Apply (cond_fam f0); Exists x0; Apply H7. -Apply H8. -Apply Hyp. -Unfold covering_finite in H4; Elim H4; Clear H4; Intros; Unfold family_finite in H5; Unfold domain_finite in H5; Unfold family_finite; Unfold domain_finite; Elim H5; Clear H5; Intros l H5; Exists l; Intro; Elim (H5 x); Intros; Split; Intro; [Apply H6; Simpl; Simpl in H8; Apply H8 | Apply (H7 H8)]. -Qed. - -Theorem Bolzano_Weierstrass : (un:nat->R;X:R->Prop) (compact X) -> ((n:nat)(X (un n))) -> (EXT l:R | (ValAdh un l)). -Intros; Cut (EXT l:R | (ValAdh_un un l)). -Intro; Elim H1; Intros; Exists x; Elim (ValAdh_un_prop un x); Intros; Apply (H4 H2). -Assert H1 : (EXT z:R | (X z)). -Exists (un O); Apply H0. -Pose D:=[x:R](EX n:nat | x==(INR n)). -Pose g:=[x:R](adherence [y:R](EX p:nat | y==(un p)/\``x<=(INR p)``)/\(D x)). -Assert H2 : (x:R)(EXT y:R | (g x y))->(D x). -Intros; Elim H2; Intros; Unfold g in H3; Unfold adherence in H3; Unfold point_adherent in H3. -Assert H4 : (neighbourhood (disc x0 (mkposreal ? Rlt_R0_R1)) x0). -Unfold neighbourhood; Exists (mkposreal ? Rlt_R0_R1); Unfold included; Trivial. -Elim (H3 ? H4); Intros; Unfold intersection_domain in H5; Decompose [and] H5; Assumption. -Pose f0 := (mkfamily D g H2). -Assert H3 := (compact_P6 X H H1 f0). -Elim (classic (EXT l:R | (ValAdh_un un l))); Intro. -Assumption. -Cut (family_closed_set f0). -Intro; Cut (intersection_vide_in X f0). -Intro; Assert H7 := (H3 H5 H6). -Elim H7; Intros SF H8; Unfold intersection_vide_finite_in in H8; Elim H8; Clear H8; Intros; Unfold intersection_vide_in in H8; Elim (H8 R0); Intros _ H10; Elim H10; Unfold family_finite in H9; Unfold domain_finite in H9; Elim H9; Clear H9; Intros l H9; Pose r := (MaxRlist l); Cut (D r). -Intro; Unfold D in H11; Elim H11; Intros; Exists (un x); Unfold intersection_family; Simpl; Unfold intersection_domain; Intros; Split. -Unfold g; Apply adherence_P1; Split. -Exists x; Split; [Reflexivity | Rewrite <- H12; Unfold r; Apply MaxRlist_P1; Elim (H9 y); Intros; Apply H14; Simpl; Apply H13]. -Elim H13; Intros; Assumption. -Elim H13; Intros; Assumption. -Elim (H9 r); Intros. -Simpl in H12; Unfold intersection_domain in H12; Cut (In r l). -Intro; Elim (H12 H13); Intros; Assumption. -Unfold r; Apply MaxRlist_P2; Cut (EXT z:R | (intersection_domain (ind f0) SF z)). -Intro; Elim H13; Intros; Elim (H9 x); Intros; Simpl in H15; Assert H17 := (H15 H14); Exists x; Apply H17. -Elim (classic (EXT z:R | (intersection_domain (ind f0) SF z))); Intro. -Assumption. -Elim (H8 R0); Intros _ H14; Elim H1; Intros; Assert H16 := (not_ex_all_not ? [y:R](intersection_family (subfamily f0 SF) y) H14); Assert H17 := (not_ex_all_not ? [z:R](intersection_domain (ind f0) SF z) H13); Assert H18 := (H16 x); Unfold intersection_family in H18; Simpl in H18; Assert H19 := (not_all_ex_not ? [y:R](intersection_domain D SF y)->(g y x)/\(SF y) H18); Elim H19; Intros; Assert H21 := (imply_to_and ? ? H20); Elim (H17 x0); Elim H21; Intros; Assumption. -Unfold intersection_vide_in; Intros; Split. -Intro; Simpl in H6; Unfold f0; Simpl; Unfold g; Apply included_trans with (adherence X). -Apply adherence_P4. -Unfold included; Intros; Elim H7; Intros; Elim H8; Intros; Elim H10; Intros; Rewrite H11; Apply H0. -Apply adherence_P2; Apply compact_P2; Assumption. -Apply H4. -Unfold family_closed_set; Unfold f0; Simpl; Unfold g; Intro; Apply adherence_P3. -Qed. - -(********************************************************) -(* Proof of Heine's theorem *) -(********************************************************) - -Definition uniform_continuity [f:R->R;X:R->Prop] : Prop := (eps:posreal)(EXT delta:posreal | (x,y:R) (X x)->(X y)->``(Rabsolu (x-y))``(Rabsolu ((f x)-(f y)))Prop;x,y:R) (is_lub E x) -> (is_lub E y) -> x==y. -Unfold is_lub; Intros; Elim H; Elim H0; Intros; Apply Rle_antisym; [Apply (H4 ? H1) | Apply (H2 ? H3)]. -Qed. - -Lemma domain_P1 : (X:R->Prop) ~(EXT y:R | (X y))\/(EXT y:R | (X y)/\((x:R)(X x)->x==y))\/(EXT x:R | (EXT y:R | (X x)/\(X y)/\``x<>y``)). -Intro; Elim (classic (EXT y:R | (X y))); Intro. -Right; Elim H; Intros; Elim (classic (EXT y:R | (X y)/\``y<>x``)); Intro. -Right; Elim H1; Intros; Elim H2; Intros; Exists x; Exists x0; Intros. -Split; [Assumption | Split; [Assumption | Apply not_sym; Assumption]]. -Left; Exists x; Split. -Assumption. -Intros; Case (Req_EM x0 x); Intro. -Assumption. -Elim H1; Exists x0; Split; Assumption. -Left; Assumption. -Qed. - -Theorem Heine : (f:R->R;X:R->Prop) (compact X) -> ((x:R)(X x)->(continuity_pt f x)) -> (uniform_continuity f X). -Intros f0 X H0 H; Elim (domain_P1 X); Intro Hyp. -(* X est vide *) -Unfold uniform_continuity; Intros; Exists (mkposreal ? Rlt_R0_R1); Intros; Elim Hyp; Exists x; Assumption. -Elim Hyp; Clear Hyp; Intro Hyp. -(* X possède un seul élément *) -Unfold uniform_continuity; Intros; Exists (mkposreal ? Rlt_R0_R1); Intros; Elim Hyp; Clear Hyp; Intros; Elim H4; Clear H4; Intros; Assert H6 := (H5 ? H1); Assert H7 := (H5 ? H2); Rewrite H6; Rewrite H7; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (cond_pos eps). -(* X possède au moins deux éléments distincts *) -Assert X_enc : (EXT m:R | (EXT M:R | ((x:R)(X x)->``m<=x<=M``)/\``m``(Rabsolu ((f0 z)-(f0 x)))``(Rabsolu ((f0 z)-(f0 x)))(X x). -Intros; Elim H2; Intros; Unfold g in H3; Elim H3; Clear H3; Intros H3 _; Apply H3. -Pose f' := (mkfamily X g H2); Unfold compact in H0; Assert H3 : (covering_open_set X f'). -Unfold covering_open_set; Split. -Unfold covering; Intros; Exists x; Simpl; Unfold g; Split. -Assumption. -Assert H4 := (H ? H3); Unfold continuity_pt in H4; Unfold continue_in in H4; Unfold limit1_in in H4; Unfold limit_in in H4; Simpl in H4; Unfold R_dist in H4; Elim (H4 ``eps/2`` (H1 eps)); Intros; Pose E:=[zeta:R]``0``(Rabsolu ((f0 z)-(f0 x))) < eps/2``); Assert H6 : (bound E). -Unfold bound; Exists ``M-m``; Unfold is_upper_bound; Unfold E; Intros; Elim H6; Clear H6; Intros H6 _; Elim H6; Clear H6; Intros _ H6; Apply H6. -Assert H7 : (EXT x:R | (E x)). -Elim H5; Clear H5; Intros; Exists (Rmin x0 ``M-m``); Unfold E; Intros; Split. -Split. -Unfold Rmin; Case (total_order_Rle x0 ``M-m``); Intro. -Apply H5. -Apply Rlt_Rminus; Apply Hyp. -Apply Rmin_r. -Intros; Case (Req_EM x z); Intro. -Rewrite H9; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (H1 eps). -Apply H7; Split. -Unfold D_x no_cond; Split; [Trivial | Assumption]. -Apply Rlt_le_trans with (Rmin x0 ``M-m``); [Apply H8 | Apply Rmin_l]. -Assert H8 := (complet ? H6 H7); Elim H8; Clear H8; Intros; Cut ``0(EXT del:R | ``0``(Rabsolu ((f0 z)-(f0 x))) < eps/2``)/\(included (g x) [z:R]``(Rabsolu (z-x))``(Rabsolu ((f0 z)-(f0 x))) < eps/2``)/\(included (g x) [z:R]``(Rabsolu (z-x))``(Rabsolu ((f0 z)-(f0 x))) < eps/2``); Assert H11 : (bound E). -Unfold bound; Exists ``M-m``; Unfold is_upper_bound; Unfold E; Intros; Elim H11; Clear H11; Intros H11 _; Elim H11; Clear H11; Intros _ H11; Apply H11. -Assert H12 : (EXT x:R | (E x)). -Assert H13 := (H ? H9); Unfold continuity_pt in H13; Unfold continue_in in H13; Unfold limit1_in in H13; Unfold limit_in in H13; Simpl in H13; Unfold R_dist in H13; Elim (H13 ? (H1 eps)); Intros; Elim H12; Clear H12; Intros; Exists (Rmin x0 ``M-m``); Unfold E; Intros; Split. -Split; [Unfold Rmin; Case (total_order_Rle x0 ``M-m``); Intro; [Apply H12 | Apply Rlt_Rminus; Apply Hyp] | Apply Rmin_r]. -Intros; Case (Req_EM x z); Intro. -Rewrite H16; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (H1 eps). -Apply H14; Split; [Unfold D_x no_cond; Split; [Trivial | Assumption] | Apply Rlt_le_trans with (Rmin x0 ``M-m``); [Apply H15 | Apply Rmin_l]]. -Assert H13 := (complet ? H11 H12); Elim H13; Clear H13; Intros; Cut ``0 cos_plus; Rewrite -> sin_PI; Rewrite -> cos_PI; Ring. -Qed. - -(**********) -Lemma sin_cos : (x:R) ``(sin x)==-(cos (PI/2+x))``. -Intro x; Rewrite -> cos_plus; Rewrite -> sin_PI2; Rewrite -> cos_PI2; Ring. -Qed. - -(**********) -Lemma sin_plus : (x,y:R) ``(sin (x+y))==(sin x)*(cos y)+(cos x)*(sin y)``. -Intros. -Rewrite (sin_cos ``x+y``). -Replace ``PI/2+(x+y)`` with ``(PI/2+x)+y``; [Rewrite cos_plus | Ring]. -Rewrite (sin_cos ``PI/2+x``). -Replace ``PI/2+(PI/2+x)`` with ``x+PI``. -Rewrite neg_cos. -Replace (cos ``PI/2+x``) with ``-(sin x)``. -Ring. -Rewrite sin_cos; Rewrite Ropp_Ropp; Reflexivity. -Pattern 1 PI; Rewrite (double_var PI); Ring. -Qed. - -Lemma sin_minus : (x,y:R) ``(sin (x-y))==(sin x)*(cos y)-(cos x)*(sin y)``. -Intros; Unfold Rminus; Rewrite sin_plus. -Rewrite <- cos_sym; Rewrite sin_antisym; Ring. -Qed. - -(**********) -Definition tan [x:R] : R := ``(sin x)/(cos x)``. - -Lemma tan_plus : (x,y:R) ~``(cos x)==0`` -> ~``(cos y)==0`` -> ~``(cos (x+y))==0`` -> ~``1-(tan x)*(tan y)==0`` -> ``(tan (x+y))==((tan x)+(tan y))/(1-(tan x)*(tan y))``. -Intros; Unfold tan; Rewrite sin_plus; Rewrite cos_plus; Unfold Rdiv; Replace ``((cos x)*(cos y)-(sin x)*(sin y))`` with ``((cos x)*(cos y))*(1-(sin x)*/(cos x)*((sin y)*/(cos y)))``. -Rewrite Rinv_Rmult. -Repeat Rewrite <- Rmult_assoc; Replace ``((sin x)*(cos y)+(cos x)*(sin y))*/((cos x)*(cos y))`` with ``((sin x)*/(cos x)+(sin y)*/(cos y))``. -Reflexivity. -Rewrite Rmult_Rplus_distrl; Rewrite Rinv_Rmult. -Repeat Rewrite Rmult_assoc; Repeat Rewrite (Rmult_sym ``(sin x)``); Repeat Rewrite <- Rmult_assoc. -Repeat Rewrite Rinv_r_simpl_m; [Reflexivity | Assumption | Assumption]. -Assumption. -Assumption. -Apply prod_neq_R0; Assumption. -Assumption. -Unfold Rminus; Rewrite Rmult_Rplus_distr; Rewrite Rmult_1r; Apply Rplus_plus_r; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``(sin x)``); Rewrite (Rmult_sym ``(cos y)``); Rewrite <- Ropp_mul3; Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l; Rewrite (Rmult_sym (sin x)); Rewrite <- Ropp_mul3; Repeat Rewrite Rmult_assoc; Apply Rmult_mult_r; Rewrite (Rmult_sym ``/(cos y)``); Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. -Apply Rmult_1r. -Assumption. -Assumption. -Qed. - -(*******************************************************) -(* Some properties of cos, sin and tan *) -(*******************************************************) - -Lemma sin2 : (x:R) ``(Rsqr (sin x))==1-(Rsqr (cos x))``. -Intro x; Generalize (cos2 x); Intro H1; Rewrite -> H1. -Unfold Rminus; Rewrite Ropp_distr1; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Ol; Symmetry; Apply Ropp_Ropp. -Qed. - -Lemma sin_2a : (x:R) ``(sin (2*x))==2*(sin x)*(cos x)``. -Intro x; Rewrite double; Rewrite sin_plus. -Rewrite <- (Rmult_sym (sin x)); Symmetry; Rewrite Rmult_assoc; Apply double. -Qed. - -Lemma cos_2a : (x:R) ``(cos (2*x))==(cos x)*(cos x)-(sin x)*(sin x)``. -Intro x; Rewrite double; Apply cos_plus. -Qed. - -Lemma cos_2a_cos : (x:R) ``(cos (2*x))==2*(cos x)*(cos x)-1``. -Intro x; Rewrite double; Unfold Rminus; Rewrite Rmult_assoc; Rewrite cos_plus; Generalize (sin2_cos2 x); Rewrite double; Intro H1; Rewrite <- H1; SqRing. -Qed. - -Lemma cos_2a_sin : (x:R) ``(cos (2*x))==1-2*(sin x)*(sin x)``. -Intro x; Rewrite Rmult_assoc; Unfold Rminus; Repeat Rewrite double. -Generalize (sin2_cos2 x); Intro H1; Rewrite <- H1; Rewrite cos_plus; SqRing. -Qed. - -Lemma tan_2a : (x:R) ~``(cos x)==0`` -> ~``(cos (2*x))==0`` -> ~``1-(tan x)*(tan x)==0`` ->``(tan (2*x))==(2*(tan x))/(1-(tan x)*(tan x))``. -Repeat Rewrite double; Intros; Repeat Rewrite double; Rewrite double in H0; Apply tan_plus; Assumption. -Qed. - -Lemma sin_neg : (x:R) ``(sin (-x))==-(sin x)``. -Apply sin_antisym. -Qed. - -Lemma cos_neg : (x:R) ``(cos (-x))==(cos x)``. -Intro; Symmetry; Apply cos_sym. -Qed. - -Lemma tan_0 : ``(tan 0)==0``. -Unfold tan; Rewrite -> sin_0; Rewrite -> cos_0. -Unfold Rdiv; Apply Rmult_Ol. -Qed. - -Lemma tan_neg : (x:R) ``(tan (-x))==-(tan x)``. -Intros x; Unfold tan; Rewrite sin_neg; Rewrite cos_neg; Unfold Rdiv. -Apply Ropp_mul1. -Qed. - -Lemma tan_minus : (x,y:R) ~``(cos x)==0`` -> ~``(cos y)==0`` -> ~``(cos (x-y))==0`` -> ~``1+(tan x)*(tan y)==0`` -> ``(tan (x-y))==((tan x)-(tan y))/(1+(tan x)*(tan y))``. -Intros; Unfold Rminus; Rewrite tan_plus. -Rewrite tan_neg; Unfold Rminus; Rewrite <- Ropp_mul1; Rewrite Ropp_mul2; Reflexivity. -Assumption. -Rewrite cos_neg; Assumption. -Assumption. -Rewrite tan_neg; Unfold Rminus; Rewrite <- Ropp_mul1; Rewrite Ropp_mul2; Assumption. -Qed. - -Lemma cos_3PI2 : ``(cos (3*(PI/2)))==0``. -Replace ``3*(PI/2)`` with ``PI+(PI/2)``. -Rewrite -> cos_plus; Rewrite -> sin_PI; Rewrite -> cos_PI2; Ring. -Pattern 1 PI; Rewrite (double_var PI). -Ring. -Qed. - -Lemma sin_2PI : ``(sin (2*PI))==0``. -Rewrite -> sin_2a; Rewrite -> sin_PI; Ring. -Qed. - -Lemma cos_2PI : ``(cos (2*PI))==1``. -Rewrite -> cos_2a; Rewrite -> sin_PI; Rewrite -> cos_PI; Ring. -Qed. - -Lemma neg_sin : (x:R) ``(sin (x+PI))==-(sin x)``. -Intro x; Rewrite -> sin_plus; Rewrite -> sin_PI; Rewrite -> cos_PI; Ring. -Qed. - -Lemma sin_PI_x : (x:R) ``(sin (PI-x))==(sin x)``. -Intro x; Rewrite -> sin_minus; Rewrite -> sin_PI; Rewrite -> cos_PI; Rewrite Rmult_Ol; Unfold Rminus; Rewrite Rplus_Ol; Rewrite Ropp_mul1; Rewrite Ropp_Ropp; Apply Rmult_1l. -Qed. - -Lemma sin_period : (x:R)(k:nat) ``(sin (x+2*(INR k)*PI))==(sin x)``. -Intros x k; Induction k. -Cut ``x+2*(INR O)*PI==x``; [Intro; Rewrite H; Reflexivity | Ring]. -Replace ``x+2*(INR (S k))*PI`` with ``(x+2*(INR k)*PI)+(2*PI)``; [Rewrite -> sin_plus; Rewrite -> sin_2PI; Rewrite -> cos_2PI; Ring; Apply Hreck | Rewrite -> S_INR; Ring]. -Qed. - -Lemma cos_period : (x:R)(k:nat) ``(cos (x+2*(INR k)*PI))==(cos x)``. -Intros x k; Induction k. -Cut ``x+2*(INR O)*PI==x``; [Intro; Rewrite H; Reflexivity | Ring]. -Replace ``x+2*(INR (S k))*PI`` with ``(x+2*(INR k)*PI)+(2*PI)``; [Rewrite -> cos_plus; Rewrite -> sin_2PI; Rewrite -> cos_2PI; Ring; Apply Hreck | Rewrite -> S_INR; Ring]. -Qed. - -Lemma sin_shift : (x:R) ``(sin (PI/2-x))==(cos x)``. -Intro x; Rewrite -> sin_minus; Rewrite -> sin_PI2; Rewrite -> cos_PI2; Ring. -Qed. - -Lemma cos_shift : (x:R) ``(cos (PI/2-x))==(sin x)``. -Intro x; Rewrite -> cos_minus; Rewrite -> sin_PI2; Rewrite -> cos_PI2; Ring. -Qed. - -Lemma cos_sin : (x:R) ``(cos x)==(sin (PI/2+x))``. -Intro x; Rewrite -> sin_plus; Rewrite -> sin_PI2; Rewrite -> cos_PI2; Ring. -Qed. - -Lemma PI2_RGT_0 : ``0``a<=PI/2``->``0<(sin_lb a)``. -Intros. -Unfold sin_lb; Unfold sin_approx; Unfold sin_term. -Pose Un := [i:nat]``(pow a (plus (mult (S (S O)) i) (S O)))/(INR (fact (plus (mult (S (S O)) i) (S O))))``. -Replace (sum_f_R0 [i:nat] ``(pow ( -1) i)*(pow a (plus (mult (S (S O)) i) (S O)))/(INR (fact (plus (mult (S (S O)) i) (S O))))`` (S (S (S O)))) with (sum_f_R0 [i:nat]``(pow (-1) i)*(Un i)`` (3)); [Idtac | Apply sum_eq; Intros; Unfold Un; Reflexivity]. -Cut (n:nat)``(Un (S n))<(Un n)``. -Intro; Simpl. -Repeat Rewrite Rmult_1l; Repeat Rewrite Rmult_1r; Replace ``-1*(Un (S O))`` with ``-(Un (S O))``; [Idtac | Ring]; Replace ``-1* -1*(Un (S (S O)))`` with ``(Un (S (S O)))``; [Idtac | Ring]; Replace ``-1*( -1* -1)*(Un (S (S (S O))))`` with ``-(Un (S (S (S O))))``; [Idtac | Ring]; Replace ``(Un O)+ -(Un (S O))+(Un (S (S O)))+ -(Un (S (S (S O))))`` with ``((Un O)-(Un (S O)))+((Un (S (S O)))-(Un (S (S (S O)))))``; [Idtac | Ring]. -Apply gt0_plus_gt0_is_gt0. -Unfold Rminus; Apply Rlt_anti_compatibility with (Un (S O)); Rewrite Rplus_Or; Rewrite (Rplus_sym (Un (S O))); Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Apply H1. -Unfold Rminus; Apply Rlt_anti_compatibility with (Un (S (S (S O)))); Rewrite Rplus_Or; Rewrite (Rplus_sym (Un (S (S (S O))))); Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Apply H1. -Intro; Unfold Un. -Cut (plus (mult (2) (S n)) (S O)) = (plus (plus (mult (2) n) (S O)) (2)). -Intro; Rewrite H1. -Rewrite pow_add; Unfold Rdiv; Rewrite Rmult_assoc; Apply Rlt_monotony. -Apply pow_lt; Assumption. -Rewrite <- H1; Apply Rlt_monotony_contra with (INR (fact (plus (mult (S (S O)) n) (S O)))). -Apply lt_INR_0; Apply neq_O_lt. -Assert H2 := (fact_neq_0 (plus (mult (2) n) (1))). -Red; Intro; Elim H2; Symmetry; Assumption. -Rewrite <- Rinv_r_sym. -Apply Rlt_monotony_contra with (INR (fact (plus (mult (S (S O)) (S n)) (S O)))). -Apply lt_INR_0; Apply neq_O_lt. -Assert H2 := (fact_neq_0 (plus (mult (2) (S n)) (1))). -Red; Intro; Elim H2; Symmetry; Assumption. -Rewrite (Rmult_sym (INR (fact (plus (mult (S (S O)) (S n)) (S O))))); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Do 2 Rewrite Rmult_1r; Apply Rle_lt_trans with ``(INR (fact (plus (mult (S (S O)) n) (S O))))*4``. -Apply Rle_monotony. -Replace R0 with (INR O); [Idtac | Reflexivity]; Apply le_INR; Apply le_O_n. -Simpl; Rewrite Rmult_1r; Replace ``4`` with ``(Rsqr 2)``; [Idtac | SqRing]; Replace ``a*a`` with (Rsqr a); [Idtac | Reflexivity]; Apply Rsqr_incr_1. -Apply Rle_trans with ``PI/2``; [Assumption | Unfold Rdiv; Apply Rle_monotony_contra with ``2``; [ Sup0 | Rewrite <- Rmult_assoc; Rewrite Rinv_r_simpl_m; [Replace ``2*2`` with ``4``; [Apply PI_4 | Ring] | DiscrR]]]. -Left; Assumption. -Left; Sup0. -Rewrite H1; Replace (plus (plus (mult (S (S O)) n) (S O)) (S (S O))) with (S (S (plus (mult (S (S O)) n) (S O)))). -Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR. -Repeat Rewrite <- Rmult_assoc. -Rewrite <- (Rmult_sym (INR (fact (plus (mult (S (S O)) n) (S O))))). -Rewrite Rmult_assoc. -Apply Rlt_monotony. -Apply lt_INR_0; Apply neq_O_lt. -Assert H2 := (fact_neq_0 (plus (mult (2) n) (1))). -Red; Intro; Elim H2; Symmetry; Assumption. -Do 2 Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Pose x := (INR n); Unfold INR. -Replace ``(2*x+1+1+1)*(2*x+1+1)`` with ``4*x*x+10*x+6``; [Idtac | Ring]. -Apply Rlt_anti_compatibility with ``-4``; Rewrite Rplus_Ropp_l; Replace ``-4+(4*x*x+10*x+6)`` with ``(4*x*x+10*x)+2``; [Idtac | Ring]. -Apply ge0_plus_gt0_is_gt0. -Cut ``0<=x``. -Intro; Apply ge0_plus_ge0_is_ge0; Repeat Apply Rmult_le_pos; Assumption Orelse Left; Sup. -Unfold x; Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. -Sup0. -Apply INR_eq; Do 2 Rewrite S_INR; Do 3 Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply INR_eq; Do 3 Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Qed. - -Lemma SIN : (a:R) ``0<=a`` -> ``a<=PI`` -> ``(sin_lb a)<=(sin a)<=(sin_ub a)``. -Intros; Unfold sin_lb sin_ub; Apply (sin_bound a (S O) H H0). -Qed. - -Lemma COS : (a:R) ``-PI/2<=a`` -> ``a<=PI/2`` -> ``(cos_lb a)<=(cos a)<=(cos_ub a)``. -Intros; Unfold cos_lb cos_ub; Apply (cos_bound a (S O) H H0). -Qed. - -(**********) -Lemma _PI2_RLT_0 : ``-(PI/2)<0``. -Rewrite <- Ropp_O; Apply Rlt_Ropp1; Apply PI2_RGT_0. -Qed. - -Lemma PI4_RLT_PI2 : ``PI/4 ``x ``0<(sin x)``. -Intros; Elim (SIN x (Rlt_le R0 x H) (Rlt_le x PI H0)); Intros H1 _; Case (total_order x ``PI/2``); Intro H2. -Apply Rlt_le_trans with (sin_lb x). -Apply sin_lb_gt_0; [Assumption | Left; Assumption]. -Assumption. -Elim H2; Intro H3. -Rewrite H3; Rewrite sin_PI2; Apply Rlt_R0_R1. -Rewrite <- sin_PI_x; Generalize (Rgt_Ropp x ``PI/2`` H3); Intro H4; Generalize (Rlt_compatibility PI (Ropp x) (Ropp ``PI/2``) H4). -Replace ``PI+(-x)`` with ``PI-x``. -Replace ``PI+ -(PI/2)`` with ``PI/2``. -Intro H5; Generalize (Rlt_Ropp x PI H0); Intro H6; Change ``-PI < -x`` in H6; Generalize (Rlt_compatibility PI (Ropp PI) (Ropp x) H6). -Rewrite Rplus_Ropp_r. -Replace ``PI+ -x`` with ``PI-x``. -Intro H7; Elim (SIN ``PI-x`` (Rlt_le R0 ``PI-x`` H7) (Rlt_le ``PI-x`` PI (Rlt_trans ``PI-x`` ``PI/2`` ``PI`` H5 PI2_Rlt_PI))); Intros H8 _; Generalize (sin_lb_gt_0 ``PI-x`` H7 (Rlt_le ``PI-x`` ``PI/2`` H5)); Intro H9; Apply (Rlt_le_trans ``0`` ``(sin_lb (PI-x))`` ``(sin (PI-x))`` H9 H8). -Reflexivity. -Pattern 2 PI; Rewrite double_var; Ring. -Reflexivity. -Qed. - -Theorem cos_gt_0 : (x:R) ``-(PI/2) ``x ``0<(cos x)``. -Intros; Rewrite cos_sin; Generalize (Rlt_compatibility ``PI/2`` ``-(PI/2)`` x H). -Rewrite Rplus_Ropp_r; Intro H1; Generalize (Rlt_compatibility ``PI/2`` x ``PI/2`` H0); Rewrite <- double_var; Intro H2; Apply (sin_gt_0 ``PI/2+x`` H1 H2). -Qed. - -Lemma sin_ge_0 : (x:R) ``0<=x`` -> ``x<=PI`` -> ``0<=(sin x)``. -Intros x H1 H2; Elim H1; Intro H3; [ Elim H2; Intro H4; [ Left ; Apply (sin_gt_0 x H3 H4) | Rewrite H4; Right; Symmetry; Apply sin_PI ] | Rewrite <- H3; Right; Symmetry; Apply sin_0]. -Qed. - -Lemma cos_ge_0 : (x:R) ``-(PI/2)<=x`` -> ``x<=PI/2`` -> ``0<=(cos x)``. -Intros x H1 H2; Elim H1; Intro H3; [ Elim H2; Intro H4; [ Left ; Apply (cos_gt_0 x H3 H4) | Rewrite H4; Right; Symmetry; Apply cos_PI2 ] | Rewrite <- H3; Rewrite cos_neg; Right; Symmetry; Apply cos_PI2 ]. -Qed. - -Lemma sin_le_0 : (x:R) ``PI<=x`` -> ``x<=2*PI`` -> ``(sin x)<=0``. -Intros x H1 H2; Apply Rle_sym2; Rewrite <- Ropp_O; Rewrite <- (Ropp_Ropp (sin x)); Apply Rle_Ropp; Rewrite <- neg_sin; Replace ``x+PI`` with ``(x-PI)+2*(INR (S O))*PI``; [Rewrite -> (sin_period (Rminus x PI) (S O)); Apply sin_ge_0; [Replace ``x-PI`` with ``x+(-PI)``; [Rewrite Rplus_sym; Replace ``0`` with ``(-PI)+PI``; [Apply Rle_compatibility; Assumption | Ring] | Ring] | Replace ``x-PI`` with ``x+(-PI)``; Rewrite Rplus_sym; [Pattern 2 PI; Replace ``PI`` with ``(-PI)+2*PI``; [Apply Rle_compatibility; Assumption | Ring] | Ring]] |Unfold INR; Ring]. -Qed. - -Lemma cos_le_0 : (x:R) ``PI/2<=x``->``x<=3*(PI/2)``->``(cos x)<=0``. -Intros x H1 H2; Apply Rle_sym2; Rewrite <- Ropp_O; Rewrite <- (Ropp_Ropp (cos x)); Apply Rle_Ropp; Rewrite <- neg_cos; Replace ``x+PI`` with ``(x-PI)+2*(INR (S O))*PI``. -Rewrite cos_period; Apply cos_ge_0. -Replace ``-(PI/2)`` with ``-PI+(PI/2)``. -Unfold Rminus; Rewrite (Rplus_sym x); Apply Rle_compatibility; Assumption. -Pattern 1 PI; Rewrite (double_var PI); Rewrite Ropp_distr1; Ring. -Unfold Rminus; Rewrite Rplus_sym; Replace ``PI/2`` with ``(-PI)+3*(PI/2)``. -Apply Rle_compatibility; Assumption. -Pattern 1 PI; Rewrite (double_var PI); Rewrite Ropp_distr1; Ring. -Unfold INR; Ring. -Qed. - -Lemma sin_lt_0 : (x:R) ``PI ``x<2*PI`` -> ``(sin x)<0``. -Intros x H1 H2; Rewrite <- Ropp_O; Rewrite <- (Ropp_Ropp (sin x)); Apply Rlt_Ropp; Rewrite <- neg_sin; Replace ``x+PI`` with ``(x-PI)+2*(INR (S O))*PI``; [Rewrite -> (sin_period (Rminus x PI) (S O)); Apply sin_gt_0; [Replace ``x-PI`` with ``x+(-PI)``; [Rewrite Rplus_sym; Replace ``0`` with ``(-PI)+PI``; [Apply Rlt_compatibility; Assumption | Ring] | Ring] | Replace ``x-PI`` with ``x+(-PI)``; Rewrite Rplus_sym; [Pattern 2 PI; Replace ``PI`` with ``(-PI)+2*PI``; [Apply Rlt_compatibility; Assumption | Ring] | Ring]] |Unfold INR; Ring]. -Qed. - -Lemma sin_lt_0_var : (x:R) ``-PI ``x<0`` -> ``(sin x)<0``. -Intros; Generalize (Rlt_compatibility ``2*PI`` ``-PI`` x H); Replace ``2*PI+(-PI)`` with ``PI``; [Intro H1; Rewrite Rplus_sym in H1; Generalize (Rlt_compatibility ``2*PI`` x ``0`` H0); Intro H2; Rewrite (Rplus_sym ``2*PI``) in H2; Rewrite <- (Rplus_sym R0) in H2; Rewrite Rplus_Ol in H2; Rewrite <- (sin_period x (1)); Unfold INR; Replace ``2*1*PI`` with ``2*PI``; [Apply (sin_lt_0 ``x+2*PI`` H1 H2) | Ring] | Ring]. -Qed. - -Lemma cos_lt_0 : (x:R) ``PI/2 ``x<3*(PI/2)``-> ``(cos x)<0``. -Intros x H1 H2; Rewrite <- Ropp_O; Rewrite <- (Ropp_Ropp (cos x)); Apply Rlt_Ropp; Rewrite <- neg_cos; Replace ``x+PI`` with ``(x-PI)+2*(INR (S O))*PI``. -Rewrite cos_period; Apply cos_gt_0. -Replace ``-(PI/2)`` with ``-PI+(PI/2)``. -Unfold Rminus; Rewrite (Rplus_sym x); Apply Rlt_compatibility; Assumption. -Pattern 1 PI; Rewrite (double_var PI); Rewrite Ropp_distr1; Ring. -Unfold Rminus; Rewrite Rplus_sym; Replace ``PI/2`` with ``(-PI)+3*(PI/2)``. -Apply Rlt_compatibility; Assumption. -Pattern 1 PI; Rewrite (double_var PI); Rewrite Ropp_distr1; Ring. -Unfold INR; Ring. -Qed. - -Lemma tan_gt_0 : (x:R) ``0 ``x ``0<(tan x)``. -Intros x H1 H2; Unfold tan; Generalize _PI2_RLT_0; Generalize (Rlt_trans R0 x ``PI/2`` H1 H2); Intros; Generalize (Rlt_trans ``-(PI/2)`` R0 x H0 H1); Intro H5; Generalize (Rlt_trans x ``PI/2`` PI H2 PI2_Rlt_PI); Intro H7; Unfold Rdiv; Apply Rmult_lt_pos. -Apply sin_gt_0; Assumption. -Apply Rlt_Rinv; Apply cos_gt_0; Assumption. -Qed. - -Lemma tan_lt_0 : (x:R) ``-(PI/2)``x<0``->``(tan x)<0``. -Intros x H1 H2; Unfold tan; Generalize (cos_gt_0 x H1 (Rlt_trans x ``0`` ``PI/2`` H2 PI2_RGT_0)); Intro H3; Rewrite <- Ropp_O; Replace ``(sin x)/(cos x)`` with ``- ((-(sin x))/(cos x))``. -Rewrite <- sin_neg; Apply Rgt_Ropp; Change ``0<(sin (-x))/(cos x)``; Unfold Rdiv; Apply Rmult_lt_pos. -Apply sin_gt_0. -Rewrite <- Ropp_O; Apply Rgt_Ropp; Assumption. -Apply Rlt_trans with ``PI/2``. -Rewrite <- (Ropp_Ropp ``PI/2``); Apply Rgt_Ropp; Assumption. -Apply PI2_Rlt_PI. -Apply Rlt_Rinv; Assumption. -Unfold Rdiv; Ring. -Qed. - -Lemma cos_ge_0_3PI2 : (x:R) ``3*(PI/2)<=x``->``x<=2*PI``->``0<=(cos x)``. -Intros; Rewrite <- cos_neg; Rewrite <- (cos_period ``-x`` (1)); Unfold INR; Replace ``-x+2*1*PI`` with ``2*PI-x``. -Generalize (Rle_Ropp x ``2*PI`` H0); Intro H1; Generalize (Rle_sym2 ``-(2*PI)`` ``-x`` H1); Clear H1; Intro H1; Generalize (Rle_compatibility ``2*PI`` ``-(2*PI)`` ``-x`` H1). -Rewrite Rplus_Ropp_r. -Intro H2; Generalize (Rle_Ropp ``3*(PI/2)`` x H); Intro H3; Generalize (Rle_sym2 ``-x`` ``-(3*(PI/2))`` H3); Clear H3; Intro H3; Generalize (Rle_compatibility ``2*PI`` ``-x`` ``-(3*(PI/2))`` H3). -Replace ``2*PI+ -(3*PI/2)`` with ``PI/2``. -Intro H4; Apply (cos_ge_0 ``2*PI-x`` (Rlt_le ``-(PI/2)`` ``2*PI-x`` (Rlt_le_trans ``-(PI/2)`` ``0`` ``2*PI-x`` _PI2_RLT_0 H2)) H4). -Rewrite double; Pattern 2 3 PI; Rewrite double_var; Ring. -Ring. -Qed. - -Lemma form1 : (p,q:R) ``(cos p)+(cos q)==2*(cos ((p-q)/2))*(cos ((p+q)/2))``. -Intros p q; Pattern 1 p; Replace ``p`` with ``(p-q)/2+(p+q)/2``. -Rewrite <- (cos_neg q); Replace``-q`` with ``(p-q)/2-(p+q)/2``. -Rewrite cos_plus; Rewrite cos_minus; Ring. -Pattern 3 q; Rewrite double_var; Unfold Rdiv; Ring. -Pattern 3 p; Rewrite double_var; Unfold Rdiv; Ring. -Qed. - -Lemma form2 : (p,q:R) ``(cos p)-(cos q)==-2*(sin ((p-q)/2))*(sin ((p+q)/2))``. -Intros p q; Pattern 1 p; Replace ``p`` with ``(p-q)/2+(p+q)/2``. -Rewrite <- (cos_neg q); Replace``-q`` with ``(p-q)/2-(p+q)/2``. -Rewrite cos_plus; Rewrite cos_minus; Ring. -Pattern 3 q; Rewrite double_var; Unfold Rdiv; Ring. -Pattern 3 p; Rewrite double_var; Unfold Rdiv; Ring. -Qed. - -Lemma form3 : (p,q:R) ``(sin p)+(sin q)==2*(cos ((p-q)/2))*(sin ((p+q)/2))``. -Intros p q; Pattern 1 p; Replace ``p`` with ``(p-q)/2+(p+q)/2``. -Pattern 3 q; Replace ``q`` with ``(p+q)/2-(p-q)/2``. -Rewrite sin_plus; Rewrite sin_minus; Ring. -Pattern 3 q; Rewrite double_var; Unfold Rdiv; Ring. -Pattern 3 p; Rewrite double_var; Unfold Rdiv; Ring. -Qed. - -Lemma form4 : (p,q:R) ``(sin p)-(sin q)==2*(cos ((p+q)/2))*(sin ((p-q)/2))``. -Intros p q; Pattern 1 p; Replace ``p`` with ``(p-q)/2+(p+q)/2``. -Pattern 3 q; Replace ``q`` with ``(p+q)/2-(p-q)/2``. -Rewrite sin_plus; Rewrite sin_minus; Ring. -Pattern 3 q; Rewrite double_var; Unfold Rdiv; Ring. -Pattern 3 p; Rewrite double_var; Unfold Rdiv; Ring. - -Qed. - -Lemma sin_increasing_0 : (x,y:R) ``-(PI/2)<=x``->``x<=PI/2``->``-(PI/2)<=y``->``y<=PI/2``->``(sin x)<(sin y)``->``x``x<=PI/2``->``-(PI/2)<=y``->``y<=PI/2``->``x``(sin x)<(sin y)``. -Intros; Generalize (Rlt_compatibility ``x`` ``x`` ``y`` H3); Intro H4; Generalize (Rplus_le ``-(PI/2)`` x ``-(PI/2)`` x H H); Replace ``-(PI/2)+ (-(PI/2))`` with ``-PI``. -Assert Hyp : ``0<2``. -Sup0. -Intro H5; Generalize (Rle_lt_trans ``-PI`` ``x+x`` ``x+y`` H5 H4); Intro H6; Generalize (Rlt_monotony ``(Rinv 2)`` ``-PI`` ``x+y`` (Rlt_Rinv ``2`` Hyp) H6); Replace ``/2*(-PI)`` with ``-(PI/2)``. -Replace ``/2*(x+y)`` with ``(x+y)/2``. -Clear H4 H5 H6; Intro H4; Generalize (Rlt_compatibility ``y`` ``x`` ``y`` H3); Intro H5; Rewrite Rplus_sym in H5; Generalize (Rplus_le y ``PI/2`` y ``PI/2`` H2 H2). -Rewrite <- double_var. -Intro H6; Generalize (Rlt_le_trans ``x+y`` ``y+y`` PI H5 H6); Intro H7; Generalize (Rlt_monotony ``(Rinv 2)`` ``x+y`` PI (Rlt_Rinv ``2`` Hyp) H7); Replace ``/2*PI`` with ``PI/2``. -Replace ``/2*(x+y)`` with ``(x+y)/2``. -Clear H5 H6 H7; Intro H5; Generalize (Rle_Ropp ``-(PI/2)`` y H1); Rewrite Ropp_Ropp; Clear H1; Intro H1; Generalize (Rle_sym2 ``-y`` ``PI/2`` H1); Clear H1; Intro H1; Generalize (Rle_Ropp y ``PI/2`` H2); Clear H2; Intro H2; Generalize (Rle_sym2 ``-(PI/2)`` ``-y`` H2); Clear H2; Intro H2; Generalize (Rlt_compatibility ``-y`` x y H3); Replace ``-y+x`` with ``x-y``. -Rewrite Rplus_Ropp_l. -Intro H6; Generalize (Rlt_monotony ``(Rinv 2)`` ``x-y`` ``0`` (Rlt_Rinv ``2`` Hyp) H6); Rewrite Rmult_Or; Replace ``/2*(x-y)`` with ``(x-y)/2``. -Clear H6; Intro H6; Generalize (Rplus_le ``-(PI/2)`` x ``-(PI/2)`` ``-y`` H H2); Replace ``-(PI/2)+ (-(PI/2))`` with ``-PI``. -Replace `` x+ -y`` with ``x-y``. -Intro H7; Generalize (Rle_monotony ``(Rinv 2)`` ``-PI`` ``x-y`` (Rlt_le ``0`` ``/2`` (Rlt_Rinv ``2`` Hyp)) H7); Replace ``/2*(-PI)`` with ``-(PI/2)``. -Replace ``/2*(x-y)`` with ``(x-y)/2``. -Clear H7; Intro H7; Clear H H0 H1 H2; Apply Rminus_lt; Rewrite form4; Generalize (cos_gt_0 ``(x+y)/2`` H4 H5); Intro H8; Generalize (Rmult_lt_pos ``2`` ``(cos ((x+y)/2))`` Hyp H8); Clear H8; Intro H8; Cut ``-PI< -(PI/2)``. -Intro H9; Generalize (sin_lt_0_var ``(x-y)/2`` (Rlt_le_trans ``-PI`` ``-(PI/2)`` ``(x-y)/2`` H9 H7) H6); Intro H10; Generalize (Rlt_anti_monotony ``(sin ((x-y)/2))`` ``0`` ``2*(cos ((x+y)/2))`` H10 H8); Intro H11; Rewrite Rmult_Or in H11; Rewrite Rmult_sym; Assumption. -Apply Rlt_Ropp; Apply PI2_Rlt_PI. -Unfold Rdiv; Apply Rmult_sym. -Unfold Rdiv; Rewrite <- Ropp_mul1; Apply Rmult_sym. -Reflexivity. -Pattern 1 PI; Rewrite double_var. -Rewrite Ropp_distr1. -Reflexivity. -Unfold Rdiv; Apply Rmult_sym. -Unfold Rminus; Apply Rplus_sym. -Unfold Rdiv; Apply Rmult_sym. -Unfold Rdiv; Apply Rmult_sym. -Unfold Rdiv; Apply Rmult_sym. -Unfold Rdiv. -Rewrite <- Ropp_mul1. -Apply Rmult_sym. -Pattern 1 PI; Rewrite double_var. -Rewrite Ropp_distr1. -Reflexivity. -Qed. - -Lemma sin_decreasing_0 : (x,y:R) ``x<=3*(PI/2)``-> ``PI/2<=x`` -> ``y<=3*(PI/2)``-> ``PI/2<=y`` -> ``(sin x)<(sin y)`` -> ``y ``PI/2<=x`` -> ``y<=3*(PI/2)``-> ``PI/2<=y`` -> ``x ``(sin y)<(sin x)``. -Intros; Rewrite <- (sin_PI_x x); Rewrite <- (sin_PI_x y); Generalize (Rle_compatibility ``-PI`` x ``3*(PI/2)`` H); Generalize (Rle_compatibility ``-PI`` ``PI/2`` x H0); Generalize (Rle_compatibility ``-PI`` y ``3*(PI/2)`` H1); Generalize (Rle_compatibility ``-PI`` ``PI/2`` y H2); Generalize (Rlt_compatibility ``-PI`` x y H3); Replace ``-PI+PI/2`` with ``-(PI/2)``. -Replace ``-PI+y`` with ``y-PI``. -Replace ``-PI+3*(PI/2)`` with ``PI/2``. -Replace ``-PI+x`` with ``x-PI``. -Intros; Apply Ropp_Rlt; Repeat Rewrite <- sin_neg; Replace ``-(PI-x)`` with ``x-PI``. -Replace ``-(PI-y)`` with ``y-PI``. -Apply (sin_increasing_1 ``x-PI`` ``y-PI`` H7 H8 H5 H6 H4). -Unfold Rminus; Rewrite Ropp_distr1. -Rewrite Ropp_Ropp. -Apply Rplus_sym. -Unfold Rminus; Rewrite Ropp_distr1. -Rewrite Ropp_Ropp. -Apply Rplus_sym. -Unfold Rminus; Apply Rplus_sym. -Pattern 2 PI; Rewrite double_var; Ring. -Unfold Rminus; Apply Rplus_sym. -Pattern 2 PI; Rewrite double_var; Ring. -Qed. - -Lemma cos_increasing_0 : (x,y:R) ``PI<=x`` -> ``x<=2*PI`` ->``PI<=y`` -> ``y<=2*PI`` -> ``(cos x)<(cos y)`` -> ``x ``x<=2*PI`` ->``PI<=y`` -> ``y<=2*PI`` -> ``x ``(cos x)<(cos y)``. -Intros x y H1 H2 H3 H4 H5; Generalize (Rle_compatibility ``-3*(PI/2)`` PI x H1); Generalize (Rle_compatibility ``-3*(PI/2)`` x ``2*PI`` H2); Generalize (Rle_compatibility ``-3*(PI/2)`` PI y H3); Generalize (Rle_compatibility ``-3*(PI/2)`` y ``2*PI`` H4); Generalize (Rlt_compatibility ``-3*(PI/2)`` x y H5); Rewrite <- (cos_neg x); Rewrite <- (cos_neg y); Rewrite <- (cos_period ``-x`` (1)); Rewrite <- (cos_period ``-y`` (1)); Unfold INR; Replace ``-3*(PI/2)+x`` with ``x-3*(PI/2)``. -Replace ``-3*(PI/2)+y`` with ``y-3*(PI/2)``. -Replace ``-3*(PI/2)+PI`` with ``-(PI/2)``. -Replace ``-3*(PI/2)+2*PI`` with ``PI/2``. -Clear H1 H2 H3 H4 H5; Intros H1 H2 H3 H4 H5; Replace ``-x+2*1*PI`` with ``(PI/2)-(x-3*(PI/2))``. -Replace ``-y+2*1*PI`` with ``(PI/2)-(y-3*(PI/2))``. -Repeat Rewrite cos_shift; Apply (sin_increasing_1 ``x-3*(PI/2)`` ``y-3*(PI/2)`` H5 H4 H3 H2 H1). -Rewrite Rmult_1r. -Rewrite (double PI); Pattern 3 4 PI; Rewrite double_var. -Ring. -Rewrite Rmult_1r. -Rewrite (double PI); Pattern 3 4 PI; Rewrite double_var. -Ring. -Rewrite (double PI); Pattern 3 4 PI; Rewrite double_var. -Ring. -Pattern 3 PI; Rewrite double_var; Ring. -Unfold Rminus. -Rewrite <- Ropp_mul1. -Apply Rplus_sym. -Unfold Rminus. -Rewrite <- Ropp_mul1. -Apply Rplus_sym. -Qed. - -Lemma cos_decreasing_0 : (x,y:R) ``0<=x``->``x<=PI``->``0<=y``->``y<=PI``->``(cos x)<(cos y)``->``y``x<=PI``->``0<=y``->``y<=PI``->``x``(cos y)<(cos x)``. -Intros; Apply Ropp_Rlt; Repeat Rewrite <- neg_cos; Rewrite (Rplus_sym x); Rewrite (Rplus_sym y); Generalize (Rle_compatibility PI ``0`` x H); Generalize (Rle_compatibility PI x PI H0); Generalize (Rle_compatibility PI ``0`` y H1); Generalize (Rle_compatibility PI y PI H2); Rewrite Rplus_Or. -Rewrite <- double. -Generalize (Rlt_compatibility PI x y H3); Clear H H0 H1 H2 H3; Intros; Apply (cos_increasing_1 ``PI+x`` ``PI+y`` H3 H2 H1 H0 H). -Qed. - -Lemma tan_diff : (x,y:R) ~``(cos x)==0``->~``(cos y)==0``->``(tan x)-(tan y)==(sin (x-y))/((cos x)*(cos y))``. -Intros; Unfold tan;Rewrite sin_minus. -Unfold Rdiv. -Unfold Rminus. -Rewrite Rmult_Rplus_distrl. -Rewrite Rinv_Rmult. -Repeat Rewrite (Rmult_sym (sin x)). -Repeat Rewrite Rmult_assoc. -Rewrite (Rmult_sym (cos y)). -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Rewrite (Rmult_sym (sin x)). -Apply Rplus_plus_r. -Rewrite <- Ropp_mul1. -Rewrite <- Ropp_mul3. -Rewrite (Rmult_sym ``/(cos x)``). -Repeat Rewrite Rmult_assoc. -Rewrite (Rmult_sym (cos x)). -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Reflexivity. -Assumption. -Assumption. -Assumption. -Assumption. -Qed. - -Lemma tan_increasing_0 : (x,y:R) ``-(PI/4)<=x``->``x<=PI/4`` ->``-(PI/4)<=y``->``y<=PI/4``->``(tan x)<(tan y)``->``x sin_0 in H9; Elim (Rlt_antirefl ``0`` H9). -Apply Rminus_lt; Assumption. -Pattern 1 PI; Rewrite double_var. -Unfold Rdiv. -Rewrite Rmult_Rplus_distrl. -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_Rmult. -Rewrite Ropp_distr1. -Replace ``2*2`` with ``4``. -Reflexivity. -Ring. -DiscrR. -DiscrR. -Pattern 1 PI; Rewrite double_var. -Unfold Rdiv. -Rewrite Rmult_Rplus_distrl. -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_Rmult. -Replace ``2*2`` with ``4``. -Reflexivity. -Ring. -DiscrR. -DiscrR. -Reflexivity. -Case (case_Rabsolu ``(sin (x-y))``); Intro H9. -Assumption. -Generalize (Rle_sym2 ``0`` ``(sin (x-y))`` H9); Clear H9; Intro H9; Generalize (Rlt_Rinv (cos x) HP1); Intro H10; Generalize (Rlt_Rinv (cos y) HP2); Intro H11; Generalize (Rmult_lt_pos (Rinv (cos x)) (Rinv (cos y)) H10 H11); Replace ``/(cos x)*/(cos y)`` with ``/((cos x)*(cos y))``. -Intro H12; Generalize (Rmult_le_pos ``(sin (x-y))`` ``/((cos x)*(cos y))`` H9 (Rlt_le ``0`` ``/((cos x)*(cos y))`` H12)); Intro H13; Elim (Rlt_antirefl ``0`` (Rle_lt_trans ``0`` ``(sin (x-y))*/((cos x)*(cos y))`` ``0`` H13 H3)). -Rewrite Rinv_Rmult. -Reflexivity. -Assumption. -Assumption. -Qed. - -Lemma tan_increasing_1 : (x,y:R) ``-(PI/4)<=x``->``x<=PI/4`` ->``-(PI/4)<=y``->``y<=PI/4``->``x``(tan x)<(tan y)``. -Intros; Apply Rminus_lt; Generalize PI4_RLT_PI2; Intro H4; Generalize (Rlt_Ropp ``PI/4`` ``PI/2`` H4); Intro H5; Change ``-(PI/2)< -(PI/4)`` in H5; Generalize (cos_gt_0 x (Rlt_le_trans ``-(PI/2)`` ``-(PI/4)`` x H5 H) (Rle_lt_trans x ``PI/4`` ``PI/2`` H0 H4)); Intro HP1; Generalize (cos_gt_0 y (Rlt_le_trans ``-(PI/2)`` ``-(PI/4)`` y H5 H1) (Rle_lt_trans y ``PI/4`` ``PI/2`` H2 H4)); Intro HP2; Generalize (not_sym ``0`` (cos x) (Rlt_not_eq ``0`` (cos x) (cos_gt_0 x (Rlt_le_trans ``-(PI/2)`` ``-(PI/4)`` x H5 H) (Rle_lt_trans x ``PI/4`` ``PI/2`` H0 H4)))); Intro H6; Generalize (not_sym ``0`` (cos y) (Rlt_not_eq ``0`` (cos y) (cos_gt_0 y (Rlt_le_trans ``-(PI/2)`` ``-(PI/4)`` y H5 H1) (Rle_lt_trans y ``PI/4`` ``PI/2`` H2 H4)))); Intro H7; Rewrite (tan_diff x y H6 H7); Generalize (Rlt_Rinv (cos x) HP1); Intro H10; Generalize (Rlt_Rinv (cos y) HP2); Intro H11; Generalize (Rmult_lt_pos (Rinv (cos x)) (Rinv (cos y)) H10 H11); Replace ``/(cos x)*/(cos y)`` with ``/((cos x)*(cos y))``. -Clear H10 H11; Intro H8; Generalize (Rle_Ropp y ``PI/4`` H2); Intro H11; Generalize (Rle_sym2 ``-(PI/4)`` ``-y`` H11); Clear H11; Intro H11; Generalize (Rplus_le ``-(PI/4)`` x ``-(PI/4)`` ``-y`` H H11); Replace ``x+ -y`` with ``x-y``. -Replace ``-(PI/4)+ -(PI/4)`` with ``-(PI/2)``. -Clear H11; Intro H9; Generalize (Rlt_minus x y H3); Clear H3; Intro H3; Clear H H0 H1 H2 H4 H5 HP1 HP2; Generalize PI2_Rlt_PI; Intro H1; Generalize (Rlt_Ropp ``PI/2`` PI H1); Clear H1; Intro H1; Generalize (sin_lt_0_var ``x-y`` (Rlt_le_trans ``-PI`` ``-(PI/2)`` ``x-y`` H1 H9) H3); Intro H2; Generalize (Rlt_anti_monotony ``(sin (x-y))`` ``0`` ``/((cos x)*(cos y))`` H2 H8); Rewrite Rmult_Or; Intro H4; Assumption. -Pattern 1 PI; Rewrite double_var. -Unfold Rdiv. -Rewrite Rmult_Rplus_distrl. -Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_Rmult. -Replace ``2*2`` with ``4``. -Rewrite Ropp_distr1. -Reflexivity. -Ring. -DiscrR. -DiscrR. -Reflexivity. -Apply Rinv_Rmult; Assumption. -Qed. - -Lemma sin_incr_0 : (x,y:R) ``-(PI/2)<=x``->``x<=PI/2``->``-(PI/2)<=y``->``y<=PI/2``->``(sin x)<=(sin y)``->``x<=y``. -Intros; Case (total_order (sin x) (sin y)); Intro H4; [Left; Apply (sin_increasing_0 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order x y); Intro H6; [Left; Assumption | Elim H6; Intro H7; [Right; Assumption | Generalize (sin_increasing_1 y x H1 H2 H H0 H7); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl (sin y) H8)]] | Elim (Rlt_antirefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5))]]. -Qed. - -Lemma sin_incr_1 : (x,y:R) ``-(PI/2)<=x``->``x<=PI/2``->``-(PI/2)<=y``->``y<=PI/2``->``x<=y``->``(sin x)<=(sin y)``. -Intros; Case (total_order x y); Intro H4; [Left; Apply (sin_increasing_1 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order (sin x) (sin y)); Intro H6; [Left; Assumption | Elim H6; Intro H7; [Right; Assumption | Generalize (sin_increasing_0 y x H1 H2 H H0 H7); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl y H8)]] | Elim (Rlt_antirefl x (Rle_lt_trans x y x H3 H5))]]. -Qed. - -Lemma sin_decr_0 : (x,y:R) ``x<=3*(PI/2)``->``PI/2<=x``->``y<=3*(PI/2)``->``PI/2<=y``-> ``(sin x)<=(sin y)`` -> ``y<=x``. -Intros; Case (total_order (sin x) (sin y)); Intro H4; [Left; Apply (sin_decreasing_0 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order x y); Intro H6; [Generalize (sin_decreasing_1 x y H H0 H1 H2 H6); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl (sin y) H8) | Elim H6; Intro H7; [Right; Symmetry; Assumption | Left; Assumption]] | Elim (Rlt_antirefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5))]]. -Qed. - -Lemma sin_decr_1 : (x,y:R) ``x<=3*(PI/2)``-> ``PI/2<=x`` -> ``y<=3*(PI/2)``-> ``PI/2<=y`` -> ``x<=y`` -> ``(sin y)<=(sin x)``. -Intros; Case (total_order x y); Intro H4; [Left; Apply (sin_decreasing_1 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order (sin x) (sin y)); Intro H6; [Generalize (sin_decreasing_0 x y H H0 H1 H2 H6); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl y H8) | Elim H6; Intro H7; [Right; Symmetry; Assumption | Left; Assumption]] | Elim (Rlt_antirefl x (Rle_lt_trans x y x H3 H5))]]. -Qed. - -Lemma cos_incr_0 : (x,y:R) ``PI<=x`` -> ``x<=2*PI`` ->``PI<=y`` -> ``y<=2*PI`` -> ``(cos x)<=(cos y)`` -> ``x<=y``. -Intros; Case (total_order (cos x) (cos y)); Intro H4; [Left; Apply (cos_increasing_0 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order x y); Intro H6; [Left; Assumption | Elim H6; Intro H7; [Right; Assumption | Generalize (cos_increasing_1 y x H1 H2 H H0 H7); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl (cos y) H8)]] | Elim (Rlt_antirefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5))]]. -Qed. - -Lemma cos_incr_1 : (x,y:R) ``PI<=x`` -> ``x<=2*PI`` ->``PI<=y`` -> ``y<=2*PI`` -> ``x<=y`` -> ``(cos x)<=(cos y)``. -Intros; Case (total_order x y); Intro H4; [Left; Apply (cos_increasing_1 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order (cos x) (cos y)); Intro H6; [Left; Assumption | Elim H6; Intro H7; [Right; Assumption | Generalize (cos_increasing_0 y x H1 H2 H H0 H7); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl y H8)]] | Elim (Rlt_antirefl x (Rle_lt_trans x y x H3 H5))]]. -Qed. - -Lemma cos_decr_0 : (x,y:R) ``0<=x``->``x<=PI``->``0<=y``->``y<=PI``->``(cos x)<=(cos y)`` -> ``y<=x``. -Intros; Case (total_order (cos x) (cos y)); Intro H4; [Left; Apply (cos_decreasing_0 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order x y); Intro H6; [Generalize (cos_decreasing_1 x y H H0 H1 H2 H6); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl (cos y) H8) | Elim H6; Intro H7; [Right; Symmetry; Assumption | Left; Assumption]] | Elim (Rlt_antirefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5))]]. -Qed. - -Lemma cos_decr_1 : (x,y:R) ``0<=x``->``x<=PI``->``0<=y``->``y<=PI``->``x<=y``->``(cos y)<=(cos x)``. -Intros; Case (total_order x y); Intro H4; [Left; Apply (cos_decreasing_1 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order (cos x) (cos y)); Intro H6; [Generalize (cos_decreasing_0 x y H H0 H1 H2 H6); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl y H8) | Elim H6; Intro H7; [Right; Symmetry; Assumption | Left; Assumption]] | Elim (Rlt_antirefl x (Rle_lt_trans x y x H3 H5))]]. -Qed. - -Lemma tan_incr_0 : (x,y:R) ``-(PI/4)<=x``->``x<=PI/4`` ->``-(PI/4)<=y``->``y<=PI/4``->``(tan x)<=(tan y)``->``x<=y``. -Intros; Case (total_order (tan x) (tan y)); Intro H4; [Left; Apply (tan_increasing_0 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order x y); Intro H6; [Left; Assumption | Elim H6; Intro H7; [Right; Assumption | Generalize (tan_increasing_1 y x H1 H2 H H0 H7); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl (tan y) H8)]] | Elim (Rlt_antirefl (tan x) (Rle_lt_trans (tan x) (tan y) (tan x) H3 H5))]]. -Qed. - -Lemma tan_incr_1 : (x,y:R) ``-(PI/4)<=x``->``x<=PI/4`` ->``-(PI/4)<=y``->``y<=PI/4``->``x<=y``->``(tan x)<=(tan y)``. -Intros; Case (total_order x y); Intro H4; [Left; Apply (tan_increasing_1 x y H H0 H1 H2 H4) | Elim H4; Intro H5; [Case (total_order (tan x) (tan y)); Intro H6; [Left; Assumption | Elim H6; Intro H7; [Right; Assumption | Generalize (tan_increasing_0 y x H1 H2 H H0 H7); Intro H8; Rewrite H5 in H8; Elim (Rlt_antirefl y H8)]] | Elim (Rlt_antirefl x (Rle_lt_trans x y x H3 H5))]]. -Qed. - -(**********) -Lemma sin_eq_0_1 : (x:R) (EXT k:Z | x==(Rmult (IZR k) PI)) -> (sin x)==R0. -Intros. -Elim H; Intros. -Apply (Zcase_sign x0). -Intro. -Rewrite H1 in H0. -Simpl in H0. -Rewrite H0; Rewrite Rmult_Ol; Apply sin_0. -Intro. -Cut `0<=x0`. -Intro. -Elim (IZN x0 H2); Intros. -Rewrite H3 in H0. -Rewrite <- INR_IZR_INZ in H0. -Rewrite H0. -Elim (even_odd_cor x1); Intros. -Elim H4; Intro. -Rewrite H5. -Rewrite mult_INR. -Simpl. -Rewrite <- (Rplus_Ol ``2*(INR x2)*PI``). -Rewrite sin_period. -Apply sin_0. -Rewrite H5. -Rewrite S_INR; Rewrite mult_INR. -Simpl. -Rewrite Rmult_Rplus_distrl. -Rewrite Rmult_1l; Rewrite sin_plus. -Rewrite sin_PI. -Rewrite Rmult_Or. -Rewrite <- (Rplus_Ol ``2*(INR x2)*PI``). -Rewrite sin_period. -Rewrite sin_0; Ring. -Apply le_IZR. -Left; Apply IZR_lt. -Assert H2 := Zgt_iff_lt. -Elim (H2 x0 `0`); Intros. -Apply H3; Assumption. -Intro. -Rewrite H0. -Replace ``(sin ((IZR x0)*PI))`` with ``-(sin (-(IZR x0)*PI))``. -Cut `0<=-x0`. -Intro. -Rewrite <- Ropp_Ropp_IZR. -Elim (IZN `-x0` H2); Intros. -Rewrite H3. -Rewrite <- INR_IZR_INZ. -Elim (even_odd_cor x1); Intros. -Elim H4; Intro. -Rewrite H5. -Rewrite mult_INR. -Simpl. -Rewrite <- (Rplus_Ol ``2*(INR x2)*PI``). -Rewrite sin_period. -Rewrite sin_0; Ring. -Rewrite H5. -Rewrite S_INR; Rewrite mult_INR. -Simpl. -Rewrite Rmult_Rplus_distrl. -Rewrite Rmult_1l; Rewrite sin_plus. -Rewrite sin_PI. -Rewrite Rmult_Or. -Rewrite <- (Rplus_Ol ``2*(INR x2)*PI``). -Rewrite sin_period. -Rewrite sin_0; Ring. -Apply le_IZR. -Apply Rle_anti_compatibility with ``(IZR x0)``. -Rewrite Rplus_Or. -Rewrite Ropp_Ropp_IZR. -Rewrite Rplus_Ropp_r. -Left; Replace R0 with (IZR `0`); [Apply IZR_lt | Reflexivity]. -Assumption. -Rewrite <- sin_neg. -Rewrite Ropp_mul1. -Rewrite Ropp_Ropp. -Reflexivity. -Qed. - -Lemma sin_eq_0_0 : (x:R) (sin x)==R0 -> (EXT k:Z | x==(Rmult (IZR k) PI)). -Intros. -Assert H0 := (euclidian_division x PI PI_neq0). -Elim H0; Intros q H1. -Elim H1; Intros r H2. -Exists q. -Cut r==R0. -Intro. -Elim H2; Intros H4 _; Rewrite H4; Rewrite H3. -Apply Rplus_Or. -Elim H2; Intros. -Rewrite H3 in H. -Rewrite sin_plus in H. -Cut ``(sin ((IZR q)*PI))==0``. -Intro. -Rewrite H5 in H. -Rewrite Rmult_Ol in H. -Rewrite Rplus_Ol in H. -Assert H6 := (without_div_Od ? ? H). -Elim H6; Intro. -Assert H8 := (sin2_cos2 ``(IZR q)*PI``). -Rewrite H5 in H8; Rewrite H7 in H8. -Rewrite Rsqr_O in H8. -Rewrite Rplus_Or in H8. -Elim R1_neq_R0; Symmetry; Assumption. -Cut r==R0\/``0 (EXT k : Z | ``x==(IZR k)*PI+PI/2``). -Intros x H; Rewrite -> cos_sin in H; Generalize (sin_eq_0_0 (Rplus (Rdiv PI (INR (2))) x) H); Intro H2; Elim H2; Intros x0 H3; Exists (Zminus x0 (inject_nat (S O))); Rewrite <- Z_R_minus; Ring; Rewrite Rmult_sym; Rewrite <- H3; Unfold INR. -Rewrite (double_var ``-PI``); Unfold Rdiv; Ring. -Qed. - -Lemma cos_eq_0_1 : (x:R) (EXT k : Z | ``x==(IZR k)*PI+PI/2``) -> ``(cos x)==0``. -Intros x H1; Rewrite cos_sin; Elim H1; Intros x0 H2; Rewrite H2; Replace ``PI/2+((IZR x0)*PI+PI/2)`` with ``(IZR x0)*PI+PI``. -Rewrite neg_sin; Rewrite <- Ropp_O. -Apply eq_Ropp; Apply sin_eq_0_1; Exists x0; Reflexivity. -Pattern 2 PI; Rewrite (double_var PI); Ring. -Qed. - -Lemma sin_eq_O_2PI_0 : (x:R) ``0<=x`` -> ``x<=2*PI`` -> ``(sin x)==0`` -> ``x==0``\/``x==PI``\/``x==2*PI``. -Intros; Generalize (sin_eq_0_0 x H1); Intro. -Elim H2; Intros k0 H3. -Case (total_order PI x); Intro. -Rewrite H3 in H4; Rewrite H3 in H0. -Right; Right. -Generalize (Rlt_monotony_r ``/PI`` ``PI`` ``(IZR k0)*PI`` (Rlt_Rinv ``PI`` PI_RGT_0) H4); Rewrite Rmult_assoc; Repeat Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Intro; Generalize (Rle_monotony_r ``/PI`` ``(IZR k0)*PI`` ``2*PI`` (Rlt_le ``0`` ``/PI`` (Rlt_Rinv ``PI`` PI_RGT_0)) H0); Repeat Rewrite Rmult_assoc; Repeat Rewrite <- Rinv_r_sym. -Repeat Rewrite Rmult_1r; Intro; Generalize (Rlt_compatibility (IZR `-2`) ``1`` (IZR k0) H5); Rewrite <- plus_IZR. -Replace ``(IZR (NEG (xO xH)))+1`` with ``-1``. -Intro; Generalize (Rle_compatibility (IZR `-2`) (IZR k0) ``2`` H6); Rewrite <- plus_IZR. -Replace ``(IZR (NEG (xO xH)))+2`` with ``0``. -Intro; Cut ``-1 < (IZR (Zplus (NEG (xO xH)) k0)) < 1``. -Intro; Generalize (one_IZR_lt1 (Zplus (NEG (xO xH)) k0) H9); Intro. -Cut k0=`2`. -Intro; Rewrite H11 in H3; Rewrite H3; Simpl. -Reflexivity. -Rewrite <- (Zplus_inverse_l `2`) in H10; Generalize (Zsimpl_plus_l `-2` k0 `2` H10); Intro; Assumption. -Split. -Assumption. -Apply Rle_lt_trans with ``0``. -Assumption. -Apply Rlt_R0_R1. -Simpl; Ring. -Simpl; Ring. -Apply PI_neq0. -Apply PI_neq0. -Elim H4; Intro. -Right; Left. -Symmetry; Assumption. -Left. -Rewrite H3 in H5; Rewrite H3 in H; Generalize (Rlt_monotony_r ``/PI`` ``(IZR k0)*PI`` PI (Rlt_Rinv ``PI`` PI_RGT_0) H5); Rewrite Rmult_assoc; Repeat Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Intro; Generalize (Rle_monotony_r ``/PI`` ``0`` ``(IZR k0)*PI`` (Rlt_le ``0`` ``/PI`` (Rlt_Rinv ``PI`` PI_RGT_0)) H); Repeat Rewrite Rmult_assoc; Repeat Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Rewrite Rmult_Ol; Intro. -Cut ``-1 < (IZR (k0)) < 1``. -Intro; Generalize (one_IZR_lt1 k0 H8); Intro; Rewrite H9 in H3; Rewrite H3; Simpl; Apply Rmult_Ol. -Split. -Apply Rlt_le_trans with ``0``. -Rewrite <- Ropp_O; Apply Rgt_Ropp; Apply Rlt_R0_R1. -Assumption. -Assumption. -Apply PI_neq0. -Apply PI_neq0. -Qed. - -Lemma sin_eq_O_2PI_1 : (x:R) ``0<=x`` -> ``x<=2*PI`` -> ``x==0``\/``x==PI``\/``x==2*PI`` -> ``(sin x)==0``. -Intros x H1 H2 H3; Elim H3; Intro H4; [ Rewrite H4; Rewrite -> sin_0; Reflexivity | Elim H4; Intro H5; [Rewrite H5; Rewrite -> sin_PI; Reflexivity | Rewrite H5; Rewrite -> sin_2PI; Reflexivity]]. -Qed. - -Lemma cos_eq_0_2PI_0 : (x:R) ``R0<=x`` -> ``x<=2*PI`` -> ``(cos x)==0`` -> ``x==(PI/2)``\/``x==3*(PI/2)``. -Intros; Case (total_order x ``3*(PI/2)``); Intro. -Rewrite cos_sin in H1. -Cut ``0<=PI/2+x``. -Cut ``PI/2+x<=2*PI``. -Intros; Generalize (sin_eq_O_2PI_0 ``PI/2+x`` H4 H3 H1); Intros. -Decompose [or] H5. -Generalize (Rle_compatibility ``PI/2`` ``0`` x H); Rewrite Rplus_Or; Rewrite H6; Intro. -Elim (Rlt_antirefl ``0`` (Rlt_le_trans ``0`` ``PI/2`` ``0`` PI2_RGT_0 H7)). -Left. -Generalize (Rplus_plus_r ``-(PI/2)`` ``PI/2+x`` PI H7). -Replace ``-(PI/2)+(PI/2+x)`` with x. -Replace ``-(PI/2)+PI`` with ``PI/2``. -Intro; Assumption. -Pattern 3 PI; Rewrite (double_var PI); Ring. -Ring. -Right. -Generalize (Rplus_plus_r ``-(PI/2)`` ``PI/2+x`` ``2*PI`` H7). -Replace ``-(PI/2)+(PI/2+x)`` with x. -Replace ``-(PI/2)+2*PI`` with ``3*(PI/2)``. -Intro; Assumption. -Rewrite double; Pattern 3 4 PI; Rewrite (double_var PI); Ring. -Ring. -Left; Replace ``2*PI`` with ``PI/2+3*(PI/2)``. -Apply Rlt_compatibility; Assumption. -Rewrite (double PI); Pattern 3 4 PI; Rewrite (double_var PI); Ring. -Apply ge0_plus_ge0_is_ge0. -Left; Unfold Rdiv; Apply Rmult_lt_pos. -Apply PI_RGT_0. -Apply Rlt_Rinv; Sup0. -Assumption. -Elim H2; Intro. -Right; Assumption. -Generalize (cos_eq_0_0 x H1); Intro; Elim H4; Intros k0 H5. -Rewrite H5 in H3; Rewrite H5 in H0; Generalize (Rlt_compatibility ``-(PI/2)`` ``3*PI/2`` ``(IZR k0)*PI+PI/2`` H3); Generalize (Rle_compatibility ``-(PI/2)`` ``(IZR k0)*PI+PI/2`` ``2*PI`` H0). -Replace ``-(PI/2)+3*PI/2`` with PI. -Replace ``-(PI/2)+((IZR k0)*PI+PI/2)`` with ``(IZR k0)*PI``. -Replace ``-(PI/2)+2*PI`` with ``3*(PI/2)``. -Intros; Generalize (Rlt_monotony ``/PI`` ``PI`` ``(IZR k0)*PI`` (Rlt_Rinv PI PI_RGT_0) H7); Generalize (Rle_monotony ``/PI`` ``(IZR k0)*PI`` ``3*(PI/2)`` (Rlt_le ``0`` ``/PI`` (Rlt_Rinv PI PI_RGT_0)) H6). -Replace ``/PI*((IZR k0)*PI)`` with (IZR k0). -Replace ``/PI*(3*PI/2)`` with ``3*/2``. -Rewrite <- Rinv_l_sym. -Intros; Generalize (Rlt_compatibility (IZR `-2`) ``1`` (IZR k0) H9); Rewrite <- plus_IZR. -Replace ``(IZR (NEG (xO xH)))+1`` with ``-1``. -Intro; Generalize (Rle_compatibility (IZR `-2`) (IZR k0) ``3*/2`` H8); Rewrite <- plus_IZR. -Replace ``(IZR (NEG (xO xH)))+2`` with ``0``. -Intro; Cut `` -1 < (IZR (Zplus (NEG (xO xH)) k0)) < 1``. -Intro; Generalize (one_IZR_lt1 (Zplus (NEG (xO xH)) k0) H12); Intro. -Cut k0=`2`. -Intro; Rewrite H14 in H8. -Assert Hyp : ``0<2``. -Sup0. -Generalize (Rle_monotony ``2`` ``(IZR (POS (xO xH)))`` ``3*/2`` (Rlt_le ``0`` ``2`` Hyp) H8); Simpl. -Replace ``2*2`` with ``4``. -Replace ``2*(3*/2)`` with ``3``. -Intro; Cut ``3<4``. -Intro; Elim (Rlt_antirefl ``3`` (Rlt_le_trans ``3`` ``4`` ``3`` H16 H15)). -Generalize (Rlt_compatibility ``3`` ``0`` ``1`` Rlt_R0_R1); Rewrite Rplus_Or. -Replace ``3+1`` with ``4``. -Intro; Assumption. -Ring. -Symmetry; Rewrite <- Rmult_assoc; Apply Rinv_r_simpl_m. -DiscrR. -Ring. -Rewrite <- (Zplus_inverse_l `2`) in H13; Generalize (Zsimpl_plus_l `-2` k0 `2` H13); Intro; Assumption. -Split. -Assumption. -Apply Rle_lt_trans with ``(IZR (NEG (xO xH)))+3*/2``. -Assumption. -Simpl; Replace ``-2+3*/2`` with ``-(1*/2)``. -Apply Rlt_trans with ``0``. -Rewrite <- Ropp_O; Apply Rlt_Ropp. -Apply Rmult_lt_pos; [Apply Rlt_R0_R1 | Apply Rlt_Rinv; Sup0]. -Apply Rlt_R0_R1. -Rewrite Rmult_1l; Apply r_Rmult_mult with ``2``. -Rewrite Ropp_mul3; Rewrite <- Rinv_r_sym. -Rewrite Rmult_Rplus_distr; Rewrite <- Rmult_assoc; Rewrite Rinv_r_simpl_m. -Ring. -DiscrR. -DiscrR. -DiscrR. -Simpl; Ring. -Simpl; Ring. -Apply PI_neq0. -Unfold Rdiv; Pattern 1 ``3``; Rewrite (Rmult_sym ``3``); Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l; Apply Rmult_sym. -Apply PI_neq0. -Symmetry; Rewrite (Rmult_sym ``/PI``); Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. -Apply Rmult_1r. -Apply PI_neq0. -Rewrite double; Pattern 3 4 PI; Rewrite double_var; Ring. -Ring. -Pattern 1 PI; Rewrite double_var; Ring. -Qed. - -Lemma cos_eq_0_2PI_1 : (x:R) ``0<=x`` -> ``x<=2*PI`` -> ``x==PI/2``\/``x==3*(PI/2)`` -> ``(cos x)==0``. -Intros x H1 H2 H3; Elim H3; Intro H4; [ Rewrite H4; Rewrite -> cos_PI2; Reflexivity | Rewrite H4; Rewrite -> cos_3PI2; Reflexivity ]. -Qed. diff --git a/theories7/Reals/Rtrigo_alt.v b/theories7/Reals/Rtrigo_alt.v deleted file mode 100644 index db0e2fea..00000000 --- a/theories7/Reals/Rtrigo_alt.v +++ /dev/null @@ -1,294 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R := [i:nat] ``(pow (-1) i)*(pow a (plus (mult (S (S O)) i) (S O)))/(INR (fact (plus (mult (S (S O)) i) (S O))))``. - -Definition cos_term [a:R] : nat->R := [i:nat] ``(pow (-1) i)*(pow a (mult (S (S O)) i))/(INR (fact (mult (S (S O)) i)))``. - -Definition sin_approx [a:R;n:nat] : R := (sum_f_R0 (sin_term a) n). - -Definition cos_approx [a:R;n:nat] : R := (sum_f_R0 (cos_term a) n). - -(**********) -Lemma PI_4 : ``PI<=4``. -Assert H0 := (PI_ineq O). -Elim H0; Clear H0; Intros _ H0. -Unfold tg_alt PI_tg in H0; Simpl in H0. -Rewrite Rinv_R1 in H0; Rewrite Rmult_1r in H0; Unfold Rdiv in H0. -Apply Rle_monotony_contra with ``/4``. -Apply Rlt_Rinv; Sup0. -Rewrite <- Rinv_l_sym; [Rewrite Rmult_sym; Assumption | DiscrR]. -Qed. - -(**********) -Theorem sin_bound : (a:R; n:nat) ``0 <= a``->``a <= PI``->``(sin_approx a (plus (mult (S (S O)) n) (S O))) <= (sin a)<= (sin_approx a (mult (S (S O)) (plus n (S O))))``. -Intros; Case (Req_EM a R0); Intro Hyp_a. -Rewrite Hyp_a; Rewrite sin_0; Split; Right; Unfold sin_approx; Apply sum_eq_R0 Orelse (Symmetry; Apply sum_eq_R0); Intros; Unfold sin_term; Rewrite pow_add; Simpl; Unfold Rdiv; Rewrite Rmult_Ol; Ring. -Unfold sin_approx; Cut ``0 (Rle (Rplus a (sum_f_R0 [i:nat](sin_term a (S i)) (pred (plus (mult (S (S O)) n) (S O))))) (sin a))/\(Rle (sin a) (Rplus a (sum_f_R0 [i:nat](sin_term a (S i)) (pred (mult (S (S O)) (plus n (S O))))))). -Intro; Apply H1. -Pose Un := [n:nat]``(pow a (plus (mult (S (S O)) (S n)) (S O)))/(INR (fact (plus (mult (S (S O)) (S n)) (S O))))``. -Replace (pred (plus (mult (S (S O)) n) (S O))) with (mult (S (S O)) n). -Replace (pred (mult (S (S O)) (plus n (S O)))) with (S (mult (S (S O)) n)). -Replace (sum_f_R0 [i:nat](sin_term a (S i)) (mult (S (S O)) n)) with ``-(sum_f_R0 (tg_alt Un) (mult (S (S O)) n))``. -Replace (sum_f_R0 [i:nat](sin_term a (S i)) (S (mult (S (S O)) n))) with ``-(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n)))``. -Cut ``(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n)))<=a-(sin a)<=(sum_f_R0 (tg_alt Un) (mult (S (S O)) n))``->`` -(sum_f_R0 (tg_alt Un) (mult (S (S O)) n)) <= (sin a)-a <= -(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n)))``. -Intro; Apply H2. -Apply alternated_series_ineq. -Unfold Un_decreasing Un; Intro; Cut (plus (mult (S (S O)) (S (S n0))) (S O))=(S (S (plus (mult (S (S O)) (S n0)) (S O)))). -Intro; Rewrite H3. -Replace ``(pow a (S (S (plus (mult (S (S O)) (S n0)) (S O)))))`` with ``(pow a (plus (mult (S (S O)) (S n0)) (S O)))*(a*a)``. -Unfold Rdiv; Rewrite Rmult_assoc; Apply Rle_monotony. -Left; Apply pow_lt; Assumption. -Apply Rle_monotony_contra with ``(INR (fact (S (S (plus (mult (S (S O)) (S n0)) (S O))))))``. -Rewrite <- H3; Apply lt_INR_0; Apply neq_O_lt; Red; Intro; Assert H5 := (sym_eq ? ? ? H4); Elim (fact_neq_0 ? H5). -Rewrite <- H3; Rewrite (Rmult_sym ``(INR (fact (plus (mult (S (S O)) (S (S n0))) (S O))))``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite H3; Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR; Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r. -Do 2 Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Simpl; Replace ``((0+1+1)*((INR n0)+1)+(0+1)+1+1)*((0+1+1)*((INR n0)+1)+(0+1)+1)`` with ``4*(INR n0)*(INR n0)+18*(INR n0)+20``; [Idtac | Ring]. -Apply Rle_trans with ``20``. -Apply Rle_trans with ``16``. -Replace ``16`` with ``(Rsqr 4)``; [Idtac | SqRing]. -Replace ``a*a`` with (Rsqr a); [Idtac | Reflexivity]. -Apply Rsqr_incr_1. -Apply Rle_trans with PI; [Assumption | Apply PI_4]. -Assumption. -Left; Sup0. -Rewrite <- (Rplus_Or ``16``); Replace ``20`` with ``16+4``; [Apply Rle_compatibility; Left; Sup0 | Ring]. -Rewrite <- (Rplus_sym ``20``); Pattern 1 ``20``; Rewrite <- Rplus_Or; Apply Rle_compatibility. -Apply ge0_plus_ge0_is_ge0. -Repeat Apply Rmult_le_pos. -Left; Sup0. -Left; Sup0. -Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. -Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. -Apply Rmult_le_pos. -Left; Sup0. -Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Simpl; Ring. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Assert H3 := (cv_speed_pow_fact a); Unfold Un; Unfold Un_cv in H3; Unfold R_dist in H3; Unfold Un_cv; Unfold R_dist; Intros; Elim (H3 eps H4); Intros N H5. -Exists N; Intros; Apply H5. -Replace (plus (mult (2) (S n0)) (1)) with (S (mult (2) (S n0))). -Unfold ge; Apply le_trans with (mult (2) (S n0)). -Apply le_trans with (mult (2) (S N)). -Apply le_trans with (mult (2) N). -Apply le_n_2n. -Apply mult_le; Apply le_n_Sn. -Apply mult_le; Apply le_n_S; Assumption. -Apply le_n_Sn. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Reflexivity. -Assert X := (exist_sin (Rsqr a)); Elim X; Intros. -Cut ``x==(sin a)/a``. -Intro; Rewrite H3 in p; Unfold sin_in in p; Unfold infinit_sum in p; Unfold R_dist in p; Unfold Un_cv; Unfold R_dist; Intros. -Cut ``0``a <= PI/2``->``(cos_approx a (plus (mult (S (S O)) n) (S O))) <= (cos a) <= (cos_approx a (mult (S (S O)) (plus n (S O))))``. -Cut ((a:R; n:nat) ``0 <= a``->``a <= PI/2``->``(cos_approx a (plus (mult (S (S O)) n) (S O))) <= (cos a) <= (cos_approx a (mult (S (S O)) (plus n (S O))))``) -> ((a:R; n:nat) `` -PI/2 <= a``->``a <= PI/2``->``(cos_approx a (plus (mult (S (S O)) n) (S O))) <= (cos a) <= (cos_approx a (mult (S (S O)) (plus n (S O))))``). -Intros H a n; Apply H. -Intros; Unfold cos_approx. -Rewrite (decomp_sum (cos_term a0) (plus (mult (S (S O)) n0) (S O))). -Rewrite (decomp_sum (cos_term a0) (mult (S (S O)) (plus n0 (S O)))). -Replace (cos_term a0 O) with R1. -Cut (Rle (sum_f_R0 [i:nat](cos_term a0 (S i)) (pred (plus (mult (S (S O)) n0) (S O)))) ``(cos a0)-1``)/\(Rle ``(cos a0)-1`` (sum_f_R0 [i:nat](cos_term a0 (S i)) (pred (mult (S (S O)) (plus n0 (S O)))))) -> (Rle (Rplus R1 (sum_f_R0 [i:nat](cos_term a0 (S i)) (pred (plus (mult (S (S O)) n0) (S O))))) (cos a0))/\(Rle (cos a0) (Rplus R1 (sum_f_R0 [i:nat](cos_term a0 (S i)) (pred (mult (S (S O)) (plus n0 (S O))))))). -Intro; Apply H2. -Pose Un := [n:nat]``(pow a0 (mult (S (S O)) (S n)))/(INR (fact (mult (S (S O)) (S n))))``. -Replace (pred (plus (mult (S (S O)) n0) (S O))) with (mult (S (S O)) n0). -Replace (pred (mult (S (S O)) (plus n0 (S O)))) with (S (mult (S (S O)) n0)). -Replace (sum_f_R0 [i:nat](cos_term a0 (S i)) (mult (S (S O)) n0)) with ``-(sum_f_R0 (tg_alt Un) (mult (S (S O)) n0))``. -Replace (sum_f_R0 [i:nat](cos_term a0 (S i)) (S (mult (S (S O)) n0))) with ``-(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n0)))``. -Cut ``(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n0)))<=1-(cos a0)<=(sum_f_R0 (tg_alt Un) (mult (S (S O)) n0))``->`` -(sum_f_R0 (tg_alt Un) (mult (S (S O)) n0)) <= (cos a0)-1 <= -(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n0)))``. -Intro; Apply H3. -Apply alternated_series_ineq. -Unfold Un_decreasing; Intro; Unfold Un. -Cut (mult (S (S O)) (S (S n1)))=(S (S (mult (S (S O)) (S n1)))). -Intro; Rewrite H4; Replace ``(pow a0 (S (S (mult (S (S O)) (S n1)))))`` with ``(pow a0 (mult (S (S O)) (S n1)))*(a0*a0)``. -Unfold Rdiv; Rewrite Rmult_assoc; Apply Rle_monotony. -Apply pow_le; Assumption. -Apply Rle_monotony_contra with ``(INR (fact (S (S (mult (S (S O)) (S n1))))))``. -Rewrite <- H4; Apply lt_INR_0; Apply neq_O_lt; Red; Intro; Assert H6 := (sym_eq ? ? ? H5); Elim (fact_neq_0 ? H6). -Rewrite <- H4; Rewrite (Rmult_sym ``(INR (fact (mult (S (S O)) (S (S n1)))))``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite H4; Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR; Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Do 2 Rewrite S_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Simpl; Replace ``((0+1+1)*((INR n1)+1)+1+1)*((0+1+1)*((INR n1)+1)+1)`` with ``4*(INR n1)*(INR n1)+14*(INR n1)+12``; [Idtac | Ring]. -Apply Rle_trans with ``12``. -Apply Rle_trans with ``4``. -Replace ``4`` with ``(Rsqr 2)``; [Idtac | SqRing]. -Replace ``a0*a0`` with (Rsqr a0); [Idtac | Reflexivity]. -Apply Rsqr_incr_1. -Apply Rle_trans with ``PI/2``. -Assumption. -Unfold Rdiv; Apply Rle_monotony_contra with ``2``. -Sup0. -Rewrite <- Rmult_assoc; Rewrite Rinv_r_simpl_m. -Replace ``2*2`` with ``4``; [Apply PI_4 | Ring]. -DiscrR. -Assumption. -Left; Sup0. -Pattern 1 ``4``; Rewrite <- Rplus_Or; Replace ``12`` with ``4+8``; [Apply Rle_compatibility; Left; Sup0 | Ring]. -Rewrite <- (Rplus_sym ``12``); Pattern 1 ``12``; Rewrite <- Rplus_Or; Apply Rle_compatibility. -Apply ge0_plus_ge0_is_ge0. -Repeat Apply Rmult_le_pos. -Left; Sup0. -Left; Sup0. -Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. -Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. -Apply Rmult_le_pos. -Left; Sup0. -Replace R0 with (INR O); [Apply le_INR; Apply le_O_n | Reflexivity]. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Simpl; Ring. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Assert H4 := (cv_speed_pow_fact a0); Unfold Un; Unfold Un_cv in H4; Unfold R_dist in H4; Unfold Un_cv; Unfold R_dist; Intros; Elim (H4 eps H5); Intros N H6; Exists N; Intros. -Apply H6; Unfold ge; Apply le_trans with (mult (2) (S N)). -Apply le_trans with (mult (2) N). -Apply le_n_2n. -Apply mult_le; Apply le_n_Sn. -Apply mult_le; Apply le_n_S; Assumption. -Assert X := (exist_cos (Rsqr a0)); Elim X; Intros. -Cut ``x==(cos a0)``. -Intro; Rewrite H4 in p; Unfold cos_in in p; Unfold infinit_sum in p; Unfold R_dist in p; Unfold Un_cv; Unfold R_dist; Intros. -Elim (p ? H5); Intros N H6. -Exists N; Intros. -Replace (sum_f_R0 (tg_alt Un) n1) with (Rminus R1 (sum_f_R0 [i:nat]``(cos_n i)*(pow (Rsqr a0) i)`` (S n1))). -Unfold Rminus; Rewrite Ropp_distr1; Rewrite Ropp_Ropp; Repeat Rewrite Rplus_assoc; Rewrite (Rplus_sym R1); Rewrite (Rplus_sym ``-1``); Repeat Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr1; Rewrite Ropp_Ropp; Unfold Rminus in H6; Apply H6. -Unfold ge; Apply le_trans with n1. -Exact H7. -Apply le_n_Sn. -Rewrite (decomp_sum [i:nat]``(cos_n i)*(pow (Rsqr a0) i)`` (S n1)). -Replace (cos_n O) with R1. -Simpl; Rewrite Rmult_1r; Unfold Rminus; Rewrite Ropp_distr1; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Ol; Replace (Ropp (sum_f_R0 [i:nat]``(cos_n (S i))*((Rsqr a0)*(pow (Rsqr a0) i))`` n1)) with (Rmult ``-1`` (sum_f_R0 [i:nat]``(cos_n (S i))*((Rsqr a0)*(pow (Rsqr a0) i))`` n1)); [Idtac | Ring]; Rewrite scal_sum; Apply sum_eq; Intros; Unfold cos_n Un tg_alt. -Replace ``(pow (-1) (S i))`` with ``-(pow (-1) i)``. -Replace ``(pow a0 (mult (S (S O)) (S i)))`` with ``(Rsqr a0)*(pow (Rsqr a0) i)``. -Unfold Rdiv; Ring. -Rewrite pow_Rsqr; Reflexivity. -Simpl; Ring. -Unfold cos_n; Unfold Rdiv; Simpl; Rewrite Rinv_R1; Rewrite Rmult_1r; Reflexivity. -Apply lt_O_Sn. -Unfold cos; Case (exist_cos (Rsqr a0)); Intros; Unfold cos_in in p; Unfold cos_in in c; EApply unicity_sum. -Apply p. -Apply c. -Intros; Elim H3; Intros; Replace ``(cos a0)-1`` with ``-(1-(cos a0))``; [Idtac | Ring]. -Split; Apply Rle_Ropp1; Assumption. -Replace ``-(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n0)))`` with ``-1*(sum_f_R0 (tg_alt Un) (S (mult (S (S O)) n0)))``; [Rewrite scal_sum | Ring]. -Apply sum_eq; Intros; Unfold cos_term Un tg_alt; Replace ``(pow (-1) (S i))`` with ``-1*(pow (-1) i)``. -Unfold Rdiv; Ring. -Reflexivity. -Replace ``-(sum_f_R0 (tg_alt Un) (mult (S (S O)) n0))`` with ``-1*(sum_f_R0 (tg_alt Un) (mult (S (S O)) n0))``; [Rewrite scal_sum | Ring]; Apply sum_eq; Intros; Unfold cos_term Un tg_alt; Replace ``(pow (-1) (S i))`` with ``-1*(pow (-1) i)``. -Unfold Rdiv; Ring. -Reflexivity. -Replace (mult (2) (plus n0 (1))) with (S (S (mult (2) n0))). -Reflexivity. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Rewrite plus_INR; Repeat Rewrite S_INR; Ring. -Replace (plus (mult (2) n0) (1)) with (S (mult (2) n0)). -Reflexivity. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Intro; Elim H2; Intros; Split. -Apply Rle_anti_compatibility with ``-1``. -Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Rewrite (Rplus_sym ``-1``); Apply H3. -Apply Rle_anti_compatibility with ``-1``. -Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Rewrite (Rplus_sym ``-1``); Apply H4. -Unfold cos_term; Simpl; Unfold Rdiv; Rewrite Rinv_R1; Ring. -Replace (mult (2) (plus n0 (1))) with (S (S (mult (2) n0))). -Apply lt_O_Sn. -Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Rewrite plus_INR; Repeat Rewrite S_INR; Ring. -Replace (plus (mult (2) n0) (1)) with (S (mult (2) n0)). -Apply lt_O_Sn. -Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Ring. -Intros; Case (total_order_T R0 a); Intro. -Elim s; Intro. -Apply H; [Left; Assumption | Assumption]. -Apply H; [Right; Assumption | Assumption]. -Cut ``0< -a``. -Intro; Cut (x:R;n:nat) (cos_approx x n)==(cos_approx ``-x`` n). -Intro; Rewrite H3; Rewrite (H3 a (mult (S (S O)) (plus n (S O)))); Rewrite cos_sym; Apply H. -Left; Assumption. -Rewrite <- (Ropp_Ropp ``PI/2``); Apply Rle_Ropp1; Unfold Rdiv; Unfold Rdiv in H0; Rewrite <- Ropp_mul1; Exact H0. -Intros; Unfold cos_approx; Apply sum_eq; Intros; Unfold cos_term; Do 2 Rewrite pow_Rsqr; Rewrite Rsqr_neg; Unfold Rdiv; Reflexivity. -Apply Rgt_RO_Ropp; Assumption. -Qed. diff --git a/theories7/Reals/Rtrigo_calc.v b/theories7/Reals/Rtrigo_calc.v deleted file mode 100644 index ab181106..00000000 --- a/theories7/Reals/Rtrigo_calc.v +++ /dev/null @@ -1,350 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0``; [DiscrR | Unfold Rdiv; Rewrite Rinv_Rmult; Try Ring]. -Qed. - -Lemma sin_PI3_cos_PI6 : ``(sin (PI/3))==(cos (PI/6))``. -Proof with Trivial. -Replace ``PI/6`` with ``(PI/2)-(PI/3)``. -Rewrite cos_shift. -Assert H0 : ``6<>0``; [DiscrR | Idtac]. -Assert H1 : ``3<>0``; [DiscrR | Idtac]. -Assert H2 : ``2<>0``; [DiscrR | Idtac]. -Apply r_Rmult_mult with ``6``. -Rewrite Rminus_distr; Repeat Rewrite (Rmult_sym ``6``). -Unfold Rdiv; Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite (Rmult_sym ``/3``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. -Pattern 2 PI; Rewrite (Rmult_sym PI); Repeat Rewrite Rmult_1r; Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. -Ring. -Qed. - -Lemma sin_PI6_cos_PI3 : ``(cos (PI/3))==(sin (PI/6))``. -Proof with Trivial. -Replace ``PI/6`` with ``(PI/2)-(PI/3)``. -Rewrite sin_shift. -Assert H0 : ``6<>0``; [DiscrR | Idtac]. -Assert H1 : ``3<>0``; [DiscrR | Idtac]. -Assert H2 : ``2<>0``; [DiscrR | Idtac]. -Apply r_Rmult_mult with ``6``. -Rewrite Rminus_distr; Repeat Rewrite (Rmult_sym ``6``). -Unfold Rdiv; Repeat Rewrite Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite (Rmult_sym ``/3``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. -Pattern 2 PI; Rewrite (Rmult_sym PI); Repeat Rewrite Rmult_1r; Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. -Ring. -Qed. - -Lemma PI6_RGT_0 : ``00``; [DiscrR | Idtac]. -Apply r_Rmult_mult with ``2*(cos (PI/6))``. -Replace ``2*(cos (PI/6))*(sin (PI/6))`` with ``2*(sin (PI/6))*(cos (PI/6))``. -Rewrite <- sin_2a; Replace ``2*(PI/6)`` with ``PI/3``. -Rewrite sin_PI3_cos_PI6. -Unfold Rdiv; Rewrite Rmult_1l; Rewrite Rmult_assoc; Pattern 2 ``2``; Rewrite (Rmult_sym ``2``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Unfold Rdiv; Rewrite Rinv_Rmult. -Rewrite (Rmult_sym ``/2``); Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -DiscrR. -Ring. -Apply prod_neq_R0. -Cut ``0<(cos (PI/6))``; [Intro H1; Auto with real | Apply cos_gt_0; [Apply (Rlt_trans ``-(PI/2)`` ``0`` ``PI/6`` _PI2_RLT_0 PI6_RGT_0) | Apply PI6_RLT_PI2]]. -Qed. - -Lemma sqrt2_neq_0 : ~``(sqrt 2)==0``. -Assert Hyp:``0<2``; [Sup0 | Generalize (Rlt_le ``0`` ``2`` Hyp); Intro H1; Red; Intro H2; Generalize (sqrt_eq_0 ``2`` H1 H2); Intro H; Absurd ``2==0``; [ DiscrR | Assumption]]. -Qed. - -Lemma R1_sqrt2_neq_0 : ~``1/(sqrt 2)==0``. -Generalize (Rinv_neq_R0 ``(sqrt 2)`` sqrt2_neq_0); Intro H; Generalize (prod_neq_R0 ``1`` ``(Rinv (sqrt 2))`` R1_neq_R0 H); Intro H0; Assumption. -Qed. - -Lemma sqrt3_2_neq_0 : ~``2*(sqrt 3)==0``. -Apply prod_neq_R0; [DiscrR | Assert Hyp:``0<3``; [Sup0 | Generalize (Rlt_le ``0`` ``3`` Hyp); Intro H1; Red; Intro H2; Generalize (sqrt_eq_0 ``3`` H1 H2); Intro H; Absurd ``3==0``; [ DiscrR | Assumption]]]. -Qed. - -Lemma Rlt_sqrt2_0 : ``0<(sqrt 2)``. -Assert Hyp:``0<2``; [Sup0 | Generalize (sqrt_positivity ``2`` (Rlt_le ``0`` ``2`` Hyp)); Intro H1; Elim H1; Intro H2; [Assumption | Absurd ``0 == (sqrt 2)``; [Apply not_sym; Apply sqrt2_neq_0 | Assumption]]]. -Qed. - -Lemma Rlt_sqrt3_0 : ``0<(sqrt 3)``. -Cut ~(O=(1)); [Intro H0; Assert Hyp:``0<2``; [Sup0 | Generalize (Rlt_le ``0`` ``2`` Hyp); Intro H1; Assert Hyp2:``0<3``; [Sup0 | Generalize (Rlt_le ``0`` ``3`` Hyp2); Intro H2; Generalize (lt_INR_0 (1) (neq_O_lt (1) H0)); Unfold INR; Intro H3; Generalize (Rlt_compatibility ``2`` ``0`` ``1`` H3); Rewrite Rplus_sym; Rewrite Rplus_Ol; Replace ``2+1`` with ``3``; [Intro H4; Generalize (sqrt_lt_1 ``2`` ``3`` H1 H2 H4); Clear H3; Intro H3; Apply (Rlt_trans ``0`` ``(sqrt 2)`` ``(sqrt 3)`` Rlt_sqrt2_0 H3) | Ring]]] | Discriminate]. -Qed. - -Lemma PI4_RGT_0 : ``00``; [DiscrR | Idtac]. -Unfold Rsqr; Pattern 1 ``(cos (PI/4))``; Rewrite <- sin_cos_PI4; Replace ``(sin (PI/4))*(cos (PI/4))`` with ``(1/2)*(2*(sin (PI/4))*(cos (PI/4)))``. -Rewrite <- sin_2a; Replace ``2*(PI/4)`` with ``PI/2``. -Rewrite sin_PI2. -Apply Rmult_1r. -Unfold Rdiv; Rewrite (Rmult_sym ``2``); Rewrite Rinv_Rmult. -Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Unfold Rdiv; Rewrite Rmult_1l; Repeat Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l. -Left; Sup. -Apply sqrt2_neq_0. -Qed. - -Lemma sin_PI4 : ``(sin (PI/4))==1/(sqrt 2)``. -Rewrite sin_cos_PI4; Apply cos_PI4. -Qed. - -Lemma tan_PI4 : ``(tan (PI/4))==1``. -Unfold tan; Rewrite sin_cos_PI4. -Unfold Rdiv; Apply Rinv_r. -Change ``(cos (PI/4))<>0``; Rewrite cos_PI4; Apply R1_sqrt2_neq_0. -Qed. - -Lemma cos3PI4 : ``(cos (3*(PI/4)))==-1/(sqrt 2)``. -Proof with Trivial. -Replace ``3*(PI/4)`` with ``(PI/2)-(-(PI/4))``. -Rewrite cos_shift; Rewrite sin_neg; Rewrite sin_PI4. -Unfold Rdiv; Rewrite Ropp_mul1. -Unfold Rminus; Rewrite Ropp_Ropp; Pattern 1 PI; Rewrite double_var; Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_Rmult; [Ring | DiscrR | DiscrR]. -Qed. - -Lemma sin3PI4 : ``(sin (3*(PI/4)))==1/(sqrt 2)``. -Proof with Trivial. -Replace ``3*(PI/4)`` with ``(PI/2)-(-(PI/4))``. -Rewrite sin_shift; Rewrite cos_neg; Rewrite cos_PI4. -Unfold Rminus; Rewrite Ropp_Ropp; Pattern 1 PI; Rewrite double_var; Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_Rmult; [Ring | DiscrR | DiscrR]. -Qed. - -Lemma cos_PI6 : ``(cos (PI/6))==(sqrt 3)/2``. -Proof with Trivial. -Apply Rsqr_inj. -Apply cos_ge_0. -Left; Apply (Rlt_trans ``-(PI/2)`` R0 ``PI/6`` _PI2_RLT_0 PI6_RGT_0). -Left; Apply PI6_RLT_PI2. -Left; Apply (Rmult_lt_pos ``(sqrt 3)`` ``(Rinv 2)``). -Apply Rlt_sqrt3_0. -Apply Rlt_Rinv; Sup0. -Assert H : ``2<>0``; [DiscrR | Idtac]. -Assert H1 : ``4<>0``; [Apply prod_neq_R0 | Idtac]. -Rewrite Rsqr_div. -Rewrite cos2; Unfold Rsqr; Rewrite sin_PI6; Rewrite sqrt_def. -Unfold Rdiv; Rewrite Rmult_1l; Apply r_Rmult_mult with ``4``. -Rewrite Rminus_distr; Rewrite (Rmult_sym ``3``); Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l; Rewrite Rmult_1r. -Rewrite <- (Rmult_sym ``/2``); Repeat Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l; Rewrite <- Rinv_r_sym. -Ring. -Left; Sup0. -Qed. - -Lemma tan_PI6 : ``(tan (PI/6))==1/(sqrt 3)``. -Unfold tan; Rewrite sin_PI6; Rewrite cos_PI6; Unfold Rdiv; Repeat Rewrite Rmult_1l; Rewrite Rinv_Rmult. -Rewrite Rinv_Rinv. -Rewrite (Rmult_sym ``/2``); Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. -Apply Rmult_1r. -DiscrR. -DiscrR. -Red; Intro; Assert H1 := Rlt_sqrt3_0; Rewrite H in H1; Elim (Rlt_antirefl ``0`` H1). -Apply Rinv_neq_R0; DiscrR. -Qed. - -Lemma sin_PI3 : ``(sin (PI/3))==(sqrt 3)/2``. -Rewrite sin_PI3_cos_PI6; Apply cos_PI6. -Qed. - -Lemma cos_PI3 : ``(cos (PI/3))==1/2``. -Rewrite sin_PI6_cos_PI3; Apply sin_PI6. -Qed. - -Lemma tan_PI3 : ``(tan (PI/3))==(sqrt 3)``. -Unfold tan; Rewrite sin_PI3; Rewrite cos_PI3; Unfold Rdiv; Rewrite Rmult_1l; Rewrite Rinv_Rinv. -Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Apply Rmult_1r. -DiscrR. -DiscrR. -Qed. - -Lemma sin_2PI3 : ``(sin (2*(PI/3)))==(sqrt 3)/2``. -Rewrite double; Rewrite sin_plus; Rewrite sin_PI3; Rewrite cos_PI3; Unfold Rdiv; Repeat Rewrite Rmult_1l; Rewrite (Rmult_sym ``/2``); Repeat Rewrite <- Rmult_assoc; Rewrite double_var; Reflexivity. -Qed. - -Lemma cos_2PI3 : ``(cos (2*(PI/3)))==-1/2``. -Proof with Trivial. -Assert H : ``2<>0``; [DiscrR | Idtac]. -Assert H0 : ``4<>0``; [Apply prod_neq_R0 | Idtac]. -Rewrite double; Rewrite cos_plus; Rewrite sin_PI3; Rewrite cos_PI3; Unfold Rdiv; Rewrite Rmult_1l; Apply r_Rmult_mult with ``4``. -Rewrite Rminus_distr; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``2``). -Repeat Rewrite Rmult_assoc; Rewrite <- (Rinv_l_sym). -Rewrite Rmult_1r; Rewrite <- Rinv_r_sym. -Pattern 4 ``2``; Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite Ropp_mul3; Rewrite Rmult_1r. -Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite (Rmult_sym ``2``); Rewrite (Rmult_sym ``/2``). -Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Rewrite sqrt_def. -Ring. -Left; Sup. -Qed. - -Lemma tan_2PI3 : ``(tan (2*(PI/3)))==-(sqrt 3)``. -Proof with Trivial. -Assert H : ``2<>0``; [DiscrR | Idtac]. -Unfold tan; Rewrite sin_2PI3; Rewrite cos_2PI3; Unfold Rdiv; Rewrite Ropp_mul1; Rewrite Rmult_1l; Rewrite <- Ropp_Rinv. -Rewrite Rinv_Rinv. -Rewrite Rmult_assoc; Rewrite Ropp_mul3; Rewrite <- Rinv_l_sym. -Ring. -Apply Rinv_neq_R0. -Qed. - -Lemma cos_5PI4 : ``(cos (5*(PI/4)))==-1/(sqrt 2)``. -Proof with Trivial. -Replace ``5*(PI/4)`` with ``(PI/4)+(PI)``. -Rewrite neg_cos; Rewrite cos_PI4; Unfold Rdiv; Rewrite Ropp_mul1. -Pattern 2 PI; Rewrite double_var; Pattern 2 3 PI; Rewrite double_var; Assert H : ``2<>0``; [DiscrR | Unfold Rdiv; Repeat Rewrite Rinv_Rmult; Try Ring]. -Qed. - -Lemma sin_5PI4 : ``(sin (5*(PI/4)))==-1/(sqrt 2)``. -Proof with Trivial. -Replace ``5*(PI/4)`` with ``(PI/4)+(PI)``. -Rewrite neg_sin; Rewrite sin_PI4; Unfold Rdiv; Rewrite Ropp_mul1. -Pattern 2 PI; Rewrite double_var; Pattern 2 3 PI; Rewrite double_var; Assert H : ``2<>0``; [DiscrR | Unfold Rdiv; Repeat Rewrite Rinv_Rmult; Try Ring]. -Qed. - -Lemma sin_cos5PI4 : ``(cos (5*(PI/4)))==(sin (5*(PI/4)))``. -Rewrite cos_5PI4; Rewrite sin_5PI4; Reflexivity. -Qed. - -Lemma Rgt_3PI2_0 : ``0<3*(PI/2)``. -Apply Rmult_lt_pos; [Sup0 | Unfold Rdiv; Apply Rmult_lt_pos; [Apply PI_RGT_0 | Apply Rlt_Rinv; Sup0]]. -Qed. - -Lemma Rgt_2PI_0 : ``0<2*PI``. -Apply Rmult_lt_pos; [Sup0 | Apply PI_RGT_0]. -Qed. - -Lemma Rlt_PI_3PI2 : ``PI<3*(PI/2)``. -Generalize PI2_RGT_0; Intro H1; Generalize (Rlt_compatibility PI ``0`` ``PI/2`` H1); Replace ``PI+(PI/2)`` with ``3*(PI/2)``. -Rewrite Rplus_Or; Intro H2; Assumption. -Pattern 2 PI; Rewrite double_var; Ring. -Qed. - -Lemma Rlt_3PI2_2PI : ``3*(PI/2)<2*PI``. -Generalize PI2_RGT_0; Intro H1; Generalize (Rlt_compatibility ``3*(PI/2)`` ``0`` ``PI/2`` H1); Replace ``3*(PI/2)+(PI/2)`` with ``2*PI``. -Rewrite Rplus_Or; Intro H2; Assumption. -Rewrite double; Pattern 1 2 PI; Rewrite double_var; Ring. -Qed. - -(***************************************************************) -(* Radian -> Degree | Degree -> Radian *) -(***************************************************************) - -Definition plat : R := ``180``. -Definition toRad [x:R] : R := ``x*PI*/plat``. -Definition toDeg [x:R] : R := ``x*plat*/PI``. - -Lemma rad_deg : (x:R) (toRad (toDeg x))==x. -Intro; Unfold toRad toDeg; Replace ``x*plat*/PI*PI*/plat`` with ``x*(plat*/plat)*(PI*/PI)``; [Idtac | Ring]. -Repeat Rewrite <- Rinv_r_sym. -Ring. -Apply PI_neq0. -Unfold plat; DiscrR. -Qed. - -Lemma toRad_inj : (x,y:R) (toRad x)==(toRad y) -> x==y. -Intros; Unfold toRad in H; Apply r_Rmult_mult with PI. -Rewrite <- (Rmult_sym x); Rewrite <- (Rmult_sym y). -Apply r_Rmult_mult with ``/plat``. -Rewrite <- (Rmult_sym ``x*PI``); Rewrite <- (Rmult_sym ``y*PI``); Assumption. -Apply Rinv_neq_R0; Unfold plat; DiscrR. -Apply PI_neq0. -Qed. - -Lemma deg_rad : (x:R) (toDeg (toRad x))==x. -Intro x; Apply toRad_inj; Rewrite -> (rad_deg (toRad x)); Reflexivity. -Qed. - -Definition sind [x:R] : R := (sin (toRad x)). -Definition cosd [x:R] : R := (cos (toRad x)). -Definition tand [x:R] : R := (tan (toRad x)). - -Lemma Rsqr_sin_cos_d_one : (x:R) ``(Rsqr (sind x))+(Rsqr (cosd x))==1``. -Intro x; Unfold sind; Unfold cosd; Apply sin2_cos2. -Qed. - -(***************************************************) -(* Other properties *) -(***************************************************) - -Lemma sin_lb_ge_0 : (a:R) ``0<=a``->``a<=PI/2``->``0<=(sin_lb a)``. -Intros; Case (total_order R0 a); Intro. -Left; Apply sin_lb_gt_0; Assumption. -Elim H1; Intro. -Rewrite <- H2; Unfold sin_lb; Unfold sin_approx; Unfold sum_f_R0; Unfold sin_term; Repeat Rewrite pow_ne_zero. -Unfold Rdiv; Repeat Rewrite Rmult_Ol; Repeat Rewrite Rmult_Or; Repeat Rewrite Rplus_Or; Right; Reflexivity. -Discriminate. -Discriminate. -Discriminate. -Discriminate. -Elim (Rlt_antirefl ``0`` (Rle_lt_trans ``0`` a ``0`` H H2)). -Qed. diff --git a/theories7/Reals/Rtrigo_def.v b/theories7/Reals/Rtrigo_def.v deleted file mode 100644 index 0897416b..00000000 --- a/theories7/Reals/Rtrigo_def.v +++ /dev/null @@ -1,357 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R->Prop := [x,l:R](infinit_sum [i:nat]``/(INR (fact i))*(pow x i)`` l). - -Lemma exp_cof_no_R0 : (n:nat) ``/(INR (fact n))<>0``. -Intro. -Apply Rinv_neq_R0. -Apply INR_fact_neq_0. -Qed. - -Lemma exist_exp : (x:R)(SigT R [l:R](exp_in x l)). -Intro; Generalize (Alembert_C3 [n:nat](Rinv (INR (fact n))) x exp_cof_no_R0 Alembert_exp). -Unfold Pser exp_in. -Trivial. -Defined. - -Definition exp : R -> R := [x:R](projT1 ? ? (exist_exp x)). - -Lemma pow_i : (i:nat) (lt O i) -> (pow R0 i)==R0. -Intros; Apply pow_ne_zero. -Red; Intro; Rewrite H0 in H; Elim (lt_n_n ? H). -Qed. - -(*i Calculus of $e^0$ *) -Lemma exist_exp0 : (SigT R [l:R](exp_in R0 l)). -Apply Specif.existT with R1. -Unfold exp_in; Unfold infinit_sum; Intros. -Exists O. -Intros; Replace (sum_f_R0 ([i:nat]``/(INR (fact i))*(pow R0 i)``) n) with R1. -Unfold R_dist; Replace ``1-1`` with R0; [Rewrite Rabsolu_R0; Assumption | Ring]. -Induction n. -Simpl; Rewrite Rinv_R1; Ring. -Rewrite tech5. -Rewrite <- Hrecn. -Simpl. -Ring. -Unfold ge; Apply le_O_n. -Defined. - -Lemma exp_0 : ``(exp 0)==1``. -Cut (exp_in R0 (exp R0)). -Cut (exp_in R0 R1). -Unfold exp_in; Intros; EApply unicity_sum. -Apply H0. -Apply H. -Exact (projT2 ? ? exist_exp0). -Exact (projT2 ? ? (exist_exp R0)). -Qed. - -(**************************************) -(* Definition of hyperbolic functions *) -(**************************************) -Definition cosh : R->R := [x:R]``((exp x)+(exp (-x)))/2``. -Definition sinh : R->R := [x:R]``((exp x)-(exp (-x)))/2``. -Definition tanh : R->R := [x:R]``(sinh x)/(cosh x)``. - -Lemma cosh_0 : ``(cosh 0)==1``. -Unfold cosh; Rewrite Ropp_O; Rewrite exp_0. -Unfold Rdiv; Rewrite <- Rinv_r_sym; [Reflexivity | DiscrR]. -Qed. - -Lemma sinh_0 : ``(sinh 0)==0``. -Unfold sinh; Rewrite Ropp_O; Rewrite exp_0. -Unfold Rminus Rdiv; Rewrite Rplus_Ropp_r; Apply Rmult_Ol. -Qed. - -Definition cos_n [n:nat] : R := ``(pow (-1) n)/(INR (fact (mult (S (S O)) n)))``. - -Lemma simpl_cos_n : (n:nat) (Rdiv (cos_n (S n)) (cos_n n))==(Ropp (Rinv (INR (mult (mult (2) (S n)) (plus (mult (2) n) (1)))))). -Intro; Unfold cos_n; Replace (S n) with (plus n (1)); [Idtac | Ring]. -Rewrite pow_add; Unfold Rdiv; Rewrite Rinv_Rmult. -Rewrite Rinv_Rinv. -Replace ``(pow ( -1) n)*(pow ( -1) (S O))*/(INR (fact (mult (S (S O)) (plus n (S O)))))*(/(pow ( -1) n)*(INR (fact (mult (S (S O)) n))))`` with ``((pow ( -1) n)*/(pow ( -1) n))*/(INR (fact (mult (S (S O)) (plus n (S O)))))*(INR (fact (mult (S (S O)) n)))*(pow (-1) (S O))``; [Idtac | Ring]. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l; Unfold pow; Rewrite Rmult_1r. -Replace (mult (S (S O)) (plus n (S O))) with (S (S (mult (S (S O)) n))); [Idtac | Ring]. -Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR; Repeat Rewrite Rinv_Rmult; Try (Apply not_O_INR; Discriminate). -Rewrite <- (Rmult_sym ``-1``). -Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r. -Replace (S (mult (S (S O)) n)) with (plus (mult (S (S O)) n) (S O)); [Idtac | Ring]. -Rewrite mult_INR; Rewrite Rinv_Rmult. -Ring. -Apply not_O_INR; Discriminate. -Replace (plus (mult (S (S O)) n) (S O)) with (S (mult (S (S O)) n)); [Apply not_O_INR; Discriminate | Ring]. -Apply INR_fact_neq_0. -Apply INR_fact_neq_0. -Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0]. -Apply pow_nonzero; DiscrR. -Apply INR_fact_neq_0. -Apply pow_nonzero; DiscrR. -Apply Rinv_neq_R0; Apply INR_fact_neq_0. -Qed. - -Lemma archimed_cor1 : (eps:R) ``0 (EX N : nat | ``/(INR N) < eps``/\(lt O N)). -Intros; Cut ``/eps < (IZR (up (/eps)))``. -Intro; Cut `0<=(up (Rinv eps))`. -Intro; Assert H2 := (IZN ? H1); Elim H2; Intros; Exists (max x (1)). -Split. -Cut ``0<(IZR (INZ x))``. -Intro; Rewrite INR_IZR_INZ; Apply Rle_lt_trans with ``/(IZR (INZ x))``. -Apply Rle_monotony_contra with (IZR (INZ x)). -Assumption. -Rewrite <- Rinv_r_sym; [Idtac | Red; Intro; Rewrite H5 in H4; Elim (Rlt_antirefl ? H4)]. -Apply Rle_monotony_contra with (IZR (INZ (max x (1)))). -Apply Rlt_le_trans with (IZR (INZ x)). -Assumption. -Repeat Rewrite <- INR_IZR_INZ; Apply le_INR; Apply le_max_l. -Rewrite Rmult_1r; Rewrite (Rmult_sym (IZR (INZ (max x (S O))))); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Repeat Rewrite <- INR_IZR_INZ; Apply le_INR; Apply le_max_l. -Rewrite <- INR_IZR_INZ; Apply not_O_INR. -Red; Intro;Assert H6 := (le_max_r x (1)); Cut (lt O (1)); [Intro | Apply lt_O_Sn]; Assert H8 := (lt_le_trans ? ? ? H7 H6); Rewrite H5 in H8; Elim (lt_n_n ? H8). -Pattern 1 eps; Rewrite <- Rinv_Rinv. -Apply Rinv_lt. -Apply Rmult_lt_pos; [Apply Rlt_Rinv; Assumption | Assumption]. -Rewrite H3 in H0; Assumption. -Red; Intro; Rewrite H5 in H; Elim (Rlt_antirefl ? H). -Apply Rlt_trans with ``/eps``. -Apply Rlt_Rinv; Assumption. -Rewrite H3 in H0; Assumption. -Apply lt_le_trans with (1); [Apply lt_O_Sn | Apply le_max_r]. -Apply le_IZR; Replace (IZR `0`) with R0; [Idtac | Reflexivity]; Left; Apply Rlt_trans with ``/eps``; [Apply Rlt_Rinv; Assumption | Assumption]. -Assert H0 := (archimed ``/eps``). -Elim H0; Intros; Assumption. -Qed. - -Lemma Alembert_cos : (Un_cv [n:nat]``(Rabsolu (cos_n (S n))/(cos_n n))`` R0). -Unfold Un_cv; Intros. -Assert H0 := (archimed_cor1 eps H). -Elim H0; Intros; Exists x. -Intros; Rewrite simpl_cos_n; Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Rewrite Rabsolu_Ropp; Rewrite Rabsolu_right. -Rewrite mult_INR; Rewrite Rinv_Rmult. -Cut ``/(INR (mult (S (S O)) (S n)))<1``. -Intro; Cut ``/(INR (plus (mult (S (S O)) n) (S O)))0``. -Intro; Unfold cos_n; Unfold Rdiv; Apply prod_neq_R0. -Apply pow_nonzero; DiscrR. -Apply Rinv_neq_R0. -Apply INR_fact_neq_0. -Qed. - -(**********) -Definition cos_in:R->R->Prop := [x,l:R](infinit_sum [i:nat]``(cos_n i)*(pow x i)`` l). - -(**********) -Lemma exist_cos : (x:R)(SigT R [l:R](cos_in x l)). -Intro; Generalize (Alembert_C3 cos_n x cosn_no_R0 Alembert_cos). -Unfold Pser cos_in; Trivial. -Qed. - -(* Definition of cosinus *) -(*************************) -Definition cos : R -> R := [x:R](Cases (exist_cos (Rsqr x)) of (Specif.existT a b) => a end). - - -Definition sin_n [n:nat] : R := ``(pow (-1) n)/(INR (fact (plus (mult (S (S O)) n) (S O))))``. - -Lemma simpl_sin_n : (n:nat) (Rdiv (sin_n (S n)) (sin_n n))==(Ropp (Rinv (INR (mult (plus (mult (2) (S n)) (1)) (mult (2) (S n)))))). -Intro; Unfold sin_n; Replace (S n) with (plus n (1)); [Idtac | Ring]. -Rewrite pow_add; Unfold Rdiv; Rewrite Rinv_Rmult. -Rewrite Rinv_Rinv. -Replace ``(pow ( -1) n)*(pow ( -1) (S O))*/(INR (fact (plus (mult (S (S O)) (plus n (S O))) (S O))))*(/(pow ( -1) n)*(INR (fact (plus (mult (S (S O)) n) (S O)))))`` with ``((pow ( -1) n)*/(pow ( -1) n))*/(INR (fact (plus (mult (S (S O)) (plus n (S O))) (S O))))*(INR (fact (plus (mult (S (S O)) n) (S O))))*(pow (-1) (S O))``; [Idtac | Ring]. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1l; Unfold pow; Rewrite Rmult_1r; Replace (plus (mult (S (S O)) (plus n (S O))) (S O)) with (S (S (plus (mult (S (S O)) n) (S O)))). -Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR; Repeat Rewrite Rinv_Rmult. -Rewrite <- (Rmult_sym ``-1``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Replace (S (plus (mult (S (S O)) n) (S O))) with (mult (S (S O)) (plus n (S O))). -Repeat Rewrite mult_INR; Repeat Rewrite Rinv_Rmult. -Ring. -Apply not_O_INR; Discriminate. -Replace (plus n (S O)) with (S n); [Apply not_O_INR; Discriminate | Ring]. -Apply not_O_INR; Discriminate. -Apply prod_neq_R0. -Apply not_O_INR; Discriminate. -Replace (plus n (S O)) with (S n); [Apply not_O_INR; Discriminate | Ring]. -Apply not_O_INR; Discriminate. -Replace (plus n (S O)) with (S n); [Apply not_O_INR; Discriminate | Ring]. -Rewrite mult_plus_distr_r; Cut (n:nat) (S n)=(plus n (1)). -Intros; Rewrite (H (plus (mult (2) n) (1))). -Ring. -Intros; Ring. -Apply INR_fact_neq_0. -Apply not_O_INR; Discriminate. -Apply INR_fact_neq_0. -Apply not_O_INR; Discriminate. -Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0]. -Cut (n:nat) (S (S n))=(plus n (2)); [Intros; Rewrite (H (plus (mult (2) n) (1))); Ring | Intros; Ring]. -Apply pow_nonzero; DiscrR. -Apply INR_fact_neq_0. -Apply pow_nonzero; DiscrR. -Apply Rinv_neq_R0; Apply INR_fact_neq_0. -Qed. - -Lemma Alembert_sin : (Un_cv [n:nat]``(Rabsolu (sin_n (S n))/(sin_n n))`` R0). -Unfold Un_cv; Intros; Assert H0 := (archimed_cor1 eps H). -Elim H0; Intros; Exists x. -Intros; Rewrite simpl_sin_n; Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Rewrite Rabsolu_Ropp; Rewrite Rabsolu_right. -Rewrite mult_INR; Rewrite Rinv_Rmult. -Cut ``/(INR (mult (S (S O)) (S n)))<1``. -Intro; Cut ``/(INR (plus (mult (S (S O)) (S n)) (S O)))0``. -Intro; Unfold sin_n; Unfold Rdiv; Apply prod_neq_R0. -Apply pow_nonzero; DiscrR. -Apply Rinv_neq_R0; Apply INR_fact_neq_0. -Qed. - -(**********) -Definition sin_in:R->R->Prop := [x,l:R](infinit_sum [i:nat]``(sin_n i)*(pow x i)`` l). - -(**********) -Lemma exist_sin : (x:R)(SigT R [l:R](sin_in x l)). -Intro; Generalize (Alembert_C3 sin_n x sin_no_R0 Alembert_sin). -Unfold Pser sin_n; Trivial. -Qed. - -(***********************) -(* Definition of sinus *) -Definition sin : R -> R := [x:R](Cases (exist_sin (Rsqr x)) of (Specif.existT a b) => ``x*a`` end). - -(*********************************************) -(* PROPERTIES *) -(*********************************************) - -Lemma cos_sym : (x:R) ``(cos x)==(cos (-x))``. -Intros; Unfold cos; Replace ``(Rsqr (-x))`` with (Rsqr x). -Reflexivity. -Apply Rsqr_neg. -Qed. - -Lemma sin_antisym : (x:R)``(sin (-x))==-(sin x)``. -Intro; Unfold sin; Replace ``(Rsqr (-x))`` with (Rsqr x); [Idtac | Apply Rsqr_neg]. -Case (exist_sin (Rsqr x)); Intros; Ring. -Qed. - -Lemma sin_0 : ``(sin 0)==0``. -Unfold sin; Case (exist_sin (Rsqr R0)). -Intros; Ring. -Qed. - -Lemma exist_cos0 : (SigT R [l:R](cos_in R0 l)). -Apply Specif.existT with R1. -Unfold cos_in; Unfold infinit_sum; Intros; Exists O. -Intros. -Unfold R_dist. -Induction n. -Unfold cos_n; Simpl. -Unfold Rdiv; Rewrite Rinv_R1. -Do 2 Rewrite Rmult_1r. -Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. -Rewrite tech5. -Replace ``(cos_n (S n))*(pow 0 (S n))`` with R0. -Rewrite Rplus_Or. -Apply Hrecn; Unfold ge; Apply le_O_n. -Simpl; Ring. -Defined. - -(* Calculus of (cos 0) *) -Lemma cos_0 : ``(cos 0)==1``. -Cut (cos_in R0 (cos R0)). -Cut (cos_in R0 R1). -Unfold cos_in; Intros; EApply unicity_sum. -Apply H0. -Apply H. -Exact (projT2 ? ? exist_cos0). -Assert H := (projT2 ? ? (exist_cos (Rsqr R0))); Unfold cos; Pattern 1 R0; Replace R0 with (Rsqr R0); [Exact H | Apply Rsqr_O]. -Qed. diff --git a/theories7/Reals/Rtrigo_fun.v b/theories7/Reals/Rtrigo_fun.v deleted file mode 100644 index bc72c0e1..00000000 --- a/theories7/Reals/Rtrigo_fun.v +++ /dev/null @@ -1,118 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* R->R) (fn == [N:nat][x:R]``(pow (-1) N)/(INR (fact (mult (S (S O)) N)))*(pow x (mult (S (S O)) N))``) -> (CVN_R fn). -Unfold CVN_R; Intros. -Cut (r::R)<>``0``. -Intro hyp_r; Unfold CVN_r. -Apply Specif.existT with [n:nat]``/(INR (fact (mult (S (S O)) n)))*(pow r (mult (S (S O)) n))``. -Cut (SigT ? [l:R](Un_cv [n:nat](sum_f_R0 [k:nat](Rabsolu ``/(INR (fact (mult (S (S O)) k)))*(pow r (mult (S (S O)) k))``) n) l)). -Intro; Elim X; Intros. -Apply existTT with x. -Split. -Apply p. -Intros; Rewrite H; Unfold Rdiv; Do 2 Rewrite Rabsolu_mult. -Rewrite pow_1_abs; Rewrite Rmult_1l. -Cut ``0(continuity cos). -Intro; Apply H1. -Apply SFL_continuity; Assumption. -Unfold continuity; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros. -Elim (H1 x ? H2); Intros. -Exists x0; Intros. -Elim H3; Intros. -Split. -Apply H4. -Intros; Rewrite (H0 x); Rewrite (H0 x1); Apply H5; Apply H6. -Intro; Unfold cos SFL. -Case (cv x); Case (exist_cos (Rsqr x)); Intros. -Symmetry; EApply UL_sequence. -Apply u. -Unfold cos_in in c; Unfold infinit_sum in c; Unfold Un_cv; Intros. -Elim (c ? H0); Intros N0 H1. -Exists N0; Intros. -Unfold R_dist in H1; Unfold R_dist SP. -Replace (sum_f_R0 [k:nat](fn k x) n) with (sum_f_R0 [i:nat]``(cos_n i)*(pow (Rsqr x) i)`` n). -Apply H1; Assumption. -Apply sum_eq; Intros. -Unfold cos_n fn; Apply Rmult_mult_r. -Unfold Rsqr; Rewrite pow_sqr; Reflexivity. -Intro; Unfold fn; Replace [x:R]``(pow ( -1) n)/(INR (fact (mult (S (S O)) n)))*(pow x (mult (S (S O)) n))`` with (mult_fct (fct_cte ``(pow ( -1) n)/(INR (fact (mult (S (S O)) n)))``) (pow_fct (mult (S (S O)) n))); [Idtac | Reflexivity]. -Apply continuity_mult. -Apply derivable_continuous; Apply derivable_const. -Apply derivable_continuous; Apply (derivable_pow (mult (2) n)). -Apply CVN_R_CVS; Apply X. -Apply CVN_R_cos; Unfold fn; Reflexivity. -Qed. - -(**********) -Lemma continuity_sin : (continuity sin). -Unfold continuity; Intro. -Assert H0 := (continuity_cos ``PI/2-x``). -Unfold continuity_pt in H0; Unfold continue_in in H0; Unfold limit1_in in H0; Unfold limit_in in H0; Simpl in H0; Unfold R_dist in H0; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros. -Elim (H0 ? H); Intros. -Exists x0; Intros. -Elim H1; Intros. -Split. -Assumption. -Intros; Rewrite <- (cos_shift x); Rewrite <- (cos_shift x1); Apply H3. -Elim H4; Intros. -Split. -Unfold D_x no_cond; Split. -Trivial. -Red; Intro; Unfold D_x no_cond in H5; Elim H5; Intros _ H8; Elim H8; Rewrite <- (Ropp_Ropp x); Rewrite <- (Ropp_Ropp x1); Apply eq_Ropp; Apply r_Rplus_plus with ``PI/2``; Apply H7. -Replace ``PI/2-x1-(PI/2-x)`` with ``x-x1``; [Idtac | Ring]; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr3; Apply H6. -Qed. - -Lemma CVN_R_sin : (fn:nat->R->R) (fn == [N:nat][x:R]``(pow ( -1) N)/(INR (fact (plus (mult (S (S O)) N) (S O))))*(pow x (mult (S (S O)) N))``) -> (CVN_R fn). -Unfold CVN_R; Unfold CVN_r; Intros fn H r. -Apply Specif.existT with [n:nat]``/(INR (fact (plus (mult (S (S O)) n) (S O))))*(pow r (mult (S (S O)) n))``. -Cut (SigT ? [l:R](Un_cv [n:nat](sum_f_R0 [k:nat](Rabsolu ``/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow r (mult (S (S O)) k))``) n) l)). -Intro; Elim X; Intros. -Apply existTT with x. -Split. -Apply p. -Intros; Rewrite H; Unfold Rdiv; Do 2 Rewrite Rabsolu_mult; Rewrite pow_1_abs; Rewrite Rmult_1l. -Cut ``0``0``. -Intro; Apply Alembert_C2. -Intro; Apply Rabsolu_no_R0. -Apply prod_neq_R0. -Apply Rinv_neq_R0; Apply INR_fact_neq_0. -Apply pow_nonzero; Assumption. -Assert H1 := Alembert_sin. -Unfold sin_n in H1; Unfold Un_cv in H1; Unfold Un_cv; Intros. -Cut ``0 1 when h -> 0 *) -Lemma derivable_pt_lim_sin_0 : (derivable_pt_lim sin R0 R1). -Unfold derivable_pt_lim; Intros. -Pose fn := [N:nat][x:R]``(pow ( -1) N)/(INR (fact (plus (mult (S (S O)) N) (S O))))*(pow x (mult (S (S O)) N))``. -Cut (CVN_R fn). -Intro; Cut (x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l)). -Intro cv. -Pose r := (mkposreal ? Rlt_R0_R1). -Cut (CVN_r fn r). -Intro; Cut ((n:nat; y:R)(Boule ``0`` r y)->(continuity_pt (fn n) y)). -Intro; Cut (Boule R0 r R0). -Intro; Assert H2 := (SFL_continuity_pt ? cv ? X0 H0 ? H1). -Unfold continuity_pt in H2; Unfold continue_in in H2; Unfold limit1_in in H2; Unfold limit_in in H2; Simpl in H2; Unfold R_dist in H2. -Elim (H2 ? H); Intros alp H3. -Elim H3; Intros. -Exists (mkposreal ? H4). -Simpl; Intros. -Rewrite sin_0; Rewrite Rplus_Ol; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or. -Cut ``(Rabsolu ((SFL fn cv h)-(SFL fn cv 0))) < eps``. -Intro; Cut (SFL fn cv R0)==R1. -Intro; Cut (SFL fn cv h)==``(sin h)/h``. -Intro; Rewrite H9 in H8; Rewrite H10 in H8. -Apply H8. -Unfold SFL sin. -Case (cv h); Intros. -Case (exist_sin (Rsqr h)); Intros. -Unfold Rdiv; Rewrite (Rinv_r_simpl_m h x0 H6). -EApply UL_sequence. -Apply u. -Unfold sin_in in s; Unfold sin_n infinit_sum in s; Unfold SP fn Un_cv; Intros. -Elim (s ? H10); Intros N0 H11. -Exists N0; Intros. -Unfold R_dist; Unfold R_dist in H11. -Replace (sum_f_R0 [k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow h (mult (S (S O)) k))`` n) with (sum_f_R0 [i:nat]``(pow ( -1) i)/(INR (fact (plus (mult (S (S O)) i) (S O))))*(pow (Rsqr h) i)`` n). -Apply H11; Assumption. -Apply sum_eq; Intros; Apply Rmult_mult_r; Unfold Rsqr; Rewrite pow_sqr; Reflexivity. -Unfold SFL sin. -Case (cv R0); Intros. -EApply UL_sequence. -Apply u. -Unfold SP fn; Unfold Un_cv; Intros; Exists (S O); Intros. -Unfold R_dist; Replace (sum_f_R0 [k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow 0 (mult (S (S O)) k))`` n) with R1. -Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. -Rewrite decomp_sum. -Simpl; Rewrite Rmult_1r; Unfold Rdiv; Rewrite Rinv_R1; Rewrite Rmult_1r; Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rplus_plus_r. -Symmetry; Apply sum_eq_R0; Intros. -Rewrite Rmult_Ol; Rewrite Rmult_Or; Reflexivity. -Unfold ge in H10; Apply lt_le_trans with (1); [Apply lt_n_Sn | Apply H10]. -Apply H5. -Split. -Unfold D_x no_cond; Split. -Trivial. -Apply not_sym; Apply H6. -Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply H7. -Unfold Boule; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_R0; Apply (cond_pos r). -Intros; Unfold fn; Replace [x:R]``(pow ( -1) n)/(INR (fact (plus (mult (S (S O)) n) (S O))))*(pow x (mult (S (S O)) n))`` with (mult_fct (fct_cte ``(pow ( -1) n)/(INR (fact (plus (mult (S (S O)) n) (S O))))``) (pow_fct (mult (S (S O)) n))); [Idtac | Reflexivity]. -Apply continuity_pt_mult. -Apply derivable_continuous_pt. -Apply derivable_pt_const. -Apply derivable_continuous_pt. -Apply (derivable_pt_pow (mult (2) n) y). -Apply (X r). -Apply (CVN_R_CVS ? X). -Apply CVN_R_sin; Unfold fn; Reflexivity. -Qed. - -(* ((cos h)-1)/h -> 0 when h -> 0 *) -Lemma derivable_pt_lim_cos_0 : (derivable_pt_lim cos ``0`` ``0``). -Unfold derivable_pt_lim; Intros. -Assert H0 := derivable_pt_lim_sin_0. -Unfold derivable_pt_lim in H0. -Cut ``00``. -Intro; Assert H11 := (H2 ? H10 H9). -Rewrite Rplus_Ol in H11; Rewrite sin_0 in H11. -Rewrite minus_R0 in H11; Apply H11. -Unfold Rdiv; Apply prod_neq_R0. -Apply H7. -Apply Rinv_neq_R0; DiscrR. -Apply Rlt_trans with ``del/2``. -Unfold Rdiv; Rewrite Rabsolu_mult. -Rewrite (Rabsolu_right ``/2``). -Do 2 Rewrite <- (Rmult_sym ``/2``); Apply Rlt_monotony. -Apply Rlt_Rinv; Sup0. -Apply Rlt_le_trans with (pos delta). -Apply H8. -Unfold delta; Simpl; Apply Rmin_l. -Apply Rle_sym1; Left; Apply Rlt_Rinv; Sup0. -Rewrite <- (Rplus_Or ``del/2``); Pattern 1 del; Rewrite (double_var del); Apply Rlt_compatibility; Unfold Rdiv; Apply Rmult_lt_pos. -Apply (cond_pos del). -Apply Rlt_Rinv; Sup0. -Elim H5; Intros; Assert H11 := (H10 ``h/2``). -Rewrite sin_0 in H11; Do 2 Rewrite minus_R0 in H11. -Apply H11. -Split. -Unfold D_x no_cond; Split. -Trivial. -Apply not_sym; Unfold Rdiv; Apply prod_neq_R0. -Apply H7. -Apply Rinv_neq_R0; DiscrR. -Apply Rlt_trans with ``del_c/2``. -Unfold Rdiv; Rewrite Rabsolu_mult. -Rewrite (Rabsolu_right ``/2``). -Do 2 Rewrite <- (Rmult_sym ``/2``). -Apply Rlt_monotony. -Apply Rlt_Rinv; Sup0. -Apply Rlt_le_trans with (pos delta). -Apply H8. -Unfold delta; Simpl; Apply Rmin_r. -Apply Rle_sym1; Left; Apply Rlt_Rinv; Sup0. -Rewrite <- (Rplus_Or ``del_c/2``); Pattern 2 del_c; Rewrite (double_var del_c); Apply Rlt_compatibility. -Unfold Rdiv; Apply Rmult_lt_pos. -Apply H9. -Apply Rlt_Rinv; Sup0. -Rewrite Rminus_distr; Rewrite Rmult_1r; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Rewrite (Rmult_sym ``2``); Unfold Rdiv Rsqr. -Repeat Rewrite Rmult_assoc. -Repeat Apply Rmult_mult_r. -Rewrite Rinv_Rmult. -Rewrite Rinv_Rinv. -Apply Rmult_sym. -DiscrR. -Apply H7. -Apply Rinv_neq_R0; DiscrR. -Pattern 2 h; Replace h with ``2*(h/2)``. -Rewrite (cos_2a_sin ``h/2``). -Rewrite cos_0; Unfold Rsqr; Ring. -Unfold Rdiv; Rewrite <- Rmult_assoc; Apply Rinv_r_simpl_m. -DiscrR. -Unfold Rmin; Case (total_order_Rle del del_c); Intro. -Apply (cond_pos del). -Elim H5; Intros; Assumption. -Apply continuity_sin. -Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]. -Qed. - -(**********) -Theorem derivable_pt_lim_sin : (x:R)(derivable_pt_lim sin x (cos x)). -Intro; Assert H0 := derivable_pt_lim_sin_0. -Assert H := derivable_pt_lim_cos_0. -Unfold derivable_pt_lim in H0 H. -Unfold derivable_pt_lim; Intros. -Cut ``0R] : Prop := (n:nat) (Rle (Un (S n)) (Un n)). -Definition opp_seq [Un:nat->R] : nat->R := [n:nat]``-(Un n)``. -Definition has_ub [Un:nat->R] : Prop := (bound (EUn Un)). -Definition has_lb [Un:nat->R] : Prop := (bound (EUn (opp_seq Un))). - -(**********) -Lemma growing_cv : (Un:nat->R) (Un_growing Un) -> (has_ub Un) -> (sigTT R [l:R](Un_cv Un l)). -Unfold Un_growing Un_cv;Intros; - NewDestruct (complet (EUn Un) H0 (EUn_noempty Un)) as [x [H2 H3]]. - Exists x;Intros eps H1. - Unfold is_upper_bound in H2 H3. -Assert H5:(n:nat)(Rle (Un n) x). - Intro n; Apply (H2 (Un n) (Un_in_EUn Un n)). -Cut (Ex [N:nat] (Rlt (Rminus x eps) (Un N))). -Intro H6;NewDestruct H6 as [N H6];Exists N. -Intros n H7;Unfold R_dist;Apply (Rabsolu_def1 (Rminus (Un n) x) eps). -Unfold Rgt in H1. - Apply (Rle_lt_trans (Rminus (Un n) x) R0 eps - (Rle_minus (Un n) x (H5 n)) H1). -Fold Un_growing in H;Generalize (growing_prop Un n N H H7);Intro H8. - Generalize (Rlt_le_trans (Rminus x eps) (Un N) (Un n) H6 - (Rle_sym2 (Un N) (Un n) H8));Intro H9; - Generalize (Rlt_compatibility (Ropp x) (Rminus x eps) (Un n) H9); - Unfold Rminus;Rewrite <-(Rplus_assoc (Ropp x) x (Ropp eps)); - Rewrite (Rplus_sym (Ropp x) (Un n));Fold (Rminus (Un n) x); - Rewrite Rplus_Ropp_l;Rewrite (let (H1,H2)=(Rplus_ne (Ropp eps)) in H2); - Trivial. -Cut ~((N:nat)(Rle (Un N) (Rminus x eps))). -Intro H6;Apply (not_all_not_ex nat ([N:nat](Rlt (Rminus x eps) (Un N)))). - Intro H7; Apply H6; Intro N; Apply Rnot_lt_le; Apply H7. -Intro H7;Generalize (Un_bound_imp Un (Rminus x eps) H7);Intro H8; - Unfold is_upper_bound in H8;Generalize (H3 (Rminus x eps) H8); - Apply Rlt_le_not; Apply tech_Rgt_minus; Exact H1. -Qed. - -Lemma decreasing_growing : (Un:nat->R) (Un_decreasing Un) -> (Un_growing (opp_seq Un)). -Intro. -Unfold Un_growing opp_seq Un_decreasing. -Intros. -Apply Rle_Ropp1. -Apply H. -Qed. - -Lemma decreasing_cv : (Un:nat->R) (Un_decreasing Un) -> (has_lb Un) -> (sigTT R [l:R](Un_cv Un l)). -Intros. -Cut (sigTT R [l:R](Un_cv (opp_seq Un) l)) -> (sigTT R [l:R](Un_cv Un l)). -Intro. -Apply X. -Apply growing_cv. -Apply decreasing_growing; Assumption. -Exact H0. -Intro. -Elim X; Intros. -Apply existTT with ``-x``. -Unfold Un_cv in p. -Unfold R_dist in p. -Unfold opp_seq in p. -Unfold Un_cv. -Unfold R_dist. -Intros. -Elim (p eps H1); Intros. -Exists x0; Intros. -Assert H4 := (H2 n H3). -Rewrite <- Rabsolu_Ropp. -Replace ``-((Un n)- -x)`` with ``-(Un n)-x``; [Assumption | Ring]. -Qed. - -(***********) -Lemma maj_sup : (Un:nat->R) (has_ub Un) -> (sigTT R [l:R](is_lub (EUn Un) l)). -Intros. -Unfold has_ub in H. -Apply complet. -Assumption. -Exists (Un O). -Unfold EUn. -Exists O; Reflexivity. -Qed. - -(**********) -Lemma min_inf : (Un:nat->R) (has_lb Un) -> (sigTT R [l:R](is_lub (EUn (opp_seq Un)) l)). -Intros; Unfold has_lb in H. -Apply complet. -Assumption. -Exists ``-(Un O)``. -Exists O. -Reflexivity. -Qed. - -Definition majorant [Un:nat->R;pr:(has_ub Un)] : R := Cases (maj_sup Un pr) of (existTT a b) => a end. - -Definition minorant [Un:nat->R;pr:(has_lb Un)] : R := Cases (min_inf Un pr) of (existTT a b) => ``-a`` end. - -Lemma maj_ss : (Un:nat->R;k:nat) (has_ub Un) -> (has_ub [i:nat](Un (plus k i))). -Intros. -Unfold has_ub in H. -Unfold bound in H. -Elim H; Intros. -Unfold is_upper_bound in H0. -Unfold has_ub. -Exists x. -Unfold is_upper_bound. -Intros. -Apply H0. -Elim H1; Intros. -Exists (plus k x1); Assumption. -Qed. - -Lemma min_ss : (Un:nat->R;k:nat) (has_lb Un) -> (has_lb [i:nat](Un (plus k i))). -Intros. -Unfold has_lb in H. -Unfold bound in H. -Elim H; Intros. -Unfold is_upper_bound in H0. -Unfold has_lb. -Exists x. -Unfold is_upper_bound. -Intros. -Apply H0. -Elim H1; Intros. -Exists (plus k x1); Assumption. -Qed. - -Definition sequence_majorant [Un:nat->R;pr:(has_ub Un)] : nat -> R := [i:nat](majorant [k:nat](Un (plus i k)) (maj_ss Un i pr)). - -Definition sequence_minorant [Un:nat->R;pr:(has_lb Un)] : nat -> R := [i:nat](minorant [k:nat](Un (plus i k)) (min_ss Un i pr)). - -Lemma Wn_decreasing : (Un:nat->R;pr:(has_ub Un)) (Un_decreasing (sequence_majorant Un pr)). -Intros. -Unfold Un_decreasing. -Intro. -Unfold sequence_majorant. -Assert H := (maj_sup [k:nat](Un (plus (S n) k)) (maj_ss Un (S n) pr)). -Assert H0 := (maj_sup [k:nat](Un (plus n k)) (maj_ss Un n pr)). -Elim H; Intros. -Elim H0; Intros. -Cut (majorant ([k:nat](Un (plus (S n) k))) (maj_ss Un (S n) pr)) == x; [Intro Maj1; Rewrite Maj1 | Idtac]. -Cut (majorant ([k:nat](Un (plus n k))) (maj_ss Un n pr)) == x0; [Intro Maj2; Rewrite Maj2 | Idtac]. -Unfold is_lub in p. -Unfold is_lub in p0. -Elim p; Intros. -Apply H2. -Elim p0; Intros. -Unfold is_upper_bound. -Intros. -Unfold is_upper_bound in H3. -Apply H3. -Elim H5; Intros. -Exists (plus (1) x2). -Replace (plus n (plus (S O) x2)) with (plus (S n) x2). -Assumption. -Replace (S n) with (plus (1) n); [Ring | Ring]. -Cut (is_lub (EUn [k:nat](Un (plus n k))) (majorant ([k:nat](Un (plus n k))) (maj_ss Un n pr))). -Intro. -Unfold is_lub in p0; Unfold is_lub in H1. -Elim p0; Intros; Elim H1; Intros. -Assert H6 := (H5 x0 H2). -Assert H7 := (H3 (majorant ([k:nat](Un (plus n k))) (maj_ss Un n pr)) H4). -Apply Rle_antisym; Assumption. -Unfold majorant. -Case (maj_sup [k:nat](Un (plus n k)) (maj_ss Un n pr)). -Trivial. -Cut (is_lub (EUn [k:nat](Un (plus (S n) k))) (majorant ([k:nat](Un (plus (S n) k))) (maj_ss Un (S n) pr))). -Intro. -Unfold is_lub in p; Unfold is_lub in H1. -Elim p; Intros; Elim H1; Intros. -Assert H6 := (H5 x H2). -Assert H7 := (H3 (majorant ([k:nat](Un (plus (S n) k))) (maj_ss Un (S n) pr)) H4). -Apply Rle_antisym; Assumption. -Unfold majorant. -Case (maj_sup [k:nat](Un (plus (S n) k)) (maj_ss Un (S n) pr)). -Trivial. -Qed. - -Lemma Vn_growing : (Un:nat->R;pr:(has_lb Un)) (Un_growing (sequence_minorant Un pr)). -Intros. -Unfold Un_growing. -Intro. -Unfold sequence_minorant. -Assert H := (min_inf [k:nat](Un (plus (S n) k)) (min_ss Un (S n) pr)). -Assert H0 := (min_inf [k:nat](Un (plus n k)) (min_ss Un n pr)). -Elim H; Intros. -Elim H0; Intros. -Cut (minorant ([k:nat](Un (plus (S n) k))) (min_ss Un (S n) pr)) == ``-x``; [Intro Maj1; Rewrite Maj1 | Idtac]. -Cut (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr)) == ``-x0``; [Intro Maj2; Rewrite Maj2 | Idtac]. -Unfold is_lub in p. -Unfold is_lub in p0. -Elim p; Intros. -Apply Rle_Ropp1. -Apply H2. -Elim p0; Intros. -Unfold is_upper_bound. -Intros. -Unfold is_upper_bound in H3. -Apply H3. -Elim H5; Intros. -Exists (plus (1) x2). -Unfold opp_seq in H6. -Unfold opp_seq. -Replace (plus n (plus (S O) x2)) with (plus (S n) x2). -Assumption. -Replace (S n) with (plus (1) n); [Ring | Ring]. -Cut (is_lub (EUn (opp_seq [k:nat](Un (plus n k)))) (Ropp (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr)))). -Intro. -Unfold is_lub in p0; Unfold is_lub in H1. -Elim p0; Intros; Elim H1; Intros. -Assert H6 := (H5 x0 H2). -Assert H7 := (H3 (Ropp (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr))) H4). -Rewrite <- (Ropp_Ropp (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr))). -Apply eq_Ropp; Apply Rle_antisym; Assumption. -Unfold minorant. -Case (min_inf [k:nat](Un (plus n k)) (min_ss Un n pr)). -Intro; Rewrite Ropp_Ropp. -Trivial. -Cut (is_lub (EUn (opp_seq [k:nat](Un (plus (S n) k)))) (Ropp (minorant ([k:nat](Un (plus (S n) k))) (min_ss Un (S n) pr)))). -Intro. -Unfold is_lub in p; Unfold is_lub in H1. -Elim p; Intros; Elim H1; Intros. -Assert H6 := (H5 x H2). -Assert H7 := (H3 (Ropp (minorant ([k:nat](Un (plus (S n) k))) (min_ss Un (S n) pr))) H4). -Rewrite <- (Ropp_Ropp (minorant ([k:nat](Un (plus (S n) k))) (min_ss Un (S n) pr))). -Apply eq_Ropp; Apply Rle_antisym; Assumption. -Unfold minorant. -Case (min_inf [k:nat](Un (plus (S n) k)) (min_ss Un (S n) pr)). -Intro; Rewrite Ropp_Ropp. -Trivial. -Qed. - -(**********) -Lemma Vn_Un_Wn_order : (Un:nat->R;pr1:(has_ub Un);pr2:(has_lb Un)) (n:nat) ``((sequence_minorant Un pr2) n)<=(Un n)<=((sequence_majorant Un pr1) n)``. -Intros. -Split. -Unfold sequence_minorant. -Cut (sigTT R [l:R](is_lub (EUn (opp_seq [i:nat](Un (plus n i)))) l)). -Intro. -Elim X; Intros. -Replace (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr2)) with ``-x``. -Unfold is_lub in p. -Elim p; Intros. -Unfold is_upper_bound in H. -Rewrite <- (Ropp_Ropp (Un n)). -Apply Rle_Ropp1. -Apply H. -Exists O. -Unfold opp_seq. -Replace (plus n O) with n; [Reflexivity | Ring]. -Cut (is_lub (EUn (opp_seq [k:nat](Un (plus n k)))) (Ropp (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr2)))). -Intro. -Unfold is_lub in p; Unfold is_lub in H. -Elim p; Intros; Elim H; Intros. -Assert H4 := (H3 x H0). -Assert H5 := (H1 (Ropp (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr2))) H2). -Rewrite <- (Ropp_Ropp (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr2))). -Apply eq_Ropp; Apply Rle_antisym; Assumption. -Unfold minorant. -Case (min_inf [k:nat](Un (plus n k)) (min_ss Un n pr2)). -Intro; Rewrite Ropp_Ropp. -Trivial. -Apply min_inf. -Apply min_ss; Assumption. -Unfold sequence_majorant. -Cut (sigTT R [l:R](is_lub (EUn [i:nat](Un (plus n i))) l)). -Intro. -Elim X; Intros. -Replace (majorant ([k:nat](Un (plus n k))) (maj_ss Un n pr1)) with ``x``. -Unfold is_lub in p. -Elim p; Intros. -Unfold is_upper_bound in H. -Apply H. -Exists O. -Replace (plus n O) with n; [Reflexivity | Ring]. -Cut (is_lub (EUn [k:nat](Un (plus n k))) (majorant ([k:nat](Un (plus n k))) (maj_ss Un n pr1))). -Intro. -Unfold is_lub in p; Unfold is_lub in H. -Elim p; Intros; Elim H; Intros. -Assert H4 := (H3 x H0). -Assert H5 := (H1 (majorant ([k:nat](Un (plus n k))) (maj_ss Un n pr1)) H2). -Apply Rle_antisym; Assumption. -Unfold majorant. -Case (maj_sup [k:nat](Un (plus n k)) (maj_ss Un n pr1)). -Intro; Trivial. -Apply maj_sup. -Apply maj_ss; Assumption. -Qed. - -Lemma min_maj : (Un:nat->R;pr1:(has_ub Un);pr2:(has_lb Un)) (has_ub (sequence_minorant Un pr2)). -Intros. -Assert H := (Vn_Un_Wn_order Un pr1 pr2). -Unfold has_ub. -Unfold bound. -Unfold has_ub in pr1. -Unfold bound in pr1. -Elim pr1; Intros. -Exists x. -Unfold is_upper_bound. -Intros. -Unfold is_upper_bound in H0. -Elim H1; Intros. -Rewrite H2. -Apply Rle_trans with (Un x1). -Assert H3 := (H x1); Elim H3; Intros; Assumption. -Apply H0. -Exists x1; Reflexivity. -Qed. - -Lemma maj_min : (Un:nat->R;pr1:(has_ub Un);pr2:(has_lb Un)) (has_lb (sequence_majorant Un pr1)). -Intros. -Assert H := (Vn_Un_Wn_order Un pr1 pr2). -Unfold has_lb. -Unfold bound. -Unfold has_lb in pr2. -Unfold bound in pr2. -Elim pr2; Intros. -Exists x. -Unfold is_upper_bound. -Intros. -Unfold is_upper_bound in H0. -Elim H1; Intros. -Rewrite H2. -Apply Rle_trans with ((opp_seq Un) x1). -Assert H3 := (H x1); Elim H3; Intros. -Unfold opp_seq; Apply Rle_Ropp1. -Assumption. -Apply H0. -Exists x1; Reflexivity. -Qed. - -(**********) -Lemma cauchy_maj : (Un:nat->R) (Cauchy_crit Un) -> (has_ub Un). -Intros. -Unfold has_ub. -Apply cauchy_bound. -Assumption. -Qed. - -(**********) -Lemma cauchy_opp : (Un:nat->R) (Cauchy_crit Un) -> (Cauchy_crit (opp_seq Un)). -Intro. -Unfold Cauchy_crit. -Unfold R_dist. -Intros. -Elim (H eps H0); Intros. -Exists x; Intros. -Unfold opp_seq. -Rewrite <- Rabsolu_Ropp. -Replace ``-( -(Un n)- -(Un m))`` with ``(Un n)-(Un m)``; [Apply H1; Assumption | Ring]. -Qed. - -(**********) -Lemma cauchy_min : (Un:nat->R) (Cauchy_crit Un) -> (has_lb Un). -Intros. -Unfold has_lb. -Assert H0 := (cauchy_opp ? H). -Apply cauchy_bound. -Assumption. -Qed. - -(**********) -Lemma maj_cv : (Un:nat->R;pr:(Cauchy_crit Un)) (sigTT R [l:R](Un_cv (sequence_majorant Un (cauchy_maj Un pr)) l)). -Intros. -Apply decreasing_cv. -Apply Wn_decreasing. -Apply maj_min. -Apply cauchy_min. -Assumption. -Qed. - -(**********) -Lemma min_cv : (Un:nat->R;pr:(Cauchy_crit Un)) (sigTT R [l:R](Un_cv (sequence_minorant Un (cauchy_min Un pr)) l)). -Intros. -Apply growing_cv. -Apply Vn_growing. -Apply min_maj. -Apply cauchy_maj. -Assumption. -Qed. - -Lemma cond_eq : (x,y:R) ((eps:R)``0``(Rabsolu (x-y)) x==y. -Intros. -Case (total_order_T x y); Intro. -Elim s; Intro. -Cut ``0``r1>=r2``. -Intros r1 r2 ; Generalize (total_order r1 r2) ; Unfold Rge. -Tauto. -Qed. - -(**********) -Lemma approx_maj : (Un:nat->R;pr:(has_ub Un)) (eps:R) ``0 (EX k : nat | ``(Rabsolu ((majorant Un pr)-(Un k))) < eps``). -Intros. -Pose P := [k:nat]``(Rabsolu ((majorant Un pr)-(Un k))) < eps``. -Unfold P. -Cut (EX k:nat | (P k)) -> (EX k:nat | ``(Rabsolu ((majorant Un pr)-(Un k))) < eps``). -Intros. -Apply H0. -Apply not_all_not_ex. -Red; Intro. -2:Unfold P; Trivial. -Unfold P in H1. -Cut (n:nat)``(Rabsolu ((majorant Un pr)-(Un n))) >= eps``. -Intro. -Cut (is_lub (EUn Un) (majorant Un pr)). -Intro. -Unfold is_lub in H3. -Unfold is_upper_bound in H3. -Elim H3; Intros. -Cut (n:nat)``eps<=(majorant Un pr)-(Un n)``. -Intro. -Cut (n:nat)``(Un n)<=(majorant Un pr)-eps``. -Intro. -Cut ((x:R)(EUn Un x)->``x <= (majorant Un pr)-eps``). -Intro. -Assert H9 := (H5 ``(majorant Un pr)-eps`` H8). -Cut ``eps<=0``. -Intro. -Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H H10)). -Apply Rle_anti_compatibility with ``(majorant Un pr)-eps``. -Rewrite Rplus_Or. -Replace ``(majorant Un pr)-eps+eps`` with (majorant Un pr); [Assumption | Ring]. -Intros. -Unfold EUn in H8. -Elim H8; Intros. -Rewrite H9; Apply H7. -Intro. -Assert H7 := (H6 n). -Apply Rle_anti_compatibility with ``eps-(Un n)``. -Replace ``eps-(Un n)+(Un n)`` with ``eps``. -Replace ``eps-(Un n)+((majorant Un pr)-eps)`` with ``(majorant Un pr)-(Un n)``. -Assumption. -Ring. -Ring. -Intro. -Assert H6 := (H2 n). -Rewrite Rabsolu_right in H6. -Apply Rle_sym2. -Assumption. -Apply Rle_sym1. -Apply Rle_anti_compatibility with (Un n). -Rewrite Rplus_Or; Replace ``(Un n)+((majorant Un pr)-(Un n))`` with (majorant Un pr); [Apply H4 | Ring]. -Exists n; Reflexivity. -Unfold majorant. -Case (maj_sup Un pr). -Trivial. -Intro. -Assert H2 := (H1 n). -Apply not_Rlt; Assumption. -Qed. - -(**********) -Lemma approx_min : (Un:nat->R;pr:(has_lb Un)) (eps:R) ``0 (EX k :nat | ``(Rabsolu ((minorant Un pr)-(Un k))) < eps``). -Intros. -Pose P := [k:nat]``(Rabsolu ((minorant Un pr)-(Un k))) < eps``. -Unfold P. -Cut (EX k:nat | (P k)) -> (EX k:nat | ``(Rabsolu ((minorant Un pr)-(Un k))) < eps``). -Intros. -Apply H0. -Apply not_all_not_ex. -Red; Intro. -2:Unfold P; Trivial. -Unfold P in H1. -Cut (n:nat)``(Rabsolu ((minorant Un pr)-(Un n))) >= eps``. -Intro. -Cut (is_lub (EUn (opp_seq Un)) ``-(minorant Un pr)``). -Intro. -Unfold is_lub in H3. -Unfold is_upper_bound in H3. -Elim H3; Intros. -Cut (n:nat)``eps<=(Un n)-(minorant Un pr)``. -Intro. -Cut (n:nat)``((opp_seq Un) n)<=-(minorant Un pr)-eps``. -Intro. -Cut ((x:R)(EUn (opp_seq Un) x)->``x <= -(minorant Un pr)-eps``). -Intro. -Assert H9 := (H5 ``-(minorant Un pr)-eps`` H8). -Cut ``eps<=0``. -Intro. -Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H H10)). -Apply Rle_anti_compatibility with ``-(minorant Un pr)-eps``. -Rewrite Rplus_Or. -Replace ``-(minorant Un pr)-eps+eps`` with ``-(minorant Un pr)``; [Assumption | Ring]. -Intros. -Unfold EUn in H8. -Elim H8; Intros. -Rewrite H9; Apply H7. -Intro. -Assert H7 := (H6 n). -Unfold opp_seq. -Apply Rle_anti_compatibility with ``eps+(Un n)``. -Replace ``eps+(Un n)+ -(Un n)`` with ``eps``. -Replace ``eps+(Un n)+(-(minorant Un pr)-eps)`` with ``(Un n)-(minorant Un pr)``. -Assumption. -Ring. -Ring. -Intro. -Assert H6 := (H2 n). -Rewrite Rabsolu_left1 in H6. -Apply Rle_sym2. -Replace ``(Un n)-(minorant Un pr)`` with `` -((minorant Un pr)-(Un n))``; [Assumption | Ring]. -Apply Rle_anti_compatibility with ``-(minorant Un pr)``. -Rewrite Rplus_Or; Replace ``-(minorant Un pr)+((minorant Un pr)-(Un n))`` with ``-(Un n)``. -Apply H4. -Exists n; Reflexivity. -Ring. -Unfold minorant. -Case (min_inf Un pr). -Intro. -Rewrite Ropp_Ropp. -Trivial. -Intro. -Assert H2 := (H1 n). -Apply not_Rlt; Assumption. -Qed. - -(* Unicity of limit for convergent sequences *) -Lemma UL_sequence : (Un:nat->R;l1,l2:R) (Un_cv Un l1) -> (Un_cv Un l2) -> l1==l2. -Intros Un l1 l2; Unfold Un_cv; Unfold R_dist; Intros. -Apply cond_eq. -Intros; Cut ``0R;l1,l2:R) (Un_cv An l1) -> (Un_cv Bn l2) -> (Un_cv [i:nat]``(An i)+(Bn i)`` ``l1+l2``). -Unfold Un_cv; Unfold R_dist; Intros. -Cut ``0R;l:R) (Un_cv Un l) -> (Un_cv [i:nat](Rabsolu (Un i)) (Rabsolu l)). -Unfold Un_cv; Unfold R_dist; Intros. -Elim (H eps H0); Intros. -Exists x; Intros. -Apply Rle_lt_trans with ``(Rabsolu ((Un n)-l))``. -Apply Rabsolu_triang_inv2. -Apply H1; Assumption. -Qed. - -(**********) -Lemma CV_Cauchy : (Un:nat->R) (sigTT R [l:R](Un_cv Un l)) -> (Cauchy_crit Un). -Intros; Elim X; Intros. -Unfold Cauchy_crit; Intros. -Unfold Un_cv in p; Unfold R_dist in p. -Cut ``0R) (sigTT R [l:R](Un_cv Un l)) -> (EXT l:R | ``0R;l1,l2:R) (Un_cv An l1) -> (Un_cv Bn l2) -> (Un_cv [i:nat]``(An i)*(Bn i)`` ``l1*l2``). -Intros. -Cut (sigTT R [l:R](Un_cv An l)). -Intro. -Assert H1 := (maj_by_pos An X). -Elim H1; Intros M H2. -Elim H2; Intros. -Unfold Un_cv; Unfold R_dist; Intros. -Cut ``0R) (Un_growing Un) -> ((m,n:nat)(le m n)->``(Un m)<=(Un n)``). -Intros; Unfold Un_growing in H. -Induction n. -Induction m. -Right; Reflexivity. -Elim (le_Sn_O ? H0). -Cut (le m n)\/m=(S n). -Intro; Elim H1; Intro. -Apply Rle_trans with (Un n). -Apply Hrecn; Assumption. -Apply H. -Rewrite H2; Right; Reflexivity. -Inversion H0. -Right; Reflexivity. -Left; Assumption. -Qed. - -Lemma tech10 : (Un:nat->R;x:R) (Un_growing Un) -> (is_lub (EUn Un) x) -> (Un_cv Un x). -Intros; Cut (bound (EUn Un)). -Intro; Assert H2 := (Un_cv_crit ? H H1). -Elim H2; Intros. -Case (total_order_T x x0); Intro. -Elim s; Intro. -Cut (n:nat)``(Un n)<=x``. -Intro; Unfold Un_cv in H3; Cut ``0``y<=x0``. -Intro; Assert H8 := (H6 ? H7). -Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H8 r)). -Unfold EUn; Intros; Elim H7; Intros. -Rewrite H8; Apply H4. -Intro; Case (total_order_Rle (Un n) x0); Intro. -Assumption. -Cut (n0:nat)(le n n0) -> ``x0<(Un n0)``. -Intro; Unfold Un_cv in H3; Cut ``0<(Un n)-x0``. -Intro; Elim (H3 ``(Un n)-x0`` H5); Intros. -Cut (ge (max n x1) x1). -Intro; Assert H8 := (H6 (max n x1) H7). -Unfold R_dist in H8. -Rewrite Rabsolu_right in H8. -Unfold Rminus in H8; Do 2 Rewrite <- (Rplus_sym ``-x0``) in H8. -Assert H9 := (Rlt_anti_compatibility ? ? ? H8). -Cut ``(Un n)<=(Un (max n x1))``. -Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H10 H9)). -Apply tech9; [Assumption | Apply le_max_l]. -Apply Rge_trans with ``(Un n)-x0``. -Unfold Rminus; Apply Rle_sym1; Do 2 Rewrite <- (Rplus_sym ``-x0``); Apply Rle_compatibility. -Apply tech9; [Assumption | Apply le_max_l]. -Left; Assumption. -Unfold ge; Apply le_max_r. -Apply Rlt_anti_compatibility with x0. -Rewrite Rplus_Or; Unfold Rminus; Rewrite (Rplus_sym x0); Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Apply H4; Apply le_n. -Intros; Apply Rlt_le_trans with (Un n). -Case (total_order_Rlt_Rle x0 (Un n)); Intro. -Assumption. -Elim n0; Assumption. -Apply tech9; Assumption. -Unfold bound; Exists x; Unfold is_lub in H0; Elim H0; Intros; Assumption. -Qed. - -Lemma tech13 : (An:nat->R;k:R) ``0<=k<1`` -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) k) -> (EXT k0 : R | ``k``(Rabsolu ((An (S n))/(An n)))R;l:R) (Un_growing Un) -> (Un_cv Un l) -> ((n:nat)``(Un n)<=l``). -Intros; Case (total_order_T (Un n) l); Intro. -Elim s; Intro. -Left; Assumption. -Right; Assumption. -Cut ``0<(Un n)-l``. -Intro; Unfold Un_cv in H0; Unfold R_dist in H0. -Elim (H0 ``(Un n)-l`` H1); Intros N1 H2. -Pose N := (max n N1). -Cut ``(Un n)-l<=(Un N)-l``. -Intro; Cut ``(Un N)-l<(Un n)-l``. -Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H3 H4)). -Apply Rle_lt_trans with ``(Rabsolu ((Un N)-l))``. -Apply Rle_Rabsolu. -Apply H2. -Unfold ge N; Apply le_max_r. -Unfold Rminus; Do 2 Rewrite <- (Rplus_sym ``-l``); Apply Rle_compatibility. -Apply tech9. -Assumption. -Unfold N; Apply le_max_l. -Apply Rlt_anti_compatibility with l. -Rewrite Rplus_Or. -Replace ``l+((Un n)-l)`` with (Un n); [Assumption | Ring]. -Qed. - -(* Un->l => (-Un) -> (-l) *) -Lemma CV_opp : (An:nat->R;l:R) (Un_cv An l) -> (Un_cv (opp_seq An) ``-l``). -Intros An l. -Unfold Un_cv; Unfold R_dist; Intros. -Elim (H eps H0); Intros. -Exists x; Intros. -Unfold opp_seq; Replace ``-(An n)- (-l)`` with ``-((An n)-l)``; [Rewrite Rabsolu_Ropp | Ring]. -Apply H1; Assumption. -Qed. - -(**********) -Lemma decreasing_ineq : (Un:nat->R;l:R) (Un_decreasing Un) -> (Un_cv Un l) -> ((n:nat)``l<=(Un n)``). -Intros. -Assert H1 := (decreasing_growing ? H). -Assert H2 := (CV_opp ? ? H0). -Assert H3 := (growing_ineq ? ? H1 H2). -Apply Ropp_Rle. -Unfold opp_seq in H3; Apply H3. -Qed. - -(**********) -Lemma CV_minus : (An,Bn:nat->R;l1,l2:R) (Un_cv An l1) -> (Un_cv Bn l2) -> (Un_cv [i:nat]``(An i)-(Bn i)`` ``l1-l2``). -Intros. -Replace [i:nat]``(An i)-(Bn i)`` with [i:nat]``(An i)+((opp_seq Bn) i)``. -Unfold Rminus; Apply CV_plus. -Assumption. -Apply CV_opp; Assumption. -Unfold Rminus opp_seq; Reflexivity. -Qed. - -(* Un -> +oo *) -Definition cv_infty [Un:nat->R] : Prop := (M:R)(EXT N:nat | (n:nat) (le N n) -> ``M<(Un n)``). - -(* Un -> +oo => /Un -> O *) -Lemma cv_infty_cv_R0 : (Un:nat->R) ((n:nat)``(Un n)<>0``) -> (cv_infty Un) -> (Un_cv [n:nat]``/(Un n)`` R0). -Unfold cv_infty Un_cv; Unfold R_dist; Intros. -Elim (H0 ``/eps``); Intros N0 H2. -Exists N0; Intros. -Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite (Rabsolu_Rinv ? (H n)). -Apply Rlt_monotony_contra with (Rabsolu (Un n)). -Apply Rabsolu_pos_lt; Apply H. -Rewrite <- Rinv_r_sym. -Apply Rlt_monotony_contra with ``/eps``. -Apply Rlt_Rinv; Assumption. -Rewrite Rmult_1r; Rewrite (Rmult_sym ``/eps``); Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Apply Rlt_le_trans with (Un n). -Apply H2; Assumption. -Apply Rle_Rabsolu. -Red; Intro; Rewrite H4 in H1; Elim (Rlt_antirefl ? H1). -Apply Rabsolu_no_R0; Apply H. -Qed. - -(**********) -Lemma decreasing_prop : (Un:nat->R;m,n:nat) (Un_decreasing Un) -> (le m n) -> ``(Un n)<=(Un m)``. -Unfold Un_decreasing; Intros. -Induction n. -Induction m. -Right; Reflexivity. -Elim (le_Sn_O ? H0). -Cut (le m n)\/m=(S n). -Intro; Elim H1; Intro. -Apply Rle_trans with (Un n). -Apply H. -Apply Hrecn; Assumption. -Rewrite H2; Right; Reflexivity. -Inversion H0; [Right; Reflexivity | Left; Assumption]. -Qed. - -(* |x|^n/n! -> 0 *) -Lemma cv_speed_pow_fact : (x:R) (Un_cv [n:nat]``(pow x n)/(INR (fact n))`` R0). -Intro; Cut (Un_cv [n:nat]``(pow (Rabsolu x) n)/(INR (fact n))`` R0) -> (Un_cv [n:nat]``(pow x n)/(INR (fact n))`` ``0``). -Intro; Apply H. -Unfold Un_cv; Unfold R_dist; Intros; Case (Req_EM x R0); Intro. -Exists (S O); Intros. -Rewrite H1; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_R0; Rewrite pow_ne_zero; [Unfold Rdiv; Rewrite Rmult_Ol; Rewrite Rabsolu_R0; Assumption | Red; Intro; Rewrite H3 in H2; Elim (le_Sn_n ? H2)]. -Assert H2 := (Rabsolu_pos_lt x H1); Pose M := (up (Rabsolu x)); Cut `0<=M`. -Intro; Elim (IZN M H3); Intros M_nat H4. -Pose Un := [n:nat]``(pow (Rabsolu x) (plus M_nat n))/(INR (fact (plus M_nat n)))``. -Cut (Un_cv Un R0); Unfold Un_cv; Unfold R_dist; Intros. -Elim (H5 eps H0); Intros N H6. -Exists (plus M_nat N); Intros; Cut (EX p:nat | (ge p N)/\n=(plus M_nat p)). -Intro; Elim H8; Intros p H9. -Elim H9; Intros; Rewrite H11; Unfold Un in H6; Apply H6; Assumption. -Exists (minus n M_nat). -Split. -Unfold ge; Apply simpl_le_plus_l with M_nat; Rewrite <- le_plus_minus. -Assumption. -Apply le_trans with (plus M_nat N). -Apply le_plus_l. -Assumption. -Apply le_plus_minus; Apply le_trans with (plus M_nat N); [Apply le_plus_l | Assumption]. -Pose Vn := [n:nat]``(Rabsolu x)*(Un O)/(INR (S n))``. -Cut (le (1) M_nat). -Intro; Cut (n:nat)``0<(Un n)``. -Intro; Cut (Un_decreasing Un). -Intro; Cut (n:nat)``(Un (S n))<=(Vn n)``. -Intro; Cut (Un_cv Vn R0). -Unfold Un_cv; Unfold R_dist; Intros. -Elim (H10 eps0 H5); Intros N1 H11. -Exists (S N1); Intros. -Cut (n:nat)``0<(Vn n)``. -Intro; Apply Rle_lt_trans with ``(Rabsolu ((Vn (pred n))-0))``. -Repeat Rewrite Rabsolu_right. -Unfold Rminus; Rewrite Ropp_O; Do 2 Rewrite Rplus_Or; Replace n with (S (pred n)). -Apply H9. -Inversion H12; Simpl; Reflexivity. -Apply Rle_sym1; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Left; Apply H13. -Apply Rle_sym1; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Left; Apply H7. -Apply H11; Unfold ge; Apply le_S_n; Replace (S (pred n)) with n; [Unfold ge in H12; Exact H12 | Inversion H12; Simpl; Reflexivity]. -Intro; Apply Rlt_le_trans with (Un (S n0)); [Apply H7 | Apply H9]. -Cut (cv_infty [n:nat](INR (S n))). -Intro; Cut (Un_cv [n:nat]``/(INR (S n))`` R0). -Unfold Un_cv R_dist; Intros; Unfold Vn. -Cut ``0R->R;An:nat->R;x,l1,l2:R;N:nat) (Un_cv [n:nat](SP fn n x) l1) -> (Un_cv [n:nat](sum_f_R0 An n) l2) -> ((n:nat)``(Rabsolu (fn n x))<=(An n)``) -> ``(Rabsolu (l1-(SP fn N x)))<=l2-(sum_f_R0 An N)``. -Intros; Cut (sigTT R [l:R](Un_cv [n:nat](sum_f_R0 [l:nat](fn (plus (S N) l) x) n) l)). -Intro; Cut (sigTT R [l:R](Un_cv [n:nat](sum_f_R0 [l:nat](An (plus (S N) l)) n) l)). -Intro; Elim X; Intros l1N H2. -Elim X0; Intros l2N H3. -Cut ``l1-(SP fn N x)==l1N``. -Intro; Cut ``l2-(sum_f_R0 An N)==l2N``. -Intro; Rewrite H4; Rewrite H5. -Apply sum_cv_maj with [l:nat](An (plus (S N) l)) [l:nat][x:R](fn (plus (S N) l) x) x. -Unfold SP; Apply H2. -Apply H3. -Intros; Apply H1. -Symmetry; EApply UL_sequence. -Apply H3. -Unfold Un_cv in H0; Unfold Un_cv; Intros; Elim (H0 eps H5); Intros N0 H6. -Unfold R_dist in H6; Exists N0; Intros. -Unfold R_dist; Replace (Rminus (sum_f_R0 [l:nat](An (plus (S N) l)) n) (Rminus l2 (sum_f_R0 An N))) with (Rminus (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) l2); [Idtac | Ring]. -Replace (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) with (sum_f_R0 An (S (plus N n))). -Apply H6; Unfold ge; Apply le_trans with n. -Apply H7. -Apply le_trans with (plus N n). -Apply le_plus_r. -Apply le_n_Sn. -Cut (le O N). -Cut (lt N (S (plus N n))). -Intros; Assert H10 := (sigma_split An H9 H8). -Unfold sigma in H10. -Do 2 Rewrite <- minus_n_O in H10. -Replace (sum_f_R0 An (S (plus N n))) with (sum_f_R0 [k:nat](An (plus (0) k)) (S (plus N n))). -Replace (sum_f_R0 An N) with (sum_f_R0 [k:nat](An (plus (0) k)) N). -Cut (minus (S (plus N n)) (S N))=n. -Intro; Rewrite H11 in H10. -Apply H10. -Apply INR_eq; Rewrite minus_INR. -Do 2 Rewrite S_INR; Rewrite plus_INR; Ring. -Apply le_n_S; Apply le_plus_l. -Apply sum_eq; Intros. -Reflexivity. -Apply sum_eq; Intros. -Reflexivity. -Apply le_lt_n_Sm; Apply le_plus_l. -Apply le_O_n. -Symmetry; EApply UL_sequence. -Apply H2. -Unfold Un_cv in H; Unfold Un_cv; Intros. -Elim (H eps H4); Intros N0 H5. -Unfold R_dist in H5; Exists N0; Intros. -Unfold R_dist SP; Replace (Rminus (sum_f_R0 [l:nat](fn (plus (S N) l) x) n) (Rminus l1 (sum_f_R0 [k:nat](fn k x) N))) with (Rminus (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) l1); [Idtac | Ring]. -Replace (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) with (sum_f_R0 [k:nat](fn k x) (S (plus N n))). -Unfold SP in H5; Apply H5; Unfold ge; Apply le_trans with n. -Apply H6. -Apply le_trans with (plus N n). -Apply le_plus_r. -Apply le_n_Sn. -Cut (le O N). -Cut (lt N (S (plus N n))). -Intros; Assert H9 := (sigma_split [k:nat](fn k x) H8 H7). -Unfold sigma in H9. -Do 2 Rewrite <- minus_n_O in H9. -Replace (sum_f_R0 [k:nat](fn k x) (S (plus N n))) with (sum_f_R0 [k:nat](fn (plus (0) k) x) (S (plus N n))). -Replace (sum_f_R0 [k:nat](fn k x) N) with (sum_f_R0 [k:nat](fn (plus (0) k) x) N). -Cut (minus (S (plus N n)) (S N))=n. -Intro; Rewrite H10 in H9. -Apply H9. -Apply INR_eq; Rewrite minus_INR. -Do 2 Rewrite S_INR; Rewrite plus_INR; Ring. -Apply le_n_S; Apply le_plus_l. -Apply sum_eq; Intros. -Reflexivity. -Apply sum_eq; Intros. -Reflexivity. -Apply le_lt_n_Sm. -Apply le_plus_l. -Apply le_O_n. -Apply existTT with ``l2-(sum_f_R0 An N)``. -Unfold Un_cv in H0; Unfold Un_cv; Intros. -Elim (H0 eps H2); Intros N0 H3. -Unfold R_dist in H3; Exists N0; Intros. -Unfold R_dist; Replace (Rminus (sum_f_R0 [l:nat](An (plus (S N) l)) n) (Rminus l2 (sum_f_R0 An N))) with (Rminus (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) l2); [Idtac | Ring]. -Replace (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) with (sum_f_R0 An (S (plus N n))). -Apply H3; Unfold ge; Apply le_trans with n. -Apply H4. -Apply le_trans with (plus N n). -Apply le_plus_r. -Apply le_n_Sn. -Cut (le O N). -Cut (lt N (S (plus N n))). -Intros; Assert H7 := (sigma_split An H6 H5). -Unfold sigma in H7. -Do 2 Rewrite <- minus_n_O in H7. -Replace (sum_f_R0 An (S (plus N n))) with (sum_f_R0 [k:nat](An (plus (0) k)) (S (plus N n))). -Replace (sum_f_R0 An N) with (sum_f_R0 [k:nat](An (plus (0) k)) N). -Cut (minus (S (plus N n)) (S N))=n. -Intro; Rewrite H8 in H7. -Apply H7. -Apply INR_eq; Rewrite minus_INR. -Do 2 Rewrite S_INR; Rewrite plus_INR; Ring. -Apply le_n_S; Apply le_plus_l. -Apply sum_eq; Intros. -Reflexivity. -Apply sum_eq; Intros. -Reflexivity. -Apply le_lt_n_Sm. -Apply le_plus_l. -Apply le_O_n. -Apply existTT with ``l1-(SP fn N x)``. -Unfold Un_cv in H; Unfold Un_cv; Intros. -Elim (H eps H2); Intros N0 H3. -Unfold R_dist in H3; Exists N0; Intros. -Unfold R_dist SP. -Replace (Rminus (sum_f_R0 [l:nat](fn (plus (S N) l) x) n) (Rminus l1 (sum_f_R0 [k:nat](fn k x) N))) with (Rminus (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) l1); [Idtac | Ring]. -Replace (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) with (sum_f_R0 [k:nat](fn k x) (S (plus N n))). -Unfold SP in H3; Apply H3. -Unfold ge; Apply le_trans with n. -Apply H4. -Apply le_trans with (plus N n). -Apply le_plus_r. -Apply le_n_Sn. -Cut (le O N). -Cut (lt N (S (plus N n))). -Intros; Assert H7 := (sigma_split [k:nat](fn k x) H6 H5). -Unfold sigma in H7. -Do 2 Rewrite <- minus_n_O in H7. -Replace (sum_f_R0 [k:nat](fn k x) (S (plus N n))) with (sum_f_R0 [k:nat](fn (plus (0) k) x) (S (plus N n))). -Replace (sum_f_R0 [k:nat](fn k x) N) with (sum_f_R0 [k:nat](fn (plus (0) k) x) N). -Cut (minus (S (plus N n)) (S N))=n. -Intro; Rewrite H8 in H7. -Apply H7. -Apply INR_eq; Rewrite minus_INR. -Do 2 Rewrite S_INR; Rewrite plus_INR; Ring. -Apply le_n_S; Apply le_plus_l. -Apply sum_eq; Intros. -Reflexivity. -Apply sum_eq; Intros. -Reflexivity. -Apply le_lt_n_Sm. -Apply le_plus_l. -Apply le_O_n. -Qed. - -(* Comparaison of convergence for series *) -Lemma Rseries_CV_comp : (An,Bn:nat->R) ((n:nat)``0<=(An n)<=(Bn n)``) -> (sigTT ? [l:R](Un_cv [N:nat](sum_f_R0 Bn N) l)) -> (sigTT ? [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intros; Apply cv_cauchy_2. -Assert H0 := (cv_cauchy_1 ? X). -Unfold Cauchy_crit_series; Unfold Cauchy_crit. -Intros; Elim (H0 eps H1); Intros. -Exists x; Intros. -Cut (Rle (R_dist (sum_f_R0 An n) (sum_f_R0 An m)) (R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m))). -Intro; Apply Rle_lt_trans with (R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)). -Assumption. -Apply H2; Assumption. -Assert H5 := (lt_eq_lt_dec n m). -Elim H5; Intro. -Elim a; Intro. -Rewrite (tech2 An n m); [Idtac | Assumption]. -Rewrite (tech2 Bn n m); [Idtac | Assumption]. -Unfold R_dist; Unfold Rminus; Do 2 Rewrite Ropp_distr1; Do 2 Rewrite <- Rplus_assoc; Do 2 Rewrite Rplus_Ropp_r; Do 2 Rewrite Rplus_Ol; Do 2 Rewrite Rabsolu_Ropp; Repeat Rewrite Rabsolu_right. -Apply sum_Rle; Intros. -Elim (H (plus (S n) n0)); Intros. -Apply H8. -Apply Rle_sym1; Apply cond_pos_sum; Intro. -Elim (H (plus (S n) n0)); Intros. -Apply Rle_trans with (An (plus (S n) n0)); Assumption. -Apply Rle_sym1; Apply cond_pos_sum; Intro. -Elim (H (plus (S n) n0)); Intros; Assumption. -Rewrite b; Unfold R_dist; Unfold Rminus; Do 2 Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Right; Reflexivity. -Rewrite (tech2 An m n); [Idtac | Assumption]. -Rewrite (tech2 Bn m n); [Idtac | Assumption]. -Unfold R_dist; Unfold Rminus; Do 2 Rewrite Rplus_assoc; Rewrite (Rplus_sym (sum_f_R0 An m)); Rewrite (Rplus_sym (sum_f_R0 Bn m)); Do 2 Rewrite Rplus_assoc; Do 2 Rewrite Rplus_Ropp_l; Do 2 Rewrite Rplus_Or; Repeat Rewrite Rabsolu_right. -Apply sum_Rle; Intros. -Elim (H (plus (S m) n0)); Intros; Apply H8. -Apply Rle_sym1; Apply cond_pos_sum; Intro. -Elim (H (plus (S m) n0)); Intros. -Apply Rle_trans with (An (plus (S m) n0)); Assumption. -Apply Rle_sym1. -Apply cond_pos_sum; Intro. -Elim (H (plus (S m) n0)); Intros; Assumption. -Qed. - -(* Cesaro's theorem *) -Lemma Cesaro : (An,Bn:nat->R;l:R) (Un_cv Bn l) -> ((n:nat)``0<(An n)``) -> (cv_infty [n:nat](sum_f_R0 An n)) -> (Un_cv [n:nat](Rdiv (sum_f_R0 [k:nat]``(An k)*(Bn k)`` n) (sum_f_R0 An n)) l). -Proof with Trivial. -Unfold Un_cv; Intros; Assert H3 : (n:nat)``0<(sum_f_R0 An n)``. -Intro; Apply tech1. -Assert H4 : (n:nat) ``(sum_f_R0 An n)<>0``. -Intro; Red; Intro; Assert H5 := (H3 n); Rewrite H4 in H5; Elim (Rlt_antirefl ? H5). -Assert H5 := (cv_infty_cv_R0 ? H4 H1); Assert H6 : ``0 ``C/(sum_f_R0 An n)R;l:R) (Un_cv An l) -> (Un_cv [n:nat]``(sum_f_R0 An (pred n))/(INR n)`` l). -Proof with Trivial. -Intros Bn l H; Pose An := [_:nat]R1. -Assert H0 : (n:nat) ``0<(An n)``. -Intro; Unfold An; Apply Rlt_R0_R1. -Assert H1 : (n:nat)``0<(sum_f_R0 An n)``. -Intro; Apply tech1. -Assert H2 : (cv_infty [n:nat](sum_f_R0 An n)). -Unfold cv_infty; Intro; Case (total_order_Rle M R0); Intro. -Exists O; Intros; Apply Rle_lt_trans with R0. -Assert H2 : ``0 - Case (case_Rabsolu ?1); Try SplitAbs. - - -Recursive Tactic Definition SplitAbsolu := - Match Context With - | [ id:[(Rabsolu ?)] |- ? ] -> Generalize id; Clear id;Try SplitAbsolu - | [ |- [(Rabsolu ?1)] ] -> Unfold Rabsolu; Try SplitAbs;Intros. diff --git a/theories7/Reals/SplitRmult.v b/theories7/Reals/SplitRmult.v deleted file mode 100644 index 392675c3..00000000 --- a/theories7/Reals/SplitRmult.v +++ /dev/null @@ -1,19 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0`` /\ ``r2<>0`` -> ``r1*r2<>0``. i*) - - -Require Rbase. - -Recursive Tactic Definition SplitRmult := - Match Context With - | [ |- ~(Rmult ?1 ?2)==R0 ] -> Apply mult_non_zero; Split;Try SplitRmult. - diff --git a/theories7/Reals/Sqrt_reg.v b/theories7/Reals/Sqrt_reg.v deleted file mode 100644 index d2068e5d..00000000 --- a/theories7/Reals/Sqrt_reg.v +++ /dev/null @@ -1,297 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* ``(Rabsolu ((sqrt (1+h))-1))<=(Rabsolu h)``. -Intros; Cut ``0<=1+h``. -Intro; Apply Rle_trans with ``(Rabsolu ((sqrt (Rsqr (1+h)))-1))``. -Case (total_order_T h R0); Intro. -Elim s; Intro. -Repeat Rewrite Rabsolu_left. -Unfold Rminus; Do 2 Rewrite <- (Rplus_sym ``-1``). -Do 2 Rewrite Ropp_distr1;Rewrite Ropp_Ropp; Apply Rle_compatibility. -Apply Rle_Ropp1; Apply sqrt_le_1. -Apply pos_Rsqr. -Apply H0. -Pattern 2 ``1+h``; Rewrite <- Rmult_1r; Unfold Rsqr; Apply Rle_monotony. -Apply H0. -Pattern 2 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Assumption. -Apply Rlt_anti_compatibility with R1; Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or. -Pattern 2 R1; Rewrite <- sqrt_1; Apply sqrt_lt_1. -Apply pos_Rsqr. -Left; Apply Rlt_R0_R1. -Pattern 2 R1; Rewrite <- Rsqr_1; Apply Rsqr_incrst_1. -Pattern 2 R1; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Assumption. -Apply H0. -Left; Apply Rlt_R0_R1. -Apply Rlt_anti_compatibility with R1; Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or. -Pattern 2 R1; Rewrite <- sqrt_1; Apply sqrt_lt_1. -Apply H0. -Left; Apply Rlt_R0_R1. -Pattern 2 R1; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Assumption. -Rewrite b; Rewrite Rplus_Or; Rewrite Rsqr_1; Rewrite sqrt_1; Right; Reflexivity. -Repeat Rewrite Rabsolu_right. -Unfold Rminus; Do 2 Rewrite <- (Rplus_sym ``-1``); Apply Rle_compatibility. -Apply sqrt_le_1. -Apply H0. -Apply pos_Rsqr. -Pattern 1 ``1+h``; Rewrite <- Rmult_1r; Unfold Rsqr; Apply Rle_monotony. -Apply H0. -Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Assumption. -Apply Rle_sym1; Apply Rle_anti_compatibility with R1. -Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or. -Pattern 1 R1; Rewrite <- sqrt_1; Apply sqrt_le_1. -Left; Apply Rlt_R0_R1. -Apply pos_Rsqr. -Pattern 1 R1; Rewrite <- Rsqr_1; Apply Rsqr_incr_1. -Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Assumption. -Left; Apply Rlt_R0_R1. -Apply H0. -Apply Rle_sym1; Left; Apply Rlt_anti_compatibility with R1. -Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or. -Pattern 1 R1; Rewrite <- sqrt_1; Apply sqrt_lt_1. -Left; Apply Rlt_R0_R1. -Apply H0. -Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Assumption. -Rewrite sqrt_Rsqr. -Replace ``(1+h)-1`` with h; [Right; Reflexivity | Ring]. -Apply H0. -Case (total_order_T h R0); Intro. -Elim s; Intro. -Rewrite (Rabsolu_left h a) in H. -Apply Rle_anti_compatibility with ``-h``. -Rewrite Rplus_Or; Rewrite Rplus_sym; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Exact H. -Left; Rewrite b; Rewrite Rplus_Or; Apply Rlt_R0_R1. -Left; Apply gt0_plus_gt0_is_gt0. -Apply Rlt_R0_R1. -Apply r. -Qed. - -(* sqrt is continuous in 1 *) -Lemma sqrt_continuity_pt_R1 : (continuity_pt sqrt R1). -Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros. -Pose alpha := (Rmin eps R1). -Exists alpha; Intros. -Split. -Unfold alpha; Unfold Rmin; Case (total_order_Rle eps R1); Intro. -Assumption. -Apply Rlt_R0_R1. -Intros; Elim H0; Intros. -Rewrite sqrt_1; Replace x with ``1+(x-1)``; [Idtac | Ring]; Apply Rle_lt_trans with ``(Rabsolu (x-1))``. -Apply sqrt_var_maj. -Apply Rle_trans with alpha. -Left; Apply H2. -Unfold alpha; Apply Rmin_r. -Apply Rlt_le_trans with alpha; [Apply H2 | Unfold alpha; Apply Rmin_l]. -Qed. - -(* sqrt is continuous forall x>0 *) -Lemma sqrt_continuity_pt : (x:R) ``0 (continuity_pt sqrt x). -Intros; Generalize sqrt_continuity_pt_R1. -Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros. -Cut ``00 *) -Lemma derivable_pt_lim_sqrt : (x:R) ``0 (derivable_pt_lim sqrt x ``/(2*(sqrt x))``). -Intros; Pose g := [h:R]``(sqrt x)+(sqrt (x+h))``. -Cut (continuity_pt g R0). -Intro; Cut ``(g 0)<>0``. -Intro; Assert H2 := (continuity_pt_inv g R0 H0 H1). -Unfold derivable_pt_lim; Intros; Unfold continuity_pt in H2; Unfold continue_in in H2; Unfold limit1_in in H2; Unfold limit_in in H2; Simpl in H2; Unfold R_dist in H2. -Elim (H2 eps H3); Intros alpha H4. -Elim H4; Intros. -Pose alpha1 := (Rmin alpha x). -Cut ``0 (derivable_pt sqrt x). -Unfold derivable_pt; Intros. -Apply Specif.existT with ``/(2*(sqrt x))``. -Apply derivable_pt_lim_sqrt; Assumption. -Qed. - -(**********) -Lemma derive_pt_sqrt : (x:R;pr:``0=0 *) -(* Remark : by definition of sqrt (as extension of Rsqrt on |R), *) -(* we could also show that sqrt is continuous for all x *) -Lemma continuity_pt_sqrt : (x:R) ``0<=x`` -> (continuity_pt sqrt x). -Intros; Case (total_order R0 x); Intro. -Apply (sqrt_continuity_pt x H0). -Elim H0; Intro. -Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros. -Exists (Rsqr eps); Intros. -Split. -Change ``0<(Rsqr eps)``; Apply Rsqr_pos_lt. -Red; Intro; Rewrite H3 in H2; Elim (Rlt_antirefl ? H2). -Intros; Elim H3; Intros. -Rewrite <- H1; Rewrite sqrt_0; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite <- H1 in H5; Unfold Rminus in H5; Rewrite Ropp_O in H5; Rewrite Rplus_Or in H5. -Case (case_Rabsolu x0); Intro. -Unfold sqrt; Case (case_Rabsolu x0); Intro. -Rewrite Rabsolu_R0; Apply H2. -Assert H6 := (Rle_sym2 ? ? r0); Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H6 r)). -Rewrite Rabsolu_right. -Apply Rsqr_incrst_0. -Rewrite Rsqr_sqrt. -Rewrite (Rabsolu_right x0 r) in H5; Apply H5. -Apply Rle_sym2; Exact r. -Apply sqrt_positivity; Apply Rle_sym2; Exact r. -Left; Exact H2. -Apply Rle_sym1; Apply sqrt_positivity; Apply Rle_sym2; Exact r. -Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H1 H)). -Qed. -- cgit v1.2.3