From 5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 Mon Sep 17 00:00:00 2001 From: Stephane Glondu Date: Wed, 21 Jul 2010 09:46:51 +0200 Subject: Imported Upstream snapshot 8.3~beta0+13298 --- theories/Numbers/Integer/Abstract/ZAdd.v | 318 +++++++++++++------------------ 1 file changed, 133 insertions(+), 185 deletions(-) (limited to 'theories/Numbers/Integer/Abstract/ZAdd.v') diff --git a/theories/Numbers/Integer/Abstract/ZAdd.v b/theories/Numbers/Integer/Abstract/ZAdd.v index df941d90..5663408d 100644 --- a/theories/Numbers/Integer/Abstract/ZAdd.v +++ b/theories/Numbers/Integer/Abstract/ZAdd.v @@ -8,338 +8,286 @@ (* Evgeny Makarov, INRIA, 2007 *) (************************************************************************) -(*i $Id: ZAdd.v 11040 2008-06-03 00:04:16Z letouzey $ i*) +(*i $Id$ i*) Require Export ZBase. -Module ZAddPropFunct (Import ZAxiomsMod : ZAxiomsSig). -Module Export ZBasePropMod := ZBasePropFunct ZAxiomsMod. -Open Local Scope IntScope. +Module ZAddPropFunct (Import Z : ZAxiomsSig'). +Include ZBasePropFunct Z. -Theorem Zadd_wd : - forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> n1 + m1 == n2 + m2. -Proof NZadd_wd. +(** Theorems that are either not valid on N or have different proofs + on N and Z *) -Theorem Zadd_0_l : forall n : Z, 0 + n == n. -Proof NZadd_0_l. - -Theorem Zadd_succ_l : forall n m : Z, (S n) + m == S (n + m). -Proof NZadd_succ_l. - -Theorem Zsub_0_r : forall n : Z, n - 0 == n. -Proof NZsub_0_r. - -Theorem Zsub_succ_r : forall n m : Z, n - (S m) == P (n - m). -Proof NZsub_succ_r. - -Theorem Zopp_0 : - 0 == 0. -Proof Zopp_0. - -Theorem Zopp_succ : forall n : Z, - (S n) == P (- n). -Proof Zopp_succ. - -(* Theorems that are valid for both natural numbers and integers *) - -Theorem Zadd_0_r : forall n : Z, n + 0 == n. -Proof NZadd_0_r. - -Theorem Zadd_succ_r : forall n m : Z, n + S m == S (n + m). -Proof NZadd_succ_r. - -Theorem Zadd_comm : forall n m : Z, n + m == m + n. -Proof NZadd_comm. - -Theorem Zadd_assoc : forall n m p : Z, n + (m + p) == (n + m) + p. -Proof NZadd_assoc. - -Theorem Zadd_shuffle1 : forall n m p q : Z, (n + m) + (p + q) == (n + p) + (m + q). -Proof NZadd_shuffle1. - -Theorem Zadd_shuffle2 : forall n m p q : Z, (n + m) + (p + q) == (n + q) + (m + p). -Proof NZadd_shuffle2. - -Theorem Zadd_1_l : forall n : Z, 1 + n == S n. -Proof NZadd_1_l. - -Theorem Zadd_1_r : forall n : Z, n + 1 == S n. -Proof NZadd_1_r. - -Theorem Zadd_cancel_l : forall n m p : Z, p + n == p + m <-> n == m. -Proof NZadd_cancel_l. - -Theorem Zadd_cancel_r : forall n m p : Z, n + p == m + p <-> n == m. -Proof NZadd_cancel_r. - -(* Theorems that are either not valid on N or have different proofs on N and Z *) - -Theorem Zadd_pred_l : forall n m : Z, P n + m == P (n + m). +Theorem add_pred_l : forall n m, P n + m == P (n + m). Proof. intros n m. -rewrite <- (Zsucc_pred n) at 2. -rewrite Zadd_succ_l. now rewrite Zpred_succ. +rewrite <- (succ_pred n) at 2. +rewrite add_succ_l. now rewrite pred_succ. Qed. -Theorem Zadd_pred_r : forall n m : Z, n + P m == P (n + m). +Theorem add_pred_r : forall n m, n + P m == P (n + m). Proof. -intros n m; rewrite (Zadd_comm n (P m)), (Zadd_comm n m); -apply Zadd_pred_l. +intros n m; rewrite (add_comm n (P m)), (add_comm n m); +apply add_pred_l. Qed. -Theorem Zadd_opp_r : forall n m : Z, n + (- m) == n - m. +Theorem add_opp_r : forall n m, n + (- m) == n - m. Proof. -NZinduct m. -rewrite Zopp_0; rewrite Zsub_0_r; now rewrite Zadd_0_r. -intro m. rewrite Zopp_succ, Zsub_succ_r, Zadd_pred_r; now rewrite Zpred_inj_wd. +nzinduct m. +rewrite opp_0; rewrite sub_0_r; now rewrite add_0_r. +intro m. rewrite opp_succ, sub_succ_r, add_pred_r; now rewrite pred_inj_wd. Qed. -Theorem Zsub_0_l : forall n : Z, 0 - n == - n. +Theorem sub_0_l : forall n, 0 - n == - n. Proof. -intro n; rewrite <- Zadd_opp_r; now rewrite Zadd_0_l. +intro n; rewrite <- add_opp_r; now rewrite add_0_l. Qed. -Theorem Zsub_succ_l : forall n m : Z, S n - m == S (n - m). +Theorem sub_succ_l : forall n m, S n - m == S (n - m). Proof. -intros n m; do 2 rewrite <- Zadd_opp_r; now rewrite Zadd_succ_l. +intros n m; do 2 rewrite <- add_opp_r; now rewrite add_succ_l. Qed. -Theorem Zsub_pred_l : forall n m : Z, P n - m == P (n - m). +Theorem sub_pred_l : forall n m, P n - m == P (n - m). Proof. -intros n m. rewrite <- (Zsucc_pred n) at 2. -rewrite Zsub_succ_l; now rewrite Zpred_succ. +intros n m. rewrite <- (succ_pred n) at 2. +rewrite sub_succ_l; now rewrite pred_succ. Qed. -Theorem Zsub_pred_r : forall n m : Z, n - (P m) == S (n - m). +Theorem sub_pred_r : forall n m, n - (P m) == S (n - m). Proof. -intros n m. rewrite <- (Zsucc_pred m) at 2. -rewrite Zsub_succ_r; now rewrite Zsucc_pred. +intros n m. rewrite <- (succ_pred m) at 2. +rewrite sub_succ_r; now rewrite succ_pred. Qed. -Theorem Zopp_pred : forall n : Z, - (P n) == S (- n). +Theorem opp_pred : forall n, - (P n) == S (- n). Proof. -intro n. rewrite <- (Zsucc_pred n) at 2. -rewrite Zopp_succ. now rewrite Zsucc_pred. +intro n. rewrite <- (succ_pred n) at 2. +rewrite opp_succ. now rewrite succ_pred. Qed. -Theorem Zsub_diag : forall n : Z, n - n == 0. +Theorem sub_diag : forall n, n - n == 0. Proof. -NZinduct n. -now rewrite Zsub_0_r. -intro n. rewrite Zsub_succ_r, Zsub_succ_l; now rewrite Zpred_succ. +nzinduct n. +now rewrite sub_0_r. +intro n. rewrite sub_succ_r, sub_succ_l; now rewrite pred_succ. Qed. -Theorem Zadd_opp_diag_l : forall n : Z, - n + n == 0. +Theorem add_opp_diag_l : forall n, - n + n == 0. Proof. -intro n; now rewrite Zadd_comm, Zadd_opp_r, Zsub_diag. +intro n; now rewrite add_comm, add_opp_r, sub_diag. Qed. -Theorem Zadd_opp_diag_r : forall n : Z, n + (- n) == 0. +Theorem add_opp_diag_r : forall n, n + (- n) == 0. Proof. -intro n; rewrite Zadd_comm; apply Zadd_opp_diag_l. +intro n; rewrite add_comm; apply add_opp_diag_l. Qed. -Theorem Zadd_opp_l : forall n m : Z, - m + n == n - m. +Theorem add_opp_l : forall n m, - m + n == n - m. Proof. -intros n m; rewrite <- Zadd_opp_r; now rewrite Zadd_comm. +intros n m; rewrite <- add_opp_r; now rewrite add_comm. Qed. -Theorem Zadd_sub_assoc : forall n m p : Z, n + (m - p) == (n + m) - p. +Theorem add_sub_assoc : forall n m p, n + (m - p) == (n + m) - p. Proof. -intros n m p; do 2 rewrite <- Zadd_opp_r; now rewrite Zadd_assoc. +intros n m p; do 2 rewrite <- add_opp_r; now rewrite add_assoc. Qed. -Theorem Zopp_involutive : forall n : Z, - (- n) == n. +Theorem opp_involutive : forall n, - (- n) == n. Proof. -NZinduct n. -now do 2 rewrite Zopp_0. -intro n. rewrite Zopp_succ, Zopp_pred; now rewrite Zsucc_inj_wd. +nzinduct n. +now do 2 rewrite opp_0. +intro n. rewrite opp_succ, opp_pred; now rewrite succ_inj_wd. Qed. -Theorem Zopp_add_distr : forall n m : Z, - (n + m) == - n + (- m). +Theorem opp_add_distr : forall n m, - (n + m) == - n + (- m). Proof. -intros n m; NZinduct n. -rewrite Zopp_0; now do 2 rewrite Zadd_0_l. -intro n. rewrite Zadd_succ_l; do 2 rewrite Zopp_succ; rewrite Zadd_pred_l. -now rewrite Zpred_inj_wd. +intros n m; nzinduct n. +rewrite opp_0; now do 2 rewrite add_0_l. +intro n. rewrite add_succ_l; do 2 rewrite opp_succ; rewrite add_pred_l. +now rewrite pred_inj_wd. Qed. -Theorem Zopp_sub_distr : forall n m : Z, - (n - m) == - n + m. +Theorem opp_sub_distr : forall n m, - (n - m) == - n + m. Proof. -intros n m; rewrite <- Zadd_opp_r, Zopp_add_distr. -now rewrite Zopp_involutive. +intros n m; rewrite <- add_opp_r, opp_add_distr. +now rewrite opp_involutive. Qed. -Theorem Zopp_inj : forall n m : Z, - n == - m -> n == m. +Theorem opp_inj : forall n m, - n == - m -> n == m. Proof. -intros n m H. apply Zopp_wd in H. now do 2 rewrite Zopp_involutive in H. +intros n m H. apply opp_wd in H. now do 2 rewrite opp_involutive in H. Qed. -Theorem Zopp_inj_wd : forall n m : Z, - n == - m <-> n == m. +Theorem opp_inj_wd : forall n m, - n == - m <-> n == m. Proof. -intros n m; split; [apply Zopp_inj | apply Zopp_wd]. +intros n m; split; [apply opp_inj | apply opp_wd]. Qed. -Theorem Zeq_opp_l : forall n m : Z, - n == m <-> n == - m. +Theorem eq_opp_l : forall n m, - n == m <-> n == - m. Proof. -intros n m. now rewrite <- (Zopp_inj_wd (- n) m), Zopp_involutive. +intros n m. now rewrite <- (opp_inj_wd (- n) m), opp_involutive. Qed. -Theorem Zeq_opp_r : forall n m : Z, n == - m <-> - n == m. +Theorem eq_opp_r : forall n m, n == - m <-> - n == m. Proof. -symmetry; apply Zeq_opp_l. +symmetry; apply eq_opp_l. Qed. -Theorem Zsub_add_distr : forall n m p : Z, n - (m + p) == (n - m) - p. +Theorem sub_add_distr : forall n m p, n - (m + p) == (n - m) - p. Proof. -intros n m p; rewrite <- Zadd_opp_r, Zopp_add_distr, Zadd_assoc. -now do 2 rewrite Zadd_opp_r. +intros n m p; rewrite <- add_opp_r, opp_add_distr, add_assoc. +now do 2 rewrite add_opp_r. Qed. -Theorem Zsub_sub_distr : forall n m p : Z, n - (m - p) == (n - m) + p. +Theorem sub_sub_distr : forall n m p, n - (m - p) == (n - m) + p. Proof. -intros n m p; rewrite <- Zadd_opp_r, Zopp_sub_distr, Zadd_assoc. -now rewrite Zadd_opp_r. +intros n m p; rewrite <- add_opp_r, opp_sub_distr, add_assoc. +now rewrite add_opp_r. Qed. -Theorem sub_opp_l : forall n m : Z, - n - m == - m - n. +Theorem sub_opp_l : forall n m, - n - m == - m - n. Proof. -intros n m. do 2 rewrite <- Zadd_opp_r. now rewrite Zadd_comm. +intros n m. do 2 rewrite <- add_opp_r. now rewrite add_comm. Qed. -Theorem Zsub_opp_r : forall n m : Z, n - (- m) == n + m. +Theorem sub_opp_r : forall n m, n - (- m) == n + m. Proof. -intros n m; rewrite <- Zadd_opp_r; now rewrite Zopp_involutive. +intros n m; rewrite <- add_opp_r; now rewrite opp_involutive. Qed. -Theorem Zadd_sub_swap : forall n m p : Z, n + m - p == n - p + m. +Theorem add_sub_swap : forall n m p, n + m - p == n - p + m. Proof. -intros n m p. rewrite <- Zadd_sub_assoc, <- (Zadd_opp_r n p), <- Zadd_assoc. -now rewrite Zadd_opp_l. +intros n m p. rewrite <- add_sub_assoc, <- (add_opp_r n p), <- add_assoc. +now rewrite add_opp_l. Qed. -Theorem Zsub_cancel_l : forall n m p : Z, n - m == n - p <-> m == p. +Theorem sub_cancel_l : forall n m p, n - m == n - p <-> m == p. Proof. -intros n m p. rewrite <- (Zadd_cancel_l (n - m) (n - p) (- n)). -do 2 rewrite Zadd_sub_assoc. rewrite Zadd_opp_diag_l; do 2 rewrite Zsub_0_l. -apply Zopp_inj_wd. +intros n m p. rewrite <- (add_cancel_l (n - m) (n - p) (- n)). +do 2 rewrite add_sub_assoc. rewrite add_opp_diag_l; do 2 rewrite sub_0_l. +apply opp_inj_wd. Qed. -Theorem Zsub_cancel_r : forall n m p : Z, n - p == m - p <-> n == m. +Theorem sub_cancel_r : forall n m p, n - p == m - p <-> n == m. Proof. intros n m p. -stepl (n - p + p == m - p + p) by apply Zadd_cancel_r. -now do 2 rewrite <- Zsub_sub_distr, Zsub_diag, Zsub_0_r. +stepl (n - p + p == m - p + p) by apply add_cancel_r. +now do 2 rewrite <- sub_sub_distr, sub_diag, sub_0_r. Qed. -(* The next several theorems are devoted to moving terms from one side of -an equation to the other. The name contains the operation in the original -equation (add or sub) and the indication whether the left or right term -is moved. *) +(** The next several theorems are devoted to moving terms from one + side of an equation to the other. The name contains the operation + in the original equation ([add] or [sub]) and the indication + whether the left or right term is moved. *) -Theorem Zadd_move_l : forall n m p : Z, n + m == p <-> m == p - n. +Theorem add_move_l : forall n m p, n + m == p <-> m == p - n. Proof. intros n m p. -stepl (n + m - n == p - n) by apply Zsub_cancel_r. -now rewrite Zadd_comm, <- Zadd_sub_assoc, Zsub_diag, Zadd_0_r. +stepl (n + m - n == p - n) by apply sub_cancel_r. +now rewrite add_comm, <- add_sub_assoc, sub_diag, add_0_r. Qed. -Theorem Zadd_move_r : forall n m p : Z, n + m == p <-> n == p - m. +Theorem add_move_r : forall n m p, n + m == p <-> n == p - m. Proof. -intros n m p; rewrite Zadd_comm; now apply Zadd_move_l. +intros n m p; rewrite add_comm; now apply add_move_l. Qed. -(* The two theorems above do not allow rewriting subformulas of the form -n - m == p to n == p + m since subtraction is in the right-hand side of -the equation. Hence the following two theorems. *) +(** The two theorems above do not allow rewriting subformulas of the + form [n - m == p] to [n == p + m] since subtraction is in the + right-hand side of the equation. Hence the following two + theorems. *) -Theorem Zsub_move_l : forall n m p : Z, n - m == p <-> - m == p - n. +Theorem sub_move_l : forall n m p, n - m == p <-> - m == p - n. Proof. -intros n m p; rewrite <- (Zadd_opp_r n m); apply Zadd_move_l. +intros n m p; rewrite <- (add_opp_r n m); apply add_move_l. Qed. -Theorem Zsub_move_r : forall n m p : Z, n - m == p <-> n == p + m. +Theorem sub_move_r : forall n m p, n - m == p <-> n == p + m. Proof. -intros n m p; rewrite <- (Zadd_opp_r n m). now rewrite Zadd_move_r, Zsub_opp_r. +intros n m p; rewrite <- (add_opp_r n m). now rewrite add_move_r, sub_opp_r. Qed. -Theorem Zadd_move_0_l : forall n m : Z, n + m == 0 <-> m == - n. +Theorem add_move_0_l : forall n m, n + m == 0 <-> m == - n. Proof. -intros n m; now rewrite Zadd_move_l, Zsub_0_l. +intros n m; now rewrite add_move_l, sub_0_l. Qed. -Theorem Zadd_move_0_r : forall n m : Z, n + m == 0 <-> n == - m. +Theorem add_move_0_r : forall n m, n + m == 0 <-> n == - m. Proof. -intros n m; now rewrite Zadd_move_r, Zsub_0_l. +intros n m; now rewrite add_move_r, sub_0_l. Qed. -Theorem Zsub_move_0_l : forall n m : Z, n - m == 0 <-> - m == - n. +Theorem sub_move_0_l : forall n m, n - m == 0 <-> - m == - n. Proof. -intros n m. now rewrite Zsub_move_l, Zsub_0_l. +intros n m. now rewrite sub_move_l, sub_0_l. Qed. -Theorem Zsub_move_0_r : forall n m : Z, n - m == 0 <-> n == m. +Theorem sub_move_0_r : forall n m, n - m == 0 <-> n == m. Proof. -intros n m. now rewrite Zsub_move_r, Zadd_0_l. +intros n m. now rewrite sub_move_r, add_0_l. Qed. -(* The following section is devoted to cancellation of like terms. The name -includes the first operator and the position of the term being canceled. *) +(** The following section is devoted to cancellation of like + terms. The name includes the first operator and the position of + the term being canceled. *) -Theorem Zadd_simpl_l : forall n m : Z, n + m - n == m. +Theorem add_simpl_l : forall n m, n + m - n == m. Proof. -intros; now rewrite Zadd_sub_swap, Zsub_diag, Zadd_0_l. +intros; now rewrite add_sub_swap, sub_diag, add_0_l. Qed. -Theorem Zadd_simpl_r : forall n m : Z, n + m - m == n. +Theorem add_simpl_r : forall n m, n + m - m == n. Proof. -intros; now rewrite <- Zadd_sub_assoc, Zsub_diag, Zadd_0_r. +intros; now rewrite <- add_sub_assoc, sub_diag, add_0_r. Qed. -Theorem Zsub_simpl_l : forall n m : Z, - n - m + n == - m. +Theorem sub_simpl_l : forall n m, - n - m + n == - m. Proof. -intros; now rewrite <- Zadd_sub_swap, Zadd_opp_diag_l, Zsub_0_l. +intros; now rewrite <- add_sub_swap, add_opp_diag_l, sub_0_l. Qed. -Theorem Zsub_simpl_r : forall n m : Z, n - m + m == n. +Theorem sub_simpl_r : forall n m, n - m + m == n. Proof. -intros; now rewrite <- Zsub_sub_distr, Zsub_diag, Zsub_0_r. +intros; now rewrite <- sub_sub_distr, sub_diag, sub_0_r. Qed. -(* Now we have two sums or differences; the name includes the two operators -and the position of the terms being canceled *) +(** Now we have two sums or differences; the name includes the two + operators and the position of the terms being canceled *) -Theorem Zadd_add_simpl_l_l : forall n m p : Z, (n + m) - (n + p) == m - p. +Theorem add_add_simpl_l_l : forall n m p, (n + m) - (n + p) == m - p. Proof. -intros n m p. now rewrite (Zadd_comm n m), <- Zadd_sub_assoc, -Zsub_add_distr, Zsub_diag, Zsub_0_l, Zadd_opp_r. +intros n m p. now rewrite (add_comm n m), <- add_sub_assoc, +sub_add_distr, sub_diag, sub_0_l, add_opp_r. Qed. -Theorem Zadd_add_simpl_l_r : forall n m p : Z, (n + m) - (p + n) == m - p. +Theorem add_add_simpl_l_r : forall n m p, (n + m) - (p + n) == m - p. Proof. -intros n m p. rewrite (Zadd_comm p n); apply Zadd_add_simpl_l_l. +intros n m p. rewrite (add_comm p n); apply add_add_simpl_l_l. Qed. -Theorem Zadd_add_simpl_r_l : forall n m p : Z, (n + m) - (m + p) == n - p. +Theorem add_add_simpl_r_l : forall n m p, (n + m) - (m + p) == n - p. Proof. -intros n m p. rewrite (Zadd_comm n m); apply Zadd_add_simpl_l_l. +intros n m p. rewrite (add_comm n m); apply add_add_simpl_l_l. Qed. -Theorem Zadd_add_simpl_r_r : forall n m p : Z, (n + m) - (p + m) == n - p. +Theorem add_add_simpl_r_r : forall n m p, (n + m) - (p + m) == n - p. Proof. -intros n m p. rewrite (Zadd_comm p m); apply Zadd_add_simpl_r_l. +intros n m p. rewrite (add_comm p m); apply add_add_simpl_r_l. Qed. -Theorem Zsub_add_simpl_r_l : forall n m p : Z, (n - m) + (m + p) == n + p. +Theorem sub_add_simpl_r_l : forall n m p, (n - m) + (m + p) == n + p. Proof. -intros n m p. now rewrite <- Zsub_sub_distr, Zsub_add_distr, Zsub_diag, -Zsub_0_l, Zsub_opp_r. +intros n m p. now rewrite <- sub_sub_distr, sub_add_distr, sub_diag, +sub_0_l, sub_opp_r. Qed. -Theorem Zsub_add_simpl_r_r : forall n m p : Z, (n - m) + (p + m) == n + p. +Theorem sub_add_simpl_r_r : forall n m p, (n - m) + (p + m) == n + p. Proof. -intros n m p. rewrite (Zadd_comm p m); apply Zsub_add_simpl_r_l. +intros n m p. rewrite (add_comm p m); apply sub_add_simpl_r_l. Qed. -(* Of course, there are many other variants *) +(** Of course, there are many other variants *) End ZAddPropFunct. -- cgit v1.2.3