From 6b649aba925b6f7462da07599fe67ebb12a3460e Mon Sep 17 00:00:00 2001 From: Samuel Mimram Date: Wed, 28 Jul 2004 21:54:47 +0000 Subject: Imported Upstream version 8.0pl1 --- test-suite/success/Funind.v | 440 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 440 insertions(+) create mode 100644 test-suite/success/Funind.v (limited to 'test-suite/success/Funind.v') diff --git a/test-suite/success/Funind.v b/test-suite/success/Funind.v new file mode 100644 index 00000000..819da259 --- /dev/null +++ b/test-suite/success/Funind.v @@ -0,0 +1,440 @@ + +Definition iszero [n:nat] : bool := Cases n of + | O => true + | _ => false + end. + +Functional Scheme iszer_ind := Induction for iszero. + +Lemma toto : (n:nat) n = 0 -> (iszero n) = true. +Intros x eg. +Functional Induction iszero x; Simpl. +Trivial. +Subst x. +Inversion H_eq_. +Qed. + +(* We can even reuse the proof as a scheme: *) + +Functional Scheme toto_ind := Induction for iszero. + + + + + +Definition ftest [n, m:nat] : nat := + Cases n of + | O => Cases m of + | O => 0 + | _ => 1 + end + | (S p) => 0 + end. + +Functional Scheme ftest_ind := Induction for ftest. + +Lemma test1 : (n,m:nat) (le (ftest n m) 2). +Intros n m. +Functional Induction ftest n m;Auto. +Save. + + +Lemma test11 : (m:nat) (le (ftest 0 m) 2). +Intros m. +Functional Induction ftest 0 m. +Auto. +Auto. +Qed. + + +Definition lamfix := +[m:nat ] +(Fix trivfun {trivfun [n:nat] : nat := Cases n of + | O => m + | (S p) => (trivfun p) + end}). + +(* Parameter v1 v2 : nat. *) + +Lemma lamfix_lem : (v1,v2:nat) (lamfix v1 v2) = v1. +Intros v1 v2. +Functional Induction lamfix v1 v2. +Trivial. +Assumption. +Defined. + + + +(* polymorphic function *) +Require PolyList. + +Functional Scheme app_ind := Induction for app. + +Lemma appnil : (A:Set)(l,l':(list A)) l'=(nil A) -> l = (app l l'). +Intros A l l'. +Functional Induction app A l l';Intuition. +Rewrite <- H1;Trivial. +Save. + + + + + +Require Export Arith. + + +Fixpoint trivfun [n:nat] : nat := + Cases n of + | O => 0 + | (S m) => (trivfun m) + end. + + +(* essaie de parametre variables non locaux:*) + +Parameter varessai : nat. + +Lemma first_try : (trivfun varessai) = 0. +Functional Induction trivfun varessai. +Trivial. +Simpl. +Assumption. +Defined. + + +Functional Scheme triv_ind := Induction for trivfun. + +Lemma bisrepetita : (n':nat) (trivfun n') = 0. +Intros n'. +Functional Induction trivfun n'. +Trivial. +Simpl . +Assumption. +Qed. + + + + + + + +Fixpoint iseven [n:nat] : bool := + Cases n of + | O => true + | (S (S m)) => (iseven m) + | _ => false + end. + +Fixpoint funex [n:nat] : nat := + Cases (iseven n) of + | true => n + | false => Cases n of + | O => 0 + | (S r) => (funex r) + end + end. + +Fixpoint nat_equal_bool [n:nat] : nat -> bool := +[m:nat] + Cases n of + | O => Cases m of + | O => true + | _ => false + end + | (S p) => Cases m of + | O => false + | (S q) => (nat_equal_bool p q) + end + end. + + +Require Export Div2. + +Lemma div2_inf : (n:nat) (le (div2 n) n). +Intros n. +Functional Induction div2 n. +Auto. +Auto. + +Apply le_S. +Apply le_n_S. +Exact H. +Qed. + +(* reuse this lemma as a scheme:*) + +Functional Scheme div2_ind := Induction for div2_inf. + +Fixpoint nested_lam [n:nat] : nat -> nat := + Cases n of + | O => [m:nat ] 0 + | (S n') => [m:nat ] (plus m (nested_lam n' m)) + end. + +Functional Scheme nested_lam_ind := Induction for nested_lam. + +Lemma nest : (n, m:nat) (nested_lam n m) = (mult n m). +Intros n m. +Functional Induction nested_lam n m; Auto. +Qed. + +Lemma nest2 : (n, m:nat) (nested_lam n m) = (mult n m). +Intros n m. Pattern n m . +Apply nested_lam_ind; Simpl ; Intros; Auto. +Qed. + + +Fixpoint essai [x : nat] : nat * nat -> nat := + [p : nat * nat] ( Case p of [n, m : ?] Cases n of + O => O + | (S q) => + Cases x of + O => (S O) + | (S r) => (S (essai r (q, m))) + end + end end ). + +Lemma essai_essai: + (x : nat) + (p : nat * nat) ( Case p of [n, m : ?] (lt O n) -> (lt O (essai x p)) end ). +Intros x p. +(Functional Induction essai x p); Intros. +Inversion H. +Simpl; Try Abstract ( Auto with arith ). +Simpl; Try Abstract ( Auto with arith ). +Qed. + + +Fixpoint plus_x_not_five'' [n : nat] : nat -> nat := + [m : nat] let x = (nat_equal_bool m (S (S (S (S (S O)))))) in + let y = O in + Cases n of + O => y + | (S q) => + let recapp = (plus_x_not_five'' q m) in + Cases x of true => (S recapp) | false => (S recapp) end + end. + +Lemma notplusfive'': + (x, y : nat) y = (S (S (S (S (S O))))) -> (plus_x_not_five'' x y) = x. +Intros a b. +Unfold plus_x_not_five''. +(Functional Induction plus_x_not_five'' a b); Intros hyp; Simpl; Auto. +Qed. + +Lemma iseq_eq: (n, m : nat) n = m -> (nat_equal_bool n m) = true. +Intros n m. +Unfold nat_equal_bool. +(Functional Induction nat_equal_bool n m); Simpl; Intros hyp; Auto. +Inversion hyp. +Inversion hyp. +Qed. + +Lemma iseq_eq': (n, m : nat) (nat_equal_bool n m) = true -> n = m. +Intros n m. +Unfold nat_equal_bool. +(Functional Induction nat_equal_bool n m); Simpl; Intros eg; Auto. +Inversion eg. +Inversion eg. +Qed. + + +Inductive istrue : bool -> Prop := + istrue0: (istrue true) . + +Lemma inf_x_plusxy': (x, y : nat) (le x (plus x y)). +Intros n m. +(Functional Induction plus n m); Intros. +Auto with arith. +Auto with arith. +Qed. + + +Lemma inf_x_plusxy'': (x : nat) (le x (plus x O)). +Intros n. +Unfold plus. +(Functional Induction plus n O); Intros. +Auto with arith. +Apply le_n_S. +Assumption. +Qed. + +Lemma inf_x_plusxy''': (x : nat) (le x (plus O x)). +Intros n. +(Functional Induction plus O n); Intros;Auto with arith. +Qed. + +Fixpoint mod2 [n : nat] : nat := + Cases n of O => O + | (S (S m)) => (S (mod2 m)) + | _ => O end. + +Lemma princ_mod2: (n : nat) (le (mod2 n) n). +Intros n. +(Functional Induction mod2 n); Simpl; Auto with arith. +Qed. + +Definition isfour : nat -> bool := + [n : nat] Cases n of (S (S (S (S O)))) => true | _ => false end. + +Definition isononeorfour : nat -> bool := + [n : nat] Cases n of (S O) => true + | (S (S (S (S O)))) => true + | _ => false end. + +Lemma toto'': (n : nat) (istrue (isfour n)) -> (istrue (isononeorfour n)). +Intros n. +(Functional Induction isononeorfour n); Intros istr; Simpl; Inversion istr. +Apply istrue0. +Qed. + +Lemma toto': (n, m : nat) n = (S (S (S (S O)))) -> (istrue (isononeorfour n)). +Intros n. +(Functional Induction isononeorfour n); Intros m istr; Inversion istr. +Apply istrue0. +Qed. + +Definition ftest4 : nat -> nat -> nat := + [n, m : nat] Cases n of + O => + Cases m of O => O | (S q) => (S O) end + | (S p) => + Cases m of O => O | (S r) => (S O) end + end. + +Lemma test4: (n, m : nat) (le (ftest n m) (S (S O))). +Intros n m. +(Functional Induction ftest n m); Auto with arith. +Qed. + +Lemma test4': (n, m : nat) (le (ftest4 (S n) m) (S (S O))). +Intros n m. +(Functional Induction ftest4 (S n) m). +Auto with arith. +Auto with arith. +Qed. + +Definition ftest44 : nat * nat -> nat -> nat -> nat := + [x : nat * nat] + [n, m : nat] + ( Case x of [p, q : ?] Cases n of + O => + Cases m of O => O | (S q) => (S O) end + | (S p) => + Cases m of O => O | (S r) => (S O) end + end end ). + +Lemma test44: + (pq : nat * nat) (n, m, o, r, s : nat) (le (ftest44 pq n (S m)) (S (S O))). +Intros pq n m o r s. +(Functional Induction ftest44 pq n (S m)). +Auto with arith. +Auto with arith. +Auto with arith. +Auto with arith. +Qed. + +Fixpoint ftest2 [n : nat] : nat -> nat := + [m : nat] Cases n of + O => + Cases m of O => O | (S q) => O end + | (S p) => (ftest2 p m) + end. + +Lemma test2: (n, m : nat) (le (ftest2 n m) (S (S O))). +Intros n m. +(Functional Induction ftest2 n m) ; Simpl; Intros; Auto. +Qed. + +Fixpoint ftest3 [n : nat] : nat -> nat := + [m : nat] Cases n of + O => O + | (S p) => + Cases m of O => (ftest3 p O) | (S r) => O end + end. + +Lemma test3: (n, m : nat) (le (ftest3 n m) (S (S O))). +Intros n m. +(Functional Induction ftest3 n m). +Intros. +Auto. +Intros. +Auto. +Intros. +Simpl. +Auto. +Qed. + +Fixpoint ftest5 [n : nat] : nat -> nat := + [m : nat] Cases n of + O => O + | (S p) => + Cases m of O => (ftest5 p O) | (S r) => (ftest5 p r) end + end. + +Lemma test5: (n, m : nat) (le (ftest5 n m) (S (S O))). +Intros n m. +(Functional Induction ftest5 n m). +Intros. +Auto. +Intros. +Auto. +Intros. +Simpl. +Auto. +Qed. + +Definition ftest7 : (n : nat) nat := + [n : nat] Cases (ftest5 n O) of O => O | (S r) => O end. + +Lemma essai7: + (Hrec : (n : nat) (ftest5 n O) = O -> (le (ftest7 n) (S (S O)))) + (Hrec0 : (n, r : nat) (ftest5 n O) = (S r) -> (le (ftest7 n) (S (S O)))) + (n : nat) (le (ftest7 n) (S (S O))). +Intros hyp1 hyp2 n. +Unfold ftest7. +(Functional Induction ftest7 n); Auto. +Qed. + +Fixpoint ftest6 [n : nat] : nat -> nat := + [m : nat] + Cases n of + O => O + | (S p) => + Cases (ftest5 p O) of O => (ftest6 p O) | (S r) => (ftest6 p r) end + end. + + +Lemma princ6: + ((n, m : nat) n = O -> (le (ftest6 O m) (S (S O)))) -> + ((n, m, p : nat) + (le (ftest6 p O) (S (S O))) -> + (ftest5 p O) = O -> n = (S p) -> (le (ftest6 (S p) m) (S (S O)))) -> + ((n, m, p, r : nat) + (le (ftest6 p r) (S (S O))) -> + (ftest5 p O) = (S r) -> n = (S p) -> (le (ftest6 (S p) m) (S (S O)))) -> + (x, y : nat) (le (ftest6 x y) (S (S O))). +Intros hyp1 hyp2 hyp3 n m. +Generalize hyp1 hyp2 hyp3. +Clear hyp1 hyp2 hyp3. +(Functional Induction ftest6 n m);Auto. +Qed. + +Lemma essai6: (n, m : nat) (le (ftest6 n m) (S (S O))). +Intros n m. +Unfold ftest6. +(Functional Induction ftest6 n m); Simpl; Auto. +Qed. + + + + + + + + + + + + + -- cgit v1.2.3