From e0d682ec25282a348d35c5b169abafec48555690 Mon Sep 17 00:00:00 2001 From: Stephane Glondu Date: Mon, 20 Aug 2012 18:27:01 +0200 Subject: Imported Upstream version 8.4dfsg --- theories/Reals/Ranalysis.v | 775 +-------------------------------------------- 1 file changed, 2 insertions(+), 773 deletions(-) (limited to 'theories/Reals/Ranalysis.v') diff --git a/theories/Reals/Ranalysis.v b/theories/Reals/Ranalysis.v index 01715cf3..ad86a197 100644 --- a/theories/Reals/Ranalysis.v +++ b/theories/Reals/Ranalysis.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* - match goal with - | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 - | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 - | _ => idtac - end - | (?X1 - ?X2)%F => - match goal with - | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 - | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 - | _ => idtac - end - | (?X1 * ?X2)%F => - match goal with - | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 - | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 - | _ => idtac - end - | (?X1 / ?X2)%F => - let aux := constr:X2 in - match goal with - | _:(forall x0:R, aux x0 <> 0) |- (derivable _) => - intro_hyp_glob X1; intro_hyp_glob X2 - | _:(forall x0:R, aux x0 <> 0) |- (continuity _) => - intro_hyp_glob X1; intro_hyp_glob X2 - | |- (derivable _) => - cut (forall x0:R, aux x0 <> 0); - [ intro; intro_hyp_glob X1; intro_hyp_glob X2 | try assumption ] - | |- (continuity _) => - cut (forall x0:R, aux x0 <> 0); - [ intro; intro_hyp_glob X1; intro_hyp_glob X2 | try assumption ] - | _ => idtac - end - | (comp ?X1 ?X2) => - match goal with - | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 - | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 - | _ => idtac - end - | (- ?X1)%F => - match goal with - | |- (derivable _) => intro_hyp_glob X1 - | |- (continuity _) => intro_hyp_glob X1 - | _ => idtac - end - | (/ ?X1)%F => - let aux := constr:X1 in - match goal with - | _:(forall x0:R, aux x0 <> 0) |- (derivable _) => - intro_hyp_glob X1 - | _:(forall x0:R, aux x0 <> 0) |- (continuity _) => - intro_hyp_glob X1 - | |- (derivable _) => - cut (forall x0:R, aux x0 <> 0); - [ intro; intro_hyp_glob X1 | try assumption ] - | |- (continuity _) => - cut (forall x0:R, aux x0 <> 0); - [ intro; intro_hyp_glob X1 | try assumption ] - | _ => idtac - end - | cos => idtac - | sin => idtac - | cosh => idtac - | sinh => idtac - | exp => idtac - | Rsqr => idtac - | sqrt => idtac - | id => idtac - | (fct_cte _) => idtac - | (pow_fct _) => idtac - | Rabs => idtac - | ?X1 => - let p := constr:X1 in - match goal with - | _:(derivable p) |- _ => idtac - | |- (derivable p) => idtac - | |- (derivable _) => - cut (True -> derivable p); - [ intro HYPPD; cut (derivable p); - [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] - | idtac ] - | _:(continuity p) |- _ => idtac - | |- (continuity p) => idtac - | |- (continuity _) => - cut (True -> continuity p); - [ intro HYPPD; cut (continuity p); - [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] - | idtac ] - | _ => idtac - end - end. - -(**********) -Ltac intro_hyp_pt trm pt := - match constr:trm with - | (?X1 + ?X2)%F => - match goal with - | |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (derive_pt _ _ _ = _) => - intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | _ => idtac - end - | (?X1 - ?X2)%F => - match goal with - | |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (derive_pt _ _ _ = _) => - intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | _ => idtac - end - | (?X1 * ?X2)%F => - match goal with - | |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (derive_pt _ _ _ = _) => - intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | _ => idtac - end - | (?X1 / ?X2)%F => - let aux := constr:X2 in - match goal with - | _:(aux pt <> 0) |- (derivable_pt _ _) => - intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | _:(aux pt <> 0) |- (continuity_pt _ _) => - intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | _:(aux pt <> 0) |- (derive_pt _ _ _ = _) => - intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | id:(forall x0:R, aux x0 <> 0) |- (derivable_pt _ _) => - generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | id:(forall x0:R, aux x0 <> 0) |- (continuity_pt _ _) => - generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | id:(forall x0:R, aux x0 <> 0) |- (derive_pt _ _ _ = _) => - generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (derivable_pt _ _) => - cut (aux pt <> 0); - [ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ] - | |- (continuity_pt _ _) => - cut (aux pt <> 0); - [ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ] - | |- (derive_pt _ _ _ = _) => - cut (aux pt <> 0); - [ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ] - | _ => idtac - end - | (comp ?X1 ?X2) => - match goal with - | |- (derivable_pt _ _) => - let pt_f1 := eval cbv beta in (X2 pt) in - (intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt) - | |- (continuity_pt _ _) => - let pt_f1 := eval cbv beta in (X2 pt) in - (intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt) - | |- (derive_pt _ _ _ = _) => - let pt_f1 := eval cbv beta in (X2 pt) in - (intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt) - | _ => idtac - end - | (- ?X1)%F => - match goal with - | |- (derivable_pt _ _) => intro_hyp_pt X1 pt - | |- (continuity_pt _ _) => intro_hyp_pt X1 pt - | |- (derive_pt _ _ _ = _) => intro_hyp_pt X1 pt - | _ => idtac - end - | (/ ?X1)%F => - let aux := constr:X1 in - match goal with - | _:(aux pt <> 0) |- (derivable_pt _ _) => - intro_hyp_pt X1 pt - | _:(aux pt <> 0) |- (continuity_pt _ _) => - intro_hyp_pt X1 pt - | _:(aux pt <> 0) |- (derive_pt _ _ _ = _) => - intro_hyp_pt X1 pt - | id:(forall x0:R, aux x0 <> 0) |- (derivable_pt _ _) => - generalize (id pt); intro; intro_hyp_pt X1 pt - | id:(forall x0:R, aux x0 <> 0) |- (continuity_pt _ _) => - generalize (id pt); intro; intro_hyp_pt X1 pt - | id:(forall x0:R, aux x0 <> 0) |- (derive_pt _ _ _ = _) => - generalize (id pt); intro; intro_hyp_pt X1 pt - | |- (derivable_pt _ _) => - cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ] - | |- (continuity_pt _ _) => - cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ] - | |- (derive_pt _ _ _ = _) => - cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ] - | _ => idtac - end - | cos => idtac - | sin => idtac - | cosh => idtac - | sinh => idtac - | exp => idtac - | Rsqr => idtac - | id => idtac - | (fct_cte _) => idtac - | (pow_fct _) => idtac - | sqrt => - match goal with - | |- (derivable_pt _ _) => cut (0 < pt); [ intro | try assumption ] - | |- (continuity_pt _ _) => - cut (0 <= pt); [ intro | try assumption ] - | |- (derive_pt _ _ _ = _) => - cut (0 < pt); [ intro | try assumption ] - | _ => idtac - end - | Rabs => - match goal with - | |- (derivable_pt _ _) => - cut (pt <> 0); [ intro | try assumption ] - | _ => idtac - end - | ?X1 => - let p := constr:X1 in - match goal with - | _:(derivable_pt p pt) |- _ => idtac - | |- (derivable_pt p pt) => idtac - | |- (derivable_pt _ _) => - cut (True -> derivable_pt p pt); - [ intro HYPPD; cut (derivable_pt p pt); - [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] - | idtac ] - | _:(continuity_pt p pt) |- _ => idtac - | |- (continuity_pt p pt) => idtac - | |- (continuity_pt _ _) => - cut (True -> continuity_pt p pt); - [ intro HYPPD; cut (continuity_pt p pt); - [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] - | idtac ] - | |- (derive_pt _ _ _ = _) => - cut (True -> derivable_pt p pt); - [ intro HYPPD; cut (derivable_pt p pt); - [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] - | idtac ] - | _ => idtac - end - end. - -(**********) -Ltac is_diff_pt := - match goal with - | |- (derivable_pt Rsqr _) => - - (* fonctions de base *) - apply derivable_pt_Rsqr - | |- (derivable_pt id ?X1) => apply (derivable_pt_id X1) - | |- (derivable_pt (fct_cte _) _) => apply derivable_pt_const - | |- (derivable_pt sin _) => apply derivable_pt_sin - | |- (derivable_pt cos _) => apply derivable_pt_cos - | |- (derivable_pt sinh _) => apply derivable_pt_sinh - | |- (derivable_pt cosh _) => apply derivable_pt_cosh - | |- (derivable_pt exp _) => apply derivable_pt_exp - | |- (derivable_pt (pow_fct _) _) => - unfold pow_fct in |- *; apply derivable_pt_pow - | |- (derivable_pt sqrt ?X1) => - apply (derivable_pt_sqrt X1); - assumption || - unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct, - comp, id, fct_cte, pow_fct in |- * - | |- (derivable_pt Rabs ?X1) => - apply (Rderivable_pt_abs X1); - assumption || - unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct, - comp, id, fct_cte, pow_fct in |- * - (* regles de differentiabilite *) - (* PLUS *) - | |- (derivable_pt (?X1 + ?X2) ?X3) => - apply (derivable_pt_plus X1 X2 X3); is_diff_pt - (* MOINS *) - | |- (derivable_pt (?X1 - ?X2) ?X3) => - apply (derivable_pt_minus X1 X2 X3); is_diff_pt - (* OPPOSE *) - | |- (derivable_pt (- ?X1) ?X2) => - apply (derivable_pt_opp X1 X2); - is_diff_pt - (* MULTIPLICATION PAR UN SCALAIRE *) - | |- (derivable_pt (mult_real_fct ?X1 ?X2) ?X3) => - apply (derivable_pt_scal X2 X1 X3); is_diff_pt - (* MULTIPLICATION *) - | |- (derivable_pt (?X1 * ?X2) ?X3) => - apply (derivable_pt_mult X1 X2 X3); is_diff_pt - (* DIVISION *) - | |- (derivable_pt (?X1 / ?X2) ?X3) => - apply (derivable_pt_div X1 X2 X3); - [ is_diff_pt - | is_diff_pt - | try - assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - comp, pow_fct, id, fct_cte in |- * ] - | |- (derivable_pt (/ ?X1) ?X2) => - - (* INVERSION *) - apply (derivable_pt_inv X1 X2); - [ assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - comp, pow_fct, id, fct_cte in |- * - | is_diff_pt ] - | |- (derivable_pt (comp ?X1 ?X2) ?X3) => - - (* COMPOSITION *) - apply (derivable_pt_comp X2 X1 X3); is_diff_pt - | _:(derivable_pt ?X1 ?X2) |- (derivable_pt ?X1 ?X2) => - assumption - | _:(derivable ?X1) |- (derivable_pt ?X1 ?X2) => - cut (derivable X1); [ intro HypDDPT; apply HypDDPT | assumption ] - | |- (True -> derivable_pt _ _) => - intro HypTruE; clear HypTruE; is_diff_pt - | _ => - try - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, - fct_cte, comp, pow_fct in |- * - end. - -(**********) -Ltac is_diff_glob := - match goal with - | |- (derivable Rsqr) => - (* fonctions de base *) - apply derivable_Rsqr - | |- (derivable id) => apply derivable_id - | |- (derivable (fct_cte _)) => apply derivable_const - | |- (derivable sin) => apply derivable_sin - | |- (derivable cos) => apply derivable_cos - | |- (derivable cosh) => apply derivable_cosh - | |- (derivable sinh) => apply derivable_sinh - | |- (derivable exp) => apply derivable_exp - | |- (derivable (pow_fct _)) => - unfold pow_fct in |- *; - apply derivable_pow - (* regles de differentiabilite *) - (* PLUS *) - | |- (derivable (?X1 + ?X2)) => - apply (derivable_plus X1 X2); is_diff_glob - (* MOINS *) - | |- (derivable (?X1 - ?X2)) => - apply (derivable_minus X1 X2); is_diff_glob - (* OPPOSE *) - | |- (derivable (- ?X1)) => - apply (derivable_opp X1); - is_diff_glob - (* MULTIPLICATION PAR UN SCALAIRE *) - | |- (derivable (mult_real_fct ?X1 ?X2)) => - apply (derivable_scal X2 X1); is_diff_glob - (* MULTIPLICATION *) - | |- (derivable (?X1 * ?X2)) => - apply (derivable_mult X1 X2); is_diff_glob - (* DIVISION *) - | |- (derivable (?X1 / ?X2)) => - apply (derivable_div X1 X2); - [ is_diff_glob - | is_diff_glob - | try - assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - id, fct_cte, comp, pow_fct in |- * ] - | |- (derivable (/ ?X1)) => - - (* INVERSION *) - apply (derivable_inv X1); - [ try - assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - id, fct_cte, comp, pow_fct in |- * - | is_diff_glob ] - | |- (derivable (comp sqrt _)) => - - (* COMPOSITION *) - unfold derivable in |- *; intro; try is_diff_pt - | |- (derivable (comp Rabs _)) => - unfold derivable in |- *; intro; try is_diff_pt - | |- (derivable (comp ?X1 ?X2)) => - apply (derivable_comp X2 X1); is_diff_glob - | _:(derivable ?X1) |- (derivable ?X1) => assumption - | |- (True -> derivable _) => - intro HypTruE; clear HypTruE; is_diff_glob - | _ => - try - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, - fct_cte, comp, pow_fct in |- * - end. - -(**********) -Ltac is_cont_pt := - match goal with - | |- (continuity_pt Rsqr _) => - - (* fonctions de base *) - apply derivable_continuous_pt; apply derivable_pt_Rsqr - | |- (continuity_pt id ?X1) => - apply derivable_continuous_pt; apply (derivable_pt_id X1) - | |- (continuity_pt (fct_cte _) _) => - apply derivable_continuous_pt; apply derivable_pt_const - | |- (continuity_pt sin _) => - apply derivable_continuous_pt; apply derivable_pt_sin - | |- (continuity_pt cos _) => - apply derivable_continuous_pt; apply derivable_pt_cos - | |- (continuity_pt sinh _) => - apply derivable_continuous_pt; apply derivable_pt_sinh - | |- (continuity_pt cosh _) => - apply derivable_continuous_pt; apply derivable_pt_cosh - | |- (continuity_pt exp _) => - apply derivable_continuous_pt; apply derivable_pt_exp - | |- (continuity_pt (pow_fct _) _) => - unfold pow_fct in |- *; apply derivable_continuous_pt; - apply derivable_pt_pow - | |- (continuity_pt sqrt ?X1) => - apply continuity_pt_sqrt; - assumption || - unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct, - comp, id, fct_cte, pow_fct in |- * - | |- (continuity_pt Rabs ?X1) => - apply (Rcontinuity_abs X1) - (* regles de differentiabilite *) - (* PLUS *) - | |- (continuity_pt (?X1 + ?X2) ?X3) => - apply (continuity_pt_plus X1 X2 X3); is_cont_pt - (* MOINS *) - | |- (continuity_pt (?X1 - ?X2) ?X3) => - apply (continuity_pt_minus X1 X2 X3); is_cont_pt - (* OPPOSE *) - | |- (continuity_pt (- ?X1) ?X2) => - apply (continuity_pt_opp X1 X2); - is_cont_pt - (* MULTIPLICATION PAR UN SCALAIRE *) - | |- (continuity_pt (mult_real_fct ?X1 ?X2) ?X3) => - apply (continuity_pt_scal X2 X1 X3); is_cont_pt - (* MULTIPLICATION *) - | |- (continuity_pt (?X1 * ?X2) ?X3) => - apply (continuity_pt_mult X1 X2 X3); is_cont_pt - (* DIVISION *) - | |- (continuity_pt (?X1 / ?X2) ?X3) => - apply (continuity_pt_div X1 X2 X3); - [ is_cont_pt - | is_cont_pt - | try - assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - comp, id, fct_cte, pow_fct in |- * ] - | |- (continuity_pt (/ ?X1) ?X2) => - - (* INVERSION *) - apply (continuity_pt_inv X1 X2); - [ is_cont_pt - | assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - comp, id, fct_cte, pow_fct in |- * ] - | |- (continuity_pt (comp ?X1 ?X2) ?X3) => - - (* COMPOSITION *) - apply (continuity_pt_comp X2 X1 X3); is_cont_pt - | _:(continuity_pt ?X1 ?X2) |- (continuity_pt ?X1 ?X2) => - assumption - | _:(continuity ?X1) |- (continuity_pt ?X1 ?X2) => - cut (continuity X1); [ intro HypDDPT; apply HypDDPT | assumption ] - | _:(derivable_pt ?X1 ?X2) |- (continuity_pt ?X1 ?X2) => - apply derivable_continuous_pt; assumption - | _:(derivable ?X1) |- (continuity_pt ?X1 ?X2) => - cut (continuity X1); - [ intro HypDDPT; apply HypDDPT - | apply derivable_continuous; assumption ] - | |- (True -> continuity_pt _ _) => - intro HypTruE; clear HypTruE; is_cont_pt - | _ => - try - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, - fct_cte, comp, pow_fct in |- * - end. - -(**********) -Ltac is_cont_glob := - match goal with - | |- (continuity Rsqr) => - - (* fonctions de base *) - apply derivable_continuous; apply derivable_Rsqr - | |- (continuity id) => apply derivable_continuous; apply derivable_id - | |- (continuity (fct_cte _)) => - apply derivable_continuous; apply derivable_const - | |- (continuity sin) => apply derivable_continuous; apply derivable_sin - | |- (continuity cos) => apply derivable_continuous; apply derivable_cos - | |- (continuity exp) => apply derivable_continuous; apply derivable_exp - | |- (continuity (pow_fct _)) => - unfold pow_fct in |- *; apply derivable_continuous; apply derivable_pow - | |- (continuity sinh) => - apply derivable_continuous; apply derivable_sinh - | |- (continuity cosh) => - apply derivable_continuous; apply derivable_cosh - | |- (continuity Rabs) => - apply Rcontinuity_abs - (* regles de continuite *) - (* PLUS *) - | |- (continuity (?X1 + ?X2)) => - apply (continuity_plus X1 X2); - try is_cont_glob || assumption - (* MOINS *) - | |- (continuity (?X1 - ?X2)) => - apply (continuity_minus X1 X2); - try is_cont_glob || assumption - (* OPPOSE *) - | |- (continuity (- ?X1)) => - apply (continuity_opp X1); try is_cont_glob || assumption - (* INVERSE *) - | |- (continuity (/ ?X1)) => - apply (continuity_inv X1); - try is_cont_glob || assumption - (* MULTIPLICATION PAR UN SCALAIRE *) - | |- (continuity (mult_real_fct ?X1 ?X2)) => - apply (continuity_scal X2 X1); - try is_cont_glob || assumption - (* MULTIPLICATION *) - | |- (continuity (?X1 * ?X2)) => - apply (continuity_mult X1 X2); - try is_cont_glob || assumption - (* DIVISION *) - | |- (continuity (?X1 / ?X2)) => - apply (continuity_div X1 X2); - [ try is_cont_glob || assumption - | try is_cont_glob || assumption - | try - assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - id, fct_cte, pow_fct in |- * ] - | |- (continuity (comp sqrt _)) => - - (* COMPOSITION *) - unfold continuity_pt in |- *; intro; try is_cont_pt - | |- (continuity (comp ?X1 ?X2)) => - apply (continuity_comp X2 X1); try is_cont_glob || assumption - | _:(continuity ?X1) |- (continuity ?X1) => assumption - | |- (True -> continuity _) => - intro HypTruE; clear HypTruE; is_cont_glob - | _:(derivable ?X1) |- (continuity ?X1) => - apply derivable_continuous; assumption - | _ => - try - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, - fct_cte, comp, pow_fct in |- * - end. - -(**********) -Ltac rew_term trm := - match constr:trm with - | (?X1 + ?X2) => - let p1 := rew_term X1 with p2 := rew_term X2 in - match constr:p1 with - | (fct_cte ?X3) => - match constr:p2 with - | (fct_cte ?X4) => constr:(fct_cte (X3 + X4)) - | _ => constr:(p1 + p2)%F - end - | _ => constr:(p1 + p2)%F - end - | (?X1 - ?X2) => - let p1 := rew_term X1 with p2 := rew_term X2 in - match constr:p1 with - | (fct_cte ?X3) => - match constr:p2 with - | (fct_cte ?X4) => constr:(fct_cte (X3 - X4)) - | _ => constr:(p1 - p2)%F - end - | _ => constr:(p1 - p2)%F - end - | (?X1 / ?X2) => - let p1 := rew_term X1 with p2 := rew_term X2 in - match constr:p1 with - | (fct_cte ?X3) => - match constr:p2 with - | (fct_cte ?X4) => constr:(fct_cte (X3 / X4)) - | _ => constr:(p1 / p2)%F - end - | _ => - match constr:p2 with - | (fct_cte ?X4) => constr:(p1 * fct_cte (/ X4))%F - | _ => constr:(p1 / p2)%F - end - end - | (?X1 * / ?X2) => - let p1 := rew_term X1 with p2 := rew_term X2 in - match constr:p1 with - | (fct_cte ?X3) => - match constr:p2 with - | (fct_cte ?X4) => constr:(fct_cte (X3 / X4)) - | _ => constr:(p1 / p2)%F - end - | _ => - match constr:p2 with - | (fct_cte ?X4) => constr:(p1 * fct_cte (/ X4))%F - | _ => constr:(p1 / p2)%F - end - end - | (?X1 * ?X2) => - let p1 := rew_term X1 with p2 := rew_term X2 in - match constr:p1 with - | (fct_cte ?X3) => - match constr:p2 with - | (fct_cte ?X4) => constr:(fct_cte (X3 * X4)) - | _ => constr:(p1 * p2)%F - end - | _ => constr:(p1 * p2)%F - end - | (- ?X1) => - let p := rew_term X1 in - match constr:p with - | (fct_cte ?X2) => constr:(fct_cte (- X2)) - | _ => constr:(- p)%F - end - | (/ ?X1) => - let p := rew_term X1 in - match constr:p with - | (fct_cte ?X2) => constr:(fct_cte (/ X2)) - | _ => constr:(/ p)%F - end - | (?X1 AppVar) => constr:X1 - | (?X1 ?X2) => - let p := rew_term X2 in - match constr:p with - | (fct_cte ?X3) => constr:(fct_cte (X1 X3)) - | _ => constr:(comp X1 p) - end - | AppVar => constr:id - | (AppVar ^ ?X1) => constr:(pow_fct X1) - | (?X1 ^ ?X2) => - let p := rew_term X1 in - match constr:p with - | (fct_cte ?X3) => constr:(fct_cte (pow_fct X2 X3)) - | _ => constr:(comp (pow_fct X2) p) - end - | ?X1 => constr:(fct_cte X1) - end. - -(**********) -Ltac deriv_proof trm pt := - match constr:trm with - | (?X1 + ?X2)%F => - let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in - constr:(derivable_pt_plus X1 X2 pt p1 p2) - | (?X1 - ?X2)%F => - let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in - constr:(derivable_pt_minus X1 X2 pt p1 p2) - | (?X1 * ?X2)%F => - let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in - constr:(derivable_pt_mult X1 X2 pt p1 p2) - | (?X1 / ?X2)%F => - match goal with - | id:(?X2 pt <> 0) |- _ => - let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in - constr:(derivable_pt_div X1 X2 pt p1 p2 id) - | _ => constr:False - end - | (/ ?X1)%F => - match goal with - | id:(?X1 pt <> 0) |- _ => - let p1 := deriv_proof X1 pt in - constr:(derivable_pt_inv X1 pt p1 id) - | _ => constr:False - end - | (comp ?X1 ?X2) => - let pt_f1 := eval cbv beta in (X2 pt) in - let p1 := deriv_proof X1 pt_f1 with p2 := deriv_proof X2 pt in - constr:(derivable_pt_comp X2 X1 pt p2 p1) - | (- ?X1)%F => - let p1 := deriv_proof X1 pt in - constr:(derivable_pt_opp X1 pt p1) - | sin => constr:(derivable_pt_sin pt) - | cos => constr:(derivable_pt_cos pt) - | sinh => constr:(derivable_pt_sinh pt) - | cosh => constr:(derivable_pt_cosh pt) - | exp => constr:(derivable_pt_exp pt) - | id => constr:(derivable_pt_id pt) - | Rsqr => constr:(derivable_pt_Rsqr pt) - | sqrt => - match goal with - | id:(0 < pt) |- _ => constr:(derivable_pt_sqrt pt id) - | _ => constr:False - end - | (fct_cte ?X1) => constr:(derivable_pt_const X1 pt) - | ?X1 => - let aux := constr:X1 in - match goal with - | id:(derivable_pt aux pt) |- _ => constr:id - | id:(derivable aux) |- _ => constr:(id pt) - | _ => constr:False - end - end. - -(**********) -Ltac simplify_derive trm pt := - match constr:trm with - | (?X1 + ?X2)%F => - try rewrite derive_pt_plus; simplify_derive X1 pt; - simplify_derive X2 pt - | (?X1 - ?X2)%F => - try rewrite derive_pt_minus; simplify_derive X1 pt; - simplify_derive X2 pt - | (?X1 * ?X2)%F => - try rewrite derive_pt_mult; simplify_derive X1 pt; - simplify_derive X2 pt - | (?X1 / ?X2)%F => - try rewrite derive_pt_div; simplify_derive X1 pt; simplify_derive X2 pt - | (comp ?X1 ?X2) => - let pt_f1 := eval cbv beta in (X2 pt) in - (try rewrite derive_pt_comp; simplify_derive X1 pt_f1; - simplify_derive X2 pt) - | (- ?X1)%F => try rewrite derive_pt_opp; simplify_derive X1 pt - | (/ ?X1)%F => - try rewrite derive_pt_inv; simplify_derive X1 pt - | (fct_cte ?X1) => try rewrite derive_pt_const - | id => try rewrite derive_pt_id - | sin => try rewrite derive_pt_sin - | cos => try rewrite derive_pt_cos - | sinh => try rewrite derive_pt_sinh - | cosh => try rewrite derive_pt_cosh - | exp => try rewrite derive_pt_exp - | Rsqr => try rewrite derive_pt_Rsqr - | sqrt => try rewrite derive_pt_sqrt - | ?X1 => - let aux := constr:X1 in - match goal with - | id:(derive_pt aux pt ?X2 = _),H:(derivable aux) |- _ => - try replace (derive_pt aux pt (H pt)) with (derive_pt aux pt X2); - [ rewrite id | apply pr_nu ] - | id:(derive_pt aux pt ?X2 = _),H:(derivable_pt aux pt) |- _ => - try replace (derive_pt aux pt H) with (derive_pt aux pt X2); - [ rewrite id | apply pr_nu ] - | _ => idtac - end - | _ => idtac - end. - -(**********) -Ltac reg := - match goal with - | |- (derivable_pt ?X1 ?X2) => - let trm := eval cbv beta in (X1 AppVar) in - let aux := rew_term trm in - (intro_hyp_pt aux X2; - try (change (derivable_pt aux X2) in |- *; is_diff_pt) || is_diff_pt) - | |- (derivable ?X1) => - let trm := eval cbv beta in (X1 AppVar) in - let aux := rew_term trm in - (intro_hyp_glob aux; - try (change (derivable aux) in |- *; is_diff_glob) || is_diff_glob) - | |- (continuity ?X1) => - let trm := eval cbv beta in (X1 AppVar) in - let aux := rew_term trm in - (intro_hyp_glob aux; - try (change (continuity aux) in |- *; is_cont_glob) || is_cont_glob) - | |- (continuity_pt ?X1 ?X2) => - let trm := eval cbv beta in (X1 AppVar) in - let aux := rew_term trm in - (intro_hyp_pt aux X2; - try (change (continuity_pt aux X2) in |- *; is_cont_pt) || is_cont_pt) - | |- (derive_pt ?X1 ?X2 ?X3 = ?X4) => - let trm := eval cbv beta in (X1 AppVar) in - let aux := rew_term trm in - intro_hyp_pt aux X2; - (let aux2 := deriv_proof aux X2 in - try - (replace (derive_pt X1 X2 X3) with (derive_pt aux X2 aux2); - [ simplify_derive aux X2; - try unfold plus_fct, minus_fct, mult_fct, div_fct, id, fct_cte, - inv_fct, opp_fct in |- *; ring || ring_simplify - | try apply pr_nu ]) || is_diff_pt) - end. +Require Export Ranalysis_reg. \ No newline at end of file -- cgit v1.2.3