From 5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 Mon Sep 17 00:00:00 2001 From: Stephane Glondu Date: Wed, 21 Jul 2010 09:46:51 +0200 Subject: Imported Upstream snapshot 8.3~beta0+13298 --- theories/Reals/Cos_plus.v | 96 +++++++++++++++++++++++------------------------ 1 file changed, 48 insertions(+), 48 deletions(-) (limited to 'theories/Reals/Cos_plus.v') diff --git a/theories/Reals/Cos_plus.v b/theories/Reals/Cos_plus.v index 0de639e8..6c08356a 100644 --- a/theories/Reals/Cos_plus.v +++ b/theories/Reals/Cos_plus.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) - (*i $Id: Cos_plus.v 10710 2008-03-23 09:24:09Z herbelin $ i*) + (*i $Id$ i*) Require Import Rbase. Require Import Rfunctions. @@ -111,7 +111,7 @@ Proof. (Rsum_abs (fun l:nat => (-1) ^ S (l + n) / INR (fact (2 * S (l + n))) * x ^ (2 * S (l + n)) * - ((-1) ^ (N - l) / INR (fact (2 * (N - l)))) * + ((-1) ^ (N - l) / INR (fact (2 * (N - l)))) * y ^ (2 * (N - l))) (pred (N - n))). apply Rle_trans with (sum_f_R0 @@ -745,42 +745,42 @@ Proof. exact H. Qed. -Theorem cos_plus : forall x y:R, cos (x + y) = cos x * cos y - sin x * sin y. +Theorem cos_plus : forall x y:R, cos (x + y) = cos x * cos y - sin x * sin y. Proof. - intros. - cut (Un_cv (C1 x y) (cos x * cos y - sin x * sin y)). - cut (Un_cv (C1 x y) (cos (x + y))). - intros. - apply UL_sequence with (C1 x y); assumption. - apply C1_cvg. - unfold Un_cv in |- *; unfold R_dist in |- *. - intros. - assert (H0 := A1_cvg x). - assert (H1 := A1_cvg y). - assert (H2 := B1_cvg x). - assert (H3 := B1_cvg y). - assert (H4 := CV_mult _ _ _ _ H0 H1). - assert (H5 := CV_mult _ _ _ _ H2 H3). + intros. + cut (Un_cv (C1 x y) (cos x * cos y - sin x * sin y)). + cut (Un_cv (C1 x y) (cos (x + y))). + intros. + apply UL_sequence with (C1 x y); assumption. + apply C1_cvg. + unfold Un_cv in |- *; unfold R_dist in |- *. + intros. + assert (H0 := A1_cvg x). + assert (H1 := A1_cvg y). + assert (H2 := B1_cvg x). + assert (H3 := B1_cvg y). + assert (H4 := CV_mult _ _ _ _ H0 H1). + assert (H5 := CV_mult _ _ _ _ H2 H3). assert (H6 := reste_cv_R0 x y). unfold Un_cv in H4; unfold Un_cv in H5; unfold Un_cv in H6. - unfold R_dist in H4; unfold R_dist in H5; unfold R_dist in H6. + unfold R_dist in H4; unfold R_dist in H5; unfold R_dist in H6. cut (0 < eps / 3); [ intro | unfold Rdiv in |- *; apply Rmult_lt_0_compat; - [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ]. - elim (H4 (eps / 3) H7); intros N1 H8. - elim (H5 (eps / 3) H7); intros N2 H9. + [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ]. + elim (H4 (eps / 3) H7); intros N1 H8. + elim (H5 (eps / 3) H7); intros N2 H9. elim (H6 (eps / 3) H7); intros N3 H10. - set (N := S (S (max (max N1 N2) N3))). - exists N. - intros. - cut (n = S (pred n)). - intro; rewrite H12. - rewrite <- cos_plus_form. - rewrite <- H12. + set (N := S (S (max (max N1 N2) N3))). + exists N. + intros. + cut (n = S (pred n)). + intro; rewrite H12. + rewrite <- cos_plus_form. + rewrite <- H12. apply Rle_lt_trans with (Rabs (A1 x n * A1 y n - cos x * cos y) + - Rabs (sin x * sin y - B1 x (pred n) * B1 y (pred n) + Reste x y (pred n))). + Rabs (sin x * sin y - B1 x (pred n) * B1 y (pred n) + Reste x y (pred n))). replace (A1 x n * A1 y n - B1 x (pred n) * B1 y (pred n) + Reste x y (pred n) - (cos x * cos y - sin x * sin y)) with @@ -788,28 +788,28 @@ Proof. (sin x * sin y - B1 x (pred n) * B1 y (pred n) + Reste x y (pred n))); [ apply Rabs_triang | ring ]. replace eps with (eps / 3 + (eps / 3 + eps / 3)). - apply Rplus_lt_compat. - apply H8. - unfold ge in |- *; apply le_trans with N. - unfold N in |- *. - apply le_trans with (max N1 N2). - apply le_max_l. + apply Rplus_lt_compat. + apply H8. + unfold ge in |- *; apply le_trans with N. + unfold N in |- *. + apply le_trans with (max N1 N2). + apply le_max_l. apply le_trans with (max (max N1 N2) N3). apply le_max_l. apply le_trans with (S (max (max N1 N2) N3)); apply le_n_Sn. - assumption. + assumption. apply Rle_lt_trans with (Rabs (sin x * sin y - B1 x (pred n) * B1 y (pred n)) + Rabs (Reste x y (pred n))). apply Rabs_triang. apply Rplus_lt_compat. - rewrite <- Rabs_Ropp. - rewrite Ropp_minus_distr. - apply H9. - unfold ge in |- *; apply le_trans with (max N1 N2). - apply le_max_r. - apply le_S_n. - rewrite <- H12. + rewrite <- Rabs_Ropp. + rewrite Ropp_minus_distr. + apply H9. + unfold ge in |- *; apply le_trans with (max N1 N2). + apply le_max_r. + apply le_S_n. + rewrite <- H12. apply le_trans with N. unfold N in |- *. apply le_n_S. @@ -843,11 +843,11 @@ Proof. replace (S (pred N)) with N. assumption. unfold N in |- *; simpl in |- *; reflexivity. - cut (0 < N)%nat. - intro. - cut (0 < n)%nat. - intro. + cut (0 < N)%nat. + intro. + cut (0 < n)%nat. + intro. apply S_pred with 0%nat; assumption. - apply lt_le_trans with N; assumption. + apply lt_le_trans with N; assumption. unfold N in |- *; apply lt_O_Sn. Qed. -- cgit v1.2.3