From a0cfa4f118023d35b767a999d5a2ac4b082857b4 Mon Sep 17 00:00:00 2001 From: Samuel Mimram Date: Fri, 25 Jul 2008 15:12:53 +0200 Subject: Imported Upstream version 8.2~beta3+dfsg --- theories/IntMap/Mapcanon.v | 401 --------------------------------------------- 1 file changed, 401 deletions(-) delete mode 100644 theories/IntMap/Mapcanon.v (limited to 'theories/IntMap/Mapcanon.v') diff --git a/theories/IntMap/Mapcanon.v b/theories/IntMap/Mapcanon.v deleted file mode 100644 index 33741b98..00000000 --- a/theories/IntMap/Mapcanon.v +++ /dev/null @@ -1,401 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* Prop := - | M0_canon : mapcanon (M0 A) - | M1_canon : forall (a:ad) (y:A), mapcanon (M1 A a y) - | M2_canon : - forall m1 m2:Map A, - mapcanon m1 -> - mapcanon m2 -> 2 <= MapCard A (M2 A m1 m2) -> mapcanon (M2 A m1 m2). - - Lemma mapcanon_M2 : - forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> 2 <= MapCard A (M2 A m1 m2). - Proof. - intros. inversion H. assumption. - Qed. - - Lemma mapcanon_M2_1 : - forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> mapcanon m1. - Proof. - intros. inversion H. assumption. - Qed. - - Lemma mapcanon_M2_2 : - forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> mapcanon m2. - Proof. - intros. inversion H. assumption. - Qed. - - Lemma M2_eqmap_1 : - forall m0 m1 m2 m3:Map A, - eqmap A (M2 A m0 m1) (M2 A m2 m3) -> eqmap A m0 m2. - Proof. - unfold eqmap, eqm in |- *. intros. rewrite <- (Ndouble_div2 a). - rewrite <- (MapGet_M2_bit_0_0 A _ (Ndouble_bit0 a) m0 m1). - rewrite <- (MapGet_M2_bit_0_0 A _ (Ndouble_bit0 a) m2 m3). - exact (H (Ndouble a)). - Qed. - - Lemma M2_eqmap_2 : - forall m0 m1 m2 m3:Map A, - eqmap A (M2 A m0 m1) (M2 A m2 m3) -> eqmap A m1 m3. - Proof. - unfold eqmap, eqm in |- *. intros. rewrite <- (Ndouble_plus_one_div2 a). - rewrite <- (MapGet_M2_bit_0_1 A _ (Ndouble_plus_one_bit0 a) m0 m1). - rewrite <- (MapGet_M2_bit_0_1 A _ (Ndouble_plus_one_bit0 a) m2 m3). - exact (H (Ndouble_plus_one a)). - Qed. - - Lemma mapcanon_unique : - forall m m':Map A, mapcanon m -> mapcanon m' -> eqmap A m m' -> m = m'. - Proof. - simple induction m. simple induction m'. trivial. - intros a y H H0 H1. cut (None = MapGet A (M1 A a y) a). simpl in |- *. rewrite (Neqb_correct a). - intro. discriminate H2. - exact (H1 a). - intros. cut (2 <= MapCard A (M0 A)). intro. elim (le_Sn_O _ H4). - rewrite (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H2). - intros a y. simple induction m'. intros. cut (MapGet A (M1 A a y) a = None). simpl in |- *. - rewrite (Neqb_correct a). intro. discriminate H2. - exact (H1 a). - intros a0 y0 H H0 H1. cut (MapGet A (M1 A a y) a = MapGet A (M1 A a0 y0) a). simpl in |- *. - rewrite (Neqb_correct a). intro. elim (sumbool_of_bool (Neqb a0 a)). intro H3. - rewrite H3 in H2. inversion H2. rewrite (Neqb_complete _ _ H3). reflexivity. - intro H3. rewrite H3 in H2. discriminate H2. - exact (H1 a). - intros. cut (2 <= MapCard A (M1 A a y)). intro. elim (le_Sn_O _ (le_S_n _ _ H4)). - rewrite (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H2). - simple induction m'. intros. cut (2 <= MapCard A (M0 A)). intro. elim (le_Sn_O _ H4). - rewrite <- (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H1). - intros a y H1 H2 H3. cut (2 <= MapCard A (M1 A a y)). intro. - elim (le_Sn_O _ (le_S_n _ _ H4)). - rewrite <- (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H1). - intros. rewrite (H m2). rewrite (H0 m3). reflexivity. - exact (mapcanon_M2_2 _ _ H3). - exact (mapcanon_M2_2 _ _ H4). - exact (M2_eqmap_2 _ _ _ _ H5). - exact (mapcanon_M2_1 _ _ H3). - exact (mapcanon_M2_1 _ _ H4). - exact (M2_eqmap_1 _ _ _ _ H5). - Qed. - - Lemma MapPut1_canon : - forall (p:positive) (a a':ad) (y y':A), mapcanon (MapPut1 A a y a' y' p). - Proof. - simple induction p. simpl in |- *. intros. case (Nbit0 a). apply M2_canon. apply M1_canon. - apply M1_canon. - apply le_n. - apply M2_canon. apply M1_canon. - apply M1_canon. - apply le_n. - simpl in |- *. intros. case (Nbit0 a). apply M2_canon. apply M0_canon. - apply H. - simpl in |- *. rewrite MapCard_Put1_equals_2. apply le_n. - apply M2_canon. apply H. - apply M0_canon. - simpl in |- *. rewrite MapCard_Put1_equals_2. apply le_n. - simpl in |- *. simpl in |- *. intros. case (Nbit0 a). apply M2_canon. apply M1_canon. - apply M1_canon. - simpl in |- *. apply le_n. - apply M2_canon. apply M1_canon. - apply M1_canon. - simpl in |- *. apply le_n. - Qed. - - Lemma MapPut_canon : - forall m:Map A, - mapcanon m -> forall (a:ad) (y:A), mapcanon (MapPut A m a y). - Proof. - simple induction m. intros. simpl in |- *. apply M1_canon. - intros a0 y0 H a y. simpl in |- *. case (Nxor a0 a). apply M1_canon. - intro. apply MapPut1_canon. - intros. simpl in |- *. elim a. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1). - exact (mapcanon_M2_2 m0 m1 H1). - simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). exact (mapcanon_M2 _ _ H1). - apply plus_le_compat. exact (MapCard_Put_lb A m0 N0 y). - apply le_n. - intro. case p. intro. apply M2_canon. exact (mapcanon_M2_1 m0 m1 H1). - apply H0. exact (mapcanon_M2_2 m0 m1 H1). - simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). - exact (mapcanon_M2 m0 m1 H1). - apply plus_le_compat_l. exact (MapCard_Put_lb A m1 (Npos p0) y). - intro. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1). - exact (mapcanon_M2_2 m0 m1 H1). - simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). - exact (mapcanon_M2 m0 m1 H1). - apply plus_le_compat_r. exact (MapCard_Put_lb A m0 (Npos p0) y). - apply M2_canon. apply (mapcanon_M2_1 m0 m1 H1). - apply H0. apply (mapcanon_M2_2 m0 m1 H1). - simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). - exact (mapcanon_M2 m0 m1 H1). - apply plus_le_compat_l. exact (MapCard_Put_lb A m1 N0 y). - Qed. - - Lemma MapPut_behind_canon : - forall m:Map A, - mapcanon m -> forall (a:ad) (y:A), mapcanon (MapPut_behind A m a y). - Proof. - simple induction m. intros. simpl in |- *. apply M1_canon. - intros a0 y0 H a y. simpl in |- *. case (Nxor a0 a). apply M1_canon. - intro. apply MapPut1_canon. - intros. simpl in |- *. elim a. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1). - exact (mapcanon_M2_2 m0 m1 H1). - simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). exact (mapcanon_M2 _ _ H1). - apply plus_le_compat. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m0 N0 y). - apply le_n. - intro. case p. intro. apply M2_canon. exact (mapcanon_M2_1 m0 m1 H1). - apply H0. exact (mapcanon_M2_2 m0 m1 H1). - simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). - exact (mapcanon_M2 m0 m1 H1). - apply plus_le_compat_l. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m1 (Npos p0) y). - intro. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1). - exact (mapcanon_M2_2 m0 m1 H1). - simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). - exact (mapcanon_M2 m0 m1 H1). - apply plus_le_compat_r. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m0 (Npos p0) y). - apply M2_canon. apply (mapcanon_M2_1 m0 m1 H1). - apply H0. apply (mapcanon_M2_2 m0 m1 H1). - simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). - exact (mapcanon_M2 m0 m1 H1). - apply plus_le_compat_l. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m1 N0 y). - Qed. - - Lemma makeM2_canon : - forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (makeM2 A m m'). - Proof. - intro. case m. intro. case m'. intros. exact M0_canon. - intros a y H H0. exact (M1_canon (Ndouble_plus_one a) y). - intros. simpl in |- *. apply M2_canon; try assumption. exact (mapcanon_M2 m0 m1 H0). - intros a y m'. case m'. intros. exact (M1_canon (Ndouble a) y). - intros a0 y0 H H0. simpl in |- *. apply M2_canon; try assumption. apply le_n. - intros. simpl in |- *. apply M2_canon; try assumption. - apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H0). - exact (le_plus_r (MapCard A (M1 A a y)) (MapCard A (M2 A m0 m1))). - simpl in |- *. intros. apply M2_canon; try assumption. - apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H). - exact (le_plus_l (MapCard A (M2 A m0 m1)) (MapCard A m')). - Qed. - - Fixpoint MapCanonicalize (m:Map A) : Map A := - match m with - | M2 m0 m1 => makeM2 A (MapCanonicalize m0) (MapCanonicalize m1) - | _ => m - end. - - Lemma mapcanon_exists_1 : forall m:Map A, eqmap A m (MapCanonicalize m). - Proof. - simple induction m. apply eqmap_refl. - intros. apply eqmap_refl. - intros. simpl in |- *. unfold eqmap, eqm in |- *. intro. - rewrite (makeM2_M2 A (MapCanonicalize m0) (MapCanonicalize m1) a). - rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if. - rewrite <- (H (Ndiv2 a)). rewrite <- (H0 (Ndiv2 a)). reflexivity. - Qed. - - Lemma mapcanon_exists_2 : forall m:Map A, mapcanon (MapCanonicalize m). - Proof. - simple induction m. apply M0_canon. - intros. simpl in |- *. apply M1_canon. - intros. simpl in |- *. apply makeM2_canon; assumption. - Qed. - - Lemma mapcanon_exists : - forall m:Map A, {m' : Map A | eqmap A m m' /\ mapcanon m'}. - Proof. - intro. split with (MapCanonicalize m). split. apply mapcanon_exists_1. - apply mapcanon_exists_2. - Qed. - - Lemma MapRemove_canon : - forall m:Map A, mapcanon m -> forall a:ad, mapcanon (MapRemove A m a). - Proof. - simple induction m. intros. exact M0_canon. - intros a y H a0. simpl in |- *. case (Neqb a a0). exact M0_canon. - assumption. - intros. simpl in |- *. case (Nbit0 a). apply makeM2_canon. exact (mapcanon_M2_1 _ _ H1). - apply H0. exact (mapcanon_M2_2 _ _ H1). - apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H1). - exact (mapcanon_M2_2 _ _ H1). - Qed. - - Lemma MapMerge_canon : - forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (MapMerge A m m'). - Proof. - simple induction m. intros. exact H0. - simpl in |- *. intros a y m' H H0. exact (MapPut_behind_canon m' H0 a y). - simple induction m'. intros. exact H1. - intros a y H1 H2. unfold MapMerge in |- *. exact (MapPut_canon _ H1 a y). - intros. simpl in |- *. apply M2_canon. apply H. exact (mapcanon_M2_1 _ _ H3). - exact (mapcanon_M2_1 _ _ H4). - apply H0. exact (mapcanon_M2_2 _ _ H3). - exact (mapcanon_M2_2 _ _ H4). - change (2 <= MapCard A (MapMerge A (M2 A m0 m1) (M2 A m2 m3))) in |- *. - apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H3). - exact (MapMerge_Card_lb_l A (M2 A m0 m1) (M2 A m2 m3)). - Qed. - - Lemma MapDelta_canon : - forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (MapDelta A m m'). - Proof. - simple induction m. intros. exact H0. - simpl in |- *. intros a y m' H H0. case (MapGet A m' a). - intro. exact (MapRemove_canon m' H0 a). - exact (MapPut_canon m' H0 a y). - simple induction m'. intros. exact H1. - unfold MapDelta in |- *. intros a y H1 H2. case (MapGet A (M2 A m0 m1) a). - intro. exact (MapRemove_canon _ H1 a). - exact (MapPut_canon _ H1 a y). - intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H3). - exact (mapcanon_M2_1 _ _ H4). - apply H0. exact (mapcanon_M2_2 _ _ H3). - exact (mapcanon_M2_2 _ _ H4). - Qed. - - Variable B : Set. - - Lemma MapDomRestrTo_canon : - forall m:Map A, - mapcanon m -> forall m':Map B, mapcanon (MapDomRestrTo A B m m'). - Proof. - simple induction m. intros. exact M0_canon. - simpl in |- *. intros a y H m'. case (MapGet B m' a). - intro. apply M1_canon. - exact M0_canon. - simple induction m'. exact M0_canon. - unfold MapDomRestrTo in |- *. intros a y. case (MapGet A (M2 A m0 m1) a). - intro. apply M1_canon. - exact M0_canon. - intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1). - apply H0. exact (mapcanon_M2_2 m0 m1 H1). - Qed. - - Lemma MapDomRestrBy_canon : - forall m:Map A, - mapcanon m -> forall m':Map B, mapcanon (MapDomRestrBy A B m m'). - Proof. - simple induction m. intros. exact M0_canon. - simpl in |- *. intros a y H m'. case (MapGet B m' a); try assumption. - intro. exact M0_canon. - simple induction m'. exact H1. - intros a y. simpl in |- *. case (Nbit0 a). apply makeM2_canon. exact (mapcanon_M2_1 _ _ H1). - apply MapRemove_canon. exact (mapcanon_M2_2 _ _ H1). - apply makeM2_canon. apply MapRemove_canon. exact (mapcanon_M2_1 _ _ H1). - exact (mapcanon_M2_2 _ _ H1). - intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H1). - apply H0. exact (mapcanon_M2_2 _ _ H1). - Qed. - - Lemma Map_of_alist_canon : forall l:alist A, mapcanon (Map_of_alist A l). - Proof. - simple induction l. exact M0_canon. - intro r. elim r. intros a y l0 H. simpl in |- *. apply MapPut_canon. assumption. - Qed. - - Lemma MapSubset_c_1 : - forall (m:Map A) (m':Map B), - mapcanon m -> MapSubset A B m m' -> MapDomRestrBy A B m m' = M0 A. - Proof. - intros. apply mapcanon_unique. apply MapDomRestrBy_canon. assumption. - apply M0_canon. - exact (MapSubset_imp_2 _ _ m m' H0). - Qed. - - Lemma MapSubset_c_2 : - forall (m:Map A) (m':Map B), - MapDomRestrBy A B m m' = M0 A -> MapSubset A B m m'. - Proof. - intros. apply MapSubset_2_imp. unfold MapSubset_2 in |- *. rewrite H. apply eqmap_refl. - Qed. - -End MapCanon. - -Section FSetCanon. - - Variable A : Set. - - Lemma MapDom_canon : - forall m:Map A, mapcanon A m -> mapcanon unit (MapDom A m). - Proof. - simple induction m. intro. exact (M0_canon unit). - intros a y H. exact (M1_canon unit a _). - intros. simpl in |- *. apply M2_canon. apply H. exact (mapcanon_M2_1 A _ _ H1). - apply H0. exact (mapcanon_M2_2 A _ _ H1). - change (2 <= MapCard unit (MapDom A (M2 A m0 m1))) in |- *. rewrite <- MapCard_Dom. - exact (mapcanon_M2 A _ _ H1). - Qed. - -End FSetCanon. - -Section MapFoldCanon. - - Variables A B : Set. - - Lemma MapFold_canon_1 : - forall m0:Map B, - mapcanon B m0 -> - forall op:Map B -> Map B -> Map B, - (forall m1:Map B, - mapcanon B m1 -> - forall m2:Map B, mapcanon B m2 -> mapcanon B (op m1 m2)) -> - forall f:ad -> A -> Map B, - (forall (a:ad) (y:A), mapcanon B (f a y)) -> - forall (m:Map A) (pf:ad -> ad), - mapcanon B (MapFold1 A (Map B) m0 op f pf m). - Proof. - simple induction m. intro. exact H. - intros a y pf. simpl in |- *. apply H1. - intros. simpl in |- *. apply H0. apply H2. - apply H3. - Qed. - - Lemma MapFold_canon : - forall m0:Map B, - mapcanon B m0 -> - forall op:Map B -> Map B -> Map B, - (forall m1:Map B, - mapcanon B m1 -> - forall m2:Map B, mapcanon B m2 -> mapcanon B (op m1 m2)) -> - forall f:ad -> A -> Map B, - (forall (a:ad) (y:A), mapcanon B (f a y)) -> - forall m:Map A, mapcanon B (MapFold A (Map B) m0 op f m). - Proof. - intros. exact (MapFold_canon_1 m0 H op H0 f H1 m (fun a:ad => a)). - Qed. - - Lemma MapCollect_canon : - forall f:ad -> A -> Map B, - (forall (a:ad) (y:A), mapcanon B (f a y)) -> - forall m:Map A, mapcanon B (MapCollect A B f m). - Proof. - intros. rewrite MapCollect_as_Fold. apply MapFold_canon. apply M0_canon. - intros. exact (MapMerge_canon B m1 m2 H0 H1). - assumption. - Qed. - -End MapFoldCanon. \ No newline at end of file -- cgit v1.2.3