From 97fefe1fcca363a1317e066e7f4b99b9c1e9987b Mon Sep 17 00:00:00 2001 From: Stephane Glondu Date: Thu, 12 Jan 2012 16:02:20 +0100 Subject: Imported Upstream version 8.4~beta --- theories/ZArith/Zsqrt_compat.v | 233 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 233 insertions(+) create mode 100644 theories/ZArith/Zsqrt_compat.v (limited to 'theories/ZArith/Zsqrt_compat.v') diff --git a/theories/ZArith/Zsqrt_compat.v b/theories/ZArith/Zsqrt_compat.v new file mode 100644 index 00000000..4584c3f8 --- /dev/null +++ b/theories/ZArith/Zsqrt_compat.v @@ -0,0 +1,233 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* + match constr:X1 with + | context [1%positive] => fail 1 + | _ => rewrite (BinInt.Zpos_xI X1) + end + | |- context [(Zpos (xO ?X1))] => + match constr:X1 with + | context [1%positive] => fail 1 + | _ => rewrite (BinInt.Zpos_xO X1) + end + end. + +Inductive sqrt_data (n:Z) : Set := + c_sqrt : forall s r:Z, n = s * s + r -> 0 <= r <= 2 * s -> sqrt_data n. + +Definition sqrtrempos : forall p:positive, sqrt_data (Zpos p). + refine + (fix sqrtrempos (p:positive) : sqrt_data (Zpos p) := + match p return sqrt_data (Zpos p) with + | xH => c_sqrt 1 1 0 _ _ + | xO xH => c_sqrt 2 1 1 _ _ + | xI xH => c_sqrt 3 1 2 _ _ + | xO (xO p') => + match sqrtrempos p' with + | c_sqrt s' r' Heq Hint => + match Z_le_gt_dec (4 * s' + 1) (4 * r') with + | left Hle => + c_sqrt (Zpos (xO (xO p'))) (2 * s' + 1) + (4 * r' - (4 * s' + 1)) _ _ + | right Hgt => c_sqrt (Zpos (xO (xO p'))) (2 * s') (4 * r') _ _ + end + end + | xO (xI p') => + match sqrtrempos p' with + | c_sqrt s' r' Heq Hint => + match Z_le_gt_dec (4 * s' + 1) (4 * r' + 2) with + | left Hle => + c_sqrt (Zpos (xO (xI p'))) (2 * s' + 1) + (4 * r' + 2 - (4 * s' + 1)) _ _ + | right Hgt => + c_sqrt (Zpos (xO (xI p'))) (2 * s') (4 * r' + 2) _ _ + end + end + | xI (xO p') => + match sqrtrempos p' with + | c_sqrt s' r' Heq Hint => + match Z_le_gt_dec (4 * s' + 1) (4 * r' + 1) with + | left Hle => + c_sqrt (Zpos (xI (xO p'))) (2 * s' + 1) + (4 * r' + 1 - (4 * s' + 1)) _ _ + | right Hgt => + c_sqrt (Zpos (xI (xO p'))) (2 * s') (4 * r' + 1) _ _ + end + end + | xI (xI p') => + match sqrtrempos p' with + | c_sqrt s' r' Heq Hint => + match Z_le_gt_dec (4 * s' + 1) (4 * r' + 3) with + | left Hle => + c_sqrt (Zpos (xI (xI p'))) (2 * s' + 1) + (4 * r' + 3 - (4 * s' + 1)) _ _ + | right Hgt => + c_sqrt (Zpos (xI (xI p'))) (2 * s') (4 * r' + 3) _ _ + end + end + end); clear sqrtrempos; repeat compute_POS; + try (try rewrite Heq; ring); try omega. +Defined. + +(** Define with integer input, but with a strong (readable) specification. *) +Definition Zsqrt : + forall x:Z, + 0 <= x -> + {s : Z & {r : Z | x = s * s + r /\ s * s <= x < (s + 1) * (s + 1)}}. + refine + (fun x => + match + x + return + 0 <= x -> + {s : Z & {r : Z | x = s * s + r /\ s * s <= x < (s + 1) * (s + 1)}} + with + | Zpos p => + fun h => + match sqrtrempos p with + | c_sqrt s r Heq Hint => + existS + (fun s:Z => + {r : Z | + Zpos p = s * s + r /\ s * s <= Zpos p < (s + 1) * (s + 1)}) + s + (exist + (fun r:Z => + Zpos p = s * s + r /\ + s * s <= Zpos p < (s + 1) * (s + 1)) r _) + end + | Zneg p => + fun h => + False_rec + {s : Z & + {r : Z | + Zneg p = s * s + r /\ s * s <= Zneg p < (s + 1) * (s + 1)}} + (h (refl_equal Datatypes.Gt)) + | Z0 => + fun h => + existS + (fun s:Z => + {r : Z | 0 = s * s + r /\ s * s <= 0 < (s + 1) * (s + 1)}) 0 + (exist + (fun r:Z => 0 = 0 * 0 + r /\ 0 * 0 <= 0 < (0 + 1) * (0 + 1)) 0 + _) + end); try omega. + split; [ omega | rewrite Heq; ring_simplify (s*s) ((s + 1) * (s + 1)); omega ]. +Defined. + +(** Define a function of type Z->Z that computes the integer square root, + but only for positive numbers, and 0 for others. *) +Definition Zsqrt_plain (x:Z) : Z := + match x with + | Zpos p => + match Zsqrt (Zpos p) (Zorder.Zle_0_pos p) with + | existS s _ => s + end + | Zneg p => 0 + | Z0 => 0 + end. + +(** A basic theorem about Zsqrt_plain *) + +Theorem Zsqrt_interval : + forall n:Z, + 0 <= n -> + Zsqrt_plain n * Zsqrt_plain n <= n < + (Zsqrt_plain n + 1) * (Zsqrt_plain n + 1). +Proof. + intros x; case x. + unfold Zsqrt_plain in |- *; omega. + intros p; unfold Zsqrt_plain in |- *; + case (Zsqrt (Zpos p) (Zorder.Zle_0_pos p)). + intros s [r [Heq Hint]] Hle; assumption. + intros p Hle; elim Hle; auto. +Qed. + +(** Positivity *) + +Theorem Zsqrt_plain_is_pos: forall n, 0 <= n -> 0 <= Zsqrt_plain n. +Proof. + intros n m; case (Zsqrt_interval n); auto with zarith. + intros H1 H2; case (Zle_or_lt 0 (Zsqrt_plain n)); auto. + intros H3; contradict H2; auto; apply Zle_not_lt. + apply Zle_trans with ( 2 := H1 ). + replace ((Zsqrt_plain n + 1) * (Zsqrt_plain n + 1)) + with (Zsqrt_plain n * Zsqrt_plain n + (2 * Zsqrt_plain n + 1)); + auto with zarith. + ring. +Qed. + +(** Direct correctness on squares. *) + +Theorem Zsqrt_square_id: forall a, 0 <= a -> Zsqrt_plain (a * a) = a. +Proof. + intros a H. + generalize (Zsqrt_plain_is_pos (a * a)); auto with zarith; intros Haa. + case (Zsqrt_interval (a * a)); auto with zarith. + intros H1 H2. + case (Zle_or_lt a (Zsqrt_plain (a * a))); intros H3; auto. + case Zle_lt_or_eq with (1:=H3); auto; clear H3; intros H3. + contradict H1; auto; apply Zlt_not_le; auto with zarith. + apply Zle_lt_trans with (a * Zsqrt_plain (a * a)); auto with zarith. + apply Zmult_lt_compat_r; auto with zarith. + contradict H2; auto; apply Zle_not_lt; auto with zarith. + apply Zmult_le_compat; auto with zarith. +Qed. + +(** [Zsqrt_plain] is increasing *) + +Theorem Zsqrt_le: + forall p q, 0 <= p <= q -> Zsqrt_plain p <= Zsqrt_plain q. +Proof. + intros p q [H1 H2]; case Zle_lt_or_eq with (1:=H2); clear H2; intros H2; + [ | subst q; auto with zarith]. + case (Zle_or_lt (Zsqrt_plain p) (Zsqrt_plain q)); auto; intros H3. + assert (Hp: (0 <= Zsqrt_plain q)). + apply Zsqrt_plain_is_pos; auto with zarith. + absurd (q <= p); auto with zarith. + apply Zle_trans with ((Zsqrt_plain q + 1) * (Zsqrt_plain q + 1)). + case (Zsqrt_interval q); auto with zarith. + apply Zle_trans with (Zsqrt_plain p * Zsqrt_plain p); auto with zarith. + apply Zmult_le_compat; auto with zarith. + case (Zsqrt_interval p); auto with zarith. +Qed. + + +(** Equivalence between Zsqrt_plain and [Z.sqrt] *) + +Lemma Zsqrt_equiv : forall n, Zsqrt_plain n = Z.sqrt n. +Proof. + intros. destruct (Z_le_gt_dec 0 n). + symmetry. apply Z.sqrt_unique; trivial. + now apply Zsqrt_interval. + now destruct n. +Qed. \ No newline at end of file -- cgit v1.2.3