From 9ebf44d84754adc5b64fcf612c6816c02c80462d Mon Sep 17 00:00:00 2001 From: Benjamin Barenblat Date: Sat, 2 Feb 2019 19:29:23 -0500 Subject: Imported Upstream version 8.9.0 --- theories/FSets/FMapFacts.v | 2 +- theories/FSets/FMapFullAVL.v | 6 +++--- theories/FSets/FSetEqProperties.v | 4 ++-- 3 files changed, 6 insertions(+), 6 deletions(-) (limited to 'theories/FSets') diff --git a/theories/FSets/FMapFacts.v b/theories/FSets/FMapFacts.v index 99705966..2d5a7983 100644 --- a/theories/FSets/FMapFacts.v +++ b/theories/FSets/FMapFacts.v @@ -26,7 +26,7 @@ Hint Extern 1 (Equivalence _) => constructor; congruence. Module WFacts_fun (E:DecidableType)(Import M:WSfun E). -Notation option_map := option_map (compat "8.6"). +Notation option_map := option_map (compat "8.7"). Notation eq_dec := E.eq_dec. Definition eqb x y := if eq_dec x y then true else false. diff --git a/theories/FSets/FMapFullAVL.v b/theories/FSets/FMapFullAVL.v index 34529678..c0db8646 100644 --- a/theories/FSets/FMapFullAVL.v +++ b/theories/FSets/FMapFullAVL.v @@ -27,7 +27,7 @@ *) -Require Import FunInd Recdef FMapInterface FMapList ZArith Int FMapAVL ROmega. +Require Import FunInd Recdef FMapInterface FMapList ZArith Int FMapAVL Lia. Set Implicit Arguments. Unset Strict Implicit. @@ -39,7 +39,7 @@ Import Raw.Proofs. Local Open Scope pair_scope. Local Open Scope Int_scope. -Ltac omega_max := i2z_refl; romega with Z. +Ltac omega_max := i2z_refl; lia. Section Elt. Variable elt : Type. @@ -697,7 +697,7 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <: end. Proof. intros; unfold cardinal_e_2; simpl; - abstract (do 2 rewrite cons_cardinal_e; romega with * ). + abstract (do 2 rewrite cons_cardinal_e; lia ). Defined. Definition Cmp c := diff --git a/theories/FSets/FSetEqProperties.v b/theories/FSets/FSetEqProperties.v index 56844f47..59b2f789 100644 --- a/theories/FSets/FSetEqProperties.v +++ b/theories/FSets/FSetEqProperties.v @@ -333,7 +333,7 @@ Proof. auto with set. Qed. -(* caracterisation of [union] via [subset] *) +(* characterisation of [union] via [subset] *) Lemma union_subset_1: subset s (union s s')=true. Proof. @@ -408,7 +408,7 @@ intros; apply equal_1; apply inter_add_2. rewrite not_mem_iff; auto. Qed. -(* caracterisation of [union] via [subset] *) +(* characterisation of [union] via [subset] *) Lemma inter_subset_1: subset (inter s s') s=true. Proof. -- cgit v1.2.3