From 9043add656177eeac1491a73d2f3ab92bec0013c Mon Sep 17 00:00:00 2001 From: Benjamin Barenblat Date: Sat, 29 Dec 2018 14:31:27 -0500 Subject: Imported Upstream version 8.8.2 --- theories/Numbers/Rational/BigQ/QMake.v | 1283 -------------------------------- 1 file changed, 1283 deletions(-) delete mode 100644 theories/Numbers/Rational/BigQ/QMake.v (limited to 'theories/Numbers/Rational/BigQ/QMake.v') diff --git a/theories/Numbers/Rational/BigQ/QMake.v b/theories/Numbers/Rational/BigQ/QMake.v deleted file mode 100644 index b9fed9d5..00000000 --- a/theories/Numbers/Rational/BigQ/QMake.v +++ /dev/null @@ -1,1283 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* ZZ.t. - Parameter spec_Z_of_N : forall n, ZZ.to_Z (Z_of_N n) = NN.to_Z n. - Parameter Zabs_N : ZZ.t -> NN.t. - Parameter spec_Zabs_N : forall z, NN.to_Z (Zabs_N z) = Z.abs (ZZ.to_Z z). -End NType_ZType. - -Module Make (NN:NType)(ZZ:ZType)(Import NZ:NType_ZType NN ZZ) <: QType. - - (** The notation of a rational number is either an integer x, - interpreted as itself or a pair (x,y) of an integer x and a natural - number y interpreted as x/y. The pairs (x,0) and (0,y) are all - interpreted as 0. *) - - Inductive t_ := - | Qz : ZZ.t -> t_ - | Qq : ZZ.t -> NN.t -> t_. - - Definition t := t_. - - (** Specification with respect to [QArith] *) - - Local Open Scope Q_scope. - - Definition of_Z x: t := Qz (ZZ.of_Z x). - - Definition of_Q (q:Q) : t := - let (x,y) := q in - match y with - | 1%positive => Qz (ZZ.of_Z x) - | _ => Qq (ZZ.of_Z x) (NN.of_N (Npos y)) - end. - - Definition to_Q (q: t) := - match q with - | Qz x => ZZ.to_Z x # 1 - | Qq x y => if NN.eqb y NN.zero then 0 - else ZZ.to_Z x # Z.to_pos (NN.to_Z y) - end. - - Notation "[ x ]" := (to_Q x). - - Lemma N_to_Z_pos : - forall x, (NN.to_Z x <> NN.to_Z NN.zero)%Z -> (0 < NN.to_Z x)%Z. - Proof. - intros x; rewrite NN.spec_0; generalize (NN.spec_pos x). romega. - Qed. - - Ltac destr_zcompare := case Z.compare_spec; intros ?H. - - Ltac destr_eqb := - match goal with - | |- context [ZZ.eqb ?x ?y] => - rewrite (ZZ.spec_eqb x y); - case (Z.eqb_spec (ZZ.to_Z x) (ZZ.to_Z y)); - destr_eqb - | |- context [NN.eqb ?x ?y] => - rewrite (NN.spec_eqb x y); - case (Z.eqb_spec (NN.to_Z x) (NN.to_Z y)); - [ | let H:=fresh "H" in - try (intro H;generalize (N_to_Z_pos _ H); clear H)]; - destr_eqb - | _ => idtac - end. - - Hint Rewrite - Z.add_0_r Z.add_0_l Z.mul_0_r Z.mul_0_l Z.mul_1_r Z.mul_1_l - ZZ.spec_0 NN.spec_0 ZZ.spec_1 NN.spec_1 ZZ.spec_m1 ZZ.spec_opp - ZZ.spec_compare NN.spec_compare - ZZ.spec_add NN.spec_add ZZ.spec_mul NN.spec_mul ZZ.spec_div NN.spec_div - ZZ.spec_gcd NN.spec_gcd Z.gcd_abs_l Z.gcd_1_r - spec_Z_of_N spec_Zabs_N - : nz. - - Ltac nzsimpl := autorewrite with nz in *. - - Ltac qsimpl := try red; unfold to_Q; simpl; intros; - destr_eqb; simpl; nzsimpl; intros; - rewrite ?Z2Pos.id by auto; - auto. - - Theorem strong_spec_of_Q: forall q: Q, [of_Q q] = q. - Proof. - intros(x,y); destruct y; simpl; rewrite ?ZZ.spec_of_Z; auto; - destr_eqb; now rewrite ?NN.spec_0, ?NN.spec_of_N. - Qed. - - Theorem spec_of_Q: forall q: Q, [of_Q q] == q. - Proof. - intros; rewrite strong_spec_of_Q; red; auto. - Qed. - - Definition eq x y := [x] == [y]. - - Definition zero: t := Qz ZZ.zero. - Definition one: t := Qz ZZ.one. - Definition minus_one: t := Qz ZZ.minus_one. - - Lemma spec_0: [zero] == 0. - Proof. - simpl. nzsimpl. reflexivity. - Qed. - - Lemma spec_1: [one] == 1. - Proof. - simpl. nzsimpl. reflexivity. - Qed. - - Lemma spec_m1: [minus_one] == -(1). - Proof. - simpl. nzsimpl. reflexivity. - Qed. - - Definition compare (x y: t) := - match x, y with - | Qz zx, Qz zy => ZZ.compare zx zy - | Qz zx, Qq ny dy => - if NN.eqb dy NN.zero then ZZ.compare zx ZZ.zero - else ZZ.compare (ZZ.mul zx (Z_of_N dy)) ny - | Qq nx dx, Qz zy => - if NN.eqb dx NN.zero then ZZ.compare ZZ.zero zy - else ZZ.compare nx (ZZ.mul zy (Z_of_N dx)) - | Qq nx dx, Qq ny dy => - match NN.eqb dx NN.zero, NN.eqb dy NN.zero with - | true, true => Eq - | true, false => ZZ.compare ZZ.zero ny - | false, true => ZZ.compare nx ZZ.zero - | false, false => ZZ.compare (ZZ.mul nx (Z_of_N dy)) - (ZZ.mul ny (Z_of_N dx)) - end - end. - - Theorem spec_compare: forall q1 q2, (compare q1 q2) = ([q1] ?= [q2]). - Proof. - intros [z1 | x1 y1] [z2 | x2 y2]; - unfold Qcompare, compare; qsimpl. - Qed. - - Definition lt n m := [n] < [m]. - Definition le n m := [n] <= [m]. - - Definition min n m := match compare n m with Gt => m | _ => n end. - Definition max n m := match compare n m with Lt => m | _ => n end. - - Lemma spec_min : forall n m, [min n m] == Qmin [n] [m]. - Proof. - unfold min, Qmin, GenericMinMax.gmin. intros. - rewrite spec_compare; destruct Qcompare; auto with qarith. - Qed. - - Lemma spec_max : forall n m, [max n m] == Qmax [n] [m]. - Proof. - unfold max, Qmax, GenericMinMax.gmax. intros. - rewrite spec_compare; destruct Qcompare; auto with qarith. - Qed. - - Definition eq_bool n m := - match compare n m with Eq => true | _ => false end. - - Theorem spec_eq_bool: forall x y, eq_bool x y = Qeq_bool [x] [y]. - Proof. - intros. unfold eq_bool. rewrite spec_compare. reflexivity. - Qed. - - (** [check_int] : is a reduced fraction [n/d] in fact a integer ? *) - - Definition check_int n d := - match NN.compare NN.one d with - | Lt => Qq n d - | Eq => Qz n - | Gt => zero (* n/0 encodes 0 *) - end. - - Theorem strong_spec_check_int : forall n d, [check_int n d] = [Qq n d]. - Proof. - intros; unfold check_int. - nzsimpl. - destr_zcompare. - simpl. rewrite <- H; qsimpl. congruence. - reflexivity. - qsimpl. exfalso; romega. - Qed. - - (** Normalisation function *) - - Definition norm n d : t := - let gcd := NN.gcd (Zabs_N n) d in - match NN.compare NN.one gcd with - | Lt => check_int (ZZ.div n (Z_of_N gcd)) (NN.div d gcd) - | Eq => check_int n d - | Gt => zero (* gcd = 0 => both numbers are 0 *) - end. - - Theorem spec_norm: forall n q, [norm n q] == [Qq n q]. - Proof. - intros p q; unfold norm. - assert (Hp := NN.spec_pos (Zabs_N p)). - assert (Hq := NN.spec_pos q). - nzsimpl. - destr_zcompare. - (* Eq *) - rewrite strong_spec_check_int; reflexivity. - (* Lt *) - rewrite strong_spec_check_int. - qsimpl. - generalize (Zgcd_div_pos (ZZ.to_Z p) (NN.to_Z q)). romega. - replace (NN.to_Z q) with 0%Z in * by assumption. - rewrite Zdiv_0_l in *; auto with zarith. - apply Zgcd_div_swap0; romega. - (* Gt *) - qsimpl. - assert (H' : Z.gcd (ZZ.to_Z p) (NN.to_Z q) = 0%Z). - generalize (Z.gcd_nonneg (ZZ.to_Z p) (NN.to_Z q)); romega. - symmetry; apply (Z.gcd_eq_0_l _ _ H'); auto. - Qed. - - Theorem strong_spec_norm : forall p q, [norm p q] = Qred [Qq p q]. - Proof. - intros. - replace (Qred [Qq p q]) with (Qred [norm p q]) by - (apply Qred_complete; apply spec_norm). - symmetry; apply Qred_identity. - unfold norm. - assert (Hp := NN.spec_pos (Zabs_N p)). - assert (Hq := NN.spec_pos q). - nzsimpl. - destr_zcompare; rewrite ?strong_spec_check_int. - (* Eq *) - qsimpl. - (* Lt *) - qsimpl. - rewrite Zgcd_1_rel_prime. - destruct (Z_lt_le_dec 0 (NN.to_Z q)). - apply Zis_gcd_rel_prime; auto with zarith. - apply Zgcd_is_gcd. - replace (NN.to_Z q) with 0%Z in * by romega. - rewrite Zdiv_0_l in *; romega. - (* Gt *) - simpl; auto with zarith. - Qed. - - (** Reduction function : producing irreducible fractions *) - - Definition red (x : t) : t := - match x with - | Qz z => x - | Qq n d => norm n d - end. - - Class Reduced x := is_reduced : [red x] = [x]. - - Theorem spec_red : forall x, [red x] == [x]. - Proof. - intros [ z | n d ]. - auto with qarith. - unfold red. - apply spec_norm. - Qed. - - Theorem strong_spec_red : forall x, [red x] = Qred [x]. - Proof. - intros [ z | n d ]. - unfold red. - symmetry; apply Qred_identity; simpl; auto with zarith. - unfold red; apply strong_spec_norm. - Qed. - - Definition add (x y: t): t := - match x with - | Qz zx => - match y with - | Qz zy => Qz (ZZ.add zx zy) - | Qq ny dy => - if NN.eqb dy NN.zero then x - else Qq (ZZ.add (ZZ.mul zx (Z_of_N dy)) ny) dy - end - | Qq nx dx => - if NN.eqb dx NN.zero then y - else match y with - | Qz zy => Qq (ZZ.add nx (ZZ.mul zy (Z_of_N dx))) dx - | Qq ny dy => - if NN.eqb dy NN.zero then x - else - let n := ZZ.add (ZZ.mul nx (Z_of_N dy)) (ZZ.mul ny (Z_of_N dx)) in - let d := NN.mul dx dy in - Qq n d - end - end. - - Theorem spec_add : forall x y, [add x y] == [x] + [y]. - Proof. - intros [x | nx dx] [y | ny dy]; unfold Qplus; qsimpl; - auto with zarith. - rewrite Pos.mul_1_r, Z2Pos.id; auto. - rewrite Pos.mul_1_r, Z2Pos.id; auto. - rewrite Z.mul_eq_0 in *; intuition. - rewrite Pos2Z.inj_mul, 2 Z2Pos.id; auto. - Qed. - - Definition add_norm (x y: t): t := - match x with - | Qz zx => - match y with - | Qz zy => Qz (ZZ.add zx zy) - | Qq ny dy => - if NN.eqb dy NN.zero then x - else norm (ZZ.add (ZZ.mul zx (Z_of_N dy)) ny) dy - end - | Qq nx dx => - if NN.eqb dx NN.zero then y - else match y with - | Qz zy => norm (ZZ.add nx (ZZ.mul zy (Z_of_N dx))) dx - | Qq ny dy => - if NN.eqb dy NN.zero then x - else - let n := ZZ.add (ZZ.mul nx (Z_of_N dy)) (ZZ.mul ny (Z_of_N dx)) in - let d := NN.mul dx dy in - norm n d - end - end. - - Theorem spec_add_norm : forall x y, [add_norm x y] == [x] + [y]. - Proof. - intros x y; rewrite <- spec_add. - destruct x; destruct y; unfold add_norm, add; - destr_eqb; auto using Qeq_refl, spec_norm. - Qed. - - Instance strong_spec_add_norm x y - `(Reduced x, Reduced y) : Reduced (add_norm x y). - Proof. - unfold Reduced; intros. - rewrite strong_spec_red. - rewrite <- (Qred_complete [add x y]); - [ | rewrite spec_add, spec_add_norm; apply Qeq_refl ]. - rewrite <- strong_spec_red. - destruct x as [zx|nx dx]; destruct y as [zy|ny dy]; - simpl; destr_eqb; nzsimpl; simpl; auto. - Qed. - - Definition opp (x: t): t := - match x with - | Qz zx => Qz (ZZ.opp zx) - | Qq nx dx => Qq (ZZ.opp nx) dx - end. - - Theorem strong_spec_opp: forall q, [opp q] = -[q]. - Proof. - intros [z | x y]; simpl. - rewrite ZZ.spec_opp; auto. - match goal with |- context[NN.eqb ?X ?Y] => - generalize (NN.spec_eqb X Y); case NN.eqb - end; auto; rewrite NN.spec_0. - rewrite ZZ.spec_opp; auto. - Qed. - - Theorem spec_opp : forall q, [opp q] == -[q]. - Proof. - intros; rewrite strong_spec_opp; red; auto. - Qed. - - Instance strong_spec_opp_norm q `(Reduced q) : Reduced (opp q). - Proof. - unfold Reduced; intros. - rewrite strong_spec_opp, <- H, !strong_spec_red, <- Qred_opp. - apply Qred_complete; apply spec_opp. - Qed. - - Definition sub x y := add x (opp y). - - Theorem spec_sub : forall x y, [sub x y] == [x] - [y]. - Proof. - intros x y; unfold sub; rewrite spec_add; auto. - rewrite spec_opp; ring. - Qed. - - Definition sub_norm x y := add_norm x (opp y). - - Theorem spec_sub_norm : forall x y, [sub_norm x y] == [x] - [y]. - Proof. - intros x y; unfold sub_norm; rewrite spec_add_norm; auto. - rewrite spec_opp; ring. - Qed. - - Instance strong_spec_sub_norm x y - `(Reduced x, Reduced y) : Reduced (sub_norm x y). - Proof. - intros. - unfold sub_norm. - apply strong_spec_add_norm; auto. - apply strong_spec_opp_norm; auto. - Qed. - - Definition mul (x y: t): t := - match x, y with - | Qz zx, Qz zy => Qz (ZZ.mul zx zy) - | Qz zx, Qq ny dy => Qq (ZZ.mul zx ny) dy - | Qq nx dx, Qz zy => Qq (ZZ.mul nx zy) dx - | Qq nx dx, Qq ny dy => Qq (ZZ.mul nx ny) (NN.mul dx dy) - end. - - Ltac nsubst := - match goal with E : NN.to_Z _ = _ |- _ => rewrite E in * end. - - Theorem spec_mul : forall x y, [mul x y] == [x] * [y]. - Proof. - intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl; qsimpl. - rewrite Pos.mul_1_r, Z2Pos.id; auto. - rewrite Z.mul_eq_0 in *; intuition. - nsubst; auto with zarith. - nsubst; auto with zarith. - nsubst; nzsimpl; auto with zarith. - rewrite Pos2Z.inj_mul, 2 Z2Pos.id; auto. - Qed. - - Definition norm_denum n d := - if NN.eqb d NN.one then Qz n else Qq n d. - - Lemma spec_norm_denum : forall n d, - [norm_denum n d] == [Qq n d]. - Proof. - unfold norm_denum; intros; simpl; qsimpl. - congruence. - nsubst; auto with zarith. - Qed. - - Definition irred n d := - let gcd := NN.gcd (Zabs_N n) d in - match NN.compare gcd NN.one with - | Gt => (ZZ.div n (Z_of_N gcd), NN.div d gcd) - | _ => (n, d) - end. - - Lemma spec_irred : forall n d, exists g, - let (n',d') := irred n d in - (ZZ.to_Z n' * g = ZZ.to_Z n)%Z /\ (NN.to_Z d' * g = NN.to_Z d)%Z. - Proof. - intros. - unfold irred; nzsimpl; simpl. - destr_zcompare. - exists 1%Z; nzsimpl; auto. - exists 0%Z; nzsimpl. - assert (Z.gcd (ZZ.to_Z n) (NN.to_Z d) = 0%Z). - generalize (Z.gcd_nonneg (ZZ.to_Z n) (NN.to_Z d)); romega. - clear H. - split. - symmetry; apply (Z.gcd_eq_0_l _ _ H0). - symmetry; apply (Z.gcd_eq_0_r _ _ H0). - exists (Z.gcd (ZZ.to_Z n) (NN.to_Z d)). - simpl. - split. - nzsimpl. - destruct (Zgcd_is_gcd (ZZ.to_Z n) (NN.to_Z d)). - rewrite Z.mul_comm; symmetry; apply Zdivide_Zdiv_eq; auto with zarith. - nzsimpl. - destruct (Zgcd_is_gcd (ZZ.to_Z n) (NN.to_Z d)). - rewrite Z.mul_comm; symmetry; apply Zdivide_Zdiv_eq; auto with zarith. - Qed. - - Lemma spec_irred_zero : forall n d, - (NN.to_Z d = 0)%Z <-> (NN.to_Z (snd (irred n d)) = 0)%Z. - Proof. - intros. - unfold irred. - split. - nzsimpl; intros. - destr_zcompare; auto. - simpl. - nzsimpl. - rewrite H, Zdiv_0_l; auto. - nzsimpl; destr_zcompare; simpl; auto. - nzsimpl. - intros. - generalize (NN.spec_pos d); intros. - destruct (NN.to_Z d); auto. - assert (0 < 0)%Z. - rewrite <- H0 at 2. - apply Zgcd_div_pos; auto with zarith. - compute; auto. - discriminate. - compute in H1; elim H1; auto. - Qed. - - Lemma strong_spec_irred : forall n d, - (NN.to_Z d <> 0%Z) -> - let (n',d') := irred n d in Z.gcd (ZZ.to_Z n') (NN.to_Z d') = 1%Z. - Proof. - unfold irred; intros. - nzsimpl. - destr_zcompare; simpl; auto. - elim H. - apply (Z.gcd_eq_0_r (ZZ.to_Z n)). - generalize (Z.gcd_nonneg (ZZ.to_Z n) (NN.to_Z d)); romega. - - nzsimpl. - rewrite Zgcd_1_rel_prime. - apply Zis_gcd_rel_prime. - generalize (NN.spec_pos d); romega. - generalize (Z.gcd_nonneg (ZZ.to_Z n) (NN.to_Z d)); romega. - apply Zgcd_is_gcd; auto. - Qed. - - Definition mul_norm_Qz_Qq z n d := - if ZZ.eqb z ZZ.zero then zero - else - let gcd := NN.gcd (Zabs_N z) d in - match NN.compare gcd NN.one with - | Gt => - let z := ZZ.div z (Z_of_N gcd) in - let d := NN.div d gcd in - norm_denum (ZZ.mul z n) d - | _ => Qq (ZZ.mul z n) d - end. - - Definition mul_norm (x y: t): t := - match x, y with - | Qz zx, Qz zy => Qz (ZZ.mul zx zy) - | Qz zx, Qq ny dy => mul_norm_Qz_Qq zx ny dy - | Qq nx dx, Qz zy => mul_norm_Qz_Qq zy nx dx - | Qq nx dx, Qq ny dy => - let (nx, dy) := irred nx dy in - let (ny, dx) := irred ny dx in - norm_denum (ZZ.mul ny nx) (NN.mul dx dy) - end. - - Lemma spec_mul_norm_Qz_Qq : forall z n d, - [mul_norm_Qz_Qq z n d] == [Qq (ZZ.mul z n) d]. - Proof. - intros z n d; unfold mul_norm_Qz_Qq; nzsimpl; rewrite Zcompare_gt. - destr_eqb; nzsimpl; intros Hz. - qsimpl; rewrite Hz; auto. - destruct Z_le_gt_dec as [LE|GT]. - qsimpl. - rewrite spec_norm_denum. - qsimpl. - rewrite Zdiv_gcd_zero in GT; auto with zarith. - nsubst. rewrite Zdiv_0_l in *; discriminate. - rewrite <- Z.mul_assoc, (Z.mul_comm (ZZ.to_Z n)), Z.mul_assoc. - rewrite Zgcd_div_swap0; try romega. - ring. - Qed. - - Instance strong_spec_mul_norm_Qz_Qq z n d : - forall `(Reduced (Qq n d)), Reduced (mul_norm_Qz_Qq z n d). - Proof. - unfold Reduced. - rewrite 2 strong_spec_red, 2 Qred_iff. - simpl; nzsimpl. - destr_eqb; intros Hd H; simpl in *; nzsimpl. - - unfold mul_norm_Qz_Qq; nzsimpl; rewrite Zcompare_gt. - destr_eqb; intros Hz; simpl; nzsimpl; simpl; auto. - destruct Z_le_gt_dec. - simpl; nzsimpl. - destr_eqb; simpl; nzsimpl; auto with zarith. - unfold norm_denum. destr_eqb; simpl; nzsimpl. - rewrite Hd, Zdiv_0_l; discriminate. - intros _. - destr_eqb; simpl; nzsimpl; auto. - nzsimpl; rewrite Hd, Zdiv_0_l; auto with zarith. - - rewrite Z2Pos.id in H; auto. - unfold mul_norm_Qz_Qq; nzsimpl; rewrite Zcompare_gt. - destr_eqb; intros Hz; simpl; nzsimpl; simpl; auto. - destruct Z_le_gt_dec as [H'|H']. - simpl; nzsimpl. - destr_eqb; simpl; nzsimpl; auto. - intros. - rewrite Z2Pos.id; auto. - apply Zgcd_mult_rel_prime; auto. - generalize (Z.gcd_eq_0_l (ZZ.to_Z z) (NN.to_Z d)) - (Z.gcd_nonneg (ZZ.to_Z z) (NN.to_Z d)); romega. - destr_eqb; simpl; nzsimpl; auto. - unfold norm_denum. - destr_eqb; nzsimpl; simpl; destr_eqb; simpl; auto. - intros; nzsimpl. - rewrite Z2Pos.id; auto. - apply Zgcd_mult_rel_prime. - rewrite Zgcd_1_rel_prime. - apply Zis_gcd_rel_prime. - generalize (NN.spec_pos d); romega. - generalize (Z.gcd_nonneg (ZZ.to_Z z) (NN.to_Z d)); romega. - apply Zgcd_is_gcd. - destruct (Zgcd_is_gcd (ZZ.to_Z z) (NN.to_Z d)) as [ (z0,Hz0) (d0,Hd0) Hzd]. - replace (NN.to_Z d / Z.gcd (ZZ.to_Z z) (NN.to_Z d))%Z with d0. - rewrite Zgcd_1_rel_prime in *. - apply bezout_rel_prime. - destruct (rel_prime_bezout _ _ H) as [u v Huv]. - apply Bezout_intro with u (v*(Z.gcd (ZZ.to_Z z) (NN.to_Z d)))%Z. - rewrite <- Huv; rewrite Hd0 at 2; ring. - rewrite Hd0 at 1. - symmetry; apply Z_div_mult_full; auto with zarith. - Qed. - - Theorem spec_mul_norm : forall x y, [mul_norm x y] == [x] * [y]. - Proof. - intros x y; rewrite <- spec_mul; auto. - unfold mul_norm, mul; destruct x; destruct y. - apply Qeq_refl. - apply spec_mul_norm_Qz_Qq. - rewrite spec_mul_norm_Qz_Qq; qsimpl; ring. - - rename t0 into nx, t3 into dy, t2 into ny, t1 into dx. - destruct (spec_irred nx dy) as (g & Hg). - destruct (spec_irred ny dx) as (g' & Hg'). - assert (Hz := spec_irred_zero nx dy). - assert (Hz':= spec_irred_zero ny dx). - destruct irred as (n1,d1); destruct irred as (n2,d2). - simpl @snd in *; destruct Hg as [Hg1 Hg2]; destruct Hg' as [Hg1' Hg2']. - rewrite spec_norm_denum. - qsimpl. - - match goal with E : (_ * _ = 0)%Z |- _ => - rewrite Z.mul_eq_0 in E; destruct E as [Eq|Eq] end. - rewrite Eq in *; simpl in *. - rewrite <- Hg2' in *; auto with zarith. - rewrite Eq in *; simpl in *. - rewrite <- Hg2 in *; auto with zarith. - - match goal with E : (_ * _ = 0)%Z |- _ => - rewrite Z.mul_eq_0 in E; destruct E as [Eq|Eq] end. - rewrite Hz' in Eq; rewrite Eq in *; auto with zarith. - rewrite Hz in Eq; rewrite Eq in *; auto with zarith. - - rewrite <- Hg1, <- Hg2, <- Hg1', <- Hg2'; ring. - Qed. - - Instance strong_spec_mul_norm x y : - forall `(Reduced x, Reduced y), Reduced (mul_norm x y). - Proof. - unfold Reduced; intros. - rewrite strong_spec_red, Qred_iff. - destruct x as [zx|nx dx]; destruct y as [zy|ny dy]. - simpl in *; auto with zarith. - simpl. - rewrite <- Qred_iff, <- strong_spec_red, strong_spec_mul_norm_Qz_Qq; auto. - simpl. - rewrite <- Qred_iff, <- strong_spec_red, strong_spec_mul_norm_Qz_Qq; auto. - simpl. - destruct (spec_irred nx dy) as [g Hg]. - destruct (spec_irred ny dx) as [g' Hg']. - assert (Hz := spec_irred_zero nx dy). - assert (Hz':= spec_irred_zero ny dx). - assert (Hgc := strong_spec_irred nx dy). - assert (Hgc' := strong_spec_irred ny dx). - destruct irred as (n1,d1); destruct irred as (n2,d2). - simpl @snd in *; destruct Hg as [Hg1 Hg2]; destruct Hg' as [Hg1' Hg2']. - - unfold norm_denum; qsimpl. - - assert (NEQ : NN.to_Z dy <> 0%Z) by - (rewrite Hz; intros EQ; rewrite EQ in *; romega). - specialize (Hgc NEQ). - - assert (NEQ' : NN.to_Z dx <> 0%Z) by - (rewrite Hz'; intro EQ; rewrite EQ in *; romega). - specialize (Hgc' NEQ'). - - revert H H0. - rewrite 2 strong_spec_red, 2 Qred_iff; simpl. - destr_eqb; simpl; nzsimpl; try romega; intros. - rewrite Z2Pos.id in *; auto. - - apply Zgcd_mult_rel_prime; rewrite Z.gcd_comm; - apply Zgcd_mult_rel_prime; rewrite Z.gcd_comm; auto. - - rewrite Zgcd_1_rel_prime in *. - apply bezout_rel_prime. - destruct (rel_prime_bezout (ZZ.to_Z ny) (NN.to_Z dy)) as [u v Huv]; trivial. - apply Bezout_intro with (u*g')%Z (v*g)%Z. - rewrite <- Huv, <- Hg1', <- Hg2. ring. - - rewrite Zgcd_1_rel_prime in *. - apply bezout_rel_prime. - destruct (rel_prime_bezout (ZZ.to_Z nx) (NN.to_Z dx)) as [u v Huv]; trivial. - apply Bezout_intro with (u*g)%Z (v*g')%Z. - rewrite <- Huv, <- Hg2', <- Hg1. ring. - Qed. - - Definition inv (x: t): t := - match x with - | Qz z => - match ZZ.compare ZZ.zero z with - | Eq => zero - | Lt => Qq ZZ.one (Zabs_N z) - | Gt => Qq ZZ.minus_one (Zabs_N z) - end - | Qq n d => - match ZZ.compare ZZ.zero n with - | Eq => zero - | Lt => Qq (Z_of_N d) (Zabs_N n) - | Gt => Qq (ZZ.opp (Z_of_N d)) (Zabs_N n) - end - end. - - Theorem spec_inv : forall x, [inv x] == /[x]. - Proof. - destruct x as [ z | n d ]. - (* Qz z *) - simpl. - rewrite ZZ.spec_compare; destr_zcompare. - (* 0 = z *) - rewrite <- H. - simpl; nzsimpl; compute; auto. - (* 0 < z *) - simpl. - destr_eqb; nzsimpl; [ intros; rewrite Z.abs_eq in *; romega | intros _ ]. - set (z':=ZZ.to_Z z) in *; clearbody z'. - red; simpl. - rewrite Z.abs_eq by romega. - rewrite Z2Pos.id by auto. - unfold Qinv; simpl; destruct z'; simpl; auto; discriminate. - (* 0 > z *) - simpl. - destr_eqb; nzsimpl; [ intros; rewrite Z.abs_neq in *; romega | intros _ ]. - set (z':=ZZ.to_Z z) in *; clearbody z'. - red; simpl. - rewrite Z.abs_neq by romega. - rewrite Z2Pos.id by romega. - unfold Qinv; simpl; destruct z'; simpl; auto; discriminate. - (* Qq n d *) - simpl. - rewrite ZZ.spec_compare; destr_zcompare. - (* 0 = n *) - rewrite <- H. - simpl; nzsimpl. - destr_eqb; intros; compute; auto. - (* 0 < n *) - simpl. - destr_eqb; nzsimpl; intros. - intros; rewrite Z.abs_eq in *; romega. - intros; rewrite Z.abs_eq in *; romega. - nsubst; compute; auto. - set (n':=ZZ.to_Z n) in *; clearbody n'. - rewrite Z.abs_eq by romega. - red; simpl. - rewrite Z2Pos.id by auto. - unfold Qinv; simpl; destruct n'; simpl; auto; try discriminate. - rewrite Pos2Z.inj_mul, Z2Pos.id; auto. - (* 0 > n *) - simpl. - destr_eqb; nzsimpl; intros. - intros; rewrite Z.abs_neq in *; romega. - intros; rewrite Z.abs_neq in *; romega. - nsubst; compute; auto. - set (n':=ZZ.to_Z n) in *; clearbody n'. - red; simpl; nzsimpl. - rewrite Z.abs_neq by romega. - rewrite Z2Pos.id by romega. - unfold Qinv; simpl; destruct n'; simpl; auto; try discriminate. - assert (T : forall x, Zneg x = Z.opp (Zpos x)) by auto. - rewrite T, Pos2Z.inj_mul, Z2Pos.id; auto; ring. - Qed. - - Definition inv_norm (x: t): t := - match x with - | Qz z => - match ZZ.compare ZZ.zero z with - | Eq => zero - | Lt => Qq ZZ.one (Zabs_N z) - | Gt => Qq ZZ.minus_one (Zabs_N z) - end - | Qq n d => - if NN.eqb d NN.zero then zero else - match ZZ.compare ZZ.zero n with - | Eq => zero - | Lt => - match ZZ.compare n ZZ.one with - | Gt => Qq (Z_of_N d) (Zabs_N n) - | _ => Qz (Z_of_N d) - end - | Gt => - match ZZ.compare n ZZ.minus_one with - | Lt => Qq (ZZ.opp (Z_of_N d)) (Zabs_N n) - | _ => Qz (ZZ.opp (Z_of_N d)) - end - end - end. - - Theorem spec_inv_norm : forall x, [inv_norm x] == /[x]. - Proof. - intros. - rewrite <- spec_inv. - destruct x as [ z | n d ]. - (* Qz z *) - simpl. - rewrite ZZ.spec_compare; destr_zcompare; auto with qarith. - (* Qq n d *) - simpl; nzsimpl; destr_eqb. - destr_zcompare; simpl; auto with qarith. - destr_eqb; nzsimpl; auto with qarith. - intros _ Hd; rewrite Hd; auto with qarith. - destr_eqb; nzsimpl; auto with qarith. - intros _ Hd; rewrite Hd; auto with qarith. - (* 0 < n *) - destr_zcompare; auto with qarith. - destr_zcompare; nzsimpl; simpl; auto with qarith; intros. - destr_eqb; nzsimpl; [ intros; rewrite Z.abs_eq in *; romega | intros _ ]. - rewrite H0; auto with qarith. - romega. - (* 0 > n *) - destr_zcompare; nzsimpl; simpl; auto with qarith. - destr_eqb; nzsimpl; [ intros; rewrite Z.abs_neq in *; romega | intros _ ]. - rewrite H0; auto with qarith. - romega. - Qed. - - Instance strong_spec_inv_norm x : Reduced x -> Reduced (inv_norm x). - Proof. - unfold Reduced. - intros. - destruct x as [ z | n d ]. - (* Qz *) - simpl; nzsimpl. - rewrite strong_spec_red, Qred_iff. - destr_zcompare; simpl; nzsimpl; auto. - destr_eqb; nzsimpl; simpl; auto. - destr_eqb; nzsimpl; simpl; auto. - (* Qq n d *) - rewrite strong_spec_red, Qred_iff in H; revert H. - simpl; nzsimpl. - destr_eqb; nzsimpl; auto with qarith. - destr_zcompare; simpl; nzsimpl; auto; intros. - (* 0 < n *) - destr_zcompare; simpl; nzsimpl; auto. - destr_eqb; nzsimpl; simpl; auto. - rewrite Z.abs_eq; romega. - intros _. - rewrite strong_spec_norm; simpl; nzsimpl. - destr_eqb; nzsimpl. - rewrite Z.abs_eq; romega. - intros _. - rewrite Qred_iff. - simpl. - rewrite Z.abs_eq; auto with zarith. - rewrite Z2Pos.id in *; auto. - rewrite Z.gcd_comm; auto. - (* 0 > n *) - destr_eqb; nzsimpl; simpl; auto; intros. - destr_zcompare; simpl; nzsimpl; auto. - destr_eqb; nzsimpl. - rewrite Z.abs_neq; romega. - intros _. - rewrite strong_spec_norm; simpl; nzsimpl. - destr_eqb; nzsimpl. - rewrite Z.abs_neq; romega. - intros _. - rewrite Qred_iff. - simpl. - rewrite Z2Pos.id in *; auto. - intros. - rewrite Z.gcd_comm, Z.gcd_abs_l, Z.gcd_comm. - apply Zis_gcd_gcd; auto with zarith. - apply Zis_gcd_minus. - rewrite Z.opp_involutive, <- H1; apply Zgcd_is_gcd. - rewrite Z.abs_neq; romega. - Qed. - - Definition div x y := mul x (inv y). - - Theorem spec_div x y: [div x y] == [x] / [y]. - Proof. - unfold div; rewrite spec_mul; auto. - unfold Qdiv; apply Qmult_comp. - apply Qeq_refl. - apply spec_inv; auto. - Qed. - - Definition div_norm x y := mul_norm x (inv_norm y). - - Theorem spec_div_norm x y: [div_norm x y] == [x] / [y]. - Proof. - unfold div_norm; rewrite spec_mul_norm; auto. - unfold Qdiv; apply Qmult_comp. - apply Qeq_refl. - apply spec_inv_norm; auto. - Qed. - - Instance strong_spec_div_norm x y - `(Reduced x, Reduced y) : Reduced (div_norm x y). - Proof. - intros; unfold div_norm. - apply strong_spec_mul_norm; auto. - apply strong_spec_inv_norm; auto. - Qed. - - Definition square (x: t): t := - match x with - | Qz zx => Qz (ZZ.square zx) - | Qq nx dx => Qq (ZZ.square nx) (NN.square dx) - end. - - Theorem spec_square : forall x, [square x] == [x] ^ 2. - Proof. - destruct x as [ z | n d ]. - simpl; rewrite ZZ.spec_square; red; auto. - simpl. - destr_eqb; nzsimpl; intros. - apply Qeq_refl. - rewrite NN.spec_square in *; nzsimpl. - rewrite Z.mul_eq_0 in *; romega. - rewrite NN.spec_square in *; nzsimpl; nsubst; romega. - rewrite ZZ.spec_square, NN.spec_square. - red; simpl. - rewrite Pos2Z.inj_mul; rewrite !Z2Pos.id; auto. - apply Z.mul_pos_pos; auto. - Qed. - - Definition power_pos (x : t) p : t := - match x with - | Qz zx => Qz (ZZ.pow_pos zx p) - | Qq nx dx => Qq (ZZ.pow_pos nx p) (NN.pow_pos dx p) - end. - - Theorem spec_power_pos : forall x p, [power_pos x p] == [x] ^ Zpos p. - Proof. - intros [ z | n d ] p; unfold power_pos. - (* Qz *) - simpl. - rewrite ZZ.spec_pow_pos, Qpower_decomp. - red; simpl; f_equal. - now rewrite Pos2Z.inj_pow, Z.pow_1_l. - (* Qq *) - simpl. - rewrite ZZ.spec_pow_pos. - destr_eqb; nzsimpl; intros. - - apply Qeq_sym; apply Qpower_positive_0. - - rewrite NN.spec_pow_pos in *. - assert (0 < NN.to_Z d ^ ' p)%Z by - (apply Z.pow_pos_nonneg; auto with zarith). - romega. - - exfalso. - rewrite NN.spec_pow_pos in *. nsubst. - rewrite Z.pow_0_l' in *; [romega|discriminate]. - - rewrite Qpower_decomp. - red; simpl; do 3 f_equal. - apply Pos2Z.inj. rewrite Pos2Z.inj_pow. - rewrite 2 Z2Pos.id by (generalize (NN.spec_pos d); romega). - now rewrite NN.spec_pow_pos. - Qed. - - Instance strong_spec_power_pos x p `(Reduced x) : Reduced (power_pos x p). - Proof. - destruct x as [z | n d]; simpl; intros. - red; simpl; auto. - red; simpl; intros. - rewrite strong_spec_norm; simpl. - destr_eqb; nzsimpl; intros. - simpl; auto. - rewrite Qred_iff. - revert H. - unfold Reduced; rewrite strong_spec_red, Qred_iff; simpl. - destr_eqb; nzsimpl; simpl; intros. - exfalso. - rewrite NN.spec_pow_pos in *. nsubst. - rewrite Z.pow_0_l' in *; [romega|discriminate]. - rewrite Z2Pos.id in *; auto. - rewrite NN.spec_pow_pos, ZZ.spec_pow_pos; auto. - rewrite Zgcd_1_rel_prime in *. - apply rel_prime_Zpower; auto with zarith. - Qed. - - Definition power (x : t) (z : Z) : t := - match z with - | Z0 => one - | Zpos p => power_pos x p - | Zneg p => inv (power_pos x p) - end. - - Theorem spec_power : forall x z, [power x z] == [x]^z. - Proof. - destruct z. - simpl; nzsimpl; red; auto. - apply spec_power_pos. - simpl. - rewrite spec_inv, spec_power_pos; apply Qeq_refl. - Qed. - - Definition power_norm (x : t) (z : Z) : t := - match z with - | Z0 => one - | Zpos p => power_pos x p - | Zneg p => inv_norm (power_pos x p) - end. - - Theorem spec_power_norm : forall x z, [power_norm x z] == [x]^z. - Proof. - destruct z. - simpl; nzsimpl; red; auto. - apply spec_power_pos. - simpl. - rewrite spec_inv_norm, spec_power_pos; apply Qeq_refl. - Qed. - - Instance strong_spec_power_norm x z : - Reduced x -> Reduced (power_norm x z). - Proof. - destruct z; simpl. - intros _; unfold Reduced; rewrite strong_spec_red. - unfold one. - simpl to_Q; nzsimpl; auto. - intros; apply strong_spec_power_pos; auto. - intros; apply strong_spec_inv_norm; apply strong_spec_power_pos; auto. - Qed. - - - (** Interaction with [Qcanon.Qc] *) - - Open Scope Qc_scope. - - Definition of_Qc q := of_Q (this q). - - Definition to_Qc q := Q2Qc [q]. - - Notation "[[ x ]]" := (to_Qc x). - - Theorem strong_spec_of_Qc : forall q, [of_Qc q] = q. - Proof. - intros (q,Hq); intros. - unfold of_Qc; rewrite strong_spec_of_Q; auto. - Qed. - - Instance strong_spec_of_Qc_bis q : Reduced (of_Qc q). - Proof. - intros; red; rewrite strong_spec_red, strong_spec_of_Qc. - destruct q; simpl; auto. - Qed. - - Theorem spec_of_Qc: forall q, [[of_Qc q]] = q. - Proof. - intros; apply Qc_decomp; simpl; intros. - rewrite strong_spec_of_Qc. apply canon. - Qed. - - Theorem spec_oppc: forall q, [[opp q]] = -[[q]]. - Proof. - intros q; unfold Qcopp, to_Qc, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - rewrite spec_opp, <- Qred_opp, Qred_correct. - apply Qeq_refl. - Qed. - - Theorem spec_oppc_bis : forall q : Qc, [opp (of_Qc q)] = - q. - Proof. - intros. - rewrite <- strong_spec_opp_norm by apply strong_spec_of_Qc_bis. - rewrite strong_spec_red. - symmetry; apply (Qred_complete (-q)%Q). - rewrite spec_opp, strong_spec_of_Qc; auto with qarith. - Qed. - - Theorem spec_comparec: forall q1 q2, - compare q1 q2 = ([[q1]] ?= [[q2]]). - Proof. - unfold Qccompare, to_Qc. - intros q1 q2; rewrite spec_compare; simpl; auto. - apply Qcompare_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_addc x y: - [[add x y]] = [[x]] + [[y]]. - Proof. - unfold to_Qc. - transitivity (Q2Qc ([x] + [y])). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_add; auto. - unfold Qcplus, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qplus_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_add_normc x y: - [[add_norm x y]] = [[x]] + [[y]]. - Proof. - unfold to_Qc. - transitivity (Q2Qc ([x] + [y])). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_add_norm; auto. - unfold Qcplus, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qplus_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_add_normc_bis : forall x y : Qc, - [add_norm (of_Qc x) (of_Qc y)] = x+y. - Proof. - intros. - rewrite <- strong_spec_add_norm by apply strong_spec_of_Qc_bis. - rewrite strong_spec_red. - symmetry; apply (Qred_complete (x+y)%Q). - rewrite spec_add_norm, ! strong_spec_of_Qc; auto with qarith. - Qed. - - Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]]. - Proof. - unfold sub; rewrite spec_addc; auto. - rewrite spec_oppc; ring. - Qed. - - Theorem spec_sub_normc x y: - [[sub_norm x y]] = [[x]] - [[y]]. - Proof. - unfold sub_norm; rewrite spec_add_normc; auto. - rewrite spec_oppc; ring. - Qed. - - Theorem spec_sub_normc_bis : forall x y : Qc, - [sub_norm (of_Qc x) (of_Qc y)] = x-y. - Proof. - intros. - rewrite <- strong_spec_sub_norm by apply strong_spec_of_Qc_bis. - rewrite strong_spec_red. - symmetry; apply (Qred_complete (x+(-y)%Qc)%Q). - rewrite spec_sub_norm, ! strong_spec_of_Qc. - unfold Qcopp, Q2Qc, this. rewrite Qred_correct ; auto with qarith. - Qed. - - Theorem spec_mulc x y: - [[mul x y]] = [[x]] * [[y]]. - Proof. - unfold to_Qc. - transitivity (Q2Qc ([x] * [y])). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_mul; auto. - unfold Qcmult, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qmult_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_mul_normc x y: - [[mul_norm x y]] = [[x]] * [[y]]. - Proof. - unfold to_Qc. - transitivity (Q2Qc ([x] * [y])). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_mul_norm; auto. - unfold Qcmult, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qmult_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_mul_normc_bis : forall x y : Qc, - [mul_norm (of_Qc x) (of_Qc y)] = x*y. - Proof. - intros. - rewrite <- strong_spec_mul_norm by apply strong_spec_of_Qc_bis. - rewrite strong_spec_red. - symmetry; apply (Qred_complete (x*y)%Q). - rewrite spec_mul_norm, ! strong_spec_of_Qc; auto with qarith. - Qed. - - Theorem spec_invc x: - [[inv x]] = /[[x]]. - Proof. - unfold to_Qc. - transitivity (Q2Qc (/[x])). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_inv; auto. - unfold Qcinv, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qinv_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_inv_normc x: - [[inv_norm x]] = /[[x]]. - Proof. - unfold to_Qc. - transitivity (Q2Qc (/[x])). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_inv_norm; auto. - unfold Qcinv, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qinv_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_inv_normc_bis : forall x : Qc, - [inv_norm (of_Qc x)] = /x. - Proof. - intros. - rewrite <- strong_spec_inv_norm by apply strong_spec_of_Qc_bis. - rewrite strong_spec_red. - symmetry; apply (Qred_complete (/x)%Q). - rewrite spec_inv_norm, ! strong_spec_of_Qc; auto with qarith. - Qed. - - Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]]. - Proof. - unfold div; rewrite spec_mulc; auto. - unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto. - apply spec_invc; auto. - Qed. - - Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]]. - Proof. - unfold div_norm; rewrite spec_mul_normc; auto. - unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto. - apply spec_inv_normc; auto. - Qed. - - Theorem spec_div_normc_bis : forall x y : Qc, - [div_norm (of_Qc x) (of_Qc y)] = x/y. - Proof. - intros. - rewrite <- strong_spec_div_norm by apply strong_spec_of_Qc_bis. - rewrite strong_spec_red. - symmetry; apply (Qred_complete (x*(/y)%Qc)%Q). - rewrite spec_div_norm, ! strong_spec_of_Qc. - unfold Qcinv, Q2Qc, this; rewrite Qred_correct; auto with qarith. - Qed. - - Theorem spec_squarec x: [[square x]] = [[x]]^2. - Proof. - unfold to_Qc. - transitivity (Q2Qc ([x]^2)). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_square; auto. - simpl Qcpower. - replace (Q2Qc [x] * 1) with (Q2Qc [x]); try ring. - simpl. - unfold Qcmult, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qmult_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_power_posc x p: - [[power_pos x p]] = [[x]] ^ Pos.to_nat p. - Proof. - unfold to_Qc. - transitivity (Q2Qc ([x]^Zpos p)). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_power_pos; auto. - induction p using Pos.peano_ind. - simpl; ring. - rewrite Pos2Nat.inj_succ; simpl Qcpower. - rewrite <- IHp; clear IHp. - unfold Qcmult, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - setoid_replace ([x] ^ ' Pos.succ p)%Q with ([x] * [x] ^ ' p)%Q. - apply Qmult_comp; apply Qeq_sym; apply Qred_correct. - simpl. - rewrite <- Pos.add_1_l. - rewrite Qpower_plus_positive; simpl; apply Qeq_refl. - Qed. - -End Make. -- cgit v1.2.3