From 6b649aba925b6f7462da07599fe67ebb12a3460e Mon Sep 17 00:00:00 2001 From: Samuel Mimram Date: Wed, 28 Jul 2004 21:54:47 +0000 Subject: Imported Upstream version 8.0pl1 --- theories/Bool/Bool.v | 543 ++++++++++++++++++++++++++++++++++++++++++++++++ theories/Bool/BoolEq.v | 73 +++++++ theories/Bool/Bvector.v | 272 ++++++++++++++++++++++++ theories/Bool/DecBool.v | 31 +++ theories/Bool/IfProp.v | 50 +++++ theories/Bool/Sumbool.v | 78 +++++++ theories/Bool/Zerob.v | 38 ++++ theories/Bool/intro.tex | 16 ++ 8 files changed, 1101 insertions(+) create mode 100755 theories/Bool/Bool.v create mode 100644 theories/Bool/BoolEq.v create mode 100644 theories/Bool/Bvector.v create mode 100755 theories/Bool/DecBool.v create mode 100755 theories/Bool/IfProp.v create mode 100644 theories/Bool/Sumbool.v create mode 100755 theories/Bool/Zerob.v create mode 100644 theories/Bool/intro.tex (limited to 'theories/Bool') diff --git a/theories/Bool/Bool.v b/theories/Bool/Bool.v new file mode 100755 index 00000000..854eb9e3 --- /dev/null +++ b/theories/Bool/Bool.v @@ -0,0 +1,543 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* True + | false => False + end. +Hint Unfold Is_true: bool. + +Lemma Is_true_eq_left : forall x:bool, x = true -> Is_true x. +Proof. + intros; rewrite H; auto with bool. +Qed. + +Lemma Is_true_eq_right : forall x:bool, true = x -> Is_true x. +Proof. + intros; rewrite <- H; auto with bool. +Qed. + +Hint Immediate Is_true_eq_right Is_true_eq_left: bool. + +(*******************) +(** Discrimination *) +(*******************) + +Lemma diff_true_false : true <> false. +Proof. +unfold not in |- *; intro contr; change (Is_true false) in |- *. +elim contr; simpl in |- *; trivial with bool. +Qed. +Hint Resolve diff_true_false: bool v62. + +Lemma diff_false_true : false <> true. +Proof. +red in |- *; intros H; apply diff_true_false. +symmetry in |- *. +assumption. +Qed. +Hint Resolve diff_false_true: bool v62. + +Lemma eq_true_false_abs : forall b:bool, b = true -> b = false -> False. +intros b H; rewrite H; auto with bool. +Qed. +Hint Resolve eq_true_false_abs: bool. + +Lemma not_true_is_false : forall b:bool, b <> true -> b = false. +destruct b. +intros. +red in H; elim H. +reflexivity. +intros abs. +reflexivity. +Qed. + +Lemma not_false_is_true : forall b:bool, b <> false -> b = true. +destruct b. +intros. +reflexivity. +intro H; red in H; elim H. +reflexivity. +Qed. + +(**********************) +(** Order on booleans *) +(**********************) + +Definition leb (b1 b2:bool) := + match b1 with + | true => b2 = true + | false => True + end. +Hint Unfold leb: bool v62. + +(*************) +(** Equality *) +(*************) + +Definition eqb (b1 b2:bool) : bool := + match b1, b2 with + | true, true => true + | true, false => false + | false, true => false + | false, false => true + end. + +Lemma eqb_refl : forall x:bool, Is_true (eqb x x). +destruct x; simpl in |- *; auto with bool. +Qed. + +Lemma eqb_eq : forall x y:bool, Is_true (eqb x y) -> x = y. +destruct x; destruct y; simpl in |- *; tauto. +Qed. + +Lemma Is_true_eq_true : forall x:bool, Is_true x -> x = true. +destruct x; simpl in |- *; tauto. +Qed. + +Lemma Is_true_eq_true2 : forall x:bool, x = true -> Is_true x. +destruct x; simpl in |- *; auto with bool. +Qed. + +Lemma eqb_subst : + forall (P:bool -> Prop) (b1 b2:bool), eqb b1 b2 = true -> P b1 -> P b2. +unfold eqb in |- *. +intros P b1. +intros b2. +case b1. +case b2. +trivial with bool. +intros H. +inversion_clear H. +case b2. +intros H. +inversion_clear H. +trivial with bool. +Qed. + +Lemma eqb_reflx : forall b:bool, eqb b b = true. +intro b. +case b. +trivial with bool. +trivial with bool. +Qed. + +Lemma eqb_prop : forall a b:bool, eqb a b = true -> a = b. +destruct a; destruct b; simpl in |- *; intro; discriminate H || reflexivity. +Qed. + + +(************************) +(** Logical combinators *) +(************************) + +Definition ifb (b1 b2 b3:bool) : bool := + match b1 with + | true => b2 + | false => b3 + end. + +Definition andb (b1 b2:bool) : bool := ifb b1 b2 false. + +Definition orb (b1 b2:bool) : bool := ifb b1 true b2. + +Definition implb (b1 b2:bool) : bool := ifb b1 b2 true. + +Definition xorb (b1 b2:bool) : bool := + match b1, b2 with + | true, true => false + | true, false => true + | false, true => true + | false, false => false + end. + +Definition negb (b:bool) := match b with + | true => false + | false => true + end. + +Infix "||" := orb (at level 50, left associativity) : bool_scope. +Infix "&&" := andb (at level 40, left associativity) : bool_scope. + +Open Scope bool_scope. + +Delimit Scope bool_scope with bool. + +Bind Scope bool_scope with bool. + +(**************************) +(** Lemmas about [negb] *) +(**************************) + +Lemma negb_intro : forall b:bool, b = negb (negb b). +Proof. +destruct b; reflexivity. +Qed. + +Lemma negb_elim : forall b:bool, negb (negb b) = b. +Proof. +destruct b; reflexivity. +Qed. + +Lemma negb_orb : forall b1 b2:bool, negb (b1 || b2) = negb b1 && negb b2. +Proof. + destruct b1; destruct b2; simpl in |- *; reflexivity. +Qed. + +Lemma negb_andb : forall b1 b2:bool, negb (b1 && b2) = negb b1 || negb b2. +Proof. + destruct b1; destruct b2; simpl in |- *; reflexivity. +Qed. + +Lemma negb_sym : forall b b':bool, b' = negb b -> b = negb b'. +Proof. +destruct b; destruct b'; intros; simpl in |- *; trivial with bool. +Qed. + +Lemma no_fixpoint_negb : forall b:bool, negb b <> b. +Proof. +destruct b; simpl in |- *; intro; apply diff_true_false; + auto with bool. +Qed. + +Lemma eqb_negb1 : forall b:bool, eqb (negb b) b = false. +destruct b. +trivial with bool. +trivial with bool. +Qed. + +Lemma eqb_negb2 : forall b:bool, eqb b (negb b) = false. +destruct b. +trivial with bool. +trivial with bool. +Qed. + + +Lemma if_negb : + forall (A:Set) (b:bool) (x y:A), + (if negb b then x else y) = (if b then y else x). +Proof. + destruct b; trivial. +Qed. + + +(****************************) +(** A few lemmas about [or] *) +(****************************) + +Lemma orb_prop : forall a b:bool, a || b = true -> a = true \/ b = true. +destruct a; destruct b; simpl in |- *; try (intro H; discriminate H); + auto with bool. +Qed. + +Lemma orb_prop2 : forall a b:bool, Is_true (a || b) -> Is_true a \/ Is_true b. +destruct a; destruct b; simpl in |- *; try (intro H; discriminate H); + auto with bool. +Qed. + +Lemma orb_true_intro : + forall b1 b2:bool, b1 = true \/ b2 = true -> b1 || b2 = true. +destruct b1; auto with bool. +destruct 1; intros. +elim diff_true_false; auto with bool. +rewrite H; trivial with bool. +Qed. +Hint Resolve orb_true_intro: bool v62. + +Lemma orb_b_true : forall b:bool, b || true = true. +auto with bool. +Qed. +Hint Resolve orb_b_true: bool v62. + +Lemma orb_true_b : forall b:bool, true || b = true. +trivial with bool. +Qed. + +Definition orb_true_elim : + forall b1 b2:bool, b1 || b2 = true -> {b1 = true} + {b2 = true}. +destruct b1; simpl in |- *; auto with bool. +Defined. + +Lemma orb_false_intro : + forall b1 b2:bool, b1 = false -> b2 = false -> b1 || b2 = false. +intros b1 b2 H1 H2; rewrite H1; rewrite H2; trivial with bool. +Qed. +Hint Resolve orb_false_intro: bool v62. + +Lemma orb_b_false : forall b:bool, b || false = b. +Proof. + destruct b; trivial with bool. +Qed. +Hint Resolve orb_b_false: bool v62. + +Lemma orb_false_b : forall b:bool, false || b = b. +Proof. + destruct b; trivial with bool. +Qed. +Hint Resolve orb_false_b: bool v62. + +Lemma orb_false_elim : + forall b1 b2:bool, b1 || b2 = false -> b1 = false /\ b2 = false. +Proof. + destruct b1. + intros; elim diff_true_false; auto with bool. + destruct b2. + intros; elim diff_true_false; auto with bool. + auto with bool. +Qed. + +Lemma orb_neg_b : forall b:bool, b || negb b = true. +Proof. + destruct b; reflexivity. +Qed. +Hint Resolve orb_neg_b: bool v62. + +Lemma orb_comm : forall b1 b2:bool, b1 || b2 = b2 || b1. +destruct b1; destruct b2; reflexivity. +Qed. + +Lemma orb_assoc : forall b1 b2 b3:bool, b1 || (b2 || b3) = b1 || b2 || b3. +Proof. + destruct b1; destruct b2; destruct b3; reflexivity. +Qed. + +Hint Resolve orb_comm orb_assoc orb_b_false orb_false_b: bool v62. + +(*****************************) +(** A few lemmas about [and] *) +(*****************************) + +Lemma andb_prop : forall a b:bool, a && b = true -> a = true /\ b = true. + +Proof. + destruct a; destruct b; simpl in |- *; try (intro H; discriminate H); + auto with bool. +Qed. +Hint Resolve andb_prop: bool v62. + +Definition andb_true_eq : + forall a b:bool, true = a && b -> true = a /\ true = b. +Proof. + destruct a; destruct b; auto. +Defined. + +Lemma andb_prop2 : + forall a b:bool, Is_true (a && b) -> Is_true a /\ Is_true b. +Proof. + destruct a; destruct b; simpl in |- *; try (intro H; discriminate H); + auto with bool. +Qed. +Hint Resolve andb_prop2: bool v62. + +Lemma andb_true_intro : + forall b1 b2:bool, b1 = true /\ b2 = true -> b1 && b2 = true. +Proof. + destruct b1; destruct b2; simpl in |- *; tauto || auto with bool. +Qed. +Hint Resolve andb_true_intro: bool v62. + +Lemma andb_true_intro2 : + forall b1 b2:bool, Is_true b1 -> Is_true b2 -> Is_true (b1 && b2). +Proof. + destruct b1; destruct b2; simpl in |- *; tauto. +Qed. +Hint Resolve andb_true_intro2: bool v62. + +Lemma andb_false_intro1 : forall b1 b2:bool, b1 = false -> b1 && b2 = false. +destruct b1; destruct b2; simpl in |- *; tauto || auto with bool. +Qed. + +Lemma andb_false_intro2 : forall b1 b2:bool, b2 = false -> b1 && b2 = false. +destruct b1; destruct b2; simpl in |- *; tauto || auto with bool. +Qed. + +Lemma andb_b_false : forall b:bool, b && false = false. +destruct b; auto with bool. +Qed. + +Lemma andb_false_b : forall b:bool, false && b = false. +trivial with bool. +Qed. + +Lemma andb_b_true : forall b:bool, b && true = b. +destruct b; auto with bool. +Qed. + +Lemma andb_true_b : forall b:bool, true && b = b. +trivial with bool. +Qed. + +Definition andb_false_elim : + forall b1 b2:bool, b1 && b2 = false -> {b1 = false} + {b2 = false}. +destruct b1; simpl in |- *; auto with bool. +Defined. +Hint Resolve andb_false_elim: bool v62. + +Lemma andb_neg_b : forall b:bool, b && negb b = false. +destruct b; reflexivity. +Qed. +Hint Resolve andb_neg_b: bool v62. + +Lemma andb_comm : forall b1 b2:bool, b1 && b2 = b2 && b1. +destruct b1; destruct b2; reflexivity. +Qed. + +Lemma andb_assoc : forall b1 b2 b3:bool, b1 && (b2 && b3) = b1 && b2 && b3. +destruct b1; destruct b2; destruct b3; reflexivity. +Qed. + +Hint Resolve andb_comm andb_assoc: bool v62. + +(*******************************) +(** Properties of [xorb] *) +(*******************************) + +Lemma xorb_false : forall b:bool, xorb b false = b. +Proof. + destruct b; trivial. +Qed. + +Lemma false_xorb : forall b:bool, xorb false b = b. +Proof. + destruct b; trivial. +Qed. + +Lemma xorb_true : forall b:bool, xorb b true = negb b. +Proof. + trivial. +Qed. + +Lemma true_xorb : forall b:bool, xorb true b = negb b. +Proof. + destruct b; trivial. +Qed. + +Lemma xorb_nilpotent : forall b:bool, xorb b b = false. +Proof. + destruct b; trivial. +Qed. + +Lemma xorb_comm : forall b b':bool, xorb b b' = xorb b' b. +Proof. + destruct b; destruct b'; trivial. +Qed. + +Lemma xorb_assoc : + forall b b' b'':bool, xorb (xorb b b') b'' = xorb b (xorb b' b''). +Proof. + destruct b; destruct b'; destruct b''; trivial. +Qed. + +Lemma xorb_eq : forall b b':bool, xorb b b' = false -> b = b'. +Proof. + destruct b; destruct b'; trivial. + unfold xorb in |- *. intros. rewrite H. reflexivity. +Qed. + +Lemma xorb_move_l_r_1 : + forall b b' b'':bool, xorb b b' = b'' -> b' = xorb b b''. +Proof. + intros. rewrite <- (false_xorb b'). rewrite <- (xorb_nilpotent b). rewrite xorb_assoc. + rewrite H. reflexivity. +Qed. + +Lemma xorb_move_l_r_2 : + forall b b' b'':bool, xorb b b' = b'' -> b = xorb b'' b'. +Proof. + intros. rewrite xorb_comm in H. rewrite (xorb_move_l_r_1 b' b b'' H). apply xorb_comm. +Qed. + +Lemma xorb_move_r_l_1 : + forall b b' b'':bool, b = xorb b' b'' -> xorb b' b = b''. +Proof. + intros. rewrite H. rewrite <- xorb_assoc. rewrite xorb_nilpotent. apply false_xorb. +Qed. + +Lemma xorb_move_r_l_2 : + forall b b' b'':bool, b = xorb b' b'' -> xorb b b'' = b'. +Proof. + intros. rewrite H. rewrite xorb_assoc. rewrite xorb_nilpotent. apply xorb_false. +Qed. + +(*******************************) +(** De Morgan's law *) +(*******************************) + +Lemma demorgan1 : + forall b1 b2 b3:bool, b1 && (b2 || b3) = b1 && b2 || b1 && b3. +destruct b1; destruct b2; destruct b3; reflexivity. +Qed. + +Lemma demorgan2 : + forall b1 b2 b3:bool, (b1 || b2) && b3 = b1 && b3 || b2 && b3. +destruct b1; destruct b2; destruct b3; reflexivity. +Qed. + +Lemma demorgan3 : + forall b1 b2 b3:bool, b1 || b2 && b3 = (b1 || b2) && (b1 || b3). +destruct b1; destruct b2; destruct b3; reflexivity. +Qed. + +Lemma demorgan4 : + forall b1 b2 b3:bool, b1 && b2 || b3 = (b1 || b3) && (b2 || b3). +destruct b1; destruct b2; destruct b3; reflexivity. +Qed. + +Lemma absoption_andb : forall b1 b2:bool, b1 && (b1 || b2) = b1. +Proof. + destruct b1; destruct b2; simpl in |- *; reflexivity. +Qed. + +Lemma absoption_orb : forall b1 b2:bool, b1 || b1 && b2 = b1. +Proof. + destruct b1; destruct b2; simpl in |- *; reflexivity. +Qed. + + +(** Misc. equalities between booleans (to be used by Auto) *) + +Lemma bool_1 : forall b1 b2:bool, (b1 = true <-> b2 = true) -> b1 = b2. +Proof. + intros b1 b2; case b1; case b2; intuition. +Qed. + +Lemma bool_2 : forall b1 b2:bool, b1 = b2 -> b1 = true -> b2 = true. +Proof. + intros b1 b2; case b1; case b2; intuition. +Qed. + +Lemma bool_3 : forall b:bool, negb b <> true -> b = true. +Proof. + destruct b; intuition. +Qed. + +Lemma bool_4 : forall b:bool, b = true -> negb b <> true. +Proof. + destruct b; intuition. +Qed. + +Lemma bool_5 : forall b:bool, negb b = true -> b <> true. +Proof. + destruct b; intuition. +Qed. + +Lemma bool_6 : forall b:bool, b <> true -> negb b = true. +Proof. + destruct b; intuition. +Qed. + +Hint Resolve bool_1 bool_2 bool_3 bool_4 bool_5 bool_6. diff --git a/theories/Bool/BoolEq.v b/theories/Bool/BoolEq.v new file mode 100644 index 00000000..e038b3da --- /dev/null +++ b/theories/Bool/BoolEq.v @@ -0,0 +1,73 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* A -> bool. + + Variable beq_refl : forall x:A, true = beq x x. + + Variable beq_eq : forall x y:A, true = beq x y -> x = y. + + Definition beq_eq_true : forall x y:A, x = y -> true = beq x y. + Proof. + intros x y H. + case H. + apply beq_refl. + Defined. + + Definition beq_eq_not_false : forall x y:A, x = y -> false <> beq x y. + Proof. + intros x y e. + rewrite <- beq_eq_true; trivial; discriminate. + Defined. + + Definition beq_false_not_eq : forall x y:A, false = beq x y -> x <> y. + Proof. + exact + (fun (x y:A) (H:false = beq x y) (e:x = y) => beq_eq_not_false x y e H). + Defined. + + Definition exists_beq_eq : forall x y:A, {b : bool | b = beq x y}. + Proof. + intros. + exists (beq x y). + constructor. + Defined. + + Definition not_eq_false_beq : forall x y:A, x <> y -> false = beq x y. + Proof. + intros x y H. + symmetry in |- *. + apply not_true_is_false. + intro. + apply H. + apply beq_eq. + symmetry in |- *. + assumption. + Defined. + + Definition eq_dec : forall x y:A, {x = y} + {x <> y}. + Proof. + intros x y; case (exists_beq_eq x y). + intros b; case b; intro H. + left; apply beq_eq; assumption. + right; apply beq_false_not_eq; assumption. + Defined. + +End Bool_eq_dec. diff --git a/theories/Bool/Bvector.v b/theories/Bool/Bvector.v new file mode 100644 index 00000000..51d940cf --- /dev/null +++ b/theories/Bool/Bvector.v @@ -0,0 +1,272 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* Vnil + | (Vcons a p v') => (Vcons (f a) p (Vunaire p v')) +end. +provoque ce message d'erreur : +Coq < Error: Inference of annotation not yet implemented in this case). + + + Inductive list [A : Set] : Set := + nil : (list A) | cons : A->(list A)->(list A). + head = [A:Set; l:(list A)] Cases l of + | nil => Error + | (cons x _) => (Value x) + end + : (A:Set)(list A)->(option A). + tail = [A:Set; l:(list A)]Cases l of + | nil => (nil A) + | (cons _ m) => m + end + : (A:Set)(list A)->(list A). + length = [A:Set] Fix length {length [l:(list A)] : nat := + Cases l of + | nil => O + | (cons _ m) => (S (length m)) + end} + : (A:Set)(list A)->nat. + map = [A,B:Set; f:(A->B)] Fix map {map [l:(list A)] : (list B) := + Cases l of + | nil => (nil B) + | (cons a t) => (cons (f a) (map t)) + end} + : (A,B:Set)(A->B)->(list A)->(list B) +*) + +Section VECTORS. + +(* +Un vecteur est une liste de taille n d'éléments d'un ensemble A. +Si la taille est non nulle, on peut extraire la première composante et +le reste du vecteur, la dernière composante ou rajouter ou enlever +une composante (carry) ou repeter la dernière composante en fin de vecteur. +On peut aussi tronquer le vecteur de ses p dernières composantes ou +au contraire l'étendre (concaténer) d'un vecteur de longueur p. +Une fonction unaire sur A génère une fonction des vecteurs de taille n +dans les vecteurs de taille n en appliquant f terme à terme. +Une fonction binaire sur A génère une fonction des couple de vecteurs +de taille n dans les vecteurs de taille n en appliquant f terme à terme. +*) + +Variable A : Set. + +Inductive vector : nat -> Set := + | Vnil : vector 0 + | Vcons : forall (a:A) (n:nat), vector n -> vector (S n). + +Definition Vhead : forall n:nat, vector (S n) -> A. +Proof. + intros n v; inversion v; exact a. +Defined. + +Definition Vtail : forall n:nat, vector (S n) -> vector n. +Proof. + intros n v; inversion v; exact H0. +Defined. + +Definition Vlast : forall n:nat, vector (S n) -> A. +Proof. + induction n as [| n f]; intro v. + inversion v. + exact a. + + inversion v. + exact (f H0). +Defined. + +Definition Vconst : forall (a:A) (n:nat), vector n. +Proof. + induction n as [| n v]. + exact Vnil. + + exact (Vcons a n v). +Defined. + +Lemma Vshiftout : forall n:nat, vector (S n) -> vector n. +Proof. + induction n as [| n f]; intro v. + exact Vnil. + + inversion v. + exact (Vcons a n (f H0)). +Defined. + +Lemma Vshiftin : forall n:nat, A -> vector n -> vector (S n). +Proof. + induction n as [| n f]; intros a v. + exact (Vcons a 0 v). + + inversion v. + exact (Vcons a (S n) (f a H0)). +Defined. + +Lemma Vshiftrepeat : forall n:nat, vector (S n) -> vector (S (S n)). +Proof. + induction n as [| n f]; intro v. + inversion v. + exact (Vcons a 1 v). + + inversion v. + exact (Vcons a (S (S n)) (f H0)). +Defined. + +(* +Lemma S_minus_S : (n,p:nat) (gt n (S p)) -> (S (minus n (S p)))=(minus n p). +Proof. + Intros. +Save. +*) + +Lemma Vtrunc : forall n p:nat, n > p -> vector n -> vector (n - p). +Proof. + induction p as [| p f]; intros H v. + rewrite <- minus_n_O. + exact v. + + apply (Vshiftout (n - S p)). + +rewrite minus_Sn_m. +apply f. +auto with *. +exact v. +auto with *. +Defined. + +Lemma Vextend : forall n p:nat, vector n -> vector p -> vector (n + p). +Proof. + induction n as [| n f]; intros p v v0. + simpl in |- *; exact v0. + + inversion v. + simpl in |- *; exact (Vcons a (n + p) (f p H0 v0)). +Defined. + +Variable f : A -> A. + +Lemma Vunary : forall n:nat, vector n -> vector n. +Proof. + induction n as [| n g]; intro v. + exact Vnil. + + inversion v. + exact (Vcons (f a) n (g H0)). +Defined. + +Variable g : A -> A -> A. + +Lemma Vbinary : forall n:nat, vector n -> vector n -> vector n. +Proof. + induction n as [| n h]; intros v v0. + exact Vnil. + + inversion v; inversion v0. + exact (Vcons (g a a0) n (h H0 H2)). +Defined. + +End VECTORS. + +(* suppressed: incompatible with Coq-Art book +Implicit Arguments Vnil [A]. +Implicit Arguments Vcons [A n]. +*) + +Section BOOLEAN_VECTORS. + +(* +Un vecteur de bits est un vecteur sur l'ensemble des booléens de longueur fixe. +ATTENTION : le stockage s'effectue poids FAIBLE en tête. +On en extrait le bit de poids faible (head) et la fin du vecteur (tail). +On calcule la négation d'un vecteur, le et, le ou et le xor bit à bit de 2 vecteurs. +On calcule les décalages d'une position vers la gauche (vers les poids forts, on +utilise donc Vshiftout, vers la droite (vers les poids faibles, on utilise Vshiftin) en +insérant un bit 'carry' (logique) ou en répétant le bit de poids fort (arithmétique). +ATTENTION : Tous les décalages prennent la taille moins un comme paramètre +(ils ne travaillent que sur des vecteurs au moins de longueur un). +*) + +Definition Bvector := vector bool. + +Definition Bnil := @Vnil bool. + +Definition Bcons := @Vcons bool. + +Definition Bvect_true := Vconst bool true. + +Definition Bvect_false := Vconst bool false. + +Definition Blow := Vhead bool. + +Definition Bhigh := Vtail bool. + +Definition Bsign := Vlast bool. + +Definition Bneg := Vunary bool negb. + +Definition BVand := Vbinary bool andb. + +Definition BVor := Vbinary bool orb. + +Definition BVxor := Vbinary bool xorb. + +Definition BshiftL (n:nat) (bv:Bvector (S n)) (carry:bool) := + Bcons carry n (Vshiftout bool n bv). + +Definition BshiftRl (n:nat) (bv:Bvector (S n)) (carry:bool) := + Bhigh (S n) (Vshiftin bool (S n) carry bv). + +Definition BshiftRa (n:nat) (bv:Bvector (S n)) := + Bhigh (S n) (Vshiftrepeat bool n bv). + +Fixpoint BshiftL_iter (n:nat) (bv:Bvector (S n)) (p:nat) {struct p} : + Bvector (S n) := + match p with + | O => bv + | S p' => BshiftL n (BshiftL_iter n bv p') false + end. + +Fixpoint BshiftRl_iter (n:nat) (bv:Bvector (S n)) (p:nat) {struct p} : + Bvector (S n) := + match p with + | O => bv + | S p' => BshiftRl n (BshiftRl_iter n bv p') false + end. + +Fixpoint BshiftRa_iter (n:nat) (bv:Bvector (S n)) (p:nat) {struct p} : + Bvector (S n) := + match p with + | O => bv + | S p' => BshiftRa n (BshiftRa_iter n bv p') + end. + +End BOOLEAN_VECTORS. diff --git a/theories/Bool/DecBool.v b/theories/Bool/DecBool.v new file mode 100755 index 00000000..1998fb8e --- /dev/null +++ b/theories/Bool/DecBool.v @@ -0,0 +1,31 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* forall x y:C, ifdec H x y = x. +intros; case H; auto. +intro; absurd B; trivial. +Qed. + +Theorem ifdec_right : + forall (A B:Prop) (C:Set) (H:{A} + {B}), + ~ A -> forall x y:C, ifdec H x y = y. +intros; case H; auto. +intro; absurd A; trivial. +Qed. + +Unset Implicit Arguments. \ No newline at end of file diff --git a/theories/Bool/IfProp.v b/theories/Bool/IfProp.v new file mode 100755 index 00000000..a00449d8 --- /dev/null +++ b/theories/Bool/IfProp.v @@ -0,0 +1,50 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* Prop := + | Iftrue : A -> IfProp A B true + | Iffalse : B -> IfProp A B false. + +Hint Resolve Iftrue Iffalse: bool v62. + +Lemma Iftrue_inv : forall (A B:Prop) (b:bool), IfProp A B b -> b = true -> A. +destruct 1; intros; auto with bool. +case diff_true_false; auto with bool. +Qed. + +Lemma Iffalse_inv : + forall (A B:Prop) (b:bool), IfProp A B b -> b = false -> B. +destruct 1; intros; auto with bool. +case diff_true_false; trivial with bool. +Qed. + +Lemma IfProp_true : forall A B:Prop, IfProp A B true -> A. +intros. +inversion H. +assumption. +Qed. + +Lemma IfProp_false : forall A B:Prop, IfProp A B false -> B. +intros. +inversion H. +assumption. +Qed. + +Lemma IfProp_or : forall (A B:Prop) (b:bool), IfProp A B b -> A \/ B. +destruct 1; auto with bool. +Qed. + +Lemma IfProp_sum : forall (A B:Prop) (b:bool), IfProp A B b -> {A} + {B}. +destruct b; intro H. +left; inversion H; auto with bool. +right; inversion H; auto with bool. +Qed. \ No newline at end of file diff --git a/theories/Bool/Sumbool.v b/theories/Bool/Sumbool.v new file mode 100644 index 00000000..8188f038 --- /dev/null +++ b/theories/Bool/Sumbool.v @@ -0,0 +1,78 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* Set), + (b = true -> P true) -> (b = false -> P false) -> P b. +destruct b; auto. +Defined. + +Definition bool_eq_ind : + forall (b:bool) (P:bool -> Prop), + (b = true -> P true) -> (b = false -> P false) -> P b. +destruct b; auto. +Defined. + + +(*i pourquoi ce machin-la est dans BOOL et pas dans LOGIC ? Papageno i*) + +(** Logic connectives on type [sumbool] *) + +Section connectives. + +Variables A B C D : Prop. + +Hypothesis H1 : {A} + {B}. +Hypothesis H2 : {C} + {D}. + +Definition sumbool_and : {A /\ C} + {B \/ D}. +Proof. +case H1; case H2; auto. +Defined. + +Definition sumbool_or : {A \/ C} + {B /\ D}. +Proof. +case H1; case H2; auto. +Defined. + +Definition sumbool_not : {B} + {A}. +Proof. +case H1; auto. +Defined. + +End connectives. + +Hint Resolve sumbool_and sumbool_or sumbool_not: core. + + +(** Any decidability function in type [sumbool] can be turned into a function + returning a boolean with the corresponding specification: *) + +Definition bool_of_sumbool : + forall A B:Prop, {A} + {B} -> {b : bool | if b then A else B}. +Proof. +intros A B H. +elim H; [ intro; exists true; assumption | intro; exists false; assumption ]. +Defined. +Implicit Arguments bool_of_sumbool. \ No newline at end of file diff --git a/theories/Bool/Zerob.v b/theories/Bool/Zerob.v new file mode 100755 index 00000000..b654e556 --- /dev/null +++ b/theories/Bool/Zerob.v @@ -0,0 +1,38 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* true + | S _ => false + end. + +Lemma zerob_true_intro : forall n:nat, n = 0 -> zerob n = true. +destruct n; [ trivial with bool | inversion 1 ]. +Qed. +Hint Resolve zerob_true_intro: bool. + +Lemma zerob_true_elim : forall n:nat, zerob n = true -> n = 0. +destruct n; [ trivial with bool | inversion 1 ]. +Qed. + +Lemma zerob_false_intro : forall n:nat, n <> 0 -> zerob n = false. +destruct n; [ destruct 1; auto with bool | trivial with bool ]. +Qed. +Hint Resolve zerob_false_intro: bool. + +Lemma zerob_false_elim : forall n:nat, zerob n = false -> n <> 0. +destruct n; [ intro H; inversion H | auto with bool ]. +Qed. \ No newline at end of file diff --git a/theories/Bool/intro.tex b/theories/Bool/intro.tex new file mode 100644 index 00000000..22ee38aa --- /dev/null +++ b/theories/Bool/intro.tex @@ -0,0 +1,16 @@ +\section{Bool}\label{Bool} + +The BOOL library includes the following files: + +\begin{itemize} + +\item {\tt Bool.v} defines standard operations on booleans and states + and proves simple facts on them. +\item {\tt IfProp.v} defines a disjunction which contains its proof + and states its properties. +\item {\tt Zerob.v} defines the test against 0 on natural numbers and + states and proves properties of it. +\item {\tt Orb.v} states and proves facts on the boolean or. +\item {\tt DecBool.v} defines a conditional from a proof of + decidability and states its properties. +\end{itemize} -- cgit v1.2.3