From e0d682ec25282a348d35c5b169abafec48555690 Mon Sep 17 00:00:00 2001 From: Stephane Glondu Date: Mon, 20 Aug 2012 18:27:01 +0200 Subject: Imported Upstream version 8.4dfsg --- theories/Reals/MVT.v | 102 +++++++++++++++++++++++++-------------------------- 1 file changed, 51 insertions(+), 51 deletions(-) (limited to 'theories/Reals/MVT.v') diff --git a/theories/Reals/MVT.v b/theories/Reals/MVT.v index 29ebd46d..2ee22b6d 100644 --- a/theories/Reals/MVT.v +++ b/theories/Reals/MVT.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (g b - g a) * f y - (f b - f a) * g y) c (X c P)) with @@ -115,11 +115,11 @@ Proof. rewrite derive_pt_minus; do 2 rewrite derive_pt_mult; do 2 rewrite derive_pt_const; do 2 rewrite Rmult_0_l; do 2 rewrite Rplus_0_l; reflexivity. - unfold h in |- *; ring. - intros; unfold h in |- *; + unfold h; ring. + intros; unfold h; change (continuity_pt ((fct_cte (g b - g a) * f)%F - (fct_cte (f b - f a) * g)%F) - c) in |- *. + c). apply continuity_pt_minus; apply continuity_pt_mult. apply derivable_continuous_pt; apply derivable_const. apply H0; apply H3. @@ -128,7 +128,7 @@ Proof. intros; change (derivable_pt ((fct_cte (g b - g a) * f)%F - (fct_cte (f b - f a) * g)%F) - c) in |- *. + c). apply derivable_pt_minus; apply derivable_pt_mult. apply derivable_pt_const. apply (pr1 _ H3). @@ -178,7 +178,7 @@ Proof. cut (derive_pt id x (X2 x x0) = 1). cut (derive_pt f x (X0 x x0) = f' x). intros; rewrite H4 in H3; rewrite H5 in H3; unfold id in H3; - rewrite Rmult_1_r in H3; rewrite Rmult_comm; symmetry in |- *; + rewrite Rmult_1_r in H3; rewrite Rmult_comm; symmetry ; assumption. apply derive_pt_eq_0; apply H0; elim x0; intros; split; left; assumption. apply derive_pt_eq_0; apply derivable_pt_lim_id. @@ -188,7 +188,7 @@ Proof. intros; apply derivable_pt_id. intros; apply derivable_continuous_pt; apply X; assumption. intros; elim H1; intros; apply X; split; left; assumption. - intros; unfold derivable_pt in |- *; exists (f' c); apply H0; + intros; unfold derivable_pt; exists (f' c); apply H0; apply H1. Qed. @@ -221,7 +221,7 @@ Proof. unfold id in H6; unfold Rminus in H6; rewrite Rplus_opp_r in H6; rewrite Rmult_0_l in H6; apply Rmult_eq_reg_l with (b - a); [ rewrite Rmult_0_r; apply H6 - | apply Rminus_eq_contra; red in |- *; intro; rewrite H7 in H0; + | apply Rminus_eq_contra; red; intro; rewrite H7 in H0; elim (Rlt_irrefl _ H0) ]. Qed. @@ -231,7 +231,7 @@ Lemma nonneg_derivative_1 : (forall x:R, 0 <= derive_pt f x (pr x)) -> increasing f. Proof. intros. - unfold increasing in |- *. + unfold increasing. intros. case (total_order_T x y); intro. elim s; intro. @@ -268,12 +268,12 @@ Proof. intro; decompose [and] H8; intros; generalize (H7 (delta / 2) H9 H12); cut ((f (x + delta / 2) - f x) / (delta / 2) <= 0). intro; cut (0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)). - intro; unfold Rabs in |- *; + intro; unfold Rabs; case (Rcase_abs ((f (x + delta / 2) - f x) / (delta / 2) - l)). intros; generalize (Rplus_lt_compat_r (- l) (- ((f (x + delta / 2) - f x) / (delta / 2) - l)) - (l / 2) H14); unfold Rminus in |- *. + (l / 2) H14); unfold Rminus. replace (l / 2 + - l) with (- (l / 2)). replace (- ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l) with (- ((f (x + delta / 2) + - f x) / (delta / 2))). @@ -290,7 +290,7 @@ Proof. (Rlt_irrefl 0 (Rlt_le_trans 0 ((f (x + delta / 2) - f x) / (delta / 2)) 0 H17 H10)). ring. - pattern l at 3 in |- *; rewrite double_var. + pattern l at 3; rewrite double_var. ring. intros. generalize @@ -303,22 +303,22 @@ Proof. H15)). replace (- ((f (x + delta / 2) - f x) / (delta / 2) - l)) with ((f x - f (x + delta / 2)) / (delta / 2) + l). - unfold Rminus in |- *. + unfold Rminus. apply Rplus_le_lt_0_compat. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Rdiv; apply Rmult_le_pos. cut (x <= x + delta * / 2). intro; generalize (H0 x (x + delta * / 2) H13); intro; generalize (Rplus_le_compat_l (- f (x + delta / 2)) (f (x + delta / 2)) (f x) H14); rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption. - pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; + pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; left; assumption. left; apply Rinv_0_lt_compat; assumption. assumption. rewrite Ropp_minus_distr. - unfold Rminus in |- *. + unfold Rminus. rewrite (Rplus_comm l). - unfold Rdiv in |- *. + unfold Rdiv. rewrite <- Ropp_mult_distr_l_reverse. rewrite Ropp_plus_distr. rewrite Ropp_involutive. @@ -329,38 +329,38 @@ Proof. rewrite <- Ropp_0. apply Ropp_ge_le_contravar. apply Rle_ge. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Rdiv; apply Rmult_le_pos. cut (x <= x + delta * / 2). intro; generalize (H0 x (x + delta * / 2) H10); intro. generalize (Rplus_le_compat_l (- f (x + delta / 2)) (f (x + delta / 2)) (f x) H13); rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption. - pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; + pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; left; assumption. left; apply Rinv_0_lt_compat; assumption. - unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse. + unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse. rewrite Ropp_minus_distr. reflexivity. split. - unfold Rdiv in |- *; apply prod_neq_R0. - generalize (cond_pos delta); intro; red in |- *; intro H9; rewrite H9 in H8; + unfold Rdiv; apply prod_neq_R0. + generalize (cond_pos delta); intro; red; intro H9; rewrite H9 in H8; elim (Rlt_irrefl 0 H8). apply Rinv_neq_0_compat; discrR. split. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ]. rewrite Rabs_right. - unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2. + unfold Rdiv; apply Rmult_lt_reg_l with 2. prove_sup0. rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. - rewrite Rmult_1_l; rewrite double; pattern (pos delta) at 1 in |- *; + rewrite Rmult_1_l; rewrite double; pattern (pos delta) at 1; rewrite <- Rplus_0_r. apply Rplus_lt_compat_l; apply (cond_pos delta). discrR. - apply Rle_ge; unfold Rdiv in |- *; left; apply Rmult_lt_0_compat. + apply Rle_ge; unfold Rdiv; left; apply Rmult_lt_0_compat. apply (cond_pos delta). apply Rinv_0_lt_compat; prove_sup0. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply H4 | apply Rinv_0_lt_compat; prove_sup0 ]. Qed. @@ -368,7 +368,7 @@ Qed. Lemma increasing_decreasing_opp : forall f:R -> R, increasing f -> decreasing (- f)%F. Proof. - unfold increasing, decreasing, opp_fct in |- *; intros; generalize (H x y H0); + unfold increasing, decreasing, opp_fct; intros; generalize (H x y H0); intro; apply Ropp_ge_le_contravar; apply Rle_ge; assumption. Qed. @@ -381,8 +381,8 @@ Proof. cut (forall h:R, - - f h = f h). intro. generalize (increasing_decreasing_opp (- f)%F). - unfold decreasing in |- *. - unfold opp_fct in |- *. + unfold decreasing. + unfold opp_fct. intros. rewrite <- (H0 x); rewrite <- (H0 y). apply H1. @@ -410,7 +410,7 @@ Lemma positive_derivative : (forall x:R, 0 < derive_pt f x (pr x)) -> strict_increasing f. Proof. intros. - unfold strict_increasing in |- *. + unfold strict_increasing. intros. apply Rplus_lt_reg_r with (- f x). rewrite Rplus_opp_l; rewrite Rplus_comm. @@ -429,7 +429,7 @@ Qed. Lemma strictincreasing_strictdecreasing_opp : forall f:R -> R, strict_increasing f -> strict_decreasing (- f)%F. Proof. - unfold strict_increasing, strict_decreasing, opp_fct in |- *; intros; + unfold strict_increasing, strict_decreasing, opp_fct; intros; generalize (H x y H0); intro; apply Ropp_lt_gt_contravar; assumption. Qed. @@ -443,7 +443,7 @@ Proof. cut (forall h:R, - - f h = f h). intros. generalize (strictincreasing_strictdecreasing_opp (- f)%F). - unfold strict_decreasing, opp_fct in |- *. + unfold strict_decreasing, opp_fct. intros. rewrite <- (H0 x). rewrite <- (H0 y). @@ -470,8 +470,8 @@ Proof. intros. unfold constant in H. apply derive_pt_eq_0. - intros; exists (mkposreal 1 Rlt_0_1); simpl in |- *; intros. - rewrite (H x (x + h)); unfold Rminus in |- *; unfold Rdiv in |- *; + intros; exists (mkposreal 1 Rlt_0_1); simpl; intros. + rewrite (H x (x + h)); unfold Rminus; unfold Rdiv; rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. Qed. @@ -480,13 +480,13 @@ Qed. Lemma increasing_decreasing : forall f:R -> R, increasing f -> decreasing f -> constant f. Proof. - unfold increasing, decreasing, constant in |- *; intros; + unfold increasing, decreasing, constant; intros; case (Rtotal_order x y); intro. generalize (Rlt_le x y H1); intro; apply (Rle_antisym (f x) (f y) (H x y H2) (H0 x y H2)). elim H1; intro. rewrite H2; reflexivity. - generalize (Rlt_le y x H2); intro; symmetry in |- *; + generalize (Rlt_le y x H2); intro; symmetry ; apply (Rle_antisym (f y) (f x) (H y x H3) (H0 y x H3)). Qed. @@ -502,7 +502,7 @@ Proof. assert (H2 := nonneg_derivative_1 f pr H0). assert (H3 := nonpos_derivative_1 f pr H1). apply increasing_decreasing; assumption. - intro; right; symmetry in |- *; apply (H x). + intro; right; symmetry ; apply (H x). intro; right; apply (H x). Qed. @@ -601,7 +601,7 @@ Proof. elim H4; intros. split; left; assumption. rewrite b0. - unfold Rminus in |- *; do 2 rewrite Rplus_opp_r. + unfold Rminus; do 2 rewrite Rplus_opp_r. rewrite Rmult_0_r; right; reflexivity. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)). Qed. @@ -648,7 +648,7 @@ Lemma null_derivative_loc : (forall (x:R) (P:a < x < b), derive_pt f x (pr x P) = 0) -> constant_D_eq f (fun x:R => a <= x <= b) (f a). Proof. - intros; unfold constant_D_eq in |- *; intros; case (total_order_T a b); intro. + intros; unfold constant_D_eq; intros; case (total_order_T a b); intro. elim s; intro. assert (H2 : forall y:R, a < y < x -> derivable_pt id y). intros; apply derivable_pt_id. @@ -674,7 +674,7 @@ Proof. assert (H12 : derive_pt id x0 (H2 x0 x1) = 1). apply derive_pt_eq_0; apply derivable_pt_lim_id. rewrite H11 in H9; rewrite H12 in H9; rewrite Rmult_0_r in H9; - rewrite Rmult_1_r in H9; apply Rminus_diag_uniq; symmetry in |- *; + rewrite Rmult_1_r in H9; apply Rminus_diag_uniq; symmetry ; assumption. rewrite H1; reflexivity. assert (H2 : x = a). @@ -691,15 +691,15 @@ Lemma antiderivative_Ucte : antiderivative f g2 a b -> exists c : R, (forall x:R, a <= x <= b -> g1 x = g2 x + c). Proof. - unfold antiderivative in |- *; intros; elim H; clear H; intros; elim H0; + unfold antiderivative; intros; elim H; clear H; intros; elim H0; clear H0; intros H0 _; exists (g1 a - g2 a); intros; assert (H3 : forall x:R, a <= x <= b -> derivable_pt g1 x). - intros; unfold derivable_pt in |- *; exists (f x0); elim (H x0 H3); - intros; eapply derive_pt_eq_1; symmetry in |- *; + intros; unfold derivable_pt; exists (f x0); elim (H x0 H3); + intros; eapply derive_pt_eq_1; symmetry ; apply H4. assert (H4 : forall x:R, a <= x <= b -> derivable_pt g2 x). - intros; unfold derivable_pt in |- *; exists (f x0); - elim (H0 x0 H4); intros; eapply derive_pt_eq_1; symmetry in |- *; + intros; unfold derivable_pt; exists (f x0); + elim (H0 x0 H4); intros; eapply derive_pt_eq_1; symmetry ; apply H5. assert (H5 : forall x:R, a < x < b -> derivable_pt (g1 - g2) x). intros; elim H5; intros; apply derivable_pt_minus; @@ -713,7 +713,7 @@ Proof. assert (H9 : a <= x0 <= b). split; left; assumption. apply derivable_pt_lim_minus; [ elim (H _ H9) | elim (H0 _ H9) ]; intros; - eapply derive_pt_eq_1; symmetry in |- *; apply H10. + eapply derive_pt_eq_1; symmetry ; apply H10. assert (H8 := null_derivative_loc (g1 - g2)%F a b H5 H6 H7); unfold constant_D_eq in H8; assert (H9 := H8 _ H2); unfold minus_fct in H9; rewrite <- H9; ring. -- cgit v1.2.3