From 9043add656177eeac1491a73d2f3ab92bec0013c Mon Sep 17 00:00:00 2001 From: Benjamin Barenblat Date: Sat, 29 Dec 2018 14:31:27 -0500 Subject: Imported Upstream version 8.8.2 --- theories/ZArith/Znumtheory.v | 72 +++++++++++++++++++++++--------------------- 1 file changed, 37 insertions(+), 35 deletions(-) (limited to 'theories/ZArith/Znumtheory.v') diff --git a/theories/ZArith/Znumtheory.v b/theories/ZArith/Znumtheory.v index ee6efb3c..f5444c31 100644 --- a/theories/ZArith/Znumtheory.v +++ b/theories/ZArith/Znumtheory.v @@ -1,9 +1,11 @@ (************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* (a | - b). Proof. apply Z.divide_opp_r. Qed. @@ -91,12 +93,12 @@ Qed. (** Only [1] and [-1] divide [1]. *) -Notation Zdivide_1 := Z.divide_1_r (compat "8.3"). +Notation Zdivide_1 := Z.divide_1_r (only parsing). (** If [a] divides [b] and [b] divides [a] then [a] is [b] or [-b]. *) -Notation Zdivide_antisym := Z.divide_antisym (compat "8.3"). -Notation Zdivide_trans := Z.divide_trans (compat "8.3"). +Notation Zdivide_antisym := Z.divide_antisym (compat "8.6"). +Notation Zdivide_trans := Z.divide_trans (compat "8.6"). (** If [a] divides [b] and [b<>0] then [|a| <= |b|]. *) @@ -734,7 +736,7 @@ Qed. (** we now prove that [Z.gcd] is indeed a gcd in the sense of [Zis_gcd]. *) -Notation Zgcd_is_pos := Z.gcd_nonneg (compat "8.3"). +Notation Zgcd_is_pos := Z.gcd_nonneg (only parsing). Lemma Zgcd_is_gcd : forall a b, Zis_gcd a b (Z.gcd a b). Proof. @@ -767,8 +769,8 @@ Proof. - subst. now case (Z.gcd a b). Qed. -Notation Zgcd_inv_0_l := Z.gcd_eq_0_l (compat "8.3"). -Notation Zgcd_inv_0_r := Z.gcd_eq_0_r (compat "8.3"). +Notation Zgcd_inv_0_l := Z.gcd_eq_0_l (only parsing). +Notation Zgcd_inv_0_r := Z.gcd_eq_0_r (only parsing). Theorem Zgcd_div_swap0 : forall a b : Z, 0 < Z.gcd a b -> @@ -798,16 +800,16 @@ Proof. rewrite <- Zdivide_Zdiv_eq; auto. Qed. -Notation Zgcd_comm := Z.gcd_comm (compat "8.3"). +Notation Zgcd_comm := Z.gcd_comm (compat "8.6"). Lemma Zgcd_ass a b c : Z.gcd (Z.gcd a b) c = Z.gcd a (Z.gcd b c). Proof. symmetry. apply Z.gcd_assoc. Qed. -Notation Zgcd_Zabs := Z.gcd_abs_l (compat "8.3"). -Notation Zgcd_0 := Z.gcd_0_r (compat "8.3"). -Notation Zgcd_1 := Z.gcd_1_r (compat "8.3"). +Notation Zgcd_Zabs := Z.gcd_abs_l (only parsing). +Notation Zgcd_0 := Z.gcd_0_r (only parsing). +Notation Zgcd_1 := Z.gcd_1_r (only parsing). Hint Resolve Z.gcd_0_r Z.gcd_1_r : zarith. -- cgit v1.2.3