From 9043add656177eeac1491a73d2f3ab92bec0013c Mon Sep 17 00:00:00 2001 From: Benjamin Barenblat Date: Sat, 29 Dec 2018 14:31:27 -0500 Subject: Imported Upstream version 8.8.2 --- theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v | 487 ------------------------ 1 file changed, 487 deletions(-) delete mode 100644 theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v (limited to 'theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v') diff --git a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v deleted file mode 100644 index 355da4cc..00000000 --- a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v +++ /dev/null @@ -1,487 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* eq) succ. -Program Instance pred_wd : Proper (eq==>eq) pred. -Program Instance add_wd : Proper (eq==>eq==>eq) add. -Program Instance sub_wd : Proper (eq==>eq==>eq) sub. -Program Instance mul_wd : Proper (eq==>eq==>eq) mul. - -Theorem pred_succ : forall n, pred (succ n) == n. -Proof. -intros. zify. omega_pos n. -Qed. - -Theorem one_succ : 1 == succ 0. -Proof. -now zify. -Qed. - -Theorem two_succ : 2 == succ 1. -Proof. -now zify. -Qed. - -Definition N_of_Z z := of_N (Z.to_N z). - -Lemma spec_N_of_Z z : (0<=z)%Z -> [N_of_Z z] = z. -Proof. - unfold N_of_Z. zify. apply Z2N.id. -Qed. - -Section Induction. - -Variable A : NN.t -> Prop. -Hypothesis A_wd : Proper (eq==>iff) A. -Hypothesis A0 : A 0. -Hypothesis AS : forall n, A n <-> A (succ n). - -Let B (z : Z) := A (N_of_Z z). - -Lemma B0 : B 0. -Proof. -unfold B, N_of_Z; simpl. -rewrite <- (A_wd 0); auto. -red; rewrite spec_0, spec_of_N; auto. -Qed. - -Lemma BS : forall z : Z, (0 <= z)%Z -> B z -> B (z + 1). -Proof. -intros z H1 H2. -unfold B in *. apply -> AS in H2. -setoid_replace (N_of_Z (z + 1)) with (succ (N_of_Z z)); auto. -unfold eq. rewrite spec_succ, 2 spec_N_of_Z; auto with zarith. -Qed. - -Lemma B_holds : forall z : Z, (0 <= z)%Z -> B z. -Proof. -exact (natlike_ind B B0 BS). -Qed. - -Theorem bi_induction : forall n, A n. -Proof. -intro n. setoid_replace n with (N_of_Z (to_Z n)). -apply B_holds. apply spec_pos. -red. now rewrite spec_N_of_Z by apply spec_pos. -Qed. - -End Induction. - -Theorem add_0_l : forall n, 0 + n == n. -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem add_succ_l : forall n m, (succ n) + m == succ (n + m). -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem sub_0_r : forall n, n - 0 == n. -Proof. -intros. zify. omega_pos n. -Qed. - -Theorem sub_succ_r : forall n m, n - (succ m) == pred (n - m). -Proof. -intros. zify. omega with *. -Qed. - -Theorem mul_0_l : forall n, 0 * n == 0. -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem mul_succ_l : forall n m, (succ n) * m == n * m + m. -Proof. -intros. zify. ring. -Qed. - -(** Order *) - -Lemma eqb_eq x y : eqb x y = true <-> x == y. -Proof. - zify. apply Z.eqb_eq. -Qed. - -Lemma leb_le x y : leb x y = true <-> x <= y. -Proof. - zify. apply Z.leb_le. -Qed. - -Lemma ltb_lt x y : ltb x y = true <-> x < y. -Proof. - zify. apply Z.ltb_lt. -Qed. - -Lemma compare_eq_iff n m : compare n m = Eq <-> n == m. -Proof. - intros. zify. apply Z.compare_eq_iff. -Qed. - -Lemma compare_lt_iff n m : compare n m = Lt <-> n < m. -Proof. - intros. zify. reflexivity. -Qed. - -Lemma compare_le_iff n m : compare n m <> Gt <-> n <= m. -Proof. - intros. zify. reflexivity. -Qed. - -Lemma compare_antisym n m : compare m n = CompOpp (compare n m). -Proof. - intros. zify. apply Z.compare_antisym. -Qed. - -Include BoolOrderFacts NN NN NN [no inline]. - -Instance compare_wd : Proper (eq ==> eq ==> Logic.eq) compare. -Proof. -intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. -Qed. - -Instance eqb_wd : Proper (eq ==> eq ==> Logic.eq) eqb. -Proof. -intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. -Qed. - -Instance ltb_wd : Proper (eq ==> eq ==> Logic.eq) ltb. -Proof. -intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. -Qed. - -Instance leb_wd : Proper (eq ==> eq ==> Logic.eq) leb. -Proof. -intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. -Qed. - -Instance lt_wd : Proper (eq ==> eq ==> iff) lt. -Proof. -intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition. -Qed. - -Theorem lt_succ_r : forall n m, n < succ m <-> n <= m. -Proof. -intros. zify. omega. -Qed. - -Theorem min_l : forall n m, n <= m -> min n m == n. -Proof. -intros n m. zify. omega with *. -Qed. - -Theorem min_r : forall n m, m <= n -> min n m == m. -Proof. -intros n m. zify. omega with *. -Qed. - -Theorem max_l : forall n m, m <= n -> max n m == n. -Proof. -intros n m. zify. omega with *. -Qed. - -Theorem max_r : forall n m, n <= m -> max n m == m. -Proof. -intros n m. zify. omega with *. -Qed. - -(** Properties specific to natural numbers, not integers. *) - -Theorem pred_0 : pred 0 == 0. -Proof. -zify. auto. -Qed. - -(** Power *) - -Program Instance pow_wd : Proper (eq==>eq==>eq) pow. - -Lemma pow_0_r : forall a, a^0 == 1. -Proof. - intros. now zify. -Qed. - -Lemma pow_succ_r : forall a b, 0<=b -> a^(succ b) == a * a^b. -Proof. - intros a b. zify. intros. now Z.nzsimpl. -Qed. - -Lemma pow_neg_r : forall a b, b<0 -> a^b == 0. -Proof. - intros a b. zify. intro Hb. exfalso. omega_pos b. -Qed. - -Lemma pow_pow_N : forall a b, a^b == pow_N a (to_N b). -Proof. - intros. zify. f_equal. - now rewrite Z2N.id by apply spec_pos. -Qed. - -Lemma pow_N_pow : forall a b, pow_N a b == a^(of_N b). -Proof. - intros. now zify. -Qed. - -Lemma pow_pos_N : forall a p, pow_pos a p == pow_N a (Npos p). -Proof. - intros. now zify. -Qed. - -(** Square *) - -Lemma square_spec n : square n == n * n. -Proof. - now zify. -Qed. - -(** Sqrt *) - -Lemma sqrt_spec : forall n, 0<=n -> - (sqrt n)*(sqrt n) <= n /\ n < (succ (sqrt n))*(succ (sqrt n)). -Proof. - intros n. zify. apply Z.sqrt_spec. -Qed. - -Lemma sqrt_neg : forall n, n<0 -> sqrt n == 0. -Proof. - intros n. zify. intro H. exfalso. omega_pos n. -Qed. - -(** Log2 *) - -Lemma log2_spec : forall n, 0 - 2^(log2 n) <= n /\ n < 2^(succ (log2 n)). -Proof. - intros n. zify. change (Z.log2 [n]+1)%Z with (Z.succ (Z.log2 [n])). - apply Z.log2_spec. -Qed. - -Lemma log2_nonpos : forall n, n<=0 -> log2 n == 0. -Proof. - intros n. zify. apply Z.log2_nonpos. -Qed. - -(** Even / Odd *) - -Definition Even n := exists m, n == 2*m. -Definition Odd n := exists m, n == 2*m+1. - -Lemma even_spec n : even n = true <-> Even n. -Proof. - unfold Even. zify. rewrite Z.even_spec. - split; intros (m,Hm). - - exists (N_of_Z m). zify. rewrite spec_N_of_Z; trivial. omega_pos n. - - exists [m]. revert Hm; now zify. -Qed. - -Lemma odd_spec n : odd n = true <-> Odd n. -Proof. - unfold Odd. zify. rewrite Z.odd_spec. - split; intros (m,Hm). - - exists (N_of_Z m). zify. rewrite spec_N_of_Z; trivial. omega_pos n. - - exists [m]. revert Hm; now zify. -Qed. - -(** Div / Mod *) - -Program Instance div_wd : Proper (eq==>eq==>eq) div. -Program Instance mod_wd : Proper (eq==>eq==>eq) modulo. - -Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b). -Proof. -intros a b. zify. intros. apply Z.div_mod; auto. -Qed. - -Theorem mod_bound_pos : forall a b, 0<=a -> 0 - 0 <= modulo a b /\ modulo a b < b. -Proof. -intros a b. zify. apply Z.mod_bound_pos. -Qed. - -(** Gcd *) - -Definition divide n m := exists p, m == p*n. -Local Notation "( x | y )" := (divide x y) (at level 0). - -Lemma spec_divide : forall n m, (n|m) <-> Z.divide [n] [m]. -Proof. - intros n m. split. - - intros (p,H). exists [p]. revert H; now zify. - - intros (z,H). exists (of_N (Z.abs_N z)). zify. - rewrite N2Z.inj_abs_N. - rewrite <- (Z.abs_eq [m]), <- (Z.abs_eq [n]) by apply spec_pos. - now rewrite H, Z.abs_mul. -Qed. - -Lemma gcd_divide_l : forall n m, (gcd n m | n). -Proof. - intros n m. apply spec_divide. zify. apply Z.gcd_divide_l. -Qed. - -Lemma gcd_divide_r : forall n m, (gcd n m | m). -Proof. - intros n m. apply spec_divide. zify. apply Z.gcd_divide_r. -Qed. - -Lemma gcd_greatest : forall n m p, (p|n) -> (p|m) -> (p|gcd n m). -Proof. - intros n m p. rewrite !spec_divide. zify. apply Z.gcd_greatest. -Qed. - -Lemma gcd_nonneg : forall n m, 0 <= gcd n m. -Proof. - intros. zify. apply Z.gcd_nonneg. -Qed. - -(** Bitwise operations *) - -Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit. - -Lemma testbit_odd_0 : forall a, testbit (2*a+1) 0 = true. -Proof. - intros. zify. apply Z.testbit_odd_0. -Qed. - -Lemma testbit_even_0 : forall a, testbit (2*a) 0 = false. -Proof. - intros. zify. apply Z.testbit_even_0. -Qed. - -Lemma testbit_odd_succ : forall a n, 0<=n -> - testbit (2*a+1) (succ n) = testbit a n. -Proof. - intros a n. zify. apply Z.testbit_odd_succ. -Qed. - -Lemma testbit_even_succ : forall a n, 0<=n -> - testbit (2*a) (succ n) = testbit a n. -Proof. - intros a n. zify. apply Z.testbit_even_succ. -Qed. - -Lemma testbit_neg_r : forall a n, n<0 -> testbit a n = false. -Proof. - intros a n. zify. apply Z.testbit_neg_r. -Qed. - -Lemma shiftr_spec : forall a n m, 0<=m -> - testbit (shiftr a n) m = testbit a (m+n). -Proof. - intros a n m. zify. apply Z.shiftr_spec. -Qed. - -Lemma shiftl_spec_high : forall a n m, 0<=m -> n<=m -> - testbit (shiftl a n) m = testbit a (m-n). -Proof. - intros a n m. zify. intros Hn H. rewrite Z.max_r by auto with zarith. - now apply Z.shiftl_spec_high. -Qed. - -Lemma shiftl_spec_low : forall a n m, m - testbit (shiftl a n) m = false. -Proof. - intros a n m. zify. intros H. now apply Z.shiftl_spec_low. -Qed. - -Lemma land_spec : forall a b n, - testbit (land a b) n = testbit a n && testbit b n. -Proof. - intros a n m. zify. now apply Z.land_spec. -Qed. - -Lemma lor_spec : forall a b n, - testbit (lor a b) n = testbit a n || testbit b n. -Proof. - intros a n m. zify. now apply Z.lor_spec. -Qed. - -Lemma ldiff_spec : forall a b n, - testbit (ldiff a b) n = testbit a n && negb (testbit b n). -Proof. - intros a n m. zify. now apply Z.ldiff_spec. -Qed. - -Lemma lxor_spec : forall a b n, - testbit (lxor a b) n = xorb (testbit a n) (testbit b n). -Proof. - intros a n m. zify. now apply Z.lxor_spec. -Qed. - -Lemma div2_spec : forall a, div2 a == shiftr a 1. -Proof. - intros a. zify. now apply Z.div2_spec. -Qed. - -(** Recursion *) - -Definition recursion (A : Type) (a : A) (f : NN.t -> A -> A) (n : NN.t) := - N.peano_rect (fun _ => A) a (fun n a => f (NN.of_N n) a) (NN.to_N n). -Arguments recursion [A] a f n. - -Instance recursion_wd (A : Type) (Aeq : relation A) : - Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) (@recursion A). -Proof. -unfold eq. -intros a a' Eaa' f f' Eff' x x' Exx'. -unfold recursion. -unfold NN.to_N. -rewrite <- Exx'; clear x' Exx'. -induction (Z.to_N [x]) using N.peano_ind. -simpl; auto. -rewrite 2 N.peano_rect_succ. now apply Eff'. -Qed. - -Theorem recursion_0 : - forall (A : Type) (a : A) (f : NN.t -> A -> A), recursion a f 0 = a. -Proof. -intros A a f; unfold recursion, NN.to_N; rewrite NN.spec_0; simpl; auto. -Qed. - -Theorem recursion_succ : - forall (A : Type) (Aeq : relation A) (a : A) (f : NN.t -> A -> A), - Aeq a a -> Proper (eq==>Aeq==>Aeq) f -> - forall n, Aeq (recursion a f (succ n)) (f n (recursion a f n)). -Proof. -unfold eq, recursion; intros A Aeq a f EAaa f_wd n. -replace (to_N (succ n)) with (N.succ (to_N n)) by - (zify; now rewrite <- Z2N.inj_succ by apply spec_pos). -rewrite N.peano_rect_succ. -apply f_wd; auto. -zify. now rewrite Z2N.id by apply spec_pos. -fold (recursion a f n). apply recursion_wd; auto. red; auto. -Qed. - -End NTypeIsNAxioms. - -Module NType_NAxioms (NN : NType) - <: NAxiomsSig <: OrderFunctions NN <: HasMinMax NN - := NN <+ NTypeIsNAxioms. -- cgit v1.2.3