From 9043add656177eeac1491a73d2f3ab92bec0013c Mon Sep 17 00:00:00 2001 From: Benjamin Barenblat Date: Sat, 29 Dec 2018 14:31:27 -0500 Subject: Imported Upstream version 8.8.2 --- test-suite/success/FunindExtraction_compat86.v | 506 +++++++++++++++++++++++++ 1 file changed, 506 insertions(+) create mode 100644 test-suite/success/FunindExtraction_compat86.v (limited to 'test-suite/success/FunindExtraction_compat86.v') diff --git a/test-suite/success/FunindExtraction_compat86.v b/test-suite/success/FunindExtraction_compat86.v new file mode 100644 index 00000000..8912197d --- /dev/null +++ b/test-suite/success/FunindExtraction_compat86.v @@ -0,0 +1,506 @@ +(* -*- coq-prog-args: ("-compat" "8.6") -*- *) + +Definition iszero (n : nat) : bool := + match n with + | O => true + | _ => false + end. + +Functional Scheme iszero_ind := Induction for iszero Sort Prop. + +Lemma toto : forall n : nat, n = 0 -> iszero n = true. +intros x eg. + functional induction iszero x; simpl. +trivial. +inversion eg. +Qed. + + +Function ftest (n m : nat) : nat := + match n with + | O => match m with + | O => 0 + | _ => 1 + end + | S p => 0 + end. +(* MS: FIXME: apparently can't define R_ftest_complete. Rest of the file goes through. *) + +Lemma test1 : forall n m : nat, ftest n m <= 2. +intros n m. + functional induction ftest n m; auto. +Qed. + +Lemma test2 : forall m n, ~ 2 = ftest n m. +Proof. +intros n m;intro H. +functional inversion H ftest. +Qed. + +Lemma test3 : forall n m, ftest n m = 0 -> (n = 0 /\ m = 0) \/ n <> 0. +Proof. +functional inversion 1 ftest;auto. +Qed. + + +Require Import Arith. +Lemma test11 : forall m : nat, ftest 0 m <= 2. +intros m. + functional induction ftest 0 m. +auto. +auto. +auto with *. +Qed. + +Function lamfix (m n : nat) {struct n } : nat := + match n with + | O => m + | S p => lamfix m p + end. + +(* Parameter v1 v2 : nat. *) + +Lemma lamfix_lem : forall v1 v2 : nat, lamfix v1 v2 = v1. +intros v1 v2. + functional induction lamfix v1 v2. +trivial. +assumption. +Defined. + + + +(* polymorphic function *) +Require Import List. + +Functional Scheme app_ind := Induction for app Sort Prop. + +Lemma appnil : forall (A : Set) (l l' : list A), l' = nil -> l = l ++ l'. +intros A l l'. + functional induction app A l l'; intuition. + rewrite <- H0; trivial. +Qed. + + + + + +Require Export Arith. + + +Function trivfun (n : nat) : nat := + match n with + | O => 0 + | S m => trivfun m + end. + + +(* essaie de parametre variables non locaux:*) + +Parameter varessai : nat. + +Lemma first_try : trivfun varessai = 0. + functional induction trivfun varessai. +trivial. +assumption. +Defined. + + + Functional Scheme triv_ind := Induction for trivfun Sort Prop. + +Lemma bisrepetita : forall n' : nat, trivfun n' = 0. +intros n'. + functional induction trivfun n'. +trivial. +assumption. +Qed. + + + + + + + +Function iseven (n : nat) : bool := + match n with + | O => true + | S (S m) => iseven m + | _ => false + end. + + +Function funex (n : nat) : nat := + match iseven n with + | true => n + | false => match n with + | O => 0 + | S r => funex r + end + end. + + +Function nat_equal_bool (n m : nat) {struct n} : bool := + match n with + | O => match m with + | O => true + | _ => false + end + | S p => match m with + | O => false + | S q => nat_equal_bool p q + end + end. + + +Require Export Div2. +Require Import Nat. +Functional Scheme div2_ind := Induction for div2 Sort Prop. +Lemma div2_inf : forall n : nat, div2 n <= n. +intros n. + functional induction div2 n. +auto. +auto. + +apply le_S. +apply le_n_S. +exact IHn0. +Qed. + +(* reuse this lemma as a scheme:*) + +Function nested_lam (n : nat) : nat -> nat := + match n with + | O => fun m : nat => 0 + | S n' => fun m : nat => m + nested_lam n' m + end. + + +Lemma nest : forall n m : nat, nested_lam n m = n * m. +intros n m. + functional induction nested_lam n m; simpl;auto. +Qed. + + +Function essai (x : nat) (p : nat * nat) {struct x} : nat := + let (n, m) := (p: nat*nat) in + match n with + | O => 0 + | S q => match x with + | O => 1 + | S r => S (essai r (q, m)) + end + end. + +Lemma essai_essai : + forall (x : nat) (p : nat * nat), let (n, m) := p in 0 < n -> 0 < essai x p. +intros x p. + functional induction essai x p; intros. +inversion H. +auto with arith. + auto with arith. +Qed. + +Function plus_x_not_five'' (n m : nat) {struct n} : nat := + let x := nat_equal_bool m 5 in + let y := 0 in + match n with + | O => y + | S q => + let recapp := plus_x_not_five'' q m in + match x with + | true => S recapp + | false => S recapp + end + end. + +Lemma notplusfive'' : forall x y : nat, y = 5 -> plus_x_not_five'' x y = x. +intros a b. + functional induction plus_x_not_five'' a b; intros hyp; simpl; auto. +Qed. + +Lemma iseq_eq : forall n m : nat, n = m -> nat_equal_bool n m = true. +intros n m. + functional induction nat_equal_bool n m; simpl; intros hyp; auto. +rewrite <- hyp in y; simpl in y;tauto. +inversion hyp. +Qed. + +Lemma iseq_eq' : forall n m : nat, nat_equal_bool n m = true -> n = m. +intros n m. + functional induction nat_equal_bool n m; simpl; intros eg; auto. +inversion eg. +inversion eg. +Qed. + + +Inductive istrue : bool -> Prop := + istrue0 : istrue true. + +Functional Scheme add_ind := Induction for add Sort Prop. + +Lemma inf_x_plusxy' : forall x y : nat, x <= x + y. +intros n m. + functional induction add n m; intros. +auto with arith. +auto with arith. +Qed. + + +Lemma inf_x_plusxy'' : forall x : nat, x <= x + 0. +intros n. +unfold plus. + functional induction plus n 0; intros. +auto with arith. +apply le_n_S. +assumption. +Qed. + +Lemma inf_x_plusxy''' : forall x : nat, x <= 0 + x. +intros n. + functional induction plus 0 n; intros; auto with arith. +Qed. + +Function mod2 (n : nat) : nat := + match n with + | O => 0 + | S (S m) => S (mod2 m) + | _ => 0 + end. + +Lemma princ_mod2 : forall n : nat, mod2 n <= n. +intros n. + functional induction mod2 n; simpl; auto with arith. +Qed. + +Function isfour (n : nat) : bool := + match n with + | S (S (S (S O))) => true + | _ => false + end. + +Function isononeorfour (n : nat) : bool := + match n with + | S O => true + | S (S (S (S O))) => true + | _ => false + end. + +Lemma toto'' : forall n : nat, istrue (isfour n) -> istrue (isononeorfour n). +intros n. + functional induction isononeorfour n; intros istr; simpl; + inversion istr. +apply istrue0. +destruct n. inversion istr. +destruct n. tauto. +destruct n. inversion istr. +destruct n. inversion istr. +destruct n. tauto. +simpl in *. inversion H0. +Qed. + +Lemma toto' : forall n m : nat, n = 4 -> istrue (isononeorfour n). +intros n. + functional induction isononeorfour n; intros m istr; inversion istr. +apply istrue0. +rewrite H in y; simpl in y;tauto. +Qed. + +Function ftest4 (n m : nat) : nat := + match n with + | O => match m with + | O => 0 + | S q => 1 + end + | S p => match m with + | O => 0 + | S r => 1 + end + end. + +Lemma test4 : forall n m : nat, ftest n m <= 2. +intros n m. + functional induction ftest n m; auto with arith. +Qed. + +Lemma test4' : forall n m : nat, ftest4 (S n) m <= 2. +intros n m. +assert ({n0 | n0 = S n}). +exists (S n);reflexivity. +destruct H as [n0 H1]. +rewrite <- H1;revert H1. + functional induction ftest4 n0 m. +inversion 1. +inversion 1. + +auto with arith. +auto with arith. +Qed. + +Function ftest44 (x : nat * nat) (n m : nat) : nat := + let (p, q) := (x: nat*nat) in + match n with + | O => match m with + | O => 0 + | S q => 1 + end + | S p => match m with + | O => 0 + | S r => 1 + end + end. + +Lemma test44 : + forall (pq : nat * nat) (n m o r s : nat), ftest44 pq n (S m) <= 2. +intros pq n m o r s. + functional induction ftest44 pq n (S m). +auto with arith. +auto with arith. +auto with arith. +auto with arith. +Qed. + +Function ftest2 (n m : nat) {struct n} : nat := + match n with + | O => match m with + | O => 0 + | S q => 0 + end + | S p => ftest2 p m + end. + +Lemma test2' : forall n m : nat, ftest2 n m <= 2. +intros n m. + functional induction ftest2 n m; simpl; intros; auto. +Qed. + +Function ftest3 (n m : nat) {struct n} : nat := + match n with + | O => 0 + | S p => match m with + | O => ftest3 p 0 + | S r => 0 + end + end. + +Lemma test3' : forall n m : nat, ftest3 n m <= 2. +intros n m. + functional induction ftest3 n m. +intros. +auto. +intros. +auto. +intros. +simpl. +auto. +Qed. + +Function ftest5 (n m : nat) {struct n} : nat := + match n with + | O => 0 + | S p => match m with + | O => ftest5 p 0 + | S r => ftest5 p r + end + end. + +Lemma test5 : forall n m : nat, ftest5 n m <= 2. +intros n m. + functional induction ftest5 n m. +intros. +auto. +intros. +auto. +intros. +simpl. +auto. +Qed. + +Function ftest7 (n : nat) : nat := + match ftest5 n 0 with + | O => 0 + | S r => 0 + end. + +Lemma essai7 : + forall (Hrec : forall n : nat, ftest5 n 0 = 0 -> ftest7 n <= 2) + (Hrec0 : forall n r : nat, ftest5 n 0 = S r -> ftest7 n <= 2) + (n : nat), ftest7 n <= 2. +intros hyp1 hyp2 n. + functional induction ftest7 n; auto. +Qed. + +Function ftest6 (n m : nat) {struct n} : nat := + match n with + | O => 0 + | S p => match ftest5 p 0 with + | O => ftest6 p 0 + | S r => ftest6 p r + end + end. + + +Lemma princ6 : + (forall n m : nat, n = 0 -> ftest6 0 m <= 2) -> + (forall n m p : nat, + ftest6 p 0 <= 2 -> ftest5 p 0 = 0 -> n = S p -> ftest6 (S p) m <= 2) -> + (forall n m p r : nat, + ftest6 p r <= 2 -> ftest5 p 0 = S r -> n = S p -> ftest6 (S p) m <= 2) -> + forall x y : nat, ftest6 x y <= 2. +intros hyp1 hyp2 hyp3 n m. +generalize hyp1 hyp2 hyp3. +clear hyp1 hyp2 hyp3. + functional induction ftest6 n m; auto. +Qed. + +Lemma essai6 : forall n m : nat, ftest6 n m <= 2. +intros n m. + functional induction ftest6 n m; simpl; auto. +Qed. + +(* Some tests with modules *) +Module M. +Function test_m (n:nat) : nat := + match n with + | 0 => 0 + | S n => S (S (test_m n)) + end. + +Lemma test_m_is_double : forall n, div2 (test_m n) = n. +Proof. +intros n. +functional induction (test_m n). +reflexivity. +simpl;rewrite IHn0;reflexivity. +Qed. +End M. +(* We redefine a new Function with the same name *) +Function test_m (n:nat) : nat := + pred n. + +Lemma test_m_is_pred : forall n, test_m n = pred n. +Proof. +intro n. +functional induction (test_m n). (* the test_m_ind to use is the last defined saying that test_m = pred*) +reflexivity. +Qed. + +(* Checks if the dot notation are correctly treated in infos *) +Lemma M_test_m_is_double : forall n, div2 (M.test_m n) = n. +intro n. +(* here we should apply M.test_m_ind *) +functional induction (M.test_m n). +reflexivity. +simpl;rewrite IHn0;reflexivity. +Qed. + +Import M. +(* Now test_m is the one which defines double *) + +Lemma test_m_is_double : forall n, div2 (M.test_m n) = n. +intro n. +(* here we should apply M.test_m_ind *) +functional induction (test_m n). +reflexivity. +simpl;rewrite IHn0;reflexivity. +Qed. + +Extraction iszero. -- cgit v1.2.3