From a0cfa4f118023d35b767a999d5a2ac4b082857b4 Mon Sep 17 00:00:00 2001 From: Samuel Mimram Date: Fri, 25 Jul 2008 15:12:53 +0200 Subject: Imported Upstream version 8.2~beta3+dfsg --- theories/Numbers/Natural/Peano/NPeano.v | 220 ++++++++++++++++++++++++++++++++ 1 file changed, 220 insertions(+) create mode 100644 theories/Numbers/Natural/Peano/NPeano.v (limited to 'theories/Numbers/Natural/Peano') diff --git a/theories/Numbers/Natural/Peano/NPeano.v b/theories/Numbers/Natural/Peano/NPeano.v new file mode 100644 index 00000000..1c83da45 --- /dev/null +++ b/theories/Numbers/Natural/Peano/NPeano.v @@ -0,0 +1,220 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* NZeq as NZsucc_wd. +Proof. +congruence. +Qed. + +Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd. +Proof. +congruence. +Qed. + +Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd. +Proof. +congruence. +Qed. + +Add Morphism NZsub with signature NZeq ==> NZeq ==> NZeq as NZsub_wd. +Proof. +congruence. +Qed. + +Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd. +Proof. +congruence. +Qed. + +Theorem NZinduction : + forall A : nat -> Prop, predicate_wd (@eq nat) A -> + A 0 -> (forall n : nat, A n <-> A (S n)) -> forall n : nat, A n. +Proof. +intros A A_wd A0 AS. apply nat_ind. assumption. intros; now apply -> AS. +Qed. + +Theorem NZpred_succ : forall n : nat, pred (S n) = n. +Proof. +reflexivity. +Qed. + +Theorem NZadd_0_l : forall n : nat, 0 + n = n. +Proof. +reflexivity. +Qed. + +Theorem NZadd_succ_l : forall n m : nat, (S n) + m = S (n + m). +Proof. +reflexivity. +Qed. + +Theorem NZsub_0_r : forall n : nat, n - 0 = n. +Proof. +intro n; now destruct n. +Qed. + +Theorem NZsub_succ_r : forall n m : nat, n - (S m) = pred (n - m). +Proof. +intros n m; induction n m using nat_double_ind; simpl; auto. apply NZsub_0_r. +Qed. + +Theorem NZmul_0_l : forall n : nat, 0 * n = 0. +Proof. +reflexivity. +Qed. + +Theorem NZmul_succ_l : forall n m : nat, S n * m = n * m + m. +Proof. +intros n m; now rewrite plus_comm. +Qed. + +End NZAxiomsMod. + +Definition NZlt := lt. +Definition NZle := le. +Definition NZmin := min. +Definition NZmax := max. + +Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd. +Proof. +unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2. +Qed. + +Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd. +Proof. +unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2. +Qed. + +Add Morphism NZmin with signature NZeq ==> NZeq ==> NZeq as NZmin_wd. +Proof. +congruence. +Qed. + +Add Morphism NZmax with signature NZeq ==> NZeq ==> NZeq as NZmax_wd. +Proof. +congruence. +Qed. + +Theorem NZlt_eq_cases : forall n m : nat, n <= m <-> n < m \/ n = m. +Proof. +intros n m; split. +apply le_lt_or_eq. +intro H; destruct H as [H | H]. +now apply lt_le_weak. rewrite H; apply le_refl. +Qed. + +Theorem NZlt_irrefl : forall n : nat, ~ (n < n). +Proof. +exact lt_irrefl. +Qed. + +Theorem NZlt_succ_r : forall n m : nat, n < S m <-> n <= m. +Proof. +intros n m; split; [apply lt_n_Sm_le | apply le_lt_n_Sm]. +Qed. + +Theorem NZmin_l : forall n m : nat, n <= m -> NZmin n m = n. +Proof. +exact min_l. +Qed. + +Theorem NZmin_r : forall n m : nat, m <= n -> NZmin n m = m. +Proof. +exact min_r. +Qed. + +Theorem NZmax_l : forall n m : nat, m <= n -> NZmax n m = n. +Proof. +exact max_l. +Qed. + +Theorem NZmax_r : forall n m : nat, n <= m -> NZmax n m = m. +Proof. +exact max_r. +Qed. + +End NZOrdAxiomsMod. + +Definition recursion : forall A : Type, A -> (nat -> A -> A) -> nat -> A := + fun A : Type => nat_rect (fun _ => A). +Implicit Arguments recursion [A]. + +Theorem succ_neq_0 : forall n : nat, S n <> 0. +Proof. +intros; discriminate. +Qed. + +Theorem pred_0 : pred 0 = 0. +Proof. +reflexivity. +Qed. + +Theorem recursion_wd : forall (A : Type) (Aeq : relation A), + forall a a' : A, Aeq a a' -> + forall f f' : nat -> A -> A, fun2_eq (@eq nat) Aeq Aeq f f' -> + forall n n' : nat, n = n' -> + Aeq (recursion a f n) (recursion a' f' n'). +Proof. +unfold fun2_eq; induction n; intros n' Enn'; rewrite <- Enn' in *; simpl; auto. +Qed. + +Theorem recursion_0 : + forall (A : Type) (a : A) (f : nat -> A -> A), recursion a f 0 = a. +Proof. +reflexivity. +Qed. + +Theorem recursion_succ : + forall (A : Type) (Aeq : relation A) (a : A) (f : nat -> A -> A), + Aeq a a -> fun2_wd (@eq nat) Aeq Aeq f -> + forall n : nat, Aeq (recursion a f (S n)) (f n (recursion a f n)). +Proof. +induction n; simpl; auto. +Qed. + +End NPeanoAxiomsMod. + +(* Now we apply the largest property functor *) + +Module Export NPeanoSubPropMod := NSubPropFunct NPeanoAxiomsMod. + -- cgit v1.2.3