From 9043add656177eeac1491a73d2f3ab92bec0013c Mon Sep 17 00:00:00 2001 From: Benjamin Barenblat Date: Sat, 29 Dec 2018 14:31:27 -0500 Subject: Imported Upstream version 8.8.2 --- theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v | 519 --------------------- 1 file changed, 519 deletions(-) delete mode 100644 theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v (limited to 'theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v') diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v deleted file mode 100644 index 195527dd..00000000 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v +++ /dev/null @@ -1,519 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* w -> zn2z w. - Variable w_head0 : w -> w. - Variable w_add_mul_div : w -> w -> w -> w. - Variable w_div21 : w -> w -> w -> w * w. - Variable w_compare : w -> w -> comparison. - Variable w_sub : w -> w -> w. - - - - (* ** For proofs ** *) - Variable w_to_Z : w -> Z. - - Notation wB := (base w_digits). - - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x) - (at level 0, x at level 99). - Notation "[[ x ]]" := (zn2z_to_Z wB w_to_Z x) (at level 0, x at level 99). - - Variable spec_to_Z : forall x, 0 <= [| x |] < wB. - Variable spec_w_zdigits: [|w_zdigits|] = Zpos w_digits. - Variable spec_0 : [|w_0|] = 0. - Variable spec_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. - Variable spec_head0 : forall x, 0 < [|x|] -> - wB/ 2 <= 2 ^ [|w_head0 x|] * [|x|] < wB. - Variable spec_add_mul_div : forall x y p, - [|p|] <= Zpos w_digits -> - [| w_add_mul_div p x y |] = - ([|x|] * (2 ^ [|p|]) + - [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB. - Variable spec_div21 : forall a1 a2 b, - wB/2 <= [|b|] -> - [|a1|] < [|b|] -> - let (q,r) := w_div21 a1 a2 b in - [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\ - 0 <= [|r|] < [|b|]. - Variable spec_compare : - forall x y, w_compare x y = Z.compare [|x|] [|y|]. - Variable spec_sub: forall x y, - [|w_sub x y|] = ([|x|] - [|y|]) mod wB. - - - - Section DIVAUX. - Variable b2p : w. - Variable b2p_le : wB/2 <= [|b2p|]. - - Definition double_divn1_0_aux n (divn1: w -> word w n -> word w n * w) r h := - let (hh,hl) := double_split w_0 n h in - let (qh,rh) := divn1 r hh in - let (ql,rl) := divn1 rh hl in - (double_WW w_WW n qh ql, rl). - - Fixpoint double_divn1_0 (n:nat) : w -> word w n -> word w n * w := - match n return w -> word w n -> word w n * w with - | O => fun r x => w_div21 r x b2p - | S n => double_divn1_0_aux n (double_divn1_0 n) - end. - - Lemma spec_split : forall (n : nat) (x : zn2z (word w n)), - let (h, l) := double_split w_0 n x in - [!S n | x!] = [!n | h!] * double_wB w_digits n + [!n | l!]. - Proof (spec_double_split w_0 w_digits w_to_Z spec_0). - - Lemma spec_double_divn1_0 : forall n r a, - [|r|] < [|b2p|] -> - let (q,r') := double_divn1_0 n r a in - [|r|] * double_wB w_digits n + [!n|a!] = [!n|q!] * [|b2p|] + [|r'|] /\ - 0 <= [|r'|] < [|b2p|]. - Proof. - induction n;intros. - exact (spec_div21 a b2p_le H). - simpl (double_divn1_0 (S n) r a); unfold double_divn1_0_aux. - assert (H1 := spec_split n a);destruct (double_split w_0 n a) as (hh,hl). - rewrite H1. - assert (H2 := IHn r hh H);destruct (double_divn1_0 n r hh) as (qh,rh). - destruct H2. - assert ([|rh|] < [|b2p|]). omega. - assert (H4 := IHn rh hl H3);destruct (double_divn1_0 n rh hl) as (ql,rl). - destruct H4;split;trivial. - rewrite spec_double_WW;trivial. - rewrite <- double_wB_wwB. - rewrite Z.mul_assoc;rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - rewrite H0;rewrite Z.mul_add_distr_r;rewrite <- Z.add_assoc. - rewrite H4;ring. - Qed. - - Definition double_modn1_0_aux n (modn1:w -> word w n -> w) r h := - let (hh,hl) := double_split w_0 n h in modn1 (modn1 r hh) hl. - - Fixpoint double_modn1_0 (n:nat) : w -> word w n -> w := - match n return w -> word w n -> w with - | O => fun r x => snd (w_div21 r x b2p) - | S n => double_modn1_0_aux n (double_modn1_0 n) - end. - - Lemma spec_double_modn1_0 : forall n r x, - double_modn1_0 n r x = snd (double_divn1_0 n r x). - Proof. - induction n;simpl;intros;trivial. - unfold double_modn1_0_aux, double_divn1_0_aux. - destruct (double_split w_0 n x) as (hh,hl). - rewrite (IHn r hh). - destruct (double_divn1_0 n r hh) as (qh,rh);simpl. - rewrite IHn. destruct (double_divn1_0 n rh hl);trivial. - Qed. - - Variable p : w. - Variable p_bounded : [|p|] <= Zpos w_digits. - - Lemma spec_add_mul_divp : forall x y, - [| w_add_mul_div p x y |] = - ([|x|] * (2 ^ [|p|]) + - [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB. - Proof. - intros;apply spec_add_mul_div;auto. - Qed. - - Definition double_divn1_p_aux n - (divn1 : w -> word w n -> word w n -> word w n * w) r h l := - let (hh,hl) := double_split w_0 n h in - let (lh,ll) := double_split w_0 n l in - let (qh,rh) := divn1 r hh hl in - let (ql,rl) := divn1 rh hl lh in - (double_WW w_WW n qh ql, rl). - - Fixpoint double_divn1_p (n:nat) : w -> word w n -> word w n -> word w n * w := - match n return w -> word w n -> word w n -> word w n * w with - | O => fun r h l => w_div21 r (w_add_mul_div p h l) b2p - | S n => double_divn1_p_aux n (double_divn1_p n) - end. - - Lemma p_lt_double_digits : forall n, [|p|] <= Zpos (w_digits << n). - Proof. - induction n;simpl. trivial. - case (spec_to_Z p); rewrite Pos2Z.inj_xO;auto with zarith. - Qed. - - Lemma spec_double_divn1_p : forall n r h l, - [|r|] < [|b2p|] -> - let (q,r') := double_divn1_p n r h l in - [|r|] * double_wB w_digits n + - ([!n|h!]*2^[|p|] + - [!n|l!] / (2^(Zpos(w_digits << n) - [|p|]))) - mod double_wB w_digits n = [!n|q!] * [|b2p|] + [|r'|] /\ - 0 <= [|r'|] < [|b2p|]. - Proof. - case (spec_to_Z p); intros HH0 HH1. - induction n;intros. - simpl (double_divn1_p 0 r h l). - unfold double_to_Z, double_wB, "<<". - rewrite <- spec_add_mul_divp. - exact (spec_div21 (w_add_mul_div p h l) b2p_le H). - simpl (double_divn1_p (S n) r h l). - unfold double_divn1_p_aux. - assert (H1 := spec_split n h);destruct (double_split w_0 n h) as (hh,hl). - rewrite H1. rewrite <- double_wB_wwB. - assert (H2 := spec_split n l);destruct (double_split w_0 n l) as (lh,ll). - rewrite H2. - replace ([|r|] * (double_wB w_digits n * double_wB w_digits n) + - (([!n|hh!] * double_wB w_digits n + [!n|hl!]) * 2 ^ [|p|] + - ([!n|lh!] * double_wB w_digits n + [!n|ll!]) / - 2^(Zpos (w_digits << (S n)) - [|p|])) mod - (double_wB w_digits n * double_wB w_digits n)) with - (([|r|] * double_wB w_digits n + ([!n|hh!] * 2^[|p|] + - [!n|hl!] / 2^(Zpos (w_digits << n) - [|p|])) mod - double_wB w_digits n) * double_wB w_digits n + - ([!n|hl!] * 2^[|p|] + - [!n|lh!] / 2^(Zpos (w_digits << n) - [|p|])) mod - double_wB w_digits n). - generalize (IHn r hh hl H);destruct (double_divn1_p n r hh hl) as (qh,rh); - intros (H3,H4);rewrite H3. - assert ([|rh|] < [|b2p|]). omega. - replace (([!n|qh!] * [|b2p|] + [|rh|]) * double_wB w_digits n + - ([!n|hl!] * 2 ^ [|p|] + - [!n|lh!] / 2 ^ (Zpos (w_digits << n) - [|p|])) mod - double_wB w_digits n) with - ([!n|qh!] * [|b2p|] *double_wB w_digits n + ([|rh|]*double_wB w_digits n + - ([!n|hl!] * 2 ^ [|p|] + - [!n|lh!] / 2 ^ (Zpos (w_digits << n) - [|p|])) mod - double_wB w_digits n)). 2:ring. - generalize (IHn rh hl lh H0);destruct (double_divn1_p n rh hl lh) as (ql,rl); - intros (H5,H6);rewrite H5. - split;[rewrite spec_double_WW;trivial;ring|trivial]. - assert (Uhh := spec_double_to_Z w_digits w_to_Z spec_to_Z n hh); - unfold double_wB,base in Uhh. - assert (Uhl := spec_double_to_Z w_digits w_to_Z spec_to_Z n hl); - unfold double_wB,base in Uhl. - assert (Ulh := spec_double_to_Z w_digits w_to_Z spec_to_Z n lh); - unfold double_wB,base in Ulh. - assert (Ull := spec_double_to_Z w_digits w_to_Z spec_to_Z n ll); - unfold double_wB,base in Ull. - unfold double_wB,base. - assert (UU:=p_lt_double_digits n). - rewrite Zdiv_shift_r;auto with zarith. - 2:change (Zpos (w_digits << (S n))) - with (2*Zpos (w_digits << n));auto with zarith. - replace (2 ^ (Zpos (w_digits << (S n)) - [|p|])) with - (2^(Zpos (w_digits << n) - [|p|])*2^Zpos (w_digits << n)). - rewrite Zdiv_mult_cancel_r;auto with zarith. - rewrite Z.mul_add_distr_r with (p:= 2^[|p|]). - pattern ([!n|hl!] * 2^[|p|]) at 2; - rewrite (shift_unshift_mod (Zpos(w_digits << n))([|p|])([!n|hl!])); - auto with zarith. - rewrite Z.add_assoc. - replace - ([!n|hh!] * 2^Zpos (w_digits << n)* 2^[|p|] + - ([!n|hl!] / 2^(Zpos (w_digits << n)-[|p|])* - 2^Zpos(w_digits << n))) - with - (([!n|hh!] *2^[|p|] + double_to_Z w_digits w_to_Z n hl / - 2^(Zpos (w_digits << n)-[|p|])) - * 2^Zpos(w_digits << n));try (ring;fail). - rewrite <- Z.add_assoc. - rewrite <- (Zmod_shift_r ([|p|]));auto with zarith. - replace - (2 ^ Zpos (w_digits << n) * 2 ^ Zpos (w_digits << n)) with - (2 ^ (Zpos (w_digits << n) + Zpos (w_digits << n))). - rewrite (Zmod_shift_r (Zpos (w_digits << n)));auto with zarith. - replace (2 ^ (Zpos (w_digits << n) + Zpos (w_digits << n))) - with (2^Zpos(w_digits << n) *2^Zpos(w_digits << n)). - rewrite (Z.mul_comm (([!n|hh!] * 2 ^ [|p|] + - [!n|hl!] / 2 ^ (Zpos (w_digits << n) - [|p|])))). - rewrite Zmult_mod_distr_l;auto with zarith. - ring. - rewrite Zpower_exp;auto with zarith. - assert (0 < Zpos (w_digits << n)). unfold Z.lt;reflexivity. - auto with zarith. - apply Z_mod_lt;auto with zarith. - rewrite Zpower_exp;auto with zarith. - split;auto with zarith. - apply Zdiv_lt_upper_bound;auto with zarith. - rewrite <- Zpower_exp;auto with zarith. - replace ([|p|] + (Zpos (w_digits << n) - [|p|])) with - (Zpos(w_digits << n));auto with zarith. - rewrite <- Zpower_exp;auto with zarith. - replace (Zpos (w_digits << (S n)) - [|p|]) with - (Zpos (w_digits << n) - [|p|] + - Zpos (w_digits << n));trivial. - change (Zpos (w_digits << (S n))) with - (2*Zpos (w_digits << n)). ring. - Qed. - - Definition double_modn1_p_aux n (modn1 : w -> word w n -> word w n -> w) r h l:= - let (hh,hl) := double_split w_0 n h in - let (lh,ll) := double_split w_0 n l in - modn1 (modn1 r hh hl) hl lh. - - Fixpoint double_modn1_p (n:nat) : w -> word w n -> word w n -> w := - match n return w -> word w n -> word w n -> w with - | O => fun r h l => snd (w_div21 r (w_add_mul_div p h l) b2p) - | S n => double_modn1_p_aux n (double_modn1_p n) - end. - - Lemma spec_double_modn1_p : forall n r h l , - double_modn1_p n r h l = snd (double_divn1_p n r h l). - Proof. - induction n;simpl;intros;trivial. - unfold double_modn1_p_aux, double_divn1_p_aux. - destruct(double_split w_0 n h)as(hh,hl);destruct(double_split w_0 n l) as (lh,ll). - rewrite (IHn r hh hl);destruct (double_divn1_p n r hh hl) as (qh,rh). - rewrite IHn;simpl;destruct (double_divn1_p n rh hl lh);trivial. - Qed. - - End DIVAUX. - - Fixpoint high (n:nat) : word w n -> w := - match n return word w n -> w with - | O => fun a => a - | S n => - fun (a:zn2z (word w n)) => - match a with - | W0 => w_0 - | WW h l => high n h - end - end. - - Lemma spec_double_digits:forall n, Zpos w_digits <= Zpos (w_digits << n). - Proof. - induction n;simpl;auto with zarith. - change (Zpos (xO (w_digits << n))) with - (2*Zpos (w_digits << n)). - assert (0 < Zpos w_digits) by reflexivity. - auto with zarith. - Qed. - - Lemma spec_high : forall n (x:word w n), - [|high n x|] = [!n|x!] / 2^(Zpos (w_digits << n) - Zpos w_digits). - Proof. - induction n;intros. - unfold high,double_to_Z. rewrite Pshiftl_nat_0. - replace (Zpos w_digits - Zpos w_digits) with 0;try ring. - simpl. rewrite <- (Zdiv_unique [|x|] 1 [|x|] 0);auto with zarith. - assert (U2 := spec_double_digits n). - assert (U3 : 0 < Zpos w_digits). exact (eq_refl Lt). - destruct x;unfold high;fold high. - unfold double_to_Z,zn2z_to_Z;rewrite spec_0. - rewrite Zdiv_0_l;trivial. - assert (U0 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w0); - assert (U1 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w1). - simpl [!S n|WW w0 w1!]. - unfold double_wB,base;rewrite Zdiv_shift_r;auto with zarith. - replace (2 ^ (Zpos (w_digits << (S n)) - Zpos w_digits)) with - (2^(Zpos (w_digits << n) - Zpos w_digits) * - 2^Zpos (w_digits << n)). - rewrite Zdiv_mult_cancel_r;auto with zarith. - rewrite <- Zpower_exp;auto with zarith. - replace (Zpos (w_digits << n) - Zpos w_digits + - Zpos (w_digits << n)) with - (Zpos (w_digits << (S n)) - Zpos w_digits);trivial. - change (Zpos (w_digits << (S n))) with - (2*Zpos (w_digits << n));ring. - change (Zpos (w_digits << (S n))) with - (2*Zpos (w_digits << n)); auto with zarith. - Qed. - - Definition double_divn1 (n:nat) (a:word w n) (b:w) := - let p := w_head0 b in - match w_compare p w_0 with - | Gt => - let b2p := w_add_mul_div p b w_0 in - let ha := high n a in - let k := w_sub w_zdigits p in - let lsr_n := w_add_mul_div k w_0 in - let r0 := w_add_mul_div p w_0 ha in - let (q,r) := double_divn1_p b2p p n r0 a (double_0 w_0 n) in - (q, lsr_n r) - | _ => double_divn1_0 b n w_0 a - end. - - Lemma spec_double_divn1 : forall n a b, - 0 < [|b|] -> - let (q,r) := double_divn1 n a b in - [!n|a!] = [!n|q!] * [|b|] + [|r|] /\ - 0 <= [|r|] < [|b|]. - Proof. - intros n a b H. unfold double_divn1. - case (spec_head0 H); intros H0 H1. - case (spec_to_Z (w_head0 b)); intros HH1 HH2. - rewrite spec_compare; case Z.compare_spec; - rewrite spec_0; intros H2; auto with zarith. - assert (Hv1: wB/2 <= [|b|]). - generalize H0; rewrite H2; rewrite Z.pow_0_r; - rewrite Z.mul_1_l; auto. - assert (Hv2: [|w_0|] < [|b|]). - rewrite spec_0; auto. - generalize (spec_double_divn1_0 Hv1 n a Hv2). - rewrite spec_0;rewrite Z.mul_0_l; rewrite Z.add_0_l; auto. - contradict H2; auto with zarith. - assert (HHHH : 0 < [|w_head0 b|]); auto with zarith. - assert ([|w_head0 b|] < Zpos w_digits). - case (Z.le_gt_cases (Zpos w_digits) [|w_head0 b|]); auto; intros HH. - assert (2 ^ [|w_head0 b|] < wB). - apply Z.le_lt_trans with (2 ^ [|w_head0 b|] * [|b|]);auto with zarith. - replace (2 ^ [|w_head0 b|]) with (2^[|w_head0 b|] * 1);try (ring;fail). - apply Z.mul_le_mono_nonneg;auto with zarith. - assert (wB <= 2^[|w_head0 b|]). - unfold base;apply Zpower_le_monotone;auto with zarith. omega. - assert ([|w_add_mul_div (w_head0 b) b w_0|] = - 2 ^ [|w_head0 b|] * [|b|]). - rewrite (spec_add_mul_div b w_0); auto with zarith. - rewrite spec_0;rewrite Zdiv_0_l; try omega. - rewrite Z.add_0_r; rewrite Z.mul_comm. - rewrite Zmod_small; auto with zarith. - assert (H5 := spec_to_Z (high n a)). - assert - ([|w_add_mul_div (w_head0 b) w_0 (high n a)|] - <[|w_add_mul_div (w_head0 b) b w_0|]). - rewrite H4. - rewrite spec_add_mul_div;auto with zarith. - rewrite spec_0;rewrite Z.mul_0_l;rewrite Z.add_0_l. - assert (([|high n a|]/2^(Zpos w_digits - [|w_head0 b|])) < wB). - apply Zdiv_lt_upper_bound;auto with zarith. - apply Z.lt_le_trans with wB;auto with zarith. - pattern wB at 1;replace wB with (wB*1);try ring. - apply Z.mul_le_mono_nonneg;auto with zarith. - assert (H6 := Z.pow_pos_nonneg 2 (Zpos w_digits - [|w_head0 b|])); - auto with zarith. - rewrite Zmod_small;auto with zarith. - apply Zdiv_lt_upper_bound;auto with zarith. - apply Z.lt_le_trans with wB;auto with zarith. - apply Z.le_trans with (2 ^ [|w_head0 b|] * [|b|] * 2). - rewrite <- wB_div_2; try omega. - apply Z.mul_le_mono_nonneg;auto with zarith. - pattern 2 at 1;rewrite <- Z.pow_1_r. - apply Zpower_le_monotone;split;auto with zarith. - rewrite <- H4 in H0. - assert (Hb3: [|w_head0 b|] <= Zpos w_digits); auto with zarith. - assert (H7:= spec_double_divn1_p H0 Hb3 n a (double_0 w_0 n) H6). - destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n - (w_add_mul_div (w_head0 b) w_0 (high n a)) a - (double_0 w_0 n)) as (q,r). - assert (U:= spec_double_digits n). - rewrite spec_double_0 in H7;trivial;rewrite Zdiv_0_l in H7. - rewrite Z.add_0_r in H7. - rewrite spec_add_mul_div in H7;auto with zarith. - rewrite spec_0 in H7;rewrite Z.mul_0_l in H7;rewrite Z.add_0_l in H7. - assert (([|high n a|] / 2 ^ (Zpos w_digits - [|w_head0 b|])) mod wB - = [!n|a!] / 2^(Zpos (w_digits << n) - [|w_head0 b|])). - rewrite Zmod_small;auto with zarith. - rewrite spec_high. rewrite Zdiv_Zdiv;auto with zarith. - rewrite <- Zpower_exp;auto with zarith. - replace (Zpos (w_digits << n) - Zpos w_digits + - (Zpos w_digits - [|w_head0 b|])) - with (Zpos (w_digits << n) - [|w_head0 b|]);trivial;ring. - assert (H8 := Z.pow_pos_nonneg 2 (Zpos w_digits - [|w_head0 b|]));auto with zarith. - split;auto with zarith. - apply Z.le_lt_trans with ([|high n a|]);auto with zarith. - apply Zdiv_le_upper_bound;auto with zarith. - pattern ([|high n a|]) at 1;rewrite <- Z.mul_1_r. - apply Z.mul_le_mono_nonneg;auto with zarith. - rewrite H8 in H7;unfold double_wB,base in H7. - rewrite <- shift_unshift_mod in H7;auto with zarith. - rewrite H4 in H7. - assert ([|w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r|] - = [|r|]/2^[|w_head0 b|]). - rewrite spec_add_mul_div. - rewrite spec_0;rewrite Z.mul_0_l;rewrite Z.add_0_l. - replace (Zpos w_digits - [|w_sub w_zdigits (w_head0 b)|]) - with ([|w_head0 b|]). - rewrite Zmod_small;auto with zarith. - assert (H9 := spec_to_Z r). - split;auto with zarith. - apply Z.le_lt_trans with ([|r|]);auto with zarith. - apply Zdiv_le_upper_bound;auto with zarith. - pattern ([|r|]) at 1;rewrite <- Z.mul_1_r. - apply Z.mul_le_mono_nonneg;auto with zarith. - assert (H10 := Z.pow_pos_nonneg 2 ([|w_head0 b|]));auto with zarith. - rewrite spec_sub. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - case (spec_to_Z w_zdigits); auto with zarith. - rewrite spec_sub. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - case (spec_to_Z w_zdigits); auto with zarith. - case H7; intros H71 H72. - split. - rewrite <- (Z_div_mult [!n|a!] (2^[|w_head0 b|]));auto with zarith. - rewrite H71;rewrite H9. - replace ([!n|q!] * (2 ^ [|w_head0 b|] * [|b|])) - with ([!n|q!] *[|b|] * 2^[|w_head0 b|]); - try (ring;fail). - rewrite Z_div_plus_l;auto with zarith. - assert (H10 := spec_to_Z - (w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r));split; - auto with zarith. - rewrite H9. - apply Zdiv_lt_upper_bound;auto with zarith. - rewrite Z.mul_comm;auto with zarith. - exact (spec_double_to_Z w_digits w_to_Z spec_to_Z n a). - Qed. - - - Definition double_modn1 (n:nat) (a:word w n) (b:w) := - let p := w_head0 b in - match w_compare p w_0 with - | Gt => - let b2p := w_add_mul_div p b w_0 in - let ha := high n a in - let k := w_sub w_zdigits p in - let lsr_n := w_add_mul_div k w_0 in - let r0 := w_add_mul_div p w_0 ha in - let r := double_modn1_p b2p p n r0 a (double_0 w_0 n) in - lsr_n r - | _ => double_modn1_0 b n w_0 a - end. - - Lemma spec_double_modn1_aux : forall n a b, - double_modn1 n a b = snd (double_divn1 n a b). - Proof. - intros n a b;unfold double_divn1,double_modn1. - rewrite spec_compare; case Z.compare_spec; - rewrite spec_0; intros H2; auto with zarith. - apply spec_double_modn1_0. - apply spec_double_modn1_0. - rewrite spec_double_modn1_p. - destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n - (w_add_mul_div (w_head0 b) w_0 (high n a)) a (double_0 w_0 n));simpl;trivial. - Qed. - - Lemma spec_double_modn1 : forall n a b, 0 < [|b|] -> - [|double_modn1 n a b|] = [!n|a!] mod [|b|]. - Proof. - intros n a b H;assert (H1 := spec_double_divn1 n a H). - assert (H2 := spec_double_modn1_aux n a b). - rewrite H2;destruct (double_divn1 n a b) as (q,r). - simpl;apply Zmod_unique with (double_to_Z w_digits w_to_Z n q);auto with zarith. - destruct H1 as (h1,h2);rewrite h1;ring. - Qed. - -End GENDIVN1. -- cgit v1.2.3