From 9043add656177eeac1491a73d2f3ab92bec0013c Mon Sep 17 00:00:00 2001 From: Benjamin Barenblat Date: Sat, 29 Dec 2018 14:31:27 -0500 Subject: Imported Upstream version 8.8.2 --- plugins/micromega/RMicromega.v | 325 ++++------------------------------------- 1 file changed, 30 insertions(+), 295 deletions(-) (limited to 'plugins/micromega/RMicromega.v') diff --git a/plugins/micromega/RMicromega.v b/plugins/micromega/RMicromega.v index 2352d78d..c2b40c73 100644 --- a/plugins/micromega/RMicromega.v +++ b/plugins/micromega/RMicromega.v @@ -1,9 +1,11 @@ (************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* (IZR (Qnum x) * / IZR (' Qden x))%R. - - -Lemma Rinv_elim : forall x y z, - y <> 0 -> (z * y = x <-> x * / y = z). -Proof. - intros. - split ; intros. - subst. - rewrite Rmult_assoc. - rewrite Rinv_r; auto. - ring. - subst. - rewrite Rmult_assoc. - rewrite (Rmult_comm (/ y)). - rewrite Rinv_r ; auto. - ring. -Qed. - -Ltac INR_nat_of_P := - match goal with - | H : context[INR (Pos.to_nat ?X)] |- _ => - revert H ; - let HH := fresh in - assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X)) - | |- context[INR (Pos.to_nat ?X)] => - let HH := fresh in - assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X)) - end. - -Ltac add_eq expr val := set (temp := expr) ; - generalize (eq_refl temp) ; - unfold temp at 1 ; generalize temp ; intro val ; clear temp. - -Ltac Rinv_elim := - match goal with - | |- context[?x * / ?y] => - let z := fresh "v" in - add_eq (x * / y) z ; - let H := fresh in intro H ; rewrite <- Rinv_elim in H - end. - -Lemma Rlt_neq : forall r , 0 < r -> r <> 0. -Proof. - red. intros. - subst. - apply (Rlt_irrefl 0 H). + now apply Rmult_lt_0_compat. Qed. +Notation IQR := Q2R (only parsing). Lemma Rinv_1 : forall x, x * / 1 = x. Proof. intro. - Rinv_elim. - subst ; ring. - apply R1_neq_R0. + rewrite Rinv_1. + apply Rmult_1_r. Qed. -Lemma Qeq_true : forall x y, - Qeq_bool x y = true -> - IQR x = IQR y. +Lemma Qeq_true : forall x y, Qeq_bool x y = true -> IQR x = IQR y. Proof. - unfold IQR. - simpl. - intros. - apply Qeq_bool_eq in H. - unfold Qeq in H. - assert (IZR (Qnum x * ' Qden y) = IZR (Qnum y * ' Qden x))%Z. - rewrite H. reflexivity. - repeat rewrite mult_IZR in H0. - simpl in H0. - revert H0. - repeat INR_nat_of_P. intros. - apply Rinv_elim in H2 ; [| apply Rlt_neq ; auto]. - rewrite <- H2. - field. - split ; apply Rlt_neq ; auto. + now apply Qeq_eqR, Qeq_bool_eq. Qed. Lemma Qeq_false : forall x y, Qeq_bool x y = false -> IQR x <> IQR y. Proof. intros. - apply Qeq_bool_neq in H. - intro. apply H. clear H. - unfold Qeq,IQR in *. - simpl in *. - revert H0. - repeat Rinv_elim. - intros. - subst. - assert (IZR (Qnum x * ' Qden y)%Z = IZR (Qnum y * ' Qden x)%Z). - repeat rewrite mult_IZR. - simpl. - rewrite <- H0. rewrite <- H. - ring. - apply eq_IZR ; auto. - INR_nat_of_P; intros; apply Rlt_neq ; auto. - INR_nat_of_P; intros ; apply Rlt_neq ; auto. + apply Qeq_bool_neq in H. + contradict H. + now apply eqR_Qeq. Qed. - - Lemma Qle_true : forall x y : Q, Qle_bool x y = true -> IQR x <= IQR y. Proof. intros. - apply Qle_bool_imp_le in H. - unfold Qle in H. - unfold IQR. - simpl in *. - apply IZR_le in H. - repeat rewrite mult_IZR in H. - simpl in H. - repeat INR_nat_of_P; intros. - assert (Hr := Rlt_neq r H). - assert (Hr0 := Rlt_neq r0 H0). - replace (IZR (Qnum x) * / r) with ((IZR (Qnum x) * r0) * (/r * /r0)). - replace (IZR (Qnum y) * / r0) with ((IZR (Qnum y) * r) * (/r * /r0)). - apply Rmult_le_compat_r ; auto. - apply Rmult_le_pos. - unfold Rle. left. apply Rinv_0_lt_compat ; auto. - unfold Rle. left. apply Rinv_0_lt_compat ; auto. - field ; intuition. - field ; intuition. + now apply Qle_Rle, Qle_bool_imp_le. Qed. - - Lemma IQR_0 : IQR 0 = 0. Proof. - compute. apply Rinv_1. + apply Rmult_0_l. Qed. Lemma IQR_1 : IQR 1 = 1. @@ -202,160 +96,6 @@ Proof. compute. apply Rinv_1. Qed. -Lemma IQR_plus : forall x y, IQR (x + y) = IQR x + IQR y. -Proof. - intros. - unfold IQR. - simpl in *. - rewrite plus_IZR in *. - rewrite mult_IZR in *. - simpl. - rewrite Pos2Nat.inj_mul. - rewrite mult_INR. - rewrite mult_IZR. - simpl. - repeat INR_nat_of_P. - intros. field. - split ; apply Rlt_neq ; auto. -Qed. - -Lemma IQR_opp : forall x, IQR (- x) = - IQR x. -Proof. - intros. - unfold IQR. - simpl. - rewrite opp_IZR. - ring. -Qed. - -Lemma IQR_minus : forall x y, IQR (x - y) = IQR x - IQR y. -Proof. - intros. - unfold Qminus. - rewrite IQR_plus. - rewrite IQR_opp. - ring. -Qed. - - -Lemma IQR_mult : forall x y, IQR (x * y) = IQR x * IQR y. -Proof. - unfold IQR ; intros. - simpl. - repeat rewrite mult_IZR. - rewrite Pos2Nat.inj_mul. - rewrite mult_INR. - repeat INR_nat_of_P. - intros. field ; split ; apply Rlt_neq ; auto. -Qed. - -Lemma IQR_inv_lt : forall x, (0 < x)%Q -> - IQR (/ x) = / IQR x. -Proof. - unfold IQR ; simpl. - intros. - unfold Qlt in H. - revert H. - simpl. - intros. - unfold Qinv. - destruct x. - destruct Qnum ; simpl in *. - exfalso. auto with zarith. - clear H. - repeat INR_nat_of_P. - intros. - assert (HH := Rlt_neq _ H). - assert (HH0 := Rlt_neq _ H0). - rewrite Rinv_mult_distr ; auto. - rewrite Rinv_involutive ; auto. - ring. - apply Rinv_0_lt_compat in H0. - apply Rlt_neq ; auto. - simpl in H. - exfalso. - rewrite Pos.mul_comm in H. - compute in H. - discriminate. -Qed. - -Lemma Qinv_opp : forall x, (- (/ x) = / ( -x))%Q. -Proof. - destruct x ; destruct Qnum ; reflexivity. -Qed. - -Lemma Qopp_involutive_strong : forall x, (- - x = x)%Q. -Proof. - intros. - destruct x. - unfold Qopp. - simpl. - rewrite Z.opp_involutive. - reflexivity. -Qed. - -Lemma Ropp_0 : forall r , - r = 0 -> r = 0. -Proof. - intros. - rewrite <- (Ropp_involutive r). - apply Ropp_eq_0_compat ; auto. -Qed. - -Lemma IQR_x_0 : forall x, IQR x = 0 -> x == 0%Q. -Proof. - destruct x ; simpl. - unfold IQR. - simpl. - INR_nat_of_P. - intros. - apply Rmult_integral in H0. - destruct H0. - apply eq_IZR_R0 in H0. - subst. - reflexivity. - exfalso. - apply Rinv_0_lt_compat in H. - rewrite <- H0 in H. - apply Rlt_irrefl in H. auto. -Qed. - - -Lemma IQR_inv_gt : forall x, (0 > x)%Q -> - IQR (/ x) = / IQR x. -Proof. - intros. - rewrite <- (Qopp_involutive_strong x). - rewrite <- Qinv_opp. - rewrite IQR_opp. - rewrite IQR_inv_lt. - repeat rewrite IQR_opp. - rewrite Ropp_inv_permute. - auto. - intro. - apply Ropp_0 in H0. - apply IQR_x_0 in H0. - rewrite H0 in H. - compute in H. discriminate. - unfold Qlt in *. - destruct x ; simpl in *. - auto with zarith. -Qed. - -Lemma IQR_inv : forall x, ~ x == 0 -> - IQR (/ x) = / IQR x. -Proof. - intros. - assert ( 0 > x \/ 0 < x)%Q. - destruct x ; unfold Qlt, Qeq in * ; simpl in *. - rewrite Z.mul_1_r in *. - destruct Qnum ; simpl in * ; intuition auto. - right. reflexivity. - left ; reflexivity. - destruct H0. - apply IQR_inv_gt ; auto. - apply IQR_inv_lt ; auto. -Qed. - Lemma IQR_inv_ext : forall x, IQR (/ x) = (if Qeq_bool x 0 then 0 else / IQR x). Proof. @@ -366,18 +106,13 @@ Proof. destruct x ; simpl. unfold Qeq in H. simpl in H. - replace Qnum with 0%Z. - compute. rewrite Rinv_1. - reflexivity. - rewrite <- H. ring. + rewrite Zmult_1_r in H. + rewrite H. + apply Rmult_0_l. intros. - apply IQR_inv. - intro. - rewrite <- Qeq_bool_iff in H0. - congruence. + now apply Q2R_inv, Qeq_bool_neq. Qed. - Notation to_nat := N.to_nat. Lemma QSORaddon : @@ -391,10 +126,10 @@ Proof. constructor ; intros ; try reflexivity. apply IQR_0. apply IQR_1. - apply IQR_plus. - apply IQR_minus. - apply IQR_mult. - apply IQR_opp. + apply Q2R_plus. + apply Q2R_minus. + apply Q2R_mult. + apply Q2R_opp. apply Qeq_true ; auto. apply R_power_theory. apply Qeq_false. @@ -453,13 +188,13 @@ Proof. apply IQR_1. reflexivity. unfold IQR. simpl. rewrite Rinv_1. reflexivity. - apply IQR_plus. - apply IQR_minus. - apply IQR_mult. + apply Q2R_plus. + apply Q2R_minus. + apply Q2R_mult. rewrite <- IHc. apply IQR_inv_ext. rewrite <- IHc. - apply IQR_opp. + apply Q2R_opp. Qed. Require Import EnvRing. -- cgit v1.2.3