From 3ef7797ef6fc605dfafb32523261fe1b023aeecb Mon Sep 17 00:00:00 2001 From: Samuel Mimram Date: Fri, 28 Apr 2006 14:59:16 +0000 Subject: Imported Upstream version 8.0pl3+8.1alpha --- theories/Init/Datatypes.v | 22 ++++++---- theories/Init/Logic.v | 101 +++++++++++++++++++++++++-------------------- theories/Init/Logic_Type.v | 62 +++++++++++++++------------- theories/Init/Notations.v | 11 ++--- theories/Init/Peano.v | 56 +++++++++++++------------ theories/Init/Prelude.v | 5 ++- theories/Init/Specif.v | 54 ++++++++++++++---------- theories/Init/Tactics.v | 72 ++++++++++++++++++++++++++++++++ theories/Init/Wf.v | 99 ++++++++++++++++++++++---------------------- 9 files changed, 297 insertions(+), 185 deletions(-) mode change 100755 => 100644 theories/Init/Datatypes.v mode change 100755 => 100644 theories/Init/Logic.v mode change 100755 => 100644 theories/Init/Logic_Type.v mode change 100755 => 100644 theories/Init/Peano.v mode change 100755 => 100644 theories/Init/Prelude.v mode change 100755 => 100644 theories/Init/Specif.v create mode 100644 theories/Init/Tactics.v mode change 100755 => 100644 theories/Init/Wf.v (limited to 'theories/Init') diff --git a/theories/Init/Datatypes.v b/theories/Init/Datatypes.v old mode 100755 new mode 100644 index 6aeabe13..f71f58c6 --- a/theories/Init/Datatypes.v +++ b/theories/Init/Datatypes.v @@ -6,19 +6,19 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Datatypes.v,v 1.26.2.1 2004/07/16 19:31:03 herbelin Exp $ i*) +(*i $Id: Datatypes.v 8642 2006-03-17 10:09:02Z notin $ i*) + +Set Implicit Arguments. Require Import Notations. Require Import Logic. -Set Implicit Arguments. - (** [unit] is a singleton datatype with sole inhabitant [tt] *) Inductive unit : Set := tt : unit. -(** [bool] is the datatype of the booleans values [true] and [false] *) +(** [bool] is the datatype of the boolean values [true] and [false] *) Inductive bool : Set := | true : bool @@ -27,7 +27,9 @@ Inductive bool : Set := Add Printing If bool. (** [nat] is the datatype of natural numbers built from [O] and successor [S]; - note that zero is the letter O, not the numeral 0 *) + note that the constructor name is the letter O. + Numbers in [nat] can be denoted using a decimal notation; + e.g. [3%nat] abbreviates [S (S (S O))] *) Inductive nat : Set := | O : nat @@ -53,7 +55,7 @@ Implicit Arguments identity_ind [A]. Implicit Arguments identity_rec [A]. Implicit Arguments identity_rect [A]. -(** [option A] is the extension of A with a dummy element None *) +(** [option A] is the extension of [A] with an extra element [None] *) Inductive option (A:Set) : Set := | Some : A -> option A @@ -61,7 +63,13 @@ Inductive option (A:Set) : Set := Implicit Arguments None [A]. -(** [sum A B], equivalently [A + B], is the disjoint sum of [A] and [B] *) +Definition option_map (A B:Set) (f:A->B) o := + match o with + | Some a => Some (f a) + | None => None + end. + +(** [sum A B], written [A + B], is the disjoint sum of [A] and [B] *) (* Syntax defined in Specif.v *) Inductive sum (A B:Set) : Set := | inl : A -> sum A B diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v old mode 100755 new mode 100644 index bae8d4a1..cbf8d7a7 --- a/theories/Init/Logic.v +++ b/theories/Init/Logic.v @@ -6,13 +6,13 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Logic.v,v 1.29.2.1 2004/07/16 19:31:03 herbelin Exp $ i*) +(*i $Id: Logic.v 8642 2006-03-17 10:09:02Z notin $ i*) Set Implicit Arguments. Require Import Notations. -(** * Propositional connectives *) +(** *** Propositional connectives *) (** [True] is the always true proposition *) Inductive True : Prop := @@ -28,13 +28,6 @@ Notation "~ x" := (not x) : type_scope. Hint Unfold not: core. -Inductive and (A B:Prop) : Prop := - conj : A -> B -> A /\ B - where "A /\ B" := (and A B) : type_scope. - - -Section Conjunction. - (** [and A B], written [A /\ B], is the conjunction of [A] and [B] [conj p q] is a proof of [A /\ B] as soon as @@ -42,6 +35,13 @@ Section Conjunction. [proj1] and [proj2] are first and second projections of a conjunction *) +Inductive and (A B:Prop) : Prop := + conj : A -> B -> A /\ B + +where "A /\ B" := (and A B) : type_scope. + +Section Conjunction. + Variables A B : Prop. Theorem proj1 : A /\ B -> A. @@ -61,7 +61,8 @@ End Conjunction. Inductive or (A B:Prop) : Prop := | or_introl : A -> A \/ B | or_intror : B -> A \/ B - where "A \/ B" := (or A B) : type_scope. + +where "A \/ B" := (or A B) : type_scope. (** [iff A B], written [A <-> B], expresses the equivalence of [A] and [B] *) @@ -94,20 +95,28 @@ End Equivalence. Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R. Notation "'IF' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3) - (at level 200) : type_scope. - -(** * First-order quantifiers - - [ex A P], or simply [exists x, P x], expresses the existence of an - [x] of type [A] which satisfies the predicate [P] ([A] is of type - [Set]). This is existential quantification. - - [ex2 A P Q], or simply [exists2 x, P x & Q x], expresses the - existence of an [x] of type [A] which satisfies both the predicates - [P] and [Q]. - - Universal quantification (especially first-order one) is normally - written [forall x:A, P x]. For duality with existential quantification, - the construction [all P] is provided too. + (at level 200, right associativity) : type_scope. + +(** *** First-order quantifiers *) + +(** [ex P], or simply [exists x, P x], or also [exists x:A, P x], + expresses the existence of an [x] of some type [A] in [Set] which + satisfies the predicate [P]. This is existential quantification. + + [ex2 P Q], or simply [exists2 x, P x & Q x], or also + [exists2 x:A, P x & Q x], expresses the existence of an [x] of + type [A] which satisfies both predicates [P] and [Q]. + + Universal quantification is primitively written [forall x:A, Q]. By + symmetry with existential quantification, the construction [all P] + is provided too. *) +(* Remark: [exists x, Q] denotes [ex (fun x => Q)] so that [exists x, + P x] is in fact equivalent to [ex (fun x => P x)] which may be not + convertible to [ex P] if [P] is not itself an abstraction *) + + Inductive ex (A:Type) (P:A -> Prop) : Prop := ex_intro : forall x:A, P x -> ex (A:=A) P. @@ -119,19 +128,19 @@ Definition all (A:Type) (P:A -> Prop) := forall x:A, P x. (* Rule order is important to give printing priority to fully typed exists *) Notation "'exists' x , p" := (ex (fun x => p)) - (at level 200, x ident) : type_scope. + (at level 200, x ident, right associativity) : type_scope. Notation "'exists' x : t , p" := (ex (fun x:t => p)) - (at level 200, x ident, format "'exists' '/ ' x : t , '/ ' p") + (at level 200, x ident, right associativity, + format "'[' 'exists' '/ ' x : t , '/ ' p ']'") : type_scope. Notation "'exists2' x , p & q" := (ex2 (fun x => p) (fun x => q)) - (at level 200, x ident, p at level 200) : type_scope. + (at level 200, x ident, p at level 200, right associativity) : type_scope. Notation "'exists2' x : t , p & q" := (ex2 (fun x:t => p) (fun x:t => q)) - (at level 200, x ident, t at level 200, p at level 200, - format "'exists2' '/ ' x : t , '/ ' '[' p & '/' q ']'") + (at level 200, x ident, t at level 200, p at level 200, right associativity, + format "'[' 'exists2' '/ ' x : t , '/ ' '[' p & '/' q ']' ']'") : type_scope. - (** Derived rules for universal quantification *) Section universal_quantification. @@ -151,18 +160,21 @@ Section universal_quantification. End universal_quantification. -(** * Equality *) +(** *** Equality *) -(** [eq x y], or simply [x=y], expresses the (Leibniz') equality - of [x] and [y]. Both [x] and [y] must belong to the same type [A]. +(** [eq x y], or simply [x=y] expresses the equality of [x] and + [y]. Both [x] and [y] must belong to the same type [A]. The definition is inductive and states the reflexivity of the equality. The others properties (symmetry, transitivity, replacement of - equals) are proved below. The type of [x] and [y] can be made explicit - using the notation [x = y :> A] *) + equals by equals) are proved below. The type of [x] and [y] can be + made explicit using the notation [x = y :> A]. This is Leibniz equality + as it expresses that [x] and [y] are equal iff every property on + [A] which is true of [x] is also true of [y] *) Inductive eq (A:Type) (x:A) : A -> Prop := refl_equal : x = x :>A - where "x = y :> A" := (@eq A x y) : type_scope. + +where "x = y :> A" := (@eq A x y) : type_scope. Notation "x = y" := (x = y :>_) : type_scope. Notation "x <> y :> T" := (~ x = y :>T) : type_scope. @@ -217,16 +229,6 @@ Section Logic_lemmas. End equality. -(* Is now a primitive principle - Theorem eq_rect: (A:Type)(x:A)(P:A->Type)(P x)->(y:A)(eq ? x y)->(P y). - Proof. - Intros. - Cut (identity A x y). - NewDestruct 1; Auto. - NewDestruct H; Auto. - Qed. -*) - Definition eq_ind_r : forall (A:Type) (x:A) (P:A -> Prop), P x -> forall y:A, y = x -> P y. intros A x P H y H0; elim sym_eq with (1 := H0); assumption. @@ -277,3 +279,14 @@ Proof. Qed. Hint Immediate sym_eq sym_not_eq: core v62. + +(** Other notations *) + +Notation "'exists' ! x , P" := + (exists x', (fun x => P) x' /\ forall x'', (fun x => P) x'' -> x' = x'') + (at level 200, x ident, right associativity, + format "'[' 'exists' ! '/ ' x , '/ ' P ']'") : type_scope. +Notation "'exists' ! x : A , P" := + (exists x' : A, (fun x => P) x' /\ forall x'':A, (fun x => P) x'' -> x' = x'') + (at level 200, x ident, right associativity, + format "'[' 'exists' ! '/ ' x : A , '/ ' P ']'") : type_scope. diff --git a/theories/Init/Logic_Type.v b/theories/Init/Logic_Type.v old mode 100755 new mode 100644 index 0e62e842..857ffe94 --- a/theories/Init/Logic_Type.v +++ b/theories/Init/Logic_Type.v @@ -6,18 +6,48 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Logic_Type.v,v 1.19.2.1 2004/07/16 19:31:03 herbelin Exp $ i*) +(*i $Id: Logic_Type.v 8642 2006-03-17 10:09:02Z notin $ i*) -Set Implicit Arguments. +(** This module defines type constructors for types in [Type] + ([Datatypes.v] and [Logic.v] defined them for types in [Set]) *) -(** This module defines quantification on the world [Type] - ([Logic.v] was defining it on the world [Set]) *) +Set Implicit Arguments. Require Import Datatypes. Require Export Logic. +(** Negation of a type in [Type] *) + Definition notT (A:Type) := A -> False. +(** Conjunction of types in [Type] *) + +Inductive prodT (A B:Type) : Type := + pairT : A -> B -> prodT A B. + +Section prodT_proj. + + Variables A B : Type. + + Definition fstT (H:prodT A B) := match H with + | pairT x _ => x + end. + Definition sndT (H:prodT A B) := match H with + | pairT _ y => y + end. + +End prodT_proj. + +Definition prodT_uncurry (A B C:Type) (f:prodT A B -> C) + (x:A) (y:B) : C := f (pairT x y). + +Definition prodT_curry (A B C:Type) (f:A -> B -> C) + (p:prodT A B) : C := match p with + | pairT x y => f x y + end. + +(** Properties of [identity] *) + Section identity_is_a_congruence. Variables A B : Type. @@ -62,28 +92,4 @@ Definition identity_rect_r : intros A x P H y H0; case sym_id with (1 := H0); trivial. Defined. -Inductive prodT (A B:Type) : Type := - pairT : A -> B -> prodT A B. - -Section prodT_proj. - - Variables A B : Type. - - Definition fstT (H:prodT A B) := match H with - | pairT x _ => x - end. - Definition sndT (H:prodT A B) := match H with - | pairT _ y => y - end. - -End prodT_proj. - -Definition prodT_uncurry (A B C:Type) (f:prodT A B -> C) - (x:A) (y:B) : C := f (pairT x y). - -Definition prodT_curry (A B C:Type) (f:A -> B -> C) - (p:prodT A B) : C := match p with - | pairT x y => f x y - end. - Hint Immediate sym_id sym_not_id: core v62. diff --git a/theories/Init/Notations.v b/theories/Init/Notations.v index e0a18747..3ca93067 100644 --- a/theories/Init/Notations.v +++ b/theories/Init/Notations.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Notations.v,v 1.24.2.2 2004/08/01 09:36:44 herbelin Exp $ i*) +(*i $Id: Notations.v 6410 2004-12-06 11:34:35Z herbelin $ i*) (** These are the notations whose level and associativity are imposed by Coq *) @@ -54,15 +54,12 @@ Reserved Notation "x ^ y" (at level 30, right associativity). Reserved Notation "( x , y , .. , z )" (at level 0). (** Notation "{ x }" is reserved and has a special status as component - of other notations; it is at level 0 to factor with {x:A|P} etc *) + of other notations such as "{ A } + { B }" and "A + { B }" (which + are at the same level than "x + y"); + "{ x }" is at level 0 to factor with "{ x : A | P }" *) Reserved Notation "{ x }" (at level 0, x at level 99). -(** Notations for sum-types *) - -Reserved Notation "{ A } + { B }" (at level 50, left associativity). -Reserved Notation "A + { B }" (at level 50, left associativity). - (** Notations for sigma-types or subsets *) Reserved Notation "{ x : A | P }" (at level 0, x at level 99). diff --git a/theories/Init/Peano.v b/theories/Init/Peano.v old mode 100755 new mode 100644 index 789a020f..c0416b63 --- a/theories/Init/Peano.v +++ b/theories/Init/Peano.v @@ -6,9 +6,10 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Peano.v,v 1.23.2.1 2004/07/16 19:31:03 herbelin Exp $ i*) +(*i $Id: Peano.v 8642 2006-03-17 10:09:02Z notin $ i*) -(** Natural numbers [nat] built from [O] and [S] are defined in Datatypes.v *) +(** The type [nat] of Peano natural numbers (built from [O] and [S]) + is defined in [Datatypes.v] *) (** This module defines the following operations on natural numbers : - predecessor [pred] @@ -19,13 +20,15 @@ - greater or equal [ge] - greater [gt] - This module states various lemmas and theorems about natural numbers, - including Peano's axioms of arithmetic (in Coq, these are in fact provable) - Case analysis on [nat] and induction on [nat * nat] are provided too *) + It states various lemmas and theorems about natural numbers, + including Peano's axioms of arithmetic (in Coq, these are provable). + Case analysis on [nat] and induction on [nat * nat] are provided too + *) Require Import Notations. Require Import Datatypes. Require Import Logic. +Unset Boxed Definitions. Open Scope nat_scope. @@ -47,6 +50,8 @@ Proof. auto. Qed. +(** Injectivity of successor *) + Theorem eq_add_S : forall n m:nat, S n = S m -> n = m. Proof. intros n m H; change (pred (S n) = pred (S m)) in |- *; auto. @@ -54,21 +59,20 @@ Qed. Hint Immediate eq_add_S: core v62. -(** A consequence of the previous axioms *) - Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m. Proof. red in |- *; auto. Qed. Hint Resolve not_eq_S: core v62. +(** Zero is not the successor of a number *) + Definition IsSucc (n:nat) : Prop := match n with | O => False | S p => True end. - Theorem O_S : forall n:nat, 0 <> S n. Proof. red in |- *; intros n H. @@ -88,13 +92,14 @@ Hint Resolve n_Sn: core v62. Fixpoint plus (n m:nat) {struct n} : nat := match n with | O => m - | S p => S (plus p m) - end. + | S p => S (p + m) + end + +where "n + m" := (plus n m) : nat_scope. + Hint Resolve (f_equal2 plus): v62. Hint Resolve (f_equal2 (A1:=nat) (A2:=nat)): core. -Infix "+" := plus : nat_scope. - Lemma plus_n_O : forall n:nat, n = n + 0. Proof. induction n; simpl in |- *; auto. @@ -122,11 +127,12 @@ Qed. Fixpoint mult (n m:nat) {struct n} : nat := match n with | O => 0 - | S p => m + mult p m - end. -Hint Resolve (f_equal2 mult): core v62. + | S p => m + p * m + end -Infix "*" := mult : nat_scope. +where "n * m" := (mult n m) : nat_scope. + +Hint Resolve (f_equal2 mult): core v62. Lemma mult_n_O : forall n:nat, 0 = n * 0. Proof. @@ -142,27 +148,25 @@ Proof. Qed. Hint Resolve mult_n_Sm: core v62. -(** Definition of subtraction on [nat] : [m-n] is [0] if [n>=m] *) +(** Truncated subtraction: [m-n] is [0] if [n>=m] *) Fixpoint minus (n m:nat) {struct n} : nat := match n, m with | O, _ => 0 | S k, O => S k - | S k, S l => minus k l - end. + | S k, S l => k - l + end -Infix "-" := minus : nat_scope. +where "n - m" := (minus n m) : nat_scope. (** Definition of the usual orders, the basic properties of [le] and [lt] can be found in files Le and Lt *) -(** An inductive definition to define the order *) - Inductive le (n:nat) : nat -> Prop := - | le_n : le n n - | le_S : forall m:nat, le n m -> le n (S m). + | le_n : n <= n + | le_S : forall m:nat, n <= m -> n <= S m -Infix "<=" := le : nat_scope. +where "n <= m" := (le n m) : nat_scope. Hint Constructors le: core v62. (*i equivalent to : "Hints Resolve le_n le_S : core v62." i*) @@ -187,7 +191,7 @@ Notation "x <= y < z" := (x <= y /\ y < z) : nat_scope. Notation "x < y < z" := (x < y /\ y < z) : nat_scope. Notation "x < y <= z" := (x < y /\ y <= z) : nat_scope. -(** Pattern-Matching on natural numbers *) +(** Case analysis *) Theorem nat_case : forall (n:nat) (P:nat -> Prop), P 0 -> (forall m:nat, P (S m)) -> P n. diff --git a/theories/Init/Prelude.v b/theories/Init/Prelude.v old mode 100755 new mode 100644 index 2fe520c4..5f6f1eab --- a/theories/Init/Prelude.v +++ b/theories/Init/Prelude.v @@ -6,11 +6,12 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Prelude.v,v 1.11.2.1 2004/07/16 19:31:03 herbelin Exp $ i*) +(*i $Id: Prelude.v 8642 2006-03-17 10:09:02Z notin $ i*) Require Export Notations. Require Export Logic. Require Export Datatypes. Require Export Specif. Require Export Peano. -Require Export Wf. \ No newline at end of file +Require Export Wf. +Require Export Tactics. diff --git a/theories/Init/Specif.v b/theories/Init/Specif.v old mode 100755 new mode 100644 index 6855e689..e7fc1ac4 --- a/theories/Init/Specif.v +++ b/theories/Init/Specif.v @@ -6,21 +6,21 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Specif.v,v 1.25.2.1 2004/07/16 19:31:04 herbelin Exp $ i*) +(*i $Id: Specif.v 8642 2006-03-17 10:09:02Z notin $ i*) -Set Implicit Arguments. +(** Basic specifications : sets that may contain logical information *) -(** Basic specifications : Sets containing logical information *) +Set Implicit Arguments. Require Import Notations. Require Import Datatypes. Require Import Logic. -(** Subsets *) +(** Subsets and Sigma-types *) -(** [(sig A P)], or more suggestively [{x:A | (P x)}], denotes the subset +(** [(sig A P)], or more suggestively [{x:A | P x}], denotes the subset of elements of the Set [A] which satisfy the predicate [P]. - Similarly [(sig2 A P Q)], or [{x:A | (P x) & (Q x)}], denotes the subset + Similarly [(sig2 A P Q)], or [{x:A | P x & Q x}], denotes the subset of elements of the Set [A] which satisfy both [P] and [Q]. *) Inductive sig (A:Set) (P:A -> Prop) : Set := @@ -29,8 +29,8 @@ Inductive sig (A:Set) (P:A -> Prop) : Set := Inductive sig2 (A:Set) (P Q:A -> Prop) : Set := exist2 : forall x:A, P x -> Q x -> sig2 (A:=A) P Q. -(** [(sigS A P)], or more suggestively [{x:A & (P x)}], is a subtle variant - of subset where [P] is now of type [Set]. +(** [(sigS A P)], or more suggestively [{x:A & (P x)}] is a Sigma-type. + It is a variant of subset where [P] is now of type [Set]. Similarly for [(sigS2 A P Q)], also written [{x:A & (P x) & (Q x)}]. *) Inductive sigS (A:Set) (P:A -> Set) : Set := @@ -57,7 +57,13 @@ Add Printing Let sigS. Add Printing Let sigS2. -(** Projections of sig *) +(** Projections of [sig] + + An element [y] of a subset [{x:A & (P x)}] is the pair of an [a] + of type [A] and of a proof [h] that [a] satisfies [P]. Then + [(proj1_sig y)] is the witness [a] and [(proj2_sig y)] is the + proof of [(P a)] *) + Section Subset_projections. @@ -76,18 +82,18 @@ Section Subset_projections. End Subset_projections. -(** Projections of sigS *) +(** Projections of [sigS] + + An element [x] of a sigma-type [{y:A & P y}] is a dependent pair + made of an [a] of type [A] and an [h] of type [P a]. Then, + [(projS1 x)] is the first projection and [(projS2 x)] is the + second projection, the type of which depends on the [projS1]. *) Section Projections. Variable A : Set. Variable P : A -> Set. - (** An element [y] of a subset [{x:A & (P x)}] is the pair of an [a] of - type [A] and of a proof [h] that [a] satisfies [P]. - Then [(projS1 y)] is the witness [a] - and [(projS2 y)] is the proof of [(P a)] *) - Definition projS1 (x:sigS P) : A := match x with | existS a _ => a end. @@ -99,7 +105,8 @@ Section Projections. End Projections. -(** Extended_booleans *) +(** [sumbool] is a boolean type equipped with the justification of + their value *) Inductive sumbool (A B:Prop) : Set := | left : A -> {A} + {B} @@ -108,6 +115,9 @@ Inductive sumbool (A B:Prop) : Set := Add Printing If sumbool. +(** [sumor] is an option type equipped with the justification of why + it may not be a regular value *) + Inductive sumor (A:Set) (B:Prop) : Set := | inleft : A -> A + {B} | inright : B -> A + {B} @@ -115,12 +125,10 @@ Inductive sumor (A:Set) (B:Prop) : Set := Add Printing If sumor. -(** Choice *) +(** Various forms of the axiom of choice for specifications *) Section Choice_lemmas. - (** The following lemmas state various forms of the axiom of choice *) - Variables S S' : Set. Variable R : S -> S' -> Prop. Variable R' : S -> S' -> Set. @@ -167,8 +175,10 @@ End Choice_lemmas. (** A result of type [(Exc A)] is either a normal value of type [A] or an [error] : - [Inductive Exc [A:Set] : Set := value : A->(Exc A) | error : (Exc A)] - it is implemented using the option type. *) + + [Inductive Exc [A:Set] : Set := value : A->(Exc A) | error : (Exc A)]. + + It is implemented using the option type. *) Definition Exc := option. Definition value := Some. @@ -189,7 +199,7 @@ Qed. Hint Resolve left right inleft inright: core v62. -(** Sigma Type at Type level [sigT] *) +(** Sigma-type for types in [Type] *) Inductive sigT (A:Type) (P:A -> Type) : Type := existT : forall x:A, P x -> sigT (A:=A) P. diff --git a/theories/Init/Tactics.v b/theories/Init/Tactics.v new file mode 100644 index 00000000..ce37715e --- /dev/null +++ b/theories/Init/Tactics.v @@ -0,0 +1,72 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* cut (a=a'); [cg|r] + | |- ?f ?a ?b = ?f' ?a' ?b' => + cut (b=b');[cut (a=a');[cg|r]|r] + | |- ?f ?a ?b ?c = ?f' ?a' ?b' ?c'=> + cut (c=c');[cut (b=b');[cut (a=a');[cg|r]|r]|r] + | |- ?f ?a ?b ?c ?d= ?f' ?a' ?b' ?c' ?d'=> + cut (d=d');[cut (c=c');[cut (b=b');[cut (a=a');[cg|r]|r]|r]|r] + | |- ?f ?a ?b ?c ?d ?e= ?f' ?a' ?b' ?c' ?d' ?e'=> + cut (e=e');[cut (d=d');[cut (c=c');[cut (b=b');[cut (a=a');[cg|r]|r]|r]|r]|r] + | _ => idtac + end. + +(* Rewriting in all hypothesis. *) + +Ltac rewrite_all Eq := match type of Eq with + ?a = ?b => + generalize Eq; clear Eq; + match goal with + | H : context [a] |- _ => intro Eq; rewrite Eq in H; rewrite_all Eq + | _ => intro Eq; try rewrite Eq + end + end. + +Ltac rewrite_all_rev Eq := match type of Eq with + ?a = ?b => + generalize Eq; clear Eq; + match goal with + | H : context [b] |- _ => intro Eq; rewrite <- Eq in H; rewrite_all_rev Eq + | _ => intro Eq; try rewrite <- Eq + end + end. + +Tactic Notation "rewrite_all" "<-" constr(H) := rewrite_all_rev H. diff --git a/theories/Init/Wf.v b/theories/Init/Wf.v old mode 100755 new mode 100644 index 7ab3723d..fde70225 --- a/theories/Init/Wf.v +++ b/theories/Init/Wf.v @@ -6,61 +6,59 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -Set Implicit Arguments. - -(*i $Id: Wf.v,v 1.17.2.1 2004/07/16 19:31:04 herbelin Exp $ i*) +(*i $Id: Wf.v 8642 2006-03-17 10:09:02Z notin $ i*) (** This module proves the validity of - well-founded recursion (also called course of values) - well-founded induction - from a well-founded ordering on a given set *) + from a well-founded ordering on a given set *) + +Set Implicit Arguments. Require Import Notations. Require Import Logic. Require Import Datatypes. -(** Well-founded induction principle on Prop *) +(** Well-founded induction principle on [Prop] *) Section Well_founded. - Variable A : Set. + Variable A : Type. Variable R : A -> A -> Prop. (** The accessibility predicate is defined to be non-informative *) - Inductive Acc : A -> Prop := - Acc_intro : forall x:A, (forall y:A, R y x -> Acc y) -> Acc x. + Inductive Acc (x: A) : Prop := + Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x. Lemma Acc_inv : forall x:A, Acc x -> forall y:A, R y x -> Acc y. destruct 1; trivial. Defined. - (** the informative elimination : + (** Informative elimination : [let Acc_rec F = let rec wf x = F x wf in wf] *) Section AccRecType. Variable P : A -> Type. - Variable - F : - forall x:A, - (forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x. + Variable F : forall x:A, + (forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x. Fixpoint Acc_rect (x:A) (a:Acc x) {struct a} : P x := - F (Acc_inv a) (fun (y:A) (h:R y x) => Acc_rect (x:=y) (Acc_inv a h)). + F (Acc_inv a) (fun (y:A) (h:R y x) => Acc_rect (Acc_inv a h)). End AccRecType. Definition Acc_rec (P:A -> Set) := Acc_rect P. - (** A simplified version of Acc_rec(t) *) + (** A simplified version of [Acc_rect] *) Section AccIter. - Variable P : A -> Type. + Variable P : A -> Type. Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x. Fixpoint Acc_iter (x:A) (a:Acc x) {struct a} : P x := - F (fun (y:A) (h:R y x) => Acc_iter (x:=y) (Acc_inv a h)). + F (fun (y:A) (h:R y x) => Acc_iter (Acc_inv a h)). End AccIter. @@ -68,7 +66,7 @@ Section Well_founded. Definition well_founded := forall a:A, Acc a. - (** well-founded induction on Set and Prop *) + (** Well-founded induction on [Set] and [Prop] *) Hypothesis Rwf : well_founded. @@ -95,47 +93,48 @@ Section Well_founded. (** Building fixpoints *) -Section FixPoint. + Section FixPoint. -Variable P : A -> Set. -Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x. - -Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x := - F (fun (y:A) (p:R y x) => Fix_F (x:=y) (Acc_inv r p)). + Variable P : A -> Type. + Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x. -Definition Fix (x:A) := Fix_F (Rwf x). + Notation Fix_F := (Acc_iter P F) (only parsing). (* alias *) -(** Proof that [well_founded_induction] satisfies the fixpoint equation. - It requires an extra property of the functional *) + Definition Fix (x:A) := Acc_iter P F (Rwf x). -Hypothesis - F_ext : - forall (x:A) (f g:forall y:A, R y x -> P y), - (forall (y:A) (p:R y x), f y p = g y p) -> F f = F g. + (** Proof that [well_founded_induction] satisfies the fixpoint equation. + It requires an extra property of the functional *) -Scheme Acc_inv_dep := Induction for Acc Sort Prop. + Hypothesis + F_ext : + forall (x:A) (f g:forall y:A, R y x -> P y), + (forall (y:A) (p:R y x), f y p = g y p) -> F f = F g. -Lemma Fix_F_eq : - forall (x:A) (r:Acc x), - F (fun (y:A) (p:R y x) => Fix_F (Acc_inv r p)) = Fix_F r. -destruct r using Acc_inv_dep; auto. -Qed. + Scheme Acc_inv_dep := Induction for Acc Sort Prop. -Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F r = Fix_F s. -intro x; induction (Rwf x); intros. -rewrite <- (Fix_F_eq r); rewrite <- (Fix_F_eq s); intros. -apply F_ext; auto. -Qed. + Lemma Fix_F_eq : + forall (x:A) (r:Acc x), + F (fun (y:A) (p:R y x) => Fix_F y (Acc_inv r p)) = Fix_F x r. + Proof. + destruct r using Acc_inv_dep; auto. + Qed. + Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s. + Proof. + intro x; induction (Rwf x); intros. + rewrite <- (Fix_F_eq r); rewrite <- (Fix_F_eq s); intros. + apply F_ext; auto. + Qed. -Lemma Fix_eq : forall x:A, Fix x = F (fun (y:A) (p:R y x) => Fix y). -intro x; unfold Fix in |- *. -rewrite <- (Fix_F_eq (x:=x)). -apply F_ext; intros. -apply Fix_F_inv. -Qed. + Lemma Fix_eq : forall x:A, Fix x = F (fun (y:A) (p:R y x) => Fix y). + Proof. + intro x; unfold Fix in |- *. + rewrite <- (Fix_F_eq (x:=x)). + apply F_ext; intros. + apply Fix_F_inv. + Qed. -End FixPoint. + End FixPoint. End Well_founded. @@ -169,3 +168,5 @@ Section Well_founded_2. Defined. End Well_founded_2. + +Notation Fix_F := Acc_iter (only parsing). (* compatibility *) -- cgit v1.2.3