From 97fefe1fcca363a1317e066e7f4b99b9c1e9987b Mon Sep 17 00:00:00 2001 From: Stephane Glondu Date: Thu, 12 Jan 2012 16:02:20 +0100 Subject: Imported Upstream version 8.4~beta --- test-suite/bugs/closed/shouldsucceed/2378.v | 608 ++++++++++++++++++++++++++++ 1 file changed, 608 insertions(+) create mode 100644 test-suite/bugs/closed/shouldsucceed/2378.v (limited to 'test-suite/bugs/closed/shouldsucceed/2378.v') diff --git a/test-suite/bugs/closed/shouldsucceed/2378.v b/test-suite/bugs/closed/shouldsucceed/2378.v new file mode 100644 index 00000000..7deec64d --- /dev/null +++ b/test-suite/bugs/closed/shouldsucceed/2378.v @@ -0,0 +1,608 @@ +(* test with Coq 8.3rc1 *) + +Require Import Program. + +Inductive Unit: Set := unit: Unit. + +Definition eq_dec T := forall x y:T, {x=y}+{x<>y}. + +Section TTS_TASM. + +Variable Time: Set. +Variable Zero: Time. +Variable tle: Time -> Time -> Prop. +Variable tlt: Time -> Time -> Prop. +Variable tadd: Time -> Time -> Time. +Variable tsub: Time -> Time -> Time. +Variable tmin: Time -> Time -> Time. +Notation "t1 @<= t2" := (tle t1 t2) (at level 70, no associativity). +Notation "t1 @< t2" := (tlt t1 t2) (at level 70, no associativity). +Notation "t1 @+ t2" := (tadd t1 t2) (at level 50, left associativity). +Notation "t1 @- t2" := (tsub t1 t2) (at level 50, left associativity). +Notation "t1 @<= t2 @<= t3" := ((tle t1 t2) /\ (tle t2 t3)) (at level 70, t2 at next level). +Notation "t1 @<= t2 @< t3" := ((tle t1 t2) /\ (tlt t2 t3)) (at level 70, t2 at next level). + +Variable tzerop: forall n, (n = Zero) + {Zero @< n}. +Variable tlt_eq_gt_dec: forall x y, {x @< y} + {x=y} + {y @< x}. +Variable tle_plus_l: forall n m, n @<= n @+ m. +Variable tle_lt_eq_dec: forall n m, n @<= m -> {n @< m} + {n = m}. + +Variable tzerop_zero: tzerop Zero = inleft (Zero @< Zero) (@eq_refl _ Zero). +Variable tplus_n_O: forall n, n @+ Zero = n. +Variable tlt_le_weak: forall n m, n @< m -> n @<= m. +Variable tlt_irrefl: forall n, ~ n @< n. +Variable tplus_nlt: forall n m, ~n @+ m @< n. +Variable tle_n: forall n, n @<= n. +Variable tplus_lt_compat_l: forall n m p, n @< m -> p @+ n @< p @+ m. +Variable tlt_trans: forall n m p, n @< m -> m @< p -> n @< p. +Variable tle_lt_trans: forall n m p, n @<= m -> m @< p -> n @< p. +Variable tlt_le_trans: forall n m p, n @< m -> m @<= p -> n @< p. +Variable tle_refl: forall n, n @<= n. +Variable tplus_le_0: forall n m, n @+ m @<= n -> m = Zero. +Variable Time_eq_dec: eq_dec Time. + +(*************************************************************) + +Section PropLogic. +Variable Predicate: Type. + +Inductive LP: Type := + LPPred: Predicate -> LP +| LPAnd: LP -> LP -> LP +| LPNot: LP -> LP. + +Variable State: Type. +Variable Sat: State -> Predicate -> Prop. + +Fixpoint lpSat st f: Prop := + match f with + LPPred p => Sat st p + | LPAnd f1 f2 => lpSat st f1 /\ lpSat st f2 + | LPNot f1 => ~lpSat st f1 + end. +End PropLogic. + +Implicit Arguments lpSat. + +Fixpoint LPTransfo Pred1 Pred2 p2lp (f: LP Pred1): LP Pred2 := + match f with + LPPred p => p2lp p + | LPAnd f1 f2 => LPAnd _ (LPTransfo Pred1 Pred2 p2lp f1) (LPTransfo Pred1 Pred2 p2lp f2) + | LPNot f1 => LPNot _ (LPTransfo Pred1 Pred2 p2lp f1) + end. +Implicit Arguments LPTransfo. + +Definition addIndex (Ind:Type) (Pred: Ind -> Type) (i: Ind) f := + LPTransfo (fun p => LPPred _ (existT (fun i => Pred i) i p)) f. + +Section TTS. + +Variable State: Type. + +Record TTS: Type := mkTTS { + Init: State -> Prop; + Delay: State -> Time -> State -> Prop; + Next: State -> State -> Prop; + Predicate: Type; + Satisfy: State -> Predicate -> Prop +}. + +Definition TTSIndexedProduct Ind (tts: Ind -> TTS): TTS := mkTTS + (fun st => forall i, Init (tts i) st) + (fun st d st' => forall i, Delay (tts i) st d st') + (fun st st' => forall i, Next (tts i) st st') + { i: Ind & Predicate (tts i) } + (fun st p => Satisfy (tts (projT1 p)) st (projT2 p)). + +End TTS. + +Section SIMU_F. + +Variables StateA StateC: Type. + +Record mapping: Type := mkMapping { + mState: Type; + mInit: StateC -> mState; + mNext: mState -> StateC -> mState; + mDelay: mState -> StateC -> Time -> mState; + mabs: mState -> StateC -> StateA +}. + +Variable m: mapping. + +Record simu (Pred: Type) (a: TTS StateA) (c: TTS StateC) (tra: Pred -> LP (Predicate _ a)) (trc: Pred -> LP (Predicate _ c)): Type := simuPrf { + inv: (mState m) -> StateC -> Prop; + invInit: forall st, Init _ c st -> inv (mInit m st) st; + invDelay: forall ex1 st1 st2 d, Delay _ c st1 d st2 -> inv ex1 st1 -> inv (mDelay m ex1 st1 d) st2; + invNext: forall ex1 st1 st2, Next _ c st1 st2 -> inv ex1 st1 -> inv (mNext m ex1 st1) st2; + simuInit: forall st, Init _ c st -> Init _ a (mabs m (mInit m st) st); + simuDelay: forall ex1 st1 st2 d, Delay _ c st1 d st2 -> inv ex1 st1 -> + Delay _ a (mabs m ex1 st1) d (mabs m (mDelay m ex1 st1 d) st2); + simuNext: forall ex1 st1 st2, Next _ c st1 st2 -> inv ex1 st1 -> + Next _ a (mabs m ex1 st1) (mabs m (mNext m ex1 st1) st2); + simuPred: forall ext st, inv ext st -> + (forall p, lpSat (Satisfy _ c) st (trc p) <-> lpSat (Satisfy _ a) (mabs m ext st) (tra p)) +}. + +Theorem satProd: forall State Ind Pred (Sat: forall i, State -> Pred i -> Prop) (st:State) i (f: LP (Pred i)), + lpSat (Sat i) st f + <-> + lpSat + (fun (st : State) (p : {i : Ind & Pred i}) => Sat (projT1 p) st (projT2 p)) st + (addIndex Ind _ i f). +Proof. + induction f; simpl; intros; split; intros; intuition. +Qed. + +Definition trProd (State: Type) Ind (Pred: Ind -> Type) (tts: Ind -> TTS State) (tr: forall i, (Pred i) -> LP (Predicate _ (tts i))): + {i:Ind & Pred i} -> LP (Predicate _ (TTSIndexedProduct _ Ind tts)) := + fun p => addIndex Ind _ (projS1 p) (tr (projS1 p) (projS2 p)). + +Implicit Arguments trProd. +Require Import Setoid. + +Theorem satTrProd: + forall State Ind Pred (tts: Ind -> TTS State) + (tr: forall i, (Pred i) -> LP (Predicate _ (tts i))) (st:State) (p: {i:Ind & (Pred i)}), + lpSat (Satisfy _ (tts (projS1 p))) st (tr (projS1 p) (projS2 p)) + <-> + lpSat (Satisfy _ (TTSIndexedProduct _ _ tts)) st (trProd _ tts tr p). +Proof. + unfold trProd, TTSIndexedProduct; simpl; intros. + rewrite (satProd State Ind (fun i => Predicate State (tts i)) + (fun i => Satisfy _ (tts i))); tauto. +Qed. + +Theorem simuProd: + forall Ind (Pred: Ind -> Type) (tta: Ind -> TTS StateA) (ttc: Ind -> TTS StateC) + (tra: forall i, (Pred i) -> LP (Predicate _ (tta i))) + (trc: forall i, (Pred i) -> LP (Predicate _ (ttc i))), + (forall i, simu _ (tta i) (ttc i) (tra i) (trc i)) -> + simu _ (TTSIndexedProduct _ Ind tta) (TTSIndexedProduct _ Ind ttc) + (trProd Pred tta tra) (trProd Pred ttc trc). +Proof. + intros. + apply simuPrf with (fun ex st => forall i, inv _ _ (ttc i) (tra i) (trc i) (X i) ex st); simpl; intros; auto. + eapply invInit; eauto. + eapply invDelay; eauto. + eapply invNext; eauto. + eapply simuInit; eauto. + eapply simuDelay; eauto. + eapply simuNext; eauto. + split; simpl; intros. + generalize (proj1 (simuPred _ _ _ _ _ (X (projS1 p)) ext st (H (projS1 p)) (projS2 p))); simpl; intro. + rewrite <- (satTrProd StateA Ind Pred tta tra); apply H1. + rewrite (satTrProd StateC Ind Pred ttc trc); apply H0. + + generalize (proj2 (simuPred _ _ _ _ _ (X (projS1 p)) ext st (H (projS1 p)) (projS2 p))); simpl; intro. + rewrite <- (satTrProd StateC Ind Pred ttc trc); apply H1. + rewrite (satTrProd StateA Ind Pred tta tra); apply H0. +Qed. + +End SIMU_F. + +Section TRANSFO. + +Record simu_equiv StateA StateC m1 m2 Pred (a: TTS StateA) (c: TTS StateC) (tra: Pred -> LP (Predicate _ a)) (trc: Pred -> LP (Predicate _ c)): Type := simuEquivPrf { + simuLR: simu StateA StateC m1 Pred a c tra trc; + simuRL: simu StateC StateA m2 Pred c a trc tra +}. + +Theorem simu_equivProd: + forall StateA StateC m1 m2 Ind (Pred: Ind -> Type) (tta: Ind -> TTS StateA) (ttc: Ind -> TTS StateC) + (tra: forall i, (Pred i) -> LP (Predicate _ (tta i))) + (trc: forall i, (Pred i) -> LP (Predicate _ (ttc i))), + (forall i, simu_equiv StateA StateC m1 m2 _ (tta i) (ttc i) (tra i) (trc i)) -> + simu_equiv StateA StateC m1 m2 _ (TTSIndexedProduct _ Ind tta) (TTSIndexedProduct _ Ind ttc) + (trProd _ _ Pred tta tra) (trProd _ _ Pred ttc trc). +Proof. + intros; split; intros. + apply simuProd; intro. + elim (X i); auto. + apply simuProd; intro. + elim (X i); auto. +Qed. + +Record RTLanguage: Type := mkRTLanguage { + Syntax: Type; + DynamicState: Syntax -> Type; + Semantic: forall (mdl:Syntax), TTS (DynamicState mdl); + MdlPredicate: Syntax -> Type; + MdlPredicateDefinition: forall mdl, MdlPredicate mdl -> LP (Predicate _ (Semantic mdl)) +}. + +Record Transformation (l1 l2: RTLanguage): Type := mkTransformation { + Tmodel: Syntax l1 -> Syntax l2; + Tl1l2: forall mdl, mapping (DynamicState l1 mdl) (DynamicState l2 (Tmodel mdl)); + Tl2l1: forall mdl, mapping (DynamicState l2 (Tmodel mdl)) (DynamicState l1 mdl); + Tpred: forall mdl, MdlPredicate l1 mdl -> LP (MdlPredicate l2 (Tmodel mdl)); + Tsim: forall mdl, simu_equiv (DynamicState l1 mdl) (DynamicState l2 (Tmodel mdl)) (Tl1l2 mdl) (Tl2l1 mdl) + (MdlPredicate l1 mdl) (Semantic l1 mdl) (Semantic l2 (Tmodel mdl)) + (MdlPredicateDefinition l1 mdl) + (fun p => LPTransfo (MdlPredicateDefinition l2 (Tmodel mdl)) (Tpred mdl p)) +}. + +Section Product. + +Record PSyntax (L: RTLanguage): Type := mkPSyntax { + pIndex: Type; + pIsEmpty: pIndex + {pIndex -> False}; + pState: Type; + pComponents: pIndex -> Syntax L; + pIsShared: forall i, DynamicState L (pComponents i) = pState +}. + +Definition pPredicate (L: RTLanguage) (sys: PSyntax L) := { i : pIndex L sys & MdlPredicate L (pComponents L sys i)}. + +(* product with shared state *) + +Definition PLanguage (L: RTLanguage): RTLanguage := + mkRTLanguage + (PSyntax L) + (pState L) + (fun mdl => TTSIndexedProduct (pState L mdl) (pIndex L mdl) + (fun i => match pIsShared L mdl i in (_ = y) return TTS y with + eq_refl => Semantic L (pComponents L mdl i) + end)) + (pPredicate L) + (fun mdl => trProd _ _ _ _ + (fun i pi => match pIsShared L mdl i as e in (_ = y) return + (LP (Predicate y + match e in (_ = y0) return (TTS y0) with + | eq_refl => Semantic L (pComponents L mdl i) + end)) + with + | eq_refl => MdlPredicateDefinition L (pComponents L mdl i) pi + end)). + +Inductive Empty: Type :=. + +Record isSharedTransfo l1 l2 tr: Prop := isSharedTransfoPrf { +sameState: forall mdl i j, + DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)) = + DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl j)); +sameMState: forall mdl i j, + mState _ _ (Tl1l2 _ _ tr (pComponents l1 mdl i)) = + mState _ _ (Tl1l2 _ _ tr (pComponents l1 mdl j)); +sameM12: forall mdl i j, + Tl1l2 _ _ tr (pComponents l1 mdl i) = + match sym_eq (sameState mdl i j) in _=y return mapping _ y with + eq_refl => match sym_eq (pIsShared l1 mdl i) in _=x return mapping x _ with + eq_refl => match pIsShared l1 mdl j in _=x return mapping x _ with + eq_refl => Tl1l2 _ _ tr (pComponents l1 mdl j) + end + end + end; +sameM21: forall mdl i j, + Tl2l1 l1 l2 tr (pComponents l1 mdl i) = + match + sym_eq (sameState mdl i j) in (_ = y) + return (mapping y (DynamicState l1 (pComponents l1 mdl i))) + with eq_refl => + match + sym_eq (pIsShared l1 mdl i) in (_ = y) + return + (mapping (DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl j))) y) + with + | eq_refl => + match + pIsShared l1 mdl j in (_ = y) + return + (mapping + (DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl j))) y) + with + | eq_refl => Tl2l1 l1 l2 tr (pComponents l1 mdl j) + end + end +end +}. + +Definition PTransfoSyntax l1 l2 tr (h: isSharedTransfo l1 l2 tr) mdl := + mkPSyntax l2 (pIndex l1 mdl) + (pIsEmpty l1 mdl) + (match pIsEmpty l1 mdl return Type with + inleft i => DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)) + |inright h => pState l1 mdl + end) + (fun i => Tmodel l1 l2 tr (pComponents l1 mdl i)) + (fun i => match pIsEmpty l1 mdl as y return + (DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)) = + match y with + | inleft i0 => + DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i0)) + | inright _ => pState l1 mdl + end) + with + inleft j => sameState l1 l2 tr h mdl i j + | inright h => match h i with end + end). + +Definition compSemantic l mdl i := + match pIsShared l mdl i in (_=y) return TTS y with + eq_refl => Semantic l (pComponents l mdl i) + end. + +Definition compSemanticEq l mdl i s (e: DynamicState l (pComponents l mdl i) = s) := + match e in (_=y) return TTS y with + eq_refl => Semantic l (pComponents l mdl i) + end. + +Definition Pmap12 l1 l2 tr (h: isSharedTransfo l1 l2 tr) (mdl : PSyntax l1) := +match + pIsEmpty l1 mdl as s + return + (mapping (pState l1 mdl) + match s with + | inleft i => DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)) + | inright _ => pState l1 mdl + end) +with +| inleft p => + match + pIsShared l1 mdl p in (_ = y) + return + (mapping y (DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl p)))) + with + | eq_refl => Tl1l2 l1 l2 tr (pComponents l1 mdl p) + end +| inright _ => + mkMapping (pState l1 mdl) (pState l1 mdl) Unit + (fun _ : pState l1 mdl => unit) + (fun (_ : Unit) (_ : pState l1 mdl) => unit) + (fun (_ : Unit) (_ : pState l1 mdl) (_ : Time) => unit) + (fun (_ : Unit) (X : pState l1 mdl) => X) +end. + +Definition Pmap21 l1 l2 tr (h : isSharedTransfo l1 l2 tr) mdl := +match + pIsEmpty l1 mdl as s + return + (mapping + match s with + | inleft i => DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)) + | inright _ => pState l1 mdl + end (pState l1 mdl)) +with +| inleft p => + match + pIsShared l1 mdl p in (_ = y) + return + (mapping (DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl p))) y) + with + | eq_refl => Tl2l1 l1 l2 tr (pComponents l1 mdl p) + end +| inright _ => + mkMapping (pState l1 mdl) (pState l1 mdl) Unit + (fun _ : pState l1 mdl => unit) + (fun (_ : Unit) (_ : pState l1 mdl) => unit) + (fun (_ : Unit) (_ : pState l1 mdl) (_ : Time) => unit) + (fun (_ : Unit) (X : pState l1 mdl) => X) +end. + +Definition PTpred l1 l2 tr (h : isSharedTransfo l1 l2 tr) mdl (pp : pPredicate l1 mdl): + LP (MdlPredicate (PLanguage l2) (PTransfoSyntax l1 l2 tr h mdl)) := +match pIsEmpty l1 mdl with +| inleft _ => + let (x, p) := pp in + addIndex (pIndex l1 mdl) (fun i => MdlPredicate l2 (Tmodel l1 l2 tr (pComponents l1 mdl i))) x + (LPTransfo (Tpred l1 l2 tr (pComponents l1 mdl x)) + (LPPred (MdlPredicate l1 (pComponents l1 mdl x)) p)) +| inright f => match f (projS1 pp) with end +end. + +Lemma simu_eqA: + forall A1 A2 C m P sa sc tta ttc (h: A2=A1), + simu A1 C (match h in (_=y) return mapping _ C with eq_refl => m end) + P (match h in (_=y) return TTS y with eq_refl => sa end) + sc (fun p => match h in (_=y) return LP (Predicate y _) with eq_refl => tta p end) + ttc -> + simu A2 C m P sa sc tta ttc. +admit. +Qed. + +Lemma simu_eqC: + forall A C1 C2 m P sa sc tta ttc (h: C2=C1), + simu A C1 (match h in (_=y) return mapping A _ with eq_refl => m end) + P sa (match h in (_=y) return TTS y with eq_refl => sc end) + tta (fun p => match h in (_=y) return LP (Predicate y _) with eq_refl => ttc p end) + -> + simu A C2 m P sa sc tta ttc. +admit. +Qed. + +Lemma simu_eqA1: + forall A1 A2 C m P sa sc tta ttc (h: A1=A2), + simu A1 C m + P + (match (sym_eq h) in (_=y) return TTS y with eq_refl => sa end) sc + (fun p => match (sym_eq h) as e in (_=y) return LP (Predicate y (match e in (_=z) return TTS z with eq_refl => sa end)) with eq_refl => tta p end) ttc + -> + simu A2 C (match h in (_=y) return mapping _ C with eq_refl => m end) P sa sc tta ttc. +admit. +Qed. + +Lemma simu_eqA2: + forall A1 A2 C m P sa sc tta ttc (h: A1=A2), + simu A1 C (match (sym_eq h) in (_=y) return mapping _ C with eq_refl => m end) + P + sa sc tta ttc + -> + simu A2 C m P + (match h in (_=y) return TTS y with eq_refl => sa end) sc + (fun p => match h as e in (_=y) return LP (Predicate y match e in (_=y0) return TTS y0 with eq_refl => sa end) with eq_refl => tta p end) + ttc. +admit. +Qed. + +Lemma simu_eqC2: + forall A C1 C2 m P sa sc tta ttc (h: C1=C2), + simu A C1 (match (sym_eq h) in (_=y) return mapping A _ with eq_refl => m end) + P + sa sc tta ttc + -> + simu A C2 m P + sa (match h in (_=y) return TTS y with eq_refl => sc end) + tta (fun p => match h as e in (_=y) return LP (Predicate y match e in (_=y0) return TTS y0 with eq_refl => sc end) with eq_refl => ttc p end). +admit. +Qed. + +Lemma simu_eqM: + forall A C m1 m2 P sa sc tta ttc (h: m1=m2), + simu A C m1 P sa sc tta ttc + -> + simu A C m2 P sa sc tta ttc. +admit. +Qed. + +Lemma LPTransfo_trans: + forall Pred1 Pred2 Pred3 (tr1: Pred1 -> LP Pred2) (tr2: Pred2 -> LP Pred3) f, + LPTransfo tr2 (LPTransfo tr1 f) = LPTransfo (fun x => LPTransfo tr2 (tr1 x)) f. +Proof. + admit. +Qed. + +Lemma LPTransfo_addIndex: + forall Ind Pred tr1 x (tr2: forall i, Pred i -> LP (tr1 i)) (p: LP (Pred x)), + addIndex Ind tr1 x (LPTransfo (tr2 x) p) = + LPTransfo + (fun p0 : {i : Ind & Pred i} => + addIndex Ind tr1 (projT1 p0) (tr2 (projT1 p0) (projT2 p0))) + (addIndex Ind Pred x p). +Proof. + unfold addIndex; intros. + rewrite LPTransfo_trans. + rewrite LPTransfo_trans. + simpl. + auto. +Qed. + +Record tr_compat I0 I1 tr := compatPrf { + and_compat: forall p1 p2, tr (LPAnd I0 p1 p2) = LPAnd I1 (tr p1) (tr p2); + not_compat: forall p, tr (LPNot I0 p) = LPNot I1 (tr p) +}. + +Lemma LPTransfo_addIndex_tr: + forall Ind Pred tr0 tr1 x (tr2: forall i, Pred i -> LP (tr0 i)) (tr3: forall i, LP (tr0 i) -> LP (tr1 i)) (p: LP (Pred x)), + (forall x, tr_compat (tr0 x) (tr1 x) (tr3 x)) -> + addIndex Ind tr1 x (tr3 x (LPTransfo (tr2 x) p)) = + LPTransfo + (fun p0 : {i : Ind & Pred i} => + addIndex Ind tr1 (projT1 p0) (tr3 (projT1 p0) (tr2 (projT1 p0) (projT2 p0)))) + (addIndex Ind Pred x p). +Proof. + unfold addIndex; simpl; intros. + rewrite LPTransfo_trans; simpl. + rewrite <- LPTransfo_trans. + f_equal. + induction p; simpl; intros; auto. + rewrite (and_compat _ _ _ (H x)). + rewrite <- IHp1, <- IHp2; auto. + rewrite <- IHp. + rewrite (not_compat _ _ _ (H x)); auto. +Qed. + +Require Export Coq.Logic.FunctionalExtensionality. +Print PLanguage. +Program Definition PTransfo l1 l2 (tr: Transformation l1 l2) (h: isSharedTransfo l1 l2 tr): +Transformation (PLanguage l1) (PLanguage l2) := + mkTransformation (PLanguage l1) (PLanguage l2) + (PTransfoSyntax l1 l2 tr h) + (Pmap12 l1 l2 tr h) + (Pmap21 l1 l2 tr h) + (PTpred l1 l2 tr h) + (fun mdl => simu_equivProd + (pState l1 mdl) + (pState l2 (PTransfoSyntax l1 l2 tr h mdl)) + (Pmap12 l1 l2 tr h mdl) + (Pmap21 l1 l2 tr h mdl) + (pIndex l1 mdl) + (fun i => MdlPredicate l1 (pComponents l1 mdl i)) + (compSemantic l1 mdl) + (compSemantic l2 (PTransfoSyntax l1 l2 tr h mdl)) + _ + _ + _ + ). + +Next Obligation. + unfold compSemantic, PTransfoSyntax; simpl. + case (pIsEmpty l1 mdl); simpl; intros. + unfold pPredicate; simpl. + unfold pPredicate in X; simpl in X. + case (sameState l1 l2 tr h mdl i p). + apply (LPTransfo (MdlPredicateDefinition l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)))). + apply (LPTransfo (Tpred l1 l2 tr (pComponents l1 mdl i))). + apply (LPPred _ X). + + apply False_rect; apply (f i). +Defined. + +Next Obligation. + split; intros. + unfold Pmap12; simpl. + unfold PTransfo_obligation_1; simpl. + unfold compSemantic; simpl. + unfold eq_ind, eq_rect, f_equal; simpl. + case (pIsEmpty l1 mdl); intros. + apply simu_eqA2. + apply simu_eqC2. + apply simu_eqM with (Tl1l2 l1 l2 tr (pComponents l1 mdl i)). + apply sameM12. + apply (simuLR _ _ _ _ _ _ _ _ _ (Tsim l1 l2 tr (pComponents l1 mdl i))); intro. + + apply False_rect; apply (f i). + + unfold Pmap21; simpl. + unfold PTransfo_obligation_1; simpl. + unfold compSemantic; simpl. + unfold eq_ind, eq_rect, f_equal; simpl. + case (pIsEmpty l1 mdl); intros. + apply simu_eqC2. + apply simu_eqA2. + apply simu_eqM with (Tl2l1 l1 l2 tr (pComponents l1 mdl i)). + apply sameM21. + apply (simuRL _ _ _ _ _ _ _ _ _ (Tsim l1 l2 tr (pComponents l1 mdl i))); intro. + + apply False_rect; apply (f i). +Qed. + +Next Obligation. + unfold trProd; simpl. + unfold PTransfo_obligation_1; simpl. + unfold compSemantic; simpl. + unfold eq_ind, eq_rect, f_equal; simpl. + apply functional_extensionality; intro. + case x; clear x; intros. + unfold PTpred; simpl. + case (pIsEmpty l1 mdl); simpl; intros. + set (tr0 i := + Predicate (DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i))) + (Semantic l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)))). + set (tr1 i := + Predicate (DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl p))) + match sameState l1 l2 tr h mdl i p in (_ = y) return (TTS y) with + | eq_refl => Semantic l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)) + end). + set (tr2 x := MdlPredicateDefinition l2 (Tmodel l1 l2 tr (pComponents l1 mdl x))). + set (Pred x := MdlPredicate l2 (Tmodel l1 l2 tr (pComponents l1 mdl x))). + set (tr3 x f := match + sameState l1 l2 tr h mdl x p as e in (_ = y) + return + (LP + (Predicate y + match e in (_ = y0) return (TTS y0) with + | eq_refl => Semantic l2 (Tmodel l1 l2 tr (pComponents l1 mdl x)) + end)) + with + | eq_refl => f + end). + apply (LPTransfo_addIndex_tr _ Pred tr0 tr1 x tr2 tr3 + (Tpred l1 l2 tr (pComponents l1 mdl x) m)). + unfold tr0, tr1, tr3; intros; split; simpl; intros; auto. + case (sameState l1 l2 tr h mdl x0 p); auto. + case (sameState l1 l2 tr h mdl x0 p); auto. + + apply False_rect; apply (f x). +Qed. + +End Product. -- cgit v1.2.3