From e0d682ec25282a348d35c5b169abafec48555690 Mon Sep 17 00:00:00 2001 From: Stephane Glondu Date: Mon, 20 Aug 2012 18:27:01 +0200 Subject: Imported Upstream version 8.4dfsg --- theories/ZArith/Zmin.v | 92 +++++++++++++++----------------------------------- 1 file changed, 27 insertions(+), 65 deletions(-) (limited to 'theories/ZArith/Zmin.v') diff --git a/theories/ZArith/Zmin.v b/theories/ZArith/Zmin.v index 2c5003a6..30b88d8f 100644 --- a/theories/ZArith/Zmin.v +++ b/theories/ZArith/Zmin.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* y /\ Z.min x y = y. @@ -25,71 +43,15 @@ Proof. Z.swap_greater. rewrite Z.min_comm. destruct (Z.min_spec y x); auto. Qed. -(** * Greatest lower bound properties of min *) - -Lemma Zle_min_l : forall n m, Z.min n m <= n. Proof Z.le_min_l. -Lemma Zle_min_r : forall n m, Z.min n m <= m. Proof Z.le_min_r. - -Lemma Zmin_glb : forall n m p, p <= n -> p <= m -> p <= Z.min n m. -Proof Z.min_glb. -Lemma Zmin_glb_lt : forall n m p, p < n -> p < m -> p < Z.min n m. -Proof Z.min_glb_lt. - -(** * Compatibility with order *) - -Lemma Zle_min_compat_r : forall n m p, n <= m -> Z.min n p <= Z.min m p. -Proof Z.min_le_compat_r. -Lemma Zle_min_compat_l : forall n m p, n <= m -> Z.min p n <= Z.min p m. -Proof Z.min_le_compat_l. - -(** * Semi-lattice properties of min *) - -Lemma Zmin_idempotent : forall n, Z.min n n = n. Proof Z.min_id. -Notation Zmin_n_n := Z.min_id (only parsing). -Lemma Zmin_comm : forall n m, Z.min n m = Z.min m n. Proof Z.min_comm. -Lemma Zmin_assoc : forall n m p, Z.min n (Z.min m p) = Z.min (Z.min n m) p. -Proof Z.min_assoc. - -(** * Additional properties of min *) - -Lemma Zmin_irreducible_inf : forall n m, {Z.min n m = n} + {Z.min n m = m}. -Proof Z.min_dec. - Lemma Zmin_irreducible n m : Z.min n m = n \/ Z.min n m = m. Proof. destruct (Z.min_dec n m); auto. Qed. -Notation Zmin_or := Zmin_irreducible (only parsing). +Notation Zmin_or := Zmin_irreducible (compat "8.3"). Lemma Zmin_le_prime_inf n m p : Z.min n m <= p -> {n <= p} + {m <= p}. -Proof. apply Zmin_case; auto. Qed. - -(** * Operations preserving min *) - -Lemma Zsucc_min_distr : - forall n m, Z.succ (Z.min n m) = Z.min (Z.succ n) (Z.succ m). -Proof Z.succ_min_distr. - -Notation Zmin_SS := Z.succ_min_distr (only parsing). - -Lemma Zplus_min_distr_r : - forall n m p, Z.min (n + p) (m + p) = Z.min n m + p. -Proof Z.add_min_distr_r. - -Notation Zmin_plus := Z.add_min_distr_r (only parsing). - -(** * Minimum and Zpos *) - -Lemma Zpos_min p q : Zpos (Pos.min p q) = Z.min (Zpos p) (Zpos q). -Proof. - unfold Z.min, Pos.min; simpl. destruct Pos.compare; auto. -Qed. +Proof. apply Z.min_case; auto. Qed. Lemma Zpos_min_1 p : Z.min 1 (Zpos p) = 1. Proof. now destruct p. Qed. - - - - - -- cgit v1.2.3