From 6b649aba925b6f7462da07599fe67ebb12a3460e Mon Sep 17 00:00:00 2001 From: Samuel Mimram Date: Wed, 28 Jul 2004 21:54:47 +0000 Subject: Imported Upstream version 8.0pl1 --- theories/Sets/Finite_sets_facts.v | 347 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 347 insertions(+) create mode 100755 theories/Sets/Finite_sets_facts.v (limited to 'theories/Sets/Finite_sets_facts.v') diff --git a/theories/Sets/Finite_sets_facts.v b/theories/Sets/Finite_sets_facts.v new file mode 100755 index 00000000..952965e8 --- /dev/null +++ b/theories/Sets/Finite_sets_facts.v @@ -0,0 +1,347 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* exists n : nat, cardinal U X n. +Proof. +induction 1 as [| A _ [n H]]. +exists 0; auto with sets. +exists (S n); auto with sets. +Qed. + +Lemma cardinal_finite : + forall (X:Ensemble U) (n:nat), cardinal U X n -> Finite U X. +Proof. +induction 1; auto with sets. +Qed. + +Theorem Add_preserves_Finite : + forall (X:Ensemble U) (x:U), Finite U X -> Finite U (Add U X x). +Proof. +intros X x H'. +elim (classic (In U X x)); intro H'0; auto with sets. +rewrite (Non_disjoint_union U X x); auto with sets. +Qed. +Hint Resolve Add_preserves_Finite. + +Theorem Singleton_is_finite : forall x:U, Finite U (Singleton U x). +Proof. +intro x; rewrite <- (Empty_set_zero U (Singleton U x)). +change (Finite U (Add U (Empty_set U) x)) in |- *; auto with sets. +Qed. +Hint Resolve Singleton_is_finite. + +Theorem Union_preserves_Finite : + forall X Y:Ensemble U, Finite U X -> Finite U Y -> Finite U (Union U X Y). +Proof. +intros X Y H'; elim H'. +rewrite (Empty_set_zero U Y); auto with sets. +intros A H'0 H'1 x H'2 H'3. +rewrite (Union_commutative U (Add U A x) Y). +rewrite <- (Union_add U Y A x). +rewrite (Union_commutative U Y A); auto with sets. +Qed. + +Lemma Finite_downward_closed : + forall A:Ensemble U, + Finite U A -> forall X:Ensemble U, Included U X A -> Finite U X. +Proof. +intros A H'; elim H'; auto with sets. +intros X H'0. +rewrite (less_than_empty U X H'0); auto with sets. +intros; elim Included_Add with U X A0 x; auto with sets. +destruct 1 as [A' [H5 H6]]. +rewrite H5; auto with sets. +Qed. + +Lemma Intersection_preserves_finite : + forall A:Ensemble U, + Finite U A -> forall X:Ensemble U, Finite U (Intersection U X A). +Proof. +intros A H' X; apply Finite_downward_closed with A; auto with sets. +Qed. + +Lemma cardinalO_empty : + forall X:Ensemble U, cardinal U X 0 -> X = Empty_set U. +Proof. +intros X H; apply (cardinal_invert U X 0); trivial with sets. +Qed. +Hint Resolve cardinalO_empty. + +Lemma inh_card_gt_O : + forall X:Ensemble U, Inhabited U X -> forall n:nat, cardinal U X n -> n > 0. +Proof. +induction 1 as [x H']. +intros n H'0. +elim (gt_O_eq n); auto with sets. +intro H'1; generalize H'; generalize H'0. +rewrite <- H'1; intro H'2. +rewrite (cardinalO_empty X); auto with sets. +intro H'3; elim H'3. +Qed. + +Lemma card_soustr_1 : + forall (X:Ensemble U) (n:nat), + cardinal U X n -> + forall x:U, In U X x -> cardinal U (Subtract U X x) (pred n). +Proof. +intros X n H'; elim H'. +intros x H'0; elim H'0. +clear H' n X. +intros X n H' H'0 x H'1 x0 H'2. +elim (classic (In U X x0)). +intro H'4; rewrite (add_soustr_xy U X x x0). +elim (classic (x = x0)). +intro H'5. +absurd (In U X x0); auto with sets. +rewrite <- H'5; auto with sets. +intro H'3; try assumption. +cut (S (pred n) = pred (S n)). +intro H'5; rewrite <- H'5. +apply card_add; auto with sets. +red in |- *; intro H'6; elim H'6. +intros H'7 H'8; try assumption. +elim H'1; auto with sets. +unfold pred at 2 in |- *; symmetry in |- *. +apply S_pred with (m := 0). +change (n > 0) in |- *. +apply inh_card_gt_O with (X := X); auto with sets. +apply Inhabited_intro with (x := x0); auto with sets. +red in |- *; intro H'3. +apply H'1. +elim H'3; auto with sets. +rewrite H'3; auto with sets. +elim (classic (x = x0)). +intro H'3; rewrite <- H'3. +cut (Subtract U (Add U X x) x = X); auto with sets. +intro H'4; rewrite H'4; auto with sets. +intros H'3 H'4; try assumption. +absurd (In U (Add U X x) x0); auto with sets. +red in |- *; intro H'5; try exact H'5. +lapply (Add_inv U X x x0); tauto. +Qed. + +Lemma cardinal_is_functional : + forall (X:Ensemble U) (c1:nat), + cardinal U X c1 -> + forall (Y:Ensemble U) (c2:nat), cardinal U Y c2 -> X = Y -> c1 = c2. +Proof. +intros X c1 H'; elim H'. +intros Y c2 H'0; elim H'0; auto with sets. +intros A n H'1 H'2 x H'3 H'5. +elim (not_Empty_Add U A x); auto with sets. +clear H' c1 X. +intros X n H' H'0 x H'1 Y c2 H'2. +elim H'2. +intro H'3. +elim (not_Empty_Add U X x); auto with sets. +clear H'2 c2 Y. +intros X0 c2 H'2 H'3 x0 H'4 H'5. +elim (classic (In U X0 x)). +intro H'6; apply f_equal with nat. +apply H'0 with (Y := Subtract U (Add U X0 x0) x). +elimtype (pred (S c2) = c2); auto with sets. +apply card_soustr_1; auto with sets. +rewrite <- H'5. +apply Sub_Add_new; auto with sets. +elim (classic (x = x0)). +intros H'6 H'7; apply f_equal with nat. +apply H'0 with (Y := X0); auto with sets. +apply Simplify_add with (x := x); auto with sets. +pattern x at 2 in |- *; rewrite H'6; auto with sets. +intros H'6 H'7. +absurd (Add U X x = Add U X0 x0); auto with sets. +clear H'0 H' H'3 n H'5 H'4 H'2 H'1 c2. +red in |- *; intro H'. +lapply (Extension U (Add U X x) (Add U X0 x0)); auto with sets. +clear H'. +intro H'; red in H'. +elim H'; intros H'0 H'1; red in H'0; clear H' H'1. +absurd (In U (Add U X0 x0) x); auto with sets. +lapply (Add_inv U X0 x0 x); [ intuition | apply (H'0 x); apply Add_intro2 ]. +Qed. + +Lemma cardinal_Empty : forall m:nat, cardinal U (Empty_set U) m -> 0 = m. +Proof. +intros m Cm; generalize (cardinal_invert U (Empty_set U) m Cm). +elim m; auto with sets. +intros; elim H0; intros; elim H1; intros; elim H2; intros. +elim (not_Empty_Add U x x0 H3). +Qed. + +Lemma cardinal_unicity : + forall (X:Ensemble U) (n:nat), + cardinal U X n -> forall m:nat, cardinal U X m -> n = m. +Proof. +intros; apply cardinal_is_functional with X X; auto with sets. +Qed. + +Lemma card_Add_gen : + forall (A:Ensemble U) (x:U) (n n':nat), + cardinal U A n -> cardinal U (Add U A x) n' -> n' <= S n. +Proof. +intros A x n n' H'. +elim (classic (In U A x)). +intro H'0. +rewrite (Non_disjoint_union U A x H'0). +intro H'1; cut (n = n'). +intro E; rewrite E; auto with sets. +apply cardinal_unicity with A; auto with sets. +intros H'0 H'1. +cut (n' = S n). +intro E; rewrite E; auto with sets. +apply cardinal_unicity with (Add U A x); auto with sets. +Qed. + +Lemma incl_st_card_lt : + forall (X:Ensemble U) (c1:nat), + cardinal U X c1 -> + forall (Y:Ensemble U) (c2:nat), + cardinal U Y c2 -> Strict_Included U X Y -> c2 > c1. +Proof. +intros X c1 H'; elim H'. +intros Y c2 H'0; elim H'0; auto with sets arith. +intro H'1. +elim (Strict_Included_strict U (Empty_set U)); auto with sets arith. +clear H' c1 X. +intros X n H' H'0 x H'1 Y c2 H'2. +elim H'2. +intro H'3; elim (not_SIncl_empty U (Add U X x)); auto with sets arith. +clear H'2 c2 Y. +intros X0 c2 H'2 H'3 x0 H'4 H'5; elim (classic (In U X0 x)). +intro H'6; apply gt_n_S. +apply H'0 with (Y := Subtract U (Add U X0 x0) x). +elimtype (pred (S c2) = c2); auto with sets arith. +apply card_soustr_1; auto with sets arith. +apply incl_st_add_soustr; auto with sets arith. +elim (classic (x = x0)). +intros H'6 H'7; apply gt_n_S. +apply H'0 with (Y := X0); auto with sets arith. +apply sincl_add_x with (x := x0). +rewrite <- H'6; auto with sets arith. +pattern x0 at 1 in |- *; rewrite <- H'6; trivial with sets arith. +intros H'6 H'7; red in H'5. +elim H'5; intros H'8 H'9; try exact H'8; clear H'5. +red in H'8. +generalize (H'8 x). +intro H'5; lapply H'5; auto with sets arith. +intro H; elim Add_inv with U X0 x0 x; auto with sets arith. +intro; absurd (In U X0 x); auto with sets arith. +intro; absurd (x = x0); auto with sets arith. +Qed. + +Lemma incl_card_le : + forall (X Y:Ensemble U) (n m:nat), + cardinal U X n -> cardinal U Y m -> Included U X Y -> n <= m. +Proof. +intros; elim Included_Strict_Included with U X Y; auto with sets arith; intro. +cut (m > n); auto with sets arith. +apply incl_st_card_lt with (X := X) (Y := Y); auto with sets arith. +generalize H0; rewrite <- H2; intro. +cut (n = m). +intro E; rewrite E; auto with sets arith. +apply cardinal_unicity with X; auto with sets arith. +Qed. + +Lemma G_aux : + forall P:Ensemble U -> Prop, + (forall X:Ensemble U, + Finite U X -> + (forall Y:Ensemble U, Strict_Included U Y X -> P Y) -> P X) -> + P (Empty_set U). +Proof. +intros P H'; try assumption. +apply H'; auto with sets. +clear H'; auto with sets. +intros Y H'; try assumption. +red in H'. +elim H'; intros H'0 H'1; try exact H'1; clear H'. +lapply (less_than_empty U Y); [ intro H'3; try exact H'3 | assumption ]. +elim H'1; auto with sets. +Qed. + +Hint Unfold not. + +Lemma Generalized_induction_on_finite_sets : + forall P:Ensemble U -> Prop, + (forall X:Ensemble U, + Finite U X -> + (forall Y:Ensemble U, Strict_Included U Y X -> P Y) -> P X) -> + forall X:Ensemble U, Finite U X -> P X. +Proof. +intros P H'0 X H'1. +generalize P H'0; clear H'0 P. +elim H'1. +intros P H'0. +apply G_aux; auto with sets. +clear H'1 X. +intros A H' H'0 x H'1 P H'3. +cut (forall Y:Ensemble U, Included U Y (Add U A x) -> P Y); auto with sets. +generalize H'1. +apply H'0. +intros X K H'5 L Y H'6; apply H'3; auto with sets. +apply Finite_downward_closed with (A := Add U X x); auto with sets. +intros Y0 H'7. +elim (Strict_inclusion_is_transitive_with_inclusion U Y0 Y (Add U X x)); + auto with sets. +intros H'2 H'4. +elim (Included_Add U Y0 X x); + [ intro H'14 + | intro H'14; elim H'14; intros A' E; elim E; intros H'15 H'16; clear E H'14 + | idtac ]; auto with sets. +elim (Included_Strict_Included U Y0 X); auto with sets. +intro H'9; apply H'5 with (Y := Y0); auto with sets. +intro H'9; rewrite H'9. +apply H'3; auto with sets. +intros Y1 H'8; elim H'8. +intros H'10 H'11; apply H'5 with (Y := Y1); auto with sets. +elim (Included_Strict_Included U A' X); auto with sets. +intro H'8; apply H'5 with (Y := A'); auto with sets. +rewrite <- H'15; auto with sets. +intro H'8. +elim H'7. +intros H'9 H'10; apply H'10 || elim H'10; try assumption. +generalize H'6. +rewrite <- H'8. +rewrite <- H'15; auto with sets. +Qed. + +End Finite_sets_facts. \ No newline at end of file -- cgit v1.2.3