From 6b649aba925b6f7462da07599fe67ebb12a3460e Mon Sep 17 00:00:00 2001 From: Samuel Mimram Date: Wed, 28 Jul 2004 21:54:47 +0000 Subject: Imported Upstream version 8.0pl1 --- pretyping/pretyping.ml | 1024 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1024 insertions(+) create mode 100644 pretyping/pretyping.ml (limited to 'pretyping/pretyping.ml') diff --git a/pretyping/pretyping.ml b/pretyping/pretyping.ml new file mode 100644 index 00000000..36df9c8a --- /dev/null +++ b/pretyping/pretyping.ml @@ -0,0 +1,1024 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* (name,liftn n (k-i) c)) 0 l + +let transform_rec loc env sigma (pj,c,lf) indt = + let p = pj.uj_val in + let (indf,realargs) = dest_ind_type indt in + let (ind,params) = dest_ind_family indf in + let (mib,mip) = lookup_mind_specif env ind in + let recargs = mip.mind_recargs in + let mI = mkInd ind in + let ci = make_default_case_info env (if Options.do_translate() then RegularStyle else MatchStyle) ind in + let nconstr = Array.length mip.mind_consnames in + if Array.length lf <> nconstr then + (let cj = {uj_val=c; uj_type=mkAppliedInd indt} in + error_number_branches_loc loc env sigma cj nconstr); + let tyi = snd ind in + if mis_is_recursive_subset [tyi] recargs then + let dep = + is_dependent_elimination env (nf_evar sigma pj.uj_type) indf in + let init_depFvec i = if i = tyi then Some(dep,mkRel 1) else None in + let depFvec = Array.init mib.mind_ntypes init_depFvec in + (* build now the fixpoint *) + let lnames,_ = get_arity env indf in + let nar = List.length lnames in + let nparams = mip.mind_nparams in + let constrs = get_constructors env (lift_inductive_family (nar+2) indf) in + let branches = + array_map3 + (fun f t reca -> + whd_beta + (Indrec.make_rec_branch_arg env sigma + (nparams,depFvec,nar+1) + f t reca)) + (Array.map (lift (nar+2)) lf) constrs (dest_subterms recargs) + in + let deffix = + it_mkLambda_or_LetIn_name env + (lambda_create env + (applist (mI,List.append (List.map (lift (nar+1)) params) + (extended_rel_list 0 lnames)), + mkCase (ci, lift (nar+2) p, mkRel 1, branches))) + (lift_rel_context 1 lnames) + in + if noccurn 1 deffix then + whd_beta (applist (pop deffix,realargs@[c])) + else + let ind = applist (mI,(List.append + (List.map (lift nar) params) + (extended_rel_list 0 lnames))) in + let typPfix = + it_mkProd_or_LetIn_name env + (prod_create env + (ind, + (if dep then + let ext_lnames = (Anonymous,None,ind)::lnames in + let args = extended_rel_list 0 ext_lnames in + whd_beta (applist (lift (nar+1) p, args)) + else + let args = extended_rel_list 1 lnames in + whd_beta (applist (lift (nar+1) p, args))))) + lnames in + let fix = + mkFix (([|nar|],0), + ([|Name(id_of_string "F")|],[|typPfix|],[|deffix|])) in + applist (fix,realargs@[c]) + else + mkCase (ci, p, c, lf) + +(************************************************************************) + +(* To embed constr in rawconstr *) +let ((constr_in : constr -> Dyn.t), + (constr_out : Dyn.t -> constr)) = create "constr" + +let mt_evd = Evd.empty + +let vect_lift_type = Array.mapi (fun i t -> type_app (lift i) t) + +(* Utilisé pour inférer le prédicat des Cases *) +(* Semble exagérement fort *) +(* Faudra préférer une unification entre les types de toutes les clauses *) +(* et autoriser des ? à rester dans le résultat de l'unification *) + +let evar_type_fixpoint loc env isevars lna lar vdefj = + let lt = Array.length vdefj in + if Array.length lar = lt then + for i = 0 to lt-1 do + if not (the_conv_x_leq env isevars + (vdefj.(i)).uj_type + (lift lt lar.(i))) then + error_ill_typed_rec_body_loc loc env (evars_of isevars) + i lna vdefj lar + done + +let check_branches_message loc env isevars c (explft,lft) = + for i = 0 to Array.length explft - 1 do + if not (the_conv_x_leq env isevars lft.(i) explft.(i)) then + let sigma = evars_of isevars in + error_ill_formed_branch_loc loc env sigma c i lft.(i) explft.(i) + done + +(* coerce to tycon if any *) +let inh_conv_coerce_to_tycon loc env isevars j = function + | None -> j + | Some typ -> inh_conv_coerce_to loc env isevars j typ + +let push_rels vars env = List.fold_right push_rel vars env + +(* +let evar_type_case isevars env ct pt lft p c = + let (mind,bty,rslty) = type_case_branches env (evars_of isevars) ct pt p c + in check_branches_message isevars env (c,ct) (bty,lft); (mind,rslty) +*) + +let strip_meta id = (* For Grammar v7 compatibility *) + let s = string_of_id id in + if s.[0]='$' then id_of_string (String.sub s 1 (String.length s - 1)) + else id + +let pretype_id loc env (lvar,unbndltacvars) id = + let id = strip_meta id in (* May happen in tactics defined by Grammar *) + try + List.assoc id lvar + with Not_found -> + try + let (n,typ) = lookup_rel_id id (rel_context env) in + { uj_val = mkRel n; uj_type = type_app (lift n) typ } + with Not_found -> + try + let (_,_,typ) = lookup_named id env in + { uj_val = mkVar id; uj_type = typ } + with Not_found -> + try (* To build a nicer ltac error message *) + match List.assoc id unbndltacvars with + | None -> user_err_loc (loc,"", + str (string_of_id id ^ " ist not bound to a term")) + | Some id0 -> Pretype_errors.error_var_not_found_loc loc id0 + with Not_found -> + error_var_not_found_loc loc id + +(* make a dependent predicate from an undependent one *) + +let make_dep_of_undep env (IndType (indf,realargs)) pj = + let n = List.length realargs in + let rec decomp n p = + if n=0 then p else + match kind_of_term p with + | Lambda (_,_,c) -> decomp (n-1) c + | _ -> decomp (n-1) (applist (lift 1 p, [mkRel 1])) + in + let sign,s = decompose_prod_n n pj.uj_type in + let ind = build_dependent_inductive env indf in + let s' = mkProd (Anonymous, ind, s) in + let ccl = lift 1 (decomp n pj.uj_val) in + let ccl' = mkLambda (Anonymous, ind, ccl) in + {uj_val=lam_it ccl' sign; uj_type=prod_it s' sign} + +(*************************************************************************) +(* Main pretyping function *) + +let pretype_ref isevars env ref = + let c = constr_of_reference ref in + make_judge c (Retyping.get_type_of env Evd.empty c) + +let pretype_sort = function + | RProp c -> judge_of_prop_contents c + | RType _ -> judge_of_new_Type () + +(* [pretype tycon env isevars lvar lmeta cstr] attempts to type [cstr] *) +(* in environment [env], with existential variables [(evars_of isevars)] and *) +(* the type constraint tycon *) +let rec pretype tycon env isevars lvar = function + + | RRef (loc,ref) -> + inh_conv_coerce_to_tycon loc env isevars + (pretype_ref isevars env ref) + tycon + + | RVar (loc, id) -> + inh_conv_coerce_to_tycon loc env isevars + (pretype_id loc env lvar id) + tycon + + | REvar (loc, ev, instopt) -> + (* Ne faudrait-il pas s'assurer que hyps est bien un + sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *) + let hyps = (Evd.map (evars_of isevars) ev).evar_hyps in + let args = match instopt with + | None -> instance_from_named_context hyps + | Some inst -> failwith "Evar subtitutions not implemented" in + let c = mkEvar (ev, args) in + let j = (Retyping.get_judgment_of env (evars_of isevars) c) in + inh_conv_coerce_to_tycon loc env isevars j tycon + + | RPatVar (loc,(someta,n)) -> + anomaly "Found a pattern variable in a rawterm to type" + + | RHole (loc,k) -> + if !compter then nbimpl:=!nbimpl+1; + (match tycon with + | Some ty -> + { uj_val = new_isevar isevars env (loc,k) ty; uj_type = ty } + | None -> error_unsolvable_implicit loc env (evars_of isevars) k) + + | RRec (loc,fixkind,names,bl,lar,vdef) -> + let rec type_bl env ctxt = function + [] -> ctxt + | (na,None,ty)::bl -> + let ty' = pretype_type empty_valcon env isevars lvar ty in + let dcl = (na,None,ty'.utj_val) in + type_bl (push_rel dcl env) (add_rel_decl dcl ctxt) bl + | (na,Some bd,ty)::bl -> + let ty' = pretype_type empty_valcon env isevars lvar ty in + let bd' = pretype (mk_tycon ty'.utj_val) env isevars lvar ty in + let dcl = (na,Some bd'.uj_val,ty'.utj_val) in + type_bl (push_rel dcl env) (add_rel_decl dcl ctxt) bl in + let ctxtv = Array.map (type_bl env empty_rel_context) bl in + let larj = + array_map2 + (fun e ar -> + pretype_type empty_valcon (push_rel_context e env) isevars lvar ar) + ctxtv lar in + let lara = Array.map (fun a -> a.utj_val) larj in + let ftys = array_map2 (fun e a -> it_mkProd_or_LetIn a e) ctxtv lara in + let nbfix = Array.length lar in + let names = Array.map (fun id -> Name id) names in + (* Note: bodies are not used by push_rec_types, so [||] is safe *) + let newenv = push_rec_types (names,ftys,[||]) env in + let vdefj = + array_map2_i + (fun i ctxt def -> + (* we lift nbfix times the type in tycon, because of + * the nbfix variables pushed to newenv *) + let (ctxt,ty) = + decompose_prod_n_assum (rel_context_length ctxt) + (lift nbfix ftys.(i)) in + let nenv = push_rel_context ctxt newenv in + let j = pretype (mk_tycon ty) nenv isevars lvar def in + { uj_val = it_mkLambda_or_LetIn j.uj_val ctxt; + uj_type = it_mkProd_or_LetIn j.uj_type ctxt }) + ctxtv vdef in + evar_type_fixpoint loc env isevars names ftys vdefj; + let fixj = + match fixkind with + | RFix (vn,i as vni) -> + let fix = (vni,(names,ftys,Array.map j_val vdefj)) in + (try check_fix env fix with e -> Stdpp.raise_with_loc loc e); + make_judge (mkFix fix) ftys.(i) + | RCoFix i -> + let cofix = (i,(names,ftys,Array.map j_val vdefj)) in + (try check_cofix env cofix with e -> Stdpp.raise_with_loc loc e); + make_judge (mkCoFix cofix) ftys.(i) in + inh_conv_coerce_to_tycon loc env isevars fixj tycon + + | RSort (loc,s) -> + inh_conv_coerce_to_tycon loc env isevars (pretype_sort s) tycon + + | RApp (loc,f,args) -> + let fj = pretype empty_tycon env isevars lvar f in + let floc = loc_of_rawconstr f in + let rec apply_rec env n resj = function + | [] -> resj + | c::rest -> + let argloc = loc_of_rawconstr c in + let resj = inh_app_fun env isevars resj in + let resty = + whd_betadeltaiota env (evars_of isevars) resj.uj_type in + match kind_of_term resty with + | Prod (na,c1,c2) -> + let hj = pretype (mk_tycon c1) env isevars lvar c in + let newresj = + { uj_val = applist (j_val resj, [j_val hj]); + uj_type = subst1 hj.uj_val c2 } in + apply_rec env (n+1) newresj rest + + | _ -> + let hj = pretype empty_tycon env isevars lvar c in + error_cant_apply_not_functional_loc + (join_loc floc argloc) env (evars_of isevars) + resj [hj] + + in let resj = apply_rec env 1 fj args in + (* + let apply_one_arg (floc,tycon,jl) c = + let (dom,rng) = split_tycon floc env isevars tycon in + let cj = pretype dom env isevars lvar c in + let rng_tycon = option_app (subst1 cj.uj_val) rng in + let argloc = loc_of_rawconstr c in + (join_loc floc argloc,rng_tycon,(argloc,cj)::jl) in + let _,_,jl = + List.fold_left apply_one_arg (floc,mk_tycon j.uj_type,[]) args in + let jl = List.rev jl in + let resj = inh_apply_rel_list loc env isevars jl (floc,j) tycon in + *) + inh_conv_coerce_to_tycon loc env isevars resj tycon + + | RLambda(loc,name,c1,c2) -> + let (name',dom,rng) = split_tycon loc env isevars tycon in + let dom_valcon = valcon_of_tycon dom in + let j = pretype_type dom_valcon env isevars lvar c1 in + let var = (name,None,j.utj_val) in + let j' = pretype rng (push_rel var env) isevars lvar c2 in + judge_of_abstraction env name j j' + + | RProd(loc,name,c1,c2) -> + let j = pretype_type empty_valcon env isevars lvar c1 in + let var = (name,j.utj_val) in + let env' = push_rel_assum var env in + let j' = pretype_type empty_valcon env' isevars lvar c2 in + let resj = + try judge_of_product env name j j' + with TypeError _ as e -> Stdpp.raise_with_loc loc e in + inh_conv_coerce_to_tycon loc env isevars resj tycon + + | RLetIn(loc,name,c1,c2) -> + let j = pretype empty_tycon env isevars lvar c1 in + let t = Evarutil.refresh_universes j.uj_type in + let var = (name,Some j.uj_val,t) in + let tycon = option_app (lift 1) tycon in + let j' = pretype tycon (push_rel var env) isevars lvar c2 in + { uj_val = mkLetIn (name, j.uj_val, t, j'.uj_val) ; + uj_type = type_app (subst1 j.uj_val) j'.uj_type } + + | RLetTuple (loc,nal,(na,po),c,d) -> + let cj = pretype empty_tycon env isevars lvar c in + let (IndType (indf,realargs) as indt) = + try find_rectype env (evars_of isevars) cj.uj_type + with Not_found -> + let cloc = loc_of_rawconstr c in + error_case_not_inductive_loc cloc env (evars_of isevars) cj + in + let cstrs = get_constructors env indf in + if Array.length cstrs <> 1 then + user_err_loc (loc,"",str "Destructing let is only for inductive types with one constructor"); + let cs = cstrs.(0) in + if List.length nal <> cs.cs_nargs then + user_err_loc (loc,"", str "Destructing let on this type expects " ++ int cs.cs_nargs ++ str " variables"); + let fsign = List.map2 (fun na (_,c,t) -> (na,c,t)) + (List.rev nal) cs.cs_args in + let env_f = push_rels fsign env in + (* Make dependencies from arity signature impossible *) + let arsgn,_ = get_arity env indf in + let arsgn = List.map (fun (_,b,t) -> (Anonymous,b,t)) arsgn in + let psign = (na,None,build_dependent_inductive env indf)::arsgn in + let nar = List.length arsgn in + (match po with + | Some p -> + let env_p = push_rels psign env in + let pj = pretype_type empty_valcon env_p isevars lvar p in + let ccl = nf_evar (evars_of isevars) pj.utj_val in + let psign = make_arity_signature env true indf in (* with names *) + let p = it_mkLambda_or_LetIn ccl psign in + let inst = + (Array.to_list cs.cs_concl_realargs) + @[build_dependent_constructor cs] in + let lp = lift cs.cs_nargs p in + let fty = hnf_lam_applist env (evars_of isevars) lp inst in + let fj = pretype (mk_tycon fty) env_f isevars lvar d in + let f = it_mkLambda_or_LetIn fj.uj_val fsign in + let v = + let mis,_ = dest_ind_family indf in + let ci = make_default_case_info env LetStyle mis in + mkCase (ci, p, cj.uj_val,[|f|]) in + let cs = build_dependent_constructor cs in + { uj_val = v; uj_type = substl (realargs@[cj.uj_val]) ccl } + + | None -> + let tycon = option_app (lift cs.cs_nargs) tycon in + let fj = pretype tycon env_f isevars lvar d in + let f = it_mkLambda_or_LetIn fj.uj_val fsign in + let ccl = nf_evar (evars_of isevars) fj.uj_type in + let ccl = + if noccur_between 1 cs.cs_nargs ccl then + lift (- cs.cs_nargs) ccl + else + error_cant_find_case_type_loc loc env (evars_of isevars) + cj.uj_val in + let p = it_mkLambda_or_LetIn (lift (nar+1) ccl) psign in + let v = + let mis,_ = dest_ind_family indf in + let ci = make_default_case_info env LetStyle mis in + mkCase (ci, p, cj.uj_val,[|f|] ) + in + { uj_val = v; uj_type = ccl }) + + (* Special Case for let constructions to avoid exponential behavior *) + | ROrderedCase (loc,st,po,c,[|f|],xx) when st <> MatchStyle -> + let cj = pretype empty_tycon env isevars lvar c in + let (IndType (indf,realargs) as indt) = + try find_rectype env (evars_of isevars) cj.uj_type + with Not_found -> + let cloc = loc_of_rawconstr c in + error_case_not_inductive_loc cloc env (evars_of isevars) cj + in + let j = match po with + | Some p -> + let pj = pretype empty_tycon env isevars lvar p in + let dep = is_dependent_elimination env pj.uj_type indf in + let ar = + arity_of_case_predicate env indf dep (Type (new_univ())) in + let _ = the_conv_x_leq env isevars pj.uj_type ar in + let pj = j_nf_evar (evars_of isevars) pj in + let pj = if dep then pj else make_dep_of_undep env indt pj in + let (bty,rsty) = + Indrec.type_rec_branches + false env (evars_of isevars) indt pj.uj_val cj.uj_val + in + if Array.length bty <> 1 then + error_number_branches_loc + loc env (evars_of isevars) cj (Array.length bty); + let fj = + let tyc = bty.(0) in + pretype (mk_tycon tyc) env isevars lvar f + in + let fv = j_val fj in + let ft = fj.uj_type in + check_branches_message loc env isevars cj.uj_val (bty,[|ft|]); + let v = + let mis,_ = dest_ind_family indf in + let ci = make_default_case_info env st mis in + mkCase (ci, (nf_betaiota pj.uj_val), cj.uj_val,[|fv|]) + in + { uj_val = v; uj_type = rsty } + + | None -> + (* get type information from type of branches *) + let expbr = Cases.branch_scheme env isevars false indf in + if Array.length expbr <> 1 then + error_number_branches_loc loc env (evars_of isevars) + cj (Array.length expbr); + let expti = expbr.(0) in + let fj = pretype (mk_tycon expti) env isevars lvar f in + let use_constraint () = + (* get type information from constraint *) + (* warning: if the constraint comes from an evar type, it *) + (* may be Type while Prop or Set would be expected *) + match tycon with + | Some pred -> + let arsgn = make_arity_signature env true indf in + let pred = lift (List.length arsgn) pred in + let pred = + it_mkLambda_or_LetIn (nf_evar (evars_of isevars) pred) + arsgn in + false, pred + | None -> + let sigma = evars_of isevars in + error_cant_find_case_type_loc loc env sigma cj.uj_val + in + let ok, p = + try + let pred = + Cases.pred_case_ml + env (evars_of isevars) false indt (0,fj.uj_type) + in + if has_undefined_isevars isevars pred then + use_constraint () + else + true, pred + with Cases.NotInferable _ -> + use_constraint () + in + let p = nf_evar (evars_of isevars) p in + let (bty,rsty) = + Indrec.type_rec_branches + false env (evars_of isevars) indt p cj.uj_val + in + let _ = option_app (the_conv_x_leq env isevars rsty) tycon in + let fj = + if ok then fj + else pretype (mk_tycon bty.(0)) env isevars lvar f + in + let fv = fj.uj_val in + let ft = fj.uj_type in + let v = + let mis,_ = dest_ind_family indf in + let ci = make_default_case_info env st mis in + mkCase (ci, (nf_betaiota p), cj.uj_val,[|fv|] ) + in + { uj_val = v; uj_type = rsty } in + + (* Build the LetTuple form for v8 *) + let c = + let (ind,params) = dest_ind_family indf in + let rtntypopt, indnalopt = match po with + | None -> None, (Anonymous,None) + | Some p -> + let pj = pretype empty_tycon env isevars lvar p in + let dep = is_dependent_elimination env pj.uj_type indf in + let rec decomp_lam_force n avoid l p = + (* avoid is not exhaustive ! *) + if n = 0 then (List.rev l,p,avoid) else + match p with + | RLambda (_,(Name id as na),_,c) -> + decomp_lam_force (n-1) (id::avoid) (na::l) c + | RLambda (_,(Anonymous as na),_,c) -> + decomp_lam_force (n-1) avoid (na::l) c + | _ -> + let x = Nameops.next_ident_away (id_of_string "x") avoid in + decomp_lam_force (n-1) (x::avoid) (Name x :: l) + (* eta-expansion *) + (RApp (dummy_loc,p, [RVar (dummy_loc,x)])) in + let (nal,p,avoid) = + decomp_lam_force (List.length realargs) [] [] p in + let na,rtntyp,_ = + if dep then decomp_lam_force 1 avoid [] p + else [Anonymous],p,[] in + let intyp = + if List.for_all + (function + | Anonymous -> true + | Name id -> not (occur_rawconstr id rtntyp)) nal + then (* No dependency in realargs *) + None + else + let args = List.map (fun _ -> Anonymous) params @ nal in + Some (dummy_loc,ind,args) in + (Some rtntyp,(List.hd na,intyp)) in + let cs = (get_constructors env indf).(0) in + match indnalopt with + | (na,None) -> (* Represented as a let *) + let rec decomp_lam_force n avoid l p = + if n = 0 then (List.rev l,p) else + match p with + | RLambda (_,(Name id as na),_,c) -> + decomp_lam_force (n-1) (id::avoid) (na::l) c + | RLambda (_,(Anonymous as na),_,c) -> + decomp_lam_force (n-1) avoid (na::l) c + | _ -> + let x = Nameops.next_ident_away (id_of_string "x") avoid in + decomp_lam_force (n-1) (x::avoid) (Name x :: l) + (* eta-expansion *) + (let a = RVar (dummy_loc,x) in + match p with + | RApp (loc,p,l) -> RApp (loc,p,l@[a]) + | _ -> (RApp (dummy_loc,p,[a]))) in + let (nal,d) = decomp_lam_force cs.cs_nargs [] [] f in + RLetTuple (loc,nal,(na,rtntypopt),c,d) + | _ -> (* Represented as a match *) + let detype_eqn constr construct_nargs branch = + let name_cons = function + | Anonymous -> fun l -> l + | Name id -> fun l -> id::l in + let make_pat na avoid b ids = + PatVar (dummy_loc,na), + name_cons na avoid,name_cons na ids + in + let rec buildrec ids patlist avoid n b = + if n=0 then + (dummy_loc, ids, + [PatCstr(dummy_loc, constr, List.rev patlist,Anonymous)], + b) + else + match b with + | RLambda (_,x,_,b) -> + let pat,new_avoid,new_ids = make_pat x avoid b ids in + buildrec new_ids (pat::patlist) new_avoid (n-1) b + + | RLetIn (_,x,_,b) -> + let pat,new_avoid,new_ids = make_pat x avoid b ids in + buildrec new_ids (pat::patlist) new_avoid (n-1) b + + | RCast (_,c,_) -> (* Oui, il y a parfois des cast *) + buildrec ids patlist avoid n c + + | _ -> (* eta-expansion *) + (* nommage de la nouvelle variable *) + let id = Nameops.next_ident_away (id_of_string "x") avoid in + let new_b = RApp (dummy_loc, b, [RVar(dummy_loc,id)])in + let pat,new_avoid,new_ids = + make_pat (Name id) avoid new_b ids in + buildrec new_ids (pat::patlist) new_avoid (n-1) new_b + + in + buildrec [] [] [] construct_nargs branch in + let eqn = detype_eqn (ind,1) cs.cs_nargs f in + RCases (loc,(po,ref rtntypopt),[c,ref indnalopt],[eqn]) + in + xx := Some c; + (* End building the v8 syntax *) + j + + | RIf (loc,c,(na,po),b1,b2) -> + let cj = pretype empty_tycon env isevars lvar c in + let (IndType (indf,realargs) as indt) = + try find_rectype env (evars_of isevars) cj.uj_type + with Not_found -> + let cloc = loc_of_rawconstr c in + error_case_not_inductive_loc cloc env (evars_of isevars) cj in + let cstrs = get_constructors env indf in + if Array.length cstrs <> 2 then + user_err_loc (loc,"", + str "If is only for inductive types with two constructors"); + + (* Make dependencies from arity signature impossible *) + let arsgn,_ = get_arity env indf in + let arsgn = List.map (fun (_,b,t) -> (Anonymous,b,t)) arsgn in + let nar = List.length arsgn in + let psign = (na,None,build_dependent_inductive env indf)::arsgn in + let pred,p = match po with + | Some p -> + let env_p = push_rels psign env in + let pj = pretype_type empty_valcon env_p isevars lvar p in + let ccl = nf_evar (evars_of isevars) pj.utj_val in + let pred = it_mkLambda_or_LetIn ccl psign in + pred, lift (- nar) (beta_applist (pred,[cj.uj_val])) + | None -> + let p = match tycon with + | Some ty -> ty + | None -> new_isevar isevars env (loc,InternalHole) (new_Type ()) + in + it_mkLambda_or_LetIn (lift (nar+1) p) psign, p in + let f cs b = + let n = rel_context_length cs.cs_args in + let pi = liftn n 2 pred in + let pi = beta_applist (pi, [build_dependent_constructor cs]) in + let csgn = List.map (fun (_,b,t) -> (Anonymous,b,t)) cs.cs_args in + let env_c = push_rels csgn env in + let bj = pretype (Some pi) env_c isevars lvar b in + it_mkLambda_or_LetIn bj.uj_val cs.cs_args in + let b1 = f cstrs.(0) b1 in + let b2 = f cstrs.(1) b2 in + let pred = nf_evar (evars_of isevars) pred in + let p = nf_evar (evars_of isevars) p in + let v = + let mis,_ = dest_ind_family indf in + let ci = make_default_case_info env IfStyle mis in + mkCase (ci, pred, cj.uj_val, [|b1;b2|]) + in + { uj_val = v; uj_type = p } + + | ROrderedCase (loc,st,po,c,lf,x) -> + let isrec = (st = MatchStyle) in + let cj = pretype empty_tycon env isevars lvar c in + let (IndType (indf,realargs) as indt) = + try find_rectype env (evars_of isevars) cj.uj_type + with Not_found -> + let cloc = loc_of_rawconstr c in + error_case_not_inductive_loc cloc env (evars_of isevars) cj in + let (dep,pj) = match po with + | Some p -> + let pj = pretype empty_tycon env isevars lvar p in + let dep = is_dependent_elimination env pj.uj_type indf in + let ar = + arity_of_case_predicate env indf dep (Type (new_univ())) in + let _ = the_conv_x_leq env isevars pj.uj_type ar in + (dep, pj) + | None -> + (* get type information from type of branches *) + let expbr = Cases.branch_scheme env isevars isrec indf in + let rec findtype i = + if i >= Array.length lf + then + (* get type information from constraint *) + (* warning: if the constraint comes from an evar type, it *) + (* may be Type while Prop or Set would be expected *) + match tycon with + | Some pred -> + let arsgn = make_arity_signature env true indf in + let pred = lift (List.length arsgn) pred in + let pred = + it_mkLambda_or_LetIn (nf_evar (evars_of isevars) pred) + arsgn in + (true, + Retyping.get_judgment_of env (evars_of isevars) pred) + | None -> + let sigma = evars_of isevars in + error_cant_find_case_type_loc loc env sigma cj.uj_val + else + try + let expti = expbr.(i) in + let fj = + pretype (mk_tycon expti) env isevars lvar lf.(i) in + let pred = + Cases.pred_case_ml (* eta-expanse *) + env (evars_of isevars) isrec indt (i,fj.uj_type) in + if has_undefined_isevars isevars pred then findtype (i+1) + else + let pty = + Retyping.get_type_of env (evars_of isevars) pred in + let pj = { uj_val = pred; uj_type = pty } in +(* + let _ = option_app (the_conv_x_leq env isevars pred) tycon + in +*) + (true,pj) + with Cases.NotInferable _ -> findtype (i+1) in + findtype 0 + in + let pj = j_nf_evar (evars_of isevars) pj in + let pj = if dep then pj else make_dep_of_undep env indt pj in + let (bty,rsty) = + Indrec.type_rec_branches + isrec env (evars_of isevars) indt pj.uj_val cj.uj_val in + let _ = option_app (the_conv_x_leq env isevars rsty) tycon in + if Array.length bty <> Array.length lf then + error_number_branches_loc loc env (evars_of isevars) + cj (Array.length bty) + else + let lfj = + array_map2 + (fun tyc f -> pretype (mk_tycon tyc) env isevars lvar f) bty + lf in + let lfv = Array.map j_val lfj in + let lft = Array.map (fun j -> j.uj_type) lfj in + check_branches_message loc env isevars cj.uj_val (bty,lft); + let v = + if isrec + then + transform_rec loc env (evars_of isevars)(pj,cj.uj_val,lfv) indt + else + let mis,_ = dest_ind_family indf in + let ci = make_default_case_info env st mis in + mkCase (ci, (nf_betaiota pj.uj_val), cj.uj_val, + Array.map (fun j-> j.uj_val) lfj) + in + (* Build the Cases form for v8 *) + let c = + let (ind,params) = dest_ind_family indf in + let (mib,mip) = lookup_mind_specif env ind in + let recargs = mip.mind_recargs in + let mI = mkInd ind in + let nconstr = Array.length mip.mind_consnames in + let tyi = snd ind in + if isrec && mis_is_recursive_subset [tyi] recargs then + Some (Detyping.detype (false,env) + (ids_of_context env) (names_of_rel_context env) + (nf_evar (evars_of isevars) v)) + else + (* Translate into a "match ... with" *) + let rtntypopt, indnalopt = match po with + | None -> None, (Anonymous,None) + | Some p -> + let rec decomp_lam_force n avoid l p = + (* avoid is not exhaustive ! *) + if n = 0 then (List.rev l,p,avoid) else + match p with + | RLambda (_,(Name id as na),_,c) -> + decomp_lam_force (n-1) (id::avoid) (na::l) c + | RLambda (_,(Anonymous as na),_,c) -> + decomp_lam_force (n-1) avoid (na::l) c + | _ -> + let x = Nameops.next_ident_away (id_of_string "x") avoid in + decomp_lam_force (n-1) (x::avoid) (Name x :: l) + (* eta-expansion *) + (RApp (dummy_loc,p, [RVar (dummy_loc,x)])) in + let (nal,p,avoid) = + decomp_lam_force (List.length realargs) [] [] p in + let na,rtntyopt,_ = + if dep then decomp_lam_force 1 avoid [] p + else [Anonymous],p,[] in + let intyp = + if nal=[] then None else + let args = List.map (fun _ -> Anonymous) params @ nal in + Some (dummy_loc,ind,args) in + (Some rtntyopt,(List.hd na,intyp)) in + let rawbranches = + array_map3 (fun bj b cstr -> + let rec strip n r = if n=0 then r else + match r with + | RLambda (_,_,_,t) -> strip (n-1) t + | RLetIn (_,_,_,t) -> strip (n-1) t + | _ -> assert false in + let n = rel_context_length cstr.cs_args in + try + let _,ccl = decompose_lam_n_assum n bj.uj_val in + if noccur_between 1 n ccl then Some (strip n b) else None + with _ -> (* Not eta-expanded or not reduced *) None) + lfj lf (get_constructors env indf) in + if st = IfStyle & snd indnalopt = None + & rawbranches.(0) <> None && rawbranches.(1) <> None then + (* Translate into a "if ... then ... else" *) + (* TODO: translate into a "if" even if po is dependent *) + Some (RIf (loc,c,(fst indnalopt,rtntypopt), + out_some rawbranches.(0),out_some rawbranches.(1))) + else + let detype_eqn constr construct_nargs branch = + let name_cons = function + | Anonymous -> fun l -> l + | Name id -> fun l -> id::l in + let make_pat na avoid b ids = + PatVar (dummy_loc,na), + name_cons na avoid,name_cons na ids + in + let rec buildrec ids patlist avoid n b = + if n=0 then + (dummy_loc, ids, + [PatCstr(dummy_loc, constr, List.rev patlist,Anonymous)], + b) + else + match b with + | RLambda (_,x,_,b) -> + let pat,new_avoid,new_ids = make_pat x avoid b ids in + buildrec new_ids (pat::patlist) new_avoid (n-1) b + + | RLetIn (_,x,_,b) -> + let pat,new_avoid,new_ids = make_pat x avoid b ids in + buildrec new_ids (pat::patlist) new_avoid (n-1) b + + | RCast (_,c,_) -> (* Oui, il y a parfois des cast *) + buildrec ids patlist avoid n c + + | _ -> (* eta-expansion *) + (* nommage de la nouvelle variable *) + let id = Nameops.next_ident_away (id_of_string "x") avoid in + let new_b = RApp (dummy_loc, b, [RVar(dummy_loc,id)])in + let pat,new_avoid,new_ids = + make_pat (Name id) avoid new_b ids in + buildrec new_ids (pat::patlist) new_avoid (n-1) new_b + + in + buildrec [] [] [] construct_nargs branch in + let (mib,mip) = Inductive.lookup_mind_specif (Global.env()) ind in + let get_consnarg j = + let typi = mis_nf_constructor_type (ind,mib,mip) (j+1) in + let _,t = decompose_prod_n_assum mip.mind_nparams typi in + List.rev (fst (decompose_prod_assum t)) in + let consnargs = Array.init (Array.length mip.mind_consnames) get_consnarg in + let consnargsl = Array.map List.length consnargs in + let constructs = Array.init (Array.length lf) (fun i -> (ind,i+1)) in + let eqns = array_map3 detype_eqn constructs consnargsl lf in + Some (RCases (loc,(po,ref rtntypopt),[c,ref indnalopt],Array.to_list eqns)) in + x := c; + (* End build the Cases form for v8 *) + { uj_val = v; + uj_type = rsty } + + | RCases (loc,po,tml,eqns) -> + Cases.compile_cases loc + ((fun vtyc env -> pretype vtyc env isevars lvar),isevars) + tycon env (* loc *) (po,tml,eqns) + + | RCast(loc,c,t) -> + let tj = pretype_type empty_tycon env isevars lvar t in + let cj = pretype (mk_tycon tj.utj_val) env isevars lvar c in + (* User Casts are for helping pretyping, experimentally not to be kept*) + (* ... except for Correctness *) + let v = mkCast (cj.uj_val, tj.utj_val) in + let cj = { uj_val = v; uj_type = tj.utj_val } in + inh_conv_coerce_to_tycon loc env isevars cj tycon + + | RDynamic (loc,d) -> + if (tag d) = "constr" then + let c = constr_out d in + let j = (Retyping.get_judgment_of env (evars_of isevars) c) in + j + (*inh_conv_coerce_to_tycon loc env isevars j tycon*) + else + user_err_loc (loc,"pretype",(str "Not a constr tagged Dynamic")) + +(* [pretype_type valcon env isevars lvar c] coerces [c] into a type *) +and pretype_type valcon env isevars lvar = function + | RHole loc -> + if !compter then nbimpl:=!nbimpl+1; + (match valcon with + | Some v -> + let s = + let sigma = evars_of isevars in + let t = Retyping.get_type_of env sigma v in + match kind_of_term (whd_betadeltaiota env sigma t) with + | Sort s -> s + | Evar v when is_Type (existential_type sigma v) -> + define_evar_as_sort isevars v + | _ -> anomaly "Found a type constraint which is not a type" + in + { utj_val = v; + utj_type = s } + | None -> + let s = new_Type_sort () in + { utj_val = new_isevar isevars env loc (mkSort s); + utj_type = s}) + | c -> + let j = pretype empty_tycon env isevars lvar c in + let tj = inh_coerce_to_sort env isevars j in + match valcon with + | None -> tj + | Some v -> + if the_conv_x_leq env isevars v tj.utj_val then tj + else + error_unexpected_type_loc + (loc_of_rawconstr c) env (evars_of isevars) tj.utj_val v + + +let unsafe_infer tycon isevars env lvar constr = + let j = pretype tycon env isevars lvar constr in + j_nf_evar (evars_of isevars) j + +let unsafe_infer_type valcon isevars env lvar constr = + let tj = pretype_type valcon env isevars lvar constr in + tj_nf_evar (evars_of isevars) tj + +(* If fail_evar is false, [process_evars] builds a meta_map with the + unresolved Evar that were not in initial sigma; otherwise it fail + on the first unresolved Evar not already in the initial sigma. *) +(* [fail_evar] says how to process unresolved evars: + * true -> raise an error message + * false -> convert them into new Metas (casted with their type) + *) +(* assumes the defined existentials have been replaced in c (should be + done in unsafe_infer and unsafe_infer_type) *) +let check_evars fail_evar env initial_sigma isevars c = + let sigma = evars_of isevars in + let rec proc_rec c = + match kind_of_term c with + | Evar (ev,args as k) -> + assert (Evd.in_dom sigma ev); + if not (Evd.in_dom initial_sigma ev) then + (if fail_evar then + let (loc,k) = evar_source ev isevars in + error_unsolvable_implicit loc env sigma k) + | _ -> iter_constr proc_rec c + in + proc_rec c + +(* TODO: comment faire remonter l'information si le typage a resolu des + variables du sigma original. il faudrait que la fonction de typage + retourne aussi le nouveau sigma... +*) + +(* constr with holes *) +type open_constr = evar_map * constr + +let ise_resolve_casted_gen fail_evar sigma env lvar typ c = + let isevars = create_evar_defs sigma in + let j = unsafe_infer (mk_tycon typ) isevars env lvar c in + check_evars fail_evar env sigma isevars (mkCast(j.uj_val,j.uj_type)); + (evars_of isevars, j) + +let ise_resolve_casted sigma env typ c = + ise_resolve_casted_gen true sigma env ([],[]) typ c + +(* Raw calls to the unsafe inference machine: boolean says if we must fail + on unresolved evars, or replace them by Metas; the unsafe_judgment list + allows us to extend env with some bindings *) +let ise_infer_gen fail_evar sigma env lvar exptyp c = + let tycon = match exptyp with None -> empty_tycon | Some t -> mk_tycon t in + let isevars = create_evar_defs sigma in + let j = unsafe_infer tycon isevars env lvar c in + check_evars fail_evar env sigma isevars (mkCast(j.uj_val,j.uj_type)); + (evars_of isevars, j) + +let ise_infer_type_gen fail_evar sigma env lvar c = + let isevars = create_evar_defs sigma in + let tj = unsafe_infer_type empty_valcon isevars env lvar c in + check_evars fail_evar env sigma isevars tj.utj_val; + (evars_of isevars, tj) + +type var_map = (identifier * unsafe_judgment) list + +let understand_judgment sigma env c = + snd (ise_infer_gen true sigma env ([],[]) None c) + +let understand_type_judgment sigma env c = + snd (ise_infer_type_gen true sigma env ([],[]) c) + +let understand sigma env c = + let _, c = ise_infer_gen true sigma env ([],[]) None c in + c.uj_val + +let understand_type sigma env c = + let _,c = ise_infer_type_gen true sigma env ([],[]) c in + c.utj_val + +let understand_gen_ltac sigma env lvar ~expected_type:exptyp c = + let _, c = ise_infer_gen true sigma env lvar exptyp c in + c.uj_val + +let understand_gen sigma env lvar ~expected_type:exptyp c = + let _, c = ise_infer_gen true sigma env (lvar,[]) exptyp c in + c.uj_val + +let understand_gen_tcc sigma env lvar exptyp c = + let metamap, c = ise_infer_gen false sigma env (lvar,[]) exptyp c in + metamap, c.uj_val + +let interp_sort = function + | RProp c -> Prop c + | RType _ -> new_Type_sort () + +let interp_elimination_sort = function + | RProp Null -> InProp + | RProp Pos -> InSet + | RType _ -> InType -- cgit v1.2.3