From 97fefe1fcca363a1317e066e7f4b99b9c1e9987b Mon Sep 17 00:00:00 2001 From: Stephane Glondu Date: Thu, 12 Jan 2012 16:02:20 +0100 Subject: Imported Upstream version 8.4~beta --- parsing/printmod.mli | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'parsing/printmod.mli') diff --git a/parsing/printmod.mli b/parsing/printmod.mli index 77ff34f1..a45bdb98 100644 --- a/parsing/printmod.mli +++ b/parsing/printmod.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* bool val print_module : bool -> module_path -> std_ppcmds -- cgit v1.2.3 From e0d682ec25282a348d35c5b169abafec48555690 Mon Sep 17 00:00:00 2001 From: Stephane Glondu Date: Mon, 20 Aug 2012 18:27:01 +0200 Subject: Imported Upstream version 8.4dfsg --- .gitignore | 5 +- CHANGES | 166 +- COMPATIBILITY | 47 +- INSTALL | 2 +- INSTALL.macosx | 20 - Makefile | 36 +- Makefile.build | 33 +- Makefile.common | 23 +- TODO | 53 + checker/check.ml | 2 +- checker/check_stat.ml | 2 +- checker/check_stat.mli | 2 +- checker/checker.ml | 2 +- checker/closure.ml | 2 +- checker/closure.mli | 2 +- checker/indtypes.ml | 2 +- checker/indtypes.mli | 2 +- checker/inductive.ml | 2 +- checker/inductive.mli | 2 +- checker/mod_checking.mli | 2 +- checker/modops.ml | 2 +- checker/modops.mli | 2 +- checker/reduction.ml | 2 +- checker/reduction.mli | 2 +- checker/safe_typing.ml | 2 +- checker/safe_typing.mli | 2 +- checker/subtyping.ml | 2 +- checker/subtyping.mli | 2 +- checker/term.ml | 2 +- checker/type_errors.ml | 2 +- checker/type_errors.mli | 2 +- checker/typeops.ml | 2 +- checker/typeops.mli | 2 +- checker/validate.ml | 2 +- config/Makefile.template | 154 -- config/coq_config.mli | 2 +- configure | 478 ++--- dev/db_printers.ml | 2 +- dev/header | 2 +- dev/macosify_accel.sh | 3 + dev/top_printers.ml | 4 +- doc/refman/RefMan-sch.tex | 418 ----- doc/stdlib/index-list.html.template | 6 + ide/command_windows.ml | 2 +- ide/command_windows.mli | 2 +- ide/config_lexer.mll | 2 +- ide/coq.ml | 2 +- ide/coq.mli | 2 +- ide/coq_commands.ml | 2 +- ide/coq_lex.mll | 2 +- ide/coqide.ml | 13 +- ide/coqide.mli | 2 +- ide/coqide_main.ml4 | 2 +- ide/gtk_parsing.ml | 2 +- ide/ide_mac_stubs.c | 10 +- ide/ideproof.ml | 40 +- ide/ideutils.ml | 2 +- ide/ideutils.mli | 2 +- ide/mac_default_accel_map | 726 ++++---- ide/minilib.ml | 55 +- ide/preferences.ml | 4 +- ide/preferences.mli | 2 +- ide/project_file.ml4 | 2 +- ide/tags.ml | 2 +- ide/tags.mli | 2 +- ide/typed_notebook.ml | 2 +- ide/undo.ml | 2 +- ide/undo_lablgtk_ge212.mli | 2 +- ide/undo_lablgtk_ge26.mli | 2 +- ide/undo_lablgtk_lt26.mli | 2 +- ide/utf8_convert.mll | 2 +- interp/constrextern.ml | 58 +- interp/constrextern.mli | 4 +- interp/constrintern.ml | 31 +- interp/constrintern.mli | 2 +- interp/coqlib.ml | 2 +- interp/coqlib.mli | 2 +- interp/dumpglob.ml | 2 +- interp/dumpglob.mli | 2 +- interp/genarg.ml | 2 +- interp/genarg.mli | 2 +- interp/implicit_quantifiers.ml | 2 +- interp/implicit_quantifiers.mli | 2 +- interp/modintern.ml | 2 +- interp/modintern.mli | 2 +- interp/notation.ml | 35 +- interp/notation.mli | 2 +- interp/ppextend.ml | 2 +- interp/ppextend.mli | 2 +- interp/reserve.ml | 2 +- interp/reserve.mli | 2 +- interp/smartlocate.ml | 2 +- interp/smartlocate.mli | 2 +- interp/syntax_def.ml | 66 +- interp/syntax_def.mli | 12 +- interp/topconstr.ml | 2 +- interp/topconstr.mli | 2 +- kernel/cbytecodes.ml | 2 +- kernel/cbytecodes.mli | 4 +- kernel/cbytegen.ml | 2 +- kernel/cemitcodes.ml | 2 +- kernel/closure.ml | 2 +- kernel/closure.mli | 2 +- kernel/conv_oracle.ml | 2 +- kernel/conv_oracle.mli | 2 +- kernel/cooking.ml | 8 +- kernel/cooking.mli | 5 +- kernel/csymtable.ml | 2 +- kernel/csymtable.mli | 4 +- kernel/declarations.ml | 2 +- kernel/declarations.mli | 2 +- kernel/entries.ml | 2 +- kernel/entries.mli | 2 +- kernel/environ.ml | 2 +- kernel/environ.mli | 2 +- kernel/esubst.ml | 2 +- kernel/esubst.mli | 2 +- kernel/indtypes.ml | 2 +- kernel/indtypes.mli | 2 +- kernel/inductive.ml | 2 +- kernel/inductive.mli | 2 +- kernel/mod_subst.ml | 2 +- kernel/mod_subst.mli | 2 +- kernel/mod_typing.ml | 2 +- kernel/mod_typing.mli | 2 +- kernel/modops.ml | 2 +- kernel/modops.mli | 2 +- kernel/names.ml | 2 +- kernel/names.mli | 2 +- kernel/pre_env.ml | 2 +- kernel/pre_env.mli | 2 +- kernel/reduction.ml | 2 +- kernel/reduction.mli | 2 +- kernel/retroknowledge.ml | 2 +- kernel/retroknowledge.mli | 2 +- kernel/safe_typing.ml | 2 +- kernel/safe_typing.mli | 2 +- kernel/sign.ml | 2 +- kernel/sign.mli | 2 +- kernel/subtyping.ml | 2 +- kernel/subtyping.mli | 2 +- kernel/term.ml | 3 +- kernel/term.mli | 3 +- kernel/term_typing.ml | 5 +- kernel/term_typing.mli | 2 +- kernel/type_errors.ml | 2 +- kernel/type_errors.mli | 2 +- kernel/typeops.ml | 2 +- kernel/typeops.mli | 2 +- kernel/univ.ml | 2 +- kernel/univ.mli | 2 +- kernel/vconv.mli | 2 +- kernel/vm.ml | 2 +- lib/bigint.ml | 355 ++-- lib/bigint.mli | 11 +- lib/compat.ml4 | 2 +- lib/dnet.ml | 2 +- lib/dnet.mli | 2 +- lib/dyn.ml | 2 +- lib/dyn.mli | 2 +- lib/envars.ml | 10 +- lib/envars.mli | 2 +- lib/explore.ml | 2 +- lib/explore.mli | 2 +- lib/flags.ml | 17 +- lib/flags.mli | 7 +- lib/gmap.ml | 2 +- lib/gmap.mli | 2 +- lib/gmapl.ml | 2 +- lib/gmapl.mli | 2 +- lib/hashcons.ml | 2 +- lib/hashcons.mli | 2 +- lib/hashtbl_alt.ml | 2 +- lib/hashtbl_alt.mli | 2 +- lib/heap.ml | 2 +- lib/heap.mli | 2 +- lib/option.ml | 2 +- lib/option.mli | 2 +- lib/pp.ml4 | 13 +- lib/pp.mli | 6 +- lib/pp_control.ml | 2 +- lib/pp_control.mli | 2 +- lib/profile.ml | 2 +- lib/profile.mli | 2 +- lib/rtree.ml | 2 +- lib/rtree.mli | 2 +- lib/system.ml | 2 +- lib/system.mli | 2 +- lib/tries.ml | 2 +- lib/unionfind.ml | 2 +- lib/unionfind.mli | 2 +- lib/util.mli | 2 +- lib/xml_lexer.mll | 6 + library/assumptions.ml | 2 +- library/assumptions.mli | 2 +- library/decl_kinds.ml | 2 +- library/decl_kinds.mli | 2 +- library/declare.ml | 2 +- library/declare.mli | 2 +- library/declaremods.ml | 2 +- library/declaremods.mli | 2 +- library/decls.ml | 2 +- library/decls.mli | 2 +- library/dischargedhypsmap.ml | 2 +- library/dischargedhypsmap.mli | 2 +- library/global.ml | 2 +- library/global.mli | 2 +- library/goptions.ml | 2 +- library/goptions.mli | 2 +- library/goptionstyp.mli | 2 +- library/heads.ml | 2 +- library/heads.mli | 2 +- library/impargs.ml | 2 +- library/impargs.mli | 2 +- library/lib.ml | 2 +- library/lib.mli | 2 +- library/libnames.ml | 2 +- library/libnames.mli | 2 +- library/libobject.ml | 2 +- library/libobject.mli | 2 +- library/library.ml | 2 +- library/library.mli | 2 +- library/nameops.ml | 2 +- library/nameops.mli | 2 +- library/nametab.ml | 2 +- library/nametab.mli | 2 +- library/states.ml | 2 +- library/states.mli | 2 +- library/summary.ml | 2 +- library/summary.mli | 2 +- parsing/argextend.ml4 | 2 +- parsing/egrammar.ml | 2 +- parsing/egrammar.mli | 2 +- parsing/extend.ml | 2 +- parsing/extend.mli | 2 +- parsing/extrawit.ml | 2 +- parsing/extrawit.mli | 2 +- parsing/g_constr.ml4 | 2 +- parsing/g_ltac.ml4 | 3 +- parsing/g_prim.ml4 | 2 +- parsing/g_proofs.ml4 | 2 +- parsing/g_tactic.ml4 | 58 +- parsing/g_vernac.ml4 | 19 +- parsing/g_xml.ml4 | 2 +- parsing/lexer.ml4 | 2 +- parsing/lexer.mli | 2 +- parsing/pcoq.ml4 | 2 +- parsing/pcoq.mli | 2 +- parsing/ppconstr.ml | 30 +- parsing/ppconstr.mli | 9 +- parsing/pptactic.ml | 31 +- parsing/pptactic.mli | 2 +- parsing/ppvernac.ml | 22 +- parsing/ppvernac.mli | 4 +- parsing/prettyp.ml | 14 +- parsing/prettyp.mli | 2 +- parsing/printer.ml | 119 +- parsing/printer.mli | 6 +- parsing/printmod.ml | 6 +- parsing/printmod.mli | 2 +- parsing/q_constr.ml4 | 2 +- parsing/q_coqast.ml4 | 24 +- parsing/q_util.ml4 | 2 +- parsing/q_util.mli | 2 +- parsing/tacextend.ml4 | 8 +- parsing/tactic_printer.ml | 2 +- parsing/tactic_printer.mli | 2 +- parsing/tok.ml | 2 +- parsing/tok.mli | 2 +- parsing/vernacextend.ml4 | 13 +- plugins/cc/ccalgo.ml | 2 +- plugins/cc/ccalgo.mli | 2 +- plugins/cc/ccproof.ml | 2 +- plugins/cc/ccproof.mli | 2 +- plugins/cc/cctac.ml | 8 +- plugins/cc/cctac.mli | 2 +- plugins/cc/g_congruence.ml4 | 2 +- plugins/decl_mode/decl_expr.mli | 2 +- plugins/decl_mode/decl_interp.ml | 2 +- plugins/decl_mode/decl_interp.mli | 2 +- plugins/decl_mode/decl_mode.ml | 2 +- plugins/decl_mode/decl_mode.mli | 2 +- plugins/decl_mode/decl_proof_instr.ml | 2 +- plugins/decl_mode/decl_proof_instr.mli | 2 +- plugins/decl_mode/g_decl_mode.ml4 | 2 +- plugins/decl_mode/ppdecl_proof.ml | 2 +- plugins/extraction/ExtrOcamlBasic.v | 2 +- plugins/extraction/ExtrOcamlBigIntConv.v | 2 +- plugins/extraction/ExtrOcamlIntConv.v | 2 +- plugins/extraction/ExtrOcamlNatBigInt.v | 2 +- plugins/extraction/ExtrOcamlNatInt.v | 2 +- plugins/extraction/ExtrOcamlString.v | 2 +- plugins/extraction/ExtrOcamlZBigInt.v | 8 +- plugins/extraction/ExtrOcamlZInt.v | 4 +- plugins/extraction/big.ml | 2 +- plugins/extraction/common.ml | 4 +- plugins/extraction/common.mli | 2 +- plugins/extraction/extract_env.ml | 6 +- plugins/extraction/extract_env.mli | 2 +- plugins/extraction/extraction.ml | 2 +- plugins/extraction/extraction.mli | 2 +- plugins/extraction/g_extraction.ml4 | 2 +- plugins/extraction/haskell.ml | 2 +- plugins/extraction/haskell.mli | 2 +- plugins/extraction/miniml.mli | 2 +- plugins/extraction/mlutil.ml | 2 +- plugins/extraction/mlutil.mli | 2 +- plugins/extraction/modutil.ml | 2 +- plugins/extraction/modutil.mli | 2 +- plugins/extraction/ocaml.ml | 2 +- plugins/extraction/ocaml.mli | 2 +- plugins/extraction/scheme.ml | 2 +- plugins/extraction/scheme.mli | 2 +- plugins/extraction/table.ml | 3 +- plugins/extraction/table.mli | 2 +- plugins/field/LegacyField.v | 2 +- plugins/field/LegacyField_Compl.v | 2 +- plugins/field/LegacyField_Tactic.v | 22 +- plugins/field/LegacyField_Theory.v | 182 +- plugins/field/field.ml4 | 2 +- plugins/firstorder/formula.ml | 2 +- plugins/firstorder/formula.mli | 2 +- plugins/firstorder/g_ground.ml4 | 2 +- plugins/firstorder/ground.ml | 2 +- plugins/firstorder/ground.mli | 2 +- plugins/firstorder/instances.ml | 2 +- plugins/firstorder/instances.mli | 2 +- plugins/firstorder/rules.ml | 2 +- plugins/firstorder/rules.mli | 2 +- plugins/firstorder/sequent.ml | 2 +- plugins/firstorder/sequent.mli | 2 +- plugins/firstorder/unify.ml | 2 +- plugins/firstorder/unify.mli | 2 +- plugins/fourier/Fourier.v | 2 +- plugins/fourier/Fourier_util.v | 34 +- plugins/fourier/fourier.ml | 2 +- plugins/fourier/fourierR.ml | 2 +- plugins/fourier/g_fourier.ml4 | 2 +- plugins/funind/Recdef.v | 2 +- plugins/funind/functional_principles_types.ml | 6 - plugins/funind/g_indfun.ml4 | 2 +- plugins/funind/invfun.ml | 2 +- plugins/funind/merge.ml | 2 +- plugins/funind/recdef.ml | 2 +- plugins/micromega/CheckerMaker.v | 2 +- plugins/micromega/Env.v | 153 +- plugins/micromega/EnvRing.v | 1257 +++++-------- plugins/micromega/MExtraction.v | 4 +- plugins/micromega/OrderedRing.v | 2 +- plugins/micromega/Psatz.v | 8 +- plugins/micromega/QMicromega.v | 10 +- plugins/micromega/RMicromega.v | 30 +- plugins/micromega/Refl.v | 2 +- plugins/micromega/RingMicromega.v | 50 +- plugins/micromega/Tauto.v | 2 +- plugins/micromega/VarMap.v | 2 +- plugins/micromega/ZCoeff.v | 16 +- plugins/micromega/ZMicromega.v | 216 ++- plugins/micromega/certificate.ml | 2 +- plugins/micromega/coq_micromega.ml | 23 +- plugins/micromega/csdpcert.ml | 2 +- plugins/micromega/g_micromega.ml4 | 2 +- plugins/micromega/mutils.ml | 2 +- plugins/micromega/persistent_cache.ml | 32 +- plugins/micromega/polynomial.ml | 2 +- plugins/micromega/sos.mli | 2 +- plugins/micromega/sos_types.ml | 2 +- plugins/nsatz/Nsatz.v | 40 +- plugins/nsatz/ideal.ml | 2 +- plugins/nsatz/nsatz.ml4 | 2 +- plugins/nsatz/polynom.ml | 2 +- plugins/nsatz/polynom.mli | 2 +- plugins/omega/Omega.v | 8 +- plugins/omega/OmegaLemmas.v | 266 ++- plugins/omega/OmegaPlugin.v | 2 +- plugins/omega/PreOmega.v | 353 ++-- plugins/omega/coq_omega.ml | 59 +- plugins/omega/g_omega.ml4 | 2 +- plugins/omega/omega.ml | 2 +- plugins/quote/Quote.v | 4 +- plugins/quote/g_quote.ml4 | 2 +- plugins/quote/quote.ml | 2 +- plugins/ring/LegacyArithRing.v | 8 +- plugins/ring/LegacyNArithRing.v | 25 +- plugins/ring/LegacyRing.v | 6 +- plugins/ring/LegacyRing_theory.v | 42 +- plugins/ring/LegacyZArithRing.v | 8 +- plugins/ring/Ring_abstract.v | 90 +- plugins/ring/Ring_normalize.v | 142 +- plugins/ring/Setoid_ring.v | 2 +- plugins/ring/Setoid_ring_normalize.v | 122 +- plugins/ring/Setoid_ring_theory.v | 4 +- plugins/ring/g_ring.ml4 | 2 +- plugins/ring/ring.ml | 8 +- plugins/romega/ReflOmegaCore.v | 505 +++-- plugins/rtauto/Bintree.v | 16 +- plugins/rtauto/Rtauto.v | 2 +- plugins/rtauto/g_rtauto.ml4 | 2 +- plugins/rtauto/proof_search.ml | 2 +- plugins/rtauto/proof_search.mli | 2 +- plugins/rtauto/refl_tauto.ml | 4 +- plugins/rtauto/refl_tauto.mli | 2 +- plugins/setoid_ring/ArithRing.v | 10 +- plugins/setoid_ring/BinList.v | 77 +- plugins/setoid_ring/Cring.v | 27 +- plugins/setoid_ring/Field.v | 2 +- plugins/setoid_ring/Field_tac.v | 6 +- plugins/setoid_ring/Field_theory.v | 415 ++--- plugins/setoid_ring/InitialRing.v | 108 +- plugins/setoid_ring/Integral_domain.v | 5 +- plugins/setoid_ring/NArithRing.v | 2 +- plugins/setoid_ring/Ncring.v | 35 +- plugins/setoid_ring/Ncring_initial.v | 56 +- plugins/setoid_ring/Ncring_polynom.v | 111 +- plugins/setoid_ring/Ncring_tac.v | 10 +- plugins/setoid_ring/RealField.v | 64 +- plugins/setoid_ring/Ring.v | 4 +- plugins/setoid_ring/Ring_base.v | 2 +- plugins/setoid_ring/Ring_polynom.v | 1310 +++++-------- plugins/setoid_ring/Ring_tac.v | 7 +- plugins/setoid_ring/Ring_theory.v | 293 ++- plugins/setoid_ring/Rings_Z.v | 2 +- plugins/setoid_ring/ZArithRing.v | 6 +- plugins/setoid_ring/newring.ml4 | 2 +- plugins/subtac/eterm.mli | 2 +- plugins/subtac/g_subtac.ml4 | 2 +- plugins/subtac/subtac.ml | 2 +- plugins/subtac/subtac_cases.ml | 2 +- plugins/subtac/subtac_cases.mli | 2 +- plugins/subtac/subtac_classes.ml | 2 +- plugins/subtac/subtac_classes.mli | 2 +- plugins/subtac/subtac_coercion.ml | 2 +- plugins/subtac/subtac_command.ml | 9 +- plugins/subtac/subtac_pretyping.ml | 2 +- plugins/subtac/subtac_pretyping_F.ml | 2 +- plugins/syntax/nat_syntax.ml | 6 +- plugins/syntax/numbers_syntax.ml | 96 +- plugins/syntax/r_syntax.ml | 2 +- plugins/syntax/z_syntax.ml | 2 +- plugins/xml/dumptree.ml4 | 2 +- pretyping/arguments_renaming.ml | 2 +- pretyping/arguments_renaming.mli | 2 +- pretyping/cases.ml | 2 +- pretyping/cases.mli | 2 +- pretyping/cbv.ml | 2 +- pretyping/cbv.mli | 2 +- pretyping/classops.ml | 2 +- pretyping/classops.mli | 2 +- pretyping/coercion.ml | 2 +- pretyping/coercion.mli | 2 +- pretyping/detyping.ml | 2 +- pretyping/detyping.mli | 2 +- pretyping/evarconv.ml | 36 +- pretyping/evarconv.mli | 2 +- pretyping/evarutil.ml | 85 +- pretyping/evarutil.mli | 24 +- pretyping/evd.ml | 2 +- pretyping/evd.mli | 2 +- pretyping/glob_term.ml | 2 +- pretyping/glob_term.mli | 2 +- pretyping/indrec.ml | 2 +- pretyping/indrec.mli | 2 +- pretyping/inductiveops.ml | 2 +- pretyping/inductiveops.mli | 2 +- pretyping/matching.ml | 2 +- pretyping/matching.mli | 2 +- pretyping/namegen.ml | 2 +- pretyping/namegen.mli | 2 +- pretyping/pattern.ml | 2 +- pretyping/pattern.mli | 2 +- pretyping/pretype_errors.ml | 2 +- pretyping/pretype_errors.mli | 2 +- pretyping/pretyping.ml | 16 +- pretyping/pretyping.mli | 2 +- pretyping/recordops.ml | 2 +- pretyping/recordops.mli | 2 +- pretyping/reductionops.ml | 2 +- pretyping/reductionops.mli | 2 +- pretyping/retyping.ml | 2 +- pretyping/retyping.mli | 2 +- pretyping/tacred.ml | 2 +- pretyping/tacred.mli | 2 +- pretyping/term_dnet.ml | 2 +- pretyping/term_dnet.mli | 2 +- pretyping/termops.ml | 2 +- pretyping/termops.mli | 2 +- pretyping/typeclasses.ml | 2 +- pretyping/typeclasses.mli | 2 +- pretyping/typeclasses_errors.ml | 2 +- pretyping/typeclasses_errors.mli | 2 +- pretyping/typing.ml | 2 +- pretyping/typing.mli | 2 +- pretyping/unification.ml | 26 +- pretyping/unification.mli | 2 +- pretyping/vnorm.ml | 2 +- pretyping/vnorm.mli | 2 +- proofs/clenv.ml | 2 +- proofs/clenv.mli | 2 +- proofs/clenvtac.ml | 6 +- proofs/clenvtac.mli | 2 +- proofs/evar_refiner.ml | 2 +- proofs/evar_refiner.mli | 2 +- proofs/goal.ml | 2 +- proofs/goal.mli | 2 +- proofs/logic.ml | 2 +- proofs/logic.mli | 2 +- proofs/pfedit.ml | 5 +- proofs/pfedit.mli | 2 +- proofs/proof.ml | 18 +- proofs/proof.mli | 11 +- proofs/proof_global.ml | 2 +- proofs/proof_global.mli | 2 +- proofs/proof_type.ml | 2 +- proofs/proof_type.mli | 2 +- proofs/proofview.ml | 7 +- proofs/proofview.mli | 20 +- proofs/redexpr.ml | 2 +- proofs/redexpr.mli | 2 +- proofs/refiner.ml | 2 +- proofs/refiner.mli | 2 +- proofs/tacexpr.ml | 14 +- proofs/tacmach.ml | 2 +- proofs/tacmach.mli | 2 +- proofs/tactic_debug.ml | 2 +- proofs/tactic_debug.mli | 2 +- scripts/coqc.ml | 2 +- scripts/coqmktop.ml | 41 +- states/MakeInitial.v | 2 +- tactics/auto.ml | 26 +- tactics/auto.mli | 2 +- tactics/autorewrite.ml | 2 +- tactics/autorewrite.mli | 2 +- tactics/btermdn.ml | 2 +- tactics/btermdn.mli | 2 +- tactics/class_tactics.ml4 | 2 +- tactics/contradiction.ml | 2 +- tactics/contradiction.mli | 2 +- tactics/eauto.ml4 | 2 +- tactics/eauto.mli | 2 +- tactics/elim.ml | 2 +- tactics/elim.mli | 2 +- tactics/elimschemes.ml | 2 +- tactics/elimschemes.mli | 2 +- tactics/eqdecide.ml4 | 2 +- tactics/eqschemes.ml | 2 +- tactics/eqschemes.mli | 2 +- tactics/equality.ml | 2 +- tactics/equality.mli | 2 +- tactics/evar_tactics.ml | 2 +- tactics/evar_tactics.mli | 2 +- tactics/extraargs.ml4 | 2 +- tactics/extraargs.mli | 2 +- tactics/extratactics.ml4 | 8 +- tactics/extratactics.mli | 2 +- tactics/hiddentac.ml | 25 +- tactics/hiddentac.mli | 21 +- tactics/hipattern.ml4 | 2 +- tactics/hipattern.mli | 2 +- tactics/inv.ml | 2 +- tactics/inv.mli | 2 +- tactics/leminv.ml | 2 +- tactics/nbtermdn.ml | 2 +- tactics/nbtermdn.mli | 2 +- tactics/refine.ml | 2 +- tactics/refine.mli | 2 +- tactics/rewrite.ml4 | 247 ++- tactics/tacinterp.ml | 65 +- tactics/tacinterp.mli | 3 +- tactics/tactic_option.ml | 2 +- tactics/tactic_option.mli | 2 +- tactics/tacticals.ml | 2 +- tactics/tacticals.mli | 2 +- tactics/tactics.ml | 21 +- tactics/tactics.mli | 6 +- tactics/tauto.ml4 | 2 +- tactics/termdn.ml | 2 +- tactics/termdn.mli | 2 +- test-suite/bench/lists-100.v | 2 +- test-suite/bench/lists_100.v | 2 +- test-suite/bugs/closed/shouldsucceed/1414.v | 4 +- test-suite/bugs/closed/shouldsucceed/1784.v | 2 +- test-suite/bugs/closed/shouldsucceed/1844.v | 2 +- test-suite/bugs/closed/shouldsucceed/1935.v | 2 +- test-suite/bugs/closed/shouldsucceed/2127.v | 4 +- test-suite/bugs/closed/shouldsucceed/2817.v | 9 + test-suite/bugs/closed/shouldsucceed/2836.v | 39 + test-suite/complexity/ring2.v | 7 +- test-suite/failure/Tauto.v | 2 +- test-suite/failure/Uminus.v | 4 +- test-suite/failure/clash_cons.v | 2 +- test-suite/failure/fixpoint1.v | 2 +- test-suite/failure/guard.v | 2 +- test-suite/failure/illtype1.v | 2 +- test-suite/failure/pattern.v | 2 +- test-suite/failure/positivity.v | 2 +- test-suite/failure/redef.v | 2 +- test-suite/failure/search.v | 2 +- test-suite/failure/subtyping2.v | 20 +- test-suite/failure/universes-buraliforti-redef.v | 20 +- test-suite/failure/universes-buraliforti.v | 20 +- test-suite/ideal-features/Apply.v | 2 +- test-suite/ideal-features/eapply_evar.v | 2 +- test-suite/micromega/example.v | 10 +- test-suite/micromega/square.v | 18 +- test-suite/misc/berardi_test.v | 14 +- test-suite/modules/PO.v | 4 +- test-suite/modules/Przyklad.v | 14 +- test-suite/output/Notations.out | 5 + test-suite/output/Notations.v | 9 + test-suite/output/ZSyntax.out | 14 +- test-suite/success/Check.v | 2 +- test-suite/success/Field.v | 2 +- test-suite/success/Funind.v | 22 +- test-suite/success/Hints.v | 26 +- test-suite/success/LegacyField.v | 2 +- test-suite/success/MatchFail.v | 4 +- test-suite/success/Mod_type.v | 12 + test-suite/success/Notations.v | 5 + test-suite/success/OmegaPre.v | 16 +- test-suite/success/ProgramWf.v | 6 +- test-suite/success/ROmegaPre.v | 16 +- test-suite/success/RecTutorial.v | 10 +- test-suite/success/Reg.v | 8 +- test-suite/success/Scopes.v | 2 +- test-suite/success/Tauto.v | 2 +- test-suite/success/TestRefine.v | 2 +- test-suite/success/Try.v | 2 +- test-suite/success/apply.v | 6 +- test-suite/success/change.v | 6 +- test-suite/success/decl_mode.v | 10 +- test-suite/success/dependentind.v | 2 +- test-suite/success/eauto.v | 2 +- test-suite/success/eqdecide.v | 2 +- test-suite/success/extraction.v | 2 +- test-suite/success/fix.v | 8 +- test-suite/success/inds_type_sec.v | 2 +- test-suite/success/induct.v | 2 +- test-suite/success/ltac.v | 8 +- test-suite/success/mutual_ind.v | 2 +- test-suite/success/proof_using.v | 6 + test-suite/success/remember.v | 2 +- test-suite/success/searchabout.v | 2 +- test-suite/success/setoid_test.v | 20 +- test-suite/success/specialize.v | 28 +- test-suite/success/unfold.v | 2 +- test-suite/success/unicode_utf8.v | 2 +- test-suite/success/univers.v | 4 +- test-suite/typeclasses/NewSetoid.v | 2 +- theories/Arith/Arith.v | 2 +- theories/Arith/Arith_base.v | 2 +- theories/Arith/Between.v | 8 +- theories/Arith/Bool_nat.v | 4 +- theories/Arith/Compare.v | 8 +- theories/Arith/Compare_dec.v | 10 +- theories/Arith/Div2.v | 18 +- theories/Arith/EqNat.v | 18 +- theories/Arith/Euclid.v | 20 +- theories/Arith/Even.v | 6 +- theories/Arith/Factorial.v | 8 +- theories/Arith/Gt.v | 16 +- theories/Arith/Le.v | 8 +- theories/Arith/Lt.v | 12 +- theories/Arith/Max.v | 2 +- theories/Arith/Min.v | 4 +- theories/Arith/Minus.v | 32 +- theories/Arith/Mult.v | 24 +- theories/Arith/Peano_dec.v | 6 +- theories/Arith/Plus.v | 32 +- theories/Arith/Wf_nat.v | 22 +- theories/Bool/Bool.v | 8 +- theories/Bool/BoolEq.v | 6 +- theories/Bool/Bvector.v | 4 +- theories/Bool/DecBool.v | 2 +- theories/Bool/IfProp.v | 2 +- theories/Bool/Sumbool.v | 2 +- theories/Bool/Zerob.v | 4 +- theories/Classes/EquivDec.v | 4 +- theories/Classes/Equivalence.v | 6 +- theories/Classes/Init.v | 2 +- theories/Classes/Morphisms.v | 4 +- theories/Classes/Morphisms_Prop.v | 2 +- theories/Classes/Morphisms_Relations.v | 2 +- theories/Classes/RelationClasses.v | 4 +- theories/Classes/SetoidClass.v | 2 +- theories/Classes/SetoidDec.v | 4 +- theories/Classes/SetoidTactics.v | 4 +- theories/FSets/FMapAVL.v | 20 +- theories/FSets/FMapFullAVL.v | 4 +- theories/FSets/FMapPositive.v | 2 +- theories/FSets/FSetBridge.v | 148 +- theories/FSets/FSetEqProperties.v | 8 +- theories/FSets/FSetFacts.v | 6 +- theories/FSets/FSetProperties.v | 2 +- theories/Init/Datatypes.v | 24 +- theories/Init/Logic.v | 24 +- theories/Init/Logic_Type.v | 12 +- theories/Init/Notations.v | 2 +- theories/Init/Peano.v | 26 +- theories/Init/Prelude.v | 2 +- theories/Init/Specif.v | 28 +- theories/Init/Tactics.v | 12 +- theories/Init/Wf.v | 4 +- theories/Lists/List.v | 48 +- theories/Lists/ListSet.v | 78 +- theories/Lists/ListTactics.v | 4 +- theories/Lists/SetoidList.v | 90 +- theories/Lists/SetoidPermutation.v | 125 ++ theories/Lists/StreamMemo.v | 29 +- theories/Lists/Streams.v | 14 +- theories/Lists/vo.itarget | 1 + theories/Logic/Berardi.v | 14 +- theories/Logic/ChoiceFacts.v | 6 +- theories/Logic/Classical.v | 2 +- theories/Logic/ClassicalChoice.v | 2 +- theories/Logic/ClassicalDescription.v | 4 +- theories/Logic/ClassicalEpsilon.v | 2 +- theories/Logic/ClassicalFacts.v | 38 +- theories/Logic/ClassicalUniqueChoice.v | 2 +- theories/Logic/Classical_Pred_Set.v | 2 +- theories/Logic/Classical_Pred_Type.v | 10 +- theories/Logic/Classical_Prop.v | 10 +- theories/Logic/Classical_Type.v | 2 +- theories/Logic/ConstructiveEpsilon.v | 6 +- theories/Logic/Decidable.v | 2 +- theories/Logic/Description.v | 2 +- theories/Logic/Diaconescu.v | 16 +- theories/Logic/Epsilon.v | 2 +- theories/Logic/Eqdep.v | 2 +- theories/Logic/EqdepFacts.v | 14 +- theories/Logic/Eqdep_dec.v | 32 +- theories/Logic/ExtensionalityFacts.v | 2 +- theories/Logic/FunctionalExtensionality.v | 2 +- theories/Logic/Hurkens.v | 6 +- theories/Logic/IndefiniteDescription.v | 2 +- theories/Logic/JMeq.v | 2 +- theories/Logic/ProofIrrelevance.v | 2 +- theories/Logic/ProofIrrelevanceFacts.v | 4 +- theories/Logic/RelationalChoice.v | 2 +- theories/Logic/SetIsType.v | 2 +- theories/MSets/MSetEqProperties.v | 8 +- theories/MSets/MSetInterface.v | 2 +- theories/MSets/MSetList.v | 6 +- theories/MSets/MSetPositive.v | 4 +- theories/MSets/MSetProperties.v | 2 +- theories/MSets/MSetRBT.v | 104 +- theories/MSets/MSetWeakList.v | 6 +- theories/NArith/BinNat.v | 220 +-- theories/NArith/BinNatDef.v | 94 +- theories/NArith/NArith.v | 2 +- theories/NArith/Ndec.v | 443 ++--- theories/NArith/Ndigits.v | 207 +-- theories/NArith/Ndist.v | 104 +- theories/NArith/Ndiv_def.v | 14 +- theories/NArith/Ngcd_def.v | 2 +- theories/NArith/Nnat.v | 56 +- theories/NArith/Nsqrt_def.v | 12 +- theories/Numbers/BigNumPrelude.v | 163 +- theories/Numbers/BinNums.v | 2 +- theories/Numbers/Cyclic/Abstract/CyclicAxioms.v | 46 +- theories/Numbers/Cyclic/Abstract/NZCyclic.v | 14 +- theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v | 50 +- theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v | 115 +- .../Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v | 30 +- theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v | 272 +-- theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v | 80 +- theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v | 186 +- theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v | 88 +- theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v | 393 ++-- theories/Numbers/Cyclic/DoubleCyclic/DoubleSub.v | 26 +- theories/Numbers/Cyclic/DoubleCyclic/DoubleType.v | 4 +- theories/Numbers/Cyclic/Int31/Cyclic31.v | 609 +++--- theories/Numbers/Cyclic/Int31/Int31.v | 18 +- theories/Numbers/Cyclic/Int31/Ring31.v | 4 +- theories/Numbers/Cyclic/ZModulo/ZModulo.v | 191 +- theories/Numbers/Integer/Abstract/ZAdd.v | 2 +- theories/Numbers/Integer/Abstract/ZAddOrder.v | 2 +- theories/Numbers/Integer/Abstract/ZAxioms.v | 2 +- theories/Numbers/Integer/Abstract/ZBase.v | 2 +- theories/Numbers/Integer/Abstract/ZBits.v | 4 +- theories/Numbers/Integer/Abstract/ZDivEucl.v | 2 +- theories/Numbers/Integer/Abstract/ZDivFloor.v | 4 +- theories/Numbers/Integer/Abstract/ZDivTrunc.v | 2 +- theories/Numbers/Integer/Abstract/ZGcd.v | 2 +- theories/Numbers/Integer/Abstract/ZLcm.v | 2 +- theories/Numbers/Integer/Abstract/ZLt.v | 2 +- theories/Numbers/Integer/Abstract/ZMaxMin.v | 2 +- theories/Numbers/Integer/Abstract/ZMul.v | 2 +- theories/Numbers/Integer/Abstract/ZMulOrder.v | 2 +- theories/Numbers/Integer/Abstract/ZParity.v | 2 +- theories/Numbers/Integer/Abstract/ZPow.v | 13 +- theories/Numbers/Integer/Abstract/ZProperties.v | 2 +- theories/Numbers/Integer/Abstract/ZSgnAbs.v | 2 +- theories/Numbers/Integer/BigZ/BigZ.v | 10 +- theories/Numbers/Integer/BigZ/ZMake.v | 454 ++--- theories/Numbers/Integer/Binary/ZBinary.v | 4 +- theories/Numbers/Integer/NatPairs/ZNatPairs.v | 4 +- theories/Numbers/Integer/SpecViaZ/ZSig.v | 2 +- theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v | 6 +- theories/Numbers/NaryFunctions.v | 2 +- theories/Numbers/NatInt/NZAdd.v | 2 +- theories/Numbers/NatInt/NZAddOrder.v | 2 +- theories/Numbers/NatInt/NZAxioms.v | 4 +- theories/Numbers/NatInt/NZBase.v | 2 +- theories/Numbers/NatInt/NZBits.v | 2 +- theories/Numbers/NatInt/NZDiv.v | 2 +- theories/Numbers/NatInt/NZDomain.v | 2 +- theories/Numbers/NatInt/NZGcd.v | 2 +- theories/Numbers/NatInt/NZLog.v | 2 +- theories/Numbers/NatInt/NZMul.v | 2 +- theories/Numbers/NatInt/NZMulOrder.v | 6 +- theories/Numbers/NatInt/NZOrder.v | 2 +- theories/Numbers/NatInt/NZParity.v | 2 +- theories/Numbers/NatInt/NZPow.v | 2 +- theories/Numbers/NatInt/NZProperties.v | 2 +- theories/Numbers/NatInt/NZSqrt.v | 2 +- theories/Numbers/Natural/Abstract/NAdd.v | 2 +- theories/Numbers/Natural/Abstract/NAddOrder.v | 2 +- theories/Numbers/Natural/Abstract/NAxioms.v | 2 +- theories/Numbers/Natural/Abstract/NBase.v | 2 +- theories/Numbers/Natural/Abstract/NBits.v | 4 +- theories/Numbers/Natural/Abstract/NDefOps.v | 4 +- theories/Numbers/Natural/Abstract/NDiv.v | 2 +- theories/Numbers/Natural/Abstract/NGcd.v | 2 +- theories/Numbers/Natural/Abstract/NIso.v | 2 +- theories/Numbers/Natural/Abstract/NLcm.v | 2 +- theories/Numbers/Natural/Abstract/NLog.v | 2 +- theories/Numbers/Natural/Abstract/NMaxMin.v | 2 +- theories/Numbers/Natural/Abstract/NMulOrder.v | 2 +- theories/Numbers/Natural/Abstract/NOrder.v | 2 +- theories/Numbers/Natural/Abstract/NParity.v | 2 +- theories/Numbers/Natural/Abstract/NPow.v | 2 +- theories/Numbers/Natural/Abstract/NProperties.v | 2 +- theories/Numbers/Natural/Abstract/NSqrt.v | 2 +- theories/Numbers/Natural/Abstract/NStrongRec.v | 2 +- theories/Numbers/Natural/Abstract/NSub.v | 2 +- theories/Numbers/Natural/BigN/BigN.v | 4 +- theories/Numbers/Natural/BigN/NMake.v | 364 ++-- theories/Numbers/Natural/BigN/NMake_gen.ml | 2 +- theories/Numbers/Natural/BigN/Nbasic.v | 120 +- theories/Numbers/Natural/Binary/NBinary.v | 6 +- theories/Numbers/Natural/Peano/NPeano.v | 2 +- theories/Numbers/Natural/SpecViaZ/NSig.v | 2 +- theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v | 10 +- theories/Numbers/NumPrelude.v | 2 +- theories/Numbers/Rational/BigQ/BigQ.v | 10 +- theories/Numbers/Rational/BigQ/QMake.v | 485 +++-- theories/Numbers/Rational/SpecViaQ/QSig.v | 2 +- theories/PArith/BinPos.v | 364 ++-- theories/PArith/BinPosDef.v | 5 +- theories/PArith/PArith.v | 2 +- theories/PArith/POrderedType.v | 2 +- theories/PArith/Pnat.v | 81 +- theories/Program/Basics.v | 4 +- theories/Program/Combinators.v | 2 +- theories/Program/Equality.v | 12 +- theories/Program/Program.v | 2 +- theories/Program/Subset.v | 6 +- theories/Program/Syntax.v | 2 +- theories/Program/Tactics.v | 4 +- theories/Program/Utils.v | 2 +- theories/Program/Wf.v | 6 +- theories/QArith/QArith.v | 2 +- theories/QArith/QArith_base.v | 255 ++- theories/QArith/QOrderedType.v | 2 +- theories/QArith/Qabs.v | 26 +- theories/QArith/Qcanon.v | 22 +- theories/QArith/Qfield.v | 6 +- theories/QArith/Qminmax.v | 2 +- theories/QArith/Qpower.v | 88 +- theories/QArith/Qreals.v | 62 +- theories/QArith/Qreduction.v | 166 +- theories/QArith/Qring.v | 2 +- theories/QArith/Qround.v | 26 +- theories/Reals/Alembert.v | 254 +-- theories/Reals/AltSeries.v | 122 +- theories/Reals/ArithProp.v | 50 +- theories/Reals/Binomial.v | 68 +- theories/Reals/Cauchy_prod.v | 28 +- theories/Reals/Cos_plus.v | 194 +- theories/Reals/Cos_rel.v | 92 +- theories/Reals/DiscrR.v | 10 +- theories/Reals/Exp_prop.v | 230 ++- theories/Reals/Integration.v | 2 +- theories/Reals/LegacyRfield.v | 6 +- theories/Reals/MVT.v | 102 +- theories/Reals/Machin.v | 168 ++ theories/Reals/NewtonInt.v | 158 +- theories/Reals/PSeries_reg.v | 62 +- theories/Reals/PartSum.v | 142 +- theories/Reals/RIneq.v | 266 +-- theories/Reals/RList.v | 232 +-- theories/Reals/ROrderedType.v | 2 +- theories/Reals/R_Ifp.v | 80 +- theories/Reals/R_sqr.v | 36 +- theories/Reals/R_sqrt.v | 56 +- theories/Reals/Ranalysis.v | 775 +------- theories/Reals/Ranalysis1.v | 362 ++-- theories/Reals/Ranalysis2.v | 92 +- theories/Reals/Ranalysis3.v | 162 +- theories/Reals/Ranalysis4.v | 106 +- theories/Reals/Ranalysis5.v | 1348 ++++++++++++++ theories/Reals/Ranalysis_reg.v | 800 ++++++++ theories/Reals/Ratan.v | 1602 ++++++++++++++++ theories/Reals/Raxioms.v | 8 +- theories/Reals/Rbase.v | 2 +- theories/Reals/Rbasic_fun.v | 102 +- theories/Reals/Rcomplete.v | 50 +- theories/Reals/Rdefinitions.v | 4 +- theories/Reals/Rderiv.v | 114 +- theories/Reals/Reals.v | 2 +- theories/Reals/Rfunctions.v | 119 +- theories/Reals/Rgeom.v | 32 +- theories/Reals/RiemannInt.v | 898 ++++----- theories/Reals/RiemannInt_SF.v | 954 +++++----- theories/Reals/Rlimit.v | 106 +- theories/Reals/Rlogic.v | 10 +- theories/Reals/Rminmax.v | 2 +- theories/Reals/Rpow_def.v | 2 +- theories/Reals/Rpower.v | 168 +- theories/Reals/Rprod.v | 20 +- theories/Reals/Rseries.v | 44 +- theories/Reals/Rsigma.v | 34 +- theories/Reals/Rsqrt_def.v | 216 +-- theories/Reals/Rtopology.v | 694 +++---- theories/Reals/Rtrigo.v | 1796 +----------------- theories/Reals/Rtrigo1.v | 1933 ++++++++++++++++++++ theories/Reals/Rtrigo_alt.v | 163 +- theories/Reals/Rtrigo_calc.v | 112 +- theories/Reals/Rtrigo_def.v | 108 +- theories/Reals/Rtrigo_fun.v | 30 +- theories/Reals/Rtrigo_reg.v | 308 +--- theories/Reals/SeqProp.v | 270 +-- theories/Reals/SeqSeries.v | 98 +- theories/Reals/SplitAbsolu.v | 4 +- theories/Reals/SplitRmult.v | 2 +- theories/Reals/Sqrt_reg.v | 150 +- theories/Reals/vo.itarget | 5 + theories/Relations/Operators_Properties.v | 8 +- theories/Relations/Relation_Definitions.v | 2 +- theories/Relations/Relation_Operators.v | 8 +- theories/Relations/Relations.v | 8 +- theories/Setoids/Setoid.v | 2 +- theories/Sets/Classical_sets.v | 18 +- theories/Sets/Constructive_sets.v | 18 +- theories/Sets/Cpo.v | 2 +- theories/Sets/Ensembles.v | 2 +- theories/Sets/Finite_sets.v | 6 +- theories/Sets/Finite_sets_facts.v | 20 +- theories/Sets/Image.v | 12 +- theories/Sets/Infinite_sets.v | 14 +- theories/Sets/Integers.v | 24 +- theories/Sets/Multiset.v | 18 +- theories/Sets/Partial_Order.v | 20 +- theories/Sets/Permut.v | 2 +- theories/Sets/Powerset.v | 28 +- theories/Sets/Powerset_Classical_facts.v | 42 +- theories/Sets/Powerset_facts.v | 36 +- theories/Sets/Relations_1.v | 2 +- theories/Sets/Relations_1_facts.v | 20 +- theories/Sets/Relations_2.v | 2 +- theories/Sets/Relations_2_facts.v | 14 +- theories/Sets/Relations_3.v | 2 +- theories/Sets/Relations_3_facts.v | 28 +- theories/Sets/Uniset.v | 30 +- theories/Sorting/Heap.v | 22 +- theories/Sorting/Mergesort.v | 4 +- theories/Sorting/PermutEq.v | 2 +- theories/Sorting/PermutSetoid.v | 12 +- theories/Sorting/Permutation.v | 2 +- theories/Sorting/Sorted.v | 2 +- theories/Sorting/Sorting.v | 2 +- theories/Strings/Ascii.v | 16 +- theories/Strings/String.v | 130 +- theories/Structures/DecidableTypeEx.v | 6 +- theories/Structures/OrderedTypeEx.v | 160 +- theories/Structures/OrdersAlt.v | 6 +- theories/Unicode/Utf8.v | 4 +- theories/Unicode/Utf8_core.v | 2 +- theories/Vectors/VectorDef.v | 2 +- theories/Wellfounded/Disjoint_Union.v | 4 +- theories/Wellfounded/Inclusion.v | 4 +- theories/Wellfounded/Inverse_Image.v | 6 +- .../Wellfounded/Lexicographic_Exponentiation.v | 28 +- theories/Wellfounded/Lexicographic_Product.v | 10 +- theories/Wellfounded/Transitive_Closure.v | 6 +- theories/Wellfounded/Union.v | 6 +- theories/Wellfounded/Well_Ordering.v | 8 +- theories/Wellfounded/Wellfounded.v | 2 +- theories/ZArith/BinInt.v | 804 ++++---- theories/ZArith/BinIntDef.v | 253 +-- theories/ZArith/Int.v | 16 +- theories/ZArith/Wf_Z.v | 12 +- theories/ZArith/ZArith.v | 2 +- theories/ZArith/ZArith_base.v | 2 +- theories/ZArith/ZArith_dec.v | 93 +- theories/ZArith/Zabs.v | 56 +- theories/ZArith/Zbool.v | 16 +- theories/ZArith/Zcompare.v | 34 +- theories/ZArith/Zcomplements.v | 14 +- theories/ZArith/Zdigits.v | 58 +- theories/ZArith/Zdiv.v | 86 +- theories/ZArith/Zeuclid.v | 2 +- theories/ZArith/Zeven.v | 22 +- theories/ZArith/Zgcd_alt.v | 241 ++- theories/ZArith/Zhints.v | 95 +- theories/ZArith/Zlogarithm.v | 104 +- theories/ZArith/Zmax.v | 121 +- theories/ZArith/Zmin.v | 92 +- theories/ZArith/Zminmax.v | 16 +- theories/ZArith/Zmisc.v | 11 +- theories/ZArith/Znat.v | 162 +- theories/ZArith/Znumtheory.v | 385 ++-- theories/ZArith/Zorder.v | 100 +- theories/ZArith/Zpow_alt.v | 4 +- theories/ZArith/Zpow_def.v | 14 +- theories/ZArith/Zpow_facts.v | 42 +- theories/ZArith/Zpower.v | 14 +- theories/ZArith/Zquot.v | 351 ++-- theories/ZArith/Zsqrt_compat.v | 63 +- theories/ZArith/Zwf.v | 27 +- theories/ZArith/auxiliary.v | 2 +- tools/compat5.ml | 2 +- tools/compat5.mlp | 2 +- tools/compat5b.ml | 2 +- tools/compat5b.mlp | 2 +- tools/coq_makefile.ml | 6 +- tools/coq_tex.ml4 | 2 +- tools/coqdep.ml | 2 +- tools/coqdep_boot.ml | 2 +- tools/coqdep_common.ml | 2 +- tools/coqdep_common.mli | 2 +- tools/coqdep_lexer.mli | 2 +- tools/coqdep_lexer.mll | 2 +- tools/coqdoc/alpha.ml | 2 +- tools/coqdoc/alpha.mli | 2 +- tools/coqdoc/cdglobals.ml | 2 +- tools/coqdoc/cpretty.mli | 2 +- tools/coqdoc/cpretty.mll | 71 +- tools/coqdoc/index.ml | 13 +- tools/coqdoc/index.mli | 2 +- tools/coqdoc/main.ml | 2 +- tools/coqdoc/output.ml | 151 +- tools/coqdoc/output.mli | 13 +- tools/coqdoc/tokens.ml | 2 +- tools/coqdoc/tokens.mli | 2 +- tools/coqwc.mll | 2 +- tools/escape_string.ml | 1 + tools/fake_ide.ml | 2 +- tools/gallina.ml | 2 +- tools/gallina_lexer.mll | 2 +- tools/mingwpath.ml | 15 + toplevel/auto_ind_decl.ml | 2 +- toplevel/auto_ind_decl.mli | 2 +- toplevel/autoinstance.ml | 2 +- toplevel/autoinstance.mli | 2 +- toplevel/backtrack.ml | 22 +- toplevel/backtrack.mli | 10 +- toplevel/cerrors.ml | 2 +- toplevel/cerrors.mli | 2 +- toplevel/class.ml | 2 +- toplevel/class.mli | 2 +- toplevel/classes.ml | 2 +- toplevel/classes.mli | 2 +- toplevel/command.ml | 9 +- toplevel/command.mli | 2 +- toplevel/coqinit.ml | 10 +- toplevel/coqinit.mli | 4 +- toplevel/coqtop.ml | 21 +- toplevel/coqtop.mli | 2 +- toplevel/discharge.ml | 2 +- toplevel/discharge.mli | 2 +- toplevel/himsg.ml | 57 +- toplevel/himsg.mli | 2 +- toplevel/ide_intf.ml | 43 +- toplevel/ide_intf.mli | 2 +- toplevel/ide_slave.ml | 45 +- toplevel/ide_slave.mli | 2 +- toplevel/ind_tables.ml | 2 +- toplevel/ind_tables.mli | 2 +- toplevel/indschemes.ml | 2 +- toplevel/indschemes.mli | 2 +- toplevel/interface.mli | 16 +- toplevel/lemmas.ml | 2 +- toplevel/lemmas.mli | 2 +- toplevel/libtypes.ml | 2 +- toplevel/libtypes.mli | 2 +- toplevel/metasyntax.ml | 20 +- toplevel/metasyntax.mli | 4 +- toplevel/mltop.ml4 | 135 +- toplevel/mltop.mli | 25 +- toplevel/record.ml | 2 +- toplevel/record.mli | 2 +- toplevel/search.ml | 2 +- toplevel/search.mli | 2 +- toplevel/toplevel.ml | 2 +- toplevel/toplevel.mli | 2 +- toplevel/usage.ml | 4 +- toplevel/usage.mli | 2 +- toplevel/vernac.ml | 39 +- toplevel/vernac.mli | 2 +- toplevel/vernacentries.ml | 141 +- toplevel/vernacentries.mli | 4 +- toplevel/vernacexpr.ml | 18 +- toplevel/vernacinterp.ml | 2 +- toplevel/vernacinterp.mli | 2 +- toplevel/whelp.ml4 | 2 +- toplevel/whelp.mli | 2 +- 1107 files changed, 21802 insertions(+), 18994 deletions(-) delete mode 100644 INSTALL.macosx create mode 100644 TODO delete mode 100644 config/Makefile.template create mode 100755 dev/macosify_accel.sh delete mode 100644 doc/refman/RefMan-sch.tex create mode 100644 test-suite/bugs/closed/shouldsucceed/2817.v create mode 100644 test-suite/bugs/closed/shouldsucceed/2836.v create mode 100644 theories/Lists/SetoidPermutation.v create mode 100644 theories/Reals/Machin.v create mode 100644 theories/Reals/Ranalysis5.v create mode 100644 theories/Reals/Ranalysis_reg.v create mode 100644 theories/Reals/Ratan.v create mode 100644 theories/Reals/Rtrigo1.v create mode 100644 tools/escape_string.ml create mode 100644 tools/mingwpath.ml (limited to 'parsing/printmod.mli') diff --git a/.gitignore b/.gitignore index 32a40af6..e0be678c 100644 --- a/.gitignore +++ b/.gitignore @@ -63,11 +63,12 @@ doc/refman/csdp.cache doc/refman/trace doc/refman/Reference-Manual.pdf doc/refman/Reference-Manual.ps +doc/refman/Reference-Manual.html +doc/refman/Reference-Manual.out +doc/refman/Reference-Manual.sh doc/refman/cover.html doc/refman/styles.hva -doc/refman/Reference-Manual.html doc/common/version.tex -doc/refman/Reference-Manual.sh doc/refman/coqide-queries.eps doc/refman/coqide.eps doc/refman/euclid.ml diff --git a/CHANGES b/CHANGES index c245fb25..1c094584 100644 --- a/CHANGES +++ b/CHANGES @@ -1,29 +1,66 @@ -Changes from V8.4beta to V8.4 -============================= +Changes from V8.4beta2 to V8.4 +============================== + +Vernacular commands + +- The "Reset" command is now supported again in files given to coqc or Load. +- "Show Script" now indents again the displayed scripts. It can also work + correctly across Load'ed files if the option "Unset Atomic Load" is used. +- "Open Scope" can now be given the delimiter (e.g. Z) instead of the full + scope name (e.g. Z_scope). + +Notations + +- Most compatibility notations of the standard library are now tagged as + (compat xyz), where xyz is a former Coq version, for instance "8.3". + These notations behave as (only parsing) notations, except that they may + triggers warnings (or errors) when used while Coq is not in a corresponding + -compat mode. +- To activate these compatibility warnings, use "Set Verbose Compat Notations" + or the command-line flag -verbose-compat-notations. +- For a strict mode without these compatibility notations, use + "Unset Compat Notations" or the command-line flag -no-compat-notations. + +Tactics + +- An annotation "eqn:H" or "eqn:?" can be added to a "destruct" + or "induction" to make it generate equations in the spirit of "case_eq". + The former syntax "_eqn" is discontinued. +- The name of the hypothesis introduced by tactic "remember" can be + set via the new syntax "remember t as x eqn:H" (wish #2489). + +Libraries + +- Reals: changed definition of PI, no more axiom about sin(PI/2). +- SetoidPermutation: a notion of permutation for lists modulo a setoid equality. +- BigN: fixed the ocaml code doing the parsing/printing of big numbers. + +Changes from V8.4beta to V8.4beta2 +================================== Vernacular commands -- Undo and UndoTo are now handling the proof states. They may - perform some extra steps of backtrack to avoid states where - the proof state is unavailable (typically a closed proof). -- The commands Suspend and Resume have been removed. +- Commands "Back" and "BackTo" are now handling the proof states. They may + perform some extra steps of backtrack to avoid states where the proof + state is unavailable (typically a closed proof). +- The commands "Suspend" and "Resume" have been removed. - A basic Show Script has been reintroduced (no indentation). - New command "Set Parsing Explicit" for deactivating parsing (and printing) of implicit arguments (useful for teaching). -- New command "Grab Existential Variables" to transform the unresolved evars at - the end of a proof into goals. +- New command "Grab Existential Variables" to transform the unresolved evars + at the end of a proof into goals. Tactics -- Still no general "info" tactical, but new specific tactics - info_auto, info_eauto, info_trivial which provides information - on the proofs found by auto/eauto/trivial. Display of these - details could also be activated by Set Info Auto/Eauto/Trivial. -- Details on everything tried by auto/eauto/trivial during - a proof search could be obtained by "debug auto", "debug eauto", - "debug trivial" or by a global "Set Debug Auto/Eauto/Trivial". -- New command "r string" that interprets "idtac string" as a breakpoint - and jumps to its next use in Ltac debugger. +- Still no general "info" tactical, but new specific tactics info_auto, + info_eauto, info_trivial which provides information on the proofs found + by auto/eauto/trivial. Display of these details could also be activated by + "Set Info Auto"/"Set Info Eauto"/"Set Info Trivial". +- Details on everything tried by auto/eauto/trivial during a proof search + could be obtained by "debug auto", "debug eauto", "debug trivial" or by a + global "Set Debug Auto"/"Set Debug Eauto"/"Set Debug Trivial". +- New command "r string" in Ltac debugger that interprets "idtac + string" in Ltac code as a breakpoint and jumps to its next use. - Tactics from the Dp plugin (simplify, ergo, yices, cvc3, z3, cvcl, harvey, zenon, gwhy) have been removed, since Why2 has not been maintained for the last few years. The Why3 plugin should be a suitable @@ -31,28 +68,28 @@ Tactics Libraries -- MSetRBT : a new implementation of MSets via Red-Black trees (initial +- MSetRBT: a new implementation of MSets via Red-Black trees (initial contribution by Andrew Appel). -- MSetAVL : for maximal sharing with the new MSetRBT, the argument order - of Node has changed (this should be transparent to regular MSets users). +- MSetAVL: for maximal sharing with the new MSetRBT, the argument order + of Node has changed (this should be transparent to regular MSets users). Module System - The names of modules (and module types) are now in a fully separated - namespace from ordinary definitions : "Definition E:=0. Module E. End E." + namespace from ordinary definitions: "Definition E:=0. Module E. End E." is now accepted. CoqIDE -- Coqide now supports the Restart command, and Undo (with a warning). - Better support for Abort. +- Coqide now supports the "Restart" command, and "Undo" (with a warning). + Better support for "Abort". Changes from V8.3 to V8.4beta ============================= Logic -- Standard eta-conversion now supported (dependent product only). (DOC TO DO) +- Standard eta-conversion now supported (dependent product only). - Guard condition improvement: subterm property is propagated through beta-redex blocked by pattern-matching, as in "(match v with C .. => fun x => u end) x"; this allows for instance to use "rewrite ... in ..." without breaking @@ -69,10 +106,6 @@ Specification language and notations - Structure/Record printing can be disable by "Unset Printing Records". In addition, it can be controlled on type by type basis using "Add Printing Record" or "Add Printing Constructor". -- In a pattern containing a "match", a final "| _ => _" branch could be used - now instead of enumerating all remaining constructors. Moreover, the pattern - "match _ with _ => _ end" now allows to match any "match". A "in" annotation - can also be added to restrict to a precise inductive type. - Pattern-matching compilation algorithm: in "match x, y with ... end", possible dependencies of x (or of the indices of its type) in the type of y are now taken into account. @@ -81,11 +114,11 @@ Tactics - New proof engine. - Scripts can now be structured thanks to bullets - * + and to subgoal - delimitation via { }. Note: for use with ProofGeneral, a cvs version of - ProofGeneral no older than mid-July 2011 is currently required. DOC TODO. + delimitation via { }. Note: for use with Proof General, a cvs version of + Proof General no older than mid-July 2011 is currently required. - Support for tactical "info" is suspended. - Support for command "Show Script" is suspended. -- New tactics constr_eq, is_evar and has_evar. +- New tactics constr_eq, is_evar and has_evar for use in Ltac. - Removed the two-argument variant of "decide equality". - New experimental tactical "timeout ". Since is a time in second for the moment, this feature should rather be avoided @@ -98,14 +131,14 @@ Tactics ?f x y = g(x,y) (compatibility ensured by using "Unset Tactic Pattern Unification"). It also supports (full) betaiota. - Tactic autorewrite does no longer instantiate pre-existing - existential variables (theoretical source of possible incompatibility). + existential variables (theoretical source of possible incompatibilities). - Tactic "dependent rewrite" now supports equality in "sig". - Tactic omega now understands Zpred (wish #1912) and can prove any goal from a context containing an arithmetical contradiction (wish #2236). - Using "auto with nocore" disables the use of the "core" database (wish #2188). This pseudo-database "nocore" can also be used with trivial and eauto. - Tactics "set", "destruct" and "induction" accepts incomplete terms and - use the goal to complete the pattern assuming it is no ambiguous. + use the goal to complete the pattern assuming it is non ambiguous. - When used on arguments with a dependent type, tactics such as "destruct", "induction", "case", "elim", etc. now try to abstract automatically the dependencies over the arguments of the types @@ -118,18 +151,25 @@ Tactics - When applying destruct or inversion on a fixpoint hiding an inductive type, recursive calls to the fixpoint now remain folded by default (rare source of incompatibility generally solvable by adding a call to simpl). -- The behavior of the simpl tactic can be tuned using the new "Arguments" - vernacular. +- In an ltac pattern containing a "match", a final "| _ => _" branch could be + used now instead of enumerating all remaining constructors. Moreover, the + pattern "match _ with _ => _ end" now allows to match any "match". A "in" + annotation can also be added to restrict to a precise inductive type. +- The behavior of "simpl" can be tuned using the "Arguments" vernacular. + In particular constants can be marked so that they are always/never unfolded + by "simpl", or unfolded only when a set of arguments evaluates to a + constructor. Last one can mark a constant so that it is unfolded only if the + simplified term does not expose a match in head position. Vernacular commands - It is now mandatory to have a space (or tabulation or newline or end-of-file) after a "." ending a sentence. - In SearchAbout, the [ ] delimiters are now optional. -- New command "Add/Remove Search Blacklist ..." : +- New command "Add/Remove Search Blacklist ...": a Search or SearchAbout or similar query will never mention lemmas whose qualified names contain any of the declared substrings. - The default blacklisted substrings are "_admitted" "_subproof" "Private_". DOC TODO + The default blacklisted substrings are "_admitted" "_subproof" "Private_". - When the output file of "Print Universes" ends in ".dot" or ".gv", the universe graph is printed in the DOT language, and can be processed by Graphviz tools. @@ -141,7 +181,11 @@ Vernacular commands to avoid conversion at Qed time to go into a very long computation. - New command "Show Goal ident" to display the statement of a goal, even a closed one (available from Proof General). -- New command "Arguments" subsuming "Implicit Arguments" and "Arguments Scope". +- Command "Proof" accept a new modifier "using" to force generalization + over a given list of section variables at section ending. +- New command "Arguments" generalizing "Implicit Arguments" and + "Arguments Scope" and that also allows to rename the parameters of a + definition and to tune the behavior of the tactic "simpl". Module System @@ -155,8 +199,8 @@ Module System are lower or equal than XX will be inlined. The level of a parameter can be fixed by "Parameter Inline(30) foo". When levels aren't given, the default value is 100. One can also use - the flag "Set Inline Level ..." to set a level. TODO: DOC! -- Print Assumptions should now handle correctly opaque modules (#2168) + the flag "Set Inline Level ..." to set a level. +- Print Assumptions should now handle correctly opaque modules (#2168). - Print Module (Type) now tries to print more details, such as types and bodies of the module elements. Note that Print Module Type could be used on a module to display only its interface. The option @@ -166,9 +210,9 @@ Module System Libraries - Extension of the abstract part of Numbers, which now provide axiomatizations - and results about many more integer functions, such as pow, gcd, lcm, sqrt, log2 - and bitwise functions. These functions are implemented for nat N BigN Z BigZ. - See in particular file NPeano for new functions about nat. + and results about many more integer functions, such as pow, gcd, lcm, sqrt, + log2 and bitwise functions. These functions are implemented for nat, N, BigN, + Z, BigZ. See in particular file NPeano for new functions about nat. - The definition of types positive, N, Z is now in file BinNums.v - Major reorganization of ZArith. The initial file ZArith/BinInt.v now contains an internal module Z implementing the Numbers interface for integers. @@ -207,15 +251,15 @@ Libraries may introduce incompatibilities. In particular, the order of the arguments for BigN.shiftl and BigN.shiftr is now reversed: the number to shift now comes first. By default, the power function now takes two BigN. -- Creation of Vector, an independant library for list indiced by their length. - Vectors' names overwrite lists' one so you shouldn't "Import" the library. - All old names change: functions' name become the CaML one and for example - Vcons become Vector.cons. You can use notations by importing +- Creation of Vector, an independent library for lists indexed by their length. + Vectors' names overwrite lists' one so you should not "Import" the library. + All old names changed: function names follow the ocaml ones and, for example, + Vcons becomes Vector.cons. You can get [..;..;..]-style notations by importing Vector.VectorNotations. - Removal of TheoryList. Requiring List instead should work most of the time. -- New syntax "rew Heq in H" and "rew <- Heq in H" for eq_rect and +- New syntax "rew Heq in H" and "rew <- Heq in H" for eq_rect and eq_rect_r (available by importing module EqNotations). -- Wf.iter_nat is now Peano.nat_iter (with an implicit type argument) +- Wf.iter_nat is now Peano.nat_iter (with an implicit type argument). Internal infrastructure @@ -230,8 +274,8 @@ Internal infrastructure for both make and ocamlbuild, etc. - Support of cross-compilation via mingw from unix toward Windows, contact P. Letouzey for more informations. -- new Makefile rules mli-doc to make html of mli in dev/doc/html and - full-stdlib to get a HUGE pdf with all the stdlib. +- New Makefile rules mli-doc to make html of mli in dev/doc/html and + full-stdlib to get a (huge) pdf reflecting the whole standard library. Extraction @@ -243,9 +287,8 @@ Extraction - A new command "Separate Extraction cst1 cst2 ..." that mixes a minimal extracted environment a la "Recursive Extraction" and the production of several files (one per coq source) a la "Extraction Library". - DOC TODO. - New option "Set/Unset Extraction KeepSingleton" for preventing the - extraction to optimize singleton container types. DOC TODO + extraction to optimize singleton container types. - The extraction now identifies and properly rejects a particular case of universe polymorphism it cannot handle yet (the pair (I,I) being Prop). - Support of anonymous fields in record (#2555). @@ -257,10 +300,9 @@ CoqIDE (cf button "Restart Coq", ex-"Go to Start"). For allowing such interrupts, the Windows version of coqide now requires Windows >= XP SP1. -- The communication between CoqIDE and Coqtop is now done via a dialect - of XML (DOC TODO). -- The backtrack engine of CoqIDE has been reworked, it now used the - "Backtrack" command similarly to ProofGeneral. +- The communication between CoqIDE and Coqtop is now done via a dialect of XML. +- The backtrack engine of CoqIDE has been reworked, it now uses the + "Backtrack" command similarly to Proof General. - The Coqide parsing of sentences has be reworked and now supports tactic delimitation via { }. - Coqide now accepts the Abort command (wish #2357). @@ -274,15 +316,15 @@ Tools - Coq now searches directories specified in COQPATH, $XDG_DATA_HOME/coq, $XDG_DATA_DIRS/coq, and user-contribs before the standard library. - Coq rc file has moved to $XDG_CONFIG_HOME/coq. -- coq_makefile major cleanup. - * mli/mlpack/mllib taken into account, ml not preproccessed anymore, ml4 work +- Major changes to coq_makefile: + * mli/mlpack/mllib taken into account, ml not preproccessed anymore, ml4 work; * mlihtml generates doc of mli, install-doc install the html doc in DOCDIR - with the same policy as vo in COQLIB + with the same policy as vo in COQLIB; * More variables are given by coqtop -config, others are defined only if the users doesn't have defined them elsewhere. Consequently, generated makefile - should work directly on any architecture. + should work directly on any architecture; * Packagers can take advantage of $(DSTROOT) introduction. Installation can - be made in $XDG_DATA_HOME/coq. + be made in $XDG_DATA_HOME/coq; * -arg option allows to send option as argument to coqc. Changes from V8.2 to V8.3 diff --git a/COMPATIBILITY b/COMPATIBILITY index 0849b64f..41474202 100644 --- a/COMPATIBILITY +++ b/COMPATIBILITY @@ -3,4 +3,49 @@ Potential sources of incompatibilities between Coq V8.3 and V8.4 (see also file CHANGES) -TO BE DONE +The main known incompatibilities between 8.3 and 8.4 are consequences +of the following changes: + +- The reorganization of the library of numbers: + + Several definitions have new names or are defined in modules of + different names, but a special care has been taken to have this + renaming transparent for the user thanks to compatibility notations. + + However some definitions have changed, what might require some + adaptations. The most noticeable examples are: + - The "?=" notation which now bind to Pos.compare rather than former + Pcompare (now Pos.compare_cont). + - Changes in names may induce different automatically generated + names in proof scripts (e.g. when issuing "destruct Z_le_gt_dec"). + - Z.add has a new definition, hence, applying "simpl" on subterms of + its body might give different results than before. + - BigN.shiftl and BigN.shiftr have reversed arguments order, the + power function in BigN now takes two BigN. + +- Other changes in libraries: + + - The definition of functions over "vectors" (list of fixed length) + have changed. + - TheoryList.v has been removed. + +- Slight changes in tactics: + + - Less unfolding of fixpoints when applying destruct or inversion on + a fixpoint hiding an inductive type (add an extra call to simpl to + preserve compatibility). + - Less unexpected local definitions when applying "destruct" + (incompatibilities solvable by adapting name hypotheses). + - Tactic "apply" might succeed more often, e.g. by now solving + pattern-matching of the form ?f x y = g(x,y) (compatibility + ensured by using "Unset Tactic Pattern Unification"), but also + because it supports (full) betaiota (using "simple apply" might + then help). + - Tactic autorewrite does no longer instantiate pre-existing + existential variables. + - Tactic "info" is now available only for auto, eauto and trivial. + +- Miscellaneous changes: + + - The command "Load" is now atomic for backtracking (use "Unset + Atomic Load" for compatibility). diff --git a/INSTALL b/INSTALL index 5ee00613..02c9eb9b 100644 --- a/INSTALL +++ b/INSTALL @@ -1,5 +1,5 @@ - INSTALLATION PROCEDURES FOR THE COQ V8.3 SYSTEM + INSTALLATION PROCEDURES FOR THE COQ V8.4 SYSTEM ----------------------------------------------- diff --git a/INSTALL.macosx b/INSTALL.macosx deleted file mode 100644 index cc1317b1..00000000 --- a/INSTALL.macosx +++ /dev/null @@ -1,20 +0,0 @@ -INSTALLATION PROCEDURE FOR THE PRECOMPILED COQ V8.1 SYSTEM UNDER MACOS X ------------------------------------------------------------------------- - -You can also use fink, or the MacOS X package prepared by the Coq -team. To use the MacOS X package,: - -1) Download archive coq-8.1-macosx-ppc.dmg (for PowerPC-base computer) - or coq-8.1-macosx-i386.dmg (for Pentium-based computer). - -2) Double-click on its icon; it mounts a disk volume named "Coq V8.1". - -3) Open volume "Coq 8.1" and double-click on coq-8.1.pkg to launch the - installer (you'll need administrator permissions). - -4) Coq installs in /usr/local/bin, which should be in your PATH, and - can be used from a Terminal window: the interactive toplevel is - named coqtop and the compiler is coqc. - -If you have any trouble with this installation, please contact: -coq-bugs@pauillac.inria.fr. diff --git a/Makefile b/Makefile index 0ff72856..bb5ec3bc 100644 --- a/Makefile +++ b/Makefile @@ -39,9 +39,13 @@ # File lists ########################################################################### +# NB: due to limitations in Win32, please refrain using 'export' too much +# to communicate between make sub-calls (in Win32, 8kb max per env variable, +# 32kb total) + # !! Before using FIND_VCS_CLAUSE, please read how you should in the !! # !! FIND_VCS_CLAUSE section of dev/doc/build-system.dev.txt !! -export FIND_VCS_CLAUSE:='(' \ +FIND_VCS_CLAUSE:='(' \ -name '{arch}' -o \ -name '.svn' -o \ -name '_darcs' -o \ @@ -58,8 +62,8 @@ endef ## Files in the source tree -export YACCFILES:=$(call find, '*.mly') -export LEXFILES := $(call find, '*.mll') +YACCFILES:=$(call find, '*.mly') +LEXFILES := $(call find, '*.mll') export MLLIBFILES := $(call find, '*.mllib') export ML4FILES := $(call find, '*.ml4') export CFILES := $(call find, '*.c') @@ -73,13 +77,13 @@ EXISTINGMLI := $(call find, '*.mli') ## Files that will be generated -export GENMLFILES:=$(LEXFILES:.mll=.ml) $(YACCFILES:.mly=.ml) \ +GENML4FILES:= $(ML4FILES:.ml4=.ml) +GENMLFILES:=$(LEXFILES:.mll=.ml) $(YACCFILES:.mly=.ml) \ scripts/tolink.ml kernel/copcodes.ml -export GENMLIFILES:=$(YACCFILES:.mly=.mli) +GENMLIFILES:=$(YACCFILES:.mly=.mli) +GENPLUGINSMOD:=$(filter plugins/%,$(MLLIBFILES:%.mllib=%_mod.ml)) export GENHFILES:=kernel/byterun/coq_jumptbl.h export GENVFILES:=theories/Numbers/Natural/BigN/NMake_gen.v -export GENPLUGINSMOD:=$(filter plugins/%,$(MLLIBFILES:%.mllib=%_mod.ml)) -export GENML4FILES:= $(ML4FILES:.ml4=.ml) export GENFILES:=$(GENMLFILES) $(GENMLIFILES) $(GENHFILES) $(GENVFILES) $(GENPLUGINSMOD) # NB: all files in $(GENFILES) can be created initially, while @@ -92,12 +96,9 @@ define diff $(strip $(foreach f, $(1), $(if $(filter $(f),$(2)),,$f))) endef -export MLSTATICFILES := \ - $(call diff, $(EXISTINGML), $(GENMLFILES) $(GENML4FILES) $(GENPLUGINSMOD)) -export MLFILES := \ - $(sort $(EXISTINGML) $(GENMLFILES) $(GENML4FILES) $(GENPLUGINSMOD)) +export MLEXTRAFILES := $(GENMLFILES) $(GENML4FILES) $(GENPLUGINSMOD) +export MLSTATICFILES := $(call diff, $(EXISTINGML), $(MLEXTRAFILES)) export MLIFILES := $(sort $(GENMLIFILES) $(EXISTINGMLI)) -export MLWITHOUTMLI := $(call diff, $(MLFILES), $(MLIFILES:.mli=.ml)) include Makefile.common @@ -276,3 +277,14 @@ ifdef COQ_CONFIGURED else @echo "Please run ./configure first" >&2; exit 1 endif + +# Useful to check that the exported variables are within the win32 limits + +printenv: + @env + @echo + @echo -n "Maxsize (win32 limit is 8k) : " + @env | wc -L + @echo -n "Total (win32 limit is 32k) : " + @env | wc -m + diff --git a/Makefile.build b/Makefile.build index 41dfabbf..fe99f3b0 100644 --- a/Makefile.build +++ b/Makefile.build @@ -36,10 +36,12 @@ endif # of include, and they will then be automatically deleted, leading to an # infinite loop. -ALLDEPS=$(addsuffix .d, \ +MLFILES:=$(MLSTATICFILES) $(MLEXTRAFILES) + +ALLDEPS:=$(addsuffix .d, \ $(ML4FILES) $(MLFILES) $(MLIFILES) $(CFILES) $(MLLIBFILES) $(VFILES)) -.SECONDARY: $(ALLDEPS) $(GENFILES) $(GENML4FILES) +.SECONDARY: $(ALLDEPS) $(GENFILES) $(ML4FILES:.ml4=.ml) # NOTA: the -include below will lauch the build of all .d. Some of them # will _fail_ at first, this is to be expected (no grammar.cma initially). @@ -82,12 +84,15 @@ HIDE := $(if $(VERBOSE),,@) LOCALINCLUDES=$(addprefix -I , $(SRCDIRS) ) MLINCLUDES=$(LOCALINCLUDES) -I $(MYCAMLP4LIB) +COREMLINCLUDES=$(addprefix -I , $(CORESRCDIRS)) -I $(MYCAMLP4LIB) OCAMLC += $(CAMLFLAGS) OCAMLOPT += $(CAMLFLAGS) BYTEFLAGS=$(MLINCLUDES) $(CAMLDEBUG) $(USERFLAGS) OPTFLAGS=$(MLINCLUDES) $(CAMLDEBUGOPT) $(CAMLTIMEPROF) $(USERFLAGS) +COREBYTEFLAGS=$(COREMLINCLUDES) $(CAMLDEBUG) $(USERFLAGS) +COREOPTFLAGS=$(COREMLINCLUDES) $(CAMLDEBUGOPT) $(CAMLTIMEPROF) $(USERFLAGS) DEPFLAGS= -slash $(LOCALINCLUDES) define bestocaml @@ -96,7 +101,7 @@ $(OCAMLOPT) $(OPTFLAGS) -o $@ $(1) $(addsuffix .cmxa,$(2)) $^ && $(STRIP) $@,\ $(OCAMLC) $(BYTEFLAGS) $(COQTOOLSBYTEFLAGS) -o $@ $(1) $(addsuffix .cma,$(2)) $^) endef -CAMLP4DEPS=`sed -n -e 's@^(\*.*camlp4deps: "\(.*\)".*@\1@p' $<` +CAMLP4DEPS=`LC_ALL=C sed -n -e 's@^(\*.*camlp4deps: "\(.*\)".*@\1@p' $<` ifeq ($(CAMLP4),camlp5) CAMLP4USE=pa_extend.cmo q_MLast.cmo pa_macro.cmo -D$(CAMLVERSION) else @@ -169,10 +174,12 @@ CINCLUDES= -I $(CAMLHLIB) # libcoqrun.a, dllcoqrun.so +# NB: We used to do a ranlib after ocamlmklib, but it seems that +# ocamlmklib is already doing it + $(LIBCOQRUN): kernel/byterun/coq_jumptbl.h $(BYTERUN) cd $(dir $(LIBCOQRUN)) && \ $(OCAMLMKLIB) -oc $(COQRUN) $(foreach u,$(BYTERUN),$(notdir $(u))) - $(RANLIB) $(LIBCOQRUN) #coq_jumptbl.h is required only if you have GCC 2.0 or later kernel/byterun/coq_jumptbl.h : kernel/byterun/coq_instruct.h @@ -201,12 +208,12 @@ states:: states/initial.coq $(COQTOPOPT): $(BESTCOQMKTOP) $(LINKCMX) $(LIBCOQRUN) $(SHOW)'COQMKTOP -o $@' - $(HIDE)$(BESTCOQMKTOP) -boot -opt $(OPTFLAGS) -o $@ + $(HIDE)$(BESTCOQMKTOP) -boot -opt $(COREOPTFLAGS) -o $@ $(STRIP) $@ $(COQTOPBYTE): $(BESTCOQMKTOP) $(LINKCMO) $(LIBCOQRUN) $(SHOW)'COQMKTOP -o $@' - $(HIDE)$(BESTCOQMKTOP) -boot -top $(BYTEFLAGS) -o $@ + $(HIDE)$(BESTCOQMKTOP) -boot -top $(COREBYTEFLAGS) -o $@ $(COQTOPEXE): $(ORDER_ONLY_SEP) $(BESTCOQTOP) cd bin; ln -sf coqtop.$(BEST)$(EXE) coqtop$(EXE) @@ -544,9 +551,9 @@ $(FAKEIDE): lib/xml_lexer$(BESTOBJ) lib/xml_parser$(BESTOBJ) lib/xml_utils$(BEST ifeq ($(CAMLP4),camlp4) tools/compat5.cmo: tools/compat5.mlp - $(OCAMLC) -c -I $(MYCAMLP4LIB) -pp "$(CAMLP4O) -impl" -impl $< + $(OCAMLC) -c -I $(MYCAMLP4LIB) -pp '$(CAMLP4O) -impl' -impl $< tools/compat5b.cmo: tools/compat5b.mlp - $(OCAMLC) -c -I $(MYCAMLP4LIB) -pp "$(CAMLP4O) -impl" -impl $< + $(OCAMLC) -c -I $(MYCAMLP4LIB) -pp '$(CAMLP4O) -impl' -impl $< else tools/compat5.cmo: tools/compat5.ml $(OCAMLC) -c $< @@ -729,7 +736,7 @@ dev/printers.cma: | dev/printers.mllib.d parsing/grammar.cma: | parsing/grammar.mllib.d $(SHOW)'Testing $@' @touch test.ml4 - $(HIDE)$(OCAMLC) $(BYTEFLAGS) -pp "$(CAMLP4O) -I $(CAMLLIB) $^ -impl" -impl test.ml4 -o test-grammar + $(HIDE)$(OCAMLC) $(BYTEFLAGS) -pp '$(CAMLP4O) -I $(CAMLLIB) $^ -impl' -impl test.ml4 -o test-grammar @rm -f test-grammar test.* $(SHOW)'OCAMLC -a $@' $(HIDE)$(OCAMLC) $(BYTEFLAGS) $^ -linkall -a -o $@ @@ -846,6 +853,12 @@ COND_OPTFLAGS= \ HACKMLI = $(if $(wildcard $) + +Theories: + +- Rendre transparent tous les theoremes prouvant {A}+{B} +- Faire demarrer PolyList.nth a` l'indice 0 + Renommer l'actuel nth en nth1 ?? + +Doc: + +- Mettre à jour les messages d'erreurs de Discriminate/Simplify_eq/Injection +- Documenter le filtrage sur les types inductifs avec let-ins (dont la + compatibilite V6) + +- Ajouter let dans les règles du CIC + -> FAIT, mais reste a documenter le let dans les inductifs + et les champs manifestes dans les Record +- revoir le chapitre sur les tactiques utilisateur +- faut-il mieux spécifier la sémantique de Simpl (??) + +- Préciser la clarification syntaxique de IntroPattern +- preciser que Goal vient en dernier dans une clause pattern list et + qu'il doit apparaitre si il y a un "in" + +- Omega Time debranche mais Omega System et Omega Action remarchent ? +- Ajout "Replace in" (mais TODO) +- Syntaxe Conditional tac Rewrite marche, à documenter +- Documenter Dependent Rewrite et CutRewrite ? +- Ajouter les motifs sous-termes de ltac + +- ajouter doc de GenFixpoint (mais avant: changer syntaxe) (J. Forest ou Pierre C.) +- mettre à jour la doc de induction (arguments multiples) (Pierre C.) +- mettre à jour la doc de functional induction/scheme (J. Forest ou Pierre C.) +--> mettre à jour le CHANGES (vers la ligne 72) + + diff --git a/checker/check.ml b/checker/check.ml index bb42b949..237eb079 100644 --- a/checker/check.ml +++ b/checker/check.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* " - echo "-with-ar " - echo "-with-ranlib " - printf "\tTells configure where to find gcc/ar/ranlib executables\n" echo "-byte-only" printf "\tCompiles only bytecode version of Coq\n" echo "-debug" @@ -119,10 +115,6 @@ best_compiler=opt cflags="-fno-defer-pop -Wall -Wno-unused" natdynlink=yes -gcc_exec=gcc -ar_exec=ar -ranlib_exec=ranlib - local=false coqrunbyteflags_spec=no coqtoolsbyteflags_spec=no @@ -254,18 +246,6 @@ while : ; do no) with_geoproof=false;; esac shift;; - -with-cc|-with-gcc|--with-cc|--with-gcc) - gcc_spec=yes - gcc_exec=$2 - shift;; - -with-ar|--with-ar) - ar_spec=yes - ar_exec=$2 - shift;; - -with-ranlib|--with-ranlib) - ranlib_spec=yes - ranlib_exec=$2 - shift;; -makecmd|--makecmd) makecmd="$2" shift;; -byte-only|-byteonly|--byteonly|--byte-only) best_compiler=byte;; @@ -292,17 +272,19 @@ case $DATEPGM in "") echo "I can't find the program \"date\" in your path." echo "Please give me the current date" read COMPILEDATE;; - *) COMPILEDATE=`LC_ALL=C LANG=C date +"%h %d %Y %H:%M:%S"`;; + *) COMPILEDATE=`LC_ALL=C LANG=C date +"%b %d %Y %H:%M:%S"`;; esac # Architecture case $arch_spec in no) - # First we test if we are running a Cygwin system + # First we test if we are running a Cygwin or Mingw/Msys system if [ `uname -s | cut -c -6` = "CYGWIN" ] ; then ARCH="win32" CYGWIN=yes + elif [ `uname -s | cut -c -7` = "MINGW32" ]; then + ARCH="win32" else # If not, we determine the architecture if test -x /bin/uname ; then @@ -437,12 +419,26 @@ if test ! -f "$CAMLC" ; then exit 1 fi -# Under Windows, OCaml only understands Windows filenames (C:\...) -case $ARCH in - win32) CAMLBIN=`cygpath -m ${CAMLBIN}`;; +# Under Windows, we need to convert from cygwin/mingw paths (/c/Program Files/Ocaml) +# to more windows-looking paths (c:/Program Files/Ocaml). Note that / are kept + +mk_win_path () { + case $ARCH,$CYGWIN in + win32,yes) cygpath -m "$1" ;; + win32*) "$ocamlexec" "tools/mingwpath.ml" "$1" ;; + *) echo "$1" ;; + esac +} + +case $ARCH,$src_spec in + win32,yes) echo "Error: the -src option is currently not supported on Windows" + exit 1;; + win32) CAMLBIN=`mk_win_path "$CAMLBIN"`;; esac -CAMLVERSION=`"$bytecamlc" -version` +# Beware of the final \r in Win32 +CAMLVERSION=`"$CAMLC" -version | tr -d "\r"` +CAMLLIB=`"$CAMLC" -where | tr -d "\r"` case $CAMLVERSION in 1.*|2.*|3.0*|3.10*|3.11.[01]) @@ -454,7 +450,7 @@ case $CAMLVERSION in echo " Configuration script failed!" exit 1 fi;; - 3.11.2|3.12*) + 3.11.2|3.12*|4.*) CAMLP4COMPAT="-loc loc" echo "You have Objective-Caml $CAMLVERSION. Good!";; *) @@ -468,16 +464,9 @@ CAMLTAG=OCAML`echo $CAMLVERSION | sed -e "s/\([1-9]\)\.\([0-9]*\).*/\1\2/g"` # For coqmktop & bytecode compiler -case $ARCH in - win32) # Awfull trick to get around a ^M problem at the end of CAMLLIB - CAMLLIB=`"$CAMLC" -where | sed -e 's/^\(.*\)$/\1/'` ;; - *) - CAMLLIB=`"$CAMLC" -where` -esac - if [ "$coq_debug_flag" = "-g" ]; then case $CAMLTAG in - OCAML31*) + OCAML31*|OCAML4*) # Compilation debug flag coq_debug_flag_opt="-g" ;; @@ -485,7 +474,7 @@ if [ "$coq_debug_flag" = "-g" ]; then fi # Native dynlink -if [ "$natdynlink" = "yes" -a -f `"$CAMLC" -where`/dynlink.cmxa ]; then +if [ "$natdynlink" = "yes" -a -f "$CAMLLIB"/dynlink.cmxa ]; then HASNATDYNLINK=true else HASNATDYNLINK=false @@ -520,7 +509,8 @@ esac # (this should become configurable some day) CAMLP4BIN=${CAMLBIN} -if [ "$usecamlp5" = "yes" ]; then +case $usecamlp5 in + yes) CAMLP4=camlp5 CAMLP4MOD=gramlib if [ "$camlp5dir" != "" ]; then @@ -539,38 +529,47 @@ if [ "$usecamlp5" = "yes" ]; then CAMLP4LIB=+site-lib/camlp5 FULLCAMLP4LIB=${CAMLLIB}/site-lib/camlp5 else - echo "Objective Caml $CAMLVERSION found but no Camlp5 installed." - echo "Configuration script failed!" - exit 1 + echo "No Camlp5 installation found. Looking for Camlp4 instead..." + usecamlp5=no fi +esac - camlp4oexec=`echo $camlp4oexec | sed -e 's/4/5/'` - case `$camlp4oexec -v 2>&1` in - *4.0*|*5.00*) +# If we're (still...) going to use Camlp5, let's check its version + +case $usecamlp5 in + yes) + camlp4oexec=`echo "$camlp4oexec" | tr 4 5` + case `"$camlp4oexec" -v 2>&1` in + *"version 4.0"*|*5.00*) echo "Camlp5 version < 5.01 not supported." echo "Configuration script failed!" exit 1;; esac +esac + +# We might now try to use Camlp4, either by explicit choice or +# by lack of proper Camlp5 installation -else # let's use camlp4 +case $usecamlp5 in + no) CAMLP4=camlp4 CAMLP4MOD=camlp4lib CAMLP4LIB=+camlp4 FULLCAMLP4LIB=${CAMLLIB}/camlp4 if [ ! -f "${FULLCAMLP4LIB}/${CAMLP4MOD}.cma" ]; then - echo "Objective Caml $CAMLVERSION found but no Camlp4 installed." + echo "No Camlp4 installation found." echo "Configuration script failed!" exit 1 fi camlp4oexec=${camlp4oexec}rf - if [ "`$camlp4oexec 2>&1`" != "" ]; then + if [ "`"$camlp4oexec" 2>&1`" != "" ]; then echo "Error: $camlp4oexec not found or not executable." echo "Configuration script failed!" exit 1 fi -fi +esac # do we have a native compiler: test of ocamlopt and its version @@ -595,18 +594,17 @@ fi # OS dependent libraries -case $ARCH in +OSDEPLIBS="-cclib -lunix" +case $ARCH,$CYGWIN in sun4*) OS=`uname -r` case $OS in 5*) OS="Sun Solaris $OS" - OSDEPLIBS="-cclib -lunix -cclib -lnsl -cclib -lsocket";; + OSDEPLIBS="$OSDEPLIBS -cclib -lnsl -cclib -lsocket";; *) OS="Sun OS $OS" - OSDEPLIBS="-cclib -lunix" esac;; - win32) OS="Win32" - OSDEPLIBS="-cclib -lunix" + win32,yes) OS="Win32 (Cygwin)" cflags="-mno-cygwin $cflags";; - *) OSDEPLIBS="-cclib -lunix" + win32,*) OS="Win32 (MinGW)";; esac # lablgtk2 and CoqIDE @@ -628,11 +626,11 @@ if [ "$coqide_spec" = "yes" -a "$COQIDE" = "no" ]; then echo "CoqIde disabled as requested." else case $lablgtkdir_spec in - no) - if [ -f "${CAMLLIB}/lablgtk2/glib.mli" ]; then + no) + if lablgtkdir=$(ocamlfind query lablgtk2 2> /dev/null); then + lablgtkdir_spec=yes + elif [ -f "${CAMLLIB}/lablgtk2/glib.mli" ]; then lablgtkdir=${CAMLLIB}/lablgtk2 - elif [ -f "${CAMLLIB}/site-lib/lablgtk2/glib.mli" ]; then - lablgtkdir=${CAMLLIB}/site-lib/lablgtk2 fi;; yes) if [ ! -f "$lablgtkdir/glib.mli" ]; then @@ -656,10 +654,10 @@ else else echo "LablGtk2 found, native threads: native CoqIde will be available." COQIDE=opt - if [ "$nomacintegration_spec" = "no" ] && pkg-config --exists ige-mac-integration; + if [ "$nomacintegration_spec" = "no" ] && pkg-config --exists gtk-mac-integration; then - cflags=$cflags" `pkg-config --cflags ige-mac-integration`" - IDEARCHFLAGS='-ccopt "`pkg-config --libs ige-mac-integration`"' + cflags=$cflags" `pkg-config --cflags gtk-mac-integration`" + IDEARCHFLAGS='-ccopt "`pkg-config --libs gtk-mac-integration`"' IDEARCHFILE=ide/ide_mac_stubs.o IDEARCHDEF=QUARTZ elif [ "$ARCH" = "win32" ]; @@ -685,9 +683,6 @@ esac # strip command case $ARCH in - win32) - # true -> strip : it exists under cygwin ! - STRIPCOMMAND="strip";; Darwin) if [ "$HASNATDYNLINK" = "true" ] then STRIPCOMMAND="true" @@ -703,13 +698,6 @@ case $ARCH in fi esac -# mktexlsr -#MKTEXLSR=`which mktexlsr` -#case $MKTEXLSR in -# "") MKTEXLSR=true;; -#esac - -# " ### Test if documentation can be compiled (latex, hevea) if test "$with_doc" = "all" @@ -727,26 +715,28 @@ fi ########################################### # bindir, libdir, mandir, docdir, etc. -case $src_spec in - no) COQTOP=${COQSRC} -esac - # OCaml only understand Windows filenames (C:\...) case $ARCH in - win32) COQTOP=`cygpath -m ${COQTOP}` + win32) COQSRC=`mk_win_path "$COQSRC"` + CAMLBIN=`mk_win_path "$CAMLBIN"` + CAMLP4BIN=`mk_win_path "$CAMLP4BIN"` +esac + +case $src_spec in + no) COQTOP=${COQSRC} esac case $ARCH$CYGWIN in win32) - W32PREF='C:\\coq\\' - bindir_def=${W32PREF}bin - libdir_def=${W32PREF}lib - configdir_def=${W32PREF}config - datadir_def=${W32PREF}share - mandir_def=${W32PREF}man - docdir_def=${W32PREF}doc - emacslib_def=${W32PREF}emacs - coqdocdir_def=${W32PREF}latex;; + W32PREF='C:\coq\' + bindir_def="${W32PREF}bin" + libdir_def="${W32PREF}lib" + configdir_def="${W32PREF}config" + datadir_def="${W32PREF}share" + mandir_def="${W32PREF}man" + docdir_def="${W32PREF}doc" + emacslib_def="${W32PREF}emacs" + coqdocdir_def="${W32PREF}latex";; *) bindir_def=/usr/local/bin libdir_def=/usr/local/lib/coq @@ -755,7 +745,7 @@ case $ARCH$CYGWIN in mandir_def=/usr/local/share/man docdir_def=/usr/local/share/doc/coq emacslib_def=/usr/local/share/emacs/site-lisp - coqdocdir_def=/usr/local/share/texmf/tex/latex/misc;; + coqdocdir_def=/usr/local/share/texmf/tex/latex/misc;; esac emacs_def=emacs @@ -764,7 +754,7 @@ case $bindir_spec/$prefix_spec/$local in yes/*/*) BINDIR=$bindir ;; */yes/*) BINDIR=$prefix/bin ;; */*/true) BINDIR=$COQTOP/bin ;; - *) printf "Where should I install the Coq binaries [$bindir_def]? " + *) printf "Where should I install the Coq binaries [%s]? " "$bindir_def" read BINDIR case $BINDIR in "") BINDIR=$bindir_def;; @@ -781,7 +771,7 @@ case $libdir_spec/$prefix_spec/$local in *) LIBDIR=$prefix/lib/coq ;; esac ;; */*/true) LIBDIR=$COQTOP ;; - *) printf "Where should I install the Coq library [$libdir_def]? " + *) printf "Where should I install the Coq library [%s]? " "$libdir_def" read LIBDIR libdir_spec=yes case $LIBDIR in @@ -790,11 +780,6 @@ case $libdir_spec/$prefix_spec/$local in esac;; esac -case $libdir_spec in - yes) LIBDIR_OPTION="Some \"$LIBDIR\"";; - *) LIBDIR_OPTION="None";; -esac - case $configdir_spec/$prefix_spec/$local in yes/*/*) CONFIGDIR=$configdir;; */yes/*) configdir_spec=yes @@ -804,7 +789,7 @@ case $configdir_spec/$prefix_spec/$local in esac;; */*/true) CONFIGDIR=$COQTOP/ide configdir_spec=yes;; - *) printf "Where should I install the Coqide configuration files [$configdir_def]? " + *) printf "Where should I install the Coqide configuration files [%s]? " "$configdir_def" read CONFIGDIR case $CONFIGDIR in "") CONFIGDIR=$configdir_def;; @@ -812,17 +797,12 @@ case $configdir_spec/$prefix_spec/$local in esac;; esac -case $configdir_spec in - yes) CONFIGDIR_OPTION="Some \"$CONFIGDIR\"";; - *) CONFIGDIR_OPTION="None";; -esac - case $datadir_spec/$prefix_spec/$local in yes/*/*) DATADIR=$datadir;; */yes/*) DATADIR=$prefix/share/coq;; */*/true) DATADIR=$COQTOP/ide datadir_spec=yes;; - *) printf "Where should I install the Coqide data files [$datadir_def]? " + *) printf "Where should I install the Coqide data files [%s]? " "$datadir_def" read DATADIR case $DATADIR in "") DATADIR=$datadir_def;; @@ -830,17 +810,11 @@ case $datadir_spec/$prefix_spec/$local in esac;; esac -case $datadir_spec in - yes) DATADIR_OPTION="Some \"$DATADIR\"";; - *) DATADIR_OPTION="None";; -esac - - case $mandir_spec/$prefix_spec/$local in yes/*/*) MANDIR=$mandir;; */yes/*) MANDIR=$prefix/share/man ;; */*/true) MANDIR=$COQTOP/man ;; - *) printf "Where should I install the Coq man pages [$mandir_def]? " + *) printf "Where should I install the Coq man pages [%s]? " "$mandir_def" read MANDIR case $MANDIR in "") MANDIR=$mandir_def;; @@ -852,7 +826,7 @@ case $docdir_spec/$prefix_spec/$local in yes/*/*) DOCDIR=$docdir;; */yes/*) DOCDIR=$prefix/share/doc/coq;; */*/true) DOCDIR=$COQTOP/doc;; - *) printf "Where should I install the Coq documentation [$docdir_def]? " + *) printf "Where should I install the Coq documentation [%s]? " "$docdir_def" read DOCDIR case $DOCDIR in "") DOCDIR=$docdir_def;; @@ -868,7 +842,7 @@ case $emacslib_spec/$prefix_spec/$local in *) EMACSLIB=$prefix/share/emacs/site-lisp ;; esac ;; */*/true) EMACSLIB=$COQTOP/tools/emacs ;; - *) printf "Where should I install the Coq Emacs mode [$emacslib_def]? " + *) printf "Where should I install the Coq Emacs mode [%s]? " "$emacslib_def" read EMACSLIB case $EMACSLIB in "") EMACSLIB=$emacslib_def;; @@ -884,7 +858,7 @@ case $coqdocdir_spec/$prefix_spec/$local in *) COQDOCDIR=$prefix/share/emacs/site-lisp ;; esac ;; */*/true) COQDOCDIR=$COQTOP/tools/coqdoc ;; - *) printf "Where should I install Coqdoc TeX/LaTeX files [$coqdocdir_def]? " + *) printf "Where should I install Coqdoc TeX/LaTeX files [%s]? " "$coqdocdir_def" read COQDOCDIR case $COQDOCDIR in "") COQDOCDIR=$coqdocdir_def;; @@ -914,14 +888,14 @@ case $coqtoolsbyteflags_spec/$custom_spec/$CUSTOM_OS in esac # case $emacs_spec in -# no) printf "Which Emacs command should I use to compile coq.el [$emacs_def]? " +# no) printf "Which Emacs command should I use to compile coq.el [%s]? " "$emacs_def" # read EMACS # case $EMACS in -# "") EMACS=$emacs_def;; +# "") EMACS="$emacs_def";; # *) true;; # esac;; -# yes) EMACS=$emacs;; +# yes) EMACS="$emacs";; # esac @@ -1016,51 +990,63 @@ config_template="$COQSRC/config/Makefile.template" ### After this line, be careful when using variables, ### since some of them (e.g. $COQSRC) will be escaped - -# An escaped version of a variable -escape_var () { -"$ocamlexec" 2>&1 1>/dev/null < "$config_file" +cat << END_OF_MAKEFILE > $config_file +###### config/Makefile : Configuration file for Coq ############## +# # +# This file is generated by the script "configure" # +# DO NOT EDIT IT !! DO NOT EDIT IT !! DO NOT EDIT IT !! # +# If something is wrong below, then rerun the script "configure" # +# with the good options (see the file INSTALL). # +# # +################################################################## + +#Variable used to detect whether ./configure has run successfully. +COQ_CONFIGURED=yes + +# Local use (no installation) +LOCAL=$local + +# Bytecode link flags for VM ("-custom" or "-dllib -lcoqrun") +COQRUNBYTEFLAGS=$COQRUNBYTEFLAGS +COQTOOLSBYTEFLAGS=$COQTOOLSBYTEFLAGS +$BUILDLDPATH + +# Paths for true installation +# BINDIR=path where coqtop, coqc, coqmktop, coq-tex, coqdep, gallina and +# do_Makefile will reside +# LIBDIR=path where the Coq library will reside +# MANDIR=path where to install manual pages +# EMACSDIR=path where to put Coq's Emacs mode (coq.el) +BINDIR="$BINDIR" +COQLIBINSTALL="$LIBDIR" +CONFIGDIR="$CONFIGDIR" +DATADIR="$DATADIR" +MANDIR="$MANDIR" +DOCDIR="$DOCDIR" +EMACSLIB="$EMACSLIB" +EMACS=$EMACS + +# Path to Coq distribution +COQSRC="$COQSRC" +VERSION=$VERSION + +# Ocaml version number +CAMLVERSION=$CAMLTAG + +# Ocaml libraries +CAMLLIB="$CAMLLIB" + +# Ocaml .h directory +CAMLHLIB="$CAMLLIB" + +# Camlp4 : flavor, binaries, libraries ... +# NB : CAMLP4BIN can be empty if camlp4 is in the PATH +# NB : avoid using CAMLP4LIB (conflict under Windows) +CAMLP4BIN="$CAMLP4BIN" +CAMLP4=$CAMLP4 +CAMLP4O=$camlp4oexec +CAMLP4COMPAT=$CAMLP4COMPAT +MYCAMLP4LIB="$CAMLP4LIB" + +# LablGTK +COQIDEINCLUDES=$LABLGTKINCLUDES + +# Objective-Caml compile command +OCAML="$ocamlexec" +OCAMLC="$bytecamlc" +OCAMLMKLIB="$ocamlmklibexec" +OCAMLOPT="$nativecamlc" +OCAMLDEP="$ocamldepexec" +OCAMLDOC="$ocamldocexec" +OCAMLLEX="$ocamllexexec" +OCAMLYACC="$ocamlyaccexec" + +# Caml link command and Caml make top command +CAMLLINK="$bytecamlc" +CAMLOPTLINK="$nativecamlc" +CAMLMKTOP="$ocamlmktopexec" + +# Caml flags +CAMLFLAGS=-rectypes $coq_annotate_flag + +# Compilation debug flags +CAMLDEBUG=$coq_debug_flag +CAMLDEBUGOPT=$coq_debug_flag_opt + +# User compilation flag +USERFLAGS= + +# Flags for GCC +CFLAGS=$cflags + +# Compilation profile flag +CAMLTIMEPROF=$coq_profile_flag + +# The best compiler: native (=opt) or bytecode (=byte) if no native compiler +BEST=$best_compiler + +# Your architecture +# Can be obtain by UNIX command arch +ARCH=$ARCH +HASNATDYNLINK=$NATDYNLINKFLAG + +# Supplementary libs for some systems, currently: +# . Sun Solaris: -cclib -lunix -cclib -lnsl -cclib -lsocket +# . others : -cclib -lunix +OSDEPLIBS=$OSDEPLIBS + +# executable files extension, currently: +# Unix systems: +# Win32 systems : .exe +EXE=$EXE +DLLEXT=$DLLEXT + +# the command MKDIR (try to replace it with mkdirhier if you have problems) +MKDIR=mkdir -p + +# where to put the coqdoc.sty style file +COQDOCDIR="$COQDOCDIR" + +#the command STRIP +# Unix systems and profiling: true +# Unix systems and no profiling: strip +STRIP=$STRIPCOMMAND + +# CoqIde (no/byte/opt) +HASCOQIDE=$COQIDE +IDEOPTFLAGS=$IDEARCHFLAGS +IDEOPTDEPS=$IDEARCHFILE +IDEOPTINT=$IDEARCHDEF + +# Defining REVISION +CHECKEDOUT=$checkedout + +# Option to control compilation and installation of the documentation +WITHDOC=$with_doc + +# make or sed are bogus and believe lines not terminating by a return +# are inexistent +END_OF_MAKEFILE chmod a-w "$config_file" diff --git a/dev/db_printers.ml b/dev/db_printers.ml index b3edd7d0..f54df8a8 100644 --- a/dev/db_printers.ml +++ b/dev/db_printers.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* \(.*\)$/\1\2/ +s/^;\{0,1\} *\(.*\)\(.*\)$/\1\2/ diff --git a/dev/top_printers.ml b/dev/top_printers.ml index 3116cbf2..0038e78a 100644 --- a/dev/top_printers.ml +++ b/dev/top_printers.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* try pp(pr_ltype x) with e -> pp (str (Printexc.to_string let ppfconstr c = ppconstr (Closure.term_of_fconstr c) -let ppbigint n = pp (Bigint.pr_bigint n);; +let ppbigint n = pp (str (Bigint.to_string n));; let prset pr l = str "[" ++ hov 0 (prlist_with_sep spc pr l) ++ str "]" let ppintset l = pp (prset int (Intset.elements l)) diff --git a/doc/refman/RefMan-sch.tex b/doc/refman/RefMan-sch.tex deleted file mode 100644 index 707ee824..00000000 --- a/doc/refman/RefMan-sch.tex +++ /dev/null @@ -1,418 +0,0 @@ -\chapter{Proof schemes} - -\section{Generation of induction principles with {\tt Scheme}} -\label{Scheme} -\index{Schemes} -\comindex{Scheme} - -The {\tt Scheme} command is a high-level tool for generating -automatically (possibly mutual) induction principles for given types -and sorts. Its syntax follows the schema: -\begin{quote} -{\tt Scheme {\ident$_1$} := Induction for \ident'$_1$ Sort {\sort$_1$} \\ - with\\ - \mbox{}\hspace{0.1cm} \dots\\ - with {\ident$_m$} := Induction for {\ident'$_m$} Sort - {\sort$_m$}} -\end{quote} -where \ident'$_1$ \dots\ \ident'$_m$ are different inductive type -identifiers belonging to the same package of mutual inductive -definitions. This command generates {\ident$_1$}\dots{} {\ident$_m$} -to be mutually recursive definitions. Each term {\ident$_i$} proves a -general principle of mutual induction for objects in type {\term$_i$}. - -\begin{Variants} -\item {\tt Scheme {\ident$_1$} := Minimality for \ident'$_1$ Sort {\sort$_1$} \\ - with\\ - \mbox{}\hspace{0.1cm} \dots\ \\ - with {\ident$_m$} := Minimality for {\ident'$_m$} Sort - {\sort$_m$}} - - Same as before but defines a non-dependent elimination principle more - natural in case of inductively defined relations. - -\item {\tt Scheme Equality for \ident$_1$\comindex{Scheme Equality}} - - Tries to generate a boolean equality and a proof of the - decidability of the usual equality. If \ident$_i$ involves - some other inductive types, their equality has to be defined first. - -\item {\tt Scheme Induction for \ident$_1$ Sort {\sort$_1$} \\ - with\\ - \mbox{}\hspace{0.1cm} \dots\\ - with Induction for {\ident$_m$} Sort - {\sort$_m$}} - - If you do not provide the name of the schemes, they will be automatically - computed from the sorts involved (works also with Minimality). - -\end{Variants} -\label{Scheme-examples} - -\firstexample -\example{Induction scheme for \texttt{tree} and \texttt{forest}} - -The definition of principle of mutual induction for {\tt tree} and -{\tt forest} over the sort {\tt Set} is defined by the command: - -\begin{coq_eval} -Reset Initial. -Variables A B : Set. -\end{coq_eval} - -\begin{coq_example*} -Inductive tree : Set := - node : A -> forest -> tree -with forest : Set := - | leaf : B -> forest - | cons : tree -> forest -> forest. - -Scheme tree_forest_rec := Induction for tree Sort Set - with forest_tree_rec := Induction for forest Sort Set. -\end{coq_example*} - -You may now look at the type of {\tt tree\_forest\_rec}: - -\begin{coq_example} -Check tree_forest_rec. -\end{coq_example} - -This principle involves two different predicates for {\tt trees} and -{\tt forests}; it also has three premises each one corresponding to a -constructor of one of the inductive definitions. - -The principle {\tt forest\_tree\_rec} shares exactly the same -premises, only the conclusion now refers to the property of forests. - -\begin{coq_example} -Check forest_tree_rec. -\end{coq_example} - -\example{Predicates {\tt odd} and {\tt even} on naturals} - -Let {\tt odd} and {\tt even} be inductively defined as: - -% Reset Initial. -\begin{coq_eval} -Open Scope nat_scope. -\end{coq_eval} - -\begin{coq_example*} -Inductive odd : nat -> Prop := - oddS : forall n:nat, even n -> odd (S n) -with even : nat -> Prop := - | evenO : even 0 - | evenS : forall n:nat, odd n -> even (S n). -\end{coq_example*} - -The following command generates a powerful elimination -principle: - -\begin{coq_example} -Scheme odd_even := Minimality for odd Sort Prop - with even_odd := Minimality for even Sort Prop. -\end{coq_example} - -The type of {\tt odd\_even} for instance will be: - -\begin{coq_example} -Check odd_even. -\end{coq_example} - -The type of {\tt even\_odd} shares the same premises but the -conclusion is {\tt (n:nat)(even n)->(Q n)}. - -\subsection{Automatic declaration of schemes} -\comindex{Set Equality Schemes} -\comindex{Set Elimination Schemes} - -It is possible to deactivate the automatic declaration of the induction - principles when defining a new inductive type with the - {\tt Unset Elimination Schemes} command. It may be -reactivated at any time with {\tt Set Elimination Schemes}. -\\ - -You can also activate the automatic declaration of those boolean equalities -(see the second variant of {\tt Scheme}) with the {\tt Set Equality Schemes} - command. However you have to be careful with this option since -\Coq~ may now reject well-defined inductive types because it cannot compute -a boolean equality for them. - -\subsection{\tt Combined Scheme} -\label{CombinedScheme} -\comindex{Combined Scheme} - -The {\tt Combined Scheme} command is a tool for combining -induction principles generated by the {\tt Scheme} command. -Its syntax follows the schema : -\begin{quote} -{\tt Combined Scheme {\ident$_0$} from {\ident$_1$}, .., {\ident$_n$}} -\end{quote} -where -\ident$_1$ \ldots \ident$_n$ are different inductive principles that must belong to -the same package of mutual inductive principle definitions. This command -generates {\ident$_0$} to be the conjunction of the principles: it is -built from the common premises of the principles and concluded by the -conjunction of their conclusions. - -\Example -We can define the induction principles for trees and forests using: -\begin{coq_example} -Scheme tree_forest_ind := Induction for tree Sort Prop - with forest_tree_ind := Induction for forest Sort Prop. -\end{coq_example} - -Then we can build the combined induction principle which gives the -conjunction of the conclusions of each individual principle: -\begin{coq_example} -Combined Scheme tree_forest_mutind from tree_forest_ind, forest_tree_ind. -\end{coq_example} - -The type of {\tt tree\_forest\_mutrec} will be: -\begin{coq_example} -Check tree_forest_mutind. -\end{coq_example} - -\section{Generation of induction principles with {\tt Functional Scheme}} -\label{FunScheme} -\comindex{Functional Scheme} - -The {\tt Functional Scheme} command is a high-level experimental -tool for generating automatically induction principles -corresponding to (possibly mutually recursive) functions. Its -syntax follows the schema: -\begin{quote} -{\tt Functional Scheme {\ident$_1$} := Induction for \ident'$_1$ Sort {\sort$_1$} \\ - with\\ - \mbox{}\hspace{0.1cm} \dots\ \\ - with {\ident$_m$} := Induction for {\ident'$_m$} Sort - {\sort$_m$}} -\end{quote} -where \ident'$_1$ \dots\ \ident'$_m$ are different mutually defined function -names (they must be in the same order as when they were defined). -This command generates the induction principles -\ident$_1$\dots\ident$_m$, following the recursive structure and case -analyses of the functions \ident'$_1$ \dots\ \ident'$_m$. - -\Rem -There is a difference between obtaining an induction scheme by using -\texttt{Functional Scheme} on a function defined by \texttt{Function} -or not. Indeed \texttt{Function} generally produces smaller -principles, closer to the definition written by the user. - -\firstexample -\example{Induction scheme for \texttt{div2}} -\label{FunScheme-examples} - -We define the function \texttt{div2} as follows: - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\begin{coq_example*} -Require Import Arith. -Fixpoint div2 (n:nat) : nat := - match n with - | O => 0 - | S O => 0 - | S (S n') => S (div2 n') - end. -\end{coq_example*} - -The definition of a principle of induction corresponding to the -recursive structure of \texttt{div2} is defined by the command: - -\begin{coq_example} -Functional Scheme div2_ind := Induction for div2 Sort Prop. -\end{coq_example} - -You may now look at the type of {\tt div2\_ind}: - -\begin{coq_example} -Check div2_ind. -\end{coq_example} - -We can now prove the following lemma using this principle: - -\begin{coq_example*} -Lemma div2_le' : forall n:nat, div2 n <= n. -intro n. - pattern n , (div2 n). -\end{coq_example*} - -\begin{coq_example} -apply div2_ind; intros. -\end{coq_example} - -\begin{coq_example*} -auto with arith. -auto with arith. -simpl; auto with arith. -Qed. -\end{coq_example*} - -We can use directly the \texttt{functional induction} -(\ref{FunInduction}) tactic instead of the pattern/apply trick: -\tacindex{functional induction} - -\begin{coq_example*} -Reset div2_le'. -Lemma div2_le : forall n:nat, div2 n <= n. -intro n. -\end{coq_example*} - -\begin{coq_example} -functional induction (div2 n). -\end{coq_example} - -\begin{coq_example*} -auto with arith. -auto with arith. -auto with arith. -Qed. -\end{coq_example*} - -\Rem There is a difference between obtaining an induction scheme for a -function by using \texttt{Function} (see Section~\ref{Function}) and by -using \texttt{Functional Scheme} after a normal definition using -\texttt{Fixpoint} or \texttt{Definition}. See \ref{Function} for -details. - - -\example{Induction scheme for \texttt{tree\_size}} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -We define trees by the following mutual inductive type: - -\begin{coq_example*} -Variable A : Set. -Inductive tree : Set := - node : A -> forest -> tree -with forest : Set := - | empty : forest - | cons : tree -> forest -> forest. -\end{coq_example*} - -We define the function \texttt{tree\_size} that computes the size -of a tree or a forest. Note that we use \texttt{Function} which -generally produces better principles. - -\begin{coq_example*} -Function tree_size (t:tree) : nat := - match t with - | node A f => S (forest_size f) - end - with forest_size (f:forest) : nat := - match f with - | empty => 0 - | cons t f' => (tree_size t + forest_size f') - end. -\end{coq_example*} - -\Rem \texttt{Function} generates itself non mutual induction -principles {\tt tree\_size\_ind} and {\tt forest\_size\_ind}: - -\begin{coq_example} -Check tree_size_ind. -\end{coq_example} - -The definition of mutual induction principles following the recursive -structure of \texttt{tree\_size} and \texttt{forest\_size} is defined -by the command: - -\begin{coq_example*} -Functional Scheme tree_size_ind2 := Induction for tree_size Sort Prop -with forest_size_ind2 := Induction for forest_size Sort Prop. -\end{coq_example*} - -You may now look at the type of {\tt tree\_size\_ind2}: - -\begin{coq_example} -Check tree_size_ind2. -\end{coq_example} - -\section{Generation of inversion principles with \tt Derive Inversion} -\label{Derive-Inversion} -\comindex{Derive Inversion} - -The syntax of {\tt Derive Inversion} follows the schema: -\begin{quote} -{\tt Derive Inversion {\ident} with forall - $(\vec{x} : \vec{T})$, $I~\vec{t}$ Sort \sort} -\end{quote} - -This command generates an inversion principle for the -\texttt{inversion \dots\ using} tactic. -\tacindex{inversion \dots\ using} -Let $I$ be an inductive predicate and $\vec{x}$ the variables -occurring in $\vec{t}$. This command generates and stocks the -inversion lemma for the sort \sort~ corresponding to the instance -$\forall (\vec{x}:\vec{T}), I~\vec{t}$ with the name {\ident} in the {\bf -global} environment. When applied, it is equivalent to having inverted -the instance with the tactic {\tt inversion}. - -\begin{Variants} -\item \texttt{Derive Inversion\_clear {\ident} with forall - $(\vec{x}:\vec{T})$, $I~\vec{t}$ Sort \sort}\\ - \comindex{Derive Inversion\_clear} - When applied, it is equivalent to having - inverted the instance with the tactic \texttt{inversion} - replaced by the tactic \texttt{inversion\_clear}. -\item \texttt{Derive Dependent Inversion {\ident} with forall - $(\vec{x}:\vec{T})$, $I~\vec{t}$ Sort \sort}\\ - \comindex{Derive Dependent Inversion} - When applied, it is equivalent to having - inverted the instance with the tactic \texttt{dependent inversion}. -\item \texttt{Derive Dependent Inversion\_clear {\ident} with forall - $(\vec{x}:\vec{T})$, $I~\vec{t}$ Sort \sort}\\ - \comindex{Derive Dependent Inversion\_clear} - When applied, it is equivalent to having - inverted the instance with the tactic \texttt{dependent inversion\_clear}. -\end{Variants} - -\Example - -Let us consider the relation \texttt{Le} over natural numbers and the -following variable: - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\begin{coq_example*} -Inductive Le : nat -> nat -> Set := - | LeO : forall n:nat, Le 0 n - | LeS : forall n m:nat, Le n m -> Le (S n) (S m). -Variable P : nat -> nat -> Prop. -\end{coq_example*} - -To generate the inversion lemma for the instance -\texttt{(Le (S n) m)} and the sort \texttt{Prop}, we do: - -\begin{coq_example*} -Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort Prop. -\end{coq_example*} - -\begin{coq_example} -Check leminv. -\end{coq_example} - -Then we can use the proven inversion lemma: - -\begin{coq_eval} -Lemma ex : forall n m:nat, Le (S n) m -> P n m. -intros. -\end{coq_eval} - -\begin{coq_example} -Show. -\end{coq_example} - -\begin{coq_example} -inversion H using leminv. -\end{coq_example} - diff --git a/doc/stdlib/index-list.html.template b/doc/stdlib/index-list.html.template index 0ee101c8..833b5c4c 100644 --- a/doc/stdlib/index-list.html.template +++ b/doc/stdlib/index-list.html.template @@ -400,6 +400,7 @@ through the Require Import command.

theories/Lists/List.v theories/Lists/ListSet.v theories/Lists/SetoidList.v + theories/Lists/SetoidPermutation.v theories/Lists/Streams.v theories/Lists/StreamMemo.v theories/Lists/ListTactics.v @@ -523,7 +524,10 @@ through the Require Import command.

theories/Reals/Rsigma.v theories/Reals/R_sqr.v theories/Reals/Rtrigo_fun.v + theories/Reals/Rtrigo1.v theories/Reals/Rtrigo.v + theories/Reals/Ratan.v + theories/Reals/Machin.v theories/Reals/SplitAbsolu.v theories/Reals/SplitRmult.v theories/Reals/Alembert.v @@ -544,6 +548,8 @@ through the Require Import command.

theories/Reals/Ranalysis2.v theories/Reals/Ranalysis3.v theories/Reals/Ranalysis4.v + theories/Reals/Ranalysis5.v + theories/Reals/Ranalysis_reg.v theories/Reals/Rcomplete.v theories/Reals/RiemannInt.v theories/Reals/RiemannInt_SF.v diff --git a/ide/command_windows.ml b/ide/command_windows.ml index a34e5ebe..470bd5b4 100644 --- a/ide/command_windows.ml +++ b/ide/command_windows.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* let path = match status.Interface.status_path with - | None -> "" - | Some p -> " in " ^ p + | [] | _ :: [] -> "" (* Drop the topmost level, usually "Top" *) + | _ :: l -> " in " ^ String.concat "." l in let name = match status.Interface.status_proofname with | None -> "" @@ -2449,13 +2449,13 @@ let main files = try configure ~apply:update_notebook_pos () with _ -> flash_info "Cannot save preferences" end; - reset_revert_timer ()) ~stock:`PREFERENCES; + reset_revert_timer ()) ~accel:"," ~stock:`PREFERENCES; (* GAction.add_action "Save preferences" ~label:"_Save preferences" ~callback:(fun _ -> save_pref ()); *) ]; GAction.add_actions view_actions [ GAction.add_action "View" ~label:"_View"; - GAction.add_action "Previous tab" ~label:"_Previous tab" ~accel:("Left") ~stock:`GO_BACK + GAction.add_action "Previous tab" ~label:"_Previous tab" ~accel:("Left") ~stock:`GO_BACK ~callback:(fun _ -> session_notebook#previous_page ()); - GAction.add_action "Next tab" ~label:"_Next tab" ~accel:("Right") ~stock:`GO_FORWARD + GAction.add_action "Next tab" ~label:"_Next tab" ~accel:("Right") ~stock:`GO_FORWARD ~callback:(fun _ -> session_notebook#next_page ()); GAction.add_toggle_action "Show Toolbar" ~label:"Show _Toolbar" ~active:(!current.show_toolbar) ~callback: @@ -2624,6 +2624,7 @@ let main files = Coqide_ui.ui_m#insert_action_group windows_actions 0; Coqide_ui.ui_m#insert_action_group help_actions 0; w#add_accel_group Coqide_ui.ui_m#get_accel_group ; + GtkMain.Rc.parse_string "gtk-can-change-accels = 1"; if Coq_config.gtk_platform <> `QUARTZ then vbox#pack (Coqide_ui.ui_m#get_widget "/CoqIde MenuBar"); let tbar = GtkButton.Toolbar.cast ((Coqide_ui.ui_m#get_widget "/CoqIde ToolBar")#as_widget) diff --git a/ide/coqide.mli b/ide/coqide.mli index 57158a6a..18df1f6a 100644 --- a/ide/coqide.mli +++ b/ide/coqide.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* #include #include -#include +#include GtkOSXApplication *theApp; value open_file_fun, forbid_quit_fun, themenubar, pref_item, about_item; @@ -76,10 +76,10 @@ CAMLprim value caml_gtk_mac_ready(value menubar, value prefs, value about) caml_register_generational_global_root(&about_item); /* gtk_accel_map_foreach(NULL, osx_accel_map_foreach_lcb);*/ gtk_osxapplication_set_menu_bar(theApp,check_cast(GTK_MENU_SHELL,themenubar)); - about_grp = gtk_osxapplication_add_app_menu_group(theApp); - pref_grp = gtk_osxapplication_add_app_menu_group(theApp); - gtk_osxapplication_add_app_menu_item(theApp,about_grp,check_cast(GTK_MENU_ITEM,about_item)); - gtk_osxapplication_add_app_menu_item(theApp,pref_grp,check_cast(GTK_MENU_ITEM,pref_item)); + gtk_osxapplication_insert_app_menu_item(theApp,check_cast(GTK_WIDGET,about_item),1); + gtk_osxapplication_insert_app_menu_item(theApp,gtk_separator_menu_item_new(),2); + gtk_osxapplication_insert_app_menu_item(theApp,check_cast(GTK_WIDGET,pref_item),3); + gtk_osxapplication_insert_app_menu_item(theApp,gtk_separator_menu_item_new(),4); gtk_osxapplication_ready(theApp); CAMLreturn(Val_unit); } diff --git a/ide/ideproof.ml b/ide/ideproof.ml index b79d6469..697e7f4f 100644 --- a/ide/ideproof.ml +++ b/ide/ideproof.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* [] +| (lg, rg) :: l -> + let inner = flatten l in + List.rev_append lg inner @ rg + let display mode (view:GText.view) goals hints evars = let () = view#buffer#set_text "" in match goals with | None -> () (* No proof in progress *) - | Some { Interface.fg_goals = []; Interface.bg_goals = [] } -> - (* A proof has been finished, but not concluded *) - begin match evars with - | Some evs when evs <> [] -> + | Some { Interface.fg_goals = []; Interface.bg_goals = bg } -> + let bg = flatten (List.rev bg) in + let evars = match evars with None -> [] | Some evs -> evs in + begin match (bg, evars) with + | [], [] -> + view#buffer#insert "No more subgoals." + | [], _ :: _ -> + (* A proof has been finished, but not concluded *) view#buffer#insert "No more subgoals but non-instantiated existential variables:\n\n"; let iter evar = let msg = Printf.sprintf "%s\n" evar.Interface.evar_info in view#buffer#insert msg in - List.iter iter evs - | _ -> - view#buffer#insert "No more subgoals." + List.iter iter evars + | _, _ -> + (* No foreground proofs, but still unfocused ones *) + view#buffer#insert "This subproof is complete, but there are still unfocused goals:\n\n"; + let iter goal = + let msg = Printf.sprintf "%s\n" goal.Interface.goal_ccl in + view#buffer#insert msg + in + List.iter iter bg end - | Some { Interface.fg_goals = []; Interface.bg_goals = bg } -> - (* No foreground proofs, but still unfocused ones *) - view#buffer#insert "This subproof is complete, but there are still unfocused goals:\n\n"; - let iter goal = - let msg = Printf.sprintf "%s\n" goal.Interface.goal_ccl in - view#buffer#insert msg - in - List.iter iter bg | Some { Interface.fg_goals = fg } -> mode view fg hints diff --git a/ide/ideutils.ml b/ide/ideutils.ml index a208ad0e..164c837a 100644 --- a/ide/ideutils.ml +++ b/ide/ideutils.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* /C_anonical Structure/" "") -; (gtk_accel_path "/M_odule Type/" "") -; (gtk_accel_path "/c_ompute/" "") -; (gtk_accel_path "/Templates/_E.../" "") -(gtk_accel_path "/Templates/match" "c") -; (gtk_accel_path "/D_erive Inversion/" "") -; (gtk_accel_path "/Queries/Check" "F3") -; (gtk_accel_path "/i_dtac/" "") -; (gtk_accel_path "/L_oad/" "") -; (gtk_accel_path "/a_ssert/" "") -; (gtk_accel_path "/f_irstorder using/" "") -; (gtk_accel_path "/s_olve/" "") -; (gtk_accel_path "/Tactics/_l.../" "") -(gtk_accel_path "/Templates/Inductive" "i") -; (gtk_accel_path "/a_ssert (__:__)/" "") -; (gtk_accel_path "/T_est Printing Synth/" "") -; (gtk_accel_path "/Templates/_R.../" "") -; (gtk_accel_path "/Help/Browse Coq Library" "") -; (gtk_accel_path "/U_nset Extraction Optimize/" "") -; (gtk_accel_path "/s_imple inversion/" "") -(gtk_accel_path "/Edit/Copy" "c") -; (gtk_accel_path "/E_xtract Inductive/" "") -(gtk_accel_path "/Edit/Cut" "x") -; (gtk_accel_path "/i_nfo/" "") -; (gtk_accel_path "/R_emove Printing If/" "") -; (gtk_accel_path "/e_apply/" "") -; (gtk_accel_path "/F_ixpoint/" "") -; (gtk_accel_path "/c_hange __ in/" "") -; (gtk_accel_path "/l_apply/" "") -; (gtk_accel_path "/s_imple induction/" "") -; (gtk_accel_path "/f_ail/" "") -; (gtk_accel_path "/e_lim/" "") -; (gtk_accel_path "/r_ewrite <- __ in/" "") -; (gtk_accel_path "/A_dd Printing Let/" "") -; (gtk_accel_path "/T_ransparent/" "") -; (gtk_accel_path "/Tactics/_d.../" "") -(gtk_accel_path "/Tactics/Wizard" "dollar") +; (gtk_accel_path "/Templates/Template Read Module" "") +; (gtk_accel_path "/Tactics/Tactic pattern" "") +(gtk_accel_path "/Templates/Definition" "d") +; (gtk_accel_path "/Templates/Template Program Lemma" "") +(gtk_accel_path "/Templates/Lemma" "l") +; (gtk_accel_path "/Templates/Template Fact" "") +(gtk_accel_path "/Tactics/auto" "a") +; (gtk_accel_path "/Tactics/Tactic fold" "") +; (gtk_accel_path "/Help/About Coq" "") +; (gtk_accel_path "/Templates/Template Add Ring A Aplus Amult Aone Azero Ainv Aeq T [ c1 ... cn ]. " "") +; (gtk_accel_path "/Templates/Template Hypothesis" "") +; (gtk_accel_path "/Tactics/Tactic repeat" "") +; (gtk_accel_path "/Templates/Template Unset Extraction Optimize" "") +; (gtk_accel_path "/Templates/Template Add Printing Constructor" "") ; (gtk_accel_path "/Windows/Detach View" "") -; (gtk_accel_path "/T_heorem/" "") -(gtk_accel_path "/Templates/Scheme" "s") -; (gtk_accel_path "/R_emark/" "") -; (gtk_accel_path "/Compile/Compile" "") -; (gtk_accel_path "/A_dd Relation/" "") -; (gtk_accel_path "/r_ename __ into/" "") -; (gtk_accel_path "/File/Save as" "") -; (gtk_accel_path "/f_irstorder/" "") -; (gtk_accel_path "/G_rammar/" "") -; (gtk_accel_path "/f_irstorder with/" "") -; (gtk_accel_path "/r_ed/" "") -; (gtk_accel_path "/D_efinition/" "") -; (gtk_accel_path "/R_equire Import/" "") -; (gtk_accel_path "/d_iscriminate/" "") -; (gtk_accel_path "/i_ntro after/" "") -; (gtk_accel_path "/Export/Latex" "") -; (gtk_accel_path "/j_p/" "") -; (gtk_accel_path "/a_uto with/" "") -; (gtk_accel_path "/S_ection/" "") -; (gtk_accel_path "/r_ewrite/" "") -; (gtk_accel_path "/Export/Html" "") -; (gtk_accel_path "/Tactics/_i.../" "") -; (gtk_accel_path "/a_utorewrite/" "") -; (gtk_accel_path "/F_ocus/" "") -; (gtk_accel_path "/Templates/_O.../" "") -; (gtk_accel_path "/l_azy in/" "") -; (gtk_accel_path "/d_ependent inversion__clear __ with/" "") -; (gtk_accel_path "/c_utrewrite/" "") -(gtk_accel_path "/Edit/Undo" "u") -; (gtk_accel_path "/c_onstructor __ with/" "") -; (gtk_accel_path "/r_ing/" "") -; (gtk_accel_path "/d_ependent rewrite <-/" "") -; (gtk_accel_path "/e_limtype/" "") -(gtk_accel_path "/Tactics/simpl" "s") -; (gtk_accel_path "/H_int/" "") -; (gtk_accel_path "/H_int Rewrite/" "") -; (gtk_accel_path "/V_ariable/" "") -; (gtk_accel_path "/U_nset Implicit Arguments/" "") -; (gtk_accel_path "/s_implify__eq/" "") -; (gtk_accel_path "/Compile/Next error" "F7") -; (gtk_accel_path "/Edit/Edit" "") -; (gtk_accel_path "/S_et Extraction Optimize/" "") -; (gtk_accel_path "/H_ypothesis/" "") -; (gtk_accel_path "/E_nd Silent./" "") -; (gtk_accel_path "/S_yntax/" "") -; (gtk_accel_path "/d_ecide equality/" "") -; (gtk_accel_path "/O_paque/" "") -; (gtk_accel_path "/Templates/_T.../" "") -; (gtk_accel_path "/Tactics/_a.../" "") -; (gtk_accel_path "/Templates/_G.../" "") -; (gtk_accel_path "/c_ase/" "") -(gtk_accel_path "/Navigation/Backward" "Up") -; (gtk_accel_path "/C_oFixpoint/" "") -; (gtk_accel_path "/P_rogram Fixpoint/" "") -; (gtk_accel_path "/d_ependent inversion__clear/" "") -; (gtk_accel_path "/c_ase __ with/" "") -; (gtk_accel_path "/a_ssumption/" "") -; (gtk_accel_path "/t_ransitivity/" "") -; (gtk_accel_path "/i_ntros until/" "") -; (gtk_accel_path "/s_plit/" "") -; (gtk_accel_path "/e_xists/" "") -(gtk_accel_path "/Templates/Theorem" "t") -; (gtk_accel_path "/Navigation/Navigation" "") -; (gtk_accel_path "/H_int Unfold/" "") -; (gtk_accel_path "/I_mplicit Arguments/" "") -; (gtk_accel_path "/Help/Help" "") -; (gtk_accel_path "/d_ecompose sum/" "") -; (gtk_accel_path "/A_dd Abstract Ring A Aplus Amult Aone Azero Ainv Aeq T./" "") -; (gtk_accel_path "/Te_mplates/" "") -(gtk_accel_path "/Edit/Find in buffer" "f") -; (gtk_accel_path "/r_eplace __ with/" "") -(gtk_accel_path "/Tactics/omega" "o") -; (gtk_accel_path "/S_cheme/" "") -; (gtk_accel_path "/L_emma/" "") -; (gtk_accel_path "/i_nversion__clear __ in/" "") -; (gtk_accel_path "/E_xtraction Inline/" "") -; (gtk_accel_path "/S_yntactic Definition/" "") -; (gtk_accel_path "/i_nstantiate (__:=__)/" "") -; (gtk_accel_path "/C_hapter/" "") -; (gtk_accel_path "/Templates/_L.../" "") -; (gtk_accel_path "/Tactics/_f.../" "") -; (gtk_accel_path "/Queries/Queries" "") -; (gtk_accel_path "/T_est Printing Wildcard/" "") -(gtk_accel_path "/File/Open" "o") -; (gtk_accel_path "/f_old __ in/" "") -(gtk_accel_path "/Navigation/Go to" "Right") +; (gtk_accel_path "/Tactics/Tactic inversion" "") +; (gtk_accel_path "/Templates/Template Write State" "") ; (gtk_accel_path "/Export/Export to" "") -; (gtk_accel_path "/c_ongruence/" "") -; (gtk_accel_path "/c_learbody/" "") -(gtk_accel_path "/File/Close buffer" "w") -; (gtk_accel_path "/a_pply/" "") -; (gtk_accel_path "/Queries/SearchAbout" "F2") -; (gtk_accel_path "/i_ntro/" "") -; (gtk_accel_path "/H_int Immediate/" "") -; (gtk_accel_path "/p_ose __:=__)/" "") -; (gtk_accel_path "/U_nset Undo/" "") -; (gtk_accel_path "/Tactics/_s.../" "") -; (gtk_accel_path "/P_rogram Definition/" "") -; (gtk_accel_path "/R_equire/" "") -; (gtk_accel_path "/c_ompare/" "") -; (gtk_accel_path "/s_ymmetry in/" "") -(gtk_accel_path "/Display/Display coercions" "c") -(gtk_accel_path "/Navigation/Previous" "less") -(gtk_accel_path "/Display/Display all low-level contents" "l") -; (gtk_accel_path "/C_oercion Local/" "") -; (gtk_accel_path "/f_ix __ with/" "") -; (gtk_accel_path "/A_dd ML Path/" "") -; (gtk_accel_path "/A_xiom/" "") -; (gtk_accel_path "/Templates/Templates" "") -; (gtk_accel_path "/a_bstract/" "") -; (gtk_accel_path "/Edit/Clear Undo Stack" "") -(gtk_accel_path "/File/New" "n") -; (gtk_accel_path "/Tactics/_hnf/" "") -; (gtk_accel_path "/d_o/" "") -; (gtk_accel_path "/E_xtract Constant/" "") -; (gtk_accel_path "/E_nd/" "") -; (gtk_accel_path "/Templates/_Qed./" "") -; (gtk_accel_path "/A_dd Rec ML Path/" "") -; (gtk_accel_path "/Templates/_D.../" "") -(gtk_accel_path "/Navigation/Hide" "h") -; (gtk_accel_path "/c_ofix/" "") -; (gtk_accel_path "/_Try Tactics/" "") -; (gtk_accel_path "/S_et Printing Wildcard/" "") -; (gtk_accel_path "/i_nversion__clear/" "") -; (gtk_accel_path "/Templates/_V.../" "") +(gtk_accel_path "/Tactics/auto with *" "asterisk") +; (gtk_accel_path "/Tactics/Tactic inversion--clear" "") +; (gtk_accel_path "/Templates/Template Implicit Arguments" "") +(gtk_accel_path "/Edit/Find backwards" "b") +; (gtk_accel_path "/Edit/Copy" "c") +; (gtk_accel_path "/Tactics/Tactic inversion -- using" "") +(gtk_accel_path "/View/Previous tab" "Left") +; (gtk_accel_path "/Tactics/Tactic change -- in" "") +; (gtk_accel_path "/Tactics/Tactic jp" "") +; (gtk_accel_path "/Tactics/Tactic red" "") +; (gtk_accel_path "/Templates/Template Coercion" "") +; (gtk_accel_path "/Templates/Template CoFixpoint" "") +; (gtk_accel_path "/Tactics/Tactic intros until" "") +; (gtk_accel_path "/Templates/Template Derive Dependent Inversion" "") +; (gtk_accel_path "/Tactics/Tactic eapply" "") +; (gtk_accel_path "/View/View" "") +; (gtk_accel_path "/Tactics/Tactic change" "") +; (gtk_accel_path "/Tactics/Tactic firstorder using" "") +; (gtk_accel_path "/Tactics/Tactic decompose sum" "") +; (gtk_accel_path "/Tactics/Tactic cut" "") +; (gtk_accel_path "/Templates/Template Remove Printing Let" "") +; (gtk_accel_path "/Templates/Template Structure" "") +; (gtk_accel_path "/Tactics/Tactic compute in" "") +; (gtk_accel_path "/Queries/Locate" "") +; (gtk_accel_path "/Templates/Template Save." "") +; (gtk_accel_path "/Templates/Template Canonical Structure" "") +; (gtk_accel_path "/Tactics/Tactic compare" "") +; (gtk_accel_path "/Templates/Template Next Obligation" "") +(gtk_accel_path "/View/Display notations" "n") +; (gtk_accel_path "/Tactics/Tactic fail" "") +; (gtk_accel_path "/Tactics/Tactic left" "") +(gtk_accel_path "/Edit/Undo" "u") +(gtk_accel_path "/Tactics/eauto with *" "ampersand") +; (gtk_accel_path "/Templates/Template Infix" "") +; (gtk_accel_path "/Tactics/Tactic functional induction" "") +; (gtk_accel_path "/Tactics/Tactic clear" "") +; (gtk_accel_path "/Templates/Template End Silent." "") +; (gtk_accel_path "/Tactics/Tactic intros" "") +; (gtk_accel_path "/Tactics/Tactic constructor -- with" "") +; (gtk_accel_path "/Tactics/Tactic destruct" "") +; (gtk_accel_path "/Tactics/Tactic intro after" "") +; (gtk_accel_path "/Tactics/Tactic abstract" "") +; (gtk_accel_path "/Queries/About" "F5") +; (gtk_accel_path "/Templates/Template CoInductive" "") +; (gtk_accel_path "/Templates/Template Unset Hyps--limit" "") ; (gtk_accel_path "/Export/Ps" "") -; (gtk_accel_path "/U_nset Hyps__limit/" "") -; (gtk_accel_path "/H_int Extern/" "") -; (gtk_accel_path "/f_unctional induction/" "") -; (gtk_accel_path "/U_nset Extraction AutoInline/" "") -; (gtk_accel_path "/U_nfocus/" "") -; (gtk_accel_path "/Edit/External editor" "") -; (gtk_accel_path "/I_dentity Coercion/" "") -; (gtk_accel_path "/a_bsurd/" "") -; (gtk_accel_path "/c_hange/" "") -(gtk_accel_path "/Tactics/eauto" "e") -; (gtk_accel_path "/O_bligations Tactic/" "") -(gtk_accel_path "/Tactics/trivial" "v") -; (gtk_accel_path "/d_ependent inversion/" "") -; (gtk_accel_path "/c_bv/" "") -; (gtk_accel_path "/A_dd Ring A Aplus Amult Aone Azero Ainv Aeq T [ c1 ... cn ]. /" "") -; (gtk_accel_path "/p_ose/" "") -; (gtk_accel_path "/s_et (__:=__)/" "") -; (gtk_accel_path "/R_equire Export/" "") -; (gtk_accel_path "/L_tac/" "") -; (gtk_accel_path "/A_dd Rec LoadPath/" "") -; (gtk_accel_path "/Tactics/_c.../" "") -(gtk_accel_path "/Navigation/End" "End") -(gtk_accel_path "/Templates/Lemma" "l") -(gtk_accel_path "/Navigation/Start" "Home") -; (gtk_accel_path "/Templates/_I.../" "") -(gtk_accel_path "/File/Print..." "p") -; (gtk_accel_path "/d_ependent rewrite ->/" "") -; (gtk_accel_path "/S_tructure/" "") -; (gtk_accel_path "/T_est Printing Let/" "") -; (gtk_accel_path "/T_ime/" "") -; (gtk_accel_path "/g_eneralize/" "") -(gtk_accel_path "/Display/Display all basic low-level contents" "a") -; (gtk_accel_path "/Tactics/_p.../" "") -; (gtk_accel_path "/f_old/" "") -; (gtk_accel_path "/H_int Resolve/" "") -; (gtk_accel_path "/M_utual Inductive/" "") -; (gtk_accel_path "/i_nversion __ in/" "") -; (gtk_accel_path "/Windows/Show/Hide Toolbar" "") -(gtk_accel_path "/File/Save" "s") -; (gtk_accel_path "/File/Save all" "") -; (gtk_accel_path "/Queries/Print" "F4") -; (gtk_accel_path "/c_onstructor/" "") -; (gtk_accel_path "/Export/Dvi" "") -; (gtk_accel_path "/s_etoid__replace/" "") -; (gtk_accel_path "/D_efined./" "") -; (gtk_accel_path "/I_nfix/" "") -(gtk_accel_path "/Navigation/Next" "greater") -; (gtk_accel_path "/A_dd Morphism/" "") +; (gtk_accel_path "/Tactics/Tactic elim" "") +; (gtk_accel_path "/Templates/Template Transparent" "") +; (gtk_accel_path "/Tactics/Tactic assert (--:--)" "") +; (gtk_accel_path "/Templates/Template Add Rec LoadPath" "") +; (gtk_accel_path "/Templates/Template Extract Constant" "") +; (gtk_accel_path "/Tactics/Tactic compute" "") +; (gtk_accel_path "/Compile/Next error" "F7") +; (gtk_accel_path "/Templates/Template Add ML Path" "") +; (gtk_accel_path "/Templates/Template Test Printing Wildcard" "") +; (gtk_accel_path "/Templates/Template Set Implicit Arguments" "") +; (gtk_accel_path "/Templates/Template Test Printing Let" "") ; (gtk_accel_path "/Windows/Windows" "") -; (gtk_accel_path "/e_xact/" "") -; (gtk_accel_path "/c_bv in/" "") -; (gtk_accel_path "/t_ry/" "") -; (gtk_accel_path "/Templates/_A.../" "") -(gtk_accel_path "/Display/Display notations" "n") -; (gtk_accel_path "/c_lear/" "") +; (gtk_accel_path "/Templates/Template Defined." "") +(gtk_accel_path "/Templates/match" "c") +; (gtk_accel_path "/Tactics/Tactic set (--:=--)" "") +; (gtk_accel_path "/Templates/Template Test Printing If" "") ; (gtk_accel_path "/Compile/Make" "F6") -(gtk_accel_path "/Tactics/eauto with *" "ampersand") -; (gtk_accel_path "/Help/Browse Coq Manual" "") -; (gtk_accel_path "/Templates/_N.../" "") -(gtk_accel_path "/File/Quit" "q") -; (gtk_accel_path "/u_nfold/" "") -; (gtk_accel_path "/Tactics/_u.../" "") -; (gtk_accel_path "/d_ouble induction/" "") -; (gtk_accel_path "/S_et Silent./" "") -; (gtk_accel_path "/V_ariables/" "") -; (gtk_accel_path "/U_nset Printing Wildcard/" "") -; (gtk_accel_path "/r_ewrite <-/" "") -; (gtk_accel_path "/I_nductive/" "") -; (gtk_accel_path "/e_auto with/" "") -; (gtk_accel_path "/r_epeat/" "") -; (gtk_accel_path "/Queries/Locate" "") -; (gtk_accel_path "/S_et Hyps__limit/" "") -; (gtk_accel_path "/A_dd Abstract Semi Ring A Aplus Amult Aone Azero Aeq T./" "") -; (gtk_accel_path "/c_ompute in/" "") -; (gtk_accel_path "/Templates/_F.../" "") -; (gtk_accel_path "/G_lobal Variable/" "") -; (gtk_accel_path "/t_auto/" "") -; (gtk_accel_path "/E_xtraction NoInline/" "") -; (gtk_accel_path "/u_nfold __ in/" "") -; (gtk_accel_path "/s_imple destruct/" "") -(gtk_accel_path "/Navigation/Interrupt" "Break") -; (gtk_accel_path "/Templates/_S.../" "") -; (gtk_accel_path "/i_njection/" "") -; (gtk_accel_path "/R_ead Module/" "") -; (gtk_accel_path "/P_rogram Lemma/" "") -; (gtk_accel_path "/U_nset Silent./" "") -(gtk_accel_path "/Display/Display universe levels" "u") -; (gtk_accel_path "/f_ourier/" "") -; (gtk_accel_path "/D_erive Inversion__clear/" "") -; (gtk_accel_path "/Tactics/_omega/" "") -; (gtk_accel_path "/S_et Undo/" "") -; (gtk_accel_path "/A_dd Semi Ring A Aplus Amult Aone Azero Aeq T [ c1 ... cn ]./" "") -; (gtk_accel_path "/s_impl __ in/" "") -; (gtk_accel_path "/Windows/Show/Hide Query Pane" "Escape") -; (gtk_accel_path "/R_estore State/" "") -; (gtk_accel_path "/R_emove Printing Let/" "") -; (gtk_accel_path "/A_dd Printing If/" "") -(gtk_accel_path "/Tactics/tauto" "p") -; (gtk_accel_path "/s_impl/" "") -; (gtk_accel_path "/i_ntros/" "") -; (gtk_accel_path "/s_ymmetry/" "") -; (gtk_accel_path "/c_ut/" "") -; (gtk_accel_path "/r_efine/" "") -; (gtk_accel_path "/Tactics/_e.../" "") -; (gtk_accel_path "/e_exact/" "") -(gtk_accel_path "/Navigation/Forward" "Down") -(gtk_accel_path "/Edit/Paste" "v") -; (gtk_accel_path "/C_oercion/" "") -; (gtk_accel_path "/Tactics/_r.../" "") -; (gtk_accel_path "/d_estruct/" "") -; (gtk_accel_path "/A_dd Setoid/" "") -; (gtk_accel_path "/Queries/Whelp Locate" "") -; (gtk_accel_path "/T_est Printing If/" "") -; (gtk_accel_path "/Display/Display" "") -; (gtk_accel_path "/Tactics/_move __ after/" "") -(gtk_accel_path "/Edit/Complete Word" "slash") -; (gtk_accel_path "/s_ubst/" "") -; (gtk_accel_path "/Help/About Coq" "") -; (gtk_accel_path "/s_etoid__rewrite/" "") +; (gtk_accel_path "/Templates/Template Module Type" "") +; (gtk_accel_path "/Tactics/Tactic apply -- with" "") +; (gtk_accel_path "/File/Save as" "") +; (gtk_accel_path "/Templates/Template Remove Printing Constructor" "") +; (gtk_accel_path "/Templates/Template Set Hyps--limit" "") +; (gtk_accel_path "/Templates/Template Global Variable" "") +; (gtk_accel_path "/Tactics/Tactic trivial" "") +; (gtk_accel_path "/Templates/Template Add Setoid" "") +; (gtk_accel_path "/Templates/Template Proof." "") +; (gtk_accel_path "/Templates/Template Load Verbose" "") +; (gtk_accel_path "/Compile/Compile buffer" "") +; (gtk_accel_path "/Queries/Print" "F4") +; (gtk_accel_path "/Templates/Template Obligations Tactic" "") +; (gtk_accel_path "/Tactics/Tactic cbv" "") +; (gtk_accel_path "/Tactics/Tactic first" "") +; (gtk_accel_path "/Tactics/Tactic case" "") +; (gtk_accel_path "/Templates/Template Hint Constructors" "") +; (gtk_accel_path "/Templates/Template Add Abstract Ring A Aplus Amult Aone Azero Ainv Aeq T." "") +; (gtk_accel_path "/Templates/Template Coercion Local" "") +; (gtk_accel_path "/View/Show Query Pane" "Escape") +; (gtk_accel_path "/Templates/Template Add Relation" "") +; (gtk_accel_path "/Tactics/Tactic inversion--clear -- in" "") +; (gtk_accel_path "/Templates/Template Definition" "") +; (gtk_accel_path "/Templates/Template Add Rec ML Path" "") +; (gtk_accel_path "/Tactics/Tactic apply" "") +; (gtk_accel_path "/Export/Latex" "") +; (gtk_accel_path "/Tactics/Tactic inversion -- using -- in" "") +; (gtk_accel_path "/Tactics/Tactic generalize" "") +; (gtk_accel_path "/Templates/Template Reset Extraction Inline" "") +(gtk_accel_path "/Navigation/Hide" "h") +; (gtk_accel_path "/File/Close buffer" "w") +; (gtk_accel_path "/Tactics/Tactic induction" "") +; (gtk_accel_path "/Tactics/Tactic eauto with" "") +(gtk_accel_path "/View/Display raw matching expressions" "m") +(gtk_accel_path "/Navigation/Backward" "Up") +; (gtk_accel_path "/Tactics/Tactic u" "") +; (gtk_accel_path "/Templates/Templates" "") +; (gtk_accel_path "/Tactics/Tactic p" "") +; (gtk_accel_path "/Tactics/Tactic lapply" "") +; (gtk_accel_path "/Tactics/Tactic t" "") +; (gtk_accel_path "/Tactics/Tactic s" "") +; (gtk_accel_path "/Tactics/Tactic r" "") +; (gtk_accel_path "/Tactics/Tactic case -- with" "") +; (gtk_accel_path "/Tactics/Tactic eexact" "") +; (gtk_accel_path "/Queries/Check" "F3") +; (gtk_accel_path "/Tactics/Tactic omega" "") +; (gtk_accel_path "/File/New" "n") +; (gtk_accel_path "/Tactics/Tactic l" "") +; (gtk_accel_path "/Tactics/Tactic intro" "") +; (gtk_accel_path "/Tactics/Tactic j" "") +; (gtk_accel_path "/Tactics/Tactic i" "") +; (gtk_accel_path "/Tactics/Tactic e" "") +; (gtk_accel_path "/Tactics/Tactic g" "") +; (gtk_accel_path "/Tactics/Tactic f" "") +; (gtk_accel_path "/Tactics/Tactic d" "") +; (gtk_accel_path "/Tactics/Tactic c" "") +(gtk_accel_path "/File/Rehighlight" "l") +; (gtk_accel_path "/Tactics/Tactic simple inversion" "") +; (gtk_accel_path "/Tactics/Tactic a" "") +; (gtk_accel_path "/Templates/Template Mutual Inductive" "") +; (gtk_accel_path "/Templates/Template Extraction NoInline" "") +(gtk_accel_path "/Templates/Theorem" "t") +; (gtk_accel_path "/Templates/Template Derive Dependent Inversion--clear" "") +; (gtk_accel_path "/Tactics/Tactic unfold" "") ; (gtk_accel_path "/Tactics/Try Tactics" "") -; (gtk_accel_path "/Templates/_C.../" "") -; (gtk_accel_path "/L_ocal/" "") -; (gtk_accel_path "/s_et/" "") -; (gtk_accel_path "/Tactics/_quote/" "") -(gtk_accel_path "/Templates/Definition" "d") -; (gtk_accel_path "/S_et Implicit Arguments/" "") +; (gtk_accel_path "/Tactics/Tactic red in" "") +; (gtk_accel_path "/Tactics/Tactic rewrite <- -- in" "") +; (gtk_accel_path "/Templates/Template Hint Extern" "") +; (gtk_accel_path "/Templates/Template Unfocus" "") +; (gtk_accel_path "/Tactics/Tactic dependent inversion--clear" "") +; (gtk_accel_path "/Help/Browse Coq Library" "") +; (gtk_accel_path "/Tactics/Tactic lazy" "") +; (gtk_accel_path "/Templates/Template Scheme" "") +(gtk_accel_path "/Tactics/tauto" "p") +; (gtk_accel_path "/Tactics/Tactic cutrewrite" "") +; (gtk_accel_path "/Tactics/Tactic contradiction" "") +; (gtk_accel_path "/Templates/Template Set Printing Wildcard" "") +; (gtk_accel_path "/Templates/Template Add LoadPath" "") +(gtk_accel_path "/Navigation/Previous" "less") +; (gtk_accel_path "/Templates/Template Require" "") +; (gtk_accel_path "/Tactics/Tactic simpl" "") +; (gtk_accel_path "/Templates/Template Require Import" "") +; (gtk_accel_path "/Templates/Template Add Abstract Semi Ring A Aplus Amult Aone Azero Aeq T." "") +(gtk_accel_path "/Navigation/Forward" "Down") +; (gtk_accel_path "/Tactics/Tactic rename -- into" "") +; (gtk_accel_path "/Compile/Compile" "") +; (gtk_accel_path "/File/Save all" "") +; (gtk_accel_path "/Tactics/Tactic fix" "") +; (gtk_accel_path "/Templates/Template Parameter" "") +; (gtk_accel_path "/Tactics/Tactic assert" "") +; (gtk_accel_path "/Tactics/Tactic do" "") +; (gtk_accel_path "/Tactics/Tactic ring" "") +; (gtk_accel_path "/Export/Pdf" "") +; (gtk_accel_path "/Tactics/Tactic quote" "") +; (gtk_accel_path "/Tactics/Tactic symmetry in" "") +; (gtk_accel_path "/Help/Help" "") +(gtk_accel_path "/Templates/Inductive" "i") +; (gtk_accel_path "/Edit/Clear Undo Stack" "") +; (gtk_accel_path "/Tactics/Tactic intro -- after" "") +; (gtk_accel_path "/Templates/Template Syntax" "") +; (gtk_accel_path "/Tactics/Tactic idtac" "") +; (gtk_accel_path "/Tactics/Tactic fold -- in" "") +; (gtk_accel_path "/Templates/Template Program Definition" "") +(gtk_accel_path "/Tactics/Wizard" "dollar") +; (gtk_accel_path "/Templates/Template Hint Resolve" "") +; (gtk_accel_path "/Templates/Template Set Extraction Optimize" "") ; (gtk_accel_path "/File/Revert all buffers" "") -; (gtk_accel_path "/Templates/_P.../" "") -; (gtk_accel_path "/t_rivial/" "") -(gtk_accel_path "/Display/Display existential variable instances" "e") -; (gtk_accel_path "/Tactics/_j.../" "") -; (gtk_accel_path "/A_dd LoadPath/" "") -; (gtk_accel_path "/N_otation/" "") -; (gtk_accel_path "/Edit/Preferences" "") -; (gtk_accel_path "/L_oad Verbose/" "") -; (gtk_accel_path "/i_ntro __ after/" "") -; (gtk_accel_path "/D_erive Dependent Inversion/" "") -; (gtk_accel_path "/d_ependent inversion __ with/" "") -; (gtk_accel_path "/P_rogram Theorem/" "") -; (gtk_accel_path "/E_xtraction Language/" "") -; (gtk_accel_path "/Templates/_U.../" "") -(gtk_accel_path "/Display/Display raw matching expressions" "m") -; (gtk_accel_path "/c_asetype/" "") -(gtk_accel_path "/Edit/Find backwards" "b") -; (gtk_accel_path "/S_ave./" "") -; (gtk_accel_path "/p_attern/" "") -; (gtk_accel_path "/M_odule/" "") -; (gtk_accel_path "/D_eclare ML Module/" "") -; (gtk_accel_path "/Templates/_H.../" "") -; (gtk_accel_path "/F_act/" "") -; (gtk_accel_path "/A_dd Field/" "") -; (gtk_accel_path "/R_emove LoadPath/" "") -; (gtk_accel_path "/Templates/_Write State/" "") +; (gtk_accel_path "/Tactics/Tactic subst" "") +; (gtk_accel_path "/Tactics/Tactic autorewrite" "") +; (gtk_accel_path "/Tactics/Tactic pose" "") +; (gtk_accel_path "/Tactics/Tactic simplify--eq" "") +; (gtk_accel_path "/Tactics/Tactic clearbody" "") +; (gtk_accel_path "/Tactics/Tactic eauto" "") +; (gtk_accel_path "/Templates/Template Grammar" "") +; (gtk_accel_path "/Tactics/Tactic exact" "") +; (gtk_accel_path "/Templates/Template Unset Implicit Arguments" "") +; (gtk_accel_path "/Templates/Template Extract Inductive" "") +(gtk_accel_path "/View/Display implicit arguments" "i") +; (gtk_accel_path "/Tactics/Tactic symmetry" "") +; (gtk_accel_path "/Templates/Template Add Printing Let" "") +; (gtk_accel_path "/Help/Help for keyword" "h") +; (gtk_accel_path "/File/Save" "s") ; (gtk_accel_path "/Compile/Make makefile" "") -; (gtk_accel_path "/C_oInductive/" "") -; (gtk_accel_path "/Compile/Compile buffer" "") -; (gtk_accel_path "/l_eft/" "") -; (gtk_accel_path "/a_pply __ with/" "") -(gtk_accel_path "/File/Rehighlight" "l") +; (gtk_accel_path "/Templates/Template Remove LoadPath" "") +(gtk_accel_path "/Navigation/Interrupt" "Break") +(gtk_accel_path "/Navigation/End" "End") +; (gtk_accel_path "/Templates/Template Add Morphism" "") +; (gtk_accel_path "/Tactics/Tactic field" "") +; (gtk_accel_path "/Templates/Template Axiom" "") +; (gtk_accel_path "/Tactics/Tactic solve" "") +; (gtk_accel_path "/Tactics/Tactic casetype" "") +; (gtk_accel_path "/Tactics/Tactic cbv in" "") +; (gtk_accel_path "/Templates/Template Load" "") +; (gtk_accel_path "/Tactics/Tactic fourier" "") +; (gtk_accel_path "/Templates/Template Goal" "") +; (gtk_accel_path "/Tactics/Tactic exists" "") +; (gtk_accel_path "/Tactics/Tactic decompose record" "") +(gtk_accel_path "/Navigation/Go to" "Right") +; (gtk_accel_path "/Templates/Template Remark" "") +; (gtk_accel_path "/Templates/Template Set Undo" "") +; (gtk_accel_path "/Templates/Template Inductive" "") +(gtk_accel_path "/Edit/Preferences" "VoidSymbol") +; (gtk_accel_path "/Export/Html" "") +; (gtk_accel_path "/Templates/Template Extraction Inline" "") +; (gtk_accel_path "/Tactics/Tactic absurd" "") +(gtk_accel_path "/Tactics/intuition" "i") +; (gtk_accel_path "/Tactics/Tactic simple induction" "") +; (gtk_accel_path "/Queries/Queries" "") +; (gtk_accel_path "/Tactics/Tactic rewrite -- in" "") +; (gtk_accel_path "/Templates/Template Hint Rewrite" "") +; (gtk_accel_path "/Templates/Template Add Semi Ring A Aplus Amult Aone Azero Aeq T [ c1 ... cn ]." "") +; (gtk_accel_path "/Navigation/Navigation" "") +; (gtk_accel_path "/Help/Browse Coq Manual" "") +; (gtk_accel_path "/Tactics/Tactic transitivity" "") +; (gtk_accel_path "/Tactics/Tactic auto" "") +; (gtk_accel_path "/Tactics/Tactic dependent inversion -- with" "") +; (gtk_accel_path "/Tactics/Tactic assumption" "") +; (gtk_accel_path "/Templates/Template Notation" "") +; (gtk_accel_path "/Edit/Cut" "x") +; (gtk_accel_path "/Templates/Template Theorem" "") +; (gtk_accel_path "/Templates/Template Unset Printing Wildcard" "") +; (gtk_accel_path "/Tactics/Tactic constructor" "") +; (gtk_accel_path "/Templates/Template Identity Coercion" "") +; (gtk_accel_path "/Queries/Whelp Locate" "") +(gtk_accel_path "/View/Display all low-level contents" "l") +; (gtk_accel_path "/Tactics/Tactic right" "") +; (gtk_accel_path "/Tactics/Tactic elim -- with" "") +; (gtk_accel_path "/Tactics/Tactic cofix" "") +; (gtk_accel_path "/Templates/Template Restore State" "") +; (gtk_accel_path "/Templates/Template Lemma" "") +; (gtk_accel_path "/Tactics/Tactic refine" "") +; (gtk_accel_path "/Templates/Template Section" "") +; (gtk_accel_path "/Tactics/Tactic assert (--:=--)" "") +; (gtk_accel_path "/Edit/Find in buffer" "f") +; (gtk_accel_path "/Tactics/Tactic progress" "") +; (gtk_accel_path "/Templates/Template Add Printing If" "") +; (gtk_accel_path "/Templates/Template Chapter" "") +(gtk_accel_path "/File/Print..." "p") +; (gtk_accel_path "/Templates/Template Record" "") +; (gtk_accel_path "/Tactics/Tactic info" "") +; (gtk_accel_path "/Tactics/Tactic firstorder with" "") +; (gtk_accel_path "/Templates/Template Hint Unfold" "") +; (gtk_accel_path "/Templates/Template Set Silent." "") +; (gtk_accel_path "/Templates/Template Program Theorem" "") +; (gtk_accel_path "/Templates/Template Declare ML Module" "") +; (gtk_accel_path "/Tactics/Tactic lazy in" "") +; (gtk_accel_path "/Tactics/Tactic unfold -- in" "") +; (gtk_accel_path "/Edit/Paste" "v") +; (gtk_accel_path "/Templates/Template Remove Printing If" "") +; (gtk_accel_path "/Tactics/Tactic intuition" "") +; (gtk_accel_path "/Queries/SearchAbout" "F2") +; (gtk_accel_path "/Tactics/Tactic dependent rewrite ->" "") +; (gtk_accel_path "/Templates/Template Module" "") +; (gtk_accel_path "/Templates/Template Unset Extraction AutoInline" "") +(gtk_accel_path "/Templates/Scheme" "s") +; (gtk_accel_path "/Templates/Template V" "") +; (gtk_accel_path "/Templates/Template Variable" "") +; (gtk_accel_path "/Tactics/Tactic decide equality" "") +; (gtk_accel_path "/Tactics/Tactic instantiate (--:=--)" "") +; (gtk_accel_path "/Templates/Template Syntactic Definition" "") +; (gtk_accel_path "/Templates/Template Set Extraction AutoInline" "") +; (gtk_accel_path "/Templates/Template Unset Undo" "") +; (gtk_accel_path "/Tactics/Tactic dependent inversion" "") +; (gtk_accel_path "/Templates/Template Add Field" "") +; (gtk_accel_path "/Tactics/Tactic setoid--rewrite" "") +; (gtk_accel_path "/Templates/Template Require Export" "") +; (gtk_accel_path "/Tactics/Tactic rewrite <-" "") +(gtk_accel_path "/Tactics/omega" "o") +; (gtk_accel_path "/Tactics/Tactic split" "") +; (gtk_accel_path "/File/Quit" "q") +(gtk_accel_path "/View/Display existential variable instances" "e") +(gtk_accel_path "/Navigation/Start" "Home") +; (gtk_accel_path "/Tactics/Tactic dependent rewrite <-" "") +; (gtk_accel_path "/Templates/Template U" "") +; (gtk_accel_path "/Templates/Template Variables" "") +; (gtk_accel_path "/Templates/Template S" "") +; (gtk_accel_path "/Tactics/Tactic move -- after" "") +; (gtk_accel_path "/Templates/Template Unset Silent." "") +; (gtk_accel_path "/Templates/Template Local" "") +; (gtk_accel_path "/Templates/Template T" "") +; (gtk_accel_path "/Tactics/Tactic reflexivity" "") +; (gtk_accel_path "/Templates/Template R" "") +; (gtk_accel_path "/Templates/Template Time" "") +; (gtk_accel_path "/Templates/Template P" "") +; (gtk_accel_path "/Tactics/Tactic decompose" "") +; (gtk_accel_path "/Templates/Template N" "") +; (gtk_accel_path "/Templates/Template Eval" "") +; (gtk_accel_path "/Tactics/Tactic congruence" "") +; (gtk_accel_path "/Templates/Template O" "") +; (gtk_accel_path "/Templates/Template E" "") +; (gtk_accel_path "/Templates/Template I" "") +; (gtk_accel_path "/Templates/Template H" "") +; (gtk_accel_path "/Templates/Template Extraction Language" "") +; (gtk_accel_path "/Templates/Template M" "") +; (gtk_accel_path "/Templates/Template Derive Inversion" "") +; (gtk_accel_path "/Tactics/Tactic double induction" "") +; (gtk_accel_path "/Templates/Template L" "") +; (gtk_accel_path "/Templates/Template Derive Inversion--clear" "") +(gtk_accel_path "/View/Display universe levels" "u") +; (gtk_accel_path "/Templates/Template G" "") +; (gtk_accel_path "/Templates/Template F" "") +; (gtk_accel_path "/Tactics/Tactic dependent inversion--clear -- with" "") +; (gtk_accel_path "/Templates/Template D" "") +; (gtk_accel_path "/Edit/Edit" "") +; (gtk_accel_path "/Tactics/Tactic firstorder" "") +; (gtk_accel_path "/Templates/Template C" "") +(gtk_accel_path "/Tactics/simpl" "s") +; (gtk_accel_path "/Tactics/Tactic replace -- with" "") +; (gtk_accel_path "/Templates/Template A" "") +; (gtk_accel_path "/Templates/Template Remove Printing Record" "") +; (gtk_accel_path "/Templates/Template Qed." "") +; (gtk_accel_path "/Templates/Template Program Fixpoint" "") +(gtk_accel_path "/View/Display coercions" "c") +; (gtk_accel_path "/Tactics/Tactic hnf" "") +; (gtk_accel_path "/Tactics/Tactic injection" "") +; (gtk_accel_path "/Tactics/Tactic rewrite" "") +; (gtk_accel_path "/Templates/Template Opaque" "") +; (gtk_accel_path "/Templates/Template Focus" "") +; (gtk_accel_path "/Templates/Template Ltac" "") +; (gtk_accel_path "/Tactics/Tactic simple destruct" "") +(gtk_accel_path "/View/Display all basic low-level contents" "a") +; (gtk_accel_path "/Tactics/Tactic jp " "") +; (gtk_accel_path "/Templates/Template Test Printing Synth" "") +; (gtk_accel_path "/Tactics/Tactic set" "") +; (gtk_accel_path "/Edit/External editor" "") +; (gtk_accel_path "/View/Show Toolbar" "") +(gtk_accel_path "/Edit/Complete Word" "slash") +; (gtk_accel_path "/Tactics/Tactic try" "") +(gtk_accel_path "/Templates/Fixpoint" "f") +; (gtk_accel_path "/Tactics/Tactic discriminate" "") +(gtk_accel_path "/Navigation/Next" "greater") +; (gtk_accel_path "/Tactics/Tactic elimtype" "") +; (gtk_accel_path "/Templates/Template End" "") +; (gtk_accel_path "/Templates/Template Fixpoint" "") +(gtk_accel_path "/View/Next tab" "Right") ; (gtk_accel_path "/File/File" "") -; (gtk_accel_path "/D_erive Dependent Inversion__clear/" "") -; (gtk_accel_path "/d_ecompose/" "") -; (gtk_accel_path "/r_ewrite __ in/" "") -(gtk_accel_path "/Display/Display implicit arguments" "i") -; (gtk_accel_path "/e_lim __ using/" "") -; (gtk_accel_path "/a_ssert (__:=__)/" "") -; (gtk_accel_path "/i_nversion __ using/" "") -; (gtk_accel_path "/P_arameter/" "") -; (gtk_accel_path "/H_int Constructors/" "") -; (gtk_accel_path "/j_p /" "") -; (gtk_accel_path "/p_rogress/" "") -; (gtk_accel_path "/Templates/_M.../" "") -; (gtk_accel_path "/e_lim __ with/" "") -; (gtk_accel_path "/f_irst/" "") -; (gtk_accel_path "/l_azy/" "") -; (gtk_accel_path "/i_nversion/" "") -(gtk_accel_path "/Help/Help for keyword" "h") -; (gtk_accel_path "/a_uto/" "") -; (gtk_accel_path "/G_oal/" "") -; (gtk_accel_path "/i_nversion __ using __ in/" "") -(gtk_accel_path "/Tactics/intuition" "i") -; (gtk_accel_path "/r_ed in/" "") -; (gtk_accel_path "/Tactics/_g.../" "") -; (gtk_accel_path "/g_eneralize dependent/" "") -; (gtk_accel_path "/Queries/About" "F5") -; (gtk_accel_path "/r_ight/" "") -(gtk_accel_path "/Tactics/auto" "a") -(gtk_accel_path "/Templates/Fixpoint" "f") -; (gtk_accel_path "/r_eflexivity/" "") -; (gtk_accel_path "/i_nduction/" "") -; (gtk_accel_path "/i_ntuition/" "") -; (gtk_accel_path "/Tactics/_t.../" "") -; (gtk_accel_path "/f_ix/" "") -; (gtk_accel_path "/Export/Pdf" "") -; (gtk_accel_path "/N_ext Obligation/" "") -(gtk_accel_path "/Tactics/auto with *" "asterisk") -; (gtk_accel_path "/R_ecord/" "") -; (gtk_accel_path "/P_roof./" "") -; (gtk_accel_path "/c_ontradiction/" "") -; (gtk_accel_path "/S_et Extraction AutoInline/" "") -; (gtk_accel_path "/e_auto/" "") -; (gtk_accel_path "/d_ecompose record/" "") -; (gtk_accel_path "/f_ield/" "") -; (gtk_accel_path "/E_val/" "") -; (gtk_accel_path "/R_eset Extraction Inline/" "") +; (gtk_accel_path "/Tactics/Tactic setoid--replace" "") +; (gtk_accel_path "/Tactics/Tactic generalize dependent" "") +(gtk_accel_path "/Tactics/trivial" "v") +; (gtk_accel_path "/Tactics/Tactic fix -- with" "") +; (gtk_accel_path "/Tactics/Tactic pose --:=--)" "") +; (gtk_accel_path "/Tactics/Tactic auto with" "") +; (gtk_accel_path "/Templates/Template Add Printing Record" "") +; (gtk_accel_path "/Tactics/Tactic inversion -- in" "") +(gtk_accel_path "/Tactics/eauto" "e") +; (gtk_accel_path "/File/Open" "o") +; (gtk_accel_path "/Tactics/Tactic elim -- using" "") +; (gtk_accel_path "/Templates/Template Hint" "") +; (gtk_accel_path "/Tactics/Tactic tauto" "") +; (gtk_accel_path "/Export/Dvi" "") +; (gtk_accel_path "/Tactics/Tactic simpl -- in" "") +; (gtk_accel_path "/Templates/Template Hint Immediate" "") diff --git a/ide/minilib.ml b/ide/minilib.ml index 4ccb1ccb..74a42b23 100644 --- a/ide/minilib.ml +++ b/ide/minilib.ml @@ -79,48 +79,37 @@ let home = let opt2list = function None -> [] | Some x -> [x] -let rec lconcat = function - | [] -> assert false - | [x] -> x - | x::l -> Filename.concat x (lconcat l) +let (/) = Filename.concat + +let coqify d = d / "coq" let xdg_config_home = - try - Filename.concat (Sys.getenv "XDG_CONFIG_HOME") "coq" - with Not_found -> - lconcat [home;".config";"coq"] + coqify (try Sys.getenv "XDG_CONFIG_HOME" with Not_found -> home / ".config") -let static_xdg_config_dirs = - if Sys.os_type = "Win32" then - let base = Filename.dirname (Filename.dirname Sys.executable_name) in - [Filename.concat base "config"] - else ["/etc/xdg/coq"] +let relative_base = + Filename.dirname (Filename.dirname Sys.executable_name) let xdg_config_dirs = - xdg_config_home :: - try - List.map (fun dir -> Filename.concat dir "coq") - (path_to_list (Sys.getenv "XDG_CONFIG_DIRS")) - with Not_found -> static_xdg_config_dirs @ opt2list Coq_config.configdir + let sys_dirs = + try List.map coqify (path_to_list (Sys.getenv "XDG_CONFIG_DIRS")) + with + | Not_found when Sys.os_type = "Win32" -> [relative_base / "config"] + | Not_found -> ["/etc/xdg/coq"] + in + xdg_config_home :: sys_dirs @ opt2list Coq_config.configdir let xdg_data_home = - try - Filename.concat (Sys.getenv "XDG_DATA_HOME") "coq" - with Not_found -> - lconcat [home;".local";"share";"coq"] - -let static_xdg_data_dirs = - if Sys.os_type = "Win32" then - let base = Filename.dirname (Filename.dirname Sys.executable_name) in - [Filename.concat base "share"] - else ["/usr/local/share/coq";"/usr/share/coq"] + coqify + (try Sys.getenv "XDG_DATA_HOME" with Not_found -> home / ".local" / "share") let xdg_data_dirs = - xdg_data_home :: - try - List.map (fun dir -> Filename.concat dir "coq") - (path_to_list (Sys.getenv "XDG_DATA_DIRS")) - with Not_found -> static_xdg_data_dirs @ opt2list Coq_config.datadir + let sys_dirs = + try List.map coqify (path_to_list (Sys.getenv "XDG_DATA_DIRS")) + with + | Not_found when Sys.os_type = "Win32" -> [relative_base / "share"] + | Not_found -> ["/usr/local/share/coq";"/usr/share/coq"] + in + xdg_data_home :: sys_dirs @ opt2list Coq_config.datadir let coqtop_path = ref "" diff --git a/ide/preferences.ml b/ide/preferences.ml index d320ddda..17216b92 100644 --- a/ide/preferences.ml +++ b/ide/preferences.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* np.auto_save <- v); set_int "auto_save_delay" (fun v -> np.auto_save_delay <- v); set_pair "auto_save_name" (fun v1 v2 -> np.auto_save_name <- (v1,v2)); - set_hd "encoding_manual" (fun v -> np.encoding <- (inputenc_of_string v)); + set_hd "encoding" (fun v -> np.encoding <- (inputenc_of_string v)); set_hd "project_options" (fun v -> np.read_project <- (project_behavior_of_string v)); set_hd "project_file_name" (fun v -> np.project_file_name <- v); diff --git a/ide/preferences.mli b/ide/preferences.mli index b680c6f0..382aa091 100644 --- a/ide/preferences.mli +++ b/ide/preferences.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Minilib.safe_prerr_endline "Please now use \"-arg -impredicative-set\" instead of \"-impredicative-set\" alone to be more uniform."; - process_cmd_line orig_dir opts (Arg "-impredicative_set" :: l) r + process_cmd_line orig_dir opts (Arg "-impredicative-set" :: l) r | "-no-install" :: r -> Minilib.safe_prerr_endline "Option -no-install is deprecated. Use \"-install none\" instead"; process_cmd_line orig_dir (project_file,makefile,NoInstall,opt) l r diff --git a/ide/tags.ml b/ide/tags.ml index eeace465..7b67944b 100644 --- a/ide/tags.ml +++ b/ide/tags.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* check_same_type a1 a2; check_same_type b1 b2 - | CAppExpl(_,r1,al1), CAppExpl(_,r2,al2) when r1=r2 -> + | CAppExpl(_,(proj1,r1),al1), CAppExpl(_,(proj2,r2),al2) when proj1=proj2 -> + check_same_ref r1 r2; List.iter2 check_same_type al1 al2 | CApp(_,(_,e1),al1), CApp(_,(_,e2),al2) -> check_same_type e1 e2; @@ -249,7 +250,7 @@ and check_same_fix_binder bl1 bl2 = check_same_binder ([na1],default_binder_kind,def1) ([na2],default_binder_kind,def2) | _ -> failwith "not same binder") bl1 bl2 -let same c d = try check_same_type c d; true with _ -> false +let is_same_type c d = try let () = check_same_type c d in true with Failure _ -> false (**********************************************************************) (* mapping patterns to cases_pattern_expr *) @@ -293,7 +294,7 @@ let make_notation_gen loc ntn mknot mkprim destprim l = if has_curly_brackets ntn then expand_curly_brackets loc mknot ntn l else match ntn,List.map destprim l with - (* Special case to avoid writing "- 3" for e.g. (Zopp 3) *) + (* Special case to avoid writing "- 3" for e.g. (Z.opp 3) *) | "- _", [Some (Numeral p)] when Bigint.is_strictly_pos p -> mknot (loc,ntn,([mknot (loc,"( _ )",l)])) | _ -> @@ -662,12 +663,12 @@ let rec extern inctx scopes vars r = | GProd (loc,na,bk,t,c) -> let t = extern_typ scopes vars (anonymize_if_reserved na t) in - let (idl,c) = factorize_prod scopes (add_vname vars na) t c in + let (idl,c) = factorize_prod scopes (add_vname vars na) na bk t c in CProdN (loc,[(dummy_loc,na)::idl,Default bk,t],c) | GLambda (loc,na,bk,t,c) -> let t = extern_typ scopes vars (anonymize_if_reserved na t) in - let (idl,c) = factorize_lambda inctx scopes (add_vname vars na) t c in + let (idl,c) = factorize_lambda inctx scopes (add_vname vars na) na bk t c in CLambdaN (loc,[(dummy_loc,na)::idl,Default bk,t],c) | GCases (loc,sty,rtntypopt,tml,eqns) -> @@ -753,30 +754,25 @@ and extern_typ (_,scopes) = and sub_extern inctx (_,scopes) = extern inctx (None,scopes) -and factorize_prod scopes vars aty c = - try - if !Flags.raw_print or !print_no_symbol then raise No_match; - ([],extern_symbol scopes vars c (uninterp_notations c)) - with No_match -> match c with - | GProd (loc,(Name id as na),bk,ty,c) - when same aty (extern_typ scopes vars (anonymize_if_reserved na ty)) - & not (occur_var_constr_expr id aty) (* avoid na in ty escapes scope *) - -> let (nal,c) = factorize_prod scopes (Idset.add id vars) aty c in - ((loc,Name id)::nal,c) - | c -> ([],extern_typ scopes vars c) - -and factorize_lambda inctx scopes vars aty c = - try - if !Flags.raw_print or !print_no_symbol then raise No_match; - ([],extern_symbol (Some Notation.type_scope,snd scopes) vars c (uninterp_notations c)) - with No_match -> match c with - | GLambda (loc,na,bk,ty,c) - when same aty (extern_typ scopes vars (anonymize_if_reserved na ty)) - & not (occur_name na aty) (* To avoid na in ty' escapes scope *) - -> let (nal,c) = - factorize_lambda inctx scopes (add_vname vars na) aty c in - ((loc,na)::nal,c) - | c -> ([],sub_extern inctx scopes vars c) +and factorize_prod scopes vars na bk aty c = + let c = extern_typ scopes vars c in + match na, c with + | Name id, CProdN (loc,[nal,Default bk',ty],c) + when bk = bk' && is_same_type aty ty + & not (occur_var_constr_expr id ty) (* avoid na in ty escapes scope *) -> + nal,c + | _ -> + [],c + +and factorize_lambda inctx scopes vars na bk aty c = + let c = sub_extern inctx scopes vars c in + match c with + | CLambdaN (loc,[nal,Default bk',ty],c) + when bk = bk' && is_same_type aty ty + & not (occur_name na ty) (* avoid na in ty escapes scope *) -> + nal,c + | _ -> + [],c and extern_local_binder scopes vars = function [] -> ([],[],[]) @@ -790,7 +786,7 @@ and extern_local_binder scopes vars = function let ty = extern_typ scopes vars (anonymize_if_reserved na ty) in (match extern_local_binder scopes (name_fold Idset.add na vars) l with (assums,ids,LocalRawAssum(nal,k,ty')::l) - when same ty ty' & + when is_same_type ty ty' & match na with Name id -> not (occur_var_constr_expr id ty') | _ -> true -> (na::assums,na::ids, diff --git a/interp/constrextern.mli b/interp/constrextern.mli index 2a53eb85..1a1560e5 100644 --- a/interp/constrextern.mli +++ b/interp/constrextern.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* constr_expr -> unit +val is_same_type : constr_expr -> constr_expr -> bool (** Translation of pattern, cases pattern, glob_constr and term into syntax trees for printing *) diff --git a/interp/constrintern.ml b/interp/constrintern.ml index 1dd735ad..45df005c 100644 --- a/interp/constrintern.ml +++ b/interp/constrintern.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* None & - (* scopes have no effect on the interpretation of identifiers, hence - we can tolerate having a variable occurring several times in - different scopes: *) typ <> NtnInternTypeIdent & - make_current_scope (Option.get !idscopes) - <> make_current_scope (env.tmp_scope,env.scopes) then - error_inconsistent_scope loc id - (make_current_scope (Option.get !idscopes)) - (make_current_scope (env.tmp_scope,env.scopes)) - else - idscopes := Some (env.tmp_scope,env.scopes); + if istermvar then + (* scopes have no effect on the interpretation of identifiers *) + if !idscopes = None then + idscopes := Some (env.tmp_scope,env.scopes) + else + if make_current_scope (Option.get !idscopes) + <> make_current_scope (env.tmp_scope,env.scopes) + then + error_inconsistent_scope loc id + (make_current_scope (Option.get !idscopes)) + (make_current_scope (env.tmp_scope,env.scopes)); match typ with | NtnInternTypeBinder -> if istermvar then error_expect_binder_notation_type loc id @@ -1682,7 +1683,7 @@ let interp_rawcontext_gen understand_type understand_judgment env bl = (push_rel d env, d::params, succ n, impls) | Some b -> let c = understand_judgment env b in - let d = (na, Some c.uj_val, c.uj_type) in + let d = (na, Some c.uj_val, Termops.refresh_universes c.uj_type) in (push_rel d env, d::params, succ n, impls)) (env,[],1,[]) (List.rev bl) in (env, par), impls diff --git a/interp/constrintern.mli b/interp/constrintern.mli index 7d000902..7a4bba10 100644 --- a/interp/constrintern.mli +++ b/interp/constrintern.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* symbol_interpretation *) let scope_map = ref Gmap.empty +(* Delimiter table : delimiter -> scope_name *) +let delimiters_map = ref Gmap.empty + let empty_scope = { notations = Gmap.empty; delimiters = None @@ -74,12 +77,25 @@ let declare_scope scope = (* Flags.if_warn message ("Creating scope "^scope);*) scope_map := Gmap.add scope empty_scope !scope_map +let error_unknown_scope sc = error ("Scope "^sc^" is not declared.") + let find_scope scope = try Gmap.find scope !scope_map - with Not_found -> error ("Scope "^scope^" is not declared.") + with Not_found -> error_unknown_scope scope let check_scope sc = let _ = find_scope sc in () +(* [sc] might be here a [scope_name] or a [delimiter] + (now allowed after Open Scope) *) + +let normalize_scope sc = + try let _ = Gmap.find sc !scope_map in sc + with Not_found -> + try + let sc = Gmap.find sc !delimiters_map in + let _ = Gmap.find sc !scope_map in sc + with Not_found -> error_unknown_scope sc + (**********************************************************************) (* The global stack of scopes *) @@ -99,10 +115,13 @@ let scope_is_open sc = scope_is_open_in_scopes sc (!scope_stack) (* Exportation of scopes *) let open_scope i (_,(local,op,sc)) = - if i=1 then begin - (match sc with Scope sc -> check_scope sc | _ -> ()); - scope_stack := if op then sc :: !scope_stack else list_except sc !scope_stack - end + if i=1 then + let sc = match sc with + | Scope sc -> Scope (normalize_scope sc) + | _ -> sc + in + scope_stack := + if op then sc :: !scope_stack else list_except sc !scope_stack let cache_scope o = open_scope 1 o @@ -142,8 +161,6 @@ let make_current_scopes (tmp_scope,scopes) = (**********************************************************************) (* Delimiters *) -let delimiters_map = ref Gmap.empty - let declare_delimiters scope key = let sc = find_scope scope in let newsc = { sc with delimiters = Some key } in @@ -361,7 +378,7 @@ let interp_prim_token_gen g loc p local_scopes = with Not_found -> user_err_loc (loc,"interp_prim_token", (match p with - | Numeral n -> str "No interpretation for numeral " ++ pr_bigint n + | Numeral n -> str "No interpretation for numeral " ++ str (to_string n) | String s -> str "No interpretation for string " ++ qs s) ++ str ".") let interp_prim_token = diff --git a/interp/notation.mli b/interp/notation.mli index f429e377..2ecfbda7 100644 --- a/interp/notation.mli +++ b/interp/notation.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* syntax_table := ft); Summary.init_function = (fun () -> syntax_table := KNmap.empty) } -let add_syntax_constant kn c = - syntax_table := KNmap.add kn c !syntax_table +let add_syntax_constant kn c onlyparse = + syntax_table := KNmap.add kn (c,onlyparse) !syntax_table -let load_syntax_constant i ((sp,kn),(local,pat,onlyparse)) = +let load_syntax_constant i ((sp,kn),(_,pat,onlyparse)) = if Nametab.exists_cci sp then errorlabstrm "cache_syntax_constant" (pr_id (basename sp) ++ str " already exists"); - add_syntax_constant kn pat; + add_syntax_constant kn pat onlyparse; Nametab.push_syndef (Nametab.Until i) sp kn let is_alias_of_already_visible_name sp = function @@ -46,7 +48,7 @@ let is_alias_of_already_visible_name sp = function let open_syntax_constant i ((sp,kn),(_,pat,onlyparse)) = if not (is_alias_of_already_visible_name sp pat) then begin Nametab.push_syndef (Nametab.Exactly i) sp kn; - if not onlyparse then + if onlyparse = None then (* Redeclare it to be used as (short) name in case an other (distfix) notation was declared inbetween *) Notation.declare_uninterpretation (Notation.SynDefRule kn) pat @@ -62,7 +64,8 @@ let subst_syntax_constant (subst,(local,pat,onlyparse)) = let classify_syntax_constant (local,_,_ as o) = if local then Dispose else Substitute o -let in_syntax_constant : bool * interpretation * bool -> obj = +let in_syntax_constant + : bool * interpretation * Flags.compat_version option -> obj = declare_object {(default_object "SYNTAXCONSTANT") with cache_function = cache_syntax_constant; load_function = load_syntax_constant; @@ -80,5 +83,50 @@ let out_pat (ids,ac) = (List.map (fun (id,(sc,typ)) -> (id,sc)) ids,ac) let declare_syntactic_definition local id onlyparse pat = let _ = add_leaf id (in_syntax_constant (local,in_pat pat,onlyparse)) in () +let pr_global r = pr_global_env Idset.empty r +let pr_syndef kn = pr_qualid (shortest_qualid_of_syndef Idset.empty kn) + +let allow_compat_notations = ref true +let verbose_compat_notations = ref false + +let is_verbose_compat () = + !verbose_compat_notations || not !allow_compat_notations + +let verbose_compat kn def = function + | Some v when is_verbose_compat () && Flags.version_strictly_greater v -> + let act = + if !verbose_compat_notations then msg_warning else errorlabstrm "" + in + let pp_def = match def with + | [], ARef r -> str " is " ++ pr_global_env Idset.empty r + | _ -> str " is a compatibility notation" + in + let since = str (" since Coq > " ^ Flags.pr_version v ^ ".") in + act (pr_syndef kn ++ pp_def ++ since) + | _ -> () + let search_syntactic_definition kn = - out_pat (KNmap.find kn !syntax_table) + let pat,v = KNmap.find kn !syntax_table in + let def = out_pat pat in + verbose_compat kn def v; + def + +open Goptions + +let set_verbose_compat_notations = + declare_bool_option + { optsync = true; + optdepr = false; + optname = "verbose compatibility notations"; + optkey = ["Verbose";"Compat";"Notations"]; + optread = (fun () -> !verbose_compat_notations); + optwrite = ((:=) verbose_compat_notations) } + +let set_compat_notations = + declare_bool_option + { optsync = true; + optdepr = false; + optname = "accept compatibility notations"; + optkey = ["Compat"; "Notations"]; + optread = (fun () -> !allow_compat_notations); + optwrite = ((:=) allow_compat_notations) } diff --git a/interp/syntax_def.mli b/interp/syntax_def.mli index e4da52a3..036fe30a 100644 --- a/interp/syntax_def.mli +++ b/interp/syntax_def.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* identifier -> bool -> - syndef_interpretation -> unit +val declare_syntactic_definition : bool -> identifier -> + Flags.compat_version option -> syndef_interpretation -> unit val search_syntactic_definition : kernel_name -> syndef_interpretation + +(** Options concerning verbose display of compatibility notations + or their deactivation *) + +val set_verbose_compat_notations : bool -> unit +val set_compat_notations : bool -> unit diff --git a/interp/topconstr.ml b/interp/topconstr.ml index 04d39fbf..b02a67ea 100644 --- a/interp/topconstr.ml +++ b/interp/topconstr.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* abstract_constant_body (expmod_constr r.d_modlist c) hyps) cb.const_body in + let const_hyps = + Sign.fold_named_context (fun (h,_,_) hyps -> + List.filter (fun (id,_,_) -> id <> h) hyps) + hyps ~init:cb.const_hyps in let typ = match cb.const_type with | NonPolymorphicType t -> let typ = abstract_constant_type (expmod_constr r.d_modlist t) hyps in @@ -145,4 +149,4 @@ let cook_constant env r = let j = make_judge (constr_of_def body) typ in Typeops.make_polymorphic_if_constant_for_ind env j in - (body, typ, cb.const_constraints) + (body, typ, cb.const_constraints, const_hyps) diff --git a/kernel/cooking.mli b/kernel/cooking.mli index 5f31ff8c..1586adae 100644 --- a/kernel/cooking.mli +++ b/kernel/cooking.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* recipe -> constant_def * constant_type * constraints + env -> recipe -> + constant_def * constant_type * constraints * Sign.section_context (** {6 Utility functions used in module [Discharge]. } *) diff --git a/kernel/csymtable.ml b/kernel/csymtable.ml index e8b66d09..8d09cbd7 100644 --- a/kernel/csymtable.ml +++ b/kernel/csymtable.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* invalid_arg "destMeta" let isMeta c = match kind_of_term c with Meta _ -> true | _ -> false +let isMetaOf mv c = match kind_of_term c with Meta mv' -> mv = mv' | _ -> false (* Destructs a variable *) let destVar c = match kind_of_term c with diff --git a/kernel/term.mli b/kernel/term.mli index e83be6d6..15fcdd18 100644 --- a/kernel/term.mli +++ b/kernel/term.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* constr -> bool val isInd : constr -> bool val isEvar : constr -> bool val isMeta : constr -> bool +val isMetaOf : metavariable -> constr -> bool val isEvar_or_Meta : constr -> bool val isSort : constr -> bool val isCast : constr -> bool diff --git a/kernel/term_typing.ml b/kernel/term_typing.ml index 478b9c6f..ee5e8fda 100644 --- a/kernel/term_typing.ml +++ b/kernel/term_typing.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* let rec aux j l n = if j=size then l else aux (j+1) (string_of_int (n mod 10) :: l) (n/10) @@ -54,44 +54,81 @@ let format_size = let base = let rec exp10 = function 0 -> 1 | n -> 10 * exp10 (n-1) in exp10 size +(******************************************************************) +(* First, we represent all numbers by int arrays. + Later, we will optimize the particular case of small integers *) +(******************************************************************) + +module ArrayInt = struct + (* Basic numbers *) let zero = [||] let neg_one = [|-1|] -(* Sign of an integer *) -let is_strictly_neg n = n<>[||] && n.(0) < 0 -let is_strictly_pos n = n<>[||] && n.(0) > 0 -let is_neg_or_zero n = n=[||] or n.(0) < 0 -let is_pos_or_zero n = n=[||] or n.(0) > 0 +(* An array is canonical when + - it is empty + - it is [|-1|] + - its first bloc is in [-base;-1[U]0;base[ + and the other blocs are in [0;base[. *) + +let canonical n = + let ok x = (0 <= x && x < base) in + let rec ok_tail k = (k = 0) || (ok n.(k) && ok_tail (k-1)) in + let ok_init x = (-base <= x && x < base && x <> -1 && x <> 0) + in + (n = [||]) || (n = [|-1|]) || + (ok_init n.(0) && ok_tail (Array.length n - 1)) + +(* [normalize_pos] : removing initial blocks of 0 *) let normalize_pos n = let k = ref 0 in while !k < Array.length n & n.(!k) = 0 do incr k done; Array.sub n !k (Array.length n - !k) +(* [normalize_neg] : avoid (-1) as first bloc. + input: an array with -1 as first bloc and other blocs in [0;base[ + output: a canonical array *) + let normalize_neg n = let k = ref 1 in while !k < Array.length n & n.(!k) = base - 1 do incr k done; let n' = Array.sub n !k (Array.length n - !k) in if Array.length n' = 0 then [|-1|] else (n'.(0) <- n'.(0) - base; n') +(* [normalize] : avoid 0 and (-1) as first bloc. + input: an array with first bloc in [-base;base[ and others in [0;base[ + output: a canonical array *) + let rec normalize n = - if Array.length n = 0 then n else - if n.(0) = -1 then normalize_neg n else normalize_pos n + if Array.length n = 0 then n + else if n.(0) = -1 then normalize_neg n + else if n.(0) = 0 then normalize_pos n + else n + +(* Opposite (expects and returns canonical arrays) *) let neg m = if m = zero then zero else let n = Array.copy m in let i = ref (Array.length m - 1) in while !i > 0 & n.(!i) = 0 do decr i done; - if !i > 0 then begin + if !i = 0 then begin + n.(0) <- - n.(0); + (* n.(0) cannot be 0 since m is canonical *) + if n.(0) = -1 then normalize_neg n + else if n.(0) = base then (n.(0) <- 0; Array.append [| 1 |] n) + else n + end else begin + (* here n.(!i) <> 0, hence 0 < base - n.(!i) < base for n canonical *) n.(!i) <- base - n.(!i); decr i; while !i > 0 do n.(!i) <- base - 1 - n.(!i); decr i done; + (* since -base <= n.(0) <= base-1, hence -base <= -n.(0)-1 <= base-1 *) n.(0) <- - n.(0) - 1; - if n.(0) < -1 then (n.(0) <- n.(0) + base; Array.append [| -1 |] n) else - if n.(0) = - base then (n.(0) <- 0; Array.append [| -1 |] n) - else normalize n - end else (n.(0) <- - n.(0); n) + (* since m is canonical, m.(0)<>0 hence n.(0)<>-1, + and m=-1 is already handled above, so here m.(0)<>-1 hence n.(0)<>0 *) + n + end let push_carry r j = let j = ref j in @@ -101,10 +138,10 @@ let push_carry r j = while !j > 0 & r.(!j) >= base do r.(!j) <- r.(!j) - base; decr j; r.(!j) <- r.(!j) + 1 done; + (* here r.(0) could be in [-2*base;2*base-1] *) if r.(0) >= base then (r.(0) <- r.(0) - base; Array.append [| 1 |] r) else if r.(0) < -base then (r.(0) <- r.(0) + 2*base; Array.append [| -2 |] r) - else if r.(0) = -base then (r.(0) <- 0; Array.append [| -1 |] r) - else normalize r + else normalize r (* in case r.(0) is 0 or -1 *) let add_to r a j = if a = zero then r else begin @@ -152,6 +189,13 @@ let rec mult m n = done; normalize r +(* Comparisons *) + +let is_strictly_neg n = n<>[||] && n.(0) < 0 +let is_strictly_pos n = n<>[||] && n.(0) > 0 +let is_neg_or_zero n = n=[||] or n.(0) < 0 +let is_pos_or_zero n = n=[||] or n.(0) > 0 + let rec less_than_same_size m n i j = i < Array.length m && (m.(i) < n.(j) or (m.(i) = n.(j) && less_than_same_size m n (i+1) (j+1))) @@ -164,6 +208,8 @@ let less_than m n = is_strictly_pos n && (Array.length m < Array.length n or (Array.length m = Array.length n && less_than_same_size m n 0 0)) +(* For this equality test it is critical that n and m are canonical *) + let equal m n = (m = n) let less_than_shift_pos k m n = @@ -175,16 +221,30 @@ let rec can_divide k m d i = (m.(k+i) > d.(i)) or (m.(k+i) = d.(i) && can_divide k m d (i+1)) -(* computes m - d * q * base^(|m|-k) in-place on positive numbers *) +(* For two big nums m and d and a small number q, + computes m - d * q * base^(|m|-|d|-k) in-place (in m). + Both m d and q are positive. *) + let sub_mult m d q k = if q <> 0 then for i = Array.length d - 1 downto 0 do let v = d.(i) * q in m.(k+i) <- m.(k+i) - v mod base; if m.(k+i) < 0 then (m.(k+i) <- m.(k+i) + base; m.(k+i-1) <- m.(k+i-1) -1); - if v >= base then m.(k+i-1) <- m.(k+i-1) - v / base; + if v >= base then begin + m.(k+i-1) <- m.(k+i-1) - v / base; + let j = ref (i-1) in + while m.(k + !j) < 0 do (* result is positive, hence !j remains >= 0 *) + m.(k + !j) <- m.(k + !j) + base; decr j; m.(k + !j) <- m.(k + !j) -1 + done + end done +(** Euclid division m/d = (q,r) + This is the "Floor" variant, as with ocaml's / + (but not as ocaml's Big_int.quomod_big_int). + We have sign r = sign m *) + let euclid m d = let isnegm, m = if is_strictly_neg m then (-1),neg m else 1,Array.copy m in @@ -222,33 +282,21 @@ let euclid m d = (* Parsing/printing ordinary 10-based numbers *) let of_string s = - let isneg = String.length s > 1 & s.[0] = '-' in - let n = if isneg then 1 else 0 in - let d = ref n in - while !d < String.length s && s.[!d] = '0' do incr d done; - if !d = String.length s then zero else - let r = (String.length s - !d) mod size in + let len = String.length s in + let isneg = len > 1 & s.[0] = '-' in + let d = ref (if isneg then 1 else 0) in + while !d < len && s.[!d] = '0' do incr d done; + if !d = len then zero else + let r = (len - !d) mod size in let h = String.sub s (!d) r in - if !d = String.length s - 1 && isneg && h="1" then neg_one else let e = if h<>"" then 1 else 0 in - let l = (String.length s - !d) / size in - let a = Array.create (l + e + n) 0 in - if isneg then begin - a.(0) <- (-1); - let carry = ref 0 in - for i=l downto 1 do - let v = int_of_string (String.sub s ((i-1)*size + !d +r) size)+ !carry in - if v <> 0 then (a.(i+e)<- base - v; carry := 1) else carry := 0 - done; - if e=1 then a.(1) <- base - !carry - int_of_string h; - end - else begin - if e=1 then a.(0) <- int_of_string h; - for i=1 to l do - a.(i+e-1) <- int_of_string (String.sub s ((i-1)*size + !d + r) size) - done - end; - a + let l = (len - !d) / size in + let a = Array.create (l + e) 0 in + if e=1 then a.(0) <- int_of_string h; + for i=1 to l do + a.(i+e-1) <- int_of_string (String.sub s ((i-1)*size + !d + r) size) + done; + if isneg then neg a else a let to_string_pos sgn n = if Array.length n = 0 then "0" else @@ -260,25 +308,44 @@ let to_string n = if is_strictly_neg n then to_string_pos "-" (neg n) else to_string_pos "" n +end + (******************************************************************) (* Optimized operations on (unbounded) integer numbers *) (* integers smaller than base are represented as machine integers *) (******************************************************************) +open ArrayInt + type bigint = Obj.t +(* Since base is the largest power of 10 such that base*base <= max_int, + we have max_int < 100*base*base : any int can be represented + by at most three blocs *) + +let small n = (-base <= n) && (n < base) + +let mkarray n = + (* n isn't small, this case is handled separately below *) + let lo = n mod base + and hi = n / base in + let t = if small hi then [|hi;lo|] else [|hi/base;hi mod base;lo|] + in + for i = Array.length t -1 downto 1 do + if t.(i) < 0 then (t.(i) <- t.(i) + base; t.(i-1) <- t.(i-1) -1) + done; + t + let ints_of_int n = - if n >= base then [| n / base; n mod base |] - else if n <= - base then [| n / base - 1; n mod base + base |] - else if n = 0 then [| |] else [| n |] + if n = 0 then [| |] + else if small n then [| n |] + else mkarray n -let big_of_int n = - if n >= base then Obj.repr [| n / base; n mod base |] - else if n <= - base then Obj.repr [| n / base - 1; n mod base + base |] - else Obj.repr n +let of_int n = + if small n then Obj.repr n else Obj.repr (mkarray n) -let big_of_ints n = - let n = normalize n in +let of_ints n = + let n = normalize n in (* TODO: using normalize here seems redundant now *) if n = zero then Obj.repr 0 else if Array.length n = 1 then Obj.repr n.(0) else Obj.repr n @@ -286,63 +353,81 @@ let big_of_ints n = let coerce_to_int = (Obj.magic : Obj.t -> int) let coerce_to_ints = (Obj.magic : Obj.t -> int array) -let ints_of_z n = +let to_ints n = if Obj.is_int n then ints_of_int (coerce_to_int n) else coerce_to_ints n +let int_of_ints = + let maxi = mkarray max_int and mini = mkarray min_int in + fun t -> + let l = Array.length t in + if (l > 3) || (l = 3 && (less_than maxi t || less_than t mini)) + then failwith "Bigint.to_int: too large"; + let sum = ref 0 in + let pow = ref 1 in + for i = l-1 downto 0 do + sum := !sum + t.(i) * !pow; + pow := !pow*base; + done; + !sum + +let to_int n = + if Obj.is_int n then coerce_to_int n + else int_of_ints (coerce_to_ints n) + let app_pair f (m, n) = (f m, f n) let add m n = if Obj.is_int m & Obj.is_int n - then big_of_int (coerce_to_int m + coerce_to_int n) - else big_of_ints (add (ints_of_z m) (ints_of_z n)) + then of_int (coerce_to_int m + coerce_to_int n) + else of_ints (add (to_ints m) (to_ints n)) let sub m n = if Obj.is_int m & Obj.is_int n - then big_of_int (coerce_to_int m - coerce_to_int n) - else big_of_ints (sub (ints_of_z m) (ints_of_z n)) + then of_int (coerce_to_int m - coerce_to_int n) + else of_ints (sub (to_ints m) (to_ints n)) let mult m n = if Obj.is_int m & Obj.is_int n - then big_of_int (coerce_to_int m * coerce_to_int n) - else big_of_ints (mult (ints_of_z m) (ints_of_z n)) + then of_int (coerce_to_int m * coerce_to_int n) + else of_ints (mult (to_ints m) (to_ints n)) let euclid m n = if Obj.is_int m & Obj.is_int n - then app_pair big_of_int + then app_pair of_int (coerce_to_int m / coerce_to_int n, coerce_to_int m mod coerce_to_int n) - else app_pair big_of_ints (euclid (ints_of_z m) (ints_of_z n)) + else app_pair of_ints (euclid (to_ints m) (to_ints n)) let less_than m n = if Obj.is_int m & Obj.is_int n then coerce_to_int m < coerce_to_int n - else less_than (ints_of_z m) (ints_of_z n) + else less_than (to_ints m) (to_ints n) let neg n = - if Obj.is_int n then big_of_int (- (coerce_to_int n)) - else big_of_ints (neg (ints_of_z n)) + if Obj.is_int n then of_int (- (coerce_to_int n)) + else of_ints (neg (to_ints n)) -let of_string m = big_of_ints (of_string m) -let to_string m = to_string (ints_of_z m) +let of_string m = of_ints (of_string m) +let to_string m = to_string (to_ints m) -let zero = big_of_int 0 -let one = big_of_int 1 +let zero = of_int 0 +let one = of_int 1 +let two = of_int 2 let sub_1 n = sub n one let add_1 n = add n one -let two = big_of_int 2 let mult_2 n = add n n let div2_with_rest n = let (q,b) = euclid n two in (q, b = one) -let is_strictly_neg n = is_strictly_neg (ints_of_z n) -let is_strictly_pos n = is_strictly_pos (ints_of_z n) -let is_neg_or_zero n = is_neg_or_zero (ints_of_z n) -let is_pos_or_zero n = is_pos_or_zero (ints_of_z n) +let is_strictly_neg n = is_strictly_neg (to_ints n) +let is_strictly_pos n = is_strictly_pos (to_ints n) +let is_neg_or_zero n = is_neg_or_zero (to_ints n) +let is_pos_or_zero n = is_pos_or_zero (to_ints n) -let pr_bigint n = str (to_string n) +let equal m n = (m = n) (* spiwack: computes n^m *) (* The basic idea of the algorithm is that n^(2m) = (n^2)^m *) @@ -352,58 +437,68 @@ let pr_bigint n = str (to_string n) k*n^(2m+1) = (n*k)*(n*n)^m *) let pow = let rec pow_aux odd_rest n m = (* odd_rest is the k from above *) - if is_neg_or_zero m then + if m<=0 then odd_rest else - let (quo,rem) = div2_with_rest m in + let quo = m lsr 1 (* i.e. m/2 *) + and odd = (m land 1) <> 0 in pow_aux - ((* [if m mod 2 = 1]*) - if rem then - mult n odd_rest - else - odd_rest ) - (* quo = [m/2] *) - (mult n n) quo + (if odd then mult n odd_rest else odd_rest) + (mult n n) + quo in pow_aux one -(* Testing suite *) +(** Testing suite w.r.t. OCaml's Big_int *) + +(* +module B = struct + open Big_int + let zero = zero_big_int + let to_string = string_of_big_int + let of_string = big_int_of_string + let add = add_big_int + let opp = minus_big_int + let sub = sub_big_int + let mul = mult_big_int + let abs = abs_big_int + let sign = sign_big_int + let euclid n m = + let n' = abs n and m' = abs m in + let q',r' = quomod_big_int n' m' in + (if sign (mul n m) < 0 && sign q' <> 0 then opp q' else q'), + (if sign n < 0 then opp r' else r') +end let check () = - let numbers = [ - "1";"2";"99";"100";"101";"9999";"10000";"10001"; - "999999";"1000000";"1000001";"99999999";"100000000";"100000001"; - "1234";"5678";"12345678";"987654321"; - "-1";"-2";"-99";"-100";"-101";"-9999";"-10000";"-10001"; - "-999999";"-1000000";"-1000001";"-99999999";"-100000000";"-100000001"; - "-1234";"-5678";"-12345678";"-987654321";"0" - ] + let roots = [ 1; 100; base; 100*base; base*base ] in + let rands = [ 1234; 5678; 12345678; 987654321 ] in + let nums = (List.flatten (List.map (fun x -> [x-1;x;x+1]) roots)) @ rands in + let numbers = + List.map string_of_int nums @ + List.map (fun n -> string_of_int (-n)) nums in - let eucl n m = - let n' = abs_float n and m' = abs_float m in - let q' = floor (n' /. m') in let r' = n' -. m' *. q' in - (if n *. m < 0. & q' <> 0. then -. q' else q'), - (if n < 0. then -. r' else r') in - let round f = floor (abs_float f +. 0.5) *. (if f < 0. then -1. else 1.) in let i = ref 0 in - let compare op n n' = + let compare op x y n n' = incr i; let s = Printf.sprintf "%30s" (to_string n) in - let s' = Printf.sprintf "% 30.0f" (round n') in - if s <> s' then Printf.printf "%s: %s <> %s\n" op s s' in -List.iter (fun a -> List.iter (fun b -> - let n = of_string a and m = of_string b in - let n' = float_of_string a and m' = float_of_string b in - let a = add n m and a' = n' +. m' in - let s = sub n m and s' = n' -. m' in - let p = mult n m and p' = n' *. m' in - let q,r = try euclid n m with Division_by_zero -> zero,zero - and q',r' = eucl n' m' in - compare "+" a a'; - compare "-" s s'; - compare "*" p p'; - compare "/" q q'; - compare "%" r r') numbers) numbers; + let s' = Printf.sprintf "%30s" (B.to_string n') in + if s <> s' then Printf.printf "%s%s%s: %s <> %s\n" x op y s s' in + let test x y = + let n = of_string x and m = of_string y in + let n' = B.of_string x and m' = B.of_string y in + let a = add n m and a' = B.add n' m' in + let s = sub n m and s' = B.sub n' m' in + let p = mult n m and p' = B.mul n' m' in + let q,r = try euclid n m with Division_by_zero -> zero,zero + and q',r' = try B.euclid n' m' with Division_by_zero -> B.zero, B.zero + in + compare "+" x y a a'; + compare "-" x y s s'; + compare "*" x y p p'; + compare "/" x y q q'; + compare "%" x y r r' + in + List.iter (fun a -> List.iter (test a) numbers) numbers; Printf.printf "%i tests done\n" !i - - +*) diff --git a/lib/bigint.mli b/lib/bigint.mli index 92a97bdc..754f10d6 100644 --- a/lib/bigint.mli +++ b/lib/bigint.mli @@ -1,13 +1,11 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* bigint val to_string : bigint -> string +val of_int : int -> bigint +val to_int : bigint -> int (** May raise a Failure on oversized numbers *) + val zero : bigint val one : bigint val two : bigint @@ -38,6 +39,4 @@ val is_pos_or_zero : bigint -> bool val is_neg_or_zero : bigint -> bool val neg : bigint -> bigint -val pow : bigint -> bigint -> bigint - -val pr_bigint : bigint -> std_ppcmds +val pow : bigint -> int -> bigint diff --git a/lib/compat.ml4 b/lib/compat.ml4 index 8d8483b4..a428ec10 100644 --- a/lib/compat.ml4 +++ b/lib/compat.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x) (fun _ -> ()) com in - Util.strip res - - + let ex,res = System.run_command (fun x -> x) (fun _ -> ()) com in + match ex with + |Unix.WEXITED 0 -> Util.strip res + |_ -> "/dev/null" diff --git a/lib/envars.mli b/lib/envars.mli index 0c80492f..9ec170db 100644 --- a/lib/envars.mli +++ b/lib/envars.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* true | Some v' -> v'>v +(* Current means no particular compatibility consideration. + For correct comparisons, this constructor should remain the last one. *) + +type compat_version = V8_2 | V8_3 | Current +let compat_version = ref Current +let version_strictly_greater v = !compat_version > v let version_less_or_equal v = not (version_strictly_greater v) +let pr_version = function + | V8_2 -> "8.2" + | V8_3 -> "8.3" + | Current -> "current" + (* Translate *) let beautify = ref false let make_beautify f = beautify := f diff --git a/lib/flags.mli b/lib/flags.mli index da43c867..eb53f1a2 100644 --- a/lib/flags.mli +++ b/lib/flags.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* bool val version_less_or_equal : compat_version -> bool +val pr_version : compat_version -> string val beautify : bool ref val make_beautify : bool -> unit diff --git a/lib/gmap.ml b/lib/gmap.ml index bc60a7fc..08c99daf 100644 --- a/lib/gmap.ml +++ b/lib/gmap.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* ] let (++) = Stream.iapp +let rec eval_ppcmds l = + let rec aux l = + try + let a = match Stream.next l with + | Ppcmd_box (b,s) -> Ppcmd_box (b,eval_ppcmds s) + | a -> a in + let rest = aux l in + a :: rest + with Stream.Failure -> [] in + Stream.of_list (aux l) + (* In new syntax only double quote char is escaped by repeating it *) let rec escape_string s = let rec escape_at s i = diff --git a/lib/pp.mli b/lib/pp.mli index 1b923d4a..7917ba15 100644 --- a/lib/pp.mli +++ b/lib/pp.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* std_ppcmds -> std_ppcmds +(** {6 Evaluation. } *) + +val eval_ppcmds : std_ppcmds -> std_ppcmds + (** {6 Derived commands. } *) val spc : unit -> std_ppcmds diff --git a/lib/pp_control.ml b/lib/pp_control.ml index cefd08c5..dce42e29 100644 --- a/lib/pp_control.ml +++ b/lib/pp_control.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* TacSolve l - | IDENT "complete" ; ta = tactic_expr -> TacComplete ta | IDENT "idtac"; l = LIST0 message_token -> TacId l | IDENT "fail"; n = [ n = int_or_var -> n | -> fail_default_value ]; l = LIST0 message_token -> TacFail (n,l) diff --git a/parsing/g_prim.ml4 b/parsing/g_prim.ml4 index 307e1779..6fee4e1f 100644 --- a/parsing/g_prim.ml4 +++ b/parsing/g_prim.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* + | [ElimOnConstr cl,(None,None)],None,None -> TacCase (with_evar,cl) (* Reinterpret numbers as a notation for terms *) - | [([(ElimOnAnonHyp n)],None,(None,None))],None -> + | [ElimOnAnonHyp n,(None,None)],None,None -> TacCase (with_evar, - (CPrim (dummy_loc, Numeral (Bigint.of_string (string_of_int n))), + (CPrim (dummy_loc, Numeral (Bigint.of_int n)), NoBindings)) (* Reinterpret ident as notations for variables in the context *) (* because we don't know if they are quantified or not *) - | [([ElimOnIdent id],None,(None,None))],None -> + | [ElimOnIdent id,(None,None)],None,None -> TacCase (with_evar,(CRef (Ident id),NoBindings)) | ic -> - if List.exists (fun (cl,a,b) -> - List.exists (function ElimOnAnonHyp _ -> true | _ -> false) cl) - (fst ic) + if List.exists (function (ElimOnAnonHyp _,_) -> true | _ -> false) (pi1 ic) then error "Use of numbers as direct arguments of 'case' is not supported."; TacInductionDestruct (false,with_evar,ic) @@ -279,11 +277,6 @@ GEXTEND Gram | "*" -> loc, IntroForthcoming true | "**" -> loc, IntroForthcoming false ] ] ; - intropattern_modifier: - [ [ IDENT "_eqn"; - id = [ ":"; id = naming_intropattern -> id | -> loc, IntroAnonymous ] - -> id ] ] - ; simple_intropattern: [ [ pat = disjunctive_intropattern -> pat | pat = naming_intropattern -> pat @@ -445,10 +438,15 @@ GEXTEND Gram [ [ "as"; ipat = simple_intropattern -> Some ipat | -> None ] ] ; - with_induction_names: - [ [ "as"; ipat = simple_intropattern; eq = OPT intropattern_modifier - -> (eq,Some ipat) - | -> (None,None) ] ] + eqn_ipat: + [ [ IDENT "eqn"; ":"; id = naming_intropattern -> Some id + | IDENT "_eqn"; ":"; id = naming_intropattern -> + let msg = "Obsolete syntax \"_eqn:H\" could be replaced by \"eqn:H\"" in + msg_warning (strbrk msg); Some id + | IDENT "_eqn" -> + let msg = "Obsolete syntax \"_eqn\" could be replaced by \"eqn:?\"" in + msg_warning (strbrk msg); Some (loc, IntroAnonymous) + | -> None ] ] ; as_name: [ [ "as"; id = ident -> Names.Name id | -> Names.Anonymous ] ] @@ -477,14 +475,11 @@ GEXTEND Gram [ [ b = orient; p = rewriter -> let (m,c) = p in (b,m,c) ] ] ; induction_clause: - [ [ lc = LIST1 induction_arg; ipats = with_induction_names; - el = OPT eliminator -> (lc,el,ipats) ] ] - ; - one_induction_clause: - [ [ ic = induction_clause; cl = opt_clause -> ([ic],cl) ] ] + [ [ c = induction_arg; pat = as_ipat; eq = eqn_ipat -> (c,(eq,pat)) ] ] ; induction_clause_list: - [ [ ic = LIST1 induction_clause SEP ","; cl = opt_clause -> (ic,cl) ] ] + [ [ ic = LIST1 induction_clause SEP ","; + el = OPT eliminator; cl = opt_clause -> (ic,el,cl) ] ] ; move_location: [ [ IDENT "after"; id = id_or_meta -> MoveAfter id @@ -535,15 +530,16 @@ GEXTEND Gram TacMutualCofix (false,id,List.map mk_cofix_tac fd) | IDENT "pose"; (id,b) = bindings_with_parameters -> - TacLetTac (Names.Name id,b,nowhere,true) + TacLetTac (Names.Name id,b,nowhere,true,None) | IDENT "pose"; b = constr; na = as_name -> - TacLetTac (na,b,nowhere,true) + TacLetTac (na,b,nowhere,true,None) | IDENT "set"; (id,c) = bindings_with_parameters; p = clause_dft_concl -> - TacLetTac (Names.Name id,c,p,true) + TacLetTac (Names.Name id,c,p,true,None) | IDENT "set"; c = constr; na = as_name; p = clause_dft_concl -> - TacLetTac (na,c,p,true) - | IDENT "remember"; c = constr; na = as_name; p = clause_dft_all -> - TacLetTac (na,c,p,false) + TacLetTac (na,c,p,true,None) + | IDENT "remember"; c = constr; na = as_name; e = eqn_ipat; + p = clause_dft_all -> + TacLetTac (na,c,p,false,e) (* Begin compatibility *) | IDENT "assert"; test_lpar_id_coloneq; "("; (loc,id) = identref; ":="; @@ -578,9 +574,9 @@ GEXTEND Gram (* Derived basic tactics *) | IDENT "simple"; IDENT"induction"; h = quantified_hypothesis -> TacSimpleInductionDestruct (true,h) - | IDENT "induction"; ic = one_induction_clause -> + | IDENT "induction"; ic = induction_clause_list -> TacInductionDestruct (true,false,ic) - | IDENT "einduction"; ic = one_induction_clause -> + | IDENT "einduction"; ic = induction_clause_list -> TacInductionDestruct(true,true,ic) | IDENT "double"; IDENT "induction"; h1 = quantified_hypothesis; h2 = quantified_hypothesis -> TacDoubleInduction (h1,h2) diff --git a/parsing/g_vernac.ml4 b/parsing/g_vernac.ml4 index 333934be..301370e7 100644 --- a/parsing/g_vernac.ml4 +++ b/parsing/g_vernac.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* VernacRestoreState s (* Resetting *) - | IDENT "Reset"; id = identref -> VernacResetName id | IDENT "Reset"; IDENT "Initial" -> VernacResetInitial + | IDENT "Reset"; id = identref -> VernacResetName id | IDENT "Back" -> VernacBack 1 | IDENT "Back"; n = natural -> VernacBack n | IDENT "BackTo"; n = natural -> VernacBackTo n @@ -976,8 +976,7 @@ GEXTEND Gram sc = OPT [ ":"; sc = IDENT -> sc ] -> VernacInfix (enforce_module_locality local,(op,modl),p,sc) | IDENT "Notation"; local = obsolete_locality; id = identref; - idl = LIST0 ident; ":="; c = constr; - b = [ "("; IDENT "only"; IDENT "parsing"; ")" -> true | -> false ] -> + idl = LIST0 ident; ":="; c = constr; b = only_parsing -> VernacSyntacticDefinition (id,(idl,c),enforce_module_locality local,b) | IDENT "Notation"; local = obsolete_locality; s = ne_lstring; ":="; @@ -1005,6 +1004,13 @@ GEXTEND Gram to factorize with other "Print"-based vernac entries *) ] ] ; + only_parsing: + [ [ "("; IDENT "only"; IDENT "parsing"; ")" -> + Some Flags.Current + | "("; IDENT "compat"; s = STRING; ")" -> + Some (Coqinit.get_compat_version s) + | -> None ] ] + ; obsolete_locality: [ [ IDENT "Local" -> true | -> false ] ] ; @@ -1020,7 +1026,10 @@ GEXTEND Gram | IDENT "left"; IDENT "associativity" -> SetAssoc LeftA | IDENT "right"; IDENT "associativity" -> SetAssoc RightA | IDENT "no"; IDENT "associativity" -> SetAssoc NonA - | IDENT "only"; IDENT "parsing" -> SetOnlyParsing + | IDENT "only"; IDENT "parsing" -> + SetOnlyParsing Flags.Current + | IDENT "compat"; s = STRING -> + SetOnlyParsing (Coqinit.get_compat_version s) | IDENT "format"; s = [s = STRING -> (loc,s)] -> SetFormat s | x = IDENT; ","; l = LIST1 [id = IDENT -> id ] SEP ","; "at"; lev = level -> SetItemLevel (x::l,lev) diff --git a/parsing/g_xml.ml4 b/parsing/g_xml.ml4 index c9e135ed..9dd0e369 100644 --- a/parsing/g_xml.ml4 +++ b/parsing/g_xml.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* pr_lident (loc,s) let pr_prim_token = function - | Numeral n -> Bigint.pr_bigint n + | Numeral n -> str (Bigint.to_string n) | String s -> qs s let pr_evar pr n l = @@ -188,7 +190,7 @@ let rec pr_patt sep inh p = | CPatNotation (_,s,(l,ll)) -> pr_notation (pr_patt mt) (fun _ _ _ -> mt()) s (l,ll,[]) | CPatPrim (_,p) -> pr_prim_token p, latom - | CPatDelimiters (_,k,p) -> pr_delimiters k (pr_patt mt lsimple p), 1 + | CPatDelimiters (_,k,p) -> pr_delimiters k (pr_patt mt lsimplepatt p), 1 in let loc = cases_pattern_expr_loc p in pr_with_comments loc @@ -351,7 +353,7 @@ let pr_guard_annot pr_aux bl (n,ro) = (match r with None -> mt() | Some r -> str" on " ++ pr_aux r) ++ str"}" let pr_fixdecl pr prd dangling_with_for ((_,id),ro,bl,t,c) = - let annot = pr_guard_annot (pr lsimple) bl ro in + let annot = pr_guard_annot (pr lsimpleconstr) bl ro in pr_recursive_decl pr prd dangling_with_for id bl annot t c let pr_cofixdecl pr prd dangling_with_for ((_,id),bl,t,c) = @@ -371,7 +373,7 @@ let pr_asin pr (na,indnalopt) = | None -> mt ()) ++ (match indnalopt with | None -> mt () - | Some t -> spc () ++ str "in " ++ pr lsimple t) + | Some t -> spc () ++ str "in " ++ pr lsimpleconstr t) let pr_case_item pr (tm,asin) = hov 0 (pr (lcast,E) tm ++ pr_asin pr asin) @@ -380,7 +382,7 @@ let pr_case_type pr po = match po with | None | Some (CHole _) -> mt() | Some p -> - spc() ++ hov 2 (str "return" ++ pr_sep_com spc (pr lsimple) p) + spc() ++ hov 2 (str "return" ++ pr_sep_com spc (pr lsimpleconstr) p) let pr_simple_return_type pr na po = (match na with @@ -390,7 +392,7 @@ let pr_simple_return_type pr na po = pr_case_type pr po let pr_proj pr pr_app a f l = - hov 0 (pr lsimple a ++ cut() ++ str ".(" ++ pr_app pr f l ++ str ")") + hov 0 (pr (lproj,E) a ++ cut() ++ str ".(" ++ pr_app pr f l ++ str ")") let pr_appexpl pr f l = hov 2 ( @@ -545,9 +547,9 @@ let pr pr sep inherited a = pr (fun()->str"(") (max_int,L) t ++ str")", latom | CNotation (_,s,env) -> pr_notation (pr mt) (pr_binders_gen (pr mt ltop)) s env - | CGeneralization (_,bk,ak,c) -> pr_generalization bk ak (pr mt lsimple c), latom + | CGeneralization (_,bk,ak,c) -> pr_generalization bk ak (pr mt ltop c), latom | CPrim (_,p) -> pr_prim_token p, prec_of_prim_token p - | CDelimiters (_,sc,a) -> pr_delimiters sc (pr mt lsimple a), 1 + | CDelimiters (_,sc,a) -> pr_delimiters sc (pr mt (ldelim,E) a), ldelim in let loc = constr_loc a in pr_with_comments loc @@ -565,10 +567,14 @@ let modular_constr_pr = pr let rec fix rf x =rf (fix rf) x let pr = fix modular_constr_pr mt +let pr_simpleconstr = function + | CAppExpl (_,(None,f),[]) -> str "@" ++ pr_reference f + | c -> pr lsimpleconstr c + let default_term_pr = { - pr_constr_expr = pr lsimple; + pr_constr_expr = pr_simpleconstr; pr_lconstr_expr = pr ltop; - pr_constr_pattern_expr = pr lsimple; + pr_constr_pattern_expr = pr_simpleconstr; pr_lconstr_pattern_expr = pr ltop } diff --git a/parsing/ppconstr.mli b/parsing/ppconstr.mli index afcdad3e..7a24eb9f 100644 --- a/parsing/ppconstr.mli +++ b/parsing/ppconstr.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* std_ppcmds) -> precedence -> constr_expr -> std_ppcmds) -> diff --git a/parsing/pptactic.ml b/parsing/pptactic.ml index 6e13d4e9..3720eb20 100644 --- a/parsing/pptactic.ml +++ b/parsing/pptactic.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* mt () - | eqpat, ipat -> - spc () ++ hov 1 (str "as" ++ pr_opt pr_intro_pattern eqpat ++ - pr_opt pr_intro_pattern ipat) + | Some eqpat, None -> spc () ++ hov 1 (pr_eqn_ipat eqpat) + | None, Some ipat -> spc () ++ hov 1 (pr_as_ipat ipat) + | Some eqpat, Some ipat -> + spc () ++ hov 1 (pr_as_ipat ipat ++ spc () ++ pr_eqn_ipat eqpat) let pr_as_intro_pattern ipat = spc () ++ hov 1 (str "as" ++ spc () ++ pr_intro_pattern ipat) @@ -693,12 +697,13 @@ and pr_atom1 = function | TacGeneralizeDep c -> hov 1 (str "generalize" ++ spc () ++ str "dependent" ++ pr_constrarg c) - | TacLetTac (na,c,cl,true) when cl = nowhere -> + | TacLetTac (na,c,cl,true,_) when cl = nowhere -> hov 1 (str "pose" ++ pr_pose pr_lconstr pr_constr na c) - | TacLetTac (na,c,cl,b) -> + | TacLetTac (na,c,cl,b,e) -> hov 1 ((if b then str "set" else str "remember") ++ (if b then pr_pose pr_lconstr else pr_pose_as_style) pr_constr na c ++ + pr_opt (fun p -> pr_eqn_ipat p ++ spc ()) e ++ pr_clauses (Some b) pr_ident cl) (* | TacInstantiate (n,c,ConclLocation ()) -> hov 1 (str "instantiate" ++ spc() ++ @@ -714,14 +719,14 @@ and pr_atom1 = function | TacSimpleInductionDestruct (isrec,h) -> hov 1 (str "simple " ++ str (if isrec then "induction" else "destruct") ++ pr_arg pr_quantified_hypothesis h) - | TacInductionDestruct (isrec,ev,(l,cl)) -> + | TacInductionDestruct (isrec,ev,(l,el,cl)) -> hov 1 (str (with_evars ev (if isrec then "induction" else "destruct")) ++ spc () ++ - prlist_with_sep pr_comma (fun (h,e,ids) -> - prlist_with_sep spc (pr_induction_arg pr_lconstr pr_constr) h ++ - pr_with_induction_names ids ++ - pr_opt pr_eliminator e) l ++ - pr_opt_no_spc (pr_clauses None pr_ident) cl) + prlist_with_sep pr_comma (fun (h,ids) -> + pr_induction_arg pr_lconstr pr_constr h ++ + pr_with_induction_names ids) l ++ + pr_opt pr_eliminator el ++ + pr_opt_no_spc (pr_clauses None pr_ident) cl) | TacDoubleInduction (h1,h2) -> hov 1 (str "double induction" ++ @@ -911,7 +916,7 @@ let rec pr_tac inherited tac = | TacSolve tl -> str "solve" ++ spc () ++ pr_seq_body (pr_tac ltop) tl, llet | TacComplete t -> - str "complete" ++ spc () ++ pr_tac (lcomplete,E) t, lcomplete + pr_tac (lcomplete,E) t, lcomplete | TacId l -> str "idtac" ++ prlist (pr_arg (pr_message_token pr_ident)) l, latom | TacAtom (loc,TacAlias (_,s,l,_)) -> diff --git a/parsing/pptactic.mli b/parsing/pptactic.mli index d85f1ec3..0f82071d 100644 --- a/parsing/pptactic.mli +++ b/parsing/pptactic.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* str"" + | _ -> str"." (* Warning: [pr_raw_tactic] globalises and fails if globalisation fails *) @@ -372,7 +376,8 @@ let pr_syntax_modifier = function | SetAssoc RightA -> str"right associativity" | SetAssoc NonA -> str"no associativity" | SetEntryType (x,typ) -> str x ++ spc() ++ pr_set_entry_type typ - | SetOnlyParsing -> str"only parsing" + | SetOnlyParsing Flags.Current -> str"only parsing" + | SetOnlyParsing v -> str("compat \"" ^ Flags.pr_version v ^ "\"") | SetFormat s -> str"format " ++ pr_located qs s let pr_syntax_modifiers = function @@ -478,7 +483,7 @@ let rec pr_vernac = function (* Control *) | VernacList l -> hov 2 (str"[" ++ spc() ++ - prlist (fun v -> pr_located pr_vernac v ++ sep_end () ++ fnl()) l + prlist (fun v -> pr_located pr_vernac v ++ sep_end (snd v) ++ fnl()) l ++ spc() ++ str"]") | VernacLoad (f,s) -> str"Load" ++ if f then (spc() ++ str"Verbose" ++ spc()) else spc() ++ qs s @@ -780,7 +785,8 @@ let rec pr_vernac = function hov 2 (pr_locality local ++ str"Notation " ++ pr_lident id ++ spc () ++ prlist (fun x -> spc() ++ pr_id x) ids ++ str":=" ++ pr_constrarg c ++ - pr_syntax_modifiers (if onlyparsing then [SetOnlyParsing] else [])) + pr_syntax_modifiers + (match onlyparsing with None -> [] | Some v -> [SetOnlyParsing v])) | VernacDeclareImplicits (local,q,[]) -> hov 2 (pr_section_locality local ++ str"Implicit Arguments" ++ spc() ++ pr_smart_global q) @@ -860,8 +866,8 @@ let rec pr_vernac = function | Some r0 -> hov 2 (str"Eval" ++ spc() ++ pr_red_expr (pr_constr,pr_lconstr,pr_smart_global, pr_constr) r0 ++ - spc() ++ str"in" ++ spc () ++ pr_constr c) - | None -> hov 2 (str"Check" ++ spc() ++ pr_constr c) + spc() ++ str"in" ++ spc () ++ pr_lconstr c) + | None -> hov 2 (str"Check" ++ spc() ++ pr_lconstr c) in (if io = None then mt() else int (Option.get io) ++ str ": ") ++ pr_mayeval r c @@ -970,4 +976,4 @@ and pr_extend s cl = in pr_vernac -let pr_vernac v = make_pr_vernac pr_constr_expr pr_lconstr_expr v ++ sep_end () +let pr_vernac v = make_pr_vernac pr_constr_expr pr_lconstr_expr v ++ sep_end v diff --git a/parsing/ppvernac.mli b/parsing/ppvernac.mli index 7801de6a..6d381c72 100644 --- a/parsing/ppvernac.mli +++ b/parsing/ppvernac.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* std_ppcmds - val pr_vernac : vernac_expr -> std_ppcmds diff --git a/parsing/prettyp.ml b/parsing/prettyp.ml index e30979bf..d3eb40d0 100644 --- a/parsing/prettyp.ml +++ b/parsing/prettyp.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* + Dumpglob.add_glob loc ref; pr_infos_list - ([print_ref false ref; blankline] @ + (print_ref false ref :: blankline :: print_name_infos ref @ print_simpl_behaviour ref @ print_opacity ref @ [hov 0 (str "Expands to: " ++ pr_located_qualid k)]) | Syntactic kn -> + let () = match Syntax_def.search_syntactic_definition kn with + | [],Topconstr.ARef ref -> Dumpglob.add_glob loc ref + | _ -> () in v 0 ( print_syntactic_def kn ++ hov 0 (str "Expands to: " ++ pr_located_qualid k)) ++ fnl() @@ -691,11 +695,11 @@ let print_about_any k = let print_about = function | Genarg.ByNotation (loc,ntn,sc) -> - print_about_any + print_about_any loc (Term (Notation.interp_notation_as_global_reference loc (fun _ -> true) ntn sc)) | Genarg.AN ref -> - print_about_any (locate_any_name ref) + print_about_any (loc_of_reference ref) (locate_any_name ref) (* for debug *) let inspect depth = diff --git a/parsing/prettyp.mli b/parsing/prettyp.mli index 6d9c6ecc..84de2074 100644 --- a/parsing/prettyp.mli +++ b/parsing/prettyp.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* let e' = str (string_of_existential e) in @@ -353,8 +353,34 @@ let emacs_print_dependent_evars sigma seeds = (* Print open subgoals. Checks for uninstantiated existential variables *) (* spiwack: [seeds] is for printing dependent evars in emacs mode. *) -let default_pr_subgoals close_cmd sigma seeds = function - | [] -> +(* spiwack: [pr_first] is true when the first goal must be singled out + and printed in its entirety. *) +(* courtieu: in emacs mode, even less cases where the first goal is printed + in its entirety *) +let default_pr_subgoals ?(pr_first=true) close_cmd sigma seeds stack goals = + let rec print_stack a = function + | [] -> Pp.int a + | b::l -> Pp.int a ++ str"-" ++ print_stack b l + in + let print_unfocused a l = + str"unfocused: " ++ print_stack a l + in + let rec pr_rec n = function + | [] -> (mt ()) + | g::rest -> + let pc = pr_concl n sigma g in + let prest = pr_rec (n+1) rest in + (cut () ++ pc ++ prest) + in + let print_multiple_goals g l = + if pr_first then + default_pr_goal { it = g ; sigma = sigma } ++ + pr_rec 2 l + else + pr_rec 1 (g::l) + in + match goals,stack with + | [],_ -> begin match close_cmd with Some cmd -> @@ -362,36 +388,43 @@ let default_pr_subgoals close_cmd sigma seeds = function str "." ++ fnl ()) | None -> let exl = Evarutil.non_instantiated sigma in - if exl = [] then - (str"No more subgoals." ++ fnl () - ++ emacs_print_dependent_evars sigma seeds) - else - let pei = pr_evars_int 1 exl in - (str "No more subgoals but non-instantiated existential " ++ - str "variables:" ++ fnl () ++ (hov 0 pei) - ++ emacs_print_dependent_evars sigma seeds ++ fnl () ++ - str "You can use Grab Existential Variables.") + if exl = [] then + (str"No more subgoals." + ++ emacs_print_dependent_evars sigma seeds) + else + let pei = pr_evars_int 1 exl in + (str "No more subgoals but non-instantiated existential " ++ + str "variables:" ++ fnl () ++ (hov 0 pei) + ++ emacs_print_dependent_evars sigma seeds ++ fnl () ++ + str "You can use Grab Existential Variables.") end - | [g] -> + | [g],[] when not !Flags.print_emacs -> let pg = default_pr_goal { it = g ; sigma = sigma } in v 0 ( - str ("1 "^"subgoal") ++ pr_goal_tag g ++ cut () ++ pg + str "1 subgoal" ++ pr_goal_tag g ++ cut () ++ pg ++ emacs_print_dependent_evars sigma seeds ) - | g1::rest -> - let rec pr_rec n = function - | [] -> (mt ()) - | g::rest -> - let pc = pr_concl n sigma g in - let prest = pr_rec (n+1) rest in - (cut () ++ pc ++ prest) - in - let pg1 = default_pr_goal { it = g1 ; sigma = sigma } in - let prest = pr_rec 2 rest in + | [g],a::l when not !Flags.print_emacs -> + let pg = default_pr_goal { it = g ; sigma = sigma } in + v 0 ( + str "1 focused subgoal (" ++ print_unfocused a l ++ str")" ++ pr_goal_tag g ++ cut () ++ pg + ++ emacs_print_dependent_evars sigma seeds + ) + | g1::rest,[] -> + let goals = print_multiple_goals g1 rest in v 0 ( int(List.length rest+1) ++ str" subgoals" ++ str (emacs_str ", subgoal 1") ++ pr_goal_tag g1 ++ cut () - ++ pg1 ++ prest ++ fnl () + ++ goals + ++ emacs_print_dependent_evars sigma seeds + ) + | g1::rest,a::l -> + let goals = print_multiple_goals g1 rest in + v 0 ( + int(List.length rest+1) ++ str" focused subgoals (" ++ + print_unfocused a l ++ str")" ++ cut () ++ + str (emacs_str ", subgoal 1") ++ pr_goal_tag g1 ++ cut () + ++ goals ++ emacs_print_dependent_evars sigma seeds ) @@ -400,7 +433,7 @@ let default_pr_subgoals close_cmd sigma seeds = function type printer_pr = { - pr_subgoals : string option -> evar_map -> evar list -> goal list -> std_ppcmds; + pr_subgoals : ?pr_first:bool -> string option -> evar_map -> evar list -> int list -> goal list -> std_ppcmds; pr_subgoal : int -> evar_map -> goal list -> std_ppcmds; pr_goal : goal sigma -> std_ppcmds; } @@ -415,7 +448,7 @@ let printer_pr = ref default_printer_pr let set_printer_pr = (:=) printer_pr -let pr_subgoals x = !printer_pr.pr_subgoals x +let pr_subgoals ?pr_first x = !printer_pr.pr_subgoals ?pr_first x let pr_subgoal x = !printer_pr.pr_subgoal x let pr_goal x = !printer_pr.pr_goal x @@ -423,24 +456,26 @@ let pr_goal x = !printer_pr.pr_goal x (**********************************************************************) let pr_open_subgoals () = + (* spiwack: it shouldn't be the job of the printer to look up stuff + in the [evar_map], I did stuff that way because it was more + straightforward, but seriously, [Proof.proof] should return + [evar_info]-s instead. *) let p = Proof_global.give_me_the_proof () in - let { Evd.it = goals ; sigma = sigma } = Proof.V82.subgoals p in + let (goals , stack , sigma ) = Proof.proof p in + let stack = List.map (fun (l,r) -> List.length l + List.length r) stack in let seeds = Proof.V82.top_evars p in begin match goals with | [] -> let { Evd.it = bgoals ; sigma = bsigma } = Proof.V82.background_subgoals p in - begin match bgoals with - | [] -> pr_subgoals None sigma seeds goals - | _ -> pr_subgoals None bsigma seeds bgoals ++ fnl () ++ fnl () ++ - str"This subproof is complete, but there are still unfocused goals." ++ fnl () - (* spiwack: to stay compatible with the proof general and coqide, - I use print the message after the goal. It would be better to have - something like: - str"This subproof is complete, but there are still unfocused goals:" - ++ fnl () ++ fnl () ++ pr_subgoals None bsigma bgoals - instead. But it doesn't quite work. - *) - end - | _ -> pr_subgoals None sigma seeds goals + begin match bgoals with + | [] -> pr_subgoals None sigma seeds stack goals + | _ -> + (* emacs mode: xml-like flag for detecting information message *) + str (emacs_str "") ++ + str"This subproof is complete, but there are still unfocused goals." + ++ str (emacs_str "") + ++ fnl () ++ fnl () ++ pr_subgoals ~pr_first:false None bsigma seeds [] bgoals + end + | _ -> pr_subgoals None sigma seeds stack goals end let pr_nth_open_subgoal n = diff --git a/parsing/printer.mli b/parsing/printer.mli index bbc3a6ca..a034f0ed 100644 --- a/parsing/printer.mli +++ b/parsing/printer.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* std_ppcmds (** Proofs *) val pr_goal : goal sigma -> std_ppcmds -val pr_subgoals : string option -> evar_map -> evar list -> goal list -> std_ppcmds +val pr_subgoals : ?pr_first:bool -> string option -> evar_map -> evar list -> int list -> goal list -> std_ppcmds val pr_subgoal : int -> evar_map -> goal list -> std_ppcmds val pr_concl : int -> evar_map -> goal -> std_ppcmds @@ -140,7 +140,7 @@ val pr_assumptionset : val pr_goal_by_id : string -> std_ppcmds type printer_pr = { - pr_subgoals : string option -> evar_map -> evar list -> goal list -> std_ppcmds; + pr_subgoals : ?pr_first:bool -> string option -> evar_map -> evar list -> int list -> goal list -> std_ppcmds; pr_subgoal : int -> evar_map -> goal list -> std_ppcmds; pr_goal : goal sigma -> std_ppcmds; };; diff --git a/parsing/printmod.ml b/parsing/printmod.ml index 9cf76585..b4a8fdfd 100644 --- a/parsing/printmod.ml +++ b/parsing/printmod.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* eval_ppcmds (print_modexpr env mp [] e)) mexpr let print_modtype' env mp mty = - States.with_state_protection (print_modtype env mp []) mty + States.with_state_protection (fun e -> eval_ppcmds (print_modtype env mp [] e)) mty let print_module' env mp with_body mb = let name = print_modpath [] mp in diff --git a/parsing/printmod.mli b/parsing/printmod.mli index a45bdb98..17ad6b25 100644 --- a/parsing/printmod.mli +++ b/parsing/printmod.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* > | Tacexpr.TacGeneralizeDep c -> <:expr< Tacexpr.TacGeneralizeDep $mlexpr_of_constr c$ >> - | Tacexpr.TacLetTac (na,c,cl,b) -> + | Tacexpr.TacLetTac (na,c,cl,b,e) -> let na = mlexpr_of_name na in let cl = mlexpr_of_clause_pattern cl in <:expr< Tacexpr.TacLetTac $na$ $mlexpr_of_constr c$ $cl$ - $mlexpr_of_bool b$ >> + $mlexpr_of_bool b$ + (mlexpr_of_option (mlexpr_of_located mlexpr_of_intro_pattern) e) + >> (* Derived basic tactics *) | Tacexpr.TacSimpleInductionDestruct (isrec,h) -> @@ -355,13 +357,15 @@ let rec mlexpr_of_atomic_tactic = function $mlexpr_of_quantified_hypothesis h$ >> | Tacexpr.TacInductionDestruct (isrec,ev,l) -> <:expr< Tacexpr.TacInductionDestruct $mlexpr_of_bool isrec$ $mlexpr_of_bool ev$ - $mlexpr_of_pair (mlexpr_of_list (mlexpr_of_triple - (mlexpr_of_list mlexpr_of_induction_arg) - (mlexpr_of_option mlexpr_of_constr_with_binding) - (mlexpr_of_pair - (mlexpr_of_option (mlexpr_of_located mlexpr_of_intro_pattern)) - (mlexpr_of_option (mlexpr_of_located mlexpr_of_intro_pattern))))) - (mlexpr_of_option mlexpr_of_clause) l$ >> + $mlexpr_of_triple + (mlexpr_of_list + (mlexpr_of_pair + mlexpr_of_induction_arg + (mlexpr_of_pair + (mlexpr_of_option (mlexpr_of_located mlexpr_of_intro_pattern)) + (mlexpr_of_option (mlexpr_of_located mlexpr_of_intro_pattern))))) + (mlexpr_of_option mlexpr_of_constr_with_binding) + (mlexpr_of_option mlexpr_of_clause) l$ >> (* Context management *) | Tacexpr.TacClear (b,l) -> diff --git a/parsing/q_util.ml4 b/parsing/q_util.ml4 index 91ab29f1..7fe5a3c4 100644 --- a/parsing/q_util.ml4 +++ b/parsing/q_util.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* () ]) $atomic_tactics$ - with e -> Pp.pp (Errors.print e); + with e -> + Pp.msg_warning + (Stream.iapp + (Pp.str ("Exception in tactic extend " ^ $se$ ^": ")) + (Errors.print e)); Egrammar.extend_tactic_grammar $se$ $gl$; List.iter Pptactic.declare_extra_tactic_pprule $pp$; } >> ]) diff --git a/parsing/tactic_printer.ml b/parsing/tactic_printer.ml index 83dae3dc..eaab1445 100644 --- a/parsing/tactic_printer.ml +++ b/parsing/tactic_printer.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* GramTerminal a) a) b)) let declare_command loc s nt cl = + let se = mlexpr_of_string s in let gl = mlexpr_of_clause cl in let funcl = make_fun_clauses loc s cl in declare_str_items loc [ <:str_item< do { - try Vernacinterp.vinterp_add $mlexpr_of_string s$ $funcl$ - with e -> Pp.pp (Errors.print e); - Egrammar.extend_vernac_command_grammar $mlexpr_of_string s$ $nt$ $gl$ + try Vernacinterp.vinterp_add $se$ $funcl$ + with e -> + Pp.msg_warning + (Stream.iapp + (Pp.str ("Exception in vernac extend " ^ $se$ ^": ")) + (Errors.print e)); + Egrammar.extend_vernac_command_grammar $se$ $nt$ $gl$ } >> ] open Pcaml diff --git a/plugins/cc/ccalgo.ml b/plugins/cc/ccalgo.ml index e3d27f71..d0f81dad 100644 --- a/plugins/cc/ccalgo.ml +++ b/plugins/cc/ccalgo.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* "Big.compare_case Eq Lt Gt". Extract Constant Z.of_N => "fun p -> p". Extract Constant Z.abs_N => "Big.abs". -(** Zdiv and Zmod are quite complex to define in terms of (/) and (mod). +(** Z.div and Z.modulo are quite complex to define in terms of (/) and (mod). For the moment we don't even try *) (** Test: Require Import ZArith NArith. Extraction "/tmp/test.ml" - Pplus Ppred Pminus Pmult Pcompare Npred Nminus Ndiv Nmod Ncompare - Zplus Zmult BinInt.Zcompare Z_of_N Zabs_N Zdiv.Zdiv Zmod. + Pos.add Pos.pred Pos.sub Pos.mul Pos.compare N.pred N.sub N.div N.modulo N.compare + Z.add Z.mul Z.compare Z.of_N Z.abs_N Z.div Z.modulo. *) diff --git a/plugins/extraction/ExtrOcamlZInt.v b/plugins/extraction/ExtrOcamlZInt.v index 55ba0ca1..c8c40e73 100644 --- a/plugins/extraction/ExtrOcamlZInt.v +++ b/plugins/extraction/ExtrOcamlZInt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Extract Constant Z.of_N => "fun p -> p". Extract Constant Z.abs_N => "abs". -(** Zdiv and Zmod are quite complex to define in terms of (/) and (mod). +(** Z.div and Z.modulo are quite complex to define in terms of (/) and (mod). For the moment we don't even try *) diff --git a/plugins/extraction/big.ml b/plugins/extraction/big.ml index 4c33691d..ddb57a25 100644 --- a/plugins/extraction/big.ml +++ b/plugins/extraction/big.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Hashtbl.clear h); - (Hashtbl.add h, Hashtbl.find h, fun () -> Hashtbl.clear h) + (Hashtbl.replace h, Hashtbl.find h, fun () -> Hashtbl.clear h) (* We might have built [global_reference] whose canonical part is inaccurate. We must hence compare only the user part, diff --git a/plugins/extraction/common.mli b/plugins/extraction/common.mli index 02a496be..f5d90a43 100644 --- a/plugins/extraction/common.mli +++ b/plugins/extraction/common.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* full_extr None p | [r],[] -> init false false; diff --git a/plugins/extraction/extract_env.mli b/plugins/extraction/extract_env.mli index e587bf21..75ac111d 100644 --- a/plugins/extraction/extract_env.mli +++ b/plugins/extraction/extract_env.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* let mib = Global.lookup_mind kn in diff --git a/plugins/extraction/table.mli b/plugins/extraction/table.mli index a3b7124e..192426c3 100644 --- a/plugins/extraction/table.mli +++ b/plugins/extraction/table.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* idtac | _ => - rewrite <- (assoc_correct FT trm); change (assoc trm) with t in |- * + rewrite <- (assoc_correct FT trm); change (assoc trm) with t end. (**** Distribution *****) @@ -161,7 +161,7 @@ Ltac apply_distrib FT lvar trm := | (?X1 = ?X1) => idtac | _ => rewrite <- (distrib_correct FT trm); - change (distrib trm) with t in |- * + change (distrib trm) with t end. (**** Multiplication by the inverse product ****) @@ -175,7 +175,7 @@ Ltac weak_reduce := | |- context [(interp_ExprA ?X1 ?X2 _)] => cbv beta iota zeta delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list X1 X2 A Azero - Aone Aplus Amult Aopp Ainv] in |- * + Aone Aplus Amult Aopp Ainv] end. Ltac multiply mul := @@ -199,7 +199,7 @@ Ltac apply_multiply FT lvar trm := | (?X1 = ?X1) => idtac | _ => rewrite <- (multiply_correct FT trm); - change (multiply trm) with t in |- * + change (multiply trm) with t end. (**** Permutations and simplification ****) @@ -210,7 +210,7 @@ Ltac apply_inverse mul FT lvar trm := | (?X1 = ?X1) => idtac | _ => rewrite <- (inverse_correct FT trm mul); - [ change (inverse_simplif mul trm) with t in |- * | assumption ] + [ change (inverse_simplif mul trm) with t | assumption ] end. (**** Inverse test ****) @@ -252,11 +252,11 @@ Ltac apply_simplif sfun := Ltac unfolds FT := match get_component Aminus FT with - | Some ?X1 => unfold X1 in |- * + | Some ?X1 => unfold X1 | _ => idtac end; match get_component Adiv FT with - | Some ?X1 => unfold X1 in |- * + | Some ?X1 => unfold X1 | _ => idtac end. @@ -267,8 +267,8 @@ Ltac reduce FT := with AmultT := get_component Amult FT with AoppT := get_component Aopp FT with AinvT := get_component Ainv FT in - (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] in |- * || - compute in |- *). + (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] || + compute). Ltac field_gen_aux FT := let AplusT := get_component Aplus FT in @@ -280,7 +280,7 @@ Ltac field_gen_aux FT := cut (let ft := FT in let vm := lvar in interp_ExprA ft vm trm1 = interp_ExprA ft vm trm2); - [ compute in |- *; auto + [ compute; auto | intros ft vm; apply_simplif apply_distrib; apply_simplif apply_assoc; multiply mul; [ apply_simplif apply_multiply; diff --git a/plugins/field/LegacyField_Theory.v b/plugins/field/LegacyField_Theory.v index 20ffbc27..1d581a8f 100644 --- a/plugins/field/LegacyField_Theory.v +++ b/plugins/field/LegacyField_Theory.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* r <> AzeroT -> r1 = r2. Proof. intros; transitivity (AmultT (AmultT (AinvT r) r) r1). - rewrite Th_inv_defT; [ symmetry in |- *; apply AmultT_1l; auto | auto ]. + rewrite Th_inv_defT; [ symmetry ; apply AmultT_1l; auto | auto ]. transitivity (AmultT (AmultT (AinvT r) r) r2). repeat rewrite AmultT_assoc; rewrite H; trivial. rewrite Th_inv_defT; [ apply AmultT_1l; auto | auto ]. @@ -181,7 +181,7 @@ Qed. Lemma Rmult_neq_0_reg : forall r1 r2:AT, AmultT r1 r2 <> AzeroT -> r1 <> AzeroT /\ r2 <> AzeroT. Proof. - intros r1 r2 H; split; red in |- *; intro; apply H; rewrite H0; legacy ring. + intros r1 r2 H; split; red; intro; apply H; rewrite H0; legacy ring. Qed. (************************) @@ -262,11 +262,11 @@ Lemma merge_mult_correct1 : Proof. intros e1 e2; generalize e1; generalize e2; clear e1 e2. simple induction e2; auto; intros. -unfold merge_mult at 1 in |- *; fold merge_mult in |- *; - unfold interp_ExprA at 2 in |- *; fold interp_ExprA in |- *; - rewrite (H0 e e3 lvar); unfold interp_ExprA at 1 in |- *; - fold interp_ExprA in |- *; unfold interp_ExprA at 5 in |- *; - fold interp_ExprA in |- *; auto. +unfold merge_mult at 1; fold merge_mult; + unfold interp_ExprA at 2; fold interp_ExprA; + rewrite (H0 e e3 lvar); unfold interp_ExprA at 1; + fold interp_ExprA; unfold interp_ExprA at 5; + fold interp_ExprA; auto. Qed. Lemma merge_mult_correct : @@ -274,7 +274,7 @@ Lemma merge_mult_correct : interp_ExprA lvar (merge_mult e1 e2) = interp_ExprA lvar (EAmult e1 e2). Proof. simple induction e1; auto; intros. -elim e0; try (intros; simpl in |- *; legacy ring). +elim e0; try (intros; simpl; legacy ring). unfold interp_ExprA in H2; fold interp_ExprA in H2; cut (AmultT (interp_ExprA lvar e2) @@ -284,7 +284,7 @@ unfold interp_ExprA in H2; fold interp_ExprA in H2; (AmultT (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e4)) (interp_ExprA lvar e2)) (interp_ExprA lvar e3)). intro H3; rewrite H3; rewrite <- H2; rewrite merge_mult_correct1; - simpl in |- *; legacy ring. + simpl; legacy ring. legacy ring. Qed. @@ -295,8 +295,8 @@ Lemma assoc_mult_correct1 : interp_ExprA lvar (assoc_mult (EAmult e1 e2)). Proof. simple induction e1; auto; intros. -rewrite <- (H e0 lvar); simpl in |- *; rewrite merge_mult_correct; - simpl in |- *; rewrite merge_mult_correct; simpl in |- *; +rewrite <- (H e0 lvar); simpl; rewrite merge_mult_correct; + simpl; rewrite merge_mult_correct; simpl; auto. Qed. @@ -306,21 +306,21 @@ Lemma assoc_mult_correct : Proof. simple induction e; auto; intros. elim e0; intros. -intros; simpl in |- *; legacy ring. -simpl in |- *; rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1))); +intros; simpl; legacy ring. +simpl; rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1))); rewrite (AmultT_1l (interp_ExprA lvar e1)); apply H0. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite merge_mult_correct; simpl in |- *; - rewrite merge_mult_correct; simpl in |- *; rewrite AmultT_assoc; - rewrite assoc_mult_correct1; rewrite H2; simpl in |- *; +simpl; rewrite (H0 lvar); auto. +simpl; rewrite merge_mult_correct; simpl; + rewrite merge_mult_correct; simpl; rewrite AmultT_assoc; + rewrite assoc_mult_correct1; rewrite H2; simpl; rewrite <- assoc_mult_correct1 in H1; unfold interp_ExprA at 3 in H1; fold interp_ExprA in H1; rewrite (H0 lvar) in H1; rewrite (AmultT_comm (interp_ExprA lvar e3) (interp_ExprA lvar e1)); rewrite <- AmultT_assoc; rewrite H1; rewrite AmultT_assoc; legacy ring. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite (H0 lvar); auto. +simpl; rewrite (H0 lvar); auto. +simpl; rewrite (H0 lvar); auto. +simpl; rewrite (H0 lvar); auto. Qed. Lemma merge_plus_correct1 : @@ -330,11 +330,11 @@ Lemma merge_plus_correct1 : Proof. intros e1 e2; generalize e1; generalize e2; clear e1 e2. simple induction e2; auto; intros. -unfold merge_plus at 1 in |- *; fold merge_plus in |- *; - unfold interp_ExprA at 2 in |- *; fold interp_ExprA in |- *; - rewrite (H0 e e3 lvar); unfold interp_ExprA at 1 in |- *; - fold interp_ExprA in |- *; unfold interp_ExprA at 5 in |- *; - fold interp_ExprA in |- *; auto. +unfold merge_plus at 1; fold merge_plus; + unfold interp_ExprA at 2; fold interp_ExprA; + rewrite (H0 e e3 lvar); unfold interp_ExprA at 1; + fold interp_ExprA; unfold interp_ExprA at 5; + fold interp_ExprA; auto. Qed. Lemma merge_plus_correct : @@ -342,7 +342,7 @@ Lemma merge_plus_correct : interp_ExprA lvar (merge_plus e1 e2) = interp_ExprA lvar (EAplus e1 e2). Proof. simple induction e1; auto; intros. -elim e0; try intros; try (simpl in |- *; legacy ring). +elim e0; try intros; try (simpl; legacy ring). unfold interp_ExprA in H2; fold interp_ExprA in H2; cut (AplusT (interp_ExprA lvar e2) @@ -352,7 +352,7 @@ unfold interp_ExprA in H2; fold interp_ExprA in H2; (AplusT (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e4)) (interp_ExprA lvar e2)) (interp_ExprA lvar e3)). intro H3; rewrite H3; rewrite <- H2; rewrite merge_plus_correct1; - simpl in |- *; legacy ring. + simpl; legacy ring. legacy ring. Qed. @@ -362,8 +362,8 @@ Lemma assoc_plus_correct : interp_ExprA lvar (assoc (EAplus e1 e2)). Proof. simple induction e1; auto; intros. -rewrite <- (H e0 lvar); simpl in |- *; rewrite merge_plus_correct; - simpl in |- *; rewrite merge_plus_correct; simpl in |- *; +rewrite <- (H e0 lvar); simpl; rewrite merge_plus_correct; + simpl; rewrite merge_plus_correct; simpl; auto. Qed. @@ -373,11 +373,11 @@ Lemma assoc_correct : Proof. simple induction e; auto; intros. elim e0; intros. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite merge_plus_correct; simpl in |- *; - rewrite merge_plus_correct; simpl in |- *; rewrite AplusT_assoc; - rewrite assoc_plus_correct; rewrite H2; simpl in |- *; +simpl; rewrite (H0 lvar); auto. +simpl; rewrite (H0 lvar); auto. +simpl; rewrite merge_plus_correct; simpl; + rewrite merge_plus_correct; simpl; rewrite AplusT_assoc; + rewrite assoc_plus_correct; rewrite H2; simpl; apply (r_AplusT_plus (interp_ExprA lvar (assoc e1)) (AplusT (interp_ExprA lvar (assoc e2)) @@ -386,7 +386,7 @@ simpl in |- *; rewrite merge_plus_correct; simpl in |- *; (interp_ExprA lvar e1))); rewrite <- AplusT_assoc; rewrite (AplusT_comm (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2))) - ; rewrite assoc_plus_correct; rewrite H1; simpl in |- *; + ; rewrite assoc_plus_correct; rewrite H1; simpl; rewrite (H0 lvar); rewrite <- (AplusT_assoc (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e1)) @@ -399,15 +399,15 @@ simpl in |- *; rewrite merge_plus_correct; simpl in |- *; rewrite <- (AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e3) (interp_ExprA lvar e1)); apply AplusT_comm. -unfold assoc in |- *; fold assoc in |- *; unfold interp_ExprA in |- *; - fold interp_ExprA in |- *; rewrite assoc_mult_correct; - rewrite (H0 lvar); simpl in |- *; auto. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite (H0 lvar); auto. -unfold assoc in |- *; fold assoc in |- *; unfold interp_ExprA in |- *; - fold interp_ExprA in |- *; rewrite assoc_mult_correct; - simpl in |- *; auto. +unfold assoc; fold assoc; unfold interp_ExprA; + fold interp_ExprA; rewrite assoc_mult_correct; + rewrite (H0 lvar); simpl; auto. +simpl; rewrite (H0 lvar); auto. +simpl; rewrite (H0 lvar); auto. +simpl; rewrite (H0 lvar); auto. +unfold assoc; fold assoc; unfold interp_ExprA; + fold interp_ExprA; rewrite assoc_mult_correct; + simpl; auto. Qed. (**** Distribution *****) @@ -451,7 +451,7 @@ Lemma distrib_mult_right_correct : interp_ExprA lvar (distrib_mult_right e1 e2) = AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2). Proof. -simple induction e1; try intros; simpl in |- *; auto. +simple induction e1; try intros; simpl; auto. rewrite AmultT_comm; rewrite AmultT_AplusT_distr; rewrite (H e2 lvar); rewrite (H0 e2 lvar); legacy ring. Qed. @@ -461,10 +461,10 @@ Lemma distrib_mult_left_correct : interp_ExprA lvar (distrib_mult_left e1 e2) = AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2). Proof. -simple induction e1; try intros; simpl in |- *. -rewrite AmultT_Ol; rewrite distrib_mult_right_correct; simpl in |- *; +simple induction e1; try intros; simpl. +rewrite AmultT_Ol; rewrite distrib_mult_right_correct; simpl; apply AmultT_Or. -rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm. +rewrite distrib_mult_right_correct; simpl; apply AmultT_comm. rewrite AmultT_comm; rewrite (AmultT_AplusT_distr (interp_ExprA lvar e2) (interp_ExprA lvar e) @@ -472,10 +472,10 @@ rewrite AmultT_comm; rewrite (AmultT_comm (interp_ExprA lvar e2) (interp_ExprA lvar e)); rewrite (AmultT_comm (interp_ExprA lvar e2) (interp_ExprA lvar e0)); rewrite (H e2 lvar); rewrite (H0 e2 lvar); auto. -rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm. -rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm. -rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm. -rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm. +rewrite distrib_mult_right_correct; simpl; apply AmultT_comm. +rewrite distrib_mult_right_correct; simpl; apply AmultT_comm. +rewrite distrib_mult_right_correct; simpl; apply AmultT_comm. +rewrite distrib_mult_right_correct; simpl; apply AmultT_comm. Qed. Lemma distrib_correct : @@ -483,13 +483,13 @@ Lemma distrib_correct : interp_ExprA lvar (distrib e) = interp_ExprA lvar e. Proof. simple induction e; intros; auto. -simpl in |- *; rewrite <- (H lvar); rewrite <- (H0 lvar); - unfold distrib in |- *; simpl in |- *; auto. -simpl in |- *; rewrite <- (H lvar); rewrite <- (H0 lvar); - unfold distrib in |- *; simpl in |- *; apply distrib_mult_left_correct. -simpl in |- *; fold AoppT in |- *; rewrite <- (H lvar); - unfold distrib in |- *; simpl in |- *; rewrite distrib_mult_right_correct; - simpl in |- *; fold AoppT in |- *; legacy ring. +simpl; rewrite <- (H lvar); rewrite <- (H0 lvar); + unfold distrib; simpl; auto. +simpl; rewrite <- (H lvar); rewrite <- (H0 lvar); + unfold distrib; simpl; apply distrib_mult_left_correct. +simpl; fold AoppT; rewrite <- (H lvar); + unfold distrib; simpl; rewrite distrib_mult_right_correct; + simpl; fold AoppT; legacy ring. Qed. (**** Multiplication by the inverse product ****) @@ -500,7 +500,7 @@ Lemma mult_eq : interp_ExprA lvar (EAmult a e1) = interp_ExprA lvar (EAmult a e2) -> interp_ExprA lvar e1 = interp_ExprA lvar e2. Proof. - simpl in |- *; intros; + simpl; intros; apply (r_AmultT_mult (interp_ExprA lvar a) (interp_ExprA lvar e1) (interp_ExprA lvar e2)); assumption. @@ -523,16 +523,16 @@ Lemma multiply_aux_correct : interp_ExprA lvar (multiply_aux a e) = AmultT (interp_ExprA lvar a) (interp_ExprA lvar e). Proof. -simple induction e; simpl in |- *; intros; try rewrite merge_mult_correct; +simple induction e; simpl; intros; try rewrite merge_mult_correct; auto. - simpl in |- *; rewrite (H0 lvar); legacy ring. + simpl; rewrite (H0 lvar); legacy ring. Qed. Lemma multiply_correct : forall (e:ExprA) (lvar:list (AT * nat)), interp_ExprA lvar (multiply e) = interp_ExprA lvar e. Proof. - simple induction e; simpl in |- *; auto. + simple induction e; simpl; auto. intros; apply multiply_aux_correct. Qed. @@ -583,27 +583,27 @@ Lemma monom_remove_correct : AmultT (interp_ExprA lvar a) (interp_ExprA lvar e). Proof. simple induction e; intros. -simpl in |- *; case (eqExprA EAzero (EAinv a)); intros; - [ inversion e0 | simpl in |- *; trivial ]. -simpl in |- *; case (eqExprA EAone (EAinv a)); intros; - [ inversion e0 | simpl in |- *; trivial ]. -simpl in |- *; case (eqExprA (EAplus e0 e1) (EAinv a)); intros; - [ inversion e2 | simpl in |- *; trivial ]. -simpl in |- *; case (eqExprA e0 (EAinv a)); intros. -rewrite e2; simpl in |- *; fold AinvT in |- *. +simpl; case (eqExprA EAzero (EAinv a)); intros; + [ inversion e0 | simpl; trivial ]. +simpl; case (eqExprA EAone (EAinv a)); intros; + [ inversion e0 | simpl; trivial ]. +simpl; case (eqExprA (EAplus e0 e1) (EAinv a)); intros; + [ inversion e2 | simpl; trivial ]. +simpl; case (eqExprA e0 (EAinv a)); intros. +rewrite e2; simpl; fold AinvT. rewrite <- (AmultT_assoc (interp_ExprA lvar a) (AinvT (interp_ExprA lvar a)) (interp_ExprA lvar e1)); rewrite AinvT_r; [ legacy ring | assumption ]. -simpl in |- *; rewrite H0; auto; legacy ring. -simpl in |- *; fold AoppT in |- *; case (eqExprA (EAopp e0) (EAinv a)); - intros; [ inversion e1 | simpl in |- *; trivial ]. -unfold monom_remove in |- *; case (eqExprA (EAinv e0) (EAinv a)); intros. +simpl; rewrite H0; auto; legacy ring. +simpl; fold AoppT; case (eqExprA (EAopp e0) (EAinv a)); + intros; [ inversion e1 | simpl; trivial ]. +unfold monom_remove; case (eqExprA (EAinv e0) (EAinv a)); intros. case (eqExprA e0 a); intros. -rewrite e2; simpl in |- *; fold AinvT in |- *; rewrite AinvT_r; auto. -inversion e1; simpl in |- *; exfalso; auto. -simpl in |- *; trivial. -unfold monom_remove in |- *; case (eqExprA (EAvar n) (EAinv a)); intros; - [ inversion e0 | simpl in |- *; trivial ]. +rewrite e2; simpl; fold AinvT; rewrite AinvT_r; auto. +inversion e1; simpl; exfalso; auto. +simpl; trivial. +unfold monom_remove; case (eqExprA (EAvar n) (EAinv a)); intros; + [ inversion e0 | simpl; trivial ]. Qed. Lemma monom_simplif_rem_correct : @@ -612,7 +612,7 @@ Lemma monom_simplif_rem_correct : interp_ExprA lvar (monom_simplif_rem a e) = AmultT (interp_ExprA lvar a) (interp_ExprA lvar e). Proof. -simple induction a; simpl in |- *; intros; try rewrite monom_remove_correct; +simple induction a; simpl; intros; try rewrite monom_remove_correct; auto. elim (Rmult_neq_0_reg (interp_ExprA lvar e) (interp_ExprA lvar e0) H1); intros. @@ -626,9 +626,9 @@ Lemma monom_simplif_correct : interp_ExprA lvar (monom_simplif a e) = interp_ExprA lvar e. Proof. simple induction e; intros; auto. -simpl in |- *; case (eqExprA a e0); intros. +simpl; case (eqExprA a e0); intros. rewrite <- e2; apply monom_simplif_rem_correct; auto. -simpl in |- *; trivial. +simpl; trivial. Qed. Lemma inverse_correct : @@ -637,8 +637,8 @@ Lemma inverse_correct : interp_ExprA lvar (inverse_simplif a e) = interp_ExprA lvar e. Proof. simple induction e; intros; auto. -simpl in |- *; rewrite (H0 a lvar H1); rewrite monom_simplif_correct; auto. -unfold inverse_simplif in |- *; rewrite monom_simplif_correct; auto. +simpl; rewrite (H0 a lvar H1); rewrite monom_simplif_correct; auto. +unfold inverse_simplif; rewrite monom_simplif_correct; auto. Qed. End Theory_of_fields. diff --git a/plugins/field/field.ml4 b/plugins/field/field.ml4 index 9e4f4d74..6c9fd325 100644 --- a/plugins/field/field.ml4 +++ b/plugins/field/field.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 < a -> a * x1 <= a * y1. -red in |- *. +red. intros. case H; auto with real. Qed. @@ -63,19 +63,19 @@ Lemma Rfourier_le_le : x1 <= y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 <= y1 + a * y2. intros x1 y1 x2 y2 a H H0 H1; try assumption. case H0; intros. -red in |- *. +red. left; try assumption. apply Rfourier_le_lt; auto with real. rewrite H2. case H; intros. -red in |- *. +red. left; try assumption. rewrite (Rplus_comm x1 (a * y2)). rewrite (Rplus_comm y1 (a * y2)). apply Rplus_lt_compat_l. try exact H3. rewrite H3. -red in |- *. +red. right; try assumption. auto with real. Qed. @@ -84,7 +84,7 @@ Lemma Rlt_zero_pos_plus1 : forall x:R, 0 < x -> 0 < 1 + x. intros x H; try assumption. rewrite Rplus_comm. apply Rle_lt_0_plus_1. -red in |- *; auto with real. +red; auto with real. Qed. Lemma Rlt_mult_inv_pos : forall x y:R, 0 < x -> 0 < y -> 0 < x * / y. @@ -101,12 +101,12 @@ Qed. Lemma Rle_zero_pos_plus1 : forall x:R, 0 <= x -> 0 <= 1 + x. intros x H; try assumption. case H; intros. -red in |- *. +red. left; try assumption. apply Rlt_zero_pos_plus1; auto with real. rewrite <- H0. replace (1 + 0) with 1. -red in |- *; left. +red; left. exact Rlt_zero_1. ring. Qed. @@ -114,28 +114,28 @@ Qed. Lemma Rle_mult_inv_pos : forall x y:R, 0 <= x -> 0 < y -> 0 <= x * / y. intros x y H H0; try assumption. case H; intros. -red in |- *; left. +red; left. apply Rlt_mult_inv_pos; auto with real. rewrite <- H1. -red in |- *; right; ring. +red; right; ring. Qed. Lemma Rle_zero_1 : 0 <= 1. -red in |- *; left. +red; left. exact Rlt_zero_1. Qed. Lemma Rle_not_lt : forall n d:R, 0 <= n * / d -> ~ 0 < - n * / d. -intros n d H; red in |- *; intros H0; try exact H0. +intros n d H; red; intros H0; try exact H0. generalize (Rgt_not_le 0 (n * / d)). intros H1; elim H1; try assumption. replace (n * / d) with (- - (n * / d)). replace 0 with (- -0). replace (- (n * / d)) with (- n * / d). replace (-0) with 0. -red in |- *. +red. apply Ropp_gt_lt_contravar. -red in |- *. +red. exact H0. ring. ring. @@ -162,7 +162,7 @@ ring. Qed. Lemma Rnot_lt_lt : forall x y:R, ~ 0 < y - x -> ~ x < y. -unfold not in |- *; intros. +unfold not; intros. apply H. apply Rplus_lt_reg_r with x. replace (x + 0) with x. @@ -173,7 +173,7 @@ ring. Qed. Lemma Rnot_le_le : forall x y:R, ~ 0 <= y - x -> ~ x <= y. -unfold not in |- *; intros. +unfold not; intros. apply H. case H0; intros. left. @@ -188,7 +188,7 @@ rewrite H1; ring. Qed. Lemma Rfourier_gt_to_lt : forall x y:R, y > x -> x < y. -unfold Rgt in |- *; intros; assumption. +unfold Rgt; intros; assumption. Qed. Lemma Rfourier_ge_to_le : forall x y:R, y >= x -> x <= y. diff --git a/plugins/fourier/fourier.ml b/plugins/fourier/fourier.ml index 6c4d4d15..043c9e51 100644 --- a/plugins/fourier/fourier.ml +++ b/plugins/fourier/fourier.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* b || (eq_constr t dummy_var) || (has_dummy_var t)) - false - t - in let rec compute_new_princ_type remove env pre_princ : types*(constr list) = let (new_princ_type,_) as res = match kind_of_term pre_princ with diff --git a/plugins/funind/g_indfun.ml4 b/plugins/funind/g_indfun.ml4 index 06abb8ce..85d79214 100644 --- a/plugins/funind/g_indfun.ml4 +++ b/plugins/funind/g_indfun.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* D. - Definition jump (j:positive) (e:Env) := fun x => e (Pplus x j). + Definition jump (j:positive) (e:Env) := fun x => e (x+j). - Definition nth (n:positive) (e : Env ) := e n. + Definition nth (n:positive) (e:Env) := e n. - Definition hd (x:D) (e: Env) := nth xH e. + Definition hd (e:Env) := nth 1 e. - Definition tail (e: Env) := jump xH e. + Definition tail (e:Env) := jump 1 e. - Lemma psucc : forall p, (match p with - | xI y' => xO (Psucc y') - | xO y' => xI y' - | 1%positive => 2%positive - end) = (p+1)%positive. + Lemma jump_add i j l x : jump (i + j) l x = jump i (jump j l) x. Proof. - destruct p. - auto with zarith. - rewrite xI_succ_xO. - auto with zarith. - reflexivity. + unfold jump. f_equal. apply Pos.add_assoc. Qed. - Lemma jump_Pplus : forall i j l, - forall x, jump (i + j) l x = jump i (jump j l) x. - Proof. - unfold jump. - intros. - rewrite Pplus_assoc. - reflexivity. - Qed. - - Lemma jump_simpl : forall p l, - forall x, jump p l x = + Lemma jump_simpl p l x : + jump p l x = match p with | xH => tail l x | xO p => jump p (jump p l) x | xI p => jump p (jump p (tail l)) x end. Proof. - destruct p ; unfold tail ; intros ; repeat rewrite <- jump_Pplus. - (* xI p = p + p + 1 *) - rewrite xI_succ_xO. - rewrite Pplus_diag. - rewrite <- Pplus_one_succ_r. - reflexivity. - (* xO p = p + p *) - rewrite Pplus_diag. - reflexivity. - reflexivity. + destruct p; unfold tail; rewrite <- ?jump_add; f_equal; + now rewrite Pos.add_diag. Qed. - Ltac jump_s := - repeat - match goal with - | |- context [jump xH ?e] => rewrite (jump_simpl xH) - | |- context [jump (xO ?p) ?e] => rewrite (jump_simpl (xO p)) - | |- context [jump (xI ?p) ?e] => rewrite (jump_simpl (xI p)) - end. - - Lemma jump_tl : forall j l, forall x, tail (jump j l) x = jump j (tail l) x. + Lemma jump_tl j l x : tail (jump j l) x = jump j (tail l) x. Proof. - unfold tail. - intros. - repeat rewrite <- jump_Pplus. - rewrite Pplus_comm. - reflexivity. + unfold tail. rewrite <- !jump_add. f_equal. apply Pos.add_comm. Qed. - Lemma jump_Psucc : forall j l, - forall x, (jump (Psucc j) l x) = (jump 1 (jump j l) x). + Lemma jump_succ j l x : jump (Pos.succ j) l x = jump 1 (jump j l) x. Proof. - intros. - rewrite <- jump_Pplus. - rewrite Pplus_one_succ_r. - rewrite Pplus_comm. - reflexivity. + rewrite <- jump_add. f_equal. symmetry. apply Pos.add_1_l. Qed. - Lemma jump_Pdouble_minus_one : forall i l, - forall x, (jump (Pdouble_minus_one i) (tail l)) x = (jump i (jump i l)) x. + Lemma jump_pred_double i l x : + jump (Pos.pred_double i) (tail l) x = jump i (jump i l) x. Proof. - unfold tail. - intros. - repeat rewrite <- jump_Pplus. - rewrite <- Pplus_one_succ_r. - rewrite Psucc_o_double_minus_one_eq_xO. - rewrite Pplus_diag. - reflexivity. + unfold tail. rewrite <- !jump_add. f_equal. + now rewrite Pos.add_1_r, Pos.succ_pred_double, Pos.add_diag. Qed. - Lemma jump_x0_tail : forall p l, forall x, jump (xO p) (tail l) x = jump (xI p) l x. - Proof. - intros. - unfold jump. - unfold tail. - unfold jump. - rewrite <- Pplus_assoc. - simpl. - reflexivity. - Qed. - - Lemma nth_spec : forall p l x, + Lemma nth_spec p l : nth p l = match p with - | xH => hd x l + | xH => hd l | xO p => nth p (jump p l) | xI p => nth p (jump p (tail l)) end. Proof. - unfold nth. - destruct p. - intros. - unfold jump, tail. - unfold jump. - rewrite Pplus_diag. - rewrite xI_succ_xO. - simpl. - reflexivity. - unfold jump. - rewrite Pplus_diag. - reflexivity. - unfold hd. - unfold nth. - reflexivity. + unfold hd, nth, tail, jump. + destruct p; f_equal; now rewrite Pos.add_diag. Qed. - - Lemma nth_jump : forall p l x, nth p (tail l) = hd x (jump p l). + Lemma nth_jump p l : nth p (tail l) = hd (jump p l). Proof. - unfold tail. - unfold hd. - unfold jump. - unfold nth. - intros. - rewrite Pplus_comm. - reflexivity. + unfold hd, nth, tail, jump. f_equal. apply Pos.add_comm. Qed. - Lemma nth_Pdouble_minus_one : - forall p l, nth (Pdouble_minus_one p) (tail l) = nth p (jump p l). + Lemma nth_pred_double p l : + nth (Pos.pred_double p) (tail l) = nth p (jump p l). Proof. - intros. - unfold tail. - unfold nth, jump. - rewrite Pplus_diag. - rewrite <- Psucc_o_double_minus_one_eq_xO. - rewrite Pplus_one_succ_r. - reflexivity. + unfold nth, tail, jump. f_equal. + now rewrite Pos.add_1_r, Pos.succ_pred_double, Pos.add_diag. Qed. End S. +Ltac jump_simpl := + repeat + match goal with + | |- appcontext [jump xH] => rewrite (jump_simpl xH) + | |- appcontext [jump (xO ?p)] => rewrite (jump_simpl (xO p)) + | |- appcontext [jump (xI ?p)] => rewrite (jump_simpl (xI p)) + end. diff --git a/plugins/micromega/EnvRing.v b/plugins/micromega/EnvRing.v index 309ebdef..786c3393 100644 --- a/plugins/micromega/EnvRing.v +++ b/plugins/micromega/EnvRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* R -> Prop. (* Ring properties *) - Variable Rsth : Setoid_Theory R req. + Variable Rsth : Equivalence req. Variable Reqe : ring_eq_ext radd rmul ropp req. Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req. @@ -42,35 +37,55 @@ Section MakeRingPol. Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi. - (* Power coefficients *) + (* Power coefficients *) Variable Cpow : Type. Variable Cp_phi : N -> Cpow. Variable rpow : R -> Cpow -> R. Variable pow_th : power_theory rI rmul req Cp_phi rpow. - (* R notations *) Notation "0" := rO. Notation "1" := rI. - Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). - Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). - Notation "x == y" := (req x y). + Infix "+" := radd. Infix "*" := rmul. + Infix "-" := rsub. Notation "- x" := (ropp x). + Infix "==" := req. + Infix "^" := (pow_pos rmul). (* C notations *) - Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y). - Notation "x -! y " := (csub x y). Notation "-! x" := (copp x). - Notation " x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x). - - (* Usefull tactics *) - Add Setoid R req Rsth as R_set1. - Ltac rrefl := gen_reflexivity Rsth. - Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. - Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. - Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. - Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed. + Infix "+!" := cadd. Infix "*!" := cmul. + Infix "-! " := csub. Notation "-! x" := (copp x). + Infix "?=!" := ceqb. Notation "[ x ]" := (phi x). + + (* Useful tactics *) + Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. + Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. + Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. + Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed. Ltac rsimpl := gen_srewrite Rsth Reqe ARth. + Ltac add_push := gen_add_push radd Rsth Reqe ARth. Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth. + Ltac add_permut_rec t := + match t with + | ?x + ?y => add_permut_rec y || add_permut_rec x + | _ => add_push t; apply (Radd_ext Reqe); [|reflexivity] + end. + + Ltac add_permut := + repeat (reflexivity || + match goal with |- ?t == _ => add_permut_rec t end). + + Ltac mul_permut_rec t := + match t with + | ?x * ?y => mul_permut_rec y || mul_permut_rec x + | _ => mul_push t; apply (Rmul_ext Reqe); [|reflexivity] + end. + + Ltac mul_permut := + repeat (reflexivity || + match goal with |- ?t == _ => mul_permut_rec t end). + + (* Definition of multivariable polynomials with coefficients in C : Type [Pol] represents [X1 ... Xn]. The representation is Horner's where a [n] variable polynomial @@ -117,19 +132,19 @@ Section MakeRingPol. | _, _ => false end. - Notation " P ?== P' " := (Peq P P'). + Infix "?==" := Peq. Definition mkPinj j P := match P with | Pc _ => P - | Pinj j' Q => Pinj ((j + j'):positive) Q + | Pinj j' Q => Pinj (j + j') Q | _ => Pinj j P end. Definition mkPinj_pred j P:= match j with | xH => P - | xO j => Pinj (Pdouble_minus_one j) P + | xO j => Pinj (Pos.pred_double j) P | xI j => Pinj (xO j) P end. @@ -157,14 +172,14 @@ Section MakeRingPol. (** Addition et subtraction *) - Fixpoint PaddC (P:Pol) (c:C) {struct P} : Pol := + Fixpoint PaddC (P:Pol) (c:C) : Pol := match P with | Pc c1 => Pc (c1 +! c) | Pinj j Q => Pinj j (PaddC Q c) | PX P i Q => PX P i (PaddC Q c) end. - Fixpoint PsubC (P:Pol) (c:C) {struct P} : Pol := + Fixpoint PsubC (P:Pol) (c:C) : Pol := match P with | Pc c1 => Pc (c1 -! c) | Pinj j Q => Pinj j (PsubC Q c) @@ -176,11 +191,11 @@ Section MakeRingPol. Variable Pop : Pol -> Pol -> Pol. Variable Q : Pol. - Fixpoint PaddI (j:positive) (P:Pol){struct P} : Pol := + Fixpoint PaddI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PaddC Q c) | Pinj j' Q' => - match ZPminus j' j with + match Z.pos_sub j' j with | Zpos k => mkPinj j (Pop (Pinj k Q') Q) | Z0 => mkPinj j (Pop Q' Q) | Zneg k => mkPinj j' (PaddI k Q') @@ -188,16 +203,16 @@ Section MakeRingPol. | PX P i Q' => match j with | xH => PX P i (Pop Q' Q) - | xO j => PX P i (PaddI (Pdouble_minus_one j) Q') + | xO j => PX P i (PaddI (Pos.pred_double j) Q') | xI j => PX P i (PaddI (xO j) Q') end end. - Fixpoint PsubI (j:positive) (P:Pol){struct P} : Pol := + Fixpoint PsubI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PaddC (--Q) c) | Pinj j' Q' => - match ZPminus j' j with + match Z.pos_sub j' j with | Zpos k => mkPinj j (Pop (Pinj k Q') Q) | Z0 => mkPinj j (Pop Q' Q) | Zneg k => mkPinj j' (PsubI k Q') @@ -205,41 +220,41 @@ Section MakeRingPol. | PX P i Q' => match j with | xH => PX P i (Pop Q' Q) - | xO j => PX P i (PsubI (Pdouble_minus_one j) Q') + | xO j => PX P i (PsubI (Pos.pred_double j) Q') | xI j => PX P i (PsubI (xO j) Q') end end. Variable P' : Pol. - Fixpoint PaddX (i':positive) (P:Pol) {struct P} : Pol := + Fixpoint PaddX (i':positive) (P:Pol) : Pol := match P with | Pc c => PX P' i' P | Pinj j Q' => match j with | xH => PX P' i' Q' - | xO j => PX P' i' (Pinj (Pdouble_minus_one j) Q') + | xO j => PX P' i' (Pinj (Pos.pred_double j) Q') | xI j => PX P' i' (Pinj (xO j) Q') end | PX P i Q' => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' | Z0 => mkPX (Pop P P') i Q' | Zneg k => mkPX (PaddX k P) i Q' end end. - Fixpoint PsubX (i':positive) (P:Pol) {struct P} : Pol := + Fixpoint PsubX (i':positive) (P:Pol) : Pol := match P with | Pc c => PX (--P') i' P | Pinj j Q' => match j with | xH => PX (--P') i' Q' - | xO j => PX (--P') i' (Pinj (Pdouble_minus_one j) Q') + | xO j => PX (--P') i' (Pinj (Pos.pred_double j) Q') | xI j => PX (--P') i' (Pinj (xO j) Q') end | PX P i Q' => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' | Z0 => mkPX (Pop P P') i Q' | Zneg k => mkPX (PsubX k P) i Q' @@ -259,18 +274,18 @@ Section MakeRingPol. | Pinj j Q => match j with | xH => PX P' i' (Padd Q Q') - | xO j => PX P' i' (Padd (Pinj (Pdouble_minus_one j) Q) Q') + | xO j => PX P' i' (Padd (Pinj (Pos.pred_double j) Q) Q') | xI j => PX P' i' (Padd (Pinj (xO j) Q) Q') end | PX P i Q => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q') | Z0 => mkPX (Padd P P') i (Padd Q Q') | Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q') end end end. - Notation "P ++ P'" := (Padd P P'). + Infix "++" := Padd. Fixpoint Psub (P P': Pol) {struct P'} : Pol := match P' with @@ -282,22 +297,22 @@ Section MakeRingPol. | Pinj j Q => match j with | xH => PX (--P') i' (Psub Q Q') - | xO j => PX (--P') i' (Psub (Pinj (Pdouble_minus_one j) Q) Q') + | xO j => PX (--P') i' (Psub (Pinj (Pos.pred_double j) Q) Q') | xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q') end | PX P i Q => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q') | Z0 => mkPX (Psub P P') i (Psub Q Q') | Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q') end end end. - Notation "P -- P'" := (Psub P P'). + Infix "--" := Psub. (** Multiplication *) - Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol := + Fixpoint PmulC_aux (P:Pol) (c:C) : Pol := match P with | Pc c' => Pc (c' *! c) | Pinj j Q => mkPinj j (PmulC_aux Q c) @@ -311,11 +326,11 @@ Section MakeRingPol. Section PmulI. Variable Pmul : Pol -> Pol -> Pol. Variable Q : Pol. - Fixpoint PmulI (j:positive) (P:Pol) {struct P} : Pol := + Fixpoint PmulI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PmulC Q c) | Pinj j' Q' => - match ZPminus j' j with + match Z.pos_sub j' j with | Zpos k => mkPinj j (Pmul (Pinj k Q') Q) | Z0 => mkPinj j (Pmul Q' Q) | Zneg k => mkPinj j' (PmulI k Q') @@ -323,13 +338,12 @@ Section MakeRingPol. | PX P' i' Q' => match j with | xH => mkPX (PmulI xH P') i' (Pmul Q' Q) - | xO j' => mkPX (PmulI j P') i' (PmulI (Pdouble_minus_one j') Q') + | xO j' => mkPX (PmulI j P') i' (PmulI (Pos.pred_double j') Q') | xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q') end end. End PmulI. -(* A symmetric version of the multiplication *) Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol := match P'' with @@ -342,7 +356,7 @@ Section MakeRingPol. let QQ' := match j with | xH => Pmul Q Q' - | xO j => Pmul (Pinj (Pdouble_minus_one j) Q) Q' + | xO j => Pmul (Pinj (Pos.pred_double j) Q) Q' | xI j => Pmul (Pinj (xO j) Q) Q' end in mkPX (Pmul P P') i' QQ' @@ -355,25 +369,7 @@ Section MakeRingPol. end end. -(* Non symmetric *) -(* - Fixpoint Pmul_aux (P P' : Pol) {struct P'} : Pol := - match P' with - | Pc c' => PmulC P c' - | Pinj j' Q' => PmulI Pmul_aux Q' j' P - | PX P' i' Q' => - (mkPX (Pmul_aux P P') i' P0) ++ (PmulI Pmul_aux Q' xH P) - end. - - Definition Pmul P P' := - match P with - | Pc c => PmulC P' c - | Pinj j Q => PmulI Pmul_aux Q j P' - | PX P i Q => - (mkPX (Pmul_aux P P') i P0) ++ (PmulI Pmul_aux Q xH P') - end. -*) - Notation "P ** P'" := (Pmul P P'). + Infix "**" := Pmul. Fixpoint Psquare (P:Pol) : Pol := match P with @@ -388,26 +384,26 @@ Section MakeRingPol. (** Monomial **) + (** A monomial is X1^k1...Xi^ki. Its representation + is a simplified version of the polynomial representation: + + - [mon0] correspond to the polynom [P1]. + - [(zmon j M)] corresponds to [(Pinj j ...)], + i.e. skip j variable indices. + - [(vmon i M)] is X^i*M with X the current variable, + its corresponds to (PX P1 i ...)] + *) + Inductive Mon: Set := - mon0: Mon + | mon0: Mon | zmon: positive -> Mon -> Mon | vmon: positive -> Mon -> Mon. - Fixpoint Mphi(l:Env R) (M: Mon) {struct M} : R := - match M with - mon0 => rI - | zmon j M1 => Mphi (jump j l) M1 - | vmon i M1 => - let x := hd 0 l in - let xi := pow_pos rmul x i in - (Mphi (tail l) M1) * xi - end. - Definition mkZmon j M := match M with mon0 => mon0 | _ => zmon j M end. Definition zmon_pred j M := - match j with xH => M | _ => mkZmon (Ppred j) M end. + match j with xH => M | _ => mkZmon (Pos.pred j) M end. Definition mkVmon i M := match M with @@ -416,7 +412,7 @@ Section MakeRingPol. | vmon i' m => vmon (i+i') m end. - Fixpoint MFactor (P: Pol) (M: Mon) {struct P}: Pol * Pol := + Fixpoint MFactor (P: Pol) (M: Mon) : Pol * Pol := match P, M with _, mon0 => (Pc cO, P) | Pc _, _ => (P, Pc cO) @@ -453,7 +449,7 @@ Section MakeRingPol. | _ => Some (Padd Q1 (Pmul P2 R1)) end. - Fixpoint PNSubst1 (P1: Pol) (M1: Mon) (P2: Pol) (n: nat) {struct n}: Pol := + Fixpoint PNSubst1 (P1: Pol) (M1: Mon) (P2: Pol) (n: nat) : Pol := match POneSubst P1 M1 P2 with Some P3 => match n with S n1 => PNSubst1 P3 M1 P2 n1 | _ => P3 end | _ => P1 @@ -465,14 +461,13 @@ Section MakeRingPol. | _ => None end. - Fixpoint PSubstL1 (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) {struct LM1}: - Pol := + Fixpoint PSubstL1 (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) : Pol := match LM1 with cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n | _ => P1 end. - Fixpoint PSubstL (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) {struct LM1}: option Pol := + Fixpoint PSubstL (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) : option Pol := match LM1 with cons (M1,P2) LM2 => match PNSubst P1 M1 P2 n with @@ -482,7 +477,7 @@ Section MakeRingPol. | _ => None end. - Fixpoint PNSubstL (P1: Pol) (LM1: list (Mon * Pol)) (m n: nat) {struct m}: Pol := + Fixpoint PNSubstL (P1: Pol) (LM1: list (Mon * Pol)) (m n: nat) : Pol := match PSubstL P1 LM1 n with Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end | _ => P1 @@ -490,726 +485,446 @@ Section MakeRingPol. (** Evaluation of a polynomial towards R *) - Fixpoint Pphi(l:Env R) (P:Pol) {struct P} : R := + Fixpoint Pphi(l:Env R) (P:Pol) : R := match P with | Pc c => [c] | Pinj j Q => Pphi (jump j l) Q - | PX P i Q => - let x := hd 0 l in - let xi := pow_pos rmul x i in - (Pphi l P) * xi + (Pphi (tail l) Q) + | PX P i Q => Pphi l P * (hd l) ^ i + Pphi (tail l) Q end. Reserved Notation "P @ l " (at level 10, no associativity). Notation "P @ l " := (Pphi l P). + + (** Evaluation of a monomial towards R *) + + Fixpoint Mphi(l:Env R) (M: Mon) : R := + match M with + | mon0 => rI + | zmon j M1 => Mphi (jump j l) M1 + | vmon i M1 => Mphi (tail l) M1 * (hd l) ^ i + end. + + Notation "M @@ l" := (Mphi l M) (at level 10, no associativity). + (** Proofs *) - Lemma ZPminus_spec : forall x y, - match ZPminus x y with - | Z0 => x = y - | Zpos k => x = (y + k)%positive - | Zneg k => y = (x + k)%positive + + Ltac destr_pos_sub := + match goal with |- context [Z.pos_sub ?x ?y] => + generalize (Z.pos_sub_discr x y); destruct (Z.pos_sub x y) end. + + Lemma Peq_ok P P' : (P ?== P') = true -> forall l, P@l == P'@ l. Proof. - induction x;destruct y. - replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial. - replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one;rewrite H;trivial. - apply Pplus_xI_double_minus_one. - simpl;trivial. - replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one;rewrite H;trivial. - apply Pplus_xI_double_minus_one. - replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial. - replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial. - replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - simpl;trivial. + revert P';induction P;destruct P';simpl; intros H l; try easy. + - now apply (morph_eq CRmorph). + - destruct (Pos.compare_spec p p0); [ subst | easy | easy ]. + now rewrite IHP. + - specialize (IHP1 P'1); specialize (IHP2 P'2). + destruct (Pos.compare_spec p p0); [ subst | easy | easy ]. + destruct (P2 ?== P'1); [|easy]. + rewrite H in *. + now rewrite IHP1, IHP2. Qed. - Lemma Peq_ok : forall P P', - (P ?== P') = true -> forall l, P@l == P'@ l. + Lemma Peq_spec P P' : + BoolSpec (forall l, P@l == P'@l) True (P ?== P'). Proof. - induction P;destruct P';simpl;intros;try discriminate;trivial. - apply (morph_eq CRmorph);trivial. - assert (H1 := Pos.compare_eq p p0); destruct (p ?= p0); - try discriminate H. - rewrite (IHP P' H); rewrite H1;trivial;rrefl. - assert (H1 := Pos.compare_eq p p0); destruct (p ?= p0); - try discriminate H. - rewrite H1;trivial. clear H1. - assert (H1 := IHP1 P'1);assert (H2 := IHP2 P'2); - destruct (P2 ?== P'1);[destruct (P3 ?== P'2); [idtac|discriminate H] - |discriminate H]. - rewrite (H1 H);rewrite (H2 H);rrefl. + generalize (Peq_ok P P'). destruct (P ?== P'); auto. Qed. - Lemma Pphi0 : forall l, P0@l == 0. + Lemma Pphi0 l : P0@l == 0. Proof. - intros;simpl;apply (morph0 CRmorph). + simpl;apply (morph0 CRmorph). Qed. -Lemma env_morph : forall p e1 e2, (forall x, e1 x = e2 x) -> - p @ e1 = p @ e2. + Lemma Pphi1 l : P1@l == 1. + Proof. + simpl;apply (morph1 CRmorph). + Qed. + +Lemma env_morph p e1 e2 : + (forall x, e1 x = e2 x) -> p @ e1 = p @ e2. Proof. - induction p ; simpl. - reflexivity. - intros. - apply IHp. - intros. - unfold jump. - apply H. - intros. - rewrite (IHp1 e1 e2) ; auto. - rewrite (IHp2 (tail e1) (tail e2)) ; auto. - unfold hd. unfold nth. rewrite H. reflexivity. - unfold tail. unfold jump. intros ; apply H. + revert e1 e2. induction p ; simpl. + - reflexivity. + - intros e1 e2 EQ. apply IHp. intros. apply EQ. + - intros e1 e2 EQ. f_equal; [f_equal|]. + + now apply IHp1. + + f_equal. apply EQ. + + apply IHp2. intros; apply EQ. Qed. -Lemma Pjump_Pplus : forall P i j l, P @ (jump (i + j) l ) = P @ (jump j (jump i l)). +Lemma Pjump_add P i j l : + P @ (jump (i + j) l) = P @ (jump j (jump i l)). Proof. - intros. apply env_morph. intros. rewrite <- jump_Pplus. - rewrite Pplus_comm. - reflexivity. + apply env_morph. intros. rewrite <- jump_add. f_equal. + apply Pos.add_comm. Qed. -Lemma Pjump_xO_tail : forall P p l, +Lemma Pjump_xO_tail P p l : P @ (jump (xO p) (tail l)) = P @ (jump (xI p) l). Proof. - intros. - apply env_morph. - intros. - rewrite (@jump_simpl R (xI p)). - rewrite (@jump_simpl R (xO p)). - reflexivity. + apply env_morph. intros. now jump_simpl. Qed. -Lemma Pjump_Pdouble_minus_one : forall P p l, - P @ (jump (Pdouble_minus_one p) (tail l)) = P @ (jump (xO p) l). +Lemma Pjump_pred_double P p l : + P @ (jump (Pos.pred_double p) (tail l)) = P @ (jump (xO p) l). Proof. - intros. - apply env_morph. - intros. - rewrite jump_Pdouble_minus_one. - rewrite (@jump_simpl R (xO p)). - reflexivity. + apply env_morph. intros. + rewrite jump_pred_double. now jump_simpl. Qed. - - - Lemma Pphi1 : forall l, P1@l == 1. + Lemma mkPinj_ok j l P : (mkPinj j P)@l == P@(jump j l). Proof. - intros;simpl;apply (morph1 CRmorph). + destruct P;simpl;rsimpl. + now rewrite Pjump_add. Qed. - Lemma mkPinj_ok : forall j l P, (mkPinj j P)@l == P@(jump j l). + Lemma pow_pos_add x i j : x^(j + i) == x^i * x^j. Proof. - intros j l p;destruct p;simpl;rsimpl. - rewrite Pjump_Pplus. - reflexivity. + rewrite Pos.add_comm. + apply (pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)). Qed. - Let pow_pos_Pplus := - pow_pos_Pplus rmul Rsth Reqe.(Rmul_ext) ARth.(ARmul_comm) ARth.(ARmul_assoc). - - Lemma mkPX_ok : forall l P i Q, - (mkPX P i Q)@l == P@l*(pow_pos rmul (hd 0 l) i) + Q@(tail l). + Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?=! c'). Proof. - intros l P i Q;unfold mkPX. - destruct P;try (simpl;rrefl). - assert (H := morph_eq CRmorph c cO);destruct (c ?=! cO);simpl;try rrefl. - rewrite (H (refl_equal true));rewrite (morph0 CRmorph). - rewrite mkPinj_ok;rsimpl;simpl;rrefl. - assert (H := @Peq_ok P3 P0);destruct (P3 ?== P0);simpl;try rrefl. - rewrite (H (refl_equal true));trivial. - rewrite Pphi0. rewrite pow_pos_Pplus;rsimpl. + generalize (morph_eq CRmorph c c'). + destruct (c ?=! c'); auto. Qed. - - Ltac Esimpl := - repeat (progress ( - match goal with - | |- context [P0@?l] => rewrite (Pphi0 l) - | |- context [P1@?l] => rewrite (Pphi1 l) - | |- context [(mkPinj ?j ?P)@?l] => rewrite (mkPinj_ok j l P) - | |- context [(mkPX ?P ?i ?Q)@?l] => rewrite (mkPX_ok l P i Q) - | |- context [[cO]] => rewrite (morph0 CRmorph) - | |- context [[cI]] => rewrite (morph1 CRmorph) - | |- context [[?x +! ?y]] => rewrite ((morph_add CRmorph) x y) - | |- context [[?x *! ?y]] => rewrite ((morph_mul CRmorph) x y) - | |- context [[?x -! ?y]] => rewrite ((morph_sub CRmorph) x y) - | |- context [[-! ?x]] => rewrite ((morph_opp CRmorph) x) - end)); - rsimpl; simpl. - - Lemma PaddC_ok : forall c P l, (PaddC P c)@l == P@l + [c]. + Lemma mkPX_ok l P i Q : + (mkPX P i Q)@l == P@l * (hd l)^i + Q@(tail l). Proof. - induction P;simpl;intros;Esimpl;trivial. - rewrite IHP2;rsimpl. + unfold mkPX. destruct P. + - case ceqb_spec; intros H; simpl; try reflexivity. + rewrite H, (morph0 CRmorph), mkPinj_ok; rsimpl. + - reflexivity. + - case Peq_spec; intros H; simpl; try reflexivity. + rewrite H, Pphi0, Pos.add_comm, pow_pos_add; rsimpl. Qed. - Lemma PsubC_ok : forall c P l, (PsubC P c)@l == P@l - [c]. + Hint Rewrite + Pphi0 + Pphi1 + mkPinj_ok + mkPX_ok + (morph0 CRmorph) + (morph1 CRmorph) + (morph0 CRmorph) + (morph_add CRmorph) + (morph_mul CRmorph) + (morph_sub CRmorph) + (morph_opp CRmorph) + : Esimpl. + + (* Quicker than autorewrite with Esimpl :-) *) + Ltac Esimpl := try rewrite_db Esimpl; rsimpl; simpl. + + Lemma PaddC_ok c P l : (PaddC P c)@l == P@l + [c]. Proof. - induction P;simpl;intros. - Esimpl. - rewrite IHP;rsimpl. + revert l;induction P;simpl;intros;Esimpl;trivial. rewrite IHP2;rsimpl. Qed. - Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c]. + Lemma PsubC_ok c P l : (PsubC P c)@l == P@l - [c]. Proof. - induction P;simpl;intros;Esimpl;trivial. - rewrite IHP1;rewrite IHP2;rsimpl. - mul_push ([c]);rrefl. + revert l;induction P;simpl;intros. + - Esimpl. + - rewrite IHP;rsimpl. + - rewrite IHP2;rsimpl. Qed. - Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c]. + Lemma PmulC_aux_ok c P l : (PmulC_aux P c)@l == P@l * [c]. Proof. - intros c P l; unfold PmulC. - assert (H:= morph_eq CRmorph c cO);destruct (c ?=! cO). - rewrite (H (refl_equal true));Esimpl. - assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI). - rewrite (H1 (refl_equal true));Esimpl. - apply PmulC_aux_ok. + revert l;induction P;simpl;intros;Esimpl;trivial. + rewrite IHP1, IHP2;rsimpl. add_permut. mul_permut. Qed. - Lemma Popp_ok : forall P l, (--P)@l == - P@l. + Lemma PmulC_ok c P l : (PmulC P c)@l == P@l * [c]. Proof. - induction P;simpl;intros. - Esimpl. - apply IHP. - rewrite IHP1;rewrite IHP2;rsimpl. + unfold PmulC. + case ceqb_spec; intros H. + - rewrite H; Esimpl. + - case ceqb_spec; intros H'. + + rewrite H'; Esimpl. + + apply PmulC_aux_ok. Qed. - Ltac Esimpl2 := - Esimpl; - repeat (progress ( - match goal with - | |- context [(PaddC ?P ?c)@?l] => rewrite (PaddC_ok c P l) - | |- context [(PsubC ?P ?c)@?l] => rewrite (PsubC_ok c P l) - | |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l) - | |- context [(--?P)@?l] => rewrite (Popp_ok P l) - end)); Esimpl. - - - - - Lemma Padd_ok : forall P' P l, (P ++ P')@l == P@l + P'@l. + Lemma Popp_ok P l : (--P)@l == - P@l. Proof. - induction P';simpl;intros;Esimpl2. - generalize P p l;clear P p l. - induction P;simpl;intros. - Esimpl2;apply (ARadd_comm ARth). - assert (H := ZPminus_spec p p0);destruct (ZPminus p p0). - rewrite H;Esimpl. rewrite IHP';rrefl. - rewrite H;Esimpl. rewrite IHP';Esimpl. - rewrite Pjump_Pplus. rrefl. - rewrite H;Esimpl. rewrite IHP. - rewrite Pjump_Pplus. rrefl. - destruct p0;simpl. - rewrite IHP2;simpl. rsimpl. - rewrite Pjump_xO_tail. Esimpl. - rewrite IHP2;simpl. - rewrite Pjump_Pdouble_minus_one. - rsimpl. - rewrite IHP'. - rsimpl. - destruct P;simpl. - Esimpl2;add_push [c];rrefl. - destruct p0;simpl;Esimpl2. - rewrite IHP'2;simpl. - rewrite Pjump_xO_tail. - rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl. - rewrite IHP'2;simpl. - rewrite Pjump_Pdouble_minus_one. rsimpl. - add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl. - rewrite IHP'2;rsimpl. - unfold tail. - add_push (P @ (jump 1 l));rrefl. - assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2. - rewrite IHP'1;rewrite IHP'2;rsimpl. - add_push (P3 @ (tail l));rewrite H;rrefl. - rewrite IHP'1;rewrite IHP'2;simpl;Esimpl. - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. - assert (forall P k l, - (PaddX Padd P'1 k P) @ l == P@l + P'1@l * pow_pos rmul (hd 0 l) k). - induction P;simpl;intros;try apply (ARadd_comm ARth). - destruct p2; simpl; try apply (ARadd_comm ARth). - rewrite Pjump_xO_tail. - apply (ARadd_comm ARth). - rewrite Pjump_Pdouble_minus_one. - apply (ARadd_comm ARth). - assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2. - rewrite IHP'1;rsimpl; rewrite H1;add_push (P5 @ (tail l0));rrefl. - rewrite IHP'1;simpl;Esimpl. - rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;Esimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite IHP1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;rsimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite H0;rsimpl. - add_push (P3 @ (tail l)). - rewrite H;rewrite Pplus_comm. - rewrite IHP'2;rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. + revert l;induction P;simpl;intros. + - Esimpl. + - apply IHP. + - rewrite IHP1, IHP2;rsimpl. Qed. - Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l. + Hint Rewrite PaddC_ok PsubC_ok PmulC_ok Popp_ok : Esimpl. + + Lemma PaddX_ok P' P k l : + (forall P l, (P++P')@l == P@l + P'@l) -> + (PaddX Padd P' k P) @ l == P@l + P'@l * (hd l)^k. Proof. - induction P';simpl;intros;Esimpl2;trivial. - generalize P p l;clear P p l. - induction P;simpl;intros. - Esimpl2;apply (ARadd_comm ARth). - assert (H := ZPminus_spec p p0);destruct (ZPminus p p0). - rewrite H;Esimpl. rewrite IHP';rsimpl. - rewrite H;Esimpl. rewrite IHP';Esimpl. - rewrite <- Pjump_Pplus;rewrite Pplus_comm;rrefl. - rewrite H;Esimpl. rewrite IHP. - rewrite <- Pjump_Pplus;rewrite Pplus_comm;rrefl. - destruct p0;simpl. - rewrite IHP2;simpl; try rewrite Pjump_xO_tail ; rsimpl. - rewrite IHP2;simpl. - rewrite Pjump_Pdouble_minus_one;rsimpl. - unfold tail ; rsimpl. - rewrite IHP';rsimpl. - destruct P;simpl. - repeat rewrite Popp_ok;Esimpl2;rsimpl;add_push [c];try rrefl. - destruct p0;simpl;Esimpl2. - rewrite IHP'2;simpl;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));trivial. - rewrite Pjump_xO_tail. - add_push (P @ ((jump (xI p0) l)));rrefl. - rewrite IHP'2;simpl;rewrite Pjump_Pdouble_minus_one;rsimpl. - add_push (- (P'1 @ l * pow_pos rmul (hd 0 l) p));rrefl. - unfold tail. - rewrite IHP'2;rsimpl;add_push (P @ (jump 1 l));rrefl. - assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2. - rewrite IHP'1; rewrite IHP'2;rsimpl. - add_push (P3 @ (tail l));rewrite H;rrefl. - rewrite IHP'1; rewrite IHP'2;rsimpl;simpl;Esimpl. - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. - assert (forall P k l, - (PsubX Psub P'1 k P) @ l == P@l + - P'1@l * pow_pos rmul (hd 0 l) k). - induction P;simpl;intros. - rewrite Popp_ok;rsimpl;apply (ARadd_comm ARth);trivial. - destruct p2;simpl; rewrite Popp_ok;rsimpl. - rewrite Pjump_xO_tail. - apply (ARadd_comm ARth);trivial. - rewrite Pjump_Pdouble_minus_one. - apply (ARadd_comm ARth);trivial. - apply (ARadd_comm ARth);trivial. - assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2;rsimpl. - rewrite IHP'1;rsimpl;add_push (P5 @ (tail l0));rewrite H1;rrefl. - rewrite IHP'1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;Esimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite IHP1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;rsimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite H0;rsimpl. - rewrite IHP'2;rsimpl;add_push (P3 @ (tail l)). - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. + intros IHP'. + revert k l. induction P;simpl;intros. + - add_permut. + - destruct p; simpl; + rewrite ?Pjump_xO_tail, ?Pjump_pred_double; add_permut. + - destr_pos_sub; intros ->;Esimpl. + + rewrite IHP';rsimpl. add_permut. + + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut. + + rewrite IHP1, pow_pos_add;rsimpl. add_permut. Qed. -(* Proof for the symmetric version *) - Lemma PmulI_ok : - forall P', - (forall (P : Pol) (l : Env R), (Pmul P P') @ l == P @ l * P' @ l) -> - forall (P : Pol) (p : positive) (l : Env R), - (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l). + Lemma Padd_ok P' P l : (P ++ P')@l == P@l + P'@l. Proof. - induction P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2. - rewrite H1; rewrite H;rrefl. - rewrite H1; rewrite H. - rewrite Pjump_Pplus;simpl;rrefl. - rewrite H1. - rewrite Pjump_Pplus;rewrite IHP;rrefl. - destruct p0;Esimpl2. - rewrite IHP1;rewrite IHP2;rsimpl. - rewrite Pjump_xO_tail. - mul_push (pow_pos rmul (hd 0 l) p);rrefl. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p); rewrite Pjump_Pdouble_minus_one. - rrefl. - rewrite IHP1;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p). - rewrite H;rrefl. + revert P l; induction P';simpl;intros;Esimpl. + - revert p l; induction P;simpl;intros. + + Esimpl; add_permut. + + destr_pos_sub; intros ->;Esimpl. + * now rewrite IHP'. + * rewrite IHP';Esimpl. now rewrite Pjump_add. + * rewrite IHP. now rewrite Pjump_add. + + destruct p0;simpl. + * rewrite IHP2;simpl. rsimpl. rewrite Pjump_xO_tail. Esimpl. + * rewrite IHP2;simpl. rewrite Pjump_pred_double. rsimpl. + * rewrite IHP'. rsimpl. + - destruct P;simpl. + + Esimpl. add_permut. + + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl. + * rewrite Pjump_xO_tail. rsimpl. add_permut. + * rewrite Pjump_pred_double. rsimpl. add_permut. + * rsimpl. unfold tail. add_permut. + + destr_pos_sub; intros ->; Esimpl. + * rewrite IHP'1, IHP'2;rsimpl. add_permut. + * rewrite IHP'1, IHP'2;simpl;Esimpl. + rewrite pow_pos_add;rsimpl. add_permut. + * rewrite PaddX_ok by trivial; rsimpl. + rewrite IHP'2, pow_pos_add; rsimpl. add_permut. Qed. -(* - Lemma PmulI_ok : - forall P', - (forall (P : Pol) (l : list R), (Pmul_aux P P') @ l == P @ l * P' @ l) -> - forall (P : Pol) (p : positive) (l : list R), - (PmulI Pmul_aux P' p P) @ l == P @ l * P' @ (jump p l). + Lemma PsubX_ok P' P k l : + (forall P l, (P--P')@l == P@l - P'@l) -> + (PsubX Psub P' k P) @ l == P@l - P'@l * (hd l)^k. Proof. - induction P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2. - rewrite H1; rewrite H;rrefl. - rewrite H1; rewrite H. - rewrite Pplus_comm. - rewrite jump_Pplus;simpl;rrefl. - rewrite H1;rewrite Pplus_comm. - rewrite jump_Pplus;rewrite IHP;rrefl. - destruct p0;Esimpl2. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p);rrefl. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl. - rewrite IHP1;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p). - rewrite H;rrefl. + intros IHP'. + revert k l. induction P;simpl;intros. + - rewrite Popp_ok;rsimpl; add_permut. + - destruct p; simpl; + rewrite Popp_ok;rsimpl; + rewrite ?Pjump_xO_tail, ?Pjump_pred_double; add_permut. + - destr_pos_sub; intros ->; Esimpl. + + rewrite IHP';rsimpl. add_permut. + + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut. + + rewrite IHP1, pow_pos_add;rsimpl. add_permut. Qed. - Lemma Pmul_aux_ok : forall P' P l,(Pmul_aux P P')@l == P@l * P'@l. + Lemma Psub_ok P' P l : (P -- P')@l == P@l - P'@l. Proof. - induction P';simpl;intros. - Esimpl2;trivial. - apply PmulI_ok;trivial. - rewrite Padd_ok;Esimpl2. - rewrite (PmulI_ok P'2 IHP'2). rewrite IHP'1. rrefl. + revert P l; induction P';simpl;intros;Esimpl. + - revert p l; induction P;simpl;intros. + + Esimpl; add_permut. + + destr_pos_sub; intros ->;Esimpl. + * rewrite IHP';rsimpl. + * rewrite IHP';Esimpl. now rewrite Pjump_add. + * rewrite IHP. now rewrite Pjump_add. + + destruct p0;simpl. + * rewrite IHP2;simpl. rsimpl. rewrite Pjump_xO_tail. Esimpl. + * rewrite IHP2;simpl. rewrite Pjump_pred_double. rsimpl. + * rewrite IHP'. rsimpl. + - destruct P;simpl. + + Esimpl; add_permut. + + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl. + * rewrite Pjump_xO_tail. rsimpl. add_permut. + * rewrite Pjump_pred_double. rsimpl. add_permut. + * rsimpl. unfold tail. add_permut. + + destr_pos_sub; intros ->; Esimpl. + * rewrite IHP'1, IHP'2;rsimpl. add_permut. + * rewrite IHP'1, IHP'2;simpl;Esimpl. + rewrite pow_pos_add;rsimpl. add_permut. + * rewrite PsubX_ok by trivial;rsimpl. + rewrite IHP'2, pow_pos_add;rsimpl. add_permut. Qed. -*) -(* Proof for the symmetric version *) - Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l. + Lemma PmulI_ok P' : + (forall P l, (Pmul P P') @ l == P @ l * P' @ l) -> + forall P p l, (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l). Proof. - intros P P';generalize P;clear P;induction P';simpl;intros. - apply PmulC_ok. apply PmulI_ok;trivial. - destruct P. - rewrite (ARmul_comm ARth);Esimpl2;Esimpl2. - Esimpl2. rewrite IHP'1;Esimpl2. - assert (match p0 with - | xI j => Pinj (xO j) P ** P'2 - | xO j => Pinj (Pdouble_minus_one j) P ** P'2 - | 1 => P ** P'2 - end @ (tail l) == P @ (jump p0 l) * P'2 @ (tail l)). - destruct p0;rewrite IHP'2;Esimpl. - rewrite Pjump_xO_tail. reflexivity. - rewrite Pjump_Pdouble_minus_one;Esimpl. - rewrite H;Esimpl. - rewrite Padd_ok; Esimpl2. rewrite Padd_ok; Esimpl2. - repeat (rewrite IHP'1 || rewrite IHP'2);simpl. - rewrite PmulI_ok;trivial. - unfold tail. - mul_push (P'1@l). simpl. mul_push (P'2 @ (jump 1 l)). Esimpl. + intros IHP'. + induction P;simpl;intros. + - Esimpl; mul_permut. + - destr_pos_sub; intros ->;Esimpl. + + now rewrite IHP'. + + now rewrite IHP', Pjump_add. + + now rewrite IHP, Pjump_add. + - destruct p0;Esimpl; rewrite ?IHP1, ?IHP2; rsimpl. + + rewrite Pjump_xO_tail. f_equiv. mul_permut. + + rewrite Pjump_pred_double. f_equiv. mul_permut. + + rewrite IHP'. f_equiv. mul_permut. Qed. -(* -Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l. + Lemma Pmul_ok P P' l : (P**P')@l == P@l * P'@l. Proof. - destruct P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - rewrite (PmulI_ok P (Pmul_aux_ok P)). - apply (ARmul_comm ARth). - rewrite Padd_ok; Esimpl2. - rewrite (PmulI_ok P3 (Pmul_aux_ok P3));trivial. - rewrite Pmul_aux_ok;mul_push (P' @ l). - rewrite (ARmul_comm ARth (P' @ l));rrefl. + revert P l;induction P';simpl;intros. + - apply PmulC_ok. + - apply PmulI_ok;trivial. + - destruct P. + + rewrite (ARmul_comm ARth). Esimpl. + + Esimpl. rewrite IHP'1;Esimpl. f_equiv. + destruct p0;rewrite IHP'2;Esimpl. + * now rewrite Pjump_xO_tail. + * rewrite Pjump_pred_double; Esimpl. + + rewrite Padd_ok, !mkPX_ok, Padd_ok, !mkPX_ok, + !IHP'1, !IHP'2, PmulI_ok; trivial. simpl. Esimpl. + unfold tail. + add_permut; f_equiv; mul_permut. Qed. -*) - Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l. + Lemma Psquare_ok P l : (Psquare P)@l == P@l * P@l. Proof. - induction P;simpl;intros;Esimpl2. - apply IHP. rewrite Padd_ok. rewrite Pmul_ok;Esimpl2. - rewrite IHP1;rewrite IHP2. - mul_push (pow_pos rmul (hd 0 l) p). mul_push (P2@l). - rrefl. + revert l;induction P;simpl;intros;Esimpl. + - apply IHP. + - rewrite Padd_ok, Pmul_ok;Esimpl. + rewrite IHP1, IHP2. + mul_push ((hd l)^p). now mul_push (P2@l). Qed. - Lemma Mphi_morph : forall P env env', (forall x, env x = env' x ) -> - Mphi env P = Mphi env' P. + Lemma Mphi_morph M e1 e2 : + (forall x, e1 x = e2 x) -> M @@ e1 = M @@ e2. Proof. - induction P ; simpl. - reflexivity. - intros. - apply IHP. - intros. - unfold jump. - apply H. - (**) - intros. - replace (Mphi (tail env) P) with (Mphi (tail env') P). - unfold hd. unfold nth. - rewrite H. - reflexivity. - apply IHP. - unfold tail,jump. - intros. symmetry. apply H. + revert e1 e2; induction M; simpl; intros e1 e2 EQ; trivial. + - apply IHM. intros; apply EQ. + - f_equal. + * apply IHM. intros; apply EQ. + * f_equal. apply EQ. Qed. -Lemma Mjump_xO_tail : forall M p l, - Mphi (jump (xO p) (tail l)) M = Mphi (jump (xI p) l) M. +Lemma Mjump_xO_tail M p l : + M @@ (jump (xO p) (tail l)) = M @@ (jump (xI p) l). Proof. - intros. - apply Mphi_morph. - intros. - rewrite (@jump_simpl R (xI p)). - rewrite (@jump_simpl R (xO p)). - reflexivity. + apply Mphi_morph. intros. now jump_simpl. Qed. -Lemma Mjump_Pdouble_minus_one : forall M p l, - Mphi (jump (Pdouble_minus_one p) (tail l)) M = Mphi (jump (xO p) l) M. +Lemma Mjump_pred_double M p l : + M @@ (jump (Pos.pred_double p) (tail l)) = M @@ (jump (xO p) l). Proof. - intros. - apply Mphi_morph. - intros. - rewrite jump_Pdouble_minus_one. - rewrite (@jump_simpl R (xO p)). - reflexivity. + apply Mphi_morph. intros. + rewrite jump_pred_double. now jump_simpl. Qed. -Lemma Mjump_Pplus : forall M i j l, Mphi (jump (i + j) l ) M = Mphi (jump j (jump i l)) M. +Lemma Mjump_add M i j l : + M @@ (jump (i + j) l) = M @@ (jump j (jump i l)). Proof. - intros. apply Mphi_morph. intros. rewrite <- jump_Pplus. - rewrite Pplus_comm. - reflexivity. + apply Mphi_morph. intros. now rewrite <- jump_add, Pos.add_comm. Qed. - - - Lemma mkZmon_ok: forall M j l, - Mphi l (mkZmon j M) == Mphi l (zmon j M). - intros M j l; case M; simpl; intros; rsimpl. + Lemma mkZmon_ok M j l : + (mkZmon j M) @@ l == (zmon j M) @@ l. + Proof. + destruct M; simpl; rsimpl. Qed. - Lemma zmon_pred_ok : forall M j l, - Mphi (tail l) (zmon_pred j M) == Mphi l (zmon j M). + Lemma zmon_pred_ok M j l : + (zmon_pred j M) @@ (tail l) == (zmon j M) @@ l. Proof. - destruct j; simpl;intros l; rsimpl. - rewrite mkZmon_ok;rsimpl. - simpl. - rewrite Mjump_xO_tail. - reflexivity. - rewrite mkZmon_ok;simpl. - rewrite Mjump_Pdouble_minus_one; rsimpl. + destruct j; simpl; rewrite ?mkZmon_ok; simpl; rsimpl. + - now rewrite Mjump_xO_tail. + - rewrite Mjump_pred_double; rsimpl. Qed. - Lemma mkVmon_ok : forall M i l, Mphi l (mkVmon i M) == Mphi l M*pow_pos rmul (hd 0 l) i. + Lemma mkVmon_ok M i l : + (mkVmon i M)@@l == M@@l * (hd l)^i. Proof. destruct M;simpl;intros;rsimpl. - rewrite zmon_pred_ok;simpl;rsimpl. - rewrite Pplus_comm;rewrite pow_pos_Pplus;rsimpl. + - rewrite zmon_pred_ok;simpl;rsimpl. + - rewrite pow_pos_add;rsimpl. Qed. + Ltac destr_mfactor R S := match goal with + | H : context [MFactor ?P _] |- context [MFactor ?P ?M] => + specialize (H M); destruct MFactor as (R,S) + end. - Lemma Mphi_ok: forall P M l, - let (Q,R) := MFactor P M in - P@l == Q@l + (Mphi l M) * (R@l). + Lemma Mphi_ok P M l : + let (Q,R) := MFactor P M in + P@l == Q@l + M@@l * R@l. Proof. - intros P; elim P; simpl; auto; clear P. - intros c M l; case M; simpl; auto; try intro p; try intro m; - try rewrite (morph0 CRmorph); rsimpl. - - intros i P Hrec M l; case M; simpl; clear M. - rewrite (morph0 CRmorph); rsimpl. - intros j M. - case_eq (i ?= j); intros He; simpl. - rewrite (Pos.compare_eq _ _ He). - generalize (Hrec M (jump j l)); case (MFactor P M); - simpl; intros P2 Q2 H; repeat rewrite mkPinj_ok; auto. - generalize (Hrec (zmon (j -i) M) (jump i l)); - case (MFactor P (zmon (j -i) M)); simpl. - intros P2 Q2 H; repeat rewrite mkPinj_ok; auto. - rewrite <- (Pplus_minus _ _ (ZC2 _ _ He)). - rewrite Mjump_Pplus; auto. - rewrite (morph0 CRmorph); rsimpl. - intros P2 m; rewrite (morph0 CRmorph); rsimpl. - - intros P2 Hrec1 i Q2 Hrec2 M l; case M; simpl; auto. - rewrite (morph0 CRmorph); rsimpl. - intros j M1. - generalize (Hrec1 (zmon j M1) l); - case (MFactor P2 (zmon j M1)). - intros R1 S1 H1. - generalize (Hrec2 (zmon_pred j M1) (tail l)); - case (MFactor Q2 (zmon_pred j M1)); simpl. - intros R2 S2 H2; rewrite H1; rewrite H2. - repeat rewrite mkPX_ok; simpl. - rsimpl. - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - rewrite zmon_pred_ok;rsimpl. - intros j M1. - case_eq (i ?= j); intros He; simpl. - rewrite (Pos.compare_eq _ _ He). - generalize (Hrec1 (mkZmon xH M1) l); case (MFactor P2 (mkZmon xH M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - rewrite mkZmon_ok. - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - generalize (Hrec1 (vmon (j - i) M1) l); - case (MFactor P2 (vmon (j - i) M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rsimpl; repeat rewrite mkPinj_ok; auto. - rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - apply rmul_ext; rsimpl. - rewrite <- pow_pos_Pplus. - rewrite (Pplus_minus _ _ (ZC2 _ _ He)); rsimpl. - generalize (Hrec1 (mkZmon 1 M1) l); - case (MFactor P2 (mkZmon 1 M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rsimpl. - rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - rewrite mkZmon_ok. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - rewrite mkPX_ok; simpl; rsimpl. - rewrite (morph0 CRmorph); rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - rewrite (ARmul_comm ARth (Q3@l)); rsimpl. - apply rmul_ext; rsimpl. - rewrite <- pow_pos_Pplus. - rewrite (Pplus_minus _ _ He); rsimpl. + revert M l; induction P; destruct M; intros l; simpl; auto; Esimpl. + - case Pos.compare_spec; intros He; simpl. + * destr_mfactor R1 S1. now rewrite IHP, He, !mkPinj_ok. + * destr_mfactor R1 S1. rewrite IHP; simpl. + now rewrite !mkPinj_ok, <- Mjump_add, Pos.add_comm, Pos.sub_add. + * Esimpl. + - destr_mfactor R1 S1. destr_mfactor R2 S2. + rewrite IHP1, IHP2, !mkPX_ok, zmon_pred_ok; simpl; rsimpl. + add_permut. + - case Pos.compare_spec; intros He; simpl; destr_mfactor R1 S1; + rewrite ?He, IHP1, mkPX_ok, ?mkZmon_ok; simpl; rsimpl; + unfold tail; add_permut; mul_permut. + * rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add by trivial; rsimpl. + * rewrite mkPX_ok. simpl. Esimpl. mul_permut. + rewrite <- pow_pos_add, Pos.sub_add by trivial; rsimpl. Qed. -(* Proof for the symmetric version *) - - Lemma POneSubst_ok: forall P1 M1 P2 P3 l, - POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l. + Lemma POneSubst_ok P1 M1 P2 P3 l : + POneSubst P1 M1 P2 = Some P3 -> M1@@l == P2@l -> + P1@l == P3@l. Proof. - intros P2 M1 P3 P4 l; unfold POneSubst. - generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto. - intros Q1 R1; case R1. - intros c H; rewrite H. - generalize (morph_eq CRmorph c cO); - case (c ?=! cO); simpl; auto. - intros H1 H2; rewrite H1; auto; rsimpl. - discriminate. - intros _ H1 H2; injection H1; intros; subst. - rewrite H2; rsimpl. - (* new version *) - rewrite Padd_ok; rewrite PmulC_ok; rsimpl. - intros i P5 H; rewrite H. - intros HH H1; injection HH; intros; subst; rsimpl. - rewrite Padd_ok; rewrite PmulI_ok by (intros;apply Pmul_ok). rewrite H1; rsimpl. - intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3. - assert (P4 = Q1 ++ P3 ** PX i P5 P6). - injection H2; intros; subst;trivial. - rewrite H;rewrite Padd_ok;rewrite Pmul_ok;rsimpl. -Qed. -(* - Lemma POneSubst_ok: forall P1 M1 P2 P3 l, - POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l. -Proof. - intros P2 M1 P3 P4 l; unfold POneSubst. - generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto. - intros Q1 R1; case R1. - intros c H; rewrite H. - generalize (morph_eq CRmorph c cO); - case (c ?=! cO); simpl; auto. - intros H1 H2; rewrite H1; auto; rsimpl. - discriminate. - intros _ H1 H2; injection H1; intros; subst. - rewrite H2; rsimpl. - rewrite Padd_ok; rewrite Pmul_ok; rsimpl. - intros i P5 H; rewrite H. - intros HH H1; injection HH; intros; subst; rsimpl. - rewrite Padd_ok; rewrite Pmul_ok. rewrite H1; rsimpl. - intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3. - injection H2; intros; subst; rsimpl. - rewrite Padd_ok. - rewrite Pmul_ok; rsimpl. + unfold POneSubst. + assert (H := Mphi_ok P1). destr_mfactor R1 S1. rewrite H; clear H. + intros EQ EQ'. replace P3 with (R1 ++ P2 ** S1). + - rewrite EQ', Padd_ok, Pmul_ok; rsimpl. + - revert EQ. destruct S1; try now injection 1. + case ceqb_spec; now inversion 2. Qed. -*) - Lemma PNSubst1_ok: forall n P1 M1 P2 l, - Mphi l M1 == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l. + + Lemma PNSubst1_ok n P1 M1 P2 l : + M1@@l == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l. Proof. - intros n; elim n; simpl; auto. - intros P2 M1 P3 l H. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; rsimpl]. - intros P4 Hrec; rewrite (Hrec P4); auto; rsimpl. - intros n1 Hrec P2 M1 P3 l H. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; rsimpl]. - intros P4 Hrec1; rewrite (Hrec1 P4); auto; rsimpl. + revert P1. induction n; simpl; intros P1; + generalize (POneSubst_ok P1 M1 P2); destruct POneSubst; + intros; rewrite <- ?IHn; auto; reflexivity. Qed. - Lemma PNSubst_ok: forall n P1 M1 P2 l P3, - PNSubst P1 M1 P2 n = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l. + Lemma PNSubst_ok n P1 M1 P2 l P3 : + PNSubst P1 M1 P2 n = Some P3 -> M1@@l == P2@l -> P1@l == P3@l. Proof. - intros n P2 M1 P3 l P4; unfold PNSubst. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; discriminate]. - intros P5 H1; case n; try (intros; discriminate). - intros n1 H2; injection H2; intros; subst. - rewrite <- PNSubst1_ok; auto. + unfold PNSubst. + assert (H := POneSubst_ok P1 M1 P2); destruct POneSubst; try discriminate. + destruct n; inversion_clear 1. + intros. rewrite <- PNSubst1_ok; auto. Qed. - Fixpoint MPcond (LM1: list (Mon * Pol)) (l: Env R) {struct LM1} : Prop := - match LM1 with - cons (M1,P2) LM2 => (Mphi l M1 == P2@l) /\ (MPcond LM2 l) - | _ => True - end. + Fixpoint MPcond (LM1: list (Mon * Pol)) (l: Env R) : Prop := + match LM1 with + | cons (M1,P2) LM2 => (M1@@l == P2@l) /\ MPcond LM2 l + | _ => True + end. - Lemma PSubstL1_ok: forall n LM1 P1 l, - MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l. + Lemma PSubstL1_ok n LM1 P1 l : + MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l. Proof. - intros n LM1; elim LM1; simpl; auto. - intros; rsimpl. - intros (M2,P2) LM2 Hrec P3 l [H H1]. - rewrite <- Hrec; auto. - apply PNSubst1_ok; auto. + revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros. + - reflexivity. + - rewrite <- IH by intuition. now apply PNSubst1_ok. Qed. - Lemma PSubstL_ok: forall n LM1 P1 P2 l, - PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l. + Lemma PSubstL_ok n LM1 P1 P2 l : + PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l. Proof. - intros n LM1; elim LM1; simpl; auto. - intros; discriminate. - intros (M2,P2) LM2 Hrec P3 P4 l. - generalize (PNSubst_ok n P3 M2 P2); case (PNSubst P3 M2 P2 n). - intros P5 H0 H1 [H2 H3]; injection H1; intros; subst. - rewrite <- PSubstL1_ok; auto. - intros l1 H [H1 H2]; auto. + revert P1. induction LM1 as [|(M2,P2') LM2 IH]; simpl; intros. + - discriminate. + - assert (H':=PNSubst_ok n P3 M2 P2'). destruct PNSubst. + * injection H; intros <-. rewrite <- PSubstL1_ok; intuition. + * now apply IH. Qed. - Lemma PNSubstL_ok: forall m n LM1 P1 l, - MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l. + Lemma PNSubstL_ok m n LM1 P1 l : + MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l. Proof. - intros m; elim m; simpl; auto. - intros n LM1 P2 l H; generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l); - case (PSubstL P2 LM1 n); intros; rsimpl; auto. - intros m1 Hrec n LM1 P2 l H. - generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l); - case (PSubstL P2 LM1 n); intros; rsimpl; auto. - rewrite <- Hrec; auto. + revert LM1 P1. induction m; simpl; intros; + assert (H' := PSubstL_ok n LM1 P2); destruct PSubstL; + auto; try reflexivity. + rewrite <- IHm; auto. Qed. (** Definition of polynomial expressions *) @@ -1228,7 +943,7 @@ Proof. (** evaluation of polynomial expressions towards R *) - Fixpoint PEeval (l:Env R) (pe:PExpr) {struct pe} : R := + Fixpoint PEeval (l:Env R) (pe:PExpr) : R := match pe with | PEc c => phi c | PEX j => nth j l @@ -1241,60 +956,23 @@ Proof. (** Correctness proofs *) - Lemma mkX_ok : forall p l, nth p l == (mk_X p) @ l. + Lemma mkX_ok p l : nth p l == (mk_X p) @ l. Proof. destruct p;simpl;intros;Esimpl;trivial. rewrite nth_spec ; auto. unfold hd. - rewrite <- nth_Pdouble_minus_one. - rewrite (nth_jump (Pdouble_minus_one p) l 1). - reflexivity. + now rewrite <- nth_pred_double, nth_jump. Qed. - Ltac Esimpl3 := - repeat match goal with - | |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P2 P1 l) - | |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P2 P1 l) - end;Esimpl2;try rrefl;try apply (ARadd_comm ARth). - -(* Power using the chinise algorithm *) -(*Section POWER. - Variable subst_l : Pol -> Pol. - Fixpoint Ppow_pos (P:Pol) (p:positive){struct p} : Pol := - match p with - | xH => P - | xO p => subst_l (Psquare (Ppow_pos P p)) - | xI p => subst_l (Pmul P (Psquare (Ppow_pos P p))) - end. - - Definition Ppow_N P n := - match n with - | N0 => P1 - | Npos p => Ppow_pos P p - end. - - Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P p, (Ppow_pos P p)@l == (pow_pos Pmul P p)@l. - Proof. - intros l subst_l_ok P. - induction p;simpl;intros;try rrefl;try rewrite subst_l_ok. - repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl. - repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl. - Qed. - - Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. - Proof. destruct n;simpl. rrefl. apply Ppow_pos_ok. trivial. Qed. - - End POWER. *) + Hint Rewrite Padd_ok Psub_ok : Esimpl. Section POWER. Variable subst_l : Pol -> Pol. - Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol := + Fixpoint Ppow_pos (res P:Pol) (p:positive) : Pol := match p with - | xH => subst_l (Pmul res P) + | xH => subst_l (res ** P) | xO p => Ppow_pos (Ppow_pos res P p) P p - | xI p => subst_l (Pmul (Ppow_pos (Ppow_pos res P p) P p) P) + | xI p => subst_l ((Ppow_pos (Ppow_pos res P p) P p) ** P) end. Definition Ppow_N P n := @@ -1303,17 +981,23 @@ Section POWER. | Npos p => Ppow_pos P1 P p end. - Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l. + Lemma Ppow_pos_ok l : + (forall P, subst_l P@l == P@l) -> + forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l. Proof. - intros l subst_l_ok res P p. generalize res;clear res. - induction p;simpl;intros;try rewrite subst_l_ok; repeat rewrite Pmul_ok;repeat rewrite IHp. - rsimpl. mul_push (P@l);rsimpl. rsimpl. rrefl. + intros subst_l_ok res P p. revert res. + induction p;simpl;intros; rewrite ?subst_l_ok, ?Pmul_ok, ?IHp; + mul_permut. Qed. - Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. - Proof. destruct n;simpl. rrefl. rewrite Ppow_pos_ok. trivial. Esimpl. auto. Qed. + Lemma Ppow_N_ok l : + (forall P, subst_l P@l == P@l) -> + forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. + Proof. + destruct n;simpl. + - reflexivity. + - rewrite Ppow_pos_ok by trivial. Esimpl. + Qed. End POWER. @@ -1342,62 +1026,57 @@ Section POWER. Definition norm_subst pe := subst_l (norm_aux pe). - (* - Fixpoint norm_subst (pe:PExpr) : Pol := + (** Internally, [norm_aux] is expanded in a large number of cases. + To speed-up proofs, we use an alternative definition. *) + + Definition get_PEopp pe := match pe with - | PEc c => Pc c - | PEX j => subst_l (mk_X j) - | PEadd (PEopp pe1) pe2 => Psub (norm_subst pe2) (norm_subst pe1) - | PEadd pe1 (PEopp pe2) => - Psub (norm_subst pe1) (norm_subst pe2) - | PEadd pe1 pe2 => Padd (norm_subst pe1) (norm_subst pe2) - | PEsub pe1 pe2 => Psub (norm_subst pe1) (norm_subst pe2) - | PEmul pe1 pe2 => Pmul_subst (norm_subst pe1) (norm_subst pe2) - | PEopp pe1 => Popp (norm_subst pe1) - | PEpow pe1 n => Ppow_subst (norm_subst pe1) n + | PEopp pe' => Some pe' + | _ => None end. - Lemma norm_subst_spec : - forall l pe, MPcond lmp l -> - PEeval l pe == (norm_subst pe)@l. + Lemma norm_aux_PEadd pe1 pe2 : + norm_aux (PEadd pe1 pe2) = + match get_PEopp pe1, get_PEopp pe2 with + | Some pe1', _ => (norm_aux pe2) -- (norm_aux pe1') + | None, Some pe2' => (norm_aux pe1) -- (norm_aux pe2') + | None, None => (norm_aux pe1) ++ (norm_aux pe2) + end. Proof. - intros;assert (subst_l_ok:forall P, (subst_l P)@l == P@l). - unfold subst_l;intros. - rewrite <- PNSubstL_ok;trivial. rrefl. - assert (Pms_ok:forall P1 P2, (Pmul_subst P1 P2)@l == P1@l*P2@l). - intros;unfold Pmul_subst;rewrite subst_l_ok;rewrite Pmul_ok;rrefl. - induction pe;simpl;Esimpl3. - rewrite subst_l_ok;apply mkX_ok. - rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3. - rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite Pms_ok;rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite IHpe;rrefl. - unfold Ppow_subst. rewrite Ppow_N_ok. trivial. - rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3. - induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok; - repeat rewrite Pmul_ok;rrefl. + simpl (norm_aux (PEadd _ _)). + destruct pe1; [ | | | | | reflexivity | ]; + destruct pe2; simpl get_PEopp; reflexivity. Qed. -*) - Lemma norm_aux_spec : - forall l pe, (*MPcond lmp l ->*) - PEeval l pe == (norm_aux pe)@l. + + Lemma norm_aux_PEopp pe : + match get_PEopp pe with + | Some pe' => norm_aux pe = -- (norm_aux pe') + | None => True + end. Proof. - intros. - induction pe;simpl;Esimpl3. - apply mkX_ok. - rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3. - rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. rrefl. - rewrite IHpe;rrefl. - rewrite Ppow_N_ok by reflexivity. - rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3. - induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok; - repeat rewrite Pmul_ok;rrefl. + now destruct pe. Qed. + Lemma norm_aux_spec l pe : + PEeval l pe == (norm_aux pe)@l. + Proof. + intros. + induction pe. + - reflexivity. + - apply mkX_ok. + - simpl PEeval. rewrite IHpe1, IHpe2. + assert (H1 := norm_aux_PEopp pe1). + assert (H2 := norm_aux_PEopp pe2). + rewrite norm_aux_PEadd. + do 2 destruct get_PEopp; rewrite ?H1, ?H2; Esimpl; add_permut. + - simpl. rewrite IHpe1, IHpe2. Esimpl. + - simpl. rewrite IHpe1, IHpe2. now rewrite Pmul_ok. + - simpl. rewrite IHpe. Esimpl. + - simpl. rewrite Ppow_N_ok by reflexivity. + rewrite pow_th.(rpow_pow_N). destruct n0; simpl; Esimpl. + induction p;simpl; now rewrite ?IHp, ?IHpe, ?Pms_ok, ?Pmul_ok. + Qed. End NORM_SUBST_REC. - End MakeRingPol. - diff --git a/plugins/micromega/MExtraction.v b/plugins/micromega/MExtraction.v index 19a98f87..64181cde 100644 --- a/plugins/micromega/MExtraction.v +++ b/plugins/micromega/MExtraction.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* "fun x -> 1 / x". Extraction "micromega.ml" List.map simpl_cone (*map_cone indexes*) denorm Qpower - n_of_Z N_of_nat ZTautoChecker ZWeakChecker QTautoChecker RTautoChecker find. + n_of_Z N.of_nat ZTautoChecker ZWeakChecker QTautoChecker RTautoChecker find. diff --git a/plugins/micromega/OrderedRing.v b/plugins/micromega/OrderedRing.v index 97517957..b260feab 100644 --- a/plugins/micromega/OrderedRing.v +++ b/plugins/micromega/OrderedRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x) (fun x => Z_of_N x) (Zpower).*) +(*Definition Zeval_expr := eval_pexpr 0 Z.add Z.mul Z.sub Z.opp (fun x => x) (fun x => Z.of_N x) (Z.pow).*) Require Import EnvRing. Fixpoint Qeval_expr (env: PolEnv Q) (e: PExpr Q) : Q := @@ -71,7 +71,7 @@ Fixpoint Qeval_expr (env: PolEnv Q) (e: PExpr Q) : Q := | PEsub pe1 pe2 => (Qeval_expr env pe1) - (Qeval_expr env pe2) | PEmul pe1 pe2 => (Qeval_expr env pe1) * (Qeval_expr env pe2) | PEopp pe1 => - (Qeval_expr env pe1) - | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z_of_N n) + | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z.of_N n) end. Lemma Qeval_expr_simpl : forall env e, @@ -83,7 +83,7 @@ Lemma Qeval_expr_simpl : forall env e, | PEsub pe1 pe2 => (Qeval_expr env pe1) - (Qeval_expr env pe2) | PEmul pe1 pe2 => (Qeval_expr env pe1) * (Qeval_expr env pe2) | PEopp pe1 => - (Qeval_expr env pe1) - | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z_of_N n) + | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z.of_N n) end. Proof. destruct e ; reflexivity. @@ -91,7 +91,7 @@ Qed. Definition Qeval_expr' := eval_pexpr Qplus Qmult Qminus Qopp (fun x => x) (fun x => x) (pow_N 1 Qmult). -Lemma QNpower : forall r n, r ^ Z_of_N n = pow_N 1 Qmult r n. +Lemma QNpower : forall r n, r ^ Z.of_N n = pow_N 1 Qmult r n. Proof. destruct n ; reflexivity. Qed. diff --git a/plugins/micromega/RMicromega.v b/plugins/micromega/RMicromega.v index 2be99da1..d6f67485 100644 --- a/plugins/micromega/RMicromega.v +++ b/plugins/micromega/RMicromega.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* + | H : context[INR (Pos.to_nat ?X)] |- _ => revert H ; let HH := fresh in - assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (nat_of_P X)) - | |- context[INR (nat_of_P ?X)] => + assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X)) + | |- context[INR (Pos.to_nat ?X)] => let HH := fresh in - assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (nat_of_P X)) + assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X)) end. Ltac add_eq expr val := set (temp := expr) ; - generalize (refl_equal temp) ; + generalize (eq_refl temp) ; unfold temp at 1 ; generalize temp ; intro val ; clear temp. Ltac Rinv_elim := @@ -210,7 +210,7 @@ Proof. rewrite plus_IZR in *. rewrite mult_IZR in *. simpl. - rewrite nat_of_P_mult_morphism. + rewrite Pos2Nat.inj_mul. rewrite mult_INR. rewrite mult_IZR. simpl. @@ -244,7 +244,7 @@ Proof. simpl. repeat rewrite mult_IZR. simpl. - rewrite nat_of_P_mult_morphism. + rewrite Pos2Nat.inj_mul. rewrite mult_INR. repeat INR_nat_of_P. intros. field ; split ; apply Rlt_neq ; auto. @@ -275,7 +275,7 @@ Proof. apply Rlt_neq ; auto. simpl in H. exfalso. - rewrite Pmult_comm in H. + rewrite Pos.mul_comm in H. compute in H. discriminate. Qed. @@ -291,7 +291,7 @@ Proof. destruct x. unfold Qopp. simpl. - rewrite Zopp_involutive. + rewrite Z.opp_involutive. reflexivity. Qed. @@ -348,7 +348,7 @@ Proof. intros. assert ( 0 > x \/ 0 < x)%Q. destruct x ; unfold Qlt, Qeq in * ; simpl in *. - rewrite Zmult_1_r in *. + rewrite Z.mul_1_r in *. destruct Qnum ; simpl in * ; intuition auto. right. reflexivity. left ; reflexivity. @@ -379,7 +379,7 @@ Proof. Qed. -Notation to_nat := N.to_nat. (*Nnat.nat_of_N*) +Notation to_nat := N.to_nat. Lemma QSORaddon : @SORaddon R @@ -471,7 +471,7 @@ Definition INZ (n:N) : R := | Npos p => IZR (Zpos p) end. -Definition Reval_expr := eval_pexpr Rplus Rmult Rminus Ropp R_of_Rcst nat_of_N pow. +Definition Reval_expr := eval_pexpr Rplus Rmult Rminus Ropp R_of_Rcst N.to_nat pow. Definition Reval_op2 (o:Op2) : R -> R -> Prop := @@ -490,10 +490,10 @@ Definition Reval_formula (e: PolEnv R) (ff : Formula Rcst) := Definition Reval_formula' := - eval_sformula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt nat_of_N pow R_of_Rcst. + eval_sformula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt N.to_nat pow R_of_Rcst. Definition QReval_formula := - eval_formula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IQR nat_of_N pow . + eval_formula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IQR N.to_nat pow . Lemma Reval_formula_compat : forall env f, Reval_formula env f <-> Reval_formula' env f. Proof. diff --git a/plugins/micromega/Refl.v b/plugins/micromega/Refl.v index b839195c..43bfb4d7 100644 --- a/plugins/micromega/Refl.v +++ b/plugins/micromega/Refl.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* B -> option C) Arguments map_option2 [A B C] f o o'. -Definition Rops_wd := mk_reqe rplus rtimes ropp req +Definition Rops_wd := mk_reqe (*rplus rtimes ropp req*) sor.(SORplus_wd) sor.(SORtimes_wd) sor.(SORopp_wd). @@ -469,17 +469,11 @@ Fixpoint ge_bool (n m : nat) : bool := end end. -Lemma ge_bool_cases : forall n m, (if ge_bool n m then n >= m else n < m)%nat. +Lemma ge_bool_cases : forall n m, + (if ge_bool n m then n >= m else n < m)%nat. Proof. - induction n ; simpl. - destruct m ; simpl. - constructor. - omega. - destruct m. - constructor. - omega. - generalize (IHn m). - destruct (ge_bool n m) ; omega. + induction n; destruct m ; simpl; auto with arith. + specialize (IHn m). destruct (ge_bool); auto with arith. Qed. @@ -593,7 +587,7 @@ Definition paddC := PaddC cplus. Definition psubC := PsubC cminus. Definition PsubC_ok : forall c P env, eval_pol env (psubC P c) == eval_pol env P - [c] := - let Rops_wd := mk_reqe rplus rtimes ropp req + let Rops_wd := mk_reqe (*rplus rtimes ropp req*) sor.(SORplus_wd) sor.(SORtimes_wd) sor.(SORopp_wd) in @@ -601,7 +595,7 @@ Definition PsubC_ok : forall c P env, eval_pol env (psubC P c) == eval_pol env addon.(SORrm). Definition PaddC_ok : forall c P env, eval_pol env (paddC P c) == eval_pol env P + [c] := - let Rops_wd := mk_reqe rplus rtimes ropp req + let Rops_wd := mk_reqe (*rplus rtimes ropp req*) sor.(SORplus_wd) sor.(SORtimes_wd) sor.(SORopp_wd) in @@ -882,13 +876,14 @@ Qed. Fixpoint xdenorm (jmp : positive) (p: Pol C) : PExpr C := match p with | Pc c => PEc c - | Pinj j p => xdenorm (Pplus j jmp ) p + | Pinj j p => xdenorm (Pos.add j jmp ) p | PX p j q => PEadd (PEmul (xdenorm jmp p) (PEpow (PEX _ jmp) (Npos j))) - (xdenorm (Psucc jmp) q) + (xdenorm (Pos.succ jmp) q) end. -Lemma xdenorm_correct : forall p i env, eval_pol (jump i env) p == eval_pexpr env (xdenorm (Psucc i) p). +Lemma xdenorm_correct : forall p i env, + eval_pol (jump i env) p == eval_pexpr env (xdenorm (Pos.succ i) p). Proof. unfold eval_pol. induction p. @@ -896,22 +891,21 @@ Proof. (* Pinj *) simpl. intros. - rewrite Pplus_succ_permute_r. + rewrite Pos.add_succ_r. rewrite <- IHp. symmetry. - rewrite Pplus_comm. - rewrite Pjump_Pplus. reflexivity. + rewrite Pos.add_comm. + rewrite Pjump_add. reflexivity. (* PX *) simpl. intros. - rewrite <- IHp1. - rewrite <- IHp2. + rewrite <- IHp1, <- IHp2. unfold Env.tail , Env.hd. - rewrite <- Pjump_Pplus. - rewrite <- Pplus_one_succ_r. + rewrite <- Pjump_add. + rewrite Pos.add_1_r. unfold Env.nth. unfold jump at 2. - rewrite Pplus_one_succ_l. + rewrite <- Pos.add_1_l. rewrite addon.(SORpower).(rpow_pow_N). unfold pow_N. ring. Qed. @@ -924,14 +918,14 @@ Proof. induction p. reflexivity. simpl. - rewrite <- Pplus_one_succ_r. + rewrite Pos.add_1_r. apply xdenorm_correct. simpl. intros. rewrite IHp1. unfold Env.tail. rewrite xdenorm_correct. - change (Psucc xH) with 2%positive. + change (Pos.succ xH) with 2%positive. rewrite addon.(SORpower).(rpow_pow_N). simpl. reflexivity. Qed. diff --git a/plugins/micromega/Tauto.v b/plugins/micromega/Tauto.v index b3ccdfcc..440070a1 100644 --- a/plugins/micromega/Tauto.v +++ b/plugins/micromega/Tauto.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* phi_pos1 x < phi_pos1 y. Proof. -intros x y H. pattern y; apply Plt_ind with x. +intros x y H. pattern y; apply Pos.lt_ind with x. rewrite phi_pos1_succ; apply (Rlt_succ_r sor). clear y H; intros y _ H. rewrite phi_pos1_succ. now apply (Rlt_lt_succ sor). assumption. @@ -150,9 +150,9 @@ apply -> (Ropp_lt_mono sor); apply clt_pos_morph. red. now rewrite Pos.compare_antisym. Qed. -Lemma Zcleb_morph : forall x y : Z, Zle_bool x y = true -> [x] <= [y]. +Lemma Zcleb_morph : forall x y : Z, Z.leb x y = true -> [x] <= [y]. Proof. -unfold Zle_bool; intros x y H. +unfold Z.leb; intros x y H. case_eq (x ?= y)%Z; intro H1; rewrite H1 in H. le_equal. apply Zring_morph.(morph_eq). unfold Zeq_bool; now rewrite H1. le_less. now apply clt_morph. @@ -162,9 +162,9 @@ Qed. Lemma Zcneqb_morph : forall x y : Z, Zeq_bool x y = false -> [x] ~= [y]. Proof. intros x y H. unfold Zeq_bool in H. -case_eq (Zcompare x y); intro H1; rewrite H1 in *; (discriminate || clear H). +case_eq (Z.compare x y); intro H1; rewrite H1 in *; (discriminate || clear H). apply (Rlt_neq sor). now apply clt_morph. -fold (x > y)%Z in H1. rewrite Zgt_iff_lt in H1. +fold (x > y)%Z in H1. rewrite Z.gt_lt_iff in H1. apply (Rneq_symm sor). apply (Rlt_neq sor). now apply clt_morph. Qed. diff --git a/plugins/micromega/ZMicromega.v b/plugins/micromega/ZMicromega.v index 461f53b5..bdc4671d 100644 --- a/plugins/micromega/ZMicromega.v +++ b/plugins/micromega/ZMicromega.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x) (fun x => x) (pow_N 1 Zmult). + SORaddon 0 1 Z.add Z.mul Z.sub Z.opp (@eq Z) Z.le (* ring elements *) + 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (* coefficients *) + Zeq_bool Z.leb + (fun x => x) (fun x => x) (pow_N 1 Z.mul). Proof. constructor. constructor ; intros ; try reflexivity. @@ -65,20 +65,20 @@ Fixpoint Zeval_expr (env : PolEnv Z) (e: PExpr Z) : Z := | PEX x => env x | PEadd e1 e2 => Zeval_expr env e1 + Zeval_expr env e2 | PEmul e1 e2 => Zeval_expr env e1 * Zeval_expr env e2 - | PEpow e1 n => Zpower (Zeval_expr env e1) (Z_of_N n) + | PEpow e1 n => Z.pow (Zeval_expr env e1) (Z.of_N n) | PEsub e1 e2 => (Zeval_expr env e1) - (Zeval_expr env e2) - | PEopp e => Zopp (Zeval_expr env e) + | PEopp e => Z.opp (Zeval_expr env e) end. -Definition eval_expr := eval_pexpr Zplus Zmult Zminus Zopp (fun x => x) (fun x => x) (pow_N 1 Zmult). +Definition eval_expr := eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x => x) (fun x => x) (pow_N 1 Z.mul). -Lemma ZNpower : forall r n, r ^ Z_of_N n = pow_N 1 Zmult r n. +Lemma ZNpower : forall r n, r ^ Z.of_N n = pow_N 1 Z.mul r n. Proof. destruct n. reflexivity. simpl. - unfold Zpower_pos. - replace (pow_pos Zmult r p) with (1 * (pow_pos Zmult r p)) by ring. + unfold Z.pow_pos. + replace (pow_pos Z.mul r p) with (1 * (pow_pos Z.mul r p)) by ring. generalize 1. induction p; simpl ; intros ; repeat rewrite IHp ; ring. Qed. @@ -94,10 +94,10 @@ Definition Zeval_op2 (o : Op2) : Z -> Z -> Prop := match o with | OpEq => @eq Z | OpNEq => fun x y => ~ x = y -| OpLe => Zle -| OpGe => Zge -| OpLt => Zlt -| OpGt => Zgt +| OpLe => Z.le +| OpGe => Z.ge +| OpLt => Z.lt +| OpGt => Z.gt end. Definition Zeval_formula (env : PolEnv Z) (f : Formula Z):= @@ -105,23 +105,23 @@ Definition Zeval_formula (env : PolEnv Z) (f : Formula Z):= (Zeval_op2 op) (Zeval_expr env lhs) (Zeval_expr env rhs). Definition Zeval_formula' := - eval_formula Zplus Zmult Zminus Zopp (@eq Z) Zle Zlt (fun x => x) (fun x => x) (pow_N 1 Zmult). + eval_formula Z.add Z.mul Z.sub Z.opp (@eq Z) Z.le Z.lt (fun x => x) (fun x => x) (pow_N 1 Z.mul). Lemma Zeval_formula_compat : forall env f, Zeval_formula env f <-> Zeval_formula' env f. Proof. destruct f ; simpl. rewrite Zeval_expr_compat. rewrite Zeval_expr_compat. unfold eval_expr. - generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x) - (fun x : N => x) (pow_N 1 Zmult) env Flhs). - generalize ((eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x) - (fun x : N => x) (pow_N 1 Zmult) env Frhs)). + generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) + (fun x : N => x) (pow_N 1 Z.mul) env Flhs). + generalize ((eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) + (fun x : N => x) (pow_N 1 Z.mul) env Frhs)). destruct Fop ; simpl; intros ; intuition (auto with zarith). Qed. Definition eval_nformula := - eval_nformula 0 Zplus Zmult (@eq Z) Zle Zlt (fun x => x) . + eval_nformula 0 Z.add Z.mul (@eq Z) Z.le Z.lt (fun x => x) . Definition Zeval_op1 (o : Op1) : Z -> Prop := match o with @@ -140,7 +140,7 @@ Qed. Definition ZWitness := Psatz Z. -Definition ZWeakChecker := check_normalised_formulas 0 1 Zplus Zmult Zeq_bool Zle_bool. +Definition ZWeakChecker := check_normalised_formulas 0 1 Z.add Z.mul Zeq_bool Z.leb. Lemma ZWeakChecker_sound : forall (l : list (NFormula Z)) (cm : ZWitness), ZWeakChecker l cm = true -> @@ -154,13 +154,13 @@ Proof. exact H. Qed. -Definition psub := psub Z0 Zplus Zminus Zopp Zeq_bool. +Definition psub := psub Z0 Z.add Z.sub Z.opp Zeq_bool. -Definition padd := padd Z0 Zplus Zeq_bool. +Definition padd := padd Z0 Z.add Zeq_bool. -Definition norm := norm 0 1 Zplus Zmult Zminus Zopp Zeq_bool. +Definition norm := norm 0 1 Z.add Z.mul Z.sub Z.opp Zeq_bool. -Definition eval_pol := eval_pol 0 Zplus Zmult (fun x => x). +Definition eval_pol := eval_pol Z.add Z.mul (fun x => x). Lemma eval_pol_sub : forall env lhs rhs, eval_pol env (psub lhs rhs) = eval_pol env lhs - eval_pol env rhs. Proof. @@ -211,10 +211,10 @@ Proof. repeat rewrite eval_pol_add; repeat rewrite <- eval_pol_norm ; simpl in *; unfold eval_expr; - generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x) - (fun x : N => x) (pow_N 1 Zmult) env lhs); - generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x) - (fun x : N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst; + generalize ( eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) + (fun x : N => x) (pow_N 1 Z.mul) env lhs); + generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) + (fun x : N => x) (pow_N 1 Z.mul) env rhs) ; intros z1 z2 ; intros ; subst; intuition (auto with zarith). Transparent padd. Qed. @@ -248,17 +248,17 @@ Proof. repeat rewrite eval_pol_add; repeat rewrite <- eval_pol_norm ; simpl in *; unfold eval_expr; - generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x) - (fun x : N => x) (pow_N 1 Zmult) env lhs); - generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x) - (fun x : N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst; + generalize ( eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) + (fun x : N => x) (pow_N 1 Z.mul) env lhs); + generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) + (fun x : N => x) (pow_N 1 Z.mul) env rhs) ; intros z1 z2 ; intros ; subst; intuition (auto with zarith). Transparent padd. Qed. -Definition Zunsat := check_inconsistent 0 Zeq_bool Zle_bool. +Definition Zunsat := check_inconsistent 0 Zeq_bool Z.leb. -Definition Zdeduce := nformula_plus_nformula 0 Zplus Zeq_bool. +Definition Zdeduce := nformula_plus_nformula 0 Z.add Zeq_bool. Definition ZweakTautoChecker (w: list ZWitness) (f : BFormula (Formula Z)) : bool := @@ -270,7 +270,7 @@ Require Import Zdiv. Open Scope Z_scope. Definition ceiling (a b:Z) : Z := - let (q,r) := Zdiv_eucl a b in + let (q,r) := Z.div_eucl a b in match r with | Z0 => q | _ => q + 1 @@ -279,47 +279,38 @@ Definition ceiling (a b:Z) : Z := Require Import Znumtheory. -Lemma Zdivide_ceiling : forall a b, (b | a) -> ceiling a b = Zdiv a b. +Lemma Zdivide_ceiling : forall a b, (b | a) -> ceiling a b = Z.div a b. Proof. unfold ceiling. intros. apply Zdivide_mod in H. - case_eq (Zdiv_eucl a b). + case_eq (Z.div_eucl a b). intros. change z with (fst (z,z0)). rewrite <- H0. - change (fst (Zdiv_eucl a b)) with (Zdiv a b). + change (fst (Z.div_eucl a b)) with (Z.div a b). change z0 with (snd (z,z0)). rewrite <- H0. - change (snd (Zdiv_eucl a b)) with (Zmod a b). + change (snd (Z.div_eucl a b)) with (Z.modulo a b). rewrite H. reflexivity. Qed. -Lemma narrow_interval_lower_bound : forall a b x, a > 0 -> a * x >= b -> x >= ceiling b a. +Lemma narrow_interval_lower_bound a b x : + a > 0 -> a * x >= b -> x >= ceiling b a. Proof. + rewrite !Z.ge_le_iff. unfold ceiling. - intros. - generalize (Z_div_mod b a H). - destruct (Zdiv_eucl b a). - intros. - destruct H1. - destruct H2. - subst. - destruct (Ztrichotomy z0 0) as [ HH1 | [HH2 | HH3]]; destruct z0 ; try auto with zarith ; try discriminate. - assert (HH :x >= z \/ x < z) by (destruct (Ztrichotomy x z) ; auto with zarith). - destruct HH ;auto. - generalize (Zmult_lt_compat_l _ _ _ H3 H1). - auto with zarith. - clear H2. - assert (HH :x >= z +1 \/ x <= z) by (destruct (Ztrichotomy x z) ; intuition (auto with zarith)). - destruct HH ;auto. - assert (0 < a) by auto with zarith. - generalize (Zmult_lt_0_le_compat_r _ _ _ H2 H1). - intros. - rewrite Zmult_comm in H4. - rewrite (Zmult_comm z) in H4. - auto with zarith. + intros Ha H. + generalize (Z_div_mod b a Ha). + destruct (Z.div_eucl b a) as (q,r). intros (->,(H1,H2)). + destruct r as [|r|r]. + - rewrite Z.add_0_r in H. + apply Z.mul_le_mono_pos_l in H; auto with zarith. + - assert (0 < Z.pos r) by easy. + rewrite Z.add_1_r, Z.le_succ_l. + apply Z.mul_lt_mono_pos_l with a; auto with zarith. + - now elim H1. Qed. (** NB: narrow_interval_upper_bound is Zdiv.Zdiv_le_lower_bound *) @@ -360,7 +351,7 @@ Proof. destruct x ; simpl ; intuition congruence. Qed. -Definition ZgcdM (x y : Z) := Zmax (Zgcd x y) 1. +Definition ZgcdM (x y : Z) := Z.max (Z.gcd x y) 1. Fixpoint Zgcd_pol (p : PolC Z) : (Z * Z) := @@ -378,7 +369,7 @@ Fixpoint Zgcd_pol (p : PolC Z) : (Z * Z) := Fixpoint Zdiv_pol (p:PolC Z) (x:Z) : PolC Z := match p with - | Pc c => Pc (Zdiv c x) + | Pc c => Pc (Z.div c x) | Pinj j p => Pinj j (Zdiv_pol p x) | PX p j q => PX (Zdiv_pol p x) j (Zdiv_pol q x) end. @@ -421,10 +412,10 @@ Proof. intros. simpl. unfold ZgcdM. - generalize (Zgcd_is_pos z1 z2). - generalize (Zmax_spec (Zgcd z1 z2) 1). - generalize (Zgcd_is_pos (Zmax (Zgcd z1 z2) 1) z). - generalize (Zmax_spec (Zgcd (Zmax (Zgcd z1 z2) 1) z) 1). + generalize (Z.gcd_nonneg z1 z2). + generalize (Zmax_spec (Z.gcd z1 z2) 1). + generalize (Z.gcd_nonneg (Z.max (Z.gcd z1 z2) 1) z). + generalize (Zmax_spec (Z.gcd (Z.max (Z.gcd z1 z2) 1) z) 1). auto with zarith. Qed. @@ -433,7 +424,7 @@ Proof. intros. induction H. constructor. - apply Zdivide_trans with (1:= H0) ; assumption. + apply Z.divide_trans with (1:= H0) ; assumption. constructor. auto. constructor ; auto. Qed. @@ -444,20 +435,20 @@ Proof. exists c. ring. Qed. -Lemma Zgcd_minus : forall a b c, (a | c - b ) -> (Zgcd a b | c). +Lemma Zgcd_minus : forall a b c, (a | c - b ) -> (Z.gcd a b | c). Proof. intros a b c (q,Hq). destruct (Zgcd_is_gcd a b) as [(a',Ha) (b',Hb) _]. - set (g:=Zgcd a b) in *; clearbody g. + set (g:=Z.gcd a b) in *; clearbody g. exists (q * a' + b'). - symmetry in Hq. rewrite <- Zeq_plus_swap in Hq. + symmetry in Hq. rewrite <- Z.add_move_r in Hq. rewrite <- Hq, Hb, Ha. ring. Qed. Lemma Zdivide_pol_sub : forall p a b, - 0 < Zgcd a b -> - Zdivide_pol a (PsubC Zminus p b) -> - Zdivide_pol (Zgcd a b) p. + 0 < Z.gcd a b -> + Zdivide_pol a (PsubC Z.sub p b) -> + Zdivide_pol (Z.gcd a b) p. Proof. induction p. simpl. @@ -477,7 +468,7 @@ Proof. Qed. Lemma Zdivide_pol_sub_0 : forall p a, - Zdivide_pol a (PsubC Zminus p 0) -> + Zdivide_pol a (PsubC Z.sub p 0) -> Zdivide_pol a p. Proof. induction p. @@ -496,7 +487,7 @@ Qed. Lemma Zgcd_pol_div : forall p g c, - Zgcd_pol p = (g, c) -> Zdivide_pol g (PsubC Zminus p c). + Zgcd_pol p = (g, c) -> Zdivide_pol g (PsubC Z.sub p c). Proof. induction p ; simpl. (* Pc *) @@ -511,12 +502,12 @@ Proof. case_eq (Zgcd_pol p1) ; case_eq (Zgcd_pol p3) ; intros. inv H1. unfold ZgcdM at 1. - destruct (Zmax_spec (Zgcd (ZgcdM z1 z2) z) 1) as [HH1 | HH1]; + destruct (Zmax_spec (Z.gcd (ZgcdM z1 z2) z) 1) as [HH1 | HH1]; destruct HH1 as [HH1 HH1'] ; rewrite HH1'. constructor. apply Zdivide_pol_Zdivide with (x:= ZgcdM z1 z2). unfold ZgcdM. - destruct (Zmax_spec (Zgcd z1 z2) 1) as [HH2 | HH2]. + destruct (Zmax_spec (Z.gcd z1 z2) 1) as [HH2 | HH2]. destruct HH2. rewrite H2. apply Zdivide_pol_sub ; auto. @@ -524,9 +515,9 @@ Proof. destruct HH2. rewrite H2. apply Zdivide_pol_one. unfold ZgcdM in HH1. unfold ZgcdM. - destruct (Zmax_spec (Zgcd z1 z2) 1) as [HH2 | HH2]. + destruct (Zmax_spec (Z.gcd z1 z2) 1) as [HH2 | HH2]. destruct HH2. rewrite H2 in *. - destruct (Zgcd_is_gcd (Zgcd z1 z2) z); auto. + destruct (Zgcd_is_gcd (Z.gcd z1 z2) z); auto. destruct HH2. rewrite H2. destruct (Zgcd_is_gcd 1 z); auto. apply Zdivide_pol_Zdivide with (x:= z). @@ -539,7 +530,7 @@ Qed. -Lemma Zgcd_pol_correct_lt : forall p env g c, Zgcd_pol p = (g,c) -> 0 < g -> eval_pol env p = g * (eval_pol env (Zdiv_pol (PsubC Zminus p c) g)) + c. +Lemma Zgcd_pol_correct_lt : forall p env g c, Zgcd_pol p = (g,c) -> 0 < g -> eval_pol env p = g * (eval_pol env (Zdiv_pol (PsubC Z.sub p c) g)) + c. Proof. intros. rewrite <- Zdiv_pol_correct ; auto. @@ -553,8 +544,8 @@ Qed. Definition makeCuttingPlane (p : PolC Z) : PolC Z * Z := let (g,c) := Zgcd_pol p in - if Zgt_bool g Z0 - then (Zdiv_pol (PsubC Zminus p c) g , Zopp (ceiling (Zopp c) g)) + if Z.gtb g Z0 + then (Zdiv_pol (PsubC Z.sub p c) g , Z.opp (ceiling (Z.opp c) g)) else (p,Z0). @@ -562,13 +553,13 @@ Definition genCuttingPlane (f : NFormula Z) : option (PolC Z * Z * Op1) := let (e,op) := f in match op with | Equal => let (g,c) := Zgcd_pol e in - if andb (Zgt_bool g Z0) (andb (negb (Zeq_bool c Z0)) (negb (Zeq_bool (Zgcd g c) g))) + if andb (Z.gtb g Z0) (andb (negb (Zeq_bool c Z0)) (negb (Zeq_bool (Z.gcd g c) g))) then None (* inconsistent *) else (* Could be optimised Zgcd_pol is recomputed *) let (p,c) := makeCuttingPlane e in Some (p,c,Equal) | NonEqual => Some (e,Z0,op) - | Strict => let (p,c) := makeCuttingPlane (PsubC Zminus e 1) in + | Strict => let (p,c) := makeCuttingPlane (PsubC Z.sub e 1) in Some (p,c,NonStrict) | NonStrict => let (p,c) := makeCuttingPlane e in Some (p,c,NonStrict) @@ -595,7 +586,7 @@ Qed. Definition eval_Psatz : list (NFormula Z) -> ZWitness -> option (NFormula Z) := - eval_Psatz 0 1 Zplus Zmult Zeq_bool Zle_bool. + eval_Psatz 0 1 Z.add Z.mul Zeq_bool Z.leb. Definition valid_cut_sign (op:Op1) := @@ -634,9 +625,9 @@ Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool : (fix label (pfs:list ZArithProof) := fun lb ub => match pfs with - | nil => if Zgt_bool lb ub then true else false - | pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Zplus lb 1%Z) ub) - end) pf (Zopp z1) z2 + | nil => if Z.gtb lb ub then true else false + | pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Z.add lb 1%Z) ub) + end) pf (Z.opp z1) z2 else false | _ , _ => true end @@ -710,12 +701,12 @@ Proof. unfold makeCuttingPlane in H0. revert H0. case_eq (Zgcd_pol e) ; intros g c0. - generalize (Zgt_cases g 0) ; destruct (Zgt_bool g 0). + generalize (Zgt_cases g 0) ; destruct (Z.gtb g 0). intros. inv H2. - change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in *. + change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in *. apply Zgcd_pol_correct_lt with (env:=env) in H1. - generalize (narrow_interval_lower_bound g (- c0) (eval_pol env (Zdiv_pol (PsubC Zminus e c0) g)) H0). + generalize (narrow_interval_lower_bound g (- c0) (eval_pol env (Zdiv_pol (PsubC Z.sub e c0) g)) H0). auto with zarith. auto with zarith. (* g <= 0 *) @@ -733,7 +724,7 @@ Proof. (* Equal *) destruct p as [[e' z] op]. case_eq (Zgcd_pol e) ; intros g c. - case_eq (Zgt_bool g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Zgcd g c) g))) ; [discriminate|]. + case_eq (Z.gtb g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Z.gcd g c) g))) ; [discriminate|]. case_eq (makeCuttingPlane e). intros. inv H3. @@ -741,7 +732,7 @@ Proof. rewrite H1 in H. revert H. change (eval_pol env e = 0) in H2. - case_eq (Zgt_bool g 0). + case_eq (Z.gtb g 0). intros. rewrite <- Zgt_is_gt_bool in H. rewrite Zgcd_pol_correct_lt with (1:= H1) in H2; auto with zarith. @@ -749,7 +740,7 @@ Proof. change (eval_pol env (padd e' (Pc z)) = 0). inv H3. rewrite eval_pol_add. - set (x:=eval_pol env (Zdiv_pol (PsubC Zminus e c) g)) in *; clearbody x. + set (x:=eval_pol env (Zdiv_pol (PsubC Z.sub e c) g)) in *; clearbody x. simpl. rewrite andb_false_iff in H0. destruct H0. @@ -759,8 +750,7 @@ Proof. rewrite negb_false_iff in H0. apply Zeq_bool_eq in H0. subst. simpl. - rewrite Zplus_0_r in H2. - apply Zmult_integral in H2. + rewrite Z.add_0_r, Z.mul_eq_0 in H2. intuition auto with zarith. rewrite negb_false_iff in H0. apply Zeq_bool_eq in H0. @@ -769,7 +759,7 @@ Proof. inv HH. apply Zdivide_opp_r in H4. rewrite Zdivide_ceiling ; auto. - apply Zeq_minus. + apply Z.sub_move_0_r. apply Z.div_unique_exact ; auto with zarith. intros. unfold nformula_of_cutting_plane. @@ -789,7 +779,7 @@ Proof. simpl. auto with zarith. (* Strict *) destruct p as [[e' z] op]. - case_eq (makeCuttingPlane (PsubC Zminus e 1)). + case_eq (makeCuttingPlane (PsubC Z.sub e 1)). intros. inv H1. apply makeCuttingPlane_ns_sound with (env:=env) (2:= H). @@ -813,7 +803,7 @@ Proof. destruct f. destruct o. case_eq (Zgcd_pol p) ; intros g c. - case_eq (Zgt_bool g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Zgcd g c) g))). + case_eq (Z.gtb g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Z.gcd g c) g))). intros. flatten_bool. rewrite negb_true_iff in H5. @@ -823,16 +813,16 @@ Proof. apply Zeq_bool_neq in H. change (eval_pol env p = 0) in H2. rewrite Zgcd_pol_correct_lt with (1:= H0) in H2; auto with zarith. - set (x:=eval_pol env (Zdiv_pol (PsubC Zminus p c) g)) in *; clearbody x. + set (x:=eval_pol env (Zdiv_pol (PsubC Z.sub p c) g)) in *; clearbody x. contradict H5. apply Zis_gcd_gcd; auto with zarith. constructor; auto with zarith. exists (-x). - rewrite <- Zopp_mult_distr_l, Zmult_comm; auto with zarith. + rewrite Z.mul_opp_l, Z.mul_comm; auto with zarith. (**) destruct (makeCuttingPlane p); discriminate. discriminate. - destruct (makeCuttingPlane (PsubC Zminus p 1)) ; discriminate. + destruct (makeCuttingPlane (PsubC Z.sub p 1)) ; discriminate. destruct (makeCuttingPlane p) ; discriminate. Qed. @@ -920,7 +910,7 @@ Proof. unfold nformula_of_cutting_plane in HCutR. unfold eval_nformula in HCutR. unfold RingMicromega.eval_nformula in HCutR. - change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in HCutR. + change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in HCutR. unfold eval_op1 in HCutR. destruct op1 ; simpl in Hop1 ; try discriminate; rewrite eval_pol_add in HCutR; simpl in HCutR; auto with zarith. @@ -933,7 +923,7 @@ Proof. unfold nformula_of_cutting_plane in HCutL. unfold eval_nformula in HCutL. unfold RingMicromega.eval_nformula in HCutL. - change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in HCutL. + change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in HCutL. unfold eval_op1 in HCutL. rewrite eval_pol_add in HCutL. simpl in HCutL. destruct op2 ; simpl in Hop2 ; try discriminate ; omega. @@ -944,14 +934,14 @@ Proof. intros. assert (HH :forall x, -z1 <= x <= z2 -> exists pr, (In pr pf /\ - ZChecker ((PsubC Zminus p1 x,Equal) :: l) pr = true)%Z). + ZChecker ((PsubC Z.sub p1 x,Equal) :: l) pr = true)%Z). clear HZ0 Hop1 Hop2 HCutL HCutR H0 H1. revert Hfix. generalize (-z1). clear z1. intro z1. revert z1 z2. induction pf;simpl ;intros. generalize (Zgt_cases z1 z2). - destruct (Zgt_bool z1 z2). + destruct (Z.gtb z1 z2). intros. apply False_ind ; omega. discriminate. @@ -972,7 +962,7 @@ Proof. zify. omega. (*/asser *) destruct (HH _ H1) as [pr [Hin Hcheker]]. - assert (make_impl (eval_nformula env) ((PsubC Zminus p1 (eval_pol env p1),Equal) :: l) False). + assert (make_impl (eval_nformula env) ((PsubC Z.sub p1 (eval_pol env p1),Equal) :: l) False). apply (H pr);auto. apply in_bdepth ; auto. rewrite <- make_conj_impl in H2. diff --git a/plugins/micromega/certificate.ml b/plugins/micromega/certificate.ml index 540d1b9c..25579a87 100644 --- a/plugins/micromega/certificate.ml +++ b/plugins/micromega/certificate.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* None | _ -> raise InvalidTableFormat +(** In win32, it seems that we should unlock the exact zone + that has been locked, and not the whole file *) -let unlock fd = - try - let pos = lseek fd 0 SEEK_CUR in - ignore (lseek fd 0 SEEK_SET) ; - lockf fd F_ULOCK 0 ; +let locked_start = ref 0 + +let lock fd = + locked_start := lseek fd 0 SEEK_CUR; + lockf fd F_LOCK 0 + +let rlock fd = + locked_start := lseek fd 0 SEEK_CUR; + lockf fd F_RLOCK 0 + +let unlock fd = + let pos = lseek fd 0 SEEK_CUR in + ignore (lseek fd !locked_start SEEK_SET); + lockf fd F_ULOCK 0; ignore (lseek fd pos SEEK_SET) - with exc -> failwith (Printexc.to_string exc) let open_in f = let flags = [O_RDONLY ; O_CREAT] in @@ -118,7 +128,7 @@ let open_in f = xload () in try (* Locking of the (whole) file while reading *) - lockf finch F_RLOCK 0 ; + rlock finch; finally (fun () -> xload () ) (fun () -> @@ -136,7 +146,7 @@ let open_in f = let flags = [O_WRONLY; O_TRUNC;O_CREAT] in let out = (openfile f flags 0o666) in let outch = out_channel_of_descr out in - lockf out F_LOCK 0 ; + lock out; (try Table.iter (fun k e -> Marshal.to_channel outch (k,e) [Marshal.No_sharing]) htbl; @@ -168,8 +178,8 @@ let add t k e = let fd = descr_of_out_channel outch in begin Table.add tbl k e ; - lockf fd F_LOCK 0 ; - ignore (lseek fd 0 SEEK_END) ; + lock fd; + ignore (lseek fd 0 SEEK_END); Marshal.to_channel outch (k,e) [Marshal.No_sharing] ; flush outch ; unlock fd diff --git a/plugins/micromega/polynomial.ml b/plugins/micromega/polynomial.ml index 14d312a5..36b05a72 100644 --- a/plugins/micromega/polynomial.ml +++ b/plugins/micromega/polynomial.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* PolZ -> PolZ := - @Padd Z 0%Z Zplus Zeq_bool. + @Padd Z 0%Z Z.add Zeq_bool. Definition PolZmul : PolZ -> PolZ -> PolZ := - @Pmul Z 0%Z 1%Z Zplus Zmult Zeq_bool. + @Pmul Z 0%Z 1%Z Z.add Z.mul Zeq_bool. Definition PolZeq := @Peq Z Zeq_bool. Definition norm := - @norm_aux Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool. + @norm_aux Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool. Fixpoint mult_l (la : list PEZ) (lp: list PolZ) : PolZ := match la, lp with @@ -100,16 +100,16 @@ Definition PhiR : list R -> PolZ -> R := Definition PEevalR : list R -> PEZ -> R := PEeval ring0 add mul sub opp (gen_phiZ ring0 ring1 add mul opp) - nat_of_N pow. + N.to_nat pow. Lemma P0Z_correct : forall l, PhiR l P0Z = 0. Proof. trivial. Qed. Lemma Rext: ring_eq_ext add mul opp _==_. -apply mk_reqe. intros. rewrite H ; rewrite H0; cring. - intros. rewrite H; rewrite H0; cring. -intros. rewrite H; cring. Qed. - +Proof. +constructor; solve_proper. +Qed. + Lemma Rset : Setoid_Theory R _==_. apply ring_setoid. Qed. @@ -144,17 +144,15 @@ unfold PolZmul, PhiR. intros. Qed. Lemma R_power_theory - : Ring_theory.power_theory ring1 mul _==_ nat_of_N pow. -apply Ring_theory.mkpow_th. unfold pow. intros. rewrite Nnat.N_of_nat_of_N. + : Ring_theory.power_theory ring1 mul _==_ N.to_nat pow. +apply Ring_theory.mkpow_th. unfold pow. intros. rewrite Nnat.N2Nat.id. reflexivity. Qed. Lemma norm_correct : forall (l : list R) (pe : PEZ), PEevalR l pe == PhiR l (norm pe). Proof. intros;apply (norm_aux_spec Rset Rext (Rth_ARth Rset Rext Rtheory) - (gen_phiZ_morph Rset Rext Rtheory) R_power_theory) - with (lmp:= List.nil). - compute;trivial. + (gen_phiZ_morph Rset Rext Rtheory) R_power_theory). Qed. Lemma PolZeq_correct : forall P P' l, @@ -241,9 +239,9 @@ Fixpoint interpret3 t fv {struct t}: R := | (PEopp t1) => let v1 := interpret3 t1 fv in (-v1) | (PEpow t1 t2) => - let v1 := interpret3 t1 fv in pow v1 (nat_of_N t2) + let v1 := interpret3 t1 fv in pow v1 (N.to_nat t2) | (PEc t1) => (IZR1 t1) - | (PEX n) => List.nth (pred (nat_of_P n)) fv 0 + | (PEX n) => List.nth (pred (Pos.to_nat n)) fv 0 end. @@ -308,9 +306,9 @@ Ltac nsatz_call radicalmax info nparam p lp kont := lazymatch n with | 0%N => fail | _ => - (let r := eval compute in (Nminus radicalmax (Npred n)) in + (let r := eval compute in (N.sub radicalmax (N.pred n)) in nsatz_call_n info nparam p r lp kont) || - let n' := eval compute in (Npred n) in try_n n' + let n' := eval compute in (N.pred n) in try_n n' end in try_n radicalmax. @@ -343,7 +341,7 @@ Ltac get_lpol g := end. Ltac nsatz_generic radicalmax info lparam lvar := - let nparam := eval compute in (Z_of_nat (List.length lparam)) in + let nparam := eval compute in (Z.of_nat (List.length lparam)) in match goal with |- ?g => let lb := lterm_goal g in match (match lvar with @@ -397,7 +395,7 @@ Ltac nsatz_generic radicalmax info lparam lvar := (*simpl*) idtac; repeat (split;[assumption|idtac]); exact I | (*simpl in Hg2;*) (*simpl*) idtac; - apply Rintegral_domain_pow with (interpret3 c fv) (nat_of_N r); + apply Rintegral_domain_pow with (interpret3 c fv) (N.to_nat r); (*simpl*) idtac; try apply integral_domain_one_zero; try apply integral_domain_minus_one_zero; @@ -502,7 +500,7 @@ omega. Qed. Instance Zcri: (Cring (Rr:=Zr)). -red. exact Zmult_comm. Defined. +red. exact Z.mul_comm. Defined. Instance Zdi : (Integral_domain (Rcr:=Zcri)). constructor. diff --git a/plugins/nsatz/ideal.ml b/plugins/nsatz/ideal.ml index b635fd1f..996dbadd 100644 --- a/plugins/nsatz/ideal.ml +++ b/plugins/nsatz/ideal.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 <= x -> 0 <= y. -intros x y H; rewrite H; auto with arith. +Lemma OMEGA1 x y : x = y -> 0 <= x -> 0 <= y. +Proof. +now intros ->. Qed. -Lemma OMEGA2 : forall x y : Z, 0 <= x -> 0 <= y -> 0 <= x + y. -exact Zplus_le_0_compat. +Lemma OMEGA2 x y : 0 <= x -> 0 <= y -> 0 <= x + y. +Proof. +Z.order_pos. Qed. -Lemma OMEGA3 : forall x y k : Z, k > 0 -> x = y * k -> x = 0 -> y = 0. - -intros x y k H1 H2 H3; apply (Zmult_integral_l k); - [ unfold not in |- *; intros H4; absurd (k > 0); - [ rewrite H4; unfold Zgt in |- *; simpl in |- *; discriminate - | assumption ] - | rewrite <- H2; assumption ]. +Lemma OMEGA3 x y k : k > 0 -> x = y * k -> x = 0 -> y = 0. +Proof. +intros LT -> EQ. apply Z.mul_eq_0 in EQ. destruct EQ; now subst. Qed. -Lemma OMEGA4 : forall x y z : Z, x > 0 -> y > x -> z * y + x <> 0. - -unfold not in |- *; intros x y z H1 H2 H3; cut (y > 0); - [ intros H4; cut (0 <= z * y + x); - [ intros H5; generalize (Zmult_le_approx y z x H4 H2 H5); intros H6; - absurd (z * y + x > 0); - [ rewrite H3; unfold Zgt in |- *; simpl in |- *; discriminate - | apply Zle_gt_trans with x; - [ pattern x at 1 in |- *; rewrite <- (Zplus_0_l x); - apply Zplus_le_compat_r; rewrite Zmult_comm; - generalize H4; unfold Zgt in |- *; case y; - [ simpl in |- *; intros H7; discriminate H7 - | intros p H7; rewrite <- (Zmult_0_r (Zpos p)); - unfold Zle in |- *; rewrite Zcompare_mult_compat; - exact H6 - | simpl in |- *; intros p H7; discriminate H7 ] - | assumption ] ] - | rewrite H3; unfold Zle in |- *; simpl in |- *; discriminate ] - | apply Zgt_trans with x; [ assumption | assumption ] ]. +Lemma OMEGA4 x y z : x > 0 -> y > x -> z * y + x <> 0. +Proof. +Z.swap_greater. intros Hx Hxy. +rewrite Z.add_move_0_l, <- Z.mul_opp_l. +destruct (Z.lt_trichotomy (-z) 1) as [LT|[->|GT]]. +- intro. revert LT. apply Z.le_ngt, (Z.le_succ_l 0). + apply Z.mul_pos_cancel_r with y; Z.order. +- Z.nzsimpl. Z.order. +- rewrite (Z.mul_lt_mono_pos_r y), Z.mul_1_l in GT; Z.order. Qed. -Lemma OMEGA5 : forall x y z : Z, x = 0 -> y = 0 -> x + y * z = 0. - -intros x y z H1 H2; rewrite H1; rewrite H2; simpl in |- *; trivial with arith. +Lemma OMEGA5 x y z : x = 0 -> y = 0 -> x + y * z = 0. +Proof. +now intros -> ->. Qed. -Lemma OMEGA6 : forall x y z : Z, 0 <= x -> y = 0 -> 0 <= x + y * z. - -intros x y z H1 H2; rewrite H2; simpl in |- *; rewrite Zplus_0_r; assumption. +Lemma OMEGA6 x y z : 0 <= x -> y = 0 -> 0 <= x + y * z. +Proof. +intros H ->. now Z.nzsimpl. Qed. -Lemma OMEGA7 : - forall x y z t : Z, z > 0 -> t > 0 -> 0 <= x -> 0 <= y -> 0 <= x * z + y * t. - -intros x y z t H1 H2 H3 H4; rewrite <- (Zplus_0_l 0); apply Zplus_le_compat; - apply Zmult_gt_0_le_0_compat; assumption. +Lemma OMEGA7 x y z t : + z > 0 -> t > 0 -> 0 <= x -> 0 <= y -> 0 <= x * z + y * t. +Proof. +intros. Z.swap_greater. Z.order_pos. Qed. -Lemma OMEGA8 : forall x y : Z, 0 <= x -> 0 <= y -> x = - y -> x = 0. - -intros x y H1 H2 H3; elim (Zle_lt_or_eq 0 x H1); - [ intros H4; absurd (0 < x); - [ change (0 >= x) in |- *; apply Zle_ge; apply Zplus_le_reg_l with y; - rewrite H3; rewrite Zplus_opp_r; rewrite Zplus_0_r; - assumption - | assumption ] - | intros H4; rewrite H4; trivial with arith ]. +Lemma OMEGA8 x y : 0 <= x -> 0 <= y -> x = - y -> x = 0. +Proof. +intros H1 H2 H3. rewrite <- Z.opp_nonpos_nonneg in H2. Z.order. Qed. -Lemma OMEGA9 : forall x y z t : Z, y = 0 -> x = z -> y + (- x + z) * t = 0. - -intros x y z t H1 H2; rewrite H2; rewrite Zplus_opp_l; rewrite Zmult_0_l; - rewrite Zplus_0_r; assumption. +Lemma OMEGA9 x y z t : y = 0 -> x = z -> y + (- x + z) * t = 0. +Proof. +intros. subst. now rewrite Z.add_opp_diag_l. Qed. -Lemma OMEGA10 : - forall v c1 c2 l1 l2 k1 k2 : Z, +Lemma OMEGA10 v c1 c2 l1 l2 k1 k2 : (v * c1 + l1) * k1 + (v * c2 + l2) * k2 = v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2). - -intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; - repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; - rewrite (Zplus_permute (l1 * k1) (v * c2 * k2)); trivial with arith. +Proof. +rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. +rewrite <- !Z.add_assoc. f_equal. apply Z.add_shuffle3. Qed. -Lemma OMEGA11 : - forall v1 c1 l1 l2 k1 : Z, +Lemma OMEGA11 v1 c1 l1 l2 k1 : (v1 * c1 + l1) * k1 + l2 = v1 * (c1 * k1) + (l1 * k1 + l2). - -intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; - repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; - trivial with arith. +Proof. +rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. +now rewrite Z.add_assoc. Qed. -Lemma OMEGA12 : - forall v2 c2 l1 l2 k2 : Z, +Lemma OMEGA12 v2 c2 l1 l2 k2 : l1 + (v2 * c2 + l2) * k2 = v2 * (c2 * k2) + (l1 + l2 * k2). - -intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; - repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; - rewrite Zplus_permute; trivial with arith. +Proof. +rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. +apply Z.add_shuffle3. Qed. -Lemma OMEGA13 : - forall (v l1 l2 : Z) (x : positive), +Lemma OMEGA13 (v l1 l2 : Z) (x : positive) : v * Zpos x + l1 + (v * Zneg x + l2) = l1 + l2. - -intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zpos x) l1); - rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r; - rewrite <- Zopp_neg; rewrite (Zplus_comm (- Zneg x) (Zneg x)); - rewrite Zplus_opp_r; rewrite Zmult_0_r; rewrite Zplus_0_r; - trivial with arith. +Proof. + rewrite Z.add_shuffle1. + rewrite <- Z.mul_add_distr_l, <- Pos2Z.opp_neg, Z.add_opp_diag_r. + now Z.nzsimpl. Qed. -Lemma OMEGA14 : - forall (v l1 l2 : Z) (x : positive), +Lemma OMEGA14 (v l1 l2 : Z) (x : positive) : v * Zneg x + l1 + (v * Zpos x + l2) = l1 + l2. - -intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zneg x) l1); - rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r; - rewrite <- Zopp_neg; rewrite Zplus_opp_r; rewrite Zmult_0_r; - rewrite Zplus_0_r; trivial with arith. +Proof. + rewrite Z.add_shuffle1. + rewrite <- Z.mul_add_distr_l, <- Pos2Z.opp_neg, Z.add_opp_diag_r. + now Z.nzsimpl. Qed. -Lemma OMEGA15 : - forall v c1 c2 l1 l2 k2 : Z, - v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2). -intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; - repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; - rewrite (Zplus_permute l1 (v * c2 * k2)); trivial with arith. +Lemma OMEGA15 v c1 c2 l1 l2 k2 : + v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2). +Proof. + rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. + apply Z.add_shuffle1. Qed. -Lemma OMEGA16 : forall v c l k : Z, (v * c + l) * k = v * (c * k) + l * k. - -intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; - repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; - trivial with arith. +Lemma OMEGA16 v c l k : (v * c + l) * k = v * (c * k) + l * k. +Proof. + now rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. Qed. -Lemma OMEGA17 : forall x y z : Z, Zne x 0 -> y = 0 -> Zne (x + y * z) 0. - -unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1; - apply Zplus_reg_l with (y * z); rewrite Zplus_comm; - rewrite H3; rewrite H2; auto with arith. +Lemma OMEGA17 x y z : Zne x 0 -> y = 0 -> Zne (x + y * z) 0. +Proof. + unfold Zne, not. intros NE EQ. subst. now Z.nzsimpl. Qed. -Lemma OMEGA18 : forall x y k : Z, x = y * k -> Zne x 0 -> Zne y 0. - -unfold Zne, not in |- *; intros x y k H1 H2 H3; apply H2; rewrite H1; - rewrite H3; auto with arith. +Lemma OMEGA18 x y k : x = y * k -> Zne x 0 -> Zne y 0. +Proof. + unfold Zne, not. intros. subst; auto. Qed. -Lemma OMEGA19 : forall x : Z, Zne x 0 -> 0 <= x + -1 \/ 0 <= x * -1 + -1. - -unfold Zne in |- *; intros x H; elim (Zle_or_lt 0 x); - [ intros H1; elim Zle_lt_or_eq with (1 := H1); - [ intros H2; left; change (0 <= Zpred x) in |- *; apply Zsucc_le_reg; - rewrite <- Zsucc_pred; apply Zlt_le_succ; assumption - | intros H2; absurd (x = 0); auto with arith ] - | intros H1; right; rewrite <- Zopp_eq_mult_neg_1; rewrite Zplus_comm; - apply Zle_left; apply Zsucc_le_reg; simpl in |- *; - apply Zlt_le_succ; auto with arith ]. +Lemma OMEGA19 x : Zne x 0 -> 0 <= x + -1 \/ 0 <= x * -1 + -1. +Proof. + unfold Zne. intros Hx. apply Z.lt_gt_cases in Hx. + destruct Hx as [LT|GT]. + - right. change (-1) with (-(1)). + rewrite Z.mul_opp_r, <- Z.opp_add_distr. Z.nzsimpl. + rewrite Z.opp_nonneg_nonpos. now apply Z.le_succ_l. + - left. now apply Z.lt_le_pred. Qed. -Lemma OMEGA20 : forall x y z : Z, Zne x 0 -> y = 0 -> Zne (x + y * z) 0. - -unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1; rewrite H2 in H3; - simpl in H3; rewrite Zplus_0_r in H3; trivial with arith. +Lemma OMEGA20 x y z : Zne x 0 -> y = 0 -> Zne (x + y * z) 0. +Proof. + unfold Zne, not. intros H1 H2 H3; apply H1; rewrite H2 in H3; + simpl in H3; rewrite Z.add_0_r in H3; trivial with arith. Qed. Definition fast_Zplus_comm (x y : Z) (P : Z -> Prop) - (H : P (y + x)) := eq_ind_r P H (Zplus_comm x y). + (H : P (y + x)) := eq_ind_r P H (Z.add_comm x y). Definition fast_Zplus_assoc_reverse (n m p : Z) (P : Z -> Prop) (H : P (n + (m + p))) := eq_ind_r P H (Zplus_assoc_reverse n m p). Definition fast_Zplus_assoc (n m p : Z) (P : Z -> Prop) - (H : P (n + m + p)) := eq_ind_r P H (Zplus_assoc n m p). + (H : P (n + m + p)) := eq_ind_r P H (Z.add_assoc n m p). Definition fast_Zplus_permute (n m p : Z) (P : Z -> Prop) - (H : P (m + (n + p))) := eq_ind_r P H (Zplus_permute n m p). + (H : P (m + (n + p))) := eq_ind_r P H (Z.add_shuffle3 n m p). Definition fast_OMEGA10 (v c1 c2 l1 l2 k1 k2 : Z) (P : Z -> Prop) (H : P (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))) := @@ -259,24 +219,24 @@ Definition fast_Zred_factor0 (x : Z) (P : Z -> Prop) (H : P (x * 1)) := eq_ind_r P H (Zred_factor0 x). Definition fast_Zopp_eq_mult_neg_1 (x : Z) (P : Z -> Prop) - (H : P (x * -1)) := eq_ind_r P H (Zopp_eq_mult_neg_1 x). + (H : P (x * -1)) := eq_ind_r P H (Z.opp_eq_mul_m1 x). Definition fast_Zmult_comm (x y : Z) (P : Z -> Prop) - (H : P (y * x)) := eq_ind_r P H (Zmult_comm x y). + (H : P (y * x)) := eq_ind_r P H (Z.mul_comm x y). Definition fast_Zopp_plus_distr (x y : Z) (P : Z -> Prop) - (H : P (- x + - y)) := eq_ind_r P H (Zopp_plus_distr x y). + (H : P (- x + - y)) := eq_ind_r P H (Z.opp_add_distr x y). Definition fast_Zopp_involutive (x : Z) (P : Z -> Prop) (H : P x) := - eq_ind_r P H (Zopp_involutive x). + eq_ind_r P H (Z.opp_involutive x). Definition fast_Zopp_mult_distr_r (x y : Z) (P : Z -> Prop) (H : P (x * - y)) := eq_ind_r P H (Zopp_mult_distr_r x y). Definition fast_Zmult_plus_distr_l (n m p : Z) (P : Z -> Prop) - (H : P (n * p + m * p)) := eq_ind_r P H (Zmult_plus_distr_l n m p). + (H : P (n * p + m * p)) := eq_ind_r P H (Z.mul_add_distr_r n m p). Definition fast_Zmult_opp_comm (x y : Z) (P : Z -> Prop) - (H : P (x * - y)) := eq_ind_r P H (Zmult_opp_comm x y). + (H : P (x * - y)) := eq_ind_r P H (Z.mul_opp_comm x y). Definition fast_Zmult_assoc_reverse (n m p : Z) (P : Z -> Prop) (H : P (n * (m * p))) := eq_ind_r P H (Zmult_assoc_reverse n m p). @@ -300,8 +260,8 @@ Definition fast_Zred_factor6 (x : Z) (P : Z -> Prop) (H : P (x + 0)) := eq_ind_r P H (Zred_factor6 x). Theorem intro_Z : - forall n:nat, exists y : Z, Z_of_nat n = y /\ 0 <= y * 1 + 0. + forall n:nat, exists y : Z, Z.of_nat n = y /\ 0 <= y * 1 + 0. Proof. - intros n; exists (Z_of_nat n); split; trivial. - rewrite Zmult_1_r, Zplus_0_r. apply Zle_0_nat. + intros n; exists (Z.of_nat n); split; trivial. + rewrite Z.mul_1_r, Z.add_0_r. apply Nat2Z.is_nonneg. Qed. diff --git a/plugins/omega/OmegaPlugin.v b/plugins/omega/OmegaPlugin.v index a3ab34a9..433db414 100644 --- a/plugins/omega/OmegaPlugin.v +++ b/plugins/omega/OmegaPlugin.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* zify_unop_core t thm a @@ -72,14 +80,14 @@ Ltac zify_binop t thm a b:= Ltac zify_op_1 := match goal with - | |- context [ Zmax ?a ?b ] => zify_binop Zmax Zmax_spec a b - | H : context [ Zmax ?a ?b ] |- _ => zify_binop Zmax Zmax_spec a b - | |- context [ Zmin ?a ?b ] => zify_binop Zmin Zmin_spec a b - | H : context [ Zmin ?a ?b ] |- _ => zify_binop Zmin Zmin_spec a b - | |- context [ Zsgn ?a ] => zify_unop Zsgn Zsgn_spec a - | H : context [ Zsgn ?a ] |- _ => zify_unop Zsgn Zsgn_spec a - | |- context [ Zabs ?a ] => zify_unop Zabs Zabs_spec a - | H : context [ Zabs ?a ] |- _ => zify_unop Zabs Zabs_spec a + | |- context [ Z.max ?a ?b ] => zify_binop Z.max Z.max_spec a b + | H : context [ Z.max ?a ?b ] |- _ => zify_binop Z.max Z.max_spec a b + | |- context [ Z.min ?a ?b ] => zify_binop Z.min Z.min_spec a b + | H : context [ Z.min ?a ?b ] |- _ => zify_binop Z.min Z.min_spec a b + | |- context [ Z.sgn ?a ] => zify_unop Z.sgn Z.sgn_spec a + | H : context [ Z.sgn ?a ] |- _ => zify_unop Z.sgn Z.sgn_spec a + | |- context [ Z.abs ?a ] => zify_unop Z.abs Z.abs_spec a + | H : context [ Z.abs ?a ] |- _ => zify_unop Z.abs Z.abs_spec a end. Ltac zify_op := repeat zify_op_1. @@ -91,100 +99,95 @@ Ltac zify_op := repeat zify_op_1. (** II) Conversion from nat to Z *) -Definition Z_of_nat' := Z_of_nat. +Definition Z_of_nat' := Z.of_nat. Ltac hide_Z_of_nat t := - let z := fresh "z" in set (z:=Z_of_nat t) in *; - change Z_of_nat with Z_of_nat' in z; + let z := fresh "z" in set (z:=Z.of_nat t) in *; + change Z.of_nat with Z_of_nat' in z; unfold z in *; clear z. Ltac zify_nat_rel := match goal with (* I: equalities *) - | H : (@eq nat ?a ?b) |- _ => generalize (inj_eq _ _ H); clear H; intro H - | |- (@eq nat ?a ?b) => apply (inj_eq_rev a b) - | H : context [ @eq nat ?a ?b ] |- _ => rewrite (inj_eq_iff a b) in H - | |- context [ @eq nat ?a ?b ] => rewrite (inj_eq_iff a b) + | |- (@eq nat ?a ?b) => apply (Nat2Z.inj a b) (* shortcut *) + | H : context [ @eq nat ?a ?b ] |- _ => rewrite <- (Nat2Z.inj_iff a b) in H + | |- context [ @eq nat ?a ?b ] => rewrite <- (Nat2Z.inj_iff a b) (* II: less than *) - | H : (lt ?a ?b) |- _ => generalize (inj_lt _ _ H); clear H; intro H - | |- (lt ?a ?b) => apply (inj_lt_rev a b) - | H : context [ lt ?a ?b ] |- _ => rewrite (inj_lt_iff a b) in H - | |- context [ lt ?a ?b ] => rewrite (inj_lt_iff a b) + | H : context [ lt ?a ?b ] |- _ => rewrite (Nat2Z.inj_lt a b) in H + | |- context [ lt ?a ?b ] => rewrite (Nat2Z.inj_lt a b) (* III: less or equal *) - | H : (le ?a ?b) |- _ => generalize (inj_le _ _ H); clear H; intro H - | |- (le ?a ?b) => apply (inj_le_rev a b) - | H : context [ le ?a ?b ] |- _ => rewrite (inj_le_iff a b) in H - | |- context [ le ?a ?b ] => rewrite (inj_le_iff a b) + | H : context [ le ?a ?b ] |- _ => rewrite (Nat2Z.inj_le a b) in H + | |- context [ le ?a ?b ] => rewrite (Nat2Z.inj_le a b) (* IV: greater than *) - | H : (gt ?a ?b) |- _ => generalize (inj_gt _ _ H); clear H; intro H - | |- (gt ?a ?b) => apply (inj_gt_rev a b) - | H : context [ gt ?a ?b ] |- _ => rewrite (inj_gt_iff a b) in H - | |- context [ gt ?a ?b ] => rewrite (inj_gt_iff a b) + | H : context [ gt ?a ?b ] |- _ => rewrite (Nat2Z.inj_gt a b) in H + | |- context [ gt ?a ?b ] => rewrite (Nat2Z.inj_gt a b) (* V: greater or equal *) - | H : (ge ?a ?b) |- _ => generalize (inj_ge _ _ H); clear H; intro H - | |- (ge ?a ?b) => apply (inj_ge_rev a b) - | H : context [ ge ?a ?b ] |- _ => rewrite (inj_ge_iff a b) in H - | |- context [ ge ?a ?b ] => rewrite (inj_ge_iff a b) + | H : context [ ge ?a ?b ] |- _ => rewrite (Nat2Z.inj_ge a b) in H + | |- context [ ge ?a ?b ] => rewrite (Nat2Z.inj_ge a b) end. Ltac zify_nat_op := match goal with (* misc type conversions: positive/N/Z to nat *) - | H : context [ Z_of_nat (nat_of_P ?a) ] |- _ => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a) in H - | |- context [ Z_of_nat (nat_of_P ?a) ] => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a) - | H : context [ Z_of_nat (nat_of_N ?a) ] |- _ => rewrite (Z_of_nat_of_N a) in H - | |- context [ Z_of_nat (nat_of_N ?a) ] => rewrite (Z_of_nat_of_N a) - | H : context [ Z_of_nat (Zabs_nat ?a) ] |- _ => rewrite (inj_Zabs_nat a) in H - | |- context [ Z_of_nat (Zabs_nat ?a) ] => rewrite (inj_Zabs_nat a) - - (* plus -> Zplus *) - | H : context [ Z_of_nat (plus ?a ?b) ] |- _ => rewrite (inj_plus a b) in H - | |- context [ Z_of_nat (plus ?a ?b) ] => rewrite (inj_plus a b) - - (* min -> Zmin *) - | H : context [ Z_of_nat (min ?a ?b) ] |- _ => rewrite (inj_min a b) in H - | |- context [ Z_of_nat (min ?a ?b) ] => rewrite (inj_min a b) - - (* max -> Zmax *) - | H : context [ Z_of_nat (max ?a ?b) ] |- _ => rewrite (inj_max a b) in H - | |- context [ Z_of_nat (max ?a ?b) ] => rewrite (inj_max a b) - - (* minus -> Zmax (Zminus ... ...) 0 *) - | H : context [ Z_of_nat (minus ?a ?b) ] |- _ => rewrite (inj_minus a b) in H - | |- context [ Z_of_nat (minus ?a ?b) ] => rewrite (inj_minus a b) - - (* pred -> minus ... -1 -> Zmax (Zminus ... -1) 0 *) - | H : context [ Z_of_nat (pred ?a) ] |- _ => rewrite (pred_of_minus a) in H - | |- context [ Z_of_nat (pred ?a) ] => rewrite (pred_of_minus a) - - (* mult -> Zmult and a positivity hypothesis *) - | H : context [ Z_of_nat (mult ?a ?b) ] |- _ => - pose proof (Zle_0_nat (mult a b)); rewrite (inj_mult a b) in * - | |- context [ Z_of_nat (mult ?a ?b) ] => - pose proof (Zle_0_nat (mult a b)); rewrite (inj_mult a b) in * + | H : context [ Z.of_nat (Pos.to_nat ?a) ] |- _ => rewrite (positive_nat_Z a) in H + | |- context [ Z.of_nat (Pos.to_nat ?a) ] => rewrite (positive_nat_Z a) + | H : context [ Z.of_nat (N.to_nat ?a) ] |- _ => rewrite (N_nat_Z a) in H + | |- context [ Z.of_nat (N.to_nat ?a) ] => rewrite (N_nat_Z a) + | H : context [ Z.of_nat (Z.abs_nat ?a) ] |- _ => rewrite (Zabs2Nat.id_abs a) in H + | |- context [ Z.of_nat (Z.abs_nat ?a) ] => rewrite (Zabs2Nat.id_abs a) + + (* plus -> Z.add *) + | H : context [ Z.of_nat (plus ?a ?b) ] |- _ => rewrite (Nat2Z.inj_add a b) in H + | |- context [ Z.of_nat (plus ?a ?b) ] => rewrite (Nat2Z.inj_add a b) + + (* min -> Z.min *) + | H : context [ Z.of_nat (min ?a ?b) ] |- _ => rewrite (Nat2Z.inj_min a b) in H + | |- context [ Z.of_nat (min ?a ?b) ] => rewrite (Nat2Z.inj_min a b) + + (* max -> Z.max *) + | H : context [ Z.of_nat (max ?a ?b) ] |- _ => rewrite (Nat2Z.inj_max a b) in H + | |- context [ Z.of_nat (max ?a ?b) ] => rewrite (Nat2Z.inj_max a b) + + (* minus -> Z.max (Z.sub ... ...) 0 *) + | H : context [ Z.of_nat (minus ?a ?b) ] |- _ => rewrite (Nat2Z.inj_sub_max a b) in H + | |- context [ Z.of_nat (minus ?a ?b) ] => rewrite (Nat2Z.inj_sub_max a b) + + (* pred -> minus ... -1 -> Z.max (Z.sub ... -1) 0 *) + | H : context [ Z.of_nat (pred ?a) ] |- _ => rewrite (pred_of_minus a) in H + | |- context [ Z.of_nat (pred ?a) ] => rewrite (pred_of_minus a) + + (* mult -> Z.mul and a positivity hypothesis *) + | H : context [ Z.of_nat (mult ?a ?b) ] |- _ => + pose proof (Nat2Z.is_nonneg (mult a b)); + rewrite (Nat2Z.inj_mul a b) in * + | |- context [ Z.of_nat (mult ?a ?b) ] => + pose proof (Nat2Z.is_nonneg (mult a b)); + rewrite (Nat2Z.inj_mul a b) in * (* O -> Z0 *) - | H : context [ Z_of_nat O ] |- _ => simpl (Z_of_nat O) in H - | |- context [ Z_of_nat O ] => simpl (Z_of_nat O) + | H : context [ Z.of_nat O ] |- _ => simpl (Z.of_nat O) in H + | |- context [ Z.of_nat O ] => simpl (Z.of_nat O) - (* S -> number or Zsucc *) - | H : context [ Z_of_nat (S ?a) ] |- _ => + (* S -> number or Z.succ *) + | H : context [ Z.of_nat (S ?a) ] |- _ => let isnat := isnatcst a in match isnat with - | true => simpl (Z_of_nat (S a)) in H - | _ => rewrite (inj_S a) in H + | true => simpl (Z.of_nat (S a)) in H + | _ => rewrite (Nat2Z.inj_succ a) in H end - | |- context [ Z_of_nat (S ?a) ] => + | |- context [ Z.of_nat (S ?a) ] => let isnat := isnatcst a in match isnat with - | true => simpl (Z_of_nat (S a)) - | _ => rewrite (inj_S a) + | true => simpl (Z.of_nat (S a)) + | _ => rewrite (Nat2Z.inj_succ a) end (* atoms of type nat : we add a positivity condition (if not already there) *) - | _ : 0 <= Z_of_nat ?a |- _ => hide_Z_of_nat a - | _ : context [ Z_of_nat ?a ] |- _ => pose proof (Zle_0_nat a); hide_Z_of_nat a - | |- context [ Z_of_nat ?a ] => pose proof (Zle_0_nat a); hide_Z_of_nat a + | _ : 0 <= Z.of_nat ?a |- _ => hide_Z_of_nat a + | _ : context [ Z.of_nat ?a ] |- _ => + pose proof (Nat2Z.is_nonneg a); hide_Z_of_nat a + | |- context [ Z.of_nat ?a ] => + pose proof (Nat2Z.is_nonneg a); hide_Z_of_nat a end. Ltac zify_nat := repeat zify_nat_rel; repeat zify_nat_op; unfold Z_of_nat' in *. @@ -205,10 +208,9 @@ Ltac hide_Zpos t := Ltac zify_positive_rel := match goal with (* I: equalities *) - | H : (@eq positive ?a ?b) |- _ => generalize (Zpos_eq _ _ H); clear H; intro H - | |- (@eq positive ?a ?b) => apply (Zpos_eq_rev a b) - | H : context [ @eq positive ?a ?b ] |- _ => rewrite (Zpos_eq_iff a b) in H - | |- context [ @eq positive ?a ?b ] => rewrite (Zpos_eq_iff a b) + | |- (@eq positive ?a ?b) => apply Pos2Z.inj + | H : context [ @eq positive ?a ?b ] |- _ => rewrite <- (Pos2Z.inj_iff a b) in H + | |- context [ @eq positive ?a ?b ] => rewrite <- (Pos2Z.inj_iff a b) (* II: less than *) | H : context [ (?a < ?b)%positive ] |- _ => change (a change (a rewrite (Zpos_P_of_succ_nat a) in H - | |- context [ Zpos (P_of_succ_nat ?a) ] => rewrite (Zpos_P_of_succ_nat a) + | H : context [ Zpos (Pos.of_succ_nat ?a) ] |- _ => rewrite (Zpos_P_of_succ_nat a) in H + | |- context [ Zpos (Pos.of_succ_nat ?a) ] => rewrite (Zpos_P_of_succ_nat a) - (* Pplus -> Zplus *) - | H : context [ Zpos (Pplus ?a ?b) ] |- _ => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b)) in H - | |- context [ Zpos (Pplus ?a ?b) ] => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b)) + (* Pos.add -> Z.add *) + | H : context [ Zpos (?a + ?b) ] |- _ => change (Zpos (a+b)) with (Zpos a + Zpos b) in H + | |- context [ Zpos (?a + ?b) ] => change (Zpos (a+b)) with (Zpos a + Zpos b) - (* Pmin -> Zmin *) - | H : context [ Zpos (Pmin ?a ?b) ] |- _ => rewrite (Zpos_min a b) in H - | |- context [ Zpos (Pmin ?a ?b) ] => rewrite (Zpos_min a b) + (* Pos.min -> Z.min *) + | H : context [ Zpos (Pos.min ?a ?b) ] |- _ => rewrite (Pos2Z.inj_min a b) in H + | |- context [ Zpos (Pos.min ?a ?b) ] => rewrite (Pos2Z.inj_min a b) - (* Pmax -> Zmax *) - | H : context [ Zpos (Pmax ?a ?b) ] |- _ => rewrite (Zpos_max a b) in H - | |- context [ Zpos (Pmax ?a ?b) ] => rewrite (Zpos_max a b) + (* Pos.max -> Z.max *) + | H : context [ Zpos (Pos.max ?a ?b) ] |- _ => rewrite (Pos2Z.inj_max a b) in H + | |- context [ Zpos (Pos.max ?a ?b) ] => rewrite (Pos2Z.inj_max a b) - (* Pminus -> Zmax 1 (Zminus ... ...) *) - | H : context [ Zpos (Pminus ?a ?b) ] |- _ => rewrite (Zpos_minus a b) in H - | |- context [ Zpos (Pminus ?a ?b) ] => rewrite (Zpos_minus a b) + (* Pos.sub -> Z.max 1 (Z.sub ... ...) *) + | H : context [ Zpos (Pos.sub ?a ?b) ] |- _ => rewrite (Pos2Z.inj_sub a b) in H + | |- context [ Zpos (Pos.sub ?a ?b) ] => rewrite (Pos2Z.inj_sub a b) - (* Psucc -> Zsucc *) - | H : context [ Zpos (Psucc ?a) ] |- _ => rewrite (Zpos_succ_morphism a) in H - | |- context [ Zpos (Psucc ?a) ] => rewrite (Zpos_succ_morphism a) + (* Pos.succ -> Z.succ *) + | H : context [ Zpos (Pos.succ ?a) ] |- _ => rewrite (Pos2Z.inj_succ a) in H + | |- context [ Zpos (Pos.succ ?a) ] => rewrite (Pos2Z.inj_succ a) - (* Ppred -> Pminus ... -1 -> Zmax 1 (Zminus ... - 1) *) - | H : context [ Zpos (Ppred ?a) ] |- _ => rewrite (Ppred_minus a) in H - | |- context [ Zpos (Ppred ?a) ] => rewrite (Ppred_minus a) + (* Pos.pred -> Pos.sub ... -1 -> Z.max 1 (Z.sub ... - 1) *) + | H : context [ Zpos (Pos.pred ?a) ] |- _ => rewrite <- (Pos.sub_1_r a) in H + | |- context [ Zpos (Pos.pred ?a) ] => rewrite <- (Pos.sub_1_r a) - (* Pmult -> Zmult and a positivity hypothesis *) - | H : context [ Zpos (Pmult ?a ?b) ] |- _ => - pose proof (Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in * - | |- context [ Zpos (Pmult ?a ?b) ] => - pose proof (Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in * + (* Pos.mul -> Z.mul and a positivity hypothesis *) + | H : context [ Zpos (?a * ?b) ] |- _ => + pose proof (Pos2Z.is_pos (Pos.mul a b)); + change (Zpos (a*b)) with (Zpos a * Zpos b) in * + | |- context [ Zpos (?a * ?b) ] => + pose proof (Pos2Z.is_pos (Pos.mul a b)); + change (Zpos (a*b)) with (Zpos a * Zpos b) in * (* xO *) | H : context [ Zpos (xO ?a) ] |- _ => let isp := isPcst a in match isp with | true => change (Zpos (xO a)) with (Zpos' (xO a)) in H - | _ => rewrite (Zpos_xO a) in H + | _ => rewrite (Pos2Z.inj_xO a) in H end | |- context [ Zpos (xO ?a) ] => let isp := isPcst a in match isp with | true => change (Zpos (xO a)) with (Zpos' (xO a)) - | _ => rewrite (Zpos_xO a) + | _ => rewrite (Pos2Z.inj_xO a) end (* xI *) | H : context [ Zpos (xI ?a) ] |- _ => let isp := isPcst a in match isp with | true => change (Zpos (xI a)) with (Zpos' (xI a)) in H - | _ => rewrite (Zpos_xI a) in H + | _ => rewrite (Pos2Z.inj_xI a) in H end | |- context [ Zpos (xI ?a) ] => let isp := isPcst a in match isp with | true => change (Zpos (xI a)) with (Zpos' (xI a)) - | _ => rewrite (Zpos_xI a) + | _ => rewrite (Pos2Z.inj_xI a) end (* xI : nothing to do, just prevent adding a useless positivity condition *) @@ -305,9 +309,9 @@ Ltac zify_positive_op := | |- context [ Zpos xH ] => hide_Zpos xH (* atoms of type positive : we add a positivity condition (if not already there) *) - | _ : Zpos ?a > 0 |- _ => hide_Zpos a - | _ : context [ Zpos ?a ] |- _ => pose proof (Zgt_pos_0 a); hide_Zpos a - | |- context [ Zpos ?a ] => pose proof (Zgt_pos_0 a); hide_Zpos a + | _ : 0 < Zpos ?a |- _ => hide_Zpos a + | _ : context [ Zpos ?a ] |- _ => pose proof (Pos2Z.is_pos a); hide_Zpos a + | |- context [ Zpos ?a ] => pose proof (Pos2Z.is_pos a); hide_Zpos a end. Ltac zify_positive := @@ -319,84 +323,75 @@ Ltac zify_positive := (* IV) conversion from N to Z *) -Definition Z_of_N' := Z_of_N. +Definition Z_of_N' := Z.of_N. Ltac hide_Z_of_N t := - let z := fresh "z" in set (z:=Z_of_N t) in *; - change Z_of_N with Z_of_N' in z; + let z := fresh "z" in set (z:=Z.of_N t) in *; + change Z.of_N with Z_of_N' in z; unfold z in *; clear z. Ltac zify_N_rel := match goal with (* I: equalities *) - | H : (@eq N ?a ?b) |- _ => generalize (Z_of_N_eq _ _ H); clear H; intro H - | |- (@eq N ?a ?b) => apply (Z_of_N_eq_rev a b) - | H : context [ @eq N ?a ?b ] |- _ => rewrite (Z_of_N_eq_iff a b) in H - | |- context [ @eq N ?a ?b ] => rewrite (Z_of_N_eq_iff a b) + | |- (@eq N ?a ?b) => apply (N2Z.inj a b) (* shortcut *) + | H : context [ @eq N ?a ?b ] |- _ => rewrite <- (N2Z.inj_iff a b) in H + | |- context [ @eq N ?a ?b ] => rewrite <- (N2Z.inj_iff a b) (* II: less than *) - | H : (?a < ?b)%N |- _ => generalize (Z_of_N_lt _ _ H); clear H; intro H - | |- (?a < ?b)%N => apply (Z_of_N_lt_rev a b) - | H : context [ (?a < ?b)%N ] |- _ => rewrite (Z_of_N_lt_iff a b) in H - | |- context [ (?a < ?b)%N ] => rewrite (Z_of_N_lt_iff a b) + | H : context [ (?a < ?b)%N ] |- _ => rewrite (N2Z.inj_lt a b) in H + | |- context [ (?a < ?b)%N ] => rewrite (N2Z.inj_lt a b) (* III: less or equal *) - | H : (?a <= ?b)%N |- _ => generalize (Z_of_N_le _ _ H); clear H; intro H - | |- (?a <= ?b)%N => apply (Z_of_N_le_rev a b) - | H : context [ (?a <= ?b)%N ] |- _ => rewrite (Z_of_N_le_iff a b) in H - | |- context [ (?a <= ?b)%N ] => rewrite (Z_of_N_le_iff a b) + | H : context [ (?a <= ?b)%N ] |- _ => rewrite (N2Z.inj_le a b) in H + | |- context [ (?a <= ?b)%N ] => rewrite (N2Z.inj_le a b) (* IV: greater than *) - | H : (?a > ?b)%N |- _ => generalize (Z_of_N_gt _ _ H); clear H; intro H - | |- (?a > ?b)%N => apply (Z_of_N_gt_rev a b) - | H : context [ (?a > ?b)%N ] |- _ => rewrite (Z_of_N_gt_iff a b) in H - | |- context [ (?a > ?b)%N ] => rewrite (Z_of_N_gt_iff a b) + | H : context [ (?a > ?b)%N ] |- _ => rewrite (N2Z.inj_gt a b) in H + | |- context [ (?a > ?b)%N ] => rewrite (N2Z.inj_gt a b) (* V: greater or equal *) - | H : (?a >= ?b)%N |- _ => generalize (Z_of_N_ge _ _ H); clear H; intro H - | |- (?a >= ?b)%N => apply (Z_of_N_ge_rev a b) - | H : context [ (?a >= ?b)%N ] |- _ => rewrite (Z_of_N_ge_iff a b) in H - | |- context [ (?a >= ?b)%N ] => rewrite (Z_of_N_ge_iff a b) + | H : context [ (?a >= ?b)%N ] |- _ => rewrite (N2Z.inj_ge a b) in H + | |- context [ (?a >= ?b)%N ] => rewrite (N2Z.inj_ge a b) end. Ltac zify_N_op := match goal with (* misc type conversions: nat to positive *) - | H : context [ Z_of_N (N_of_nat ?a) ] |- _ => rewrite (Z_of_N_of_nat a) in H - | |- context [ Z_of_N (N_of_nat ?a) ] => rewrite (Z_of_N_of_nat a) - | H : context [ Z_of_N (Zabs_N ?a) ] |- _ => rewrite (Z_of_N_abs a) in H - | |- context [ Z_of_N (Zabs_N ?a) ] => rewrite (Z_of_N_abs a) - | H : context [ Z_of_N (Npos ?a) ] |- _ => rewrite (Z_of_N_pos a) in H - | |- context [ Z_of_N (Npos ?a) ] => rewrite (Z_of_N_pos a) - | H : context [ Z_of_N N0 ] |- _ => change (Z_of_N N0) with Z0 in H - | |- context [ Z_of_N N0 ] => change (Z_of_N N0) with Z0 - - (* Nplus -> Zplus *) - | H : context [ Z_of_N (Nplus ?a ?b) ] |- _ => rewrite (Z_of_N_plus a b) in H - | |- context [ Z_of_N (Nplus ?a ?b) ] => rewrite (Z_of_N_plus a b) - - (* Nmin -> Zmin *) - | H : context [ Z_of_N (Nmin ?a ?b) ] |- _ => rewrite (Z_of_N_min a b) in H - | |- context [ Z_of_N (Nmin ?a ?b) ] => rewrite (Z_of_N_min a b) - - (* Nmax -> Zmax *) - | H : context [ Z_of_N (Nmax ?a ?b) ] |- _ => rewrite (Z_of_N_max a b) in H - | |- context [ Z_of_N (Nmax ?a ?b) ] => rewrite (Z_of_N_max a b) - - (* Nminus -> Zmax 0 (Zminus ... ...) *) - | H : context [ Z_of_N (Nminus ?a ?b) ] |- _ => rewrite (Z_of_N_minus a b) in H - | |- context [ Z_of_N (Nminus ?a ?b) ] => rewrite (Z_of_N_minus a b) - - (* Nsucc -> Zsucc *) - | H : context [ Z_of_N (Nsucc ?a) ] |- _ => rewrite (Z_of_N_succ a) in H - | |- context [ Z_of_N (Nsucc ?a) ] => rewrite (Z_of_N_succ a) - - (* Nmult -> Zmult and a positivity hypothesis *) - | H : context [ Z_of_N (Nmult ?a ?b) ] |- _ => - pose proof (Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in * - | |- context [ Z_of_N (Nmult ?a ?b) ] => - pose proof (Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in * + | H : context [ Z.of_N (N.of_nat ?a) ] |- _ => rewrite (nat_N_Z a) in H + | |- context [ Z.of_N (N.of_nat ?a) ] => rewrite (nat_N_Z a) + | H : context [ Z.of_N (Z.abs_N ?a) ] |- _ => rewrite (N2Z.inj_abs_N a) in H + | |- context [ Z.of_N (Z.abs_N ?a) ] => rewrite (N2Z.inj_abs_N a) + | H : context [ Z.of_N (Npos ?a) ] |- _ => rewrite (N2Z.inj_pos a) in H + | |- context [ Z.of_N (Npos ?a) ] => rewrite (N2Z.inj_pos a) + | H : context [ Z.of_N N0 ] |- _ => change (Z.of_N N0) with Z0 in H + | |- context [ Z.of_N N0 ] => change (Z.of_N N0) with Z0 + + (* N.add -> Z.add *) + | H : context [ Z.of_N (N.add ?a ?b) ] |- _ => rewrite (N2Z.inj_add a b) in H + | |- context [ Z.of_N (N.add ?a ?b) ] => rewrite (N2Z.inj_add a b) + + (* N.min -> Z.min *) + | H : context [ Z.of_N (N.min ?a ?b) ] |- _ => rewrite (N2Z.inj_min a b) in H + | |- context [ Z.of_N (N.min ?a ?b) ] => rewrite (N2Z.inj_min a b) + + (* N.max -> Z.max *) + | H : context [ Z.of_N (N.max ?a ?b) ] |- _ => rewrite (N2Z.inj_max a b) in H + | |- context [ Z.of_N (N.max ?a ?b) ] => rewrite (N2Z.inj_max a b) + + (* N.sub -> Z.max 0 (Z.sub ... ...) *) + | H : context [ Z.of_N (N.sub ?a ?b) ] |- _ => rewrite (N2Z.inj_sub_max a b) in H + | |- context [ Z.of_N (N.sub ?a ?b) ] => rewrite (N2Z.inj_sub_max a b) + + (* N.succ -> Z.succ *) + | H : context [ Z.of_N (N.succ ?a) ] |- _ => rewrite (N2Z.inj_succ a) in H + | |- context [ Z.of_N (N.succ ?a) ] => rewrite (N2Z.inj_succ a) + + (* N.mul -> Z.mul and a positivity hypothesis *) + | H : context [ Z.of_N (N.mul ?a ?b) ] |- _ => + pose proof (N2Z.is_nonneg (N.mul a b)); rewrite (N2Z.inj_mul a b) in * + | |- context [ Z.of_N (N.mul ?a ?b) ] => + pose proof (N2Z.is_nonneg (N.mul a b)); rewrite (N2Z.inj_mul a b) in * (* atoms of type N : we add a positivity condition (if not already there) *) - | _ : 0 <= Z_of_N ?a |- _ => hide_Z_of_N a - | _ : context [ Z_of_N ?a ] |- _ => pose proof (Z_of_N_le_0 a); hide_Z_of_N a - | |- context [ Z_of_N ?a ] => pose proof (Z_of_N_le_0 a); hide_Z_of_N a + | _ : 0 <= Z.of_N ?a |- _ => hide_Z_of_N a + | _ : context [ Z.of_N ?a ] |- _ => pose proof (N2Z.is_nonneg a); hide_Z_of_N a + | |- context [ Z.of_N ?a ] => pose proof (N2Z.is_nonneg a); hide_Z_of_N a end. Ltac zify_N := repeat zify_N_rel; repeat zify_N_op; unfold Z_of_N' in *. diff --git a/plugins/omega/coq_omega.ml b/plugins/omega/coq_omega.ml index d7dfe149..028ef95d 100644 --- a/plugins/omega/coq_omega.ml +++ b/plugins/omega/coq_omega.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* anomaly ("Coq_omega: "^s^" is not an evaluable constant") -let sp_Zsucc = lazy (evaluable_ref_of_constr "Zsucc" coq_Zsucc) -let sp_Zpred = lazy (evaluable_ref_of_constr "Zpred" coq_Zpred) -let sp_Zminus = lazy (evaluable_ref_of_constr "Zminus" coq_Zminus) -let sp_Zle = lazy (evaluable_ref_of_constr "Zle" coq_Zle) -let sp_Zgt = lazy (evaluable_ref_of_constr "Zgt" coq_Zgt) -let sp_Zge = lazy (evaluable_ref_of_constr "Zge" coq_Zge) -let sp_Zlt = lazy (evaluable_ref_of_constr "Zlt" coq_Zlt) +let sp_Zsucc = lazy (evaluable_ref_of_constr "Z.succ" coq_Zsucc) +let sp_Zpred = lazy (evaluable_ref_of_constr "Z.pred" coq_Zpred) +let sp_Zminus = lazy (evaluable_ref_of_constr "Z.sub" coq_Zminus) +let sp_Zle = lazy (evaluable_ref_of_constr "Z.le" coq_Zle) +let sp_Zgt = lazy (evaluable_ref_of_constr "Z.gt" coq_Zgt) +let sp_Zge = lazy (evaluable_ref_of_constr "Z.ge" coq_Zge) +let sp_Zlt = lazy (evaluable_ref_of_constr "Z.lt" coq_Zlt) let sp_not = lazy (evaluable_ref_of_constr "not" (lazy (build_coq_not ()))) let mk_var v = mkVar (id_of_string v) diff --git a/plugins/omega/g_omega.ml4 b/plugins/omega/g_omega.ml4 index 84cc8464..1542b60c 100644 --- a/plugins/omega/g_omega.ml4 +++ b/plugins/omega/g_omega.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* n = m. - simple induction n; simple induction m; simpl in |- *; intros. + simple induction n; simple induction m; simpl; intros. rewrite (H i0 H1); reflexivity. discriminate. discriminate. diff --git a/plugins/quote/g_quote.ml4 b/plugins/quote/g_quote.ml4 index 1f4ea97f..09b780fd 100644 --- a/plugins/quote/g_quote.ml4 +++ b/plugins/quote/g_quote.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* try let t1 := (**) (**) rewrite_S_to_plus_term X1 with t2 := rewrite_S_to_plus_term X2 in - change (t1 = t2) in |- * + change (t1 = t2) end. Ltac ring_nat := rewrite_S_to_plus; ring. diff --git a/plugins/ring/LegacyNArithRing.v b/plugins/ring/LegacyNArithRing.v index 5dcd6d84..7f1597a1 100644 --- a/plugins/ring/LegacyNArithRing.v +++ b/plugins/ring/LegacyNArithRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* n = m. intros n m H; unfold Neq in H. - apply Ncompare_Eq_eq. + apply N.compare_eq. destruct (n ?= m)%N; [ reflexivity | contradiction | contradiction ]. Qed. -Definition NTheory : Semi_Ring_Theory Nplus Nmult 1%N 0%N Neq. +Definition NTheory : Semi_Ring_Theory N.add N.mul 1%N 0%N Neq. split. - apply Nplus_comm. - apply Nplus_assoc. - apply Nmult_comm. - apply Nmult_assoc. - apply Nplus_0_l. - apply Nmult_1_l. - apply Nmult_0_l. - apply Nmult_plus_distr_r. -(* apply Nplus_reg_l.*) + apply N.add_comm. + apply N.add_assoc. + apply N.mul_comm. + apply N.mul_assoc. + apply N.add_0_l. + apply N.mul_1_l. + apply N.mul_0_l. + apply N.mul_add_distr_r. apply Neq_prop. Qed. Add Legacy Semi Ring - N Nplus Nmult 1%N 0%N Neq NTheory [ Npos 0%N xO xI 1%positive ]. + N N.add N.mul 1%N 0%N Neq NTheory [ Npos 0%N xO xI 1%positive ]. diff --git a/plugins/ring/LegacyRing.v b/plugins/ring/LegacyRing.v index d19e9f58..d4f40081 100644 --- a/plugins/ring/LegacyRing.v +++ b/plugins/ring/LegacyRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* b) eqb. -split; simpl in |- *. +split; simpl. destruct n; destruct m; reflexivity. destruct n; destruct m; destruct p; reflexivity. destruct n; destruct m; reflexivity. @@ -28,7 +28,7 @@ destruct n; reflexivity. destruct n; reflexivity. destruct n; reflexivity. destruct n; destruct m; destruct p; reflexivity. -destruct x; destruct y; reflexivity || simpl in |- *; tauto. +destruct x; destruct y; reflexivity || simpl; tauto. Defined. Add Legacy Ring bool xorb andb true false (fun b:bool => b) eqb BoolTheory diff --git a/plugins/ring/LegacyRing_theory.v b/plugins/ring/LegacyRing_theory.v index ca3355a6..09de1bb4 100644 --- a/plugins/ring/LegacyRing_theory.v +++ b/plugins/ring/LegacyRing_theory.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* a = 0. intros. generalize (opp_def a). -pattern a at 1 in |- *. +pattern a at 1. rewrite <- H. rewrite <- plus_assoc. rewrite opp_def. @@ -233,7 +233,7 @@ Qed. Hint Resolve Th_mult_zero_left. Lemma Th_mult_zero_left2 : forall n:A, 0 = 0 * n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma aux2 : forall x y z:A, x + y = 0 -> x + z = 0 -> y = z. intros. @@ -255,7 +255,7 @@ Qed. Hint Resolve Th_opp_mult_left. Lemma Th_opp_mult_left2 : forall x y:A, - x * y = - (x * y). -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_mult_zero_right : forall n:A, n * 0 = 0. intro; elim mult_comm; eauto. @@ -306,14 +306,14 @@ Qed. Hint Resolve Th_opp_opp. Lemma Th_opp_opp2 : forall n:A, n = - - n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_mult_opp_opp : forall x y:A, - x * - y = x * y. intros; rewrite <- Th_opp_mult_left; rewrite <- Th_opp_mult_right; auto. Qed. Lemma Th_mult_opp_opp2 : forall x y:A, x * y = - x * - y. -symmetry in |- *; apply Th_mult_opp_opp. Qed. +symmetry ; apply Th_mult_opp_opp. Qed. Lemma Th_opp_zero : - 0 = 0. rewrite <- (plus_zero_left (- 0)). @@ -342,7 +342,7 @@ eauto. Qed. Lemma Th_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p). -symmetry in |- *; apply Th_distr_right. +symmetry ; apply Th_distr_right. Qed. End Theory_of_rings. @@ -357,7 +357,7 @@ Definition Semi_Ring_Theory_of : Ring_Theory Aplus Amult Aone Azero Aopp Aeq -> Semi_Ring_Theory Aplus Amult Aone Azero Aeq. intros until 1; case H. -split; intros; simpl in |- *; eauto. +split; intros; simpl; eauto. Defined. (* Every ring can be viewed as a semi-ring : this property will be used diff --git a/plugins/ring/LegacyZArithRing.v b/plugins/ring/LegacyZArithRing.v index 5845062d..3f01a5c3 100644 --- a/plugins/ring/LegacyZArithRing.v +++ b/plugins/ring/LegacyZArithRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x = y. intros x y H; unfold Zeq in H. - apply Zcompare_Eq_eq. + apply Z.compare_eq. destruct (x ?= y)%Z; [ reflexivity | contradiction | contradiction ]. Qed. -Definition ZTheory : Ring_Theory Zplus Zmult 1%Z 0%Z Zopp Zeq. +Definition ZTheory : Ring_Theory Z.add Z.mul 1%Z 0%Z Z.opp Zeq. split; intros; eauto with zarith. apply Zeq_prop; assumption. Qed. (* NatConstants and NatTheory are defined in Ring_theory.v *) -Add Legacy Ring Z Zplus Zmult 1%Z 0%Z Zopp Zeq ZTheory +Add Legacy Ring Z Z.add Z.mul 1%Z 0%Z Z.opp Zeq ZTheory [ Zpos Zneg 0%Z xO xI 1%positive ]. diff --git a/plugins/ring/Ring_abstract.v b/plugins/ring/Ring_abstract.v index 1763d70a..a00b7bcd 100644 --- a/plugins/ring/Ring_abstract.v +++ b/plugins/ring/Ring_abstract.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* A) => rewrite isacs_aux_ok: core. Ltac solve1 v v0 H H0 := - simpl in |- *; elim (varlist_lt v v0); simpl in |- *; rewrite isacs_aux_ok; - [ rewrite H; simpl in |- *; auto | simpl in H0; rewrite H0; auto ]. + simpl; elim (varlist_lt v v0); simpl; rewrite isacs_aux_ok; + [ rewrite H; simpl; auto | simpl in H0; rewrite H0; auto ]. Lemma signed_sum_merge_ok : forall x y:signed_sum, interp_sacs (signed_sum_merge x y) = Aplus (interp_sacs x) (interp_sacs y). simple induction x. - intro; simpl in |- *; auto. + intro; simpl; auto. simple induction y; intros. @@ -478,8 +476,8 @@ Lemma signed_sum_merge_ok : solve1 v v0 H H0. - simpl in |- *; generalize (varlist_eq_prop v v0). - elim (varlist_eq v v0); simpl in |- *. + simpl; generalize (varlist_eq_prop v v0). + elim (varlist_eq v v0); simpl. intro Heq; rewrite (Heq I). rewrite H. @@ -499,8 +497,8 @@ Lemma signed_sum_merge_ok : auto. - simpl in |- *; generalize (varlist_eq_prop v v0). - elim (varlist_eq v v0); simpl in |- *. + simpl; generalize (varlist_eq_prop v v0). + elim (varlist_eq v v0); simpl. intro Heq; rewrite (Heq I). rewrite H. @@ -518,7 +516,7 @@ Lemma signed_sum_merge_ok : Qed. Ltac solve2 l v H := - elim (varlist_lt l v); simpl in |- *; rewrite isacs_aux_ok; + elim (varlist_lt l v); simpl; rewrite isacs_aux_ok; [ auto | rewrite H; auto ]. Lemma plus_varlist_insert_ok : @@ -530,12 +528,12 @@ Proof. simple induction s. trivial. - simpl in |- *; intros. + simpl; intros. solve2 l v H. - simpl in |- *; intros. + simpl; intros. generalize (varlist_eq_prop l v). - elim (varlist_eq l v); simpl in |- *. + elim (varlist_eq l v); simpl. intro Heq; rewrite (Heq I). repeat rewrite isacs_aux_ok. @@ -557,9 +555,9 @@ Proof. simple induction s. trivial. - simpl in |- *; intros. + simpl; intros. generalize (varlist_eq_prop l v). - elim (varlist_eq l v); simpl in |- *. + elim (varlist_eq l v); simpl. intro Heq; rewrite (Heq I). repeat rewrite isacs_aux_ok. @@ -570,10 +568,10 @@ Proof. rewrite (Th_opp_def T). auto. - simpl in |- *; intros. + simpl; intros. solve2 l v H. - simpl in |- *; intros; solve2 l v H. + simpl; intros; solve2 l v H. Qed. @@ -581,9 +579,9 @@ Lemma signed_sum_opp_ok : forall s:signed_sum, interp_sacs (signed_sum_opp s) = Aopp (interp_sacs s). Proof. - simple induction s; simpl in |- *; intros. + simple induction s; simpl; intros. - symmetry in |- *; apply (Th_opp_zero T). + symmetry ; apply (Th_opp_zero T). repeat rewrite isacs_aux_ok. rewrite H. @@ -607,14 +605,14 @@ Proof. simple induction s. trivial. - simpl in |- *; intros. + simpl; intros. rewrite plus_varlist_insert_ok. rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T). repeat rewrite isacs_aux_ok. rewrite H. auto. - simpl in |- *; intros. + simpl; intros. rewrite minus_varlist_insert_ok. repeat rewrite isacs_aux_ok. rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T). @@ -631,11 +629,11 @@ Lemma minus_sum_scalar_ok : Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)). Proof. - simple induction s; simpl in |- *; intros. + simple induction s; simpl; intros. - rewrite (Th_mult_zero_right T); symmetry in |- *; apply (Th_opp_zero T). + rewrite (Th_mult_zero_right T); symmetry ; apply (Th_opp_zero T). - simpl in |- *; intros. + simpl; intros. rewrite minus_varlist_insert_ok. rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T). repeat rewrite isacs_aux_ok. @@ -644,7 +642,7 @@ Proof. rewrite (Th_plus_opp_opp T). reflexivity. - simpl in |- *; intros. + simpl; intros. rewrite plus_varlist_insert_ok. repeat rewrite isacs_aux_ok. rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T). @@ -664,16 +662,16 @@ Proof. simple induction x. - simpl in |- *; eauto 1. + simpl; eauto 1. - intros; simpl in |- *. + intros; simpl. rewrite signed_sum_merge_ok. rewrite plus_sum_scalar_ok. repeat rewrite isacs_aux_ok. rewrite H. auto. - intros; simpl in |- *. + intros; simpl. repeat rewrite isacs_aux_ok. rewrite signed_sum_merge_ok. rewrite minus_sum_scalar_ok. @@ -687,7 +685,7 @@ Qed. Theorem apolynomial_normalize_ok : forall p:apolynomial, interp_sacs (apolynomial_normalize p) = interp_ap p. Proof. - simple induction p; simpl in |- *; auto 1. + simple induction p; simpl; auto 1. intros. rewrite signed_sum_merge_ok. rewrite H; rewrite H0; reflexivity. diff --git a/plugins/ring/Ring_normalize.v b/plugins/ring/Ring_normalize.v index c6dff3e0..d286208a 100644 --- a/plugins/ring/Ring_normalize.v +++ b/plugins/ring/Ring_normalize.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x = y. Proof. simple induction x; simple induction y; contradiction || (try reflexivity). - simpl in |- *; intros. + simpl; intros. generalize (andb_prop2 _ _ H1); intros; elim H2; intros. rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity. Qed. @@ -381,7 +380,7 @@ Remark ivl_aux_ok : forall (v:varlist) (i:index), ivl_aux i v = Amult (interp_var i) (interp_vl v). Proof. - simple induction v; simpl in |- *; intros. + simple induction v; simpl; intros. trivial. rewrite H; trivial. Qed. @@ -391,14 +390,14 @@ Lemma varlist_merge_ok : interp_vl (varlist_merge x y) = Amult (interp_vl x) (interp_vl y). Proof. simple induction x. - simpl in |- *; trivial. + simpl; trivial. simple induction y. - simpl in |- *; trivial. - simpl in |- *; intros. - elim (index_lt i i0); simpl in |- *; intros. + simpl; trivial. + simpl; intros. + elim (index_lt i i0); simpl; intros. repeat rewrite ivl_aux_ok. - rewrite H. simpl in |- *. + rewrite H. simpl. rewrite ivl_aux_ok. eauto. @@ -411,7 +410,7 @@ Qed. Remark ics_aux_ok : forall (x:A) (s:canonical_sum), ics_aux x s = Aplus x (interp_cs s). Proof. - simple induction s; simpl in |- *; intros. + simple induction s; simpl; intros. trivial. reflexivity. reflexivity. @@ -421,7 +420,7 @@ Remark interp_m_ok : forall (x:A) (l:varlist), interp_m x l = Amult x (interp_vl l). Proof. destruct l as [| i v]. - simpl in |- *; trivial. + simpl; trivial. reflexivity. Qed. @@ -429,10 +428,10 @@ Lemma canonical_sum_merge_ok : forall x y:canonical_sum, interp_cs (canonical_sum_merge x y) = Aplus (interp_cs x) (interp_cs y). -simple induction x; simpl in |- *. +simple induction x; simpl. trivial. -simple induction y; simpl in |- *; intros. +simple induction y; simpl; intros. (* monom and nil *) eauto. @@ -440,25 +439,25 @@ eauto. generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *; repeat rewrite ics_aux_ok; rewrite H. +simpl; repeat rewrite ics_aux_ok; rewrite H. repeat rewrite interp_m_ok. rewrite (SR_distr_left T). repeat rewrite <- (SR_plus_assoc T). apply f_equal with (f := Aplus (Amult a (interp_vl v0))). trivial. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. repeat rewrite ics_aux_ok. -rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto. +rewrite H; simpl; rewrite ics_aux_ok; eauto. -rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *; +rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl; eauto. (* monom and varlist *) generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *; repeat rewrite ics_aux_ok; rewrite H. +simpl; repeat rewrite ics_aux_ok; rewrite H. repeat rewrite interp_m_ok. rewrite (SR_distr_left T). repeat rewrite <- (SR_plus_assoc T). @@ -466,13 +465,13 @@ apply f_equal with (f := Aplus (Amult a (interp_vl v0))). rewrite (SR_mult_one_left T). trivial. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. repeat rewrite ics_aux_ok. -rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto. -rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *; +rewrite H; simpl; rewrite ics_aux_ok; eauto. +rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl; eauto. -simple induction y; simpl in |- *; intros. +simple induction y; simpl; intros. (* varlist and nil *) trivial. @@ -480,7 +479,7 @@ trivial. generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *; repeat rewrite ics_aux_ok; rewrite H. +simpl; repeat rewrite ics_aux_ok; rewrite H. repeat rewrite interp_m_ok. rewrite (SR_distr_left T). repeat rewrite <- (SR_plus_assoc T). @@ -488,17 +487,17 @@ rewrite (SR_mult_one_left T). apply f_equal with (f := Aplus (interp_vl v0)). trivial. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. repeat rewrite ics_aux_ok. -rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto. -rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *; +rewrite H; simpl; rewrite ics_aux_ok; eauto. +rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl; eauto. (* varlist and varlist *) generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *; repeat rewrite ics_aux_ok; rewrite H. +simpl; repeat rewrite ics_aux_ok; rewrite H. repeat rewrite interp_m_ok. rewrite (SR_distr_left T). repeat rewrite <- (SR_plus_assoc T). @@ -506,10 +505,10 @@ rewrite (SR_mult_one_left T). apply f_equal with (f := Aplus (interp_vl v0)). trivial. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. repeat rewrite ics_aux_ok. -rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto. -rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *; +rewrite H; simpl; rewrite ics_aux_ok; eauto. +rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl; eauto. Qed. @@ -519,24 +518,24 @@ Lemma monom_insert_ok : Aplus (Amult a (interp_vl l)) (interp_cs s). intros; generalize s; simple induction s0. -simpl in |- *; rewrite interp_m_ok; trivial. +simpl; rewrite interp_m_ok; trivial. -simpl in |- *; intros. +simpl; intros. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok; +intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok; repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T); eauto. -elim (varlist_lt l v); simpl in |- *; +elim (varlist_lt l v); simpl; [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H; rewrite ics_aux_ok; eauto ]. -simpl in |- *; intros. +simpl; intros. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok; +intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok; repeat rewrite ics_aux_ok; rewrite (SR_distr_left T); rewrite (SR_mult_one_left T); eauto. -elim (varlist_lt l v); simpl in |- *; +elim (varlist_lt l v); simpl; [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H; rewrite ics_aux_ok; eauto ]. @@ -547,24 +546,24 @@ Lemma varlist_insert_ok : interp_cs (varlist_insert l s) = Aplus (interp_vl l) (interp_cs s). intros; generalize s; simple induction s0. -simpl in |- *; trivial. +simpl; trivial. -simpl in |- *; intros. +simpl; intros. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok; +intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok; repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T); rewrite (SR_mult_one_left T); eauto. -elim (varlist_lt l v); simpl in |- *; +elim (varlist_lt l v); simpl; [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H; rewrite ics_aux_ok; eauto ]. -simpl in |- *; intros. +simpl; intros. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok; +intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok; repeat rewrite ics_aux_ok; rewrite (SR_distr_left T); rewrite (SR_mult_one_left T); eauto. -elim (varlist_lt l v); simpl in |- *; +elim (varlist_lt l v); simpl; [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H; rewrite ics_aux_ok; eauto ]. @@ -574,9 +573,9 @@ Lemma canonical_sum_scalar_ok : forall (a:A) (s:canonical_sum), interp_cs (canonical_sum_scalar a s) = Amult a (interp_cs s). simple induction s. -simpl in |- *; eauto. +simpl; eauto. -simpl in |- *; intros. +simpl; intros. repeat rewrite ics_aux_ok. repeat rewrite interp_m_ok. rewrite H. @@ -584,7 +583,7 @@ rewrite (SR_distr_right T). repeat rewrite <- (SR_mult_assoc T). reflexivity. -simpl in |- *; intros. +simpl; intros. repeat rewrite ics_aux_ok. repeat rewrite interp_m_ok. rewrite H. @@ -597,9 +596,9 @@ Lemma canonical_sum_scalar2_ok : forall (l:varlist) (s:canonical_sum), interp_cs (canonical_sum_scalar2 l s) = Amult (interp_vl l) (interp_cs s). simple induction s. -simpl in |- *; trivial. +simpl; trivial. -simpl in |- *; intros. +simpl; intros. rewrite monom_insert_ok. repeat rewrite ics_aux_ok. repeat rewrite interp_m_ok. @@ -611,7 +610,7 @@ repeat rewrite <- (SR_plus_assoc T). rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)). reflexivity. -simpl in |- *; intros. +simpl; intros. rewrite varlist_insert_ok. repeat rewrite ics_aux_ok. repeat rewrite interp_m_ok. @@ -628,9 +627,9 @@ Lemma canonical_sum_scalar3_ok : interp_cs (canonical_sum_scalar3 c l s) = Amult c (Amult (interp_vl l) (interp_cs s)). simple induction s. -simpl in |- *; repeat rewrite (SR_mult_zero_right T); reflexivity. +simpl; repeat rewrite (SR_mult_zero_right T); reflexivity. -simpl in |- *; intros. +simpl; intros. rewrite monom_insert_ok. repeat rewrite ics_aux_ok. repeat rewrite interp_m_ok. @@ -642,7 +641,7 @@ repeat rewrite <- (SR_plus_assoc T). rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)). reflexivity. -simpl in |- *; intros. +simpl; intros. rewrite monom_insert_ok. repeat rewrite ics_aux_ok. repeat rewrite interp_m_ok. @@ -658,7 +657,7 @@ Qed. Lemma canonical_sum_prod_ok : forall x y:canonical_sum, interp_cs (canonical_sum_prod x y) = Amult (interp_cs x) (interp_cs y). -simple induction x; simpl in |- *; intros. +simple induction x; simpl; intros. trivial. rewrite canonical_sum_merge_ok. @@ -667,7 +666,7 @@ rewrite ics_aux_ok. rewrite interp_m_ok. rewrite H. rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)). -symmetry in |- *. +symmetry . eauto. rewrite canonical_sum_merge_ok. @@ -679,7 +678,7 @@ Qed. Theorem spolynomial_normalize_ok : forall p:spolynomial, interp_cs (spolynomial_normalize p) = interp_sp p. -simple induction p; simpl in |- *; intros. +simple induction p; simpl; intros. reflexivity. reflexivity. @@ -700,7 +699,7 @@ simple induction s. reflexivity. (* cons_monom *) -simpl in |- *; intros. +simpl; intros. generalize (SR_eq_prop T a Azero). elim (Aeq a Azero). intro Heq; rewrite (Heq I). @@ -710,25 +709,25 @@ rewrite interp_m_ok. rewrite (SR_mult_zero_left T). trivial. -intros; simpl in |- *. +intros; simpl. generalize (SR_eq_prop T a Aone). elim (Aeq a Aone). intro Heq; rewrite (Heq I). -simpl in |- *. +simpl. repeat rewrite ics_aux_ok. rewrite interp_m_ok. rewrite H. rewrite (SR_mult_one_left T). reflexivity. -simpl in |- *. +simpl. repeat rewrite ics_aux_ok. rewrite interp_m_ok. rewrite H. reflexivity. (* cons_varlist *) -simpl in |- *; intros. +simpl; intros. repeat rewrite ics_aux_ok. rewrite H. reflexivity. @@ -738,7 +737,7 @@ Qed. Theorem spolynomial_simplify_ok : forall p:spolynomial, interp_cs (spolynomial_simplify p) = interp_sp p. intro. -unfold spolynomial_simplify in |- *. +unfold spolynomial_simplify. rewrite canonical_sum_simplify_ok. apply spolynomial_normalize_ok. Qed. @@ -794,8 +793,7 @@ Hint Resolve (Th_plus_zero_right2 T). Hint Resolve (Th_mult_one_right T). Hint Resolve (Th_mult_one_right2 T). (*Hint Resolve (Th_plus_reg_right T).*) -Hint Resolve refl_equal sym_equal trans_equal. -(*Hints Resolve refl_eqT sym_eqT trans_eqT.*) +Hint Resolve eq_refl eq_sym eq_trans. Hint Immediate T. (*** Definitions *) @@ -852,7 +850,7 @@ Unset Implicit Arguments. Lemma spolynomial_of_ok : forall p:polynomial, interp_p p = interp_sp Aplus Amult Azero vm (spolynomial_of p). -simple induction p; reflexivity || (simpl in |- *; intros). +simple induction p; reflexivity || (simpl; intros). rewrite H; rewrite H0; reflexivity. rewrite H; rewrite H0; reflexivity. rewrite H. @@ -865,23 +863,23 @@ Theorem polynomial_normalize_ok : forall p:polynomial, polynomial_normalize p = spolynomial_normalize Aplus Amult Aone (spolynomial_of p). -simple induction p; reflexivity || (simpl in |- *; intros). +simple induction p; reflexivity || (simpl; intros). rewrite H; rewrite H0; reflexivity. rewrite H; rewrite H0; reflexivity. -rewrite H; simpl in |- *. +rewrite H; simpl. elim (canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var (spolynomial_normalize Aplus Amult Aone (spolynomial_of p0))); [ reflexivity - | simpl in |- *; intros; rewrite H0; reflexivity - | simpl in |- *; intros; rewrite H0; reflexivity ]. + | simpl; intros; rewrite H0; reflexivity + | simpl; intros; rewrite H0; reflexivity ]. Qed. Theorem polynomial_simplify_ok : forall p:polynomial, interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p) = interp_p p. intro. -unfold polynomial_simplify in |- *. +unfold polynomial_simplify. rewrite spolynomial_of_ok. rewrite polynomial_normalize_ok. rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T). diff --git a/plugins/ring/Setoid_ring.v b/plugins/ring/Setoid_ring.v index 106a946d..4717edc9 100644 --- a/plugins/ring/Setoid_ring.v +++ b/plugins/ring/Setoid_ring.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* n = m. Proof. - simple induction n; simple induction m; simpl in |- *; + simple induction n; simple induction m; simpl; try reflexivity || contradiction. intros; rewrite (H i0); trivial. intros; rewrite (H i0); trivial. @@ -387,14 +387,13 @@ Hint Resolve (SSR_plus_zero_right2 S T). Hint Resolve (SSR_mult_one_right S T). Hint Resolve (SSR_mult_one_right2 S T). Hint Resolve (SSR_plus_reg_right S T). -Hint Resolve refl_equal sym_equal trans_equal. -(*Hints Resolve refl_eqT sym_eqT trans_eqT.*) +Hint Resolve eq_refl eq_sym eq_trans. Hint Immediate T. Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y. Proof. simple induction x; simple induction y; contradiction || (try reflexivity). - simpl in |- *; intros. + simpl; intros. generalize (andb_prop2 _ _ H1); intros; elim H2; intros. rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity. Qed. @@ -403,7 +402,7 @@ Remark ivl_aux_ok : forall (v:varlist) (i:index), Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v)). Proof. - simple induction v; simpl in |- *; intros. + simple induction v; simpl; intros. trivial. rewrite (H i); trivial. Qed. @@ -413,17 +412,17 @@ Lemma varlist_merge_ok : Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y)). Proof. simple induction x. - simpl in |- *; trivial. + simpl; trivial. simple induction y. - simpl in |- *; trivial. - simpl in |- *; intros. - elim (index_lt i i0); simpl in |- *; intros. + simpl; trivial. + simpl; intros. + elim (index_lt i i0); simpl; intros. rewrite (ivl_aux_ok v i). rewrite (ivl_aux_ok v0 i0). rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i). rewrite (H (Cons_var i0 v0)). - simpl in |- *. + simpl. rewrite (ivl_aux_ok v0 i0). eauto. @@ -448,7 +447,7 @@ Remark ics_aux_ok : forall (x:A) (s:canonical_sum), Aequiv (ics_aux x s) (Aplus x (interp_setcs s)). Proof. - simple induction s; simpl in |- *; intros; trivial. + simple induction s; simpl; intros; trivial. Qed. Remark interp_m_ok : @@ -468,16 +467,16 @@ Lemma canonical_sum_merge_ok : Aequiv (interp_setcs (canonical_sum_merge x y)) (Aplus (interp_setcs x) (interp_setcs y)). Proof. -simple induction x; simpl in |- *. +simple induction x; simpl. trivial. -simple induction y; simpl in |- *; intros. +simple induction y; simpl; intros. eauto. generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *. +simpl. rewrite (ics_aux_ok (interp_m a v0) c). rewrite (ics_aux_ok (interp_m a0 v0) c0). rewrite (ics_aux_ok (interp_m (Aplus a a0) v0) (canonical_sum_merge c c0)). @@ -504,14 +503,14 @@ setoid_replace [ idtac | trivial ]. auto. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. intro. rewrite (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_monom a0 v0 c0))) . rewrite (ics_aux_ok (interp_m a v) c). rewrite (ics_aux_ok (interp_m a0 v0) c0). -rewrite (H (Cons_monom a0 v0 c0)); simpl in |- *. +rewrite (H (Cons_monom a0 v0 c0)); simpl. rewrite (ics_aux_ok (interp_m a0 v0) c0); auto. intro. @@ -537,13 +536,13 @@ rewrite end) c0)). rewrite H0. rewrite (ics_aux_ok (interp_m a v) c); - rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl in |- *; + rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl; auto. generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *. +simpl. rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0) (canonical_sum_merge c c0)); rewrite (ics_aux_ok (interp_m a v0) c); rewrite (ics_aux_ok (interp_vl v0) c0). @@ -570,13 +569,13 @@ setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); [ idtac | trivial ]. auto. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. intro. rewrite (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_varlist v0 c0))) ; rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0). -rewrite (H (Cons_varlist v0 c0)); simpl in |- *. +rewrite (H (Cons_varlist v0 c0)); simpl. rewrite (ics_aux_ok (interp_vl v0) c0). auto. @@ -602,16 +601,16 @@ rewrite else Cons_varlist l2 (csm_aux t2) end) c0)); rewrite H0. rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0); - simpl in |- *. + simpl. auto. -simple induction y; simpl in |- *; intros. +simple induction y; simpl; intros. trivial. generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *. +simpl. rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0) (canonical_sum_merge c c0)); rewrite (ics_aux_ok (interp_vl v0) c); rewrite (ics_aux_ok (interp_m a v0) c0); rewrite (H c0). @@ -635,12 +634,12 @@ setoid_replace [ idtac | trivial ]. auto. -elim (varlist_lt v v0); simpl in |- *; intros. +elim (varlist_lt v v0); simpl; intros. rewrite (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_monom a v0 c0))) ; rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0). -rewrite (H (Cons_monom a v0 c0)); simpl in |- *. +rewrite (H (Cons_monom a v0 c0)); simpl. rewrite (ics_aux_ok (interp_m a v0) c0); auto. rewrite @@ -664,11 +663,11 @@ rewrite else Cons_varlist l2 (csm_aux2 t2) end) c0)); rewrite H0. rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0); - simpl in |- *; auto. + simpl; auto. generalize (varlist_eq_prop v v0). elim (varlist_eq v v0); intros. -rewrite (H1 I); simpl in |- *. +rewrite (H1 I); simpl. rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v0) (canonical_sum_merge c c0)) ; rewrite (ics_aux_ok (interp_vl v0) c); @@ -692,12 +691,12 @@ setoid_replace [ idtac | trivial ]. setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); auto. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. rewrite (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_varlist v0 c0))) ; rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H (Cons_varlist v0 c0)); - simpl in |- *. + simpl. rewrite (ics_aux_ok (interp_vl v0) c0); auto. rewrite @@ -721,7 +720,7 @@ rewrite else Cons_varlist l2 (csm_aux2 t2) end) c0)); rewrite H0. rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0); - simpl in |- *; auto. + simpl; auto. Qed. Lemma monom_insert_ok : @@ -730,10 +729,10 @@ Lemma monom_insert_ok : (Aplus (Amult a (interp_vl l)) (interp_setcs s)). Proof. simple induction s; intros. -simpl in |- *; rewrite (interp_m_ok a l); trivial. +simpl; rewrite (interp_m_ok a l); trivial. -simpl in |- *; generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *. +simpl; generalize (varlist_eq_prop l v); elim (varlist_eq l v). +intro Hr; rewrite (Hr I); simpl. rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c); rewrite (ics_aux_ok (interp_m a0 v) c). rewrite (interp_m_ok (Aplus a a0) v); rewrite (interp_m_ok a0 v). @@ -742,7 +741,7 @@ setoid_replace (Amult (Aplus a a0) (interp_vl v)) with [ idtac | trivial ]. auto. -elim (varlist_lt l v); simpl in |- *; intros. +elim (varlist_lt l v); simpl; intros. rewrite (ics_aux_ok (interp_m a0 v) c). rewrite (interp_m_ok a0 v); rewrite (interp_m_ok a l). auto. @@ -751,9 +750,9 @@ rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c)); rewrite (ics_aux_ok (interp_m a0 v) c); rewrite H. auto. -simpl in |- *. +simpl. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *. +intro Hr; rewrite (Hr I); simpl. rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c); rewrite (ics_aux_ok (interp_vl v) c). rewrite (interp_m_ok (Aplus a Aone) v). @@ -764,7 +763,7 @@ setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); [ idtac | trivial ]. auto. -elim (varlist_lt l v); simpl in |- *; intros; auto. +elim (varlist_lt l v); simpl; intros; auto. rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c)); rewrite H. rewrite (ics_aux_ok (interp_vl v) c); auto. Qed. @@ -774,11 +773,11 @@ Lemma varlist_insert_ok : Aequiv (interp_setcs (varlist_insert l s)) (Aplus (interp_vl l) (interp_setcs s)). Proof. -simple induction s; simpl in |- *; intros. +simple induction s; simpl; intros. trivial. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *. +intro Hr; rewrite (Hr I); simpl. rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c); rewrite (ics_aux_ok (interp_m a v) c). rewrite (interp_m_ok (Aplus Aone a) v); rewrite (interp_m_ok a v). @@ -787,14 +786,14 @@ setoid_replace (Amult (Aplus Aone a) (interp_vl v)) with [ idtac | trivial ]. setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto. -elim (varlist_lt l v); simpl in |- *; intros; auto. +elim (varlist_lt l v); simpl; intros; auto. rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c)); rewrite (ics_aux_ok (interp_m a v) c). rewrite (interp_m_ok a v). rewrite H; auto. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *. +intro Hr; rewrite (Hr I); simpl. rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c); rewrite (ics_aux_ok (interp_vl v) c). rewrite (interp_m_ok (Aplus Aone Aone) v). @@ -803,7 +802,7 @@ setoid_replace (Amult (Aplus Aone Aone) (interp_vl v)) with [ idtac | trivial ]. setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto. -elim (varlist_lt l v); simpl in |- *; intros; auto. +elim (varlist_lt l v); simpl; intros; auto. rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)). rewrite H. rewrite (ics_aux_ok (interp_vl v) c); auto. @@ -814,7 +813,7 @@ Lemma canonical_sum_scalar_ok : Aequiv (interp_setcs (canonical_sum_scalar a s)) (Amult a (interp_setcs s)). Proof. -simple induction s; simpl in |- *; intros. +simple induction s; simpl; intros. trivial. rewrite (ics_aux_ok (interp_m (Amult a a0) v) (canonical_sum_scalar a c)); @@ -837,7 +836,7 @@ Lemma canonical_sum_scalar2_ok : Aequiv (interp_setcs (canonical_sum_scalar2 l s)) (Amult (interp_vl l) (interp_setcs s)). Proof. -simple induction s; simpl in |- *; intros; auto. +simple induction s; simpl; intros; auto. rewrite (monom_insert_ok a (varlist_merge l v) (canonical_sum_scalar2 l c)). rewrite (ics_aux_ok (interp_m a v) c). rewrite (interp_m_ok a v). @@ -862,7 +861,7 @@ Lemma canonical_sum_scalar3_ok : Aequiv (interp_setcs (canonical_sum_scalar3 c l s)) (Amult c (Amult (interp_vl l) (interp_setcs s))). Proof. -simple induction s; simpl in |- *; intros. +simple induction s; simpl; intros. rewrite (SSR_mult_zero_right S T (interp_vl l)). auto. @@ -911,7 +910,7 @@ Lemma canonical_sum_prod_ok : Aequiv (interp_setcs (canonical_sum_prod x y)) (Amult (interp_setcs x) (interp_setcs y)). Proof. -simple induction x; simpl in |- *; intros. +simple induction x; simpl; intros. trivial. rewrite @@ -945,7 +944,7 @@ Theorem setspolynomial_normalize_ok : forall p:setspolynomial, Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p). Proof. -simple induction p; simpl in |- *; intros; trivial. +simple induction p; simpl; intros; trivial. rewrite (canonical_sum_merge_ok (setspolynomial_normalize s) (setspolynomial_normalize s0)). @@ -961,12 +960,12 @@ Lemma canonical_sum_simplify_ok : forall s:canonical_sum, Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s). Proof. -simple induction s; simpl in |- *; intros. +simple induction s; simpl; intros. trivial. generalize (SSR_eq_prop T a Azero). elim (Aeq a Azero). -simpl in |- *. +simpl. intros. rewrite (ics_aux_ok (interp_m a v) c). rewrite (interp_m_ok a v). @@ -976,19 +975,19 @@ setoid_replace (Amult Azero (interp_vl v)) with Azero; rewrite H. trivial. -intros; simpl in |- *. +intros; simpl. generalize (SSR_eq_prop T a Aone). elim (Aeq a Aone). intros. rewrite (ics_aux_ok (interp_m a v) c). rewrite (interp_m_ok a v). rewrite (H1 I). -simpl in |- *. +simpl. rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)). rewrite H. auto. -simpl in |- *. +simpl. intros. rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)). rewrite (ics_aux_ok (interp_m a v) c). @@ -1004,7 +1003,7 @@ Theorem setspolynomial_simplify_ok : Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p). Proof. intro. -unfold setspolynomial_simplify in |- *. +unfold setspolynomial_simplify. rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)). exact (setspolynomial_normalize_ok p). Qed. @@ -1052,8 +1051,7 @@ Hint Resolve (STh_plus_zero_right2 S T). Hint Resolve (STh_mult_one_right S T). Hint Resolve (STh_mult_one_right2 S T). Hint Resolve (STh_plus_reg_right S plus_morph T). -Hint Resolve refl_equal sym_equal trans_equal. -(*Hints Resolve refl_eqT sym_eqT trans_eqT.*) +Hint Resolve eq_refl eq_sym eq_trans. Hint Immediate T. @@ -1110,7 +1108,7 @@ Unset Implicit Arguments. Lemma setspolynomial_of_ok : forall p:setpolynomial, Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p)). -simple induction p; trivial; simpl in |- *; intros. +simple induction p; trivial; simpl; intros. rewrite H; rewrite H0; trivial. rewrite H; rewrite H0; trivial. rewrite H. @@ -1124,23 +1122,23 @@ Qed. Theorem setpolynomial_normalize_ok : forall p:setpolynomial, setpolynomial_normalize p = setspolynomial_normalize (setspolynomial_of p). -simple induction p; trivial; simpl in |- *; intros. +simple induction p; trivial; simpl; intros. rewrite H; rewrite H0; reflexivity. rewrite H; rewrite H0; reflexivity. -rewrite H; simpl in |- *. +rewrite H; simpl. elim (canonical_sum_scalar3 (Aopp Aone) Nil_var (setspolynomial_normalize (setspolynomial_of s))); [ reflexivity - | simpl in |- *; intros; rewrite H0; reflexivity - | simpl in |- *; intros; rewrite H0; reflexivity ]. + | simpl; intros; rewrite H0; reflexivity + | simpl; intros; rewrite H0; reflexivity ]. Qed. Theorem setpolynomial_simplify_ok : forall p:setpolynomial, Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p). intro. -unfold setpolynomial_simplify in |- *. +unfold setpolynomial_simplify. rewrite (setspolynomial_of_ok p). rewrite setpolynomial_normalize_ok. rewrite diff --git a/plugins/ring/Setoid_ring_theory.v b/plugins/ring/Setoid_ring_theory.v index dd722f80..52f5968b 100644 --- a/plugins/ring/Setoid_ring_theory.v +++ b/plugins/ring/Setoid_ring_theory.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Semi_Setoid_Ring_Theory. intros until 1; case H. -split; intros; simpl in |- *; eauto. +split; intros; simpl; eauto. Defined. Coercion Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory >-> diff --git a/plugins/ring/g_ring.ml4 b/plugins/ring/g_ring.ml4 index e306a531..8953b88f 100644 --- a/plugins/ring/g_ring.ml4 +++ b/plugins/ring/g_ring.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* mkLApp(coq_Pmult, [|th.th_a; aux c1; aux c2 |]) - (* The special case of Zminus *) + (* The special case of Z.sub *) | App (binop, [|c1; c2|]) when safe_pf_conv_x gl c (mkApp (th.th_plus, [|c1; mkApp(unbox th.th_opp, [|c2|])|])) -> @@ -567,7 +567,7 @@ let build_apolynom gl th lc = mkLApp(coq_APplus, [| aux c1; aux c2 |]) | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult -> mkLApp(coq_APmult, [| aux c1; aux c2 |]) - (* The special case of Zminus *) + (* The special case of Z.sub *) | App (binop, [|c1; c2|]) when safe_pf_conv_x gl c (mkApp(th.th_plus, [|c1; mkApp(unbox th.th_opp,[|c2|]) |])) -> @@ -628,7 +628,7 @@ let build_setpolynom gl th lc = mkLApp(coq_SetPplus, [|th.th_a; aux c1; aux c2 |]) | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult -> mkLApp(coq_SetPmult, [|th.th_a; aux c1; aux c2 |]) - (* The special case of Zminus *) + (* The special case of Z.sub *) | App (binop, [|c1; c2|]) when safe_pf_conv_x gl c (mkApp(th.th_plus, [|c1; mkApp(unbox th.th_opp,[|c2|])|])) -> diff --git a/plugins/romega/ReflOmegaCore.v b/plugins/romega/ReflOmegaCore.v index 56ae921e..11d9a071 100644 --- a/plugins/romega/ReflOmegaCore.v +++ b/plugins/romega/ReflOmegaCore.v @@ -86,73 +86,50 @@ Module Z_as_Int <: Int. Definition int := Z. Definition zero := 0. Definition one := 1. - Definition plus := Zplus. - Definition opp := Zopp. - Definition minus := Zminus. - Definition mult := Zmult. + Definition plus := Z.add. + Definition opp := Z.opp. + Definition minus := Z.sub. + Definition mult := Z.mul. Lemma ring : @ring_theory int zero one plus mult minus opp (@eq int). Proof. constructor. - exact Zplus_0_l. - exact Zplus_comm. - exact Zplus_assoc. - exact Zmult_1_l. - exact Zmult_comm. - exact Zmult_assoc. - exact Zmult_plus_distr_l. - unfold minus, Zminus; auto. - exact Zplus_opp_r. + exact Z.add_0_l. + exact Z.add_comm. + exact Z.add_assoc. + exact Z.mul_1_l. + exact Z.mul_comm. + exact Z.mul_assoc. + exact Z.mul_add_distr_r. + unfold minus, Z.sub; auto. + exact Z.add_opp_diag_r. Qed. - Definition le := Zle. - Definition lt := Zlt. - Definition ge := Zge. - Definition gt := Zgt. - Lemma le_lt_iff : forall i j, (i<=j) <-> ~(j (-j)<=(-i). - Proof. - unfold Zle; intros; rewrite <- Zcompare_opp; auto. - Qed. + Lemma opp_le_compat i j : i<=j -> (-j)<=(-i). + Proof. apply -> Z.opp_le_mono. Qed. - Definition compare := Zcompare. - Definition compare_Eq := Zcompare_Eq_iff_eq. - Lemma compare_Lt : forall i j, compare i j = Lt <-> i i>j. - Proof. intros; unfold compare, Zgt; intuition. Qed. + Definition compare := Z.compare. + Definition compare_Eq := Z.compare_eq_iff. + Lemma compare_Lt i j : compare i j = Lt <-> i i>j. + Proof. reflexivity. Qed. - Lemma le_lt_int : forall x y, x x<=y+-(1). - Proof. - intros; split; intros. - generalize (Zlt_left _ _ H); simpl; intros. - apply Zle_left_rev; auto. - apply Zlt_0_minus_lt. - generalize (Zplus_le_lt_compat x (y+-1) (-x) (-x+1) H). - rewrite Zplus_opp_r. - rewrite <-Zplus_assoc. - rewrite (Zplus_permute (-1)). - simpl in *. - rewrite Zplus_0_r. - intro H'; apply H'. - replace (-x+1) with (Zsucc (-x)); auto. - apply Zlt_succ. - Qed. + Definition le_lt_int := Z.lt_le_pred. End Z_as_Int. @@ -363,7 +340,7 @@ Module IntProperties (I:Int). Lemma sum1 : forall a b c d : int, 0 = a -> 0 = b -> 0 = a * c + b * d. Proof. - intros; elim H; elim H0; simpl in |- *; auto. + intros; elim H; elim H0; simpl; auto. now rewrite mult_0_l, mult_0_l, plus_0_l. Qed. @@ -1076,34 +1053,34 @@ Proof. | intros; elim beq_nat_true with (1 := H); trivial ]. Qed. -Ltac trivial_case := unfold not in |- *; intros; discriminate. +Ltac trivial_case := unfold not; intros; discriminate. Theorem eq_term_false : forall t1 t2 : term, eq_term t1 t2 = false -> t1 <> t2. Proof. simple induction t1; - [ intros z t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *; + [ intros z t2; case t2; try trivial_case; simpl; unfold not; intros; elim beq_false with (1 := H); simplify_eq H0; auto - | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *; - intros t21 t22 H3; unfold not in |- *; intro H4; + | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl; + intros t21 t22 H3; unfold not; intro H4; elim andb_false_elim with (1 := H3); intros H5; [ elim H1 with (1 := H5); simplify_eq H4; auto | elim H2 with (1 := H5); simplify_eq H4; auto ] - | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *; - intros t21 t22 H3; unfold not in |- *; intro H4; + | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl; + intros t21 t22 H3; unfold not; intro H4; elim andb_false_elim with (1 := H3); intros H5; [ elim H1 with (1 := H5); simplify_eq H4; auto | elim H2 with (1 := H5); simplify_eq H4; auto ] - | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *; - intros t21 t22 H3; unfold not in |- *; intro H4; + | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl; + intros t21 t22 H3; unfold not; intro H4; elim andb_false_elim with (1 := H3); intros H5; [ elim H1 with (1 := H5); simplify_eq H4; auto | elim H2 with (1 := H5); simplify_eq H4; auto ] - | intros t11 H1 t2; case t2; try trivial_case; simpl in |- *; intros t21 H3; - unfold not in |- *; intro H4; elim H1 with (1 := H3); + | intros t11 H1 t2; case t2; try trivial_case; simpl; intros t21 H3; + unfold not; intro H4; elim H1 with (1 := H3); simplify_eq H4; auto - | intros n t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *; + | intros n t2; case t2; try trivial_case; simpl; unfold not; intros; elim beq_nat_false with (1 := H); simplify_eq H0; auto ]. Qed. @@ -1123,17 +1100,17 @@ Qed. avait utilisé le test précédent et fait une elimination dessus. *) Ltac elim_eq_term t1 t2 := - pattern (eq_term t1 t2) in |- *; apply bool_eq_ind; intro Aux; + pattern (eq_term t1 t2); apply bool_eq_ind; intro Aux; [ generalize (eq_term_true t1 t2 Aux); clear Aux | generalize (eq_term_false t1 t2 Aux); clear Aux ]. Ltac elim_beq t1 t2 := - pattern (beq t1 t2) in |- *; apply bool_eq_ind; intro Aux; + pattern (beq t1 t2); apply bool_eq_ind; intro Aux; [ generalize (beq_true t1 t2 Aux); clear Aux | generalize (beq_false t1 t2 Aux); clear Aux ]. Ltac elim_bgt t1 t2 := - pattern (bgt t1 t2) in |- *; apply bool_eq_ind; intro Aux; + pattern (bgt t1 t2); apply bool_eq_ind; intro Aux; [ generalize (bgt_true t1 t2 Aux); clear Aux | generalize (bgt_false t1 t2 Aux); clear Aux ]. @@ -1209,15 +1186,15 @@ Theorem goal_to_hyps : (interp_hyps envp env l -> False) -> interp_goal envp env l. Proof. simple induction l; - [ simpl in |- *; auto - | simpl in |- *; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ]. + [ simpl; auto + | simpl; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ]. Qed. Theorem hyps_to_goal : forall (envp : list Prop) (env : list int) (l : hyps), interp_goal envp env l -> interp_hyps envp env l -> False. Proof. - simple induction l; simpl in |- *; [ auto | intros; apply H; elim H1; auto ]. + simple induction l; simpl; [ auto | intros; apply H; elim H1; auto ]. Qed. (* \subsection{Manipulations sur les hypothèses} *) @@ -1257,7 +1234,7 @@ Theorem valid_goal : forall (ep : list Prop) (env : list int) (l : hyps) (a : hyps -> hyps), valid_hyps a -> interp_goal ep env (a l) -> interp_goal ep env l. Proof. - intros; simpl in |- *; apply goal_to_hyps; intro H1; + intros; simpl; apply goal_to_hyps; intro H1; apply (hyps_to_goal ep env (a l) H0); apply H; assumption. Qed. @@ -1282,7 +1259,7 @@ Theorem list_goal_to_hyps : forall (envp : list Prop) (env : list int) (l : lhyps), (interp_list_hyps envp env l -> False) -> interp_list_goal envp env l. Proof. - simple induction l; simpl in |- *; + simple induction l; simpl; [ auto | intros h1 l1 H H1; split; [ apply goal_to_hyps; intro H2; apply H1; auto @@ -1293,7 +1270,7 @@ Theorem list_hyps_to_goal : forall (envp : list Prop) (env : list int) (l : lhyps), interp_list_goal envp env l -> interp_list_hyps envp env l -> False. Proof. - simple induction l; simpl in |- *; + simple induction l; simpl; [ auto | intros h1 l1 H (H1, H2) H3; elim H3; intro H4; [ apply hyps_to_goal with (1 := H1); assumption | auto ] ]. @@ -1310,7 +1287,7 @@ Definition valid_list_goal (f : hyps -> lhyps) := Theorem goal_valid : forall f : hyps -> lhyps, valid_list_hyps f -> valid_list_goal f. Proof. - unfold valid_list_goal in |- *; intros f H ep e lp H1; apply goal_to_hyps; + unfold valid_list_goal; intros f H ep e lp H1; apply goal_to_hyps; intro H2; apply list_hyps_to_goal with (1 := H1); apply (H ep e lp); assumption. Qed. @@ -1321,8 +1298,8 @@ Theorem append_valid : interp_list_hyps ep e (l1 ++ l2). Proof. intros ep e; simple induction l1; - [ simpl in |- *; intros l2 [H| H]; [ contradiction | trivial ] - | simpl in |- *; intros h1 t1 HR l2 [[H| H]| H]; + [ simpl; intros l2 [H| H]; [ contradiction | trivial ] + | simpl; intros h1 t1 HR l2 [[H| H]| H]; [ auto | right; apply (HR l2); left; trivial | right; apply (HR l2); right; trivial ] ]. @@ -1338,11 +1315,11 @@ Theorem nth_valid : forall (ep : list Prop) (e : list int) (i : nat) (l : hyps), interp_hyps ep e l -> interp_proposition ep e (nth_hyps i l). Proof. - unfold nth_hyps in |- *; simple induction i; - [ simple induction l; simpl in |- *; [ auto | intros; elim H0; auto ] + unfold nth_hyps; simple induction i; + [ simple induction l; simpl; [ auto | intros; elim H0; auto ] | intros n H; simple induction l; - [ simpl in |- *; trivial - | intros; simpl in |- *; apply H; elim H1; auto ] ]. + [ simpl; trivial + | intros; simpl; apply H; elim H1; auto ] ]. Qed. (* Appliquer une opération (valide) sur deux hypothèses extraites de @@ -1355,7 +1332,7 @@ Theorem apply_oper_2_valid : forall (i j : nat) (f : proposition -> proposition -> proposition), valid2 f -> valid_hyps (apply_oper_2 i j f). Proof. - intros i j f Hf; unfold apply_oper_2, valid_hyps in |- *; simpl in |- *; + intros i j f Hf; unfold apply_oper_2, valid_hyps; simpl; intros lp Hlp; split; [ apply Hf; apply nth_valid; assumption | assumption ]. Qed. @@ -1376,14 +1353,14 @@ Theorem apply_oper_1_valid : forall (i : nat) (f : proposition -> proposition), valid1 f -> valid_hyps (apply_oper_1 i f). Proof. - unfold valid_hyps in |- *; intros i f Hf ep e; elim i; + unfold valid_hyps; intros i f Hf ep e; elim i; [ intro lp; case lp; - [ simpl in |- *; trivial - | simpl in |- *; intros p l' (H1, H2); split; + [ simpl; trivial + | simpl; intros p l' (H1, H2); split; [ apply Hf with (1 := H1) | assumption ] ] | intros n Hrec lp; case lp; - [ simpl in |- *; auto - | simpl in |- *; intros p l' (H1, H2); split; + [ simpl; auto + | simpl; intros p l' (H1, H2); split; [ assumption | apply Hrec; assumption ] ] ]. Qed. @@ -1421,14 +1398,14 @@ Definition apply_both (f g : term -> term) (t : term) := Theorem apply_left_stable : forall f : term -> term, term_stable f -> term_stable (apply_left f). Proof. - unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *; + unfold term_stable; intros f H e t; case t; auto; simpl; intros; elim H; trivial. Qed. Theorem apply_right_stable : forall f : term -> term, term_stable f -> term_stable (apply_right f). Proof. - unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *; + unfold term_stable; intros f H e t; case t; auto; simpl; intros t0 t1; elim H; trivial. Qed. @@ -1436,7 +1413,7 @@ Theorem apply_both_stable : forall f g : term -> term, term_stable f -> term_stable g -> term_stable (apply_both f g). Proof. - unfold term_stable in |- *; intros f g H1 H2 e t; case t; auto; simpl in |- *; + unfold term_stable; intros f g H1 H2 e t; case t; auto; simpl; intros t0 t1; elim H1; elim H2; trivial. Qed. @@ -1444,7 +1421,7 @@ Theorem compose_term_stable : forall f g : term -> term, term_stable f -> term_stable g -> term_stable (fun t : term => f (g t)). Proof. - unfold term_stable in |- *; intros f g Hf Hg e t; elim Hf; apply Hg. + unfold term_stable; intros f g Hf Hg e t; elim Hf; apply Hg. Qed. (* \subsection{Les règles de réécriture} *) @@ -1522,14 +1499,14 @@ Ltac loop t := | (if beq ?X1 ?X2 then _ else _) => let H := fresh "H" in elim_beq X1 X2; intro H; try (rewrite H in *; clear H); - simpl in |- *; auto; Simplify + simpl; auto; Simplify | (if bgt ?X1 ?X2 then _ else _) => let H := fresh "H" in - elim_bgt X1 X2; intro H; simpl in |- *; auto; Simplify + elim_bgt X1 X2; intro H; simpl; auto; Simplify | (if eq_term ?X1 ?X2 then _ else _) => let H := fresh "H" in elim_eq_term X1 X2; intro H; try (rewrite H in *; clear H); - simpl in |- *; auto; Simplify + simpl; auto; Simplify | (if _ && _ then _ else _) => rewrite andb_if; Simplify | (if negb _ then _ else _) => rewrite negb_if; Simplify | _ => fail @@ -1543,7 +1520,7 @@ with Simplify := match goal with Ltac prove_stable x th := match constr:x with | ?X1 => - unfold term_stable, X1 in |- *; intros; Simplify; simpl in |- *; + unfold term_stable, X1; intros; Simplify; simpl; apply th end. @@ -1663,7 +1640,7 @@ Definition T_OMEGA13 (t : term) := Theorem T_OMEGA13_stable : term_stable T_OMEGA13. Proof. - unfold term_stable, T_OMEGA13 in |- *; intros; Simplify; simpl in |- *; + unfold term_stable, T_OMEGA13; intros; Simplify; simpl; apply OMEGA13. Qed. @@ -1910,16 +1887,16 @@ Fixpoint reduce (t : term) : term := Theorem reduce_stable : term_stable reduce. Proof. - unfold term_stable in |- *; intros e t; elim t; auto; + unfold term_stable; intros e t; elim t; auto; try - (intros t0 H0 t1 H1; simpl in |- *; rewrite H0; rewrite H1; + (intros t0 H0 t1 H1; simpl; rewrite H0; rewrite H1; (case (reduce t0); [ intro z0; case (reduce t1); intros; auto | intros; auto | intros; auto | intros; auto | intros; auto - | intros; auto ])); intros t0 H0; simpl in |- *; + | intros; auto ])); intros t0 H0; simpl; rewrite H0; case (reduce t0); intros; auto. Qed. @@ -1944,12 +1921,12 @@ Fixpoint fusion (trace : list t_fusion) (t : term) {struct trace} : term := Theorem fusion_stable : forall t : list t_fusion, term_stable (fusion t). Proof. - simple induction t; simpl in |- *; + simple induction t; simpl; [ exact reduce_stable | intros stp l H; case stp; [ apply compose_term_stable; [ apply apply_right_stable; assumption | exact T_OMEGA10_stable ] - | unfold term_stable in |- *; intros e t1; rewrite T_OMEGA10_stable; + | unfold term_stable; intros e t1; rewrite T_OMEGA10_stable; rewrite Tred_factor5_stable; apply H | apply compose_term_stable; [ apply apply_right_stable; assumption | exact T_OMEGA11_stable ] @@ -1982,7 +1959,7 @@ Fixpoint fusion_cancel (trace : nat) (t : term) {struct trace} : term := Theorem fusion_cancel_stable : forall t : nat, term_stable (fusion_cancel t). Proof. - unfold term_stable, fusion_cancel in |- *; intros trace e; elim trace; + unfold term_stable, fusion_cancel; intros trace e; elim trace; [ exact (reduce_stable e) | intros n H t; elim H; exact (T_OMEGA13_stable e t) ]. Qed. @@ -1999,7 +1976,7 @@ Fixpoint scalar_norm_add (trace : nat) (t : term) {struct trace} : term := Theorem scalar_norm_add_stable : forall t : nat, term_stable (scalar_norm_add t). Proof. - unfold term_stable, scalar_norm_add in |- *; intros trace; elim trace; + unfold term_stable, scalar_norm_add; intros trace; elim trace; [ exact reduce_stable | intros n H e t; elim apply_right_stable; [ exact (T_OMEGA11_stable e t) | exact H ] ]. @@ -2014,7 +1991,7 @@ Fixpoint scalar_norm (trace : nat) (t : term) {struct trace} : term := Theorem scalar_norm_stable : forall t : nat, term_stable (scalar_norm t). Proof. - unfold term_stable, scalar_norm in |- *; intros trace; elim trace; + unfold term_stable, scalar_norm; intros trace; elim trace; [ exact reduce_stable | intros n H e t; elim apply_right_stable; [ exact (T_OMEGA16_stable e t) | exact H ] ]. @@ -2029,7 +2006,7 @@ Fixpoint add_norm (trace : nat) (t : term) {struct trace} : term := Theorem add_norm_stable : forall t : nat, term_stable (add_norm t). Proof. - unfold term_stable, add_norm in |- *; intros trace; elim trace; + unfold term_stable, add_norm; intros trace; elim trace; [ exact reduce_stable | intros n H e t; elim apply_right_stable; [ exact (Tplus_assoc_r_stable e t) | exact H ] ]. @@ -2071,12 +2048,12 @@ Fixpoint t_rewrite (s : step) : term -> term := Theorem t_rewrite_stable : forall s : step, term_stable (t_rewrite s). Proof. - simple induction s; simpl in |- *; + simple induction s; simpl; [ intros; apply apply_both_stable; auto | intros; apply apply_left_stable; auto | intros; apply apply_right_stable; auto - | unfold term_stable in |- *; intros; elim H0; apply H - | unfold term_stable in |- *; auto + | unfold term_stable; intros; elim H0; apply H + | unfold term_stable; auto | exact Topp_plus_stable | exact Topp_opp_stable | exact Topp_mult_r_stable @@ -2116,11 +2093,11 @@ Definition constant_not_nul (i : nat) (h : hyps) := Theorem constant_not_nul_valid : forall i : nat, valid_hyps (constant_not_nul i). Proof. - unfold valid_hyps, constant_not_nul in |- *; intros; - generalize (nth_valid ep e i lp); Simplify; simpl in |- *. + unfold valid_hyps, constant_not_nul; intros; + generalize (nth_valid ep e i lp); Simplify; simpl. - elim_beq i1 i0; auto; simpl in |- *; intros H1 H2; - elim H1; symmetry in |- *; auto. + elim_beq i1 i0; auto; simpl; intros H1 H2; + elim H1; symmetry ; auto. Qed. (* \paragraph{[O_CONSTANT_NEG]} *) @@ -2134,8 +2111,8 @@ Definition constant_neg (i : nat) (h : hyps) := Theorem constant_neg_valid : forall i : nat, valid_hyps (constant_neg i). Proof. - unfold valid_hyps, constant_neg in |- *; intros; - generalize (nth_valid ep e i lp); Simplify; simpl in |- *. + unfold valid_hyps, constant_neg; intros; + generalize (nth_valid ep e i lp); Simplify; simpl. rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition. Qed. @@ -2157,7 +2134,7 @@ Theorem not_exact_divide_valid : forall (k1 k2 : int) (body : term) (t i : nat), valid_hyps (not_exact_divide k1 k2 body t i). Proof. - unfold valid_hyps, not_exact_divide in |- *; intros; + unfold valid_hyps, not_exact_divide; intros; generalize (nth_valid ep e i lp); Simplify. rewrite (scalar_norm_add_stable t e), <-H1. do 2 rewrite <- scalar_norm_add_stable; simpl in *; intros. @@ -2186,16 +2163,16 @@ Definition contradiction (t i j : nat) (l : hyps) := Theorem contradiction_valid : forall t i j : nat, valid_hyps (contradiction t i j). Proof. - unfold valid_hyps, contradiction in |- *; intros t i j ep e l H; + unfold valid_hyps, contradiction; intros t i j ep e l H; generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H); case (nth_hyps i l); auto; intros t1 t2; case t1; auto; case (nth_hyps j l); auto; intros t3 t4; case t3; auto; - simpl in |- *; intros z z' H1 H2; - generalize (refl_equal (interp_term e (fusion_cancel t (t2 + t4)%term))); - pattern (fusion_cancel t (t2 + t4)%term) at 2 3 in |- *; - case (fusion_cancel t (t2 + t4)%term); simpl in |- *; - auto; intro k; elim (fusion_cancel_stable t); simpl in |- *. + simpl; intros z z' H1 H2; + generalize (eq_refl (interp_term e (fusion_cancel t (t2 + t4)%term))); + pattern (fusion_cancel t (t2 + t4)%term) at 2 3; + case (fusion_cancel t (t2 + t4)%term); simpl; + auto; intro k; elim (fusion_cancel_stable t); simpl. Simplify; intro H3. generalize (OMEGA2 _ _ H2 H1); rewrite H3. rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition. @@ -2250,23 +2227,23 @@ Definition negate_contradict_inv (t i1 i2 : nat) (h : hyps) := Theorem negate_contradict_valid : forall i j : nat, valid_hyps (negate_contradict i j). Proof. - unfold valid_hyps, negate_contradict in |- *; intros i j ep e l H; + unfold valid_hyps, negate_contradict; intros i j ep e l H; generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H); case (nth_hyps i l); auto; intros t1 t2; case t1; auto; intros z; auto; case (nth_hyps j l); auto; intros t3 t4; case t3; auto; intros z'; - auto; simpl in |- *; intros H1 H2; Simplify. + auto; simpl; intros H1 H2; Simplify. Qed. Theorem negate_contradict_inv_valid : forall t i j : nat, valid_hyps (negate_contradict_inv t i j). Proof. - unfold valid_hyps, negate_contradict_inv in |- *; intros t i j ep e l H; + unfold valid_hyps, negate_contradict_inv; intros t i j ep e l H; generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H); case (nth_hyps i l); auto; intros t1 t2; case t1; auto; intros z; auto; case (nth_hyps j l); auto; intros t3 t4; case t3; auto; intros z'; - auto; simpl in |- *; intros H1 H2; Simplify; + auto; simpl; intros H1 H2; Simplify; [ rewrite <- scalar_norm_stable in H2; simpl in *; elim (mult_integral (interp_term e t4) (-(1))); intuition; @@ -2333,9 +2310,9 @@ Definition sum (k1 k2 : int) (trace : list t_fusion) Theorem sum_valid : forall (k1 k2 : int) (t : list t_fusion), valid2 (sum k1 k2 t). Proof. - unfold valid2 in |- *; intros k1 k2 t ep e p1 p2; unfold sum in |- *; - Simplify; simpl in |- *; auto; try elim (fusion_stable t); - simpl in |- *; intros; + unfold valid2; intros k1 k2 t ep e p1 p2; unfold sum; + Simplify; simpl; auto; try elim (fusion_stable t); + simpl; intros; [ apply sum1; assumption | apply sum2; try assumption; apply sum4; assumption | rewrite plus_comm; apply sum2; try assumption; apply sum4; assumption @@ -2367,10 +2344,10 @@ Definition exact_divide (k : int) (body : term) (t : nat) Theorem exact_divide_valid : forall (k : int) (t : term) (n : nat), valid1 (exact_divide k t n). Proof. - unfold valid1, exact_divide in |- *; intros k1 k2 t ep e p1; + unfold valid1, exact_divide; intros k1 k2 t ep e p1; Simplify; simpl; auto; subst; rewrite <- scalar_norm_stable; simpl; intros; - [ destruct (mult_integral _ _ (sym_eq H0)); intuition + [ destruct (mult_integral _ _ (eq_sym H0)); intuition | contradict H0; rewrite <- H0, mult_0_l; auto ]. Qed. @@ -2397,9 +2374,9 @@ Theorem divide_and_approx_valid : forall (k1 k2 : int) (body : term) (t : nat), valid1 (divide_and_approx k1 k2 body t). Proof. - unfold valid1, divide_and_approx in |- *; intros k1 k2 body t ep e p1; + unfold valid1, divide_and_approx; intros k1 k2 body t ep e p1; Simplify; simpl; auto; subst; - elim (scalar_norm_add_stable t e); simpl in |- *. + elim (scalar_norm_add_stable t e); simpl. intro H2; apply mult_le_approx with (3 := H2); assumption. Qed. @@ -2421,9 +2398,9 @@ Definition merge_eq (t : nat) (prop1 prop2 : proposition) := Theorem merge_eq_valid : forall n : nat, valid2 (merge_eq n). Proof. - unfold valid2, merge_eq in |- *; intros n ep e p1 p2; Simplify; simpl in |- *; - auto; elim (scalar_norm_stable n e); simpl in |- *; - intros; symmetry in |- *; apply OMEGA8 with (2 := H0); + unfold valid2, merge_eq; intros n ep e p1 p2; Simplify; simpl; + auto; elim (scalar_norm_stable n e); simpl; + intros; symmetry ; apply OMEGA8 with (2 := H0); [ assumption | elim opp_eq_mult_neg_1; trivial ]. Qed. @@ -2440,8 +2417,8 @@ Definition constant_nul (i : nat) (h : hyps) := Theorem constant_nul_valid : forall i : nat, valid_hyps (constant_nul i). Proof. - unfold valid_hyps, constant_nul in |- *; intros; - generalize (nth_valid ep e i lp); Simplify; simpl in |- *; + unfold valid_hyps, constant_nul; intros; + generalize (nth_valid ep e i lp); Simplify; simpl; intro H1; absurd (0 = 0); intuition. Qed. @@ -2462,8 +2439,8 @@ Definition state (m : int) (s : step) (prop1 prop2 : proposition) := Theorem state_valid : forall (m : int) (s : step), valid2 (state m s). Proof. - unfold valid2 in |- *; intros m s ep e p1 p2; unfold state in |- *; Simplify; - simpl in |- *; auto; elim (t_rewrite_stable s e); simpl in |- *; + unfold valid2; intros m s ep e p1 p2; unfold state; Simplify; + simpl; auto; elim (t_rewrite_stable s e); simpl; intros H1 H2; elim H1. now rewrite H2, plus_opp_l, plus_0_l, mult_0_l. Qed. @@ -2490,18 +2467,18 @@ Theorem split_ineq_valid : valid_list_hyps f1 -> valid_list_hyps f2 -> valid_list_hyps (split_ineq i t f1 f2). Proof. - unfold valid_list_hyps, split_ineq in |- *; intros i t f1 f2 H1 H2 ep e lp H; + unfold valid_list_hyps, split_ineq; intros i t f1 f2 H1 H2 ep e lp H; generalize (nth_valid _ _ i _ H); case (nth_hyps i lp); - simpl in |- *; auto; intros t1 t2; case t1; simpl in |- *; - auto; intros z; simpl in |- *; auto; intro H3. + simpl; auto; intros t1 t2; case t1; simpl; + auto; intros z; simpl; auto; intro H3. Simplify. apply append_valid; elim (OMEGA19 (interp_term e t2)); - [ intro H4; left; apply H1; simpl in |- *; elim (add_norm_stable t); - simpl in |- *; auto - | intro H4; right; apply H2; simpl in |- *; elim (scalar_norm_add_stable t); - simpl in |- *; auto - | generalize H3; unfold not in |- *; intros E1 E2; apply E1; - symmetry in |- *; trivial ]. + [ intro H4; left; apply H1; simpl; elim (add_norm_stable t); + simpl; auto + | intro H4; right; apply H2; simpl; elim (scalar_norm_add_stable t); + simpl; auto + | generalize H3; unfold not; intros E1 E2; apply E1; + symmetry ; trivial ]. Qed. @@ -2534,47 +2511,47 @@ Fixpoint execute_omega (t : t_omega) (l : hyps) {struct t} : lhyps := Theorem omega_valid : forall t : t_omega, valid_list_hyps (execute_omega t). Proof. - simple induction t; simpl in |- *; - [ unfold valid_list_hyps in |- *; simpl in |- *; intros; left; + simple induction t; simpl; + [ unfold valid_list_hyps; simpl; intros; left; apply (constant_not_nul_valid n ep e lp H) - | unfold valid_list_hyps in |- *; simpl in |- *; intros; left; + | unfold valid_list_hyps; simpl; intros; left; apply (constant_neg_valid n ep e lp H) - | unfold valid_list_hyps, valid_hyps in |- *; + | unfold valid_list_hyps, valid_hyps; intros k1 k2 body n t' Ht' m ep e lp H; apply Ht'; apply (apply_oper_1_valid m (divide_and_approx k1 k2 body n) (divide_and_approx_valid k1 k2 body n) ep e lp H) - | unfold valid_list_hyps in |- *; simpl in |- *; intros; left; + | unfold valid_list_hyps; simpl; intros; left; apply (not_exact_divide_valid i i0 t0 n n0 ep e lp H) - | unfold valid_list_hyps, valid_hyps in |- *; + | unfold valid_list_hyps, valid_hyps; intros k body n t' Ht' m ep e lp H; apply Ht'; apply (apply_oper_1_valid m (exact_divide k body n) (exact_divide_valid k body n) ep e lp H) - | unfold valid_list_hyps, valid_hyps in |- *; + | unfold valid_list_hyps, valid_hyps; intros k1 i1 k2 i2 trace t' Ht' ep e lp H; apply Ht'; apply (apply_oper_2_valid i1 i2 (sum k1 k2 trace) (sum_valid k1 k2 trace) ep e lp H) - | unfold valid_list_hyps in |- *; simpl in |- *; intros; left; + | unfold valid_list_hyps; simpl; intros; left; apply (contradiction_valid n n0 n1 ep e lp H) - | unfold valid_list_hyps, valid_hyps in |- *; + | unfold valid_list_hyps, valid_hyps; intros trace i1 i2 t' Ht' ep e lp H; apply Ht'; apply (apply_oper_2_valid i1 i2 (merge_eq trace) (merge_eq_valid trace) ep e lp H) - | intros t' i k1 H1 k2 H2; unfold valid_list_hyps in |- *; simpl in |- *; + | intros t' i k1 H1 k2 H2; unfold valid_list_hyps; simpl; intros ep e lp H; apply (split_ineq_valid i t' (execute_omega k1) (execute_omega k2) H1 H2 ep e lp H) - | unfold valid_list_hyps in |- *; simpl in |- *; intros i ep e lp H; left; + | unfold valid_list_hyps; simpl; intros i ep e lp H; left; apply (constant_nul_valid i ep e lp H) - | unfold valid_list_hyps in |- *; simpl in |- *; intros i j ep e lp H; left; + | unfold valid_list_hyps; simpl; intros i j ep e lp H; left; apply (negate_contradict_valid i j ep e lp H) - | unfold valid_list_hyps in |- *; simpl in |- *; intros n i j ep e lp H; + | unfold valid_list_hyps; simpl; intros n i j ep e lp H; left; apply (negate_contradict_inv_valid n i j ep e lp H) - | unfold valid_list_hyps, valid_hyps in |- *; + | unfold valid_list_hyps, valid_hyps; intros m s i1 i2 t' Ht' ep e lp H; apply Ht'; apply (apply_oper_2_valid i1 i2 (state m s) (state_valid m s) ep e lp H) ]. Qed. @@ -2596,9 +2573,9 @@ Definition move_right (s : step) (p : proposition) := Theorem move_right_valid : forall s : step, valid1 (move_right s). Proof. - unfold valid1, move_right in |- *; intros s ep e p; Simplify; simpl in |- *; - elim (t_rewrite_stable s e); simpl in |- *; - [ symmetry in |- *; apply egal_left; assumption + unfold valid1, move_right; intros s ep e p; Simplify; simpl; + elim (t_rewrite_stable s e); simpl; + [ symmetry ; apply egal_left; assumption | intro; apply le_left; assumption | intro; apply le_left; rewrite <- ge_le_iff; assumption | intro; apply lt_left; rewrite <- gt_lt_iff; assumption @@ -2611,7 +2588,7 @@ Definition do_normalize (i : nat) (s : step) := apply_oper_1 i (move_right s). Theorem do_normalize_valid : forall (i : nat) (s : step), valid_hyps (do_normalize i s). Proof. - intros; unfold do_normalize in |- *; apply apply_oper_1_valid; + intros; unfold do_normalize; apply apply_oper_1_valid; apply move_right_valid. Qed. @@ -2625,7 +2602,7 @@ Fixpoint do_normalize_list (l : list step) (i : nat) Theorem do_normalize_list_valid : forall (l : list step) (i : nat), valid_hyps (do_normalize_list l i). Proof. - simple induction l; simpl in |- *; unfold valid_hyps in |- *; + simple induction l; simpl; unfold valid_hyps; [ auto | intros a l' Hl' i ep e lp H; unfold valid_hyps in Hl'; apply Hl'; apply (do_normalize_valid i a ep e lp); assumption ]. @@ -2654,8 +2631,8 @@ Theorem append_goal : interp_list_goal ep e (l1 ++ l2). Proof. intros ep e; simple induction l1; - [ simpl in |- *; intros l2 (H1, H2); assumption - | simpl in |- *; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ]. + [ simpl; intros l2 (H1, H2); assumption + | simpl; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ]. Qed. (* A simple decidability checker : if the proposition belongs to the @@ -2684,11 +2661,11 @@ Theorem decidable_correct : forall (ep : list Prop) (e : list int) (p : proposition), decidability p = true -> decidable (interp_proposition ep e p). Proof. - simple induction p; simpl in |- *; intros; + simple induction p; simpl; intros; [ apply dec_eq | apply dec_le | left; auto - | right; unfold not in |- *; auto + | right; unfold not; auto | apply dec_not; auto | apply dec_ge | apply dec_gt @@ -2724,7 +2701,7 @@ Theorem interp_full_false : forall (ep : list Prop) (e : list int) (l : hyps) (c : proposition), (interp_hyps ep e l -> interp_proposition ep e c) -> interp_full ep e (l, c). Proof. - simple induction l; unfold interp_full in |- *; simpl in |- *; + simple induction l; unfold interp_full; simpl; [ auto | intros a l1 H1 c H2 H3; apply H1; auto ]. Qed. @@ -2744,12 +2721,12 @@ Theorem to_contradict_valid : forall (ep : list Prop) (e : list int) (lc : hyps * proposition), interp_goal ep e (to_contradict lc) -> interp_full ep e lc. Proof. - intros ep e lc; case lc; intros l c; simpl in |- *; - pattern (decidability c) in |- *; apply bool_eq_ind; - [ simpl in |- *; intros H H1; apply interp_full_false; intros H2; + intros ep e lc; case lc; intros l c; simpl; + pattern (decidability c); apply bool_eq_ind; + [ simpl; intros H H1; apply interp_full_false; intros H2; apply not_not; [ apply decidable_correct; assumption - | unfold not at 1 in |- *; intro H3; apply hyps_to_goal with (2 := H2); + | unfold not at 1; intro H3; apply hyps_to_goal with (2 := H2); auto ] | intros H1 H2; apply interp_full_false; intro H3; elim hyps_to_goal with (1 := H2); assumption ]. @@ -2813,7 +2790,7 @@ Theorem map_cons_val : interp_proposition ep e p -> interp_list_hyps ep e l -> interp_list_hyps ep e (map_cons _ p l). Proof. - simple induction l; simpl in |- *; [ auto | intros; elim H1; intro H2; auto ]. + simple induction l; simpl; [ auto | intros; elim H1; intro H2; auto ]. Qed. Hint Resolve map_cons_val append_valid decidable_correct. @@ -2822,43 +2799,43 @@ Theorem destructure_hyps_valid : forall n : nat, valid_list_hyps (destructure_hyps n). Proof. simple induction n; - [ unfold valid_list_hyps in |- *; simpl in |- *; auto - | unfold valid_list_hyps at 2 in |- *; intros n1 H ep e lp; case lp; - [ simpl in |- *; auto + [ unfold valid_list_hyps; simpl; auto + | unfold valid_list_hyps at 2; intros n1 H ep e lp; case lp; + [ simpl; auto | intros p l; case p; try - (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0; + (simpl; intros; apply map_cons_val; simpl; elim H0; auto); [ intro p'; case p'; try - (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0; + (simpl; intros; apply map_cons_val; simpl; elim H0; auto); - [ simpl in |- *; intros p1 (H1, H2); - pattern (decidability p1) in |- *; apply bool_eq_ind; + [ simpl; intros p1 (H1, H2); + pattern (decidability p1); apply bool_eq_ind; intro H3; - [ apply H; simpl in |- *; split; + [ apply H; simpl; split; [ apply not_not; auto | assumption ] | auto ] - | simpl in |- *; intros p1 p2 (H1, H2); apply H; simpl in |- *; + | simpl; intros p1 p2 (H1, H2); apply H; simpl; elim not_or with (1 := H1); auto - | simpl in |- *; intros p1 p2 (H1, H2); - pattern (decidability p1) in |- *; apply bool_eq_ind; + | simpl; intros p1 p2 (H1, H2); + pattern (decidability p1); apply bool_eq_ind; intro H3; [ apply append_valid; elim not_and with (2 := H1); - [ intro; left; apply H; simpl in |- *; auto - | intro; right; apply H; simpl in |- *; auto + [ intro; left; apply H; simpl; auto + | intro; right; apply H; simpl; auto | auto ] | auto ] ] - | simpl in |- *; intros p1 p2 (H1, H2); apply append_valid; - (elim H1; intro H3; simpl in |- *; [ left | right ]); - apply H; simpl in |- *; auto - | simpl in |- *; intros; apply H; simpl in |- *; tauto - | simpl in |- *; intros p1 p2 (H1, H2); - pattern (decidability p1) in |- *; apply bool_eq_ind; + | simpl; intros p1 p2 (H1, H2); apply append_valid; + (elim H1; intro H3; simpl; [ left | right ]); + apply H; simpl; auto + | simpl; intros; apply H; simpl; tauto + | simpl; intros p1 p2 (H1, H2); + pattern (decidability p1); apply bool_eq_ind; intro H3; [ apply append_valid; elim imp_simp with (2 := H1); - [ intro H4; left; simpl in |- *; apply H; simpl in |- *; auto - | intro H4; right; simpl in |- *; apply H; simpl in |- *; auto + [ intro H4; left; simpl; apply H; simpl; auto + | intro H4; right; simpl; apply H; simpl; auto | auto ] | auto ] ] ] ]. Qed. @@ -2881,8 +2858,8 @@ Theorem p_apply_left_stable : forall f : proposition -> proposition, prop_stable f -> prop_stable (p_apply_left f). Proof. - unfold prop_stable in |- *; intros f H ep e p; split; - (case p; simpl in |- *; auto; intros p1; elim (H ep e p1); tauto). + unfold prop_stable; intros f H ep e p; split; + (case p; simpl; auto; intros p1; elim (H ep e p1); tauto). Qed. Definition p_apply_right (f : proposition -> proposition) @@ -2899,8 +2876,8 @@ Theorem p_apply_right_stable : forall f : proposition -> proposition, prop_stable f -> prop_stable (p_apply_right f). Proof. - unfold prop_stable in |- *; intros f H ep e p; split; - (case p; simpl in |- *; auto; + unfold prop_stable; intros f H ep e p; split; + (case p; simpl; auto; [ intros p1; elim (H ep e p1); tauto | intros p1 p2; elim (H ep e p2); tauto | intros p1 p2; elim (H ep e p2); tauto @@ -2923,42 +2900,42 @@ Theorem p_invert_stable : forall f : proposition -> proposition, prop_stable f -> prop_stable (p_invert f). Proof. - unfold prop_stable in |- *; intros f H ep e p; split; - (case p; simpl in |- *; auto; - [ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl in |- *; + unfold prop_stable; intros f H ep e p; split; + (case p; simpl; auto; + [ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl; generalize (dec_eq (interp_term e t1) (interp_term e t2)); - unfold decidable in |- *; tauto - | intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl in |- *; + unfold decidable; tauto + | intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl; generalize (dec_gt (interp_term e t1) (interp_term e t2)); - unfold decidable in |- *; rewrite le_lt_iff, <- gt_lt_iff; tauto - | intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl in |- *; + unfold decidable; rewrite le_lt_iff, <- gt_lt_iff; tauto + | intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl; generalize (dec_lt (interp_term e t1) (interp_term e t2)); - unfold decidable in |- *; rewrite ge_le_iff, le_lt_iff; tauto - | intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl in |- *; + unfold decidable; rewrite ge_le_iff, le_lt_iff; tauto + | intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl; generalize (dec_gt (interp_term e t1) (interp_term e t2)); - unfold decidable in |- *; repeat rewrite le_lt_iff; + unfold decidable; repeat rewrite le_lt_iff; repeat rewrite gt_lt_iff; tauto - | intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl in |- *; + | intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl; generalize (dec_lt (interp_term e t1) (interp_term e t2)); - unfold decidable in |- *; repeat rewrite ge_le_iff; + unfold decidable; repeat rewrite ge_le_iff; repeat rewrite le_lt_iff; tauto - | intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl in |- *; + | intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl; generalize (dec_eq (interp_term e t1) (interp_term e t2)); unfold decidable; tauto ]). Qed. Theorem move_right_stable : forall s : step, prop_stable (move_right s). Proof. - unfold move_right, prop_stable in |- *; intros s ep e p; split; - [ Simplify; simpl in |- *; elim (t_rewrite_stable s e); simpl in |- *; - [ symmetry in |- *; apply egal_left; assumption + unfold move_right, prop_stable; intros s ep e p; split; + [ Simplify; simpl; elim (t_rewrite_stable s e); simpl; + [ symmetry ; apply egal_left; assumption | intro; apply le_left; assumption | intro; apply le_left; rewrite <- ge_le_iff; assumption | intro; apply lt_left; rewrite <- gt_lt_iff; assumption | intro; apply lt_left; assumption | intro; apply ne_left_2; assumption ] - | case p; simpl in |- *; intros; auto; generalize H; elim (t_rewrite_stable s); - simpl in |- *; intro H1; + | case p; simpl; intros; auto; generalize H; elim (t_rewrite_stable s); + simpl; intro H1; [ rewrite (plus_0_r_reverse (interp_term e t0)); rewrite H1; rewrite plus_permute; rewrite plus_opp_r; rewrite plus_0_r; trivial @@ -2969,7 +2946,7 @@ Proof. rewrite plus_opp_r; assumption | rewrite gt_lt_iff; apply lt_left_inv; assumption | apply lt_left_inv; assumption - | unfold not in |- *; intro H2; apply H1; + | unfold not; intro H2; apply H1; rewrite H2; rewrite plus_opp_r; trivial ] ]. Qed. @@ -2985,12 +2962,12 @@ Fixpoint p_rewrite (s : p_step) : proposition -> proposition := Theorem p_rewrite_stable : forall s : p_step, prop_stable (p_rewrite s). Proof. - simple induction s; simpl in |- *; + simple induction s; simpl; [ intros; apply p_apply_left_stable; trivial | intros; apply p_apply_right_stable; trivial | intros; apply p_invert_stable; apply move_right_stable | apply move_right_stable - | unfold prop_stable in |- *; simpl in |- *; intros; split; auto ]. + | unfold prop_stable; simpl; intros; split; auto ]. Qed. Fixpoint normalize_hyps (l : list h_step) (lh : hyps) {struct l} : hyps := @@ -3002,11 +2979,11 @@ Fixpoint normalize_hyps (l : list h_step) (lh : hyps) {struct l} : hyps := Theorem normalize_hyps_valid : forall l : list h_step, valid_hyps (normalize_hyps l). Proof. - simple induction l; unfold valid_hyps in |- *; simpl in |- *; + simple induction l; unfold valid_hyps; simpl; [ auto | intros n_s r; case n_s; intros n s H ep e lp H1; apply H; apply apply_oper_1_valid; - [ unfold valid1 in |- *; intros ep1 e1 p1 H2; + [ unfold valid1; intros ep1 e1 p1 H2; elim (p_rewrite_stable s ep1 e1 p1); auto | assumption ] ]. Qed. @@ -3073,21 +3050,21 @@ Theorem extract_valid : forall s : list direction, valid1 (extract_hyp_pos s) /\ co_valid1 (extract_hyp_neg s). Proof. - unfold valid1, co_valid1 in |- *; simple induction s; + unfold valid1, co_valid1; simple induction s; [ split; - [ simpl in |- *; auto - | intros ep e p1; case p1; simpl in |- *; auto; intro p; - pattern (decidability p) in |- *; apply bool_eq_ind; + [ simpl; auto + | intros ep e p1; case p1; simpl; auto; intro p; + pattern (decidability p); apply bool_eq_ind; [ intro H; generalize (decidable_correct ep e p H); - unfold decidable in |- *; tauto - | simpl in |- *; auto ] ] + unfold decidable; tauto + | simpl; auto ] ] | intros a s' (H1, H2); simpl in H2; split; intros ep e p; case a; auto; - case p; auto; simpl in |- *; intros; + case p; auto; simpl; intros; (apply H1; tauto) || (apply H2; tauto) || - (pattern (decidability p0) in |- *; apply bool_eq_ind; + (pattern (decidability p0); apply bool_eq_ind; [ intro H3; generalize (decidable_correct ep e p0 H3); - unfold decidable in |- *; intro H4; apply H1; + unfold decidable; intro H4; apply H1; tauto | intro; tauto ]) ]. Qed. @@ -3117,29 +3094,29 @@ Fixpoint decompose_solve (s : e_step) (h : hyps) {struct s} : lhyps := Theorem decompose_solve_valid : forall s : e_step, valid_list_goal (decompose_solve s). Proof. - intro s; apply goal_valid; unfold valid_list_hyps in |- *; elim s; - simpl in |- *; intros; + intro s; apply goal_valid; unfold valid_list_hyps; elim s; + simpl; intros; [ cut (interp_proposition ep e1 (extract_hyp_pos l (nth_hyps n lp))); - [ case (extract_hyp_pos l (nth_hyps n lp)); simpl in |- *; auto; - [ intro p; case p; simpl in |- *; auto; intros p1 p2 H2; - pattern (decidability p1) in |- *; apply bool_eq_ind; + [ case (extract_hyp_pos l (nth_hyps n lp)); simpl; auto; + [ intro p; case p; simpl; auto; intros p1 p2 H2; + pattern (decidability p1); apply bool_eq_ind; [ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4; apply append_valid; elim H4; intro H5; - [ right; apply H0; simpl in |- *; tauto - | left; apply H; simpl in |- *; tauto ] - | simpl in |- *; auto ] - | intros p1 p2 H2; apply append_valid; simpl in |- *; elim H2; - [ intros H3; left; apply H; simpl in |- *; auto - | intros H3; right; apply H0; simpl in |- *; auto ] + [ right; apply H0; simpl; tauto + | left; apply H; simpl; tauto ] + | simpl; auto ] + | intros p1 p2 H2; apply append_valid; simpl; elim H2; + [ intros H3; left; apply H; simpl; auto + | intros H3; right; apply H0; simpl; auto ] | intros p1 p2 H2; - pattern (decidability p1) in |- *; apply bool_eq_ind; + pattern (decidability p1); apply bool_eq_ind; [ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4; apply append_valid; elim H4; intro H5; - [ right; apply H0; simpl in |- *; tauto - | left; apply H; simpl in |- *; tauto ] - | simpl in |- *; auto ] ] + [ right; apply H0; simpl; tauto + | left; apply H; simpl; tauto ] + | simpl; auto ] ] | elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto ] - | intros; apply H; simpl in |- *; split; + | intros; apply H; simpl; split; [ elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto | auto ] | apply omega_valid with (1 := H) ]. @@ -3160,11 +3137,11 @@ Fixpoint reduce_lhyps (lp : lhyps) : lhyps := Theorem reduce_lhyps_valid : valid_lhyps reduce_lhyps. Proof. - unfold valid_lhyps in |- *; intros ep e lp; elim lp; - [ simpl in |- *; auto + unfold valid_lhyps; intros ep e lp; elim lp; + [ simpl; auto | intros a l HR; elim a; - [ simpl in |- *; tauto - | intros a1 l1; case l1; case a1; simpl in |- *; try tauto ] ]. + [ simpl; tauto + | intros a1 l1; case l1; case a1; simpl; try tauto ] ]. Qed. Theorem do_reduce_lhyps : @@ -3184,13 +3161,13 @@ Definition do_concl_to_hyp : interp_goal envp env (concl_to_hyp c :: l) -> interp_goal_concl c envp env l. Proof. - simpl in |- *; intros envp env c l; induction l as [| a l Hrecl]; - [ simpl in |- *; unfold concl_to_hyp in |- *; - pattern (decidability c) in |- *; apply bool_eq_ind; + simpl; intros envp env c l; induction l as [| a l Hrecl]; + [ simpl; unfold concl_to_hyp; + pattern (decidability c); apply bool_eq_ind; [ intro H; generalize (decidable_correct envp env c H); - unfold decidable in |- *; simpl in |- *; tauto - | simpl in |- *; intros H1 H2; elim H2; trivial ] - | simpl in |- *; tauto ]. + unfold decidable; simpl; tauto + | simpl; intros H1 H2; elim H2; trivial ] + | simpl; tauto ]. Qed. Definition omega_tactic (t1 : e_step) (t2 : list h_step) @@ -3203,7 +3180,7 @@ Theorem do_omega : interp_list_goal envp env (omega_tactic t1 t2 c l) -> interp_goal_concl c envp env l. Proof. - unfold omega_tactic in |- *; intros; apply do_concl_to_hyp; + unfold omega_tactic; intros; apply do_concl_to_hyp; apply (normalize_hyps_goal t2); apply (decompose_solve_valid t1); apply do_reduce_lhyps; assumption. Qed. diff --git a/plugins/rtauto/Bintree.v b/plugins/rtauto/Bintree.v index 77f8f834..98dd257d 100644 --- a/plugins/rtauto/Bintree.v +++ b/plugins/rtauto/Bintree.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (p ?= q) = Gt. + (p ?= Pos.succ q) = Gt -> (p ?= q) = Gt. Proof. intros. rewrite <- Pos.compare_succ_succ. now apply Pos.lt_gt, Pos.lt_lt_succ, Pos.gt_lt. Qed. Lemma Psucc_Gt : forall p, - (Psucc p ?= p) = Gt. + (Pos.succ p ?= p) = Gt. Proof. intros. apply Pos.lt_gt, Pos.lt_succ_diag_r. Qed. @@ -181,7 +181,7 @@ mkStore {index:positive;contents:Tree}. Definition empty := mkStore xH Tempty. Definition push a S := -mkStore (Psucc (index S)) (Tadd (index S) a (contents S)). +mkStore (Pos.succ (index S)) (Tadd (index S) a (contents S)). Definition get i S := Tget i (contents S). @@ -214,7 +214,7 @@ intros a S. rewrite Tget_Tadd. rewrite Psucc_Gt. intro W. -change (get (Psucc (index S)) S =PNone). +change (get (Pos.succ (index S)) S =PNone). apply get_Full_Gt; auto. apply Psucc_Gt. Qed. @@ -248,7 +248,7 @@ forall x, get i S = PSome x -> Proof. intros i a S F x H. case_eq (i ?= index S);intro test. -rewrite (Pcompare_Eq_eq _ _ test) in H. +rewrite (Pos.compare_eq _ _ test) in H. rewrite (get_Full_Eq _ F) in H;congruence. rewrite <- H. rewrite (get_push_Full i a). @@ -260,13 +260,13 @@ Qed. Lemma Full_index_one_empty : forall S, Full S -> index S = 1 -> S=empty. intros [ind cont] F one; inversion F. reflexivity. -simpl index in one;assert (h:=Psucc_not_one (index S)). +simpl index in one;assert (h:=Pos.succ_not_1 (index S)). congruence. Qed. Lemma push_not_empty: forall a S, (push a S) <> empty. intros a [ind cont];unfold push,empty. -simpl;intro H;injection H; intros _ ; apply Psucc_not_one. +simpl;intro H;injection H; intros _ ; apply Pos.succ_not_1. Qed. Fixpoint In (x:A) (S:Store) (F:Full S) {struct F}: Prop := diff --git a/plugins/rtauto/Rtauto.v b/plugins/rtauto/Rtauto.v index 9cae7a44..3b596238 100644 --- a/plugins/rtauto/Rtauto.v +++ b/plugins/rtauto/Rtauto.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* constr:(N_of_nat t) + true => constr:(N.of_nat t) | _ => constr:InitialRing.NotConstant end. diff --git a/plugins/setoid_ring/BinList.v b/plugins/setoid_ring/BinList.v index 7128280a..b3c59457 100644 --- a/plugins/setoid_ring/BinList.v +++ b/plugins/setoid_ring/BinList.v @@ -1,16 +1,15 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* tail l + | xH => tl l | xO p => jump p (jump p l) - | xI p => jump p (jump p (tail l)) + | xI p => jump p (jump p (tl l)) end. Fixpoint nth (p:positive) (l:list A) {struct p} : A:= match p with | xH => hd default l | xO p => nth p (jump p l) - | xI p => nth p (jump p (tail l)) + | xI p => nth p (jump p (tl l)) end. - Lemma jump_tl : forall j l, tail (jump j l) = jump j (tail l). + Lemma jump_tl : forall j l, tl (jump j l) = jump j (tl l). Proof. - induction j;simpl;intros. - repeat rewrite IHj;trivial. - repeat rewrite IHj;trivial. - trivial. + induction j;simpl;intros; now rewrite ?IHj. Qed. - Lemma jump_Psucc : forall j l, - (jump (Psucc j) l) = (jump 1 (jump j l)). + Lemma jump_succ : forall j l, + jump (Pos.succ j) l = jump 1 (jump j l). Proof. induction j;simpl;intros. - repeat rewrite IHj;simpl;repeat rewrite jump_tl;trivial. - repeat rewrite jump_tl;trivial. - trivial. + - rewrite !IHj; simpl; now rewrite !jump_tl. + - now rewrite !jump_tl. + - trivial. Qed. - Lemma jump_Pplus : forall i j l, - (jump (i + j) l) = (jump i (jump j l)). + Lemma jump_add : forall i j l, + jump (i + j) l = jump i (jump j l). Proof. - induction i;intros. - rewrite xI_succ_xO;rewrite Pplus_one_succ_r. - rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc. - repeat rewrite IHi. - rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite jump_Psucc;trivial. - rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc. - repeat rewrite IHi;trivial. - rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite jump_Psucc;trivial. + induction i using Pos.peano_ind; intros. + - now rewrite Pos.add_1_l, jump_succ. + - now rewrite Pos.add_succ_l, !jump_succ, IHi. Qed. - Lemma jump_Pdouble_minus_one : forall i l, - (jump (Pdouble_minus_one i) (tail l)) = (jump i (jump i l)). + Lemma jump_pred_double : forall i l, + jump (Pos.pred_double i) (tl l) = jump i (jump i l). Proof. induction i;intros;simpl. - repeat rewrite jump_tl;trivial. - rewrite IHi. do 2 rewrite <- jump_tl;rewrite IHi;trivial. - trivial. + - now rewrite !jump_tl. + - now rewrite IHi, <- 2 jump_tl, IHi. + - trivial. Qed. - - Lemma nth_jump : forall p l, nth p (tail l) = hd default (jump p l). + Lemma nth_jump : forall p l, nth p (tl l) = hd default (jump p l). Proof. induction p;simpl;intros. - rewrite <-jump_tl;rewrite IHp;trivial. - rewrite <-jump_tl;rewrite IHp;trivial. - trivial. + - now rewrite <-jump_tl, IHp. + - now rewrite <-jump_tl, IHp. + - trivial. Qed. - Lemma nth_Pdouble_minus_one : - forall p l, nth (Pdouble_minus_one p) (tail l) = nth p (jump p l). + Lemma nth_pred_double : + forall p l, nth (Pos.pred_double p) (tl l) = nth p (jump p l). Proof. induction p;simpl;intros. - repeat rewrite jump_tl;trivial. - rewrite jump_Pdouble_minus_one. - repeat rewrite <- jump_tl;rewrite IHp;trivial. - trivial. + - now rewrite !jump_tl. + - now rewrite jump_pred_double, <- !jump_tl, IHp. + - trivial. Qed. End MakeBinList. - - diff --git a/plugins/setoid_ring/Cring.v b/plugins/setoid_ring/Cring.v index 3d6e53fc..02194d4f 100644 --- a/plugins/setoid_ring/Cring.v +++ b/plugins/setoid_ring/Cring.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* let t := constr:(@Ring_polynom.norm_subst - Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool Z.quotrem O nil e) in + Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool Z.quotrem O nil e) in let te := constr:(@Ring_polynom.Pphi_dev _ 0 1 _+_ _*_ _-_ -_ @@ -149,7 +148,7 @@ Ltac cring_simplify_aux lterm fv lexpr hyp := let t':= fresh "t" in pose (t' := nft); assert (eq1 : t = t'); - [vm_cast_no_check (refl_equal t')| + [vm_cast_no_check (eq_refl t')| let eq2 := fresh "ring" in assert (eq2:(@Ring_polynom.PEeval _ zero _+_ _*_ _-_ -_ Z Ncring_initial.gen_phiZ N (fun n:N => n) @@ -159,7 +158,7 @@ Ltac cring_simplify_aux lterm fv lexpr hyp := ring_setoid cring_eq_ext cring_almost_ring_theory - Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool + Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool Ncring_initial.gen_phiZ cring_morph N @@ -169,7 +168,7 @@ Ltac cring_simplify_aux lterm fv lexpr hyp := Z.quotrem cring_div_theory get_signZ get_signZ_th - O nil fv I nil (refl_equal nil) ); + O nil fv I nil (eq_refl nil) ); intro eq3; apply eq3; reflexivity| match hyp with | 1%nat => rewrite eq2 diff --git a/plugins/setoid_ring/Field.v b/plugins/setoid_ring/Field.v index 90f2f497..6d454ba8 100644 --- a/plugins/setoid_ring/Field.v +++ b/plugins/setoid_ring/Field.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* _ => lhs @@ -487,7 +487,7 @@ Ltac reduce_field_expr ope kont FLD fv expr := kont c. (* Hack to let a Ltac return a term in the context of a primitive tactic *) -Ltac return_term x := generalize (refl_equal x). +Ltac return_term x := generalize (eq_refl x). Ltac get_term := match goal with | |- ?x = _ -> _ => x diff --git a/plugins/setoid_ring/Field_theory.v b/plugins/setoid_ring/Field_theory.v index 40138526..bc05c252 100644 --- a/plugins/setoid_ring/Field_theory.v +++ b/plugins/setoid_ring/Field_theory.v @@ -1,13 +1,13 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* / p == / q. @@ -75,7 +75,6 @@ Qed. (* Useful tactics *) - Add Setoid R req Rsth as R_set1. Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. @@ -116,16 +115,17 @@ Notation NPphi_pow := (Pphi_pow rO rI radd rmul rsub ropp cO cI ceqb phi Cp_phi (* add abstract semi-ring to help with some proofs *) Add Ring Rring : (ARth_SRth ARth). +Local Hint Extern 2 (_ == _) => f_equiv. (* additional ring properties *) Lemma rsub_0_l : forall r, 0 - r == - r. -intros; rewrite (ARsub_def ARth) in |- *;ring. +intros; rewrite (ARsub_def ARth);ring. Qed. Lemma rsub_0_r : forall r, r - 0 == r. -intros; rewrite (ARsub_def ARth) in |- *. -rewrite (ARopp_zero Rsth Reqe ARth) in |- *; ring. +intros; rewrite (ARsub_def ARth). +rewrite (ARopp_zero Rsth Reqe ARth); ring. Qed. (*************************************************************************** @@ -135,42 +135,40 @@ Qed. ***************************************************************************) Theorem rdiv_simpl: forall p q, ~ q == 0 -> q * (p / q) == p. +Proof. intros p q H. -rewrite rdiv_def in |- *. +rewrite rdiv_def. transitivity (/ q * q * p); [ ring | idtac ]. -rewrite rinv_l in |- *; auto. +rewrite rinv_l; auto. Qed. Hint Resolve rdiv_simpl . -Theorem SRdiv_ext: - forall p1 p2, p1 == p2 -> forall q1 q2, q1 == q2 -> p1 / q1 == p2 / q2. -intros p1 p2 H q1 q2 H0. +Instance SRdiv_ext: Proper (req ==> req ==> req) rdiv. +Proof. +intros p1 p2 Ep q1 q2 Eq. transitivity (p1 * / q1); auto. transitivity (p2 * / q2); auto. Qed. -Hint Resolve SRdiv_ext . - - Add Morphism rdiv : rdiv_ext. exact SRdiv_ext. Qed. +Hint Resolve SRdiv_ext. Lemma rmul_reg_l : forall p q1 q2, ~ p == 0 -> p * q1 == p * q2 -> q1 == q2. -intros. -rewrite <- (@rdiv_simpl q1 p) in |- *; trivial. -rewrite <- (@rdiv_simpl q2 p) in |- *; trivial. -repeat rewrite rdiv_def in |- *. -repeat rewrite (ARmul_assoc ARth) in |- *. -auto. +Proof. +intros p q1 q2 H EQ. +rewrite <- (@rdiv_simpl q1 p) by trivial. +rewrite <- (@rdiv_simpl q2 p) by trivial. +rewrite !rdiv_def, !(ARmul_assoc ARth). +now rewrite EQ. Qed. Theorem field_is_integral_domain : forall r1 r2, ~ r1 == 0 -> ~ r2 == 0 -> ~ r1 * r2 == 0. Proof. -red in |- *; intros. -apply H0. +intros r1 r2 H1 H2. contradict H2. transitivity (1 * r2); auto. transitivity (/ r1 * r1 * r2); auto. -rewrite <- (ARmul_assoc ARth) in |- *. -rewrite H1 in |- *. +rewrite <- (ARmul_assoc ARth). +rewrite H2. apply ARmul_0_r with (1 := Rsth) (2 := ARth). Qed. @@ -179,15 +177,15 @@ Theorem ropp_neq_0 : forall r, intros. setoid_replace (- r) with (- (1) * r). apply field_is_integral_domain; trivial. - rewrite <- (ARopp_mul_l ARth) in |- *. - rewrite (ARmul_1_l ARth) in |- *. + rewrite <- (ARopp_mul_l ARth). + rewrite (ARmul_1_l ARth). reflexivity. Qed. Theorem rdiv_r_r : forall r, ~ r == 0 -> r / r == 1. intros. -rewrite (AFdiv_def AFth) in |- *. -rewrite (ARmul_comm ARth) in |- *. +rewrite (AFdiv_def AFth). +rewrite (ARmul_comm ARth). apply (AFinv_l AFth). trivial. Qed. @@ -203,14 +201,14 @@ Theorem rdiv2: r1 / r2 + r3 / r4 == (r1 * r4 + r3 * r2) / (r2 * r4). Proof. intros r1 r2 r3 r4 H H0. -assert (~ r2 * r4 == 0) by complete (apply field_is_integral_domain; trivial). +assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial). apply rmul_reg_l with (r2 * r4); trivial. -rewrite rdiv_simpl in |- *; trivial. -rewrite (ARdistr_r Rsth Reqe ARth) in |- *. +rewrite rdiv_simpl; trivial. +rewrite (ARdistr_r Rsth Reqe ARth). apply (Radd_ext Reqe). - transitivity (r2 * (r1 / r2) * r4); [ ring | auto ]. - transitivity (r2 * (r4 * (r3 / r4))); auto. - transitivity (r2 * r3); auto. +- transitivity (r2 * (r1 / r2) * r4); [ ring | auto ]. +- transitivity (r2 * (r4 * (r3 / r4))); auto. + transitivity (r2 * r3); auto. Qed. @@ -225,35 +223,36 @@ assert (HH1: ~ r2 == 0) by (intros HH; case H; rewrite HH; ring). assert (HH2: ~ r5 == 0) by (intros HH; case H; rewrite HH; ring). assert (HH3: ~ r4 == 0) by (intros HH; case H0; rewrite HH; ring). assert (HH4: ~ r2 * (r4 * r5) == 0) - by complete (repeat apply field_is_integral_domain; trivial). + by (repeat apply field_is_integral_domain; trivial). apply rmul_reg_l with (r2 * (r4 * r5)); trivial. -rewrite rdiv_simpl in |- *; trivial. -rewrite (ARdistr_r Rsth Reqe ARth) in |- *. +rewrite rdiv_simpl; trivial. +rewrite (ARdistr_r Rsth Reqe ARth). apply (Radd_ext Reqe). transitivity ((r2 * r5) * (r1 / (r2 * r5)) * r4); [ ring | auto ]. transitivity ((r4 * r5) * (r3 / (r4 * r5)) * r2); [ ring | auto ]. Qed. Theorem rdiv5: forall r1 r2, - (r1 / r2) == - r1 / r2. +Proof. intros r1 r2. transitivity (- (r1 * / r2)); auto. transitivity (- r1 * / r2); auto. Qed. Hint Resolve rdiv5 . -Theorem rdiv3: - forall r1 r2 r3 r4, +Theorem rdiv3 r1 r2 r3 r4 : ~ r2 == 0 -> ~ r4 == 0 -> r1 / r2 - r3 / r4 == (r1 * r4 - r3 * r2) / (r2 * r4). -intros r1 r2 r3 r4 H H0. +Proof. +intros H2 H4. assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial). transitivity (r1 / r2 + - (r3 / r4)); auto. transitivity (r1 / r2 + - r3 / r4); auto. -transitivity ((r1 * r4 + - r3 * r2) / (r2 * r4)); auto. +transitivity ((r1 * r4 + - r3 * r2) / (r2 * r4)). apply rdiv2; auto. -apply SRdiv_ext; auto. -transitivity (r1 * r4 + - (r3 * r2)); symmetry; auto. +f_equiv. +transitivity (r1 * r4 + - (r3 * r2)); auto. Qed. @@ -279,13 +278,13 @@ intros r1 r2 H H0. assert (~ r1 / r2 == 0) as Hk. intros H1; case H. transitivity (r2 * (r1 / r2)); auto. - rewrite H1 in |- *; ring. + rewrite H1; ring. apply rmul_reg_l with (r1 / r2); auto. transitivity (/ (r1 / r2) * (r1 / r2)); auto. transitivity 1; auto. - repeat rewrite rdiv_def in |- *. + repeat rewrite rdiv_def. transitivity (/ r1 * r1 * (/ r2 * r2)); [ idtac | ring ]. - repeat rewrite rinv_l in |- *; auto. + repeat rewrite rinv_l; auto. Qed. Hint Resolve rdiv6 . @@ -296,11 +295,11 @@ Hint Resolve rdiv6 . (r1 / r2) * (r3 / r4) == (r1 * r3) / (r2 * r4). Proof. intros r1 r2 r3 r4 H H0. -assert (~ r2 * r4 == 0) by complete (apply field_is_integral_domain; trivial). +assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial). apply rmul_reg_l with (r2 * r4); trivial. -rewrite rdiv_simpl in |- *; trivial. +rewrite rdiv_simpl; trivial. transitivity (r2 * (r1 / r2) * (r4 * (r3 / r4))); [ ring | idtac ]. -repeat rewrite rdiv_simpl in |- *; trivial. +repeat rewrite rdiv_simpl; trivial. Qed. Theorem rdiv4b: @@ -334,8 +333,8 @@ Theorem rdiv7: (r1 / r2) / (r3 / r4) == (r1 * r4) / (r2 * r3). Proof. intros. -rewrite (rdiv_def (r1 / r2)) in |- *. -rewrite rdiv6 in |- *; trivial. +rewrite (rdiv_def (r1 / r2)). +rewrite rdiv6; trivial. apply rdiv4; trivial. Qed. @@ -373,14 +372,14 @@ Theorem cross_product_eq : forall r1 r2 r3 r4, ~ r2 == 0 -> ~ r4 == 0 -> r1 * r4 == r3 * r2 -> r1 / r2 == r3 / r4. intros. transitivity (r1 / r2 * (r4 / r4)). - rewrite rdiv_r_r in |- *; trivial. - symmetry in |- *. + rewrite rdiv_r_r; trivial. + symmetry . apply (ARmul_1_r Rsth ARth). - rewrite rdiv4 in |- *; trivial. - rewrite H1 in |- *. - rewrite (ARmul_comm ARth r2 r4) in |- *. - rewrite <- rdiv4 in |- *; trivial. - rewrite rdiv_r_r in |- * by trivial. + rewrite rdiv4; trivial. + rewrite H1. + rewrite (ARmul_comm ARth r2 r4). + rewrite <- rdiv4; trivial. + rewrite rdiv_r_r by trivial. apply (ARmul_1_r Rsth ARth). Qed. @@ -410,14 +409,7 @@ Qed. Add Morphism (pow_N rI rmul) with signature req ==> eq ==> req as pow_N_morph. intros x y H [|p];simpl;auto. apply pow_morph;trivial. Qed. -(* -Lemma rpow_morph : forall x y n, x == y ->rpow x (Cp_phi n) == rpow y (Cp_phi n). -Proof. - intros; repeat rewrite pow_th.(rpow_pow_N). - destruct n;simpl. apply eq_refl. - induction p;simpl;try rewrite IHp;try rewrite H; apply eq_refl. -Qed. -*) + Theorem PExpr_eq_semi_correct: forall l e1 e2, PExpr_eq e1 e2 = true -> NPEeval l e1 == NPEeval l e2. intros l e1; elim e1. @@ -459,8 +451,8 @@ Theorem NPEadd_correct: forall l e1 e2, NPEeval l (NPEadd e1 e2) == NPEeval l (PEadd e1 e2). Proof. intros l e1 e2. -destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect; - try (intro eq_c; rewrite eq_c in |- *); simpl in |- *;try apply eq_refl; +destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect; + try (intro eq_c; rewrite eq_c); simpl;try apply eq_refl; try (ring [(morph0 CRmorph)]). apply (morph_add CRmorph). Qed. @@ -511,9 +503,9 @@ Qed. Theorem NPEmul_correct : forall l e1 e2, NPEeval l (NPEmul e1 e2) == NPEeval l (PEmul e1 e2). -induction e1;destruct e2; simpl in |- *;try reflexivity; +induction e1;destruct e2; simpl;try reflexivity; repeat apply ceqb_rect; - try (intro eq_c; rewrite eq_c in |- *); simpl in |- *; try reflexivity; + try (intro eq_c; rewrite eq_c); simpl; try reflexivity; try ring [(morph0 CRmorph) (morph1 CRmorph)]. apply (morph_mul CRmorph). case N.eqb_spec; intros H; try rewrite <- H; clear H. @@ -537,9 +529,9 @@ Definition NPEsub e1 e2 := Theorem NPEsub_correct: forall l e1 e2, NPEeval l (NPEsub e1 e2) == NPEeval l (PEsub e1 e2). intros l e1 e2. -destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect; - try (intro eq_c; rewrite eq_c in |- *); simpl in |- *; - try rewrite (morph0 CRmorph) in |- *; try reflexivity; +destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect; + try (intro eq_c; rewrite eq_c); simpl; + try rewrite (morph0 CRmorph); try reflexivity; try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r). apply (morph_sub CRmorph). Qed. @@ -659,8 +651,8 @@ destruct H; trivial. Qed. Theorem PCond_app_inv_l: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l1. -intros l l1 l2; elim l1; simpl app in |- *. - simpl in |- *; auto. +intros l l1 l2; elim l1; simpl app. + simpl; auto. destruct l0; simpl in *. destruct l2; firstorder. firstorder. @@ -675,8 +667,8 @@ Qed. Definition absurd_PCond := cons (PEc cO) nil. Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond. -unfold absurd_PCond in |- *; simpl in |- *. -red in |- *; intros. +unfold absurd_PCond; simpl. +red; intros. apply H. apply (morph0 CRmorph). Qed. @@ -705,10 +697,10 @@ Fixpoint isIn (e1:PExpr C) (p1:positive) end end | PEpow e3 N0 => None - | PEpow e3 (Npos p3) => isIn e1 p1 e3 (Pmult p3 p2) + | PEpow e3 (Npos p3) => isIn e1 p1 e3 (Pos.mul p3 p2) | _ => if PExpr_eq e1 e2 then - match Zminus (Zpos p1) (Zpos p2) with + match Z.pos_sub p1 p2 with | Zpos p => Some (Npos p, PEc cI) | Z0 => Some (N0, PEc cI) | Zneg p => Some (N0, NPEpow e2 (Npos p)) @@ -719,21 +711,19 @@ Fixpoint isIn (e1:PExpr C) (p1:positive) Definition ZtoN z := match z with Zpos p => Npos p | _ => N0 end. Definition NtoZ n := match n with Npos p => Zpos p | _ => Z0 end. - Notation pow_pos_plus := (Ring_theory.pow_pos_Pplus _ Rsth Reqe.(Rmul_ext) - ARth.(ARmul_comm) ARth.(ARmul_assoc)). + Notation pow_pos_add := + (Ring_theory.pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)). - Lemma Z_pos_sub_gt : forall p q, (p > q)%positive -> + Lemma Z_pos_sub_gt p q : (p > q)%positive -> Z.pos_sub p q = Zpos (p - q). - Proof. - intros. apply Z.pos_sub_gt. now apply Pos.gt_lt. - Qed. + Proof. intros; now apply Z.pos_sub_gt, Pos.gt_lt. Qed. Ltac simpl_pos_sub := rewrite ?Z_pos_sub_gt in * by assumption. Lemma isIn_correct_aux : forall l e1 e2 p1 p2, match (if PExpr_eq e1 e2 then - match Zminus (Zpos p1) (Zpos p2) with + match Z.sub (Zpos p1) (Zpos p2) with | Zpos p => Some (Npos p, PEc cI) | Z0 => Some (N0, PEc cI) | Zneg p => Some (N0, NPEpow e2 (Npos p)) @@ -750,33 +740,28 @@ Proof. intros l e1 e2 p1 p2; generalize (PExpr_eq_semi_correct l e1 e2); case (PExpr_eq e1 e2); simpl; auto; intros H. rewrite Z.pos_sub_spec. - case_eq ((p1 ?= p2)%positive);intros;simpl. - repeat rewrite pow_th.(rpow_pow_N);simpl. split. 2:refine (refl_equal _). - rewrite (Pcompare_Eq_eq _ _ H0). - rewrite H by trivial. ring [ (morph1 CRmorph)]. - fold (p2 - p1 =? 1)%positive. - fold (NPEpow e2 (Npos (p2 - p1))). - rewrite NPEpow_correct;simpl. - repeat rewrite pow_th.(rpow_pow_N);simpl. - rewrite H;trivial. split. 2:refine (refl_equal _). - rewrite <- pow_pos_plus; rewrite Pplus_minus;auto. apply ZC2;trivial. - repeat rewrite pow_th.(rpow_pow_N);simpl. - rewrite H;trivial. - change (Z.pos_sub p1 (p1-p2)) with (Zpos p1 - Zpos (p1 -p2))%Z. - replace (Zpos (p1 - p2)) with (Zpos p1 - Zpos p2)%Z. - split. - repeat rewrite Zth.(Rsub_def). rewrite (Ring_theory.Ropp_add Zsth Zeqe Zth). - rewrite Zplus_assoc, Z.add_opp_diag_r. simpl. - ring [ (morph1 CRmorph)]. - assert (Zpos p1 > 0 /\ Zpos p2 > 0)%Z. split;refine (refl_equal _). - apply Zplus_gt_reg_l with (Zpos p2). - rewrite Zplus_minus. change (Zpos p2 + Zpos p1 > 0 + Zpos p1)%Z. - apply Zplus_gt_compat_r. refine (refl_equal _). - simpl. now simpl_pos_sub. + case Pos.compare_spec;intros;simpl. + - repeat rewrite pow_th.(rpow_pow_N);simpl. split. 2:reflexivity. + subst. rewrite H by trivial. ring [ (morph1 CRmorph)]. + - fold (p2 - p1 =? 1)%positive. + fold (NPEpow e2 (Npos (p2 - p1))). + rewrite NPEpow_correct;simpl. + repeat rewrite pow_th.(rpow_pow_N);simpl. + rewrite H;trivial. split. 2:reflexivity. + rewrite <- pow_pos_add. now rewrite Pos.add_comm, Pos.sub_add. + - repeat rewrite pow_th.(rpow_pow_N);simpl. + rewrite H;trivial. + rewrite Z.pos_sub_gt by now apply Pos.sub_decr. + replace (p1 - (p1 - p2))%positive with p2; + [| rewrite Pos.sub_sub_distr, Pos.add_comm; + auto using Pos.add_sub, Pos.sub_decr ]. + split. + simpl. ring [ (morph1 CRmorph)]. + now apply Z.lt_gt, Pos.sub_decr. Qed. Lemma pow_pos_pow_pos : forall x p1 p2, pow_pos rmul (pow_pos rmul x p1) p2 == pow_pos rmul x (p1*p2). -induction p1;simpl;intros;repeat rewrite pow_pos_mul;repeat rewrite pow_pos_plus;simpl. +induction p1;simpl;intros;repeat rewrite pow_pos_mul;repeat rewrite pow_pos_add;simpl. ring [(IHp1 p2)]. ring [(IHp1 p2)]. auto. Qed. @@ -808,8 +793,9 @@ destruct n. (pow_pos rmul (NPEeval l e1) p4 * NPEeval l p5) == pow_pos rmul (NPEeval l e1) p4 * pow_pos rmul (NPEeval l e1) (p1 - p4) * NPEeval l p3 *NPEeval l p5) by ring. rewrite H;clear H. - rewrite <- pow_pos_plus. rewrite Pplus_minus. - split. symmetry;apply ARth.(ARmul_assoc). refine (refl_equal _). trivial. + rewrite <- pow_pos_add. + rewrite Pos.add_comm, Pos.sub_add by (now apply Z.gt_lt in H4). + split. symmetry;apply ARth.(ARmul_assoc). reflexivity. repeat rewrite pow_th.(rpow_pow_N);simpl. intros (H1,H2) (H3,H4). simpl_pos_sub. simpl in H1, H3. @@ -822,15 +808,15 @@ destruct n. (pow_pos rmul (NPEeval l e1) (p4 - p6) * NPEeval l p5) == pow_pos rmul (NPEeval l e1) (p1 - p4) * pow_pos rmul (NPEeval l e1) (p4 - p6) * NPEeval l p3 * NPEeval l p5) by ring. rewrite H0;clear H0. - rewrite <- pow_pos_plus. + rewrite <- pow_pos_add. replace (p1 - p4 + (p4 - p6))%positive with (p1 - p6)%positive. rewrite NPEmul_correct. simpl;ring. assert (Zpos p1 - Zpos p6 = Zpos p1 - Zpos p4 + (Zpos p4 - Zpos p6))%Z. change ((Zpos p1 - Zpos p6)%Z = (Zpos p1 + (- Zpos p4) + (Zpos p4 +(- Zpos p6)))%Z). - rewrite <- Zplus_assoc. rewrite (Zplus_assoc (- Zpos p4)). + rewrite <- Z.add_assoc. rewrite (Z.add_assoc (- Zpos p4)). simpl. rewrite Z.pos_sub_diag. simpl. reflexivity. - unfold Zminus, Zopp in H0. simpl in H0. + unfold Z.sub, Z.opp in H0. simpl in H0. simpl_pos_sub. inversion H0; trivial. simpl. repeat rewrite pow_th.(rpow_pow_N). intros H1 (H2,H3). simpl_pos_sub. @@ -875,7 +861,7 @@ Fixpoint split_aux (e1: PExpr C) (p:positive) (e2:PExpr C) {struct e1}: rsplit : (NPEmul (common r1) (common r2)) (right r2) | PEpow e3 N0 => mk_rsplit (PEc cI) (PEc cI) e2 - | PEpow e3 (Npos p3) => split_aux e3 (Pmult p3 p) e2 + | PEpow e3 (Npos p3) => split_aux e3 (Pos.mul p3 p) e2 | _ => match isIn e1 p e2 xH with | Some (N0,e3) => mk_rsplit (PEc cI) (NPEpow e1 (Npos p)) e3 @@ -903,7 +889,8 @@ Proof. repeat rewrite pow_th.(rpow_pow_N);simpl). intros (H, Hgt);split;try ring [H CRmorph.(morph1)]. intros (H, Hgt). simpl_pos_sub. simpl in H;split;try ring [H]. - rewrite <- pow_pos_plus. rewrite Pplus_minus. reflexivity. trivial. + apply Z.gt_lt in Hgt. + now rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add. simpl;intros. repeat rewrite NPEmul_correct;simpl. rewrite NPEpow_correct;simpl. split;ring [CRmorph.(morph1)]. Qed. @@ -1025,13 +1012,13 @@ Theorem Pcond_Fnorm: forall l e, PCond l (condition (Fnorm e)) -> ~ NPEeval l (denum (Fnorm e)) == 0. intros l e; elim e. - simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO. - simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO. + simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO. + simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO. intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. - simpl denum in |- *. - rewrite NPEmul_correct in |- *. - simpl in |- *. + simpl denum. + rewrite NPEmul_correct. + simpl. apply field_is_integral_domain. intros HH; case Hrec1; auto. apply PCond_app_inv_l with (1 := Hcond). @@ -1042,9 +1029,9 @@ intros l e; elim e. rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto. intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. - simpl denum in |- *. - rewrite NPEmul_correct in |- *. - simpl in |- *. + simpl denum. + rewrite NPEmul_correct. + simpl. apply field_is_integral_domain. intros HH; case Hrec1; auto. apply PCond_app_inv_l with (1 := Hcond). @@ -1055,9 +1042,9 @@ intros l e; elim e. rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto. intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. - simpl denum in |- *. - rewrite NPEmul_correct in |- *. - simpl in |- *. + simpl denum. + rewrite NPEmul_correct. + simpl. apply field_is_integral_domain. intros HH; apply Hrec1. apply PCond_app_inv_l with (1 := Hcond). @@ -1069,17 +1056,17 @@ intros l e; elim e. rewrite NPEmul_correct; simpl; rewrite HH; ring. intros e1 Hrec1 Hcond. simpl condition in Hcond. - simpl denum in |- *. + simpl denum. auto. intros e1 Hrec1 Hcond. simpl condition in Hcond. - simpl denum in |- *. + simpl denum. apply PCond_cons_inv_l with (1:=Hcond). intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. - simpl denum in |- *. - rewrite NPEmul_correct in |- *. - simpl in |- *. + simpl denum. + rewrite NPEmul_correct. + simpl. apply field_is_integral_domain. intros HH; apply Hrec1. specialize PCond_cons_inv_r with (1:=Hcond); intro Hcond1. @@ -1222,9 +1209,9 @@ Theorem Fnorm_crossproduct: PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. intros l fe1 fe2 nfe1 nfe2 Hcrossprod Hcond; subst nfe1 nfe2. -rewrite Fnorm_FEeval_PEeval in |- * by +rewrite Fnorm_FEeval_PEeval by apply PCond_app_inv_l with (1 := Hcond). - rewrite Fnorm_FEeval_PEeval in |- * by + rewrite Fnorm_FEeval_PEeval by apply PCond_app_inv_r with (1 := Hcond). apply cross_product_eq; trivial. apply Pcond_Fnorm. @@ -1319,9 +1306,9 @@ apply Fnorm_crossproduct; trivial. match goal with [ |- NPEeval l ?x == NPEeval l ?y] => rewrite (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec - O nil l I (refl_equal nil) x (refl_equal (Nnorm O nil x))); + O nil l I Logic.eq_refl x Logic.eq_refl); rewrite (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec - O nil l I (refl_equal nil) y (refl_equal (Nnorm O nil y))) + O nil l I Logic.eq_refl y Logic.eq_refl) end. trivial. Qed. @@ -1341,28 +1328,28 @@ Proof. intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond; subst nfe1 nfe2 den lmp. apply Fnorm_crossproduct; trivial. -simpl in |- *. -rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *. -rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *. -rewrite NPEmul_correct in |- *. -rewrite NPEmul_correct in |- *. -simpl in |- *. -repeat rewrite (ARmul_assoc ARth) in |- *. +simpl. +rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))). +rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))). +rewrite NPEmul_correct. +rewrite NPEmul_correct. +simpl. +repeat rewrite (ARmul_assoc ARth). rewrite <-( let x := PEmul (num (Fnorm fe1)) (rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l - Hlpe (refl_equal (Nmk_monpol_list lpe)) - x (refl_equal (Nnorm n (Nmk_monpol_list lpe) x))) in Hcrossprod. + Hlpe Logic.eq_refl + x Logic.eq_refl) in Hcrossprod. rewrite <-( let x := (PEmul (num (Fnorm fe2)) (rsplit_left (split (denum (Fnorm fe1)) (denum (Fnorm fe2))))) in ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l - Hlpe (refl_equal (Nmk_monpol_list lpe)) - x (refl_equal (Nnorm n (Nmk_monpol_list lpe) x))) in Hcrossprod. + Hlpe Logic.eq_refl + x Logic.eq_refl) in Hcrossprod. simpl in Hcrossprod. -rewrite Hcrossprod in |- *. +rewrite Hcrossprod. reflexivity. Qed. @@ -1381,28 +1368,28 @@ Proof. intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond; subst nfe1 nfe2 den lmp. apply Fnorm_crossproduct; trivial. -simpl in |- *. -rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *. -rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *. -rewrite NPEmul_correct in |- *. -rewrite NPEmul_correct in |- *. -simpl in |- *. -repeat rewrite (ARmul_assoc ARth) in |- *. +simpl. +rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))). +rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))). +rewrite NPEmul_correct. +rewrite NPEmul_correct. +simpl. +repeat rewrite (ARmul_assoc ARth). rewrite <-( let x := PEmul (num (Fnorm fe1)) (rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l - Hlpe (refl_equal (Nmk_monpol_list lpe)) - x (refl_equal (Nnorm n (Nmk_monpol_list lpe) x))) in Hcrossprod. + Hlpe Logic.eq_refl + x Logic.eq_refl) in Hcrossprod. rewrite <-( let x := (PEmul (num (Fnorm fe2)) (rsplit_left (split (denum (Fnorm fe1)) (denum (Fnorm fe2))))) in ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l - Hlpe (refl_equal (Nmk_monpol_list lpe)) - x (refl_equal (Nnorm n (Nmk_monpol_list lpe) x))) in Hcrossprod. + Hlpe Logic.eq_refl + x Logic.eq_refl) in Hcrossprod. simpl in Hcrossprod. -rewrite Hcrossprod in |- *. +rewrite Hcrossprod. reflexivity. Qed. @@ -1522,7 +1509,7 @@ Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) := Lemma fcons_correct : forall l l1, PCond l (Fapp l1 nil) -> PCond l l1. -induction l1; simpl in |- *; intros. +induction l1; simpl; intros. trivial. elim PCond_fcons_inv with (1 := H); intros. destruct l1; auto. @@ -1603,7 +1590,7 @@ intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail). simpl in H1. case (H _ H1); intros H2 H3. case (H0 _ H3); intros H4 H5; split; auto. - simpl in |- *. + simpl. apply field_is_integral_domain; trivial. simpl;intros. rewrite pow_th.(rpow_pow_N). destruct (H _ H0);split;auto. @@ -1631,7 +1618,7 @@ generalize (fun h => X (morph_eq CRmorph c1 c2 h)). generalize (@ceqb_complete c1 c2). case (c1 ?=! c2); auto; intros. apply X0. -red in |- *; intro. +red; intro. absurd (false = true); auto; discriminate. Qed. @@ -1647,18 +1634,18 @@ Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) := Theorem PFcons1_fcons_inv: forall l a l1, PCond l (Fcons1 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail). - simpl in |- *; intros c l1. + simpl; intros c l1. apply ceqb_rect_complete; intros. elim (@absurd_PCond_bottom l H0). split; trivial. - rewrite <- (morph0 CRmorph) in |- *; trivial. + rewrite <- (morph0 CRmorph); trivial. intros p H p0 H0 l1 H1. simpl in H1. case (H _ H1); intros H2 H3. case (H0 _ H3); intros H4 H5; split; auto. - simpl in |- *. + simpl. apply field_is_integral_domain; trivial. - simpl in |- *; intros p H l1. + simpl; intros p H l1. apply ceqb_rect_complete; intros. elim (@absurd_PCond_bottom l H1). destruct (H _ H1). @@ -1677,7 +1664,7 @@ Definition Fcons2 e l := Fcons1 (PExpr_simp e) l. Theorem PFcons2_fcons_inv: forall l a l1, PCond l (Fcons2 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. -unfold Fcons2 in |- *; intros l a l1 H; split; +unfold Fcons2; intros l a l1 H; split; case (PFcons1_fcons_inv l (PExpr_simp a) l1); auto. intros H1 H2 H3; case H1. transitivity (NPEeval l a); trivial. @@ -1756,50 +1743,48 @@ Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0. Lemma add_inj_r : forall p x y, gen_phiPOS1 rI radd rmul p + x == gen_phiPOS1 rI radd rmul p + y -> x==y. intros p x y. -elim p using Pind; simpl in |- *; intros. +elim p using Pos.peano_ind; simpl; intros. apply S_inj; trivial. apply H. apply S_inj. - repeat rewrite (ARadd_assoc ARth) in |- *. - rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth) in |- *; trivial. + repeat rewrite (ARadd_assoc ARth). + rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth); trivial. Qed. Lemma gen_phiPOS_inj : forall x y, gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y -> x = y. intros x y. -repeat rewrite <- (same_gen Rsth Reqe ARth) in |- *. +repeat rewrite <- (same_gen Rsth Reqe ARth). case (Pos.compare_spec x y). intros. trivial. intros. elim gen_phiPOS_not_0 with (y - x)%positive. apply add_inj_r with x. - symmetry in |- *. - rewrite (ARadd_0_r Rsth ARth) in |- *. - rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth) in |- *. - rewrite Pplus_minus in |- *; trivial. - now apply Pos.lt_gt. + symmetry. + rewrite (ARadd_0_r Rsth ARth). + rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth). + now rewrite Pos.add_comm, Pos.sub_add. intros. elim gen_phiPOS_not_0 with (x - y)%positive. apply add_inj_r with y. - rewrite (ARadd_0_r Rsth ARth) in |- *. - rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth) in |- *. - rewrite Pplus_minus in |- *; trivial. - now apply Pos.lt_gt. + rewrite (ARadd_0_r Rsth ARth). + rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth). + now rewrite Pos.add_comm, Pos.sub_add. Qed. Lemma gen_phiN_inj : forall x y, gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y -> x = y. -destruct x; destruct y; simpl in |- *; intros; trivial. +destruct x; destruct y; simpl; intros; trivial. elim gen_phiPOS_not_0 with p. - symmetry in |- *. - rewrite (same_gen Rsth Reqe ARth) in |- *; trivial. + symmetry . + rewrite (same_gen Rsth Reqe ARth); trivial. elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *; trivial. - rewrite gen_phiPOS_inj with (1 := H) in |- *; trivial. + rewrite (same_gen Rsth Reqe ARth); trivial. + rewrite gen_phiPOS_inj with (1 := H); trivial. Qed. Lemma gen_phiN_complete : forall x y, @@ -1824,17 +1809,17 @@ Section Field. Lemma ring_S_inj : forall x y, 1+x==1+y -> x==y. intros. transitivity (x + (1 + - (1))). - rewrite (Ropp_def Rth) in |- *. - symmetry in |- *. + rewrite (Ropp_def Rth). + symmetry . apply (ARadd_0_r Rsth ARth). transitivity (y + (1 + - (1))). - repeat rewrite <- (ARplus_assoc ARth) in |- *. - repeat rewrite (ARadd_assoc ARth) in |- *. + repeat rewrite <- (ARplus_assoc ARth). + repeat rewrite (ARadd_assoc ARth). apply (Radd_ext Reqe). - repeat rewrite <- (ARadd_comm ARth 1) in |- *. + repeat rewrite <- (ARadd_comm ARth 1). trivial. reflexivity. - rewrite (Ropp_def Rth) in |- *. + rewrite (Ropp_def Rth). apply (ARadd_0_r Rsth ARth). Qed. @@ -1846,14 +1831,14 @@ Let gen_phiPOS_inject := Lemma gen_phiPOS_discr_sgn : forall x y, ~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y. -red in |- *; intros. +red; intros. apply gen_phiPOS_not_0 with (y + x)%positive. -rewrite (ARgen_phiPOS_add Rsth Reqe ARth) in |- *. +rewrite (ARgen_phiPOS_add Rsth Reqe ARth). transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y). apply (Radd_ext Reqe); trivial. reflexivity. - rewrite (same_gen Rsth Reqe ARth) in |- *. - rewrite (same_gen Rsth Reqe ARth) in |- *. + rewrite (same_gen Rsth Reqe ARth). + rewrite (same_gen Rsth Reqe ARth). trivial. apply (Ropp_def Rth). Qed. @@ -1861,33 +1846,33 @@ Qed. Lemma gen_phiZ_inj : forall x y, gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y -> x = y. -destruct x; destruct y; simpl in |- *; intros. +destruct x; destruct y; simpl; intros. trivial. elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *. - symmetry in |- *; trivial. + rewrite (same_gen Rsth Reqe ARth). + symmetry ; trivial. elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *. - rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *. - rewrite <- H in |- *. + rewrite (same_gen Rsth Reqe ARth). + rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)). + rewrite <- H. apply (ARopp_zero Rsth Reqe ARth). elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *. + rewrite (same_gen Rsth Reqe ARth). trivial. - rewrite gen_phiPOS_inject with (1 := H) in |- *; trivial. + rewrite gen_phiPOS_inject with (1 := H); trivial. elim gen_phiPOS_discr_sgn with (1 := H). elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *. - rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *. - rewrite H in |- *. + rewrite (same_gen Rsth Reqe ARth). + rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)). + rewrite H. apply (ARopp_zero Rsth Reqe ARth). elim gen_phiPOS_discr_sgn with p0 p. - symmetry in |- *; trivial. + symmetry ; trivial. replace p0 with p; trivial. apply gen_phiPOS_inject. - rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *. - rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)) in |- *. - rewrite H in |- *; trivial. + rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)). + rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)). + rewrite H; trivial. reflexivity. Qed. @@ -1896,8 +1881,8 @@ Lemma gen_phiZ_complete : forall x y, Zeq_bool x y = true. intros. replace y with x. - unfold Zeq_bool in |- *. - rewrite Zcompare_refl in |- *; trivial. + unfold Zeq_bool. + rewrite Z.compare_refl; trivial. apply gen_phiZ_inj; trivial. Qed. diff --git a/plugins/setoid_ring/InitialRing.v b/plugins/setoid_ring/InitialRing.v index 763dbe7b..e805151c 100644 --- a/plugins/setoid_ring/InitialRing.v +++ b/plugins/setoid_ring/InitialRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* None end. - Lemma get_signZ_th : sign_theory Zopp Zeq_bool get_signZ. + Lemma get_signZ_th : sign_theory Z.opp Zeq_bool get_signZ. Proof. constructor. destruct c;intros;try discriminate. injection H;clear H;intros H1;subst c'. - simpl. unfold Zeq_bool. rewrite Zcompare_refl. trivial. + simpl. unfold Zeq_bool. rewrite Z.compare_refl. trivial. Qed. @@ -116,7 +116,7 @@ Section ZMORPHISM. Qed. Lemma ARgen_phiPOS_Psucc : forall x, - gen_phiPOS1 (Psucc x) == 1 + (gen_phiPOS1 x). + gen_phiPOS1 (Pos.succ x) == 1 + (gen_phiPOS1 x). Proof. induction x;simpl;norm. rewrite IHx;norm. @@ -127,7 +127,7 @@ Section ZMORPHISM. gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y). Proof. induction x;destruct y;simpl;norm. - rewrite Pplus_carry_spec. + rewrite Pos.add_carry_spec. rewrite ARgen_phiPOS_Psucc. rewrite IHx;norm. add_push (gen_phiPOS1 y);add_push 1;rrefl. @@ -208,10 +208,10 @@ Section ZMORPHISM. (*proof that [.] satisfies morphism specifications*) Lemma gen_phiZ_morph : ring_morph 0 1 radd rmul rsub ropp req Z0 (Zpos xH) - Zplus Zmult Zminus Zopp Zeq_bool gen_phiZ. + Z.add Z.mul Z.sub Z.opp Zeq_bool gen_phiZ. Proof. assert ( SRmorph : semi_morph 0 1 radd rmul req Z0 (Zpos xH) - Zplus Zmult Zeq_bool gen_phiZ). + Z.add Z.mul Zeq_bool gen_phiZ). apply mkRmorph;simpl;try rrefl. apply gen_phiZ_add. apply gen_phiZ_mul. apply gen_Zeqb_ok. apply (Smorph_morph Rsth Reqe Rth Zth SRmorph gen_phiZ_ext). @@ -396,14 +396,14 @@ Section NWORDMORPHISM. Lemma gen_phiNword0_ok : forall w, Nw_is0 w = true -> gen_phiNword w == 0. Proof. -induction w; simpl in |- *; intros; auto. +induction w; simpl; intros; auto. reflexivity. destruct a. destruct w. reflexivity. - rewrite IHw in |- *; trivial. + rewrite IHw; trivial. apply (ARopp_zero Rsth Reqe ARth). discriminate. @@ -412,7 +412,7 @@ Qed. Lemma gen_phiNword_cons : forall w n, gen_phiNword (n::w) == gen_phiN rO rI radd rmul n - gen_phiNword w. induction w. - destruct n; simpl in |- *; norm. + destruct n; simpl; norm. intros. destruct n; norm. @@ -423,27 +423,27 @@ Qed. destruct w; intros. destruct n; norm. - unfold Nwcons in |- *. - rewrite gen_phiNword_cons in |- *. + unfold Nwcons. + rewrite gen_phiNword_cons. reflexivity. Qed. Lemma gen_phiNword_ok : forall w1 w2, Nweq_bool w1 w2 = true -> gen_phiNword w1 == gen_phiNword w2. induction w1; intros. - simpl in |- *. - rewrite (gen_phiNword0_ok _ H) in |- *. + simpl. + rewrite (gen_phiNword0_ok _ H). reflexivity. - rewrite gen_phiNword_cons in |- *. + rewrite gen_phiNword_cons. destruct w2. simpl in H. destruct a; try discriminate. - rewrite (gen_phiNword0_ok _ H) in |- *. + rewrite (gen_phiNword0_ok _ H). norm. simpl in H. - rewrite gen_phiNword_cons in |- *. + rewrite gen_phiNword_cons. case_eq (N.eqb a n); intros H0. rewrite H0 in H. apply N.eqb_eq in H0. rewrite <- H0. @@ -457,27 +457,27 @@ Qed. Lemma Nwadd_ok : forall x y, gen_phiNword (Nwadd x y) == gen_phiNword x + gen_phiNword y. induction x; intros. - simpl in |- *. + simpl. norm. destruct y. simpl Nwadd; norm. - simpl Nwadd in |- *. - repeat rewrite gen_phiNword_cons in |- *. - rewrite (fun sreq => gen_phiN_add Rsth sreq (ARth_SRth ARth)) in |- * by + simpl Nwadd. + repeat rewrite gen_phiNword_cons. + rewrite (fun sreq => gen_phiN_add Rsth sreq (ARth_SRth ARth)) by (destruct Reqe; constructor; trivial). - rewrite IHx in |- *. + rewrite IHx. norm. add_push (- gen_phiNword x); reflexivity. Qed. Lemma Nwopp_ok : forall x, gen_phiNword (Nwopp x) == - gen_phiNword x. -simpl in |- *. -unfold Nwopp in |- *; simpl in |- *. +simpl. +unfold Nwopp; simpl. intros. -rewrite gen_phiNword_Nwcons in |- *; norm. +rewrite gen_phiNword_Nwcons; norm. Qed. Lemma Nwscal_ok : forall n x, @@ -485,12 +485,12 @@ Lemma Nwscal_ok : forall n x, induction x; intros. norm. - simpl Nwscal in |- *. - repeat rewrite gen_phiNword_cons in |- *. - rewrite (fun sreq => gen_phiN_mult Rsth sreq (ARth_SRth ARth)) in |- * + simpl Nwscal. + repeat rewrite gen_phiNword_cons. + rewrite (fun sreq => gen_phiN_mult Rsth sreq (ARth_SRth ARth)) by (destruct Reqe; constructor; trivial). - rewrite IHx in |- *. + rewrite IHx. norm. Qed. @@ -500,19 +500,19 @@ induction x; intros. norm. destruct a. - simpl Nwmul in |- *. - rewrite Nwopp_ok in |- *. - rewrite IHx in |- *. - rewrite gen_phiNword_cons in |- *. + simpl Nwmul. + rewrite Nwopp_ok. + rewrite IHx. + rewrite gen_phiNword_cons. norm. - simpl Nwmul in |- *. - unfold Nwsub in |- *. - rewrite Nwadd_ok in |- *. - rewrite Nwscal_ok in |- *. - rewrite Nwopp_ok in |- *. - rewrite IHx in |- *. - rewrite gen_phiNword_cons in |- *. + simpl Nwmul. + unfold Nwsub. + rewrite Nwadd_ok. + rewrite Nwscal_ok. + rewrite Nwopp_ok. + rewrite IHx. + rewrite gen_phiNword_cons. norm. Qed. @@ -528,9 +528,9 @@ constructor. exact Nwadd_ok. intros. - unfold Nwsub in |- *. - rewrite Nwadd_ok in |- *. - rewrite Nwopp_ok in |- *. + unfold Nwsub. + rewrite Nwadd_ok. + rewrite Nwopp_ok. norm. exact Nwmul_ok. @@ -741,10 +741,10 @@ Ltac gen_ring_sign morph sspec := Ltac default_div_spec set reqe arth morph := match type of morph with | @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req - Z ?c0 ?c1 Zplus Zmult ?csub ?copp ?ceq_b ?phi => + Z ?c0 ?c1 Z.add Z.mul ?csub ?copp ?ceq_b ?phi => constr:(mkhypo (Ztriv_div_th set phi)) | @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req - N ?c0 ?c1 Nplus Nmult ?csub ?copp ?ceq_b ?phi => + N ?c0 ?c1 N.add N.mul ?csub ?copp ?ceq_b ?phi => constr:(mkhypo (Ntriv_div_th set phi)) | @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req ?C ?c0 ?c1 ?cadd ?cmul ?csub ?copp ?ceq_b ?phi => @@ -836,7 +836,7 @@ Ltac isPcst t := | xO ?p => isPcst p | xH => constr:true (* nat -> positive *) - | P_of_succ_nat ?n => isnatcst n + | Pos.of_succ_nat ?n => isnatcst n | _ => constr:false end. @@ -853,9 +853,9 @@ Ltac isZcst t := | Zpos ?p => isPcst p | Zneg ?p => isPcst p (* injection nat -> Z *) - | Z_of_nat ?n => isnatcst n + | Z.of_nat ?n => isnatcst n (* injection N -> Z *) - | Z_of_N ?n => isNcst n + | Z.of_N ?n => isNcst n (* *) | _ => constr:false end. diff --git a/plugins/setoid_ring/Integral_domain.v b/plugins/setoid_ring/Integral_domain.v index 5a224e38..0c16fe1a 100644 --- a/plugins/setoid_ring/Integral_domain.v +++ b/plugins/setoid_ring/Integral_domain.v @@ -19,7 +19,7 @@ rewrite H0. rewrite <- H. cring. Qed. -Definition pow (r : R) (n : nat) := Ring_theory.pow_N 1 mul r (N_of_nat n). +Definition pow (r : R) (n : nat) := Ring_theory.pow_N 1 mul r (N.of_nat n). Lemma pow_not_zero: forall p n, pow p n == 0 -> p == 0. induction n. unfold pow; simpl. intros. absurd (1 == 0). @@ -29,9 +29,8 @@ intros. case (integral_domain_product p (pow p n) H). trivial. trivial. unfold pow; simpl. clear IHn. induction n; simpl; try cring. - rewrite Ring_theory.pow_pos_Psucc. cring. apply ring_setoid. + rewrite Ring_theory.pow_pos_succ. cring. apply ring_setoid. apply ring_mult_comp. -apply cring_mul_comm. apply ring_mul_assoc. Qed. diff --git a/plugins/setoid_ring/NArithRing.v b/plugins/setoid_ring/NArithRing.v index fafd16ab..fae98d83 100644 --- a/plugins/setoid_ring/NArithRing.v +++ b/plugins/setoid_ring/NArithRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* c =? c' | PX P i n Q, PX P' i' n' Q' => - match Pcompare i i' Eq, Pcompare n n' Eq with + match Pos.compare i i', Pos.compare n n' with | Eq, Eq => if Peq P P' then Peq Q Q' else false | _,_ => false end @@ -67,7 +67,7 @@ Instance equalityb_pol : Equalityb Pol := match P with | Pc c => if c =? 0 then Q else PX P i n Q | PX P' i' n' Q' => - match Pcompare i i' Eq with + match Pos.compare i i' with | Eq => if Q' =? P0 then PX P' i (n + n') Q else PX P i n Q | _ => PX P i n Q end @@ -109,13 +109,13 @@ Fixpoint PaddX (i n:positive)(Q:Pol){struct Q}:= match Q with | Pc c => mkPX P i n Q | PX P' i' n' Q' => - match Pcompare i i' Eq with + match Pos.compare i i' with | (* i > i' *) Gt => mkPX P i n Q | (* i < i' *) Lt => mkPX P' i' n' (PaddX i n Q') | (* i = i' *) - Eq => match ZPminus n n' with + Eq => match Z.pos_sub n n' with | (* n > n' *) Zpos k => mkPX (PaddX i k P') i' n' Q' | (* n = n' *) @@ -178,61 +178,25 @@ Definition Psub(P P':Pol):= P ++ (--P'). Reserved Notation "P @ l " (at level 10, no associativity). Notation "P @ l " := (Pphi l P). + (** Proofs *) - Lemma ZPminus_spec : forall x y, - match ZPminus x y with - | Z0 => x = y - | Zpos k => x = (y + k)%positive - | Zneg k => y = (x + k)%positive + + Ltac destr_pos_sub H := + match goal with |- context [Z.pos_sub ?x ?y] => + assert (H := Z.pos_sub_discr x y); destruct (Z.pos_sub x y) end. - Proof. - induction x;destruct y. - replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial. - assert (Hh := IHx y);destruct (ZPminus x y);unfold Zdouble; -rewrite Hh;trivial. - replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y)); -trivial. - assert (Hh := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one; -rewrite Hh;trivial. - apply Pplus_xI_double_minus_one. - simpl;trivial. - replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y)); -trivial. - assert (Hh := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one; -rewrite Hh;trivial. - apply Pplus_xI_double_minus_one. - replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial. - assert (Hh := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite Hh; -trivial. - replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial. - replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - simpl;trivial. - Qed. Lemma Peq_ok : forall P P', (P =? P') = true -> forall l, P@l == P'@ l. Proof. - induction P;destruct P';simpl;intros;try discriminate;trivial. - apply ring_morphism_eq. - apply Ceqb_eq ;trivial. - assert (H1h := IHP1 P'1);assert (H2h := IHP2 P'2). - simpl in H1h. destruct (Peq P2 P'1). simpl in H2h; -destruct (Peq P3 P'2). - rewrite (H1h);trivial . rewrite (H2h);trivial. -assert (H3h := Pcompare_Eq_eq p p1); - destruct (Pos.compare_cont p p1 Eq); -assert (H4h := Pcompare_Eq_eq p0 p2); -destruct (Pos.compare_cont p0 p2 Eq); try (discriminate H). - rewrite H3h;trivial. rewrite H4h;trivial. reflexivity. - destruct (Pos.compare_cont p p1 Eq); destruct (Pos.compare_cont p0 p2 Eq); - try (discriminate H). - destruct (Pos.compare_cont p p1 Eq); destruct (Pos.compare_cont p0 p2 Eq); - try (discriminate H). + induction P;destruct P';simpl;intros ;try easy. + - now apply ring_morphism_eq, Ceqb_eq. + - specialize (IHP1 P'1). specialize (IHP2 P'2). + simpl in IHP1, IHP2. + destruct (Pos.compare_spec p p1); try discriminate; + destruct (Pos.compare_spec p0 p2); try discriminate. + destruct (Peq P2 P'1); try discriminate. + subst; now rewrite IHP1, IHP2. Qed. Lemma Pphi0 : forall l, P0@l == 0. @@ -255,12 +219,12 @@ destruct (Pos.compare_cont p0 p2 Eq); try (discriminate H). simpl; case_eq (Ceqb c 0);simpl;try reflexivity. intros. rewrite Hh. rewrite ring_morphism0. - rsimpl. apply Ceqb_eq. trivial. assert (Hh1 := Pcompare_Eq_eq i p); -destruct (Pos.compare_cont i p Eq). + rsimpl. apply Ceqb_eq. trivial. + destruct (Pos.compare_spec i p). assert (Hh := @Peq_ok P3 P0). case_eq (P3=? P0). intro. simpl. rewrite Hh. - rewrite Pphi0. rsimpl. rewrite Pplus_comm. rewrite pow_pos_Pplus;rsimpl. -rewrite Hh1;trivial. reflexivity. trivial. intros. simpl. reflexivity. simpl. reflexivity. + rewrite Pphi0. rsimpl. rewrite Pos.add_comm. rewrite pow_pos_add;rsimpl. + subst;trivial. reflexivity. trivial. intros. simpl. reflexivity. simpl. reflexivity. simpl. reflexivity. Qed. @@ -331,13 +295,13 @@ Lemma PaddXPX: forall P i n Q, match Q with | Pc c => mkPX P i n Q | PX P' i' n' Q' => - match Pcompare i i' Eq with + match Pos.compare i i' with | (* i > i' *) Gt => mkPX P i n Q | (* i < i' *) Lt => mkPX P' i' n' (PaddX Padd P i n Q') | (* i = i' *) - Eq => match ZPminus n n' with + Eq => match Z.pos_sub n n' with | (* n > n' *) Zpos k => mkPX (PaddX Padd P i k P') i' n' Q' | (* n = n' *) @@ -359,17 +323,17 @@ Lemma PaddX_ok2 : forall P2, induction P2;simpl;intros. split. intros. apply PaddCl_ok. induction P. unfold PaddX. intros. rewrite mkPX_ok. simpl. rsimpl. -intros. simpl. assert (Hh := Pcompare_Eq_eq k p); - destruct (Pos.compare_cont k p Eq). - assert (H1h := ZPminus_spec n p0);destruct (ZPminus n p0). Esimpl2. +intros. simpl. + destruct (Pos.compare_spec k p) as [Hh|Hh|Hh]. + destr_pos_sub H1h. Esimpl2. rewrite Hh; trivial. rewrite H1h. reflexivity. simpl. rewrite mkPX_ok. rewrite IHP1. Esimpl2. - rewrite Pplus_comm in H1h. + rewrite Pos.add_comm in H1h. rewrite H1h. -rewrite pow_pos_Pplus. Esimpl2. +rewrite pow_pos_add. Esimpl2. rewrite Hh; trivial. reflexivity. -rewrite mkPX_ok. rewrite PaddCl_ok. Esimpl2. rewrite Pplus_comm in H1h. -rewrite H1h. Esimpl2. rewrite pow_pos_Pplus. Esimpl2. +rewrite mkPX_ok. rewrite PaddCl_ok. Esimpl2. rewrite Pos.add_comm in H1h. +rewrite H1h. Esimpl2. rewrite pow_pos_add. Esimpl2. rewrite Hh; trivial. reflexivity. rewrite mkPX_ok. rewrite IHP2. Esimpl2. rewrite (ring_add_comm (P2 @ l * pow_pos (nth 0 p l) p0) @@ -382,19 +346,18 @@ split. intros. rewrite H0. rewrite H1. Esimpl2. induction P. unfold PaddX. intros. rewrite mkPX_ok. simpl. reflexivity. intros. rewrite PaddXPX. -assert (H3h := Pcompare_Eq_eq k p1); - destruct (Pos.compare_cont k p1 Eq). -assert (H4h := ZPminus_spec n p2);destruct (ZPminus n p2). +destruct (Pos.compare_spec k p1) as [H3h|H3h|H3h]. +destr_pos_sub H4h. rewrite mkPX_ok. simpl. rewrite H0. rewrite H1. Esimpl2. rewrite H4h. rewrite H3h;trivial. reflexivity. rewrite mkPX_ok. rewrite IHP1. Esimpl2. rewrite H3h;trivial. -rewrite Pplus_comm in H4h. -rewrite H4h. rewrite pow_pos_Pplus. Esimpl2. +rewrite Pos.add_comm in H4h. +rewrite H4h. rewrite pow_pos_add. Esimpl2. rewrite mkPX_ok. simpl. rewrite H0. rewrite H1. rewrite mkPX_ok. Esimpl2. rewrite H3h;trivial. - rewrite Pplus_comm in H4h. -rewrite H4h. rewrite pow_pos_Pplus. Esimpl2. + rewrite Pos.add_comm in H4h. +rewrite H4h. rewrite pow_pos_add. Esimpl2. rewrite mkPX_ok. simpl. rewrite IHP2. Esimpl2. gen_add_push (P2 @ l * pow_pos (nth 0 p1 l) p2). try reflexivity. rewrite mkPX_ok. simpl. reflexivity. diff --git a/plugins/setoid_ring/Ncring_tac.v b/plugins/setoid_ring/Ncring_tac.v index 34731eb3..44f8e7ff 100644 --- a/plugins/setoid_ring/Ncring_tac.v +++ b/plugins/setoid_ring/Ncring_tac.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (* e:PExpr Z est la réification de t0:R *) let t := constr:(@Ncring_polynom.norm_subst - Z 0%Z 1%Z Zplus Zmult Zminus Zopp (@eq Z) Zops Zeq_bool e) in + Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z) Zops Zeq_bool e) in (* t:Pol Z *) let te := constr:(@Ncring_polynom.Pphi Z @@ -212,13 +212,13 @@ Ltac ring_simplify_aux lterm fv lexpr hyp := let t':= fresh "t" in pose (t' := nft); assert (eq1 : t = t'); - [vm_cast_no_check (refl_equal t')| + [vm_cast_no_check (eq_refl t')| let eq2 := fresh "ring" in assert (eq2:(@Ncring_polynom.PEeval Z _ 0 1 _+_ _*_ _-_ -_ _==_ _ Ncring_initial.gen_phiZ N (fun n:N => n) (@Ring_theory.pow_N _ 1 multiplication) fv e) == te); [apply (@Ncring_polynom.norm_subst_ok - Z _ 0%Z 1%Z Zplus Zmult Zminus Zopp (@eq Z) + Z _ 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z) _ _ 0 1 _+_ _*_ _-_ -_ _==_ _ _ Ncring_initial.gen_phiZ _ (@comm _ 0 1 _+_ _*_ _-_ -_ _==_ _ _) _ Zeqb_ok); apply mkpow_th; reflexivity diff --git a/plugins/setoid_ring/RealField.v b/plugins/setoid_ring/RealField.v index 56473adb..29372212 100644 --- a/plugins/setoid_ring/RealField.v +++ b/plugins/setoid_ring/RealField.v @@ -5,21 +5,21 @@ Require Import Rdefinitions. Require Import Rpow_def. Require Import Raxioms. -Open Local Scope R_scope. +Local Open Scope R_scope. Lemma RTheory : ring_theory 0 1 Rplus Rmult Rminus Ropp (eq (A:=R)). Proof. constructor. intro; apply Rplus_0_l. exact Rplus_comm. - symmetry in |- *; apply Rplus_assoc. + symmetry ; apply Rplus_assoc. intro; apply Rmult_1_l. exact Rmult_comm. - symmetry in |- *; apply Rmult_assoc. + symmetry ; apply Rmult_assoc. intros m n p. - rewrite Rmult_comm in |- *. - rewrite (Rmult_comm n p) in |- *. - rewrite (Rmult_comm m p) in |- *. + rewrite Rmult_comm. + rewrite (Rmult_comm n p). + rewrite (Rmult_comm m p). apply Rmult_plus_distr_l. reflexivity. exact Rplus_opp_r. @@ -42,17 +42,17 @@ destruct H0. apply Rlt_trans with (IZR (up x)); trivial. replace (IZR (up x)) with (x + (IZR (up x) - x))%R. apply Rplus_lt_compat_l; trivial. - unfold Rminus in |- *. - rewrite (Rplus_comm (IZR (up x)) (- x)) in |- *. - rewrite <- Rplus_assoc in |- *. - rewrite Rplus_opp_r in |- *. + unfold Rminus. + rewrite (Rplus_comm (IZR (up x)) (- x)). + rewrite <- Rplus_assoc. + rewrite Rplus_opp_r. apply Rplus_0_l. elim H0. - unfold Rminus in |- *. - rewrite (Rplus_comm (IZR (up x)) (- x)) in |- *. - rewrite <- Rplus_assoc in |- *. - rewrite Rplus_opp_r in |- *. - rewrite Rplus_0_l in |- *; trivial. + unfold Rminus. + rewrite (Rplus_comm (IZR (up x)) (- x)). + rewrite <- Rplus_assoc. + rewrite Rplus_opp_r. + rewrite Rplus_0_l; trivial. Qed. Notation Rset := (Eqsth R). @@ -61,7 +61,7 @@ Notation Rext := (Eq_ext Rplus Rmult Ropp). Lemma Rlt_0_2 : 0 < 2. apply Rlt_trans with (0 + 1). apply Rlt_n_Sn. - rewrite Rplus_comm in |- *. + rewrite Rplus_comm. apply Rplus_lt_compat_l. replace 1 with (0 + 1). apply Rlt_n_Sn. @@ -69,19 +69,19 @@ apply Rlt_trans with (0 + 1). Qed. Lemma Rgen_phiPOS : forall x, InitialRing.gen_phiPOS1 1 Rplus Rmult x > 0. -unfold Rgt in |- *. -induction x; simpl in |- *; intros. +unfold Rgt. +induction x; simpl; intros. apply Rlt_trans with (1 + 0). - rewrite Rplus_comm in |- *. + rewrite Rplus_comm. apply Rlt_n_Sn. apply Rplus_lt_compat_l. - rewrite <- (Rmul_0_l Rset Rext RTheory 2) in |- *. - rewrite Rmult_comm in |- *. + rewrite <- (Rmul_0_l Rset Rext RTheory 2). + rewrite Rmult_comm. apply Rmult_lt_compat_l. apply Rlt_0_2. trivial. - rewrite <- (Rmul_0_l Rset Rext RTheory 2) in |- *. - rewrite Rmult_comm in |- *. + rewrite <- (Rmul_0_l Rset Rext RTheory 2). + rewrite Rmult_comm. apply Rmult_lt_compat_l. apply Rlt_0_2. trivial. @@ -93,9 +93,9 @@ Qed. Lemma Rgen_phiPOS_not_0 : forall x, InitialRing.gen_phiPOS1 1 Rplus Rmult x <> 0. -red in |- *; intros. +red; intros. specialize (Rgen_phiPOS x). -rewrite H in |- *; intro. +rewrite H; intro. apply (Rlt_asym 0 0); trivial. Qed. @@ -107,23 +107,23 @@ Proof gen_phiZ_complete Rset Rext Rfield Rgen_phiPOS_not_0. Lemma Rdef_pow_add : forall (x:R) (n m:nat), pow x (n + m) = pow x n * pow x m. Proof. - intros x n; elim n; simpl in |- *; auto with real. + intros x n; elim n; simpl; auto with real. intros n0 H' m; rewrite H'; auto with real. Qed. -Lemma R_power_theory : power_theory 1%R Rmult (eq (A:=R)) nat_of_N pow. +Lemma R_power_theory : power_theory 1%R Rmult (@eq R) N.to_nat pow. Proof. constructor. destruct n. reflexivity. - simpl. induction p;simpl. - rewrite ZL6. rewrite Rdef_pow_add;rewrite IHp. reflexivity. - unfold nat_of_P;simpl;rewrite ZL6;rewrite Rdef_pow_add;rewrite IHp;trivial. - rewrite Rmult_comm;apply Rmult_1_l. + simpl. induction p. + - rewrite Pos2Nat.inj_xI. simpl. now rewrite plus_0_r, Rdef_pow_add, IHp. + - rewrite Pos2Nat.inj_xO. simpl. now rewrite plus_0_r, Rdef_pow_add, IHp. + - simpl. rewrite Rmult_comm;apply Rmult_1_l. Qed. Ltac Rpow_tac t := match isnatcst t with | false => constr:(InitialRing.NotConstant) - | _ => constr:(N_of_nat t) + | _ => constr:(N.of_nat t) end. Add Field RField : Rfield diff --git a/plugins/setoid_ring/Ring.v b/plugins/setoid_ring/Ring.v index c44c2edf..7c1bf981 100644 --- a/plugins/setoid_ring/Ring.v +++ b/plugins/setoid_ring/Ring.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* b) (eq(A:=bool)). -split; simpl in |- *. +split; simpl. destruct x; reflexivity. destruct x; destruct y; reflexivity. destruct x; destruct y; destruct z; reflexivity. diff --git a/plugins/setoid_ring/Ring_base.v b/plugins/setoid_ring/Ring_base.v index 6d4360d6..dc5248b2 100644 --- a/plugins/setoid_ring/Ring_base.v +++ b/plugins/setoid_ring/Ring_base.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* R -> Prop. (* Ring properties *) - Variable Rsth : Setoid_Theory R req. + Variable Rsth : Equivalence req. Variable Reqe : ring_eq_ext radd rmul ropp req. Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req. @@ -37,7 +33,7 @@ Section MakeRingPol. Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi. - (* Power coefficients *) + (* Power coefficients *) Variable Cpow : Type. Variable Cp_phi : N -> Cpow. Variable rpow : R -> Cpow -> R. @@ -50,26 +46,47 @@ Section MakeRingPol. (* R notations *) Notation "0" := rO. Notation "1" := rI. - Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). - Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). - Notation "x == y" := (req x y). + Infix "+" := radd. Infix "*" := rmul. + Infix "-" := rsub. Notation "- x" := (ropp x). + Infix "==" := req. + Infix "^" := (pow_pos rmul). (* C notations *) - Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y). - Notation "x -! y " := (csub x y). Notation "-! x" := (copp x). - Notation " x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x). + Infix "+!" := cadd. Infix "*!" := cmul. + Infix "-! " := csub. Notation "-! x" := (copp x). + Infix "?=!" := ceqb. Notation "[ x ]" := (phi x). (* Useful tactics *) - Add Setoid R req Rsth as R_set1. - Ltac rrefl := gen_reflexivity Rsth. - Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. - Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. - Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. - Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed. + Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. + Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. + Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. + Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed. Ltac rsimpl := gen_srewrite Rsth Reqe ARth. + Ltac add_push := gen_add_push radd Rsth Reqe ARth. Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth. + Ltac add_permut_rec t := + match t with + | ?x + ?y => add_permut_rec y || add_permut_rec x + | _ => add_push t; apply (Radd_ext Reqe); [|reflexivity] + end. + + Ltac add_permut := + repeat (reflexivity || + match goal with |- ?t == _ => add_permut_rec t end). + + Ltac mul_permut_rec t := + match t with + | ?x * ?y => mul_permut_rec y || mul_permut_rec x + | _ => mul_push t; apply (Rmul_ext Reqe); [|reflexivity] + end. + + Ltac mul_permut := + repeat (reflexivity || + match goal with |- ?t == _ => mul_permut_rec t end). + + (* Definition of multivariable polynomials with coefficients in C : Type [Pol] represents [X1 ... Xn]. The representation is Horner's where a [n] variable polynomial @@ -116,19 +133,19 @@ Section MakeRingPol. | _, _ => false end. - Notation " P ?== P' " := (Peq P P'). + Infix "?==" := Peq. Definition mkPinj j P := match P with | Pc _ => P - | Pinj j' Q => Pinj ((j + j'):positive) Q + | Pinj j' Q => Pinj (j + j') Q | _ => Pinj j P end. Definition mkPinj_pred j P:= match j with | xH => P - | xO j => Pinj (Pdouble_minus_one j) P + | xO j => Pinj (Pos.pred_double j) P | xI j => Pinj (xO j) P end. @@ -156,14 +173,14 @@ Section MakeRingPol. (** Addition et subtraction *) - Fixpoint PaddC (P:Pol) (c:C) {struct P} : Pol := + Fixpoint PaddC (P:Pol) (c:C) : Pol := match P with | Pc c1 => Pc (c1 +! c) | Pinj j Q => Pinj j (PaddC Q c) | PX P i Q => PX P i (PaddC Q c) end. - Fixpoint PsubC (P:Pol) (c:C) {struct P} : Pol := + Fixpoint PsubC (P:Pol) (c:C) : Pol := match P with | Pc c1 => Pc (c1 -! c) | Pinj j Q => Pinj j (PsubC Q c) @@ -175,11 +192,11 @@ Section MakeRingPol. Variable Pop : Pol -> Pol -> Pol. Variable Q : Pol. - Fixpoint PaddI (j:positive) (P:Pol){struct P} : Pol := + Fixpoint PaddI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PaddC Q c) | Pinj j' Q' => - match ZPminus j' j with + match Z.pos_sub j' j with | Zpos k => mkPinj j (Pop (Pinj k Q') Q) | Z0 => mkPinj j (Pop Q' Q) | Zneg k => mkPinj j' (PaddI k Q') @@ -187,16 +204,16 @@ Section MakeRingPol. | PX P i Q' => match j with | xH => PX P i (Pop Q' Q) - | xO j => PX P i (PaddI (Pdouble_minus_one j) Q') + | xO j => PX P i (PaddI (Pos.pred_double j) Q') | xI j => PX P i (PaddI (xO j) Q') end end. - Fixpoint PsubI (j:positive) (P:Pol){struct P} : Pol := + Fixpoint PsubI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PaddC (--Q) c) | Pinj j' Q' => - match ZPminus j' j with + match Z.pos_sub j' j with | Zpos k => mkPinj j (Pop (Pinj k Q') Q) | Z0 => mkPinj j (Pop Q' Q) | Zneg k => mkPinj j' (PsubI k Q') @@ -204,41 +221,41 @@ Section MakeRingPol. | PX P i Q' => match j with | xH => PX P i (Pop Q' Q) - | xO j => PX P i (PsubI (Pdouble_minus_one j) Q') + | xO j => PX P i (PsubI (Pos.pred_double j) Q') | xI j => PX P i (PsubI (xO j) Q') end end. Variable P' : Pol. - Fixpoint PaddX (i':positive) (P:Pol) {struct P} : Pol := + Fixpoint PaddX (i':positive) (P:Pol) : Pol := match P with | Pc c => PX P' i' P | Pinj j Q' => match j with | xH => PX P' i' Q' - | xO j => PX P' i' (Pinj (Pdouble_minus_one j) Q') + | xO j => PX P' i' (Pinj (Pos.pred_double j) Q') | xI j => PX P' i' (Pinj (xO j) Q') end | PX P i Q' => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' | Z0 => mkPX (Pop P P') i Q' | Zneg k => mkPX (PaddX k P) i Q' end end. - Fixpoint PsubX (i':positive) (P:Pol) {struct P} : Pol := + Fixpoint PsubX (i':positive) (P:Pol) : Pol := match P with | Pc c => PX (--P') i' P | Pinj j Q' => match j with | xH => PX (--P') i' Q' - | xO j => PX (--P') i' (Pinj (Pdouble_minus_one j) Q') + | xO j => PX (--P') i' (Pinj (Pos.pred_double j) Q') | xI j => PX (--P') i' (Pinj (xO j) Q') end | PX P i Q' => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' | Z0 => mkPX (Pop P P') i Q' | Zneg k => mkPX (PsubX k P) i Q' @@ -258,18 +275,18 @@ Section MakeRingPol. | Pinj j Q => match j with | xH => PX P' i' (Padd Q Q') - | xO j => PX P' i' (Padd (Pinj (Pdouble_minus_one j) Q) Q') + | xO j => PX P' i' (Padd (Pinj (Pos.pred_double j) Q) Q') | xI j => PX P' i' (Padd (Pinj (xO j) Q) Q') end | PX P i Q => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q') | Z0 => mkPX (Padd P P') i (Padd Q Q') | Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q') end end end. - Notation "P ++ P'" := (Padd P P'). + Infix "++" := Padd. Fixpoint Psub (P P': Pol) {struct P'} : Pol := match P' with @@ -281,22 +298,22 @@ Section MakeRingPol. | Pinj j Q => match j with | xH => PX (--P') i' (Psub Q Q') - | xO j => PX (--P') i' (Psub (Pinj (Pdouble_minus_one j) Q) Q') + | xO j => PX (--P') i' (Psub (Pinj (Pos.pred_double j) Q) Q') | xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q') end | PX P i Q => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q') | Z0 => mkPX (Psub P P') i (Psub Q Q') | Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q') end end end. - Notation "P -- P'" := (Psub P P'). + Infix "--" := Psub. (** Multiplication *) - Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol := + Fixpoint PmulC_aux (P:Pol) (c:C) : Pol := match P with | Pc c' => Pc (c' *! c) | Pinj j Q => mkPinj j (PmulC_aux Q c) @@ -310,11 +327,11 @@ Section MakeRingPol. Section PmulI. Variable Pmul : Pol -> Pol -> Pol. Variable Q : Pol. - Fixpoint PmulI (j:positive) (P:Pol) {struct P} : Pol := + Fixpoint PmulI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PmulC Q c) | Pinj j' Q' => - match ZPminus j' j with + match Z.pos_sub j' j with | Zpos k => mkPinj j (Pmul (Pinj k Q') Q) | Z0 => mkPinj j (Pmul Q' Q) | Zneg k => mkPinj j' (PmulI k Q') @@ -322,13 +339,12 @@ Section MakeRingPol. | PX P' i' Q' => match j with | xH => mkPX (PmulI xH P') i' (Pmul Q' Q) - | xO j' => mkPX (PmulI j P') i' (PmulI (Pdouble_minus_one j') Q') + | xO j' => mkPX (PmulI j P') i' (PmulI (Pos.pred_double j') Q') | xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q') end end. End PmulI. -(* A symmetric version of the multiplication *) Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol := match P'' with @@ -341,7 +357,7 @@ Section MakeRingPol. let QQ' := match j with | xH => Pmul Q Q' - | xO j => Pmul (Pinj (Pdouble_minus_one j) Q) Q' + | xO j => Pmul (Pinj (Pos.pred_double j) Q) Q' | xI j => Pmul (Pinj (xO j) Q) Q' end in mkPX (Pmul P P') i' QQ' @@ -354,25 +370,7 @@ Section MakeRingPol. end end. -(* Non symmetric *) -(* - Fixpoint Pmul_aux (P P' : Pol) {struct P'} : Pol := - match P' with - | Pc c' => PmulC P c' - | Pinj j' Q' => PmulI Pmul_aux Q' j' P - | PX P' i' Q' => - (mkPX (Pmul_aux P P') i' P0) ++ (PmulI Pmul_aux Q' xH P) - end. - - Definition Pmul P P' := - match P with - | Pc c => PmulC P' c - | Pinj j Q => PmulI Pmul_aux Q j P' - | PX P i Q => - (mkPX (Pmul_aux P P') i P0) ++ (PmulI Pmul_aux Q xH P') - end. -*) - Notation "P ** P'" := (Pmul P P'). + Infix "**" := Pmul. Fixpoint Psquare (P:Pol) : Pol := match P with @@ -387,26 +385,26 @@ Section MakeRingPol. (** Monomial **) + (** A monomial is X1^k1...Xi^ki. Its representation + is a simplified version of the polynomial representation: + + - [mon0] correspond to the polynom [P1]. + - [(zmon j M)] corresponds to [(Pinj j ...)], + i.e. skip j variable indices. + - [(vmon i M)] is X^i*M with X the current variable, + its corresponds to (PX P1 i ...)] + *) + Inductive Mon: Set := - mon0: Mon + | mon0: Mon | zmon: positive -> Mon -> Mon | vmon: positive -> Mon -> Mon. - Fixpoint Mphi(l:list R) (M: Mon) {struct M} : R := - match M with - mon0 => rI - | zmon j M1 => Mphi (jump j l) M1 - | vmon i M1 => - let x := hd 0 l in - let xi := pow_pos rmul x i in - (Mphi (tail l) M1) * xi - end. - Definition mkZmon j M := match M with mon0 => mon0 | _ => zmon j M end. Definition zmon_pred j M := - match j with xH => M | _ => mkZmon (Ppred j) M end. + match j with xH => M | _ => mkZmon (Pos.pred j) M end. Definition mkVmon i M := match M with @@ -421,7 +419,7 @@ Section MakeRingPol. | Pinj j1 P1 => let (R,S) := CFactor P1 c in (mkPinj j1 R, mkPinj j1 S) - | PX P1 i Q1 => + | PX P1 i Q1 => let (R1, S1) := CFactor P1 c in let (R2, S2) := CFactor Q1 c in (mkPX R1 i R2, mkPX S1 i S2) @@ -429,10 +427,7 @@ Section MakeRingPol. Fixpoint MFactor (P: Pol) (c: C) (M: Mon) {struct P}: Pol * Pol := match P, M with - _, mon0 => - if (ceqb c cI) then (Pc cO, P) else -(* if (ceqb c (copp cI)) then (Pc cO, Popp P) else Not in almost ring *) - CFactor P c + _, mon0 => if (ceqb c cI) then (Pc cO, P) else CFactor P c | Pc _, _ => (P, Pc cO) | Pinj j1 P1, zmon j2 M1 => match j1 ?= j2 with @@ -468,7 +463,7 @@ Section MakeRingPol. | _ => Some (Padd Q1 (Pmul P2 R1)) end. - Fixpoint PNSubst1 (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat) {struct n}: Pol := + Fixpoint PNSubst1 (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat) : Pol := match POneSubst P1 cM1 P2 with Some P3 => match n with S n1 => PNSubst1 P3 cM1 P2 n1 | _ => P3 end | _ => P1 @@ -480,14 +475,13 @@ Section MakeRingPol. | _ => None end. - Fixpoint PSubstL1 (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) {struct LM1}: - Pol := + Fixpoint PSubstL1 (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) : Pol := match LM1 with cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n | _ => P1 end. - Fixpoint PSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) {struct LM1}: option Pol := + Fixpoint PSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) : option Pol := match LM1 with cons (M1,P2) LM2 => match PNSubst P1 M1 P2 n with @@ -497,7 +491,7 @@ Section MakeRingPol. | _ => None end. - Fixpoint PNSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (m n: nat) {struct m}: Pol := + Fixpoint PNSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (m n: nat) : Pol := match PSubstL P1 LM1 n with Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end | _ => P1 @@ -505,658 +499,409 @@ Section MakeRingPol. (** Evaluation of a polynomial towards R *) - Fixpoint Pphi(l:list R) (P:Pol) {struct P} : R := + Local Notation hd := (List.hd 0). + + Fixpoint Pphi(l:list R) (P:Pol) : R := match P with | Pc c => [c] | Pinj j Q => Pphi (jump j l) Q - | PX P i Q => - let x := hd 0 l in - let xi := pow_pos rmul x i in - (Pphi l P) * xi + (Pphi (tail l) Q) + | PX P i Q => Pphi l P * (hd l) ^ i + Pphi (tail l) Q end. Reserved Notation "P @ l " (at level 10, no associativity). Notation "P @ l " := (Pphi l P). + + (** Evaluation of a monomial towards R *) + + Fixpoint Mphi(l:list R) (M: Mon) : R := + match M with + | mon0 => rI + | zmon j M1 => Mphi (jump j l) M1 + | vmon i M1 => Mphi (tail l) M1 * (hd l) ^ i + end. + + Notation "M @@ l" := (Mphi l M) (at level 10, no associativity). + (** Proofs *) - Lemma ZPminus_spec : forall x y, - match ZPminus x y with - | Z0 => x = y - | Zpos k => x = (y + k)%positive - | Zneg k => y = (x + k)%positive + + Ltac destr_pos_sub := + match goal with |- context [Z.pos_sub ?x ?y] => + generalize (Z.pos_sub_discr x y); destruct (Z.pos_sub x y) end. + + Lemma jump_add' i j (l:list R) : jump (i + j) l = jump j (jump i l). + Proof. rewrite Pos.add_comm. apply jump_add. Qed. + + Lemma Peq_ok P P' : (P ?== P') = true -> forall l, P@l == P'@ l. Proof. - induction x;destruct y. - replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial. - replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one;rewrite H;trivial. - apply Pplus_xI_double_minus_one. - simpl;trivial. - replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one;rewrite H;trivial. - apply Pplus_xI_double_minus_one. - replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial. - replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial. - replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - simpl;trivial. + revert P';induction P;destruct P';simpl; intros H l; try easy. + - now apply (morph_eq CRmorph). + - destruct (Pos.compare_spec p p0); [ subst | easy | easy ]. + now rewrite IHP. + - specialize (IHP1 P'1); specialize (IHP2 P'2). + destruct (Pos.compare_spec p p0); [ subst | easy | easy ]. + destruct (P2 ?== P'1); [|easy]. + rewrite H in *. + now rewrite IHP1, IHP2. Qed. - Lemma Peq_ok : forall P P', - (P ?== P') = true -> forall l, P@l == P'@ l. + Lemma Peq_spec P P' : + BoolSpec (forall l, P@l == P'@l) True (P ?== P'). Proof. - induction P;destruct P';simpl;intros;try discriminate;trivial. - apply (morph_eq CRmorph);trivial. - assert (H1 := Pos.compare_eq p p0); destruct (p ?= p0); - try discriminate H. - rewrite (IHP P' H); rewrite H1;trivial;rrefl. - assert (H1 := Pos.compare_eq p p0); destruct (p ?= p0); - try discriminate H. - rewrite H1;trivial. clear H1. - assert (H1 := IHP1 P'1);assert (H2 := IHP2 P'2); - destruct (P2 ?== P'1);[destruct (P3 ?== P'2); [idtac|discriminate H] - |discriminate H]. - rewrite (H1 H);rewrite (H2 H);rrefl. + generalize (Peq_ok P P'). destruct (P ?== P'); auto. Qed. - Lemma Pphi0 : forall l, P0@l == 0. + Lemma Pphi0 l : P0@l == 0. Proof. - intros;simpl;apply (morph0 CRmorph). + simpl;apply (morph0 CRmorph). Qed. - Lemma Pphi1 : forall l, P1@l == 1. + Lemma Pphi1 l : P1@l == 1. Proof. - intros;simpl;apply (morph1 CRmorph). + simpl;apply (morph1 CRmorph). Qed. - Lemma mkPinj_ok : forall j l P, (mkPinj j P)@l == P@(jump j l). + Lemma mkPinj_ok j l P : (mkPinj j P)@l == P@(jump j l). Proof. - intros j l p;destruct p;simpl;rsimpl. - rewrite <-jump_Pplus;rewrite Pplus_comm;rrefl. + destruct P;simpl;rsimpl. + now rewrite jump_add'. Qed. - Let pow_pos_Pplus := - pow_pos_Pplus rmul Rsth Reqe.(Rmul_ext) ARth.(ARmul_comm) ARth.(ARmul_assoc). + Lemma pow_pos_add x i j : x^(j + i) == x^i * x^j. + Proof. + rewrite Pos.add_comm. + apply (pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)). + Qed. - Lemma mkPX_ok : forall l P i Q, - (mkPX P i Q)@l == P@l*(pow_pos rmul (hd 0 l) i) + Q@(tail l). + Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?=! c'). Proof. - intros l P i Q;unfold mkPX. - destruct P;try (simpl;rrefl). - assert (H := morph_eq CRmorph c cO);destruct (c ?=! cO);simpl;try rrefl. - rewrite (H (refl_equal true));rewrite (morph0 CRmorph). - rewrite mkPinj_ok;rsimpl;simpl;rrefl. - assert (H := @Peq_ok P3 P0);destruct (P3 ?== P0);simpl;try rrefl. - rewrite (H (refl_equal true));trivial. - rewrite Pphi0. rewrite pow_pos_Pplus;rsimpl. + generalize (morph_eq CRmorph c c'). + destruct (c ?=! c'); auto. Qed. - Ltac Esimpl := - repeat (progress ( - match goal with - | |- context [?P@?l] => - match P with - | P0 => rewrite (Pphi0 l) - | P1 => rewrite (Pphi1 l) - | (mkPinj ?j ?P) => rewrite (mkPinj_ok j l P) - | (mkPX ?P ?i ?Q) => rewrite (mkPX_ok l P i Q) - end - | |- context [[?c]] => - match c with - | cO => rewrite (morph0 CRmorph) - | cI => rewrite (morph1 CRmorph) - | ?x +! ?y => rewrite ((morph_add CRmorph) x y) - | ?x *! ?y => rewrite ((morph_mul CRmorph) x y) - | ?x -! ?y => rewrite ((morph_sub CRmorph) x y) - | -! ?x => rewrite ((morph_opp CRmorph) x) - end - end)); - rsimpl; simpl. - - Lemma PaddC_ok : forall c P l, (PaddC P c)@l == P@l + [c]. + Lemma mkPX_ok l P i Q : + (mkPX P i Q)@l == P@l * (hd l)^i + Q@(tail l). Proof. - induction P;simpl;intros;Esimpl;trivial. - rewrite IHP2;rsimpl. + unfold mkPX. destruct P. + - case ceqb_spec; intros H; simpl; try reflexivity. + rewrite H, (morph0 CRmorph), mkPinj_ok; rsimpl. + - reflexivity. + - case Peq_spec; intros H; simpl; try reflexivity. + rewrite H, Pphi0, Pos.add_comm, pow_pos_add; rsimpl. Qed. - Lemma PsubC_ok : forall c P l, (PsubC P c)@l == P@l - [c]. + Hint Rewrite + Pphi0 + Pphi1 + mkPinj_ok + mkPX_ok + (morph0 CRmorph) + (morph1 CRmorph) + (morph0 CRmorph) + (morph_add CRmorph) + (morph_mul CRmorph) + (morph_sub CRmorph) + (morph_opp CRmorph) + : Esimpl. + + (* Quicker than autorewrite with Esimpl :-) *) + Ltac Esimpl := try rewrite_db Esimpl; rsimpl; simpl. + + Lemma PaddC_ok c P l : (PaddC P c)@l == P@l + [c]. Proof. - induction P;simpl;intros. - Esimpl. - rewrite IHP;rsimpl. + revert l;induction P;simpl;intros;Esimpl;trivial. rewrite IHP2;rsimpl. Qed. - Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c]. + Lemma PsubC_ok c P l : (PsubC P c)@l == P@l - [c]. Proof. - induction P;simpl;intros;Esimpl;trivial. - rewrite IHP1;rewrite IHP2;rsimpl. - mul_push ([c]);rrefl. + revert l;induction P;simpl;intros. + - Esimpl. + - rewrite IHP;rsimpl. + - rewrite IHP2;rsimpl. Qed. - Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c]. + Lemma PmulC_aux_ok c P l : (PmulC_aux P c)@l == P@l * [c]. Proof. - intros c P l; unfold PmulC. - assert (H:= morph_eq CRmorph c cO);destruct (c ?=! cO). - rewrite (H (refl_equal true));Esimpl. - assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI). - rewrite (H1 (refl_equal true));Esimpl. - apply PmulC_aux_ok. + revert l;induction P;simpl;intros;Esimpl;trivial. + rewrite IHP1, IHP2;rsimpl. add_permut. mul_permut. Qed. - Lemma Popp_ok : forall P l, (--P)@l == - P@l. + Lemma PmulC_ok c P l : (PmulC P c)@l == P@l * [c]. Proof. - induction P;simpl;intros. - Esimpl. - apply IHP. - rewrite IHP1;rewrite IHP2;rsimpl. + unfold PmulC. + case ceqb_spec; intros H. + - rewrite H; Esimpl. + - case ceqb_spec; intros H'. + + rewrite H'; Esimpl. + + apply PmulC_aux_ok. Qed. - Ltac Esimpl2 := - Esimpl; - repeat (progress ( - match goal with - | |- context [(PaddC ?P ?c)@?l] => rewrite (PaddC_ok c P l) - | |- context [(PsubC ?P ?c)@?l] => rewrite (PsubC_ok c P l) - | |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l) - | |- context [(--?P)@?l] => rewrite (Popp_ok P l) - end)); Esimpl. - - Lemma Padd_ok : forall P' P l, (P ++ P')@l == P@l + P'@l. + Lemma Popp_ok P l : (--P)@l == - P@l. Proof. - induction P';simpl;intros;Esimpl2. - generalize P p l;clear P p l. - induction P;simpl;intros. - Esimpl2;apply (ARadd_comm ARth). - assert (H := ZPminus_spec p p0);destruct (ZPminus p p0). - rewrite H;Esimpl. rewrite IHP';rrefl. - rewrite H;Esimpl. rewrite IHP';Esimpl. - rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl. - rewrite H;Esimpl. rewrite IHP. - rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl. - destruct p0;simpl. - rewrite IHP2;simpl;rsimpl. - rewrite IHP2;simpl. - rewrite jump_Pdouble_minus_one;rsimpl. - rewrite IHP';rsimpl. - destruct P;simpl. - Esimpl2;add_push [c];rrefl. - destruct p0;simpl;Esimpl2. - rewrite IHP'2;simpl. - rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl. - rewrite IHP'2;simpl. - rewrite jump_Pdouble_minus_one;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl. - rewrite IHP'2;rsimpl. add_push (P @ (tail l));rrefl. - assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2. - rewrite IHP'1;rewrite IHP'2;rsimpl. - add_push (P3 @ (tail l));rewrite H;rrefl. - rewrite IHP'1;rewrite IHP'2;simpl;Esimpl. - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. - assert (forall P k l, - (PaddX Padd P'1 k P) @ l == P@l + P'1@l * pow_pos rmul (hd 0 l) k). - induction P;simpl;intros;try apply (ARadd_comm ARth). - destruct p2;simpl;try apply (ARadd_comm ARth). - rewrite jump_Pdouble_minus_one;apply (ARadd_comm ARth). - assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2. - rewrite IHP'1;rsimpl; rewrite H1;add_push (P5 @ (tail l0));rrefl. - rewrite IHP'1;simpl;Esimpl. - rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;Esimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite IHP1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;rsimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite H0;rsimpl. - add_push (P3 @ (tail l)). - rewrite H;rewrite Pplus_comm. - rewrite IHP'2;rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. + revert l;induction P;simpl;intros. + - Esimpl. + - apply IHP. + - rewrite IHP1, IHP2;rsimpl. Qed. - Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l. + Hint Rewrite PaddC_ok PsubC_ok PmulC_ok Popp_ok : Esimpl. + + Lemma PaddX_ok P' P k l : + (forall P l, (P++P')@l == P@l + P'@l) -> + (PaddX Padd P' k P) @ l == P@l + P'@l * (hd l)^k. Proof. - induction P';simpl;intros;Esimpl2;trivial. - generalize P p l;clear P p l. - induction P;simpl;intros. - Esimpl2;apply (ARadd_comm ARth). - assert (H := ZPminus_spec p p0);destruct (ZPminus p p0). - rewrite H;Esimpl. rewrite IHP';rsimpl. - rewrite H;Esimpl. rewrite IHP';Esimpl. - rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl. - rewrite H;Esimpl. rewrite IHP. - rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl. - destruct p0;simpl. - rewrite IHP2;simpl;rsimpl. - rewrite IHP2;simpl. - rewrite jump_Pdouble_minus_one;rsimpl. - rewrite IHP';rsimpl. - destruct P;simpl. - repeat rewrite Popp_ok;Esimpl2;rsimpl;add_push [c];try rrefl. - destruct p0;simpl;Esimpl2. - rewrite IHP'2;simpl;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));trivial. - add_push (P @ (jump p0 (jump p0 (tail l))));rrefl. - rewrite IHP'2;simpl;rewrite jump_Pdouble_minus_one;rsimpl. - add_push (- (P'1 @ l * pow_pos rmul (hd 0 l) p));rrefl. - rewrite IHP'2;rsimpl;add_push (P @ (tail l));rrefl. - assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2. - rewrite IHP'1; rewrite IHP'2;rsimpl. - add_push (P3 @ (tail l));rewrite H;rrefl. - rewrite IHP'1; rewrite IHP'2;rsimpl;simpl;Esimpl. - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. - assert (forall P k l, - (PsubX Psub P'1 k P) @ l == P@l + - P'1@l * pow_pos rmul (hd 0 l) k). - induction P;simpl;intros. - rewrite Popp_ok;rsimpl;apply (ARadd_comm ARth);trivial. - destruct p2;simpl;rewrite Popp_ok;rsimpl. - apply (ARadd_comm ARth);trivial. - rewrite jump_Pdouble_minus_one;apply (ARadd_comm ARth);trivial. - apply (ARadd_comm ARth);trivial. - assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2;rsimpl. - rewrite IHP'1;rsimpl;add_push (P5 @ (tail l0));rewrite H1;rrefl. - rewrite IHP'1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;Esimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite IHP1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;rsimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite H0;rsimpl. - rewrite IHP'2;rsimpl;add_push (P3 @ (tail l)). - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. + intros IHP'. + revert k l. induction P;simpl;intros. + - add_permut. + - destruct p; simpl; + rewrite ?jump_pred_double; add_permut. + - destr_pos_sub; intros ->;Esimpl. + + rewrite IHP';rsimpl. add_permut. + + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut. + + rewrite IHP1, pow_pos_add;rsimpl. add_permut. Qed. -(* Proof for the symmetriv version *) - Lemma PmulI_ok : - forall P', - (forall (P : Pol) (l : list R), (Pmul P P') @ l == P @ l * P' @ l) -> - forall (P : Pol) (p : positive) (l : list R), - (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l). + Lemma Padd_ok P' P l : (P ++ P')@l == P@l + P'@l. Proof. - induction P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2. - rewrite H1; rewrite H;rrefl. - rewrite H1; rewrite H. - rewrite Pplus_comm. - rewrite jump_Pplus;simpl;rrefl. - rewrite H1;rewrite Pplus_comm. - rewrite jump_Pplus;rewrite IHP;rrefl. - destruct p0;Esimpl2. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p);rrefl. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl. - rewrite IHP1;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p). - rewrite H;rrefl. + revert P l; induction P';simpl;intros;Esimpl. + - revert p l; induction P;simpl;intros. + + Esimpl; add_permut. + + destr_pos_sub; intros ->;Esimpl. + * now rewrite IHP'. + * rewrite IHP';Esimpl. now rewrite jump_add'. + * rewrite IHP. now rewrite jump_add'. + + destruct p0;simpl. + * rewrite IHP2;simpl. rsimpl. + * rewrite IHP2;simpl. rewrite jump_pred_double. rsimpl. + * rewrite IHP'. rsimpl. + - destruct P;simpl. + + Esimpl. add_permut. + + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl. + * rsimpl. add_permut. + * rewrite jump_pred_double. rsimpl. add_permut. + * rsimpl. add_permut. + + destr_pos_sub; intros ->; Esimpl. + * rewrite IHP'1, IHP'2;rsimpl. add_permut. + * rewrite IHP'1, IHP'2;simpl;Esimpl. + rewrite pow_pos_add;rsimpl. add_permut. + * rewrite PaddX_ok by trivial; rsimpl. + rewrite IHP'2, pow_pos_add; rsimpl. add_permut. Qed. -(* - Lemma PmulI_ok : - forall P', - (forall (P : Pol) (l : list R), (Pmul_aux P P') @ l == P @ l * P' @ l) -> - forall (P : Pol) (p : positive) (l : list R), - (PmulI Pmul_aux P' p P) @ l == P @ l * P' @ (jump p l). + Lemma PsubX_ok P' P k l : + (forall P l, (P--P')@l == P@l - P'@l) -> + (PsubX Psub P' k P) @ l == P@l - P'@l * (hd l)^k. Proof. - induction P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2. - rewrite H1; rewrite H;rrefl. - rewrite H1; rewrite H. - rewrite Pplus_comm. - rewrite jump_Pplus;simpl;rrefl. - rewrite H1;rewrite Pplus_comm. - rewrite jump_Pplus;rewrite IHP;rrefl. - destruct p0;Esimpl2. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p);rrefl. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl. - rewrite IHP1;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p). - rewrite H;rrefl. + intros IHP'. + revert k l. induction P;simpl;intros. + - rewrite Popp_ok;rsimpl; add_permut. + - destruct p; simpl; + rewrite Popp_ok;rsimpl; + rewrite ?jump_pred_double; add_permut. + - destr_pos_sub; intros ->; Esimpl. + + rewrite IHP';rsimpl. add_permut. + + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut. + + rewrite IHP1, pow_pos_add;rsimpl. add_permut. Qed. - Lemma Pmul_aux_ok : forall P' P l,(Pmul_aux P P')@l == P@l * P'@l. + Lemma Psub_ok P' P l : (P -- P')@l == P@l - P'@l. Proof. - induction P';simpl;intros. - Esimpl2;trivial. - apply PmulI_ok;trivial. - rewrite Padd_ok;Esimpl2. - rewrite (PmulI_ok P'2 IHP'2). rewrite IHP'1. rrefl. + revert P l; induction P';simpl;intros;Esimpl. + - revert p l; induction P;simpl;intros. + + Esimpl; add_permut. + + destr_pos_sub; intros ->;Esimpl. + * rewrite IHP';rsimpl. + * rewrite IHP';Esimpl. now rewrite jump_add'. + * rewrite IHP. now rewrite jump_add'. + + destruct p0;simpl. + * rewrite IHP2;simpl. rsimpl. + * rewrite IHP2;simpl. rewrite jump_pred_double. rsimpl. + * rewrite IHP'. rsimpl. + - destruct P;simpl. + + Esimpl; add_permut. + + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl. + * rsimpl. add_permut. + * rewrite jump_pred_double. rsimpl. add_permut. + * rsimpl. add_permut. + + destr_pos_sub; intros ->; Esimpl. + * rewrite IHP'1, IHP'2;rsimpl. add_permut. + * rewrite IHP'1, IHP'2;simpl;Esimpl. + rewrite pow_pos_add;rsimpl. add_permut. + * rewrite PsubX_ok by trivial;rsimpl. + rewrite IHP'2, pow_pos_add;rsimpl. add_permut. Qed. -*) -(* Proof for the symmetric version *) - Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l. + Lemma PmulI_ok P' : + (forall P l, (Pmul P P') @ l == P @ l * P' @ l) -> + forall P p l, (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l). Proof. - intros P P';generalize P;clear P;induction P';simpl;intros. - apply PmulC_ok. apply PmulI_ok;trivial. - destruct P. - rewrite (ARmul_comm ARth);Esimpl2;Esimpl2. - Esimpl2. rewrite IHP'1;Esimpl2. - assert (match p0 with - | xI j => Pinj (xO j) P ** P'2 - | xO j => Pinj (Pdouble_minus_one j) P ** P'2 - | 1 => P ** P'2 - end @ (tail l) == P @ (jump p0 l) * P'2 @ (tail l)). - destruct p0;simpl;rewrite IHP'2;Esimpl. - rewrite jump_Pdouble_minus_one;Esimpl. - rewrite H;Esimpl. - rewrite Padd_ok; Esimpl2. rewrite Padd_ok; Esimpl2. - repeat (rewrite IHP'1 || rewrite IHP'2);simpl. - rewrite PmulI_ok;trivial. - mul_push (P'1@l). simpl. mul_push (P'2 @ (tail l)). Esimpl. + intros IHP'. + induction P;simpl;intros. + - Esimpl; mul_permut. + - destr_pos_sub; intros ->;Esimpl. + + now rewrite IHP'. + + now rewrite IHP', jump_add'. + + now rewrite IHP, jump_add'. + - destruct p0;Esimpl; rewrite ?IHP1, ?IHP2; rsimpl. + + f_equiv. mul_permut. + + rewrite jump_pred_double. f_equiv. mul_permut. + + rewrite IHP'. f_equiv. mul_permut. Qed. -(* -Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l. + Lemma Pmul_ok P P' l : (P**P')@l == P@l * P'@l. Proof. - destruct P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - rewrite (PmulI_ok P (Pmul_aux_ok P)). - apply (ARmul_comm ARth). - rewrite Padd_ok; Esimpl2. - rewrite (PmulI_ok P3 (Pmul_aux_ok P3));trivial. - rewrite Pmul_aux_ok;mul_push (P' @ l). - rewrite (ARmul_comm ARth (P' @ l));rrefl. + revert P l;induction P';simpl;intros. + - apply PmulC_ok. + - apply PmulI_ok;trivial. + - destruct P. + + rewrite (ARmul_comm ARth). Esimpl. + + Esimpl. f_equiv. rewrite IHP'1; Esimpl. + destruct p0;rewrite IHP'2;Esimpl. + rewrite jump_pred_double; Esimpl. + + rewrite Padd_ok, !mkPX_ok, Padd_ok, !mkPX_ok, + !IHP'1, !IHP'2, PmulI_ok; trivial. simpl. Esimpl. + add_permut; f_equiv; mul_permut. Qed. -*) - Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l. + Lemma Psquare_ok P l : (Psquare P)@l == P@l * P@l. Proof. - induction P;simpl;intros;Esimpl2. - apply IHP. rewrite Padd_ok. rewrite Pmul_ok;Esimpl2. - rewrite IHP1;rewrite IHP2. - mul_push (pow_pos rmul (hd 0 l) p). mul_push (P2@l). - rrefl. + revert l;induction P;simpl;intros;Esimpl. + - apply IHP. + - rewrite Padd_ok, Pmul_ok;Esimpl. + rewrite IHP1, IHP2. + mul_push ((hd l)^p). now mul_push (P2@l). Qed. - - Lemma mkZmon_ok: forall M j l, - Mphi l (mkZmon j M) == Mphi l (zmon j M). - intros M j l; case M; simpl; intros; rsimpl. + Lemma mkZmon_ok M j l : + (mkZmon j M) @@ l == (zmon j M) @@ l. + Proof. + destruct M; simpl; rsimpl. Qed. - Lemma zmon_pred_ok : forall M j l, - Mphi (tail l) (zmon_pred j M) == Mphi l (zmon j M). + Lemma zmon_pred_ok M j l : + (zmon_pred j M) @@ (tail l) == (zmon j M) @@ l. Proof. - destruct j; simpl;intros auto; rsimpl. - rewrite mkZmon_ok;rsimpl. - rewrite mkZmon_ok;simpl. rewrite jump_Pdouble_minus_one; rsimpl. + destruct j; simpl; rewrite ?mkZmon_ok; simpl; rsimpl. + rewrite jump_pred_double; rsimpl. Qed. - Lemma mkVmon_ok : forall M i l, Mphi l (mkVmon i M) == Mphi l M*pow_pos rmul (hd 0 l) i. + Lemma mkVmon_ok M i l : + (mkVmon i M)@@l == M@@l * (hd l)^i. Proof. destruct M;simpl;intros;rsimpl. - rewrite zmon_pred_ok;simpl;rsimpl. - rewrite Pplus_comm;rewrite pow_pos_Pplus;rsimpl. + - rewrite zmon_pred_ok;simpl;rsimpl. + - rewrite pow_pos_add;rsimpl. Qed. - Lemma Mcphi_ok: forall P c l, - let (Q,R) := CFactor P c in - P@l == Q@l + (phi c) * (R@l). + Ltac destr_factor := match goal with + | H : context [CFactor ?P _] |- context [CFactor ?P ?c] => + destruct (CFactor P c); destr_factor; rewrite H; clear H + | H : context [MFactor ?P _ _] |- context [MFactor ?P ?c ?M] => + specialize (H M); destruct (MFactor P c M); destr_factor; rewrite H; clear H + | _ => idtac + end. + + Lemma Mcphi_ok P c l : + let (Q,R) := CFactor P c in + P@l == Q@l + [c] * R@l. Proof. - intros P; elim P; simpl; auto; clear P. - intros c c1 l; generalize (div_th.(div_eucl_th) c c1); case cdiv. - intros q r H; rewrite H. - Esimpl. - rewrite (ARadd_comm ARth); rsimpl. - intros i P Hrec c l. - generalize (Hrec c (jump i l)); case CFactor. - intros R1 S1; Esimpl; auto. - intros Q1 Qrec i R1 Rrec c l. - generalize (Qrec c l); case CFactor; intros S1 S2 HS. - generalize (Rrec c (tail l)); case CFactor; intros S3 S4 HS1. - rewrite HS; rewrite HS1; Esimpl. - apply (Radd_ext Reqe); rsimpl. - repeat rewrite <- (ARadd_assoc ARth). - apply (Radd_ext Reqe); rsimpl. - rewrite (ARadd_comm ARth); rsimpl. + revert l. + induction P as [c0 | j P IH | P1 IH1 i P2 IH2]; intros l; Esimpl. + - assert (H := div_th.(div_eucl_th) c0 c). + destruct cdiv as (q,r). rewrite H; Esimpl. add_permut. + - destr_factor. Esimpl. + - destr_factor. Esimpl. add_permut. Qed. - Lemma Mphi_ok: forall P (cM: C * Mon) l, - let (c,M) := cM in - let (Q,R) := MFactor P c M in - P@l == Q@l + (phi c) * (Mphi l M) * (R@l). + Lemma Mphi_ok P (cM: C * Mon) l : + let (c,M) := cM in + let (Q,R) := MFactor P c M in + P@l == Q@l + [c] * M@@l * R@l. Proof. - intros P; elim P; simpl; auto; clear P. - intros c (c1, M) l; case M; simpl; auto. - assert (H1:= morph_eq CRmorph c1 cI);destruct (c1 ?=! cI). - rewrite (H1 (refl_equal true));Esimpl. - try rewrite (morph0 CRmorph); rsimpl. - generalize (div_th.(div_eucl_th) c c1); case (cdiv c c1). - intros q r H; rewrite H; clear H H1. - Esimpl. - rewrite (ARadd_comm ARth); rsimpl. - intros p m; Esimpl. - intros p m; Esimpl. - intros i P Hrec (c,M) l; case M; simpl; clear M. - assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI). - rewrite (H1 (refl_equal true));Esimpl. - Esimpl. - generalize (Mcphi_ok P c (jump i l)); case CFactor. - intros R1 Q1 HH; rewrite HH; Esimpl. - intros j M. - case_eq (i ?= j); intros He; simpl. - rewrite (Pos.compare_eq _ _ He). - generalize (Hrec (c, M) (jump j l)); case (MFactor P c M); - simpl; intros P2 Q2 H; repeat rewrite mkPinj_ok; auto. - generalize (Hrec (c, (zmon (j -i) M)) (jump i l)); - case (MFactor P c (zmon (j -i) M)); simpl. - intros P2 Q2 H; repeat rewrite mkPinj_ok; auto. - rewrite <- (Pplus_minus _ _ (ZC2 _ _ He)). - rewrite Pplus_comm; rewrite jump_Pplus; auto. - rewrite (morph0 CRmorph); rsimpl. - intros P2 m; rewrite (morph0 CRmorph); rsimpl. - - intros P2 Hrec1 i Q2 Hrec2 (c, M) l; case M; simpl; auto. - assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI). - rewrite (H1 (refl_equal true));Esimpl. - Esimpl. - generalize (Mcphi_ok P2 c l); case CFactor. - intros S1 S2 HS. - generalize (Mcphi_ok Q2 c (tail l)); case CFactor. - intros S3 S4 HS1; Esimpl; rewrite HS; rewrite HS1. - rsimpl. - apply (Radd_ext Reqe); rsimpl. - repeat rewrite <- (ARadd_assoc ARth). - apply (Radd_ext Reqe); rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - intros j M1. - generalize (Hrec1 (c,zmon j M1) l); - case (MFactor P2 c (zmon j M1)). - intros R1 S1 H1. - generalize (Hrec2 (c, zmon_pred j M1) (List.tail l)); - case (MFactor Q2 c (zmon_pred j M1)); simpl. - intros R2 S2 H2; rewrite H1; rewrite H2. - repeat rewrite mkPX_ok; simpl. - rsimpl. - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - rewrite zmon_pred_ok;rsimpl. - intros j M1. - case_eq (i ?= j); intros He; simpl. - rewrite (Pos.compare_eq _ _ He). - generalize (Hrec1 (c, mkZmon xH M1) l); case (MFactor P2 c (mkZmon xH M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - rewrite mkZmon_ok. - apply rmul_ext; rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - generalize (Hrec1 (c, vmon (j - i) M1) l); - case (MFactor P2 c (vmon (j - i) M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rsimpl; repeat rewrite mkPinj_ok; auto. - rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - apply rmul_ext; rsimpl. - rewrite <- (ARmul_comm ARth (Mphi (tail l) M1)); rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite <- pow_pos_Pplus. - rewrite (Pplus_minus _ _ (ZC2 _ _ He)); rsimpl. - generalize (Hrec1 (c, mkZmon 1 M1) l); - case (MFactor P2 c (mkZmon 1 M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rsimpl. - rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - rewrite mkZmon_ok. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - rewrite mkPX_ok; simpl; rsimpl. - rewrite (morph0 CRmorph); rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - rewrite (ARmul_comm ARth (Q3@l)); rsimpl. - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - repeat (rewrite <- (ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite <- pow_pos_Pplus. - rewrite (Pplus_minus _ _ He); rsimpl. + destruct cM as (c,M). revert M l. + induction P; destruct M; intros l; simpl; auto; + try (case ceqb_spec; intro He); + try (case Pos.compare_spec; intros He); rewrite ?He; + destr_factor; simpl; Esimpl. + - assert (H := div_th.(div_eucl_th) c0 c). + destruct cdiv as (q,r). rewrite H; Esimpl. add_permut. + - assert (H := Mcphi_ok P c). destr_factor. Esimpl. + - now rewrite <- jump_add, Pos.sub_add. + - assert (H2 := Mcphi_ok P2 c). assert (H3 := Mcphi_ok P3 c). + destr_factor. Esimpl. add_permut. + - rewrite zmon_pred_ok. simpl. add_permut. + - rewrite mkZmon_ok. simpl. add_permut. mul_permut. + - add_permut. mul_permut. + rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add by trivial; rsimpl. + - rewrite mkZmon_ok. simpl. Esimpl. add_permut. mul_permut. + rewrite <- pow_pos_add, Pos.sub_add by trivial; rsimpl. Qed. -(* Proof for the symmetric version *) - - Lemma POneSubst_ok: forall P1 M1 P2 P3 l, - POneSubst P1 M1 P2 = Some P3 -> phi (fst M1) * Mphi l (snd M1) == P2@l -> P1@l == P3@l. + Lemma POneSubst_ok P1 cM1 P2 P3 l : + POneSubst P1 cM1 P2 = Some P3 -> + [fst cM1] * (snd cM1)@@l == P2@l -> P1@l == P3@l. Proof. - intros P2 (cc,M1) P3 P4 l; unfold POneSubst. - generalize (Mphi_ok P2 (cc, M1) l); case (MFactor P2 cc M1); simpl; auto. - intros Q1 R1; case R1. - intros c H; rewrite H. - generalize (morph_eq CRmorph c cO); - case (c ?=! cO); simpl; auto. - intros H1 H2; rewrite H1; auto; rsimpl. - discriminate. - intros _ H1 H2; injection H1; intros; subst. - rewrite H2; rsimpl. - (* new version *) - rewrite Padd_ok; rewrite PmulC_ok; rsimpl. - intros i P5 H; rewrite H. - intros HH H1; injection HH; intros; subst; rsimpl. - rewrite Padd_ok; rewrite PmulI_ok by (intros;apply Pmul_ok). rewrite H1; rsimpl. - intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3. - assert (P4 = Q1 ++ P3 ** PX i P5 P6). - injection H2; intros; subst;trivial. - rewrite H;rewrite Padd_ok;rewrite Pmul_ok;rsimpl. - Qed. -(* - Lemma POneSubst_ok: forall P1 M1 P2 P3 l, - POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l. -Proof. - intros P2 M1 P3 P4 l; unfold POneSubst. - generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto. - intros Q1 R1; case R1. - intros c H; rewrite H. - generalize (morph_eq CRmorph c cO); - case (c ?=! cO); simpl; auto. - intros H1 H2; rewrite H1; auto; rsimpl. - discriminate. - intros _ H1 H2; injection H1; intros; subst. - rewrite H2; rsimpl. - rewrite Padd_ok; rewrite Pmul_ok; rsimpl. - intros i P5 H; rewrite H. - intros HH H1; injection HH; intros; subst; rsimpl. - rewrite Padd_ok; rewrite Pmul_ok. rewrite H1; rsimpl. - intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3. - injection H2; intros; subst; rsimpl. - rewrite Padd_ok. - rewrite Pmul_ok; rsimpl. + destruct cM1 as (cc,M1). + unfold POneSubst. + assert (H := Mphi_ok P1 (cc, M1) l). simpl in H. + destruct MFactor as (R1,S1); simpl. rewrite H. clear H. + intros EQ EQ'. replace P3 with (R1 ++ P2 ** S1). + - rewrite EQ', Padd_ok, Pmul_ok; rsimpl. + - revert EQ. destruct S1; try now injection 1. + case ceqb_spec; now inversion 2. Qed. -*) - Lemma PNSubst1_ok: forall n P1 M1 P2 l, - [fst M1] * Mphi l (snd M1) == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l. + + Lemma PNSubst1_ok n P1 cM1 P2 l : + [fst cM1] * (snd cM1)@@l == P2@l -> + P1@l == (PNSubst1 P1 cM1 P2 n)@l. Proof. - intros n; elim n; simpl; auto. - intros P2 M1 P3 l H. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; rsimpl]. - intros P4 Hrec; rewrite (Hrec P4); auto; rsimpl. - intros n1 Hrec P2 M1 P3 l H. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; rsimpl]. - intros P4 Hrec1; rewrite (Hrec1 P4); auto; rsimpl. + revert P1. induction n; simpl; intros P1; + generalize (POneSubst_ok P1 cM1 P2); destruct POneSubst; + intros; rewrite <- ?IHn; auto; reflexivity. Qed. - Lemma PNSubst_ok: forall n P1 M1 P2 l P3, - PNSubst P1 M1 P2 n = Some P3 -> [fst M1] * Mphi l (snd M1) == P2@l -> P1@l == P3@l. + Lemma PNSubst_ok n P1 cM1 P2 l P3 : + PNSubst P1 cM1 P2 n = Some P3 -> + [fst cM1] * (snd cM1)@@l == P2@l -> P1@l == P3@l. Proof. - intros n P2 (cc, M1) P3 l P4; unfold PNSubst. - generalize (fun P4 => @POneSubst_ok P2 (cc,M1) P3 P4 l); - case (POneSubst P2 (cc,M1) P3); [idtac | intros; discriminate]. - intros P5 H1; case n; try (intros; discriminate). - intros n1 H2; injection H2; intros; subst. - rewrite <- PNSubst1_ok; auto. + unfold PNSubst. + assert (H := POneSubst_ok P1 cM1 P2); destruct POneSubst; try discriminate. + destruct n; inversion_clear 1. + intros. rewrite <- PNSubst1_ok; auto. Qed. - Fixpoint MPcond (LM1: list (C * Mon * Pol)) (l: list R) {struct LM1} : Prop := - match LM1 with - cons (M1,P2) LM2 => ([fst M1] * Mphi l (snd M1) == P2@l) /\ (MPcond LM2 l) - | _ => True - end. + Fixpoint MPcond (LM1: list (C * Mon * Pol)) (l: list R) : Prop := + match LM1 with + | (M1,P2) :: LM2 => ([fst M1] * (snd M1)@@l == P2@l) /\ MPcond LM2 l + | _ => True + end. - Lemma PSubstL1_ok: forall n LM1 P1 l, - MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l. + Lemma PSubstL1_ok n LM1 P1 l : + MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l. Proof. - intros n LM1; elim LM1; simpl; auto. - intros; rsimpl. - intros (M2,P2) LM2 Hrec P3 l [H H1]. - rewrite <- Hrec; auto. - apply PNSubst1_ok; auto. + revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros. + - reflexivity. + - rewrite <- IH by intuition. now apply PNSubst1_ok. Qed. - Lemma PSubstL_ok: forall n LM1 P1 P2 l, - PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l. + Lemma PSubstL_ok n LM1 P1 P2 l : + PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l. Proof. - intros n LM1; elim LM1; simpl; auto. - intros; discriminate. - intros (M2,P2) LM2 Hrec P3 P4 l. - generalize (PNSubst_ok n P3 M2 P2); case (PNSubst P3 M2 P2 n). - intros P5 H0 H1 [H2 H3]; injection H1; intros; subst. - rewrite <- PSubstL1_ok; auto. - intros l1 H [H1 H2]; auto. + revert P1. induction LM1 as [|(M2,P2') LM2 IH]; simpl; intros. + - discriminate. + - assert (H':=PNSubst_ok n P3 M2 P2'). destruct PNSubst. + * injection H; intros <-. rewrite <- PSubstL1_ok; intuition. + * now apply IH. Qed. - Lemma PNSubstL_ok: forall m n LM1 P1 l, - MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l. + Lemma PNSubstL_ok m n LM1 P1 l : + MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l. Proof. - intros m; elim m; simpl; auto. - intros n LM1 P2 l H; generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l); - case (PSubstL P2 LM1 n); intros; rsimpl; auto. - intros m1 Hrec n LM1 P2 l H. - generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l); - case (PSubstL P2 LM1 n); intros; rsimpl; auto. - rewrite <- Hrec; auto. + revert LM1 P1. induction m; simpl; intros; + assert (H' := PSubstL_ok n LM1 P2); destruct PSubstL; + auto; try reflexivity. + rewrite <- IHm; auto. Qed. (** Definition of polynomial expressions *) @@ -1190,58 +935,22 @@ Strategy expand [PEeval]. (** Correctness proofs *) - Lemma mkX_ok : forall p l, nth 0 p l == (mk_X p) @ l. + Lemma mkX_ok p l : nth 0 p l == (mk_X p) @ l. Proof. destruct p;simpl;intros;Esimpl;trivial. - rewrite <-jump_tl;rewrite nth_jump;rrefl. - rewrite <- nth_jump. - rewrite nth_Pdouble_minus_one;rrefl. + - now rewrite <-jump_tl, nth_jump. + - now rewrite <- nth_jump, nth_pred_double. Qed. - Ltac Esimpl3 := - repeat match goal with - | |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P2 P1 l) - | |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P2 P1 l) - end;Esimpl2;try rrefl;try apply (ARadd_comm ARth). - -(* Power using the chinise algorithm *) -(*Section POWER. - Variable subst_l : Pol -> Pol. - Fixpoint Ppow_pos (P:Pol) (p:positive){struct p} : Pol := - match p with - | xH => P - | xO p => subst_l (Psquare (Ppow_pos P p)) - | xI p => subst_l (Pmul P (Psquare (Ppow_pos P p))) - end. - - Definition Ppow_N P n := - match n with - | N0 => P1 - | Npos p => Ppow_pos P p - end. - - Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P p, (Ppow_pos P p)@l == (pow_pos Pmul P p)@l. - Proof. - intros l subst_l_ok P. - induction p;simpl;intros;try rrefl;try rewrite subst_l_ok. - repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl. - repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl. - Qed. - - Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. - Proof. destruct n;simpl. rrefl. apply Ppow_pos_ok. trivial. Qed. - - End POWER. *) + Hint Rewrite Padd_ok Psub_ok : Esimpl. Section POWER. Variable subst_l : Pol -> Pol. - Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol := + Fixpoint Ppow_pos (res P:Pol) (p:positive) : Pol := match p with - | xH => subst_l (Pmul res P) + | xH => subst_l (res ** P) | xO p => Ppow_pos (Ppow_pos res P p) P p - | xI p => subst_l (Pmul (Ppow_pos (Ppow_pos res P p) P p) P) + | xI p => subst_l ((Ppow_pos (Ppow_pos res P p) P p) ** P) end. Definition Ppow_N P n := @@ -1250,17 +959,23 @@ Section POWER. | Npos p => Ppow_pos P1 P p end. - Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l. + Lemma Ppow_pos_ok l : + (forall P, subst_l P@l == P@l) -> + forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l. Proof. - intros l subst_l_ok res P p. generalize res;clear res. - induction p;simpl;intros;try rewrite subst_l_ok; repeat rewrite Pmul_ok;repeat rewrite IHp. - rsimpl. mul_push (P@l);rsimpl. rsimpl. rrefl. + intros subst_l_ok res P p. revert res. + induction p;simpl;intros; rewrite ?subst_l_ok, ?Pmul_ok, ?IHp; + mul_permut. Qed. - Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. - Proof. destruct n;simpl. rrefl. rewrite Ppow_pos_ok by trivial. Esimpl. Qed. + Lemma Ppow_N_ok l : + (forall P, subst_l P@l == P@l) -> + forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. + Proof. + destruct n;simpl. + - reflexivity. + - rewrite Ppow_pos_ok by trivial. Esimpl. + Qed. End POWER. @@ -1277,69 +992,66 @@ Section POWER. match pe with | PEc c => Pc c | PEX j => mk_X j - | PEadd (PEopp pe1) pe2 => Psub (norm_aux pe2) (norm_aux pe1) - | PEadd pe1 (PEopp pe2) => - Psub (norm_aux pe1) (norm_aux pe2) - | PEadd pe1 pe2 => Padd (norm_aux pe1) (norm_aux pe2) - | PEsub pe1 pe2 => Psub (norm_aux pe1) (norm_aux pe2) - | PEmul pe1 pe2 => Pmul (norm_aux pe1) (norm_aux pe2) - | PEopp pe1 => Popp (norm_aux pe1) + | PEadd (PEopp pe1) pe2 => (norm_aux pe2) -- (norm_aux pe1) + | PEadd pe1 (PEopp pe2) => (norm_aux pe1) -- (norm_aux pe2) + | PEadd pe1 pe2 => (norm_aux pe1) ++ (norm_aux pe2) + | PEsub pe1 pe2 => (norm_aux pe1) -- (norm_aux pe2) + | PEmul pe1 pe2 => (norm_aux pe1) ** (norm_aux pe2) + | PEopp pe1 => -- (norm_aux pe1) | PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n end. Definition norm_subst pe := subst_l (norm_aux pe). - (* - Fixpoint norm_subst (pe:PExpr) : Pol := + (** Internally, [norm_aux] is expanded in a large number of cases. + To speed-up proofs, we use an alternative definition. *) + + Definition get_PEopp pe := match pe with - | PEc c => Pc c - | PEX j => subst_l (mk_X j) - | PEadd (PEopp pe1) pe2 => Psub (norm_subst pe2) (norm_subst pe1) - | PEadd pe1 (PEopp pe2) => - Psub (norm_subst pe1) (norm_subst pe2) - | PEadd pe1 pe2 => Padd (norm_subst pe1) (norm_subst pe2) - | PEsub pe1 pe2 => Psub (norm_subst pe1) (norm_subst pe2) - | PEmul pe1 pe2 => Pmul_subst (norm_subst pe1) (norm_subst pe2) - | PEopp pe1 => Popp (norm_subst pe1) - | PEpow pe1 n => Ppow_subst (norm_subst pe1) n + | PEopp pe' => Some pe' + | _ => None end. - Lemma norm_subst_spec : - forall l pe, MPcond lmp l -> - PEeval l pe == (norm_subst pe)@l. + Lemma norm_aux_PEadd pe1 pe2 : + norm_aux (PEadd pe1 pe2) = + match get_PEopp pe1, get_PEopp pe2 with + | Some pe1', _ => (norm_aux pe2) -- (norm_aux pe1') + | None, Some pe2' => (norm_aux pe1) -- (norm_aux pe2') + | None, None => (norm_aux pe1) ++ (norm_aux pe2) + end. Proof. - intros;assert (subst_l_ok:forall P, (subst_l P)@l == P@l). - unfold subst_l;intros. - rewrite <- PNSubstL_ok;trivial. rrefl. - assert (Pms_ok:forall P1 P2, (Pmul_subst P1 P2)@l == P1@l*P2@l). - intros;unfold Pmul_subst;rewrite subst_l_ok;rewrite Pmul_ok;rrefl. - induction pe;simpl;Esimpl3. - rewrite subst_l_ok;apply mkX_ok. - rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3. - rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite Pms_ok;rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite IHpe;rrefl. - unfold Ppow_subst. rewrite Ppow_N_ok. trivial. - rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3. - induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok; - repeat rewrite Pmul_ok;rrefl. + simpl (norm_aux (PEadd _ _)). + destruct pe1; [ | | | | | reflexivity | ]; + destruct pe2; simpl get_PEopp; reflexivity. Qed. -*) - Lemma norm_aux_spec : - forall l pe, MPcond lmp l -> - PEeval l pe == (norm_aux pe)@l. + + Lemma norm_aux_PEopp pe : + match get_PEopp pe with + | Some pe' => norm_aux pe = -- (norm_aux pe') + | None => True + end. + Proof. + now destruct pe. + Qed. + + Lemma norm_aux_spec l pe : + PEeval l pe == (norm_aux pe)@l. Proof. intros. - induction pe;simpl;Esimpl3. - apply mkX_ok. - rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3. - rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. rrefl. - rewrite IHpe;rrefl. - rewrite Ppow_N_ok by (intros;rrefl). - rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3. - induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok; - repeat rewrite Pmul_ok;rrefl. + induction pe. + - reflexivity. + - apply mkX_ok. + - simpl PEeval. rewrite IHpe1, IHpe2. + assert (H1 := norm_aux_PEopp pe1). + assert (H2 := norm_aux_PEopp pe2). + rewrite norm_aux_PEadd. + do 2 destruct get_PEopp; rewrite ?H1, ?H2; Esimpl; add_permut. + - simpl. rewrite IHpe1, IHpe2. Esimpl. + - simpl. rewrite IHpe1, IHpe2. now rewrite Pmul_ok. + - simpl. rewrite IHpe. Esimpl. + - simpl. rewrite Ppow_N_ok by reflexivity. + rewrite pow_th.(rpow_pow_N). destruct n0; simpl; Esimpl. + induction p;simpl; now rewrite ?IHp, ?IHpe, ?Pms_ok, ?Pmul_ok. Qed. Lemma norm_subst_spec : @@ -1347,7 +1059,7 @@ Section POWER. PEeval l pe == (norm_subst pe)@l. Proof. intros;unfold norm_subst. - unfold subst_l;rewrite <- PNSubstL_ok;trivial. apply norm_aux_spec. trivial. + unfold subst_l;rewrite <- PNSubstL_ok;trivial. apply norm_aux_spec. Qed. End NORM_SUBST_REC. @@ -1514,27 +1226,27 @@ Section POWER. (rP:R) (P:Pol) (fv:list R) (n:N) (lm:list (R*positive)) {struct P} : R := match P with | Pc c => - let lm := add_pow_list (hd 0 fv) n lm in + let lm := add_pow_list (hd fv) n lm in mkadd_mult rP c lm | Pinj j Q => - add_mult_dev rP Q (jump j fv) N0 (add_pow_list (hd 0 fv) n lm) + add_mult_dev rP Q (jump j fv) N0 (add_pow_list (hd fv) n lm) | PX P i Q => - let rP := add_mult_dev rP P fv (Nplus (Npos i) n) lm in + let rP := add_mult_dev rP P fv (N.add (Npos i) n) lm in if Q ?== P0 then rP - else add_mult_dev rP Q (tail fv) N0 (add_pow_list (hd 0 fv) n lm) + else add_mult_dev rP Q (tail fv) N0 (add_pow_list (hd fv) n lm) end. Fixpoint mult_dev (P:Pol) (fv : list R) (n:N) (lm:list (R*positive)) {struct P} : R := (* P@l * (hd 0 l)^n * lm *) match P with - | Pc c => mkmult_c c (add_pow_list (hd 0 fv) n lm) - | Pinj j Q => mult_dev Q (jump j fv) N0 (add_pow_list (hd 0 fv) n lm) + | Pc c => mkmult_c c (add_pow_list (hd fv) n lm) + | Pinj j Q => mult_dev Q (jump j fv) N0 (add_pow_list (hd fv) n lm) | PX P i Q => - let rP := mult_dev P fv (Nplus (Npos i) n) lm in + let rP := mult_dev P fv (N.add (Npos i) n) lm in if Q ?== P0 then rP else - let lmq := add_pow_list (hd 0 fv) n lm in + let lmq := add_pow_list (hd fv) n lm in add_mult_dev rP Q (tail fv) N0 lmq end. @@ -1575,7 +1287,7 @@ Section POWER. (forall l lr : list (R * positive), r_list_pow (rev_append l lr) == r_list_pow lr * r_list_pow l). induction l;intros;simpl;Esimpl. destruct a;rewrite IHl;Esimpl. - rewrite (ARmul_comm ARth (pow_pos rmul r p)). rrefl. + rewrite (ARmul_comm ARth (pow_pos rmul r p)). reflexivity. intros;unfold rev'. rewrite H;simpl;Esimpl. Qed. @@ -1617,11 +1329,11 @@ Qed. Qed. Lemma add_mult_dev_ok : forall P rP fv n lm, - add_mult_dev rP P fv n lm == rP + P@fv*pow_N rI rmul (hd 0 fv) n * r_list_pow lm. + add_mult_dev rP P fv n lm == rP + P@fv*pow_N rI rmul (hd fv) n * r_list_pow lm. Proof. induction P;simpl;intros. - rewrite mkadd_mult_ok. rewrite add_pow_list_ok; Esimpl. - rewrite IHP. simpl. rewrite add_pow_list_ok; Esimpl. + rewrite mkadd_mult_ok. rewrite add_pow_list_ok; Esimpl. + rewrite IHP. simpl. rewrite add_pow_list_ok; Esimpl. change (match P3 with | Pc c => c ?=! cO | Pinj _ _ => false @@ -1630,17 +1342,19 @@ Qed. change match n with | N0 => Npos p | Npos q => Npos (p + q) - end with (Nplus (Npos p) n);trivial. + end with (N.add (Npos p) n);trivial. assert (H := Peq_ok P3 P0). destruct (P3 ?== P0). - rewrite (H (refl_equal true)). - rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl. - rewrite IHP2. - rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl. + rewrite (H eq_refl). + rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl. + add_permut. mul_permut. + rewrite IHP2. + rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl. + add_permut. mul_permut. Qed. Lemma mult_dev_ok : forall P fv n lm, - mult_dev P fv n lm == P@fv * pow_N rI rmul (hd 0 fv) n * r_list_pow lm. + mult_dev P fv n lm == P@fv * pow_N rI rmul (hd fv) n * r_list_pow lm. Proof. induction P;simpl;intros;Esimpl. rewrite mkmult_c_ok;rewrite add_pow_list_ok;Esimpl. @@ -1653,13 +1367,15 @@ Qed. change match n with | N0 => Npos p | Npos q => Npos (p + q) - end with (Nplus (Npos p) n);trivial. + end with (N.add (Npos p) n);trivial. assert (H := Peq_ok P3 P0). destruct (P3 ?== P0). - rewrite (H (refl_equal true)). - rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl. + rewrite (H eq_refl). + rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl. + mul_permut. rewrite add_mult_dev_ok. rewrite IHP1; rewrite add_pow_list_ok. - destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl. + destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl. + add_permut; mul_permut. Qed. Lemma Pphi_avoid_ok : forall P fv, Pphi_avoid fv P == P@fv. @@ -1676,18 +1392,18 @@ Qed. let mkmult_pow r x p := rmul r (mkpow x p) in Pphi_avoid mkpow mkopp_pow mkmult_pow. - Lemma local_mkpow_ok : - forall (r : R) (p : positive), + Lemma local_mkpow_ok r p : match p with | xI _ => rpow r (Cp_phi (Npos p)) | xO _ => rpow r (Cp_phi (Npos p)) | 1 => r end == pow_pos rmul r p. - Proof. intros r p;destruct p;try rewrite pow_th.(rpow_pow_N);reflexivity. Qed. + Proof. destruct p; now rewrite ?pow_th.(rpow_pow_N). Qed. Lemma Pphi_pow_ok : forall P fv, Pphi_pow fv P == P@fv. Proof. - unfold Pphi_pow;intros;apply Pphi_avoid_ok;intros;try rewrite local_mkpow_ok;rrefl. + unfold Pphi_pow;intros;apply Pphi_avoid_ok;intros; + now rewrite ?local_mkpow_ok. Qed. Lemma ring_rw_pow_correct : forall n lH l, @@ -1697,7 +1413,7 @@ Qed. PEeval l pe == Pphi_pow l npe. Proof. intros n lH l H1 lmp Heq1 pe npe Heq2. - rewrite Pphi_pow_ok. rewrite <- Heq2;rewrite <- Heq1. + rewrite Pphi_pow_ok, <- Heq2, <- Heq1. apply norm_subst_ok. trivial. Qed. @@ -1711,58 +1427,48 @@ Qed. Definition mkpow x p := match p with | xH => x - | xO p => mkmult_pow x x (Pdouble_minus_one p) + | xO p => mkmult_pow x x (Pos.pred_double p) | xI p => mkmult_pow x x (xO p) end. Definition mkopp_pow x p := match p with | xH => -x - | xO p => mkmult_pow (-x) x (Pdouble_minus_one p) + | xO p => mkmult_pow (-x) x (Pos.pred_double p) | xI p => mkmult_pow (-x) x (xO p) end. Definition Pphi_dev := Pphi_avoid mkpow mkopp_pow mkmult_pow. - Lemma mkmult_pow_ok : forall p r x, mkmult_pow r x p == r*pow_pos rmul x p. + Lemma mkmult_pow_ok p r x : mkmult_pow r x p == r * x^p. Proof. - induction p;intros;simpl;Esimpl. - repeat rewrite IHp;Esimpl. - repeat rewrite IHp;Esimpl. + revert r; induction p;intros;simpl;Esimpl;rewrite !IHp;Esimpl. Qed. - Lemma mkpow_ok : forall p x, mkpow x p == pow_pos rmul x p. + Lemma mkpow_ok p x : mkpow x p == x^p. Proof. destruct p;simpl;intros;Esimpl. - repeat rewrite mkmult_pow_ok;Esimpl. - rewrite mkmult_pow_ok;Esimpl. - pattern x at 1;replace x with (pow_pos rmul x 1). - rewrite <- pow_pos_Pplus. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO. - simpl;Esimpl. - trivial. + - rewrite !mkmult_pow_ok;Esimpl. + - rewrite mkmult_pow_ok;Esimpl. + change x with (x^1) at 1. + now rewrite <- pow_pos_add, Pos.add_1_r, Pos.succ_pred_double. Qed. - Lemma mkopp_pow_ok : forall p x, mkopp_pow x p == - pow_pos rmul x p. + Lemma mkopp_pow_ok p x : mkopp_pow x p == - x^p. Proof. destruct p;simpl;intros;Esimpl. - repeat rewrite mkmult_pow_ok;Esimpl. - rewrite mkmult_pow_ok;Esimpl. - pattern x at 1;replace x with (pow_pos rmul x 1). - rewrite <- pow_pos_Pplus. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO. - simpl;Esimpl. - trivial. + - rewrite !mkmult_pow_ok;Esimpl. + - rewrite mkmult_pow_ok;Esimpl. + change x with (x^1) at 1. + now rewrite <- pow_pos_add, Pos.add_1_r, Pos.succ_pred_double. Qed. Lemma Pphi_dev_ok : forall P fv, Pphi_dev fv P == P@fv. Proof. unfold Pphi_dev;intros;apply Pphi_avoid_ok. - intros;apply mkpow_ok. - intros;apply mkopp_pow_ok. - intros;apply mkmult_pow_ok. + - intros;apply mkpow_ok. + - intros;apply mkopp_pow_ok. + - intros;apply mkmult_pow_ok. Qed. Lemma ring_rw_correct : forall n lH l, @@ -1776,6 +1482,4 @@ Qed. apply norm_subst_ok. trivial. Qed. - End MakeRingPol. - diff --git a/plugins/setoid_ring/Ring_tac.v b/plugins/setoid_ring/Ring_tac.v index d33e9a82..7a7ffcfd 100644 --- a/plugins/setoid_ring/Ring_tac.v +++ b/plugins/setoid_ring/Ring_tac.v @@ -3,6 +3,7 @@ Require Import Setoid. Require Import BinPos. Require Import Ring_polynom. Require Import BinList. +Require Export ListTactics. Require Import InitialRing. Require Import Quote. Declare ML Module "newring_plugin". @@ -14,7 +15,7 @@ Ltac compute_assertion eqn t' t := let nft := eval vm_compute in t in pose (t' := nft); assert (eqn : t = t'); - [vm_cast_no_check (refl_equal t')|idtac]. + [vm_cast_no_check (eq_refl t')|idtac]. Ltac relation_carrier req := let ty := type of req in @@ -340,7 +341,7 @@ Ltac Ring RNG lemma lH := || idtac "can not automatically proof hypothesis :"; idtac " maybe a left member of a hypothesis is not a monomial") | vm_compute; - (exact (refl_equal true) || fail "not a valid ring equation")]). + (exact (eq_refl true) || fail "not a valid ring equation")]). Ltac Ring_norm_gen f RNG lemma lH rl := let mkFV := get_RingFV RNG in @@ -385,7 +386,7 @@ Ltac Ring_simplify_gen f RNG lH rl := let lemma := get_SimplifyLemma RNG in let l := fresh "to_rewrite" in pose (l:= rl); - generalize (refl_equal l); + generalize (eq_refl l); unfold l at 2; get_Pre RNG (); let rl := diff --git a/plugins/setoid_ring/Ring_theory.v b/plugins/setoid_ring/Ring_theory.v index ab992552..42ce4edc 100644 --- a/plugins/setoid_ring/Ring_theory.v +++ b/plugins/setoid_ring/Ring_theory.v @@ -1,14 +1,12 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* R -> R. Variable req : R -> R -> Prop. - Variable Rsth : Setoid_Theory R req. - Notation "x * y " := (rmul x y). - Notation "x == y" := (req x y). + Variable Rsth : Equivalence req. + Infix "*" := rmul. + Infix "==" := req. - Hypothesis mul_ext : - forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2. - Hypothesis mul_comm : forall x y, x * y == y * x. + Hypothesis mul_ext : Proper (req ==> req ==> req) rmul. Hypothesis mul_assoc : forall x y z, x * (y * z) == (x * y) * z. - Add Setoid R req Rsth as R_set_Power. - Add Morphism rmul : rmul_ext_Power. exact mul_ext. Qed. - - Fixpoint pow_pos (x:R) (i:positive) {struct i}: R := + Fixpoint pow_pos (x:R) (i:positive) : R := match i with | xH => x - | xO i => let p := pow_pos x i in rmul p p - | xI i => let p := pow_pos x i in rmul x (rmul p p) + | xO i => let p := pow_pos x i in p * p + | xI i => let p := pow_pos x i in x * (p * p) end. - Lemma pow_pos_Psucc : forall x j, pow_pos x (Psucc j) == x * pow_pos x j. + Lemma pow_pos_swap x j : pow_pos x j * x == x * pow_pos x j. Proof. - induction j;simpl. - rewrite IHj. - rewrite (mul_comm x (pow_pos x j *pow_pos x j)). - setoid_rewrite (mul_comm x (pow_pos x j)) at 2. - repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth). - repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth). - apply (Seq_refl _ _ Rsth). + induction j; simpl; rewrite <- ?mul_assoc. + - f_equiv. now do 2 (rewrite IHj, mul_assoc). + - now do 2 (rewrite IHj, mul_assoc). + - reflexivity. Qed. - Lemma pow_pos_Pplus : forall x i j, pow_pos x (i + j) == pow_pos x i * pow_pos x j. + Lemma pow_pos_succ x j : + pow_pos x (Pos.succ j) == x * pow_pos x j. Proof. - intro x;induction i;intros. - rewrite xI_succ_xO;rewrite Pplus_one_succ_r. - rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc. - repeat rewrite IHi. - rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc. - simpl;repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth). - rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc. - repeat rewrite IHi;rewrite mul_assoc. apply (Seq_refl _ _ Rsth). - rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc; - simpl. apply (Seq_refl _ _ Rsth). + induction j; simpl; try reflexivity. + rewrite IHj, <- mul_assoc; f_equiv. + now rewrite mul_assoc, pow_pos_swap, mul_assoc. + Qed. + + Lemma pow_pos_add x i j : + pow_pos x (i + j) == pow_pos x i * pow_pos x j. + Proof. + induction i using Pos.peano_ind. + - now rewrite Pos.add_1_l, pow_pos_succ. + - now rewrite Pos.add_succ_l, !pow_pos_succ, IHi, mul_assoc. Qed. Definition pow_N (x:R) (p:N) := @@ -87,9 +79,9 @@ Section Power. Definition id_phi_N (x:N) : N := x. - Lemma pow_N_pow_N : forall x n, pow_N x (id_phi_N n) == pow_N x n. + Lemma pow_N_pow_N x n : pow_N x (id_phi_N n) == pow_N x n. Proof. - intros; apply (Seq_refl _ _ Rsth). + reflexivity. Qed. End Power. @@ -98,19 +90,18 @@ Section DEFINITIONS. Variable R : Type. Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R). Variable req : R -> R -> Prop. - Notation "0" := rO. Notation "1" := rI. - Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). - Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). - Notation "x == y" := (req x y). + Notation "0" := rO. Notation "1" := rI. + Infix "==" := req. Infix "+" := radd. Infix "*" := rmul. + Infix "-" := rsub. Notation "- x" := (ropp x). (** Semi Ring *) Record semi_ring_theory : Prop := mk_srt { SRadd_0_l : forall n, 0 + n == n; - SRadd_comm : forall n m, n + m == m + n ; + SRadd_comm : forall n m, n + m == m + n ; SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p; SRmul_1_l : forall n, 1*n == n; SRmul_0_l : forall n, 0*n == 0; - SRmul_comm : forall n m, n*m == m*n; + SRmul_comm : forall n m, n*m == m*n; SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p; SRdistr_l : forall n m p, (n + m)*p == n*p + m*p }. @@ -119,11 +110,11 @@ Section DEFINITIONS. (*Almost ring are no ring : Ropp_def is missing **) Record almost_ring_theory : Prop := mk_art { ARadd_0_l : forall x, 0 + x == x; - ARadd_comm : forall x y, x + y == y + x; + ARadd_comm : forall x y, x + y == y + x; ARadd_assoc : forall x y z, x + (y + z) == (x + y) + z; ARmul_1_l : forall x, 1 * x == x; ARmul_0_l : forall x, 0 * x == 0; - ARmul_comm : forall x y, x * y == y * x; + ARmul_comm : forall x y, x * y == y * x; ARmul_assoc : forall x y z, x * (y * z) == (x * y) * z; ARdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z); ARopp_mul_l : forall x y, -(x * y) == -x * y; @@ -134,10 +125,10 @@ Section DEFINITIONS. (** Ring *) Record ring_theory : Prop := mk_rt { Radd_0_l : forall x, 0 + x == x; - Radd_comm : forall x y, x + y == y + x; + Radd_comm : forall x y, x + y == y + x; Radd_assoc : forall x y z, x + (y + z) == (x + y) + z; Rmul_1_l : forall x, 1 * x == x; - Rmul_comm : forall x y, x * y == y * x; + Rmul_comm : forall x y, x * y == y * x; Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z; Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z); Rsub_def : forall x y, x - y == x + -y; @@ -148,19 +139,15 @@ Section DEFINITIONS. Record sring_eq_ext : Prop := mk_seqe { (* SRing operators are compatible with equality *) - SRadd_ext : - forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2; - SRmul_ext : - forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2 + SRadd_ext : Proper (req ==> req ==> req) radd; + SRmul_ext : Proper (req ==> req ==> req) rmul }. Record ring_eq_ext : Prop := mk_reqe { (* Ring operators are compatible with equality *) - Radd_ext : - forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2; - Rmul_ext : - forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2; - Ropp_ext : forall x1 x2, x1 == x2 -> -x1 == -x2 + Radd_ext : Proper (req ==> req ==> req) radd; + Rmul_ext : Proper (req ==> req ==> req) rmul; + Ropp_ext : Proper (req ==> req) ropp }. (** Interpretation morphisms definition*) @@ -170,9 +157,9 @@ Section DEFINITIONS. Variable ceqb : C->C->bool. (* [phi] est un morphisme de [C] dans [R] *) Variable phi : C -> R. - Notation "x +! y" := (cadd x y). Notation "x -! y " := (csub x y). - Notation "x *! y " := (cmul x y). Notation "-! x" := (copp x). - Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x). + Infix "+!" := cadd. Infix "-!" := csub. + Infix "*!" := cmul. Notation "-! x" := (copp x). + Infix "?=!" := ceqb. Notation "[ x ]" := (phi x). (*for semi rings*) Record semi_morph : Prop := mkRmorph { @@ -216,15 +203,13 @@ Section DEFINITIONS. End MORPHISM. (** Identity is a morphism *) - Variable Rsth : Setoid_Theory R req. - Add Setoid R req Rsth as R_setoid1. + Variable Rsth : Equivalence req. Variable reqb : R->R->bool. Hypothesis morph_req : forall x y, (reqb x y) = true -> x == y. Definition IDphi (x:R) := x. Lemma IDmorph : ring_morph rO rI radd rmul rsub ropp reqb IDphi. Proof. - apply (mkmorph rO rI radd rmul rsub ropp reqb IDphi);intros;unfold IDphi; - try apply (Seq_refl _ _ Rsth);auto. + now apply (mkmorph rO rI radd rmul rsub ropp reqb IDphi). Qed. (** Specification of the power function *) @@ -239,35 +224,31 @@ Section DEFINITIONS. End POWER. - Definition pow_N_th := mkpow_th id_phi_N (pow_N rI rmul) (pow_N_pow_N rI rmul Rsth). + Definition pow_N_th := + mkpow_th id_phi_N (pow_N rI rmul) (pow_N_pow_N rI rmul Rsth). End DEFINITIONS. - - Section ALMOST_RING. Variable R : Type. Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R). Variable req : R -> R -> Prop. - Notation "0" := rO. Notation "1" := rI. - Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). - Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). - Notation "x == y" := (req x y). + Notation "0" := rO. Notation "1" := rI. + Infix "==" := req. Infix "+" := radd. Infix "* " := rmul. + Infix "-" := rsub. Notation "- x" := (ropp x). (** Leibniz equality leads to a setoid theory and is extensional*) - Lemma Eqsth : Setoid_Theory R (@eq R). - Proof. constructor;red;intros;subst;trivial. Qed. + Lemma Eqsth : Equivalence (@eq R). + Proof. exact eq_equivalence. Qed. Lemma Eq_s_ext : sring_eq_ext radd rmul (@eq R). - Proof. constructor;intros;subst;trivial. Qed. + Proof. constructor;solve_proper. Qed. Lemma Eq_ext : ring_eq_ext radd rmul ropp (@eq R). - Proof. constructor;intros;subst;trivial. Qed. + Proof. constructor;solve_proper. Qed. - Variable Rsth : Setoid_Theory R req. - Add Setoid R req Rsth as R_setoid2. - Ltac sreflexivity := apply (Seq_refl _ _ Rsth). + Variable Rsth : Equivalence req. Section SEMI_RING. Variable SReqe : sring_eq_ext radd rmul req. @@ -282,23 +263,24 @@ Section ALMOST_RING. Definition SRsub x y := x + -y. Notation "x - y " := (SRsub x y). Lemma SRopp_ext : forall x y, x == y -> -x == -y. - Proof. intros x y H;exact H. Qed. + Proof. intros x y H; exact H. Qed. Lemma SReqe_Reqe : ring_eq_ext radd rmul SRopp req. Proof. - constructor. exact (SRadd_ext SReqe). exact (SRmul_ext SReqe). - exact SRopp_ext. + constructor. + - exact (SRadd_ext SReqe). + - exact (SRmul_ext SReqe). + - exact SRopp_ext. Qed. Lemma SRopp_mul_l : forall x y, -(x * y) == -x * y. - Proof. intros;sreflexivity. Qed. + Proof. reflexivity. Qed. Lemma SRopp_add : forall x y, -(x + y) == -x + -y. - Proof. intros;sreflexivity. Qed. - + Proof. reflexivity. Qed. Lemma SRsub_def : forall x y, x - y == x + -y. - Proof. intros;sreflexivity. Qed. + Proof. reflexivity. Qed. Lemma SRth_ARth : almost_ring_theory 0 1 radd rmul SRsub SRopp req. Proof (mk_art 0 1 radd rmul SRsub SRopp req @@ -315,7 +297,7 @@ Section ALMOST_RING. Definition SRIDmorph : ring_morph 0 1 radd rmul SRsub SRopp req 0 1 radd rmul SRsub SRopp reqb (@IDphi R). Proof. - apply mkmorph;intros;try sreflexivity. unfold IDphi;auto. + now apply mkmorph. Qed. (* a semi_morph can be extended to a ring_morph for the almost_ring derived @@ -331,9 +313,7 @@ Section ALMOST_RING. ring_morph rO rI radd rmul SRsub SRopp req cO cI cadd cmul cadd (fun x => x) ceqb phi. Proof. - case Smorph; intros; constructor; auto. - unfold SRopp in |- *; intros. - setoid_reflexivity. + case Smorph; now constructor. Qed. End SEMI_RING. @@ -347,31 +327,28 @@ Section ALMOST_RING. Variable Rth : ring_theory 0 1 radd rmul rsub ropp req. (** Rings are almost rings*) - Lemma Rmul_0_l : forall x, 0 * x == 0. + Lemma Rmul_0_l x : 0 * x == 0. Proof. - intro x; setoid_replace (0*x) with ((0+1)*x + -x). - rewrite (Radd_0_l Rth); rewrite (Rmul_1_l Rth). - rewrite (Ropp_def Rth);sreflexivity. + setoid_replace (0*x) with ((0+1)*x + -x). + now rewrite (Radd_0_l Rth), (Rmul_1_l Rth), (Ropp_def Rth). - rewrite (Rdistr_l Rth);rewrite (Rmul_1_l Rth). - rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth). - rewrite (Radd_comm Rth); rewrite (Radd_0_l Rth);sreflexivity. + rewrite (Rdistr_l Rth), (Rmul_1_l Rth). + rewrite <- (Radd_assoc Rth), (Ropp_def Rth). + now rewrite (Radd_comm Rth), (Radd_0_l Rth). Qed. - Lemma Ropp_mul_l : forall x y, -(x * y) == -x * y. + Lemma Ropp_mul_l x y : -(x * y) == -x * y. Proof. - intros x y;rewrite <-(Radd_0_l Rth (- x * y)). - rewrite (Radd_comm Rth). - rewrite <-(Ropp_def Rth (x*y)). - rewrite (Radd_assoc Rth). - rewrite <- (Rdistr_l Rth). - rewrite (Rth.(Radd_comm) (-x));rewrite (Ropp_def Rth). - rewrite Rmul_0_l;rewrite (Radd_0_l Rth);sreflexivity. + rewrite <-(Radd_0_l Rth (- x * y)). + rewrite (Radd_comm Rth), <-(Ropp_def Rth (x*y)). + rewrite (Radd_assoc Rth), <- (Rdistr_l Rth). + rewrite (Rth.(Radd_comm) (-x)), (Ropp_def Rth). + now rewrite Rmul_0_l, (Radd_0_l Rth). Qed. - Lemma Ropp_add : forall x y, -(x + y) == -x + -y. + Lemma Ropp_add x y : -(x + y) == -x + -y. Proof. - intros x y;rewrite <- ((Radd_0_l Rth) (-(x+y))). + rewrite <- ((Radd_0_l Rth) (-(x+y))). rewrite <- ((Ropp_def Rth) x). rewrite <- ((Radd_0_l Rth) (x + - x + - (x + y))). rewrite <- ((Ropp_def Rth) y). @@ -383,17 +360,17 @@ Section ALMOST_RING. rewrite ((Radd_comm Rth) y). rewrite <- ((Radd_assoc Rth) (- x)). rewrite ((Radd_assoc Rth) y). - rewrite ((Radd_comm Rth) y);rewrite (Ropp_def Rth). - rewrite ((Radd_comm Rth) (-x) 0);rewrite (Radd_0_l Rth). - apply (Radd_comm Rth). + rewrite ((Radd_comm Rth) y), (Ropp_def Rth). + rewrite ((Radd_comm Rth) (-x) 0), (Radd_0_l Rth). + now apply (Radd_comm Rth). Qed. - Lemma Ropp_opp : forall x, - -x == x. + Lemma Ropp_opp x : - -x == x. Proof. - intros x; rewrite <- (Radd_0_l Rth (- -x)). + rewrite <- (Radd_0_l Rth (- -x)). rewrite <- (Ropp_def Rth x). - rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth). - rewrite ((Radd_comm Rth) x);apply (Radd_0_l Rth). + rewrite <- (Radd_assoc Rth), (Ropp_def Rth). + rewrite ((Radd_comm Rth) x); now apply (Radd_0_l Rth). Qed. Lemma Rth_ARth : almost_ring_theory 0 1 radd rmul rsub ropp req. @@ -407,10 +384,10 @@ Section ALMOST_RING. Variable (cO cI : C) (cadd cmul csub: C->C->C) (copp : C -> C). Variable (ceq : C -> C -> Prop) (ceqb : C -> C -> bool). Variable phi : C -> R. - Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y). - Notation "x -! y " := (csub x y). Notation "-! x" := (copp x). - Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x). - Variable Csth : Setoid_Theory C ceq. + Infix "+!" := cadd. Infix "*!" := cmul. + Infix "-!" := csub. Notation "-! x" := (copp x). + Notation "?=!" := ceqb. Notation "[ x ]" := (phi x). + Variable Csth : Equivalence ceq. Variable Ceqe : ring_eq_ext cadd cmul copp ceq. Add Setoid C ceq Csth as C_setoid. Add Morphism cadd : cadd_ext. exact (Radd_ext Ceqe). Qed. @@ -420,9 +397,9 @@ Section ALMOST_RING. Variable Smorph : semi_morph 0 1 radd rmul req cO cI cadd cmul ceqb phi. Variable phi_ext : forall x y, ceq x y -> [x] == [y]. Add Morphism phi : phi_ext1. exact phi_ext. Qed. - Lemma Smorph_opp : forall x, [-!x] == -[x]. + Lemma Smorph_opp x : [-!x] == -[x]. Proof. - intros x;rewrite <- (Rth.(Radd_0_l) [-!x]). + rewrite <- (Rth.(Radd_0_l) [-!x]). rewrite <- ((Ropp_def Rth) [x]). rewrite ((Radd_comm Rth) [x]). rewrite <- (Radd_assoc Rth). @@ -430,17 +407,18 @@ Section ALMOST_RING. rewrite (Ropp_def Cth). rewrite (Smorph0 Smorph). rewrite (Radd_comm Rth (-[x])). - apply (Radd_0_l Rth);sreflexivity. + now apply (Radd_0_l Rth). Qed. - Lemma Smorph_sub : forall x y, [x -! y] == [x] - [y]. + Lemma Smorph_sub x y : [x -! y] == [x] - [y]. Proof. - intros x y; rewrite (Rsub_def Cth);rewrite (Rsub_def Rth). - rewrite (Smorph_add Smorph);rewrite Smorph_opp;sreflexivity. + rewrite (Rsub_def Cth), (Rsub_def Rth). + now rewrite (Smorph_add Smorph), Smorph_opp. Qed. - Lemma Smorph_morph : ring_morph 0 1 radd rmul rsub ropp req - cO cI cadd cmul csub copp ceqb phi. + Lemma Smorph_morph : + ring_morph 0 1 radd rmul rsub ropp req + cO cI cadd cmul csub copp ceqb phi. Proof (mkmorph 0 1 radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi (Smorph0 Smorph) (Smorph1 Smorph) @@ -458,17 +436,11 @@ elim ARth; intros. constructor; trivial. Qed. - Lemma ARsub_ext : - forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 - y1 == x2 - y2. + Instance ARsub_ext : Proper (req ==> req ==> req) rsub. Proof. - intros. - setoid_replace (x1 - y1) with (x1 + -y1). - setoid_replace (x2 - y2) with (x2 + -y2). - rewrite H;rewrite H0;sreflexivity. - apply (ARsub_def ARth). - apply (ARsub_def ARth). + intros x1 x2 Ex y1 y2 Ey. + now rewrite !(ARsub_def ARth), Ex, Ey. Qed. - Add Morphism rsub : rsub_ext. exact ARsub_ext. Qed. Ltac mrewrite := repeat first @@ -479,64 +451,56 @@ Qed. | rewrite (ARmul_0_l ARth) | rewrite <- ((ARmul_comm ARth) 0) | rewrite (ARdistr_l ARth) - | sreflexivity + | reflexivity | match goal with | |- context [?z * (?x + ?y)] => rewrite ((ARmul_comm ARth) z (x+y)) end]. - Lemma ARadd_0_r : forall x, (x + 0) == x. - Proof. intros; mrewrite. Qed. + Lemma ARadd_0_r x : x + 0 == x. + Proof. mrewrite. Qed. - Lemma ARmul_1_r : forall x, x * 1 == x. - Proof. intros;mrewrite. Qed. + Lemma ARmul_1_r x : x * 1 == x. + Proof. mrewrite. Qed. - Lemma ARmul_0_r : forall x, x * 0 == 0. - Proof. intros;mrewrite. Qed. + Lemma ARmul_0_r x : x * 0 == 0. + Proof. mrewrite. Qed. - Lemma ARdistr_r : forall x y z, z * (x + y) == z*x + z*y. + Lemma ARdistr_r x y z : z * (x + y) == z*x + z*y. Proof. - intros;mrewrite. - repeat rewrite (ARth.(ARmul_comm) z);sreflexivity. + mrewrite. now rewrite !(ARth.(ARmul_comm) z). Qed. - Lemma ARadd_assoc1 : forall x y z, (x + y) + z == (y + z) + x. + Lemma ARadd_assoc1 x y z : (x + y) + z == (y + z) + x. Proof. - intros;rewrite <-(ARth.(ARadd_assoc) x). - rewrite (ARth.(ARadd_comm) x);sreflexivity. + now rewrite <-(ARth.(ARadd_assoc) x), (ARth.(ARadd_comm) x). Qed. - Lemma ARadd_assoc2 : forall x y z, (y + x) + z == (y + z) + x. + Lemma ARadd_assoc2 x y z : (y + x) + z == (y + z) + x. Proof. - intros; repeat rewrite <- (ARadd_assoc ARth); - rewrite ((ARadd_comm ARth) x); sreflexivity. + now rewrite <- !(ARadd_assoc ARth), ((ARadd_comm ARth) x). Qed. - Lemma ARmul_assoc1 : forall x y z, (x * y) * z == (y * z) * x. + Lemma ARmul_assoc1 x y z : (x * y) * z == (y * z) * x. Proof. - intros;rewrite <-((ARmul_assoc ARth) x). - rewrite ((ARmul_comm ARth) x);sreflexivity. + now rewrite <- ((ARmul_assoc ARth) x), ((ARmul_comm ARth) x). Qed. - Lemma ARmul_assoc2 : forall x y z, (y * x) * z == (y * z) * x. + Lemma ARmul_assoc2 x y z : (y * x) * z == (y * z) * x. Proof. - intros; repeat rewrite <- (ARmul_assoc ARth); - rewrite ((ARmul_comm ARth) x); sreflexivity. + now rewrite <- !(ARmul_assoc ARth), ((ARmul_comm ARth) x). Qed. - Lemma ARopp_mul_r : forall x y, - (x * y) == x * -y. + Lemma ARopp_mul_r x y : - (x * y) == x * -y. Proof. - intros;rewrite ((ARmul_comm ARth) x y); - rewrite (ARopp_mul_l ARth); apply (ARmul_comm ARth). + rewrite ((ARmul_comm ARth) x y), (ARopp_mul_l ARth). + now apply (ARmul_comm ARth). Qed. Lemma ARopp_zero : -0 == 0. Proof. - rewrite <- (ARmul_0_r 0); rewrite (ARopp_mul_l ARth). - repeat rewrite ARmul_0_r; sreflexivity. + now rewrite <- (ARmul_0_r 0), (ARopp_mul_l ARth), !ARmul_0_r. Qed. - - End ALMOST_RING. @@ -611,6 +575,8 @@ Ltac gen_add_push add Rsth Reqe ARth x := progress rewrite (ARadd_assoc2 Rsth Reqe ARth x y z) | |- context [add (add x ?y) ?z] => progress rewrite (ARadd_assoc1 Rsth ARth x y z) + | |- context [(add x ?y)] => + progress rewrite (ARadd_comm ARth x y) end). Ltac gen_mul_push mul Rsth Reqe ARth x := @@ -619,5 +585,6 @@ Ltac gen_mul_push mul Rsth Reqe ARth x := progress rewrite (ARmul_assoc2 Rsth Reqe ARth x y z) | |- context [mul (mul x ?y) ?z] => progress rewrite (ARmul_assoc1 Rsth ARth x y z) + | |- context [(mul x ?y)] => + progress rewrite (ARmul_comm ARth x y) end). - diff --git a/plugins/setoid_ring/Rings_Z.v b/plugins/setoid_ring/Rings_Z.v index 88904865..58a4d7ea 100644 --- a/plugins/setoid_ring/Rings_Z.v +++ b/plugins/setoid_ring/Rings_Z.v @@ -3,7 +3,7 @@ Require Export Integral_domain. Require Export Ncring_initial. Instance Zcri: (Cring (Rr:=Zr)). -red. exact Zmult_comm. Defined. +red. exact Z.mul_comm. Defined. Lemma Z_one_zero: 1%Z <> 0%Z. omega. diff --git a/plugins/setoid_ring/ZArithRing.v b/plugins/setoid_ring/ZArithRing.v index d3ed36ee..3c4f6b86 100644 --- a/plugins/setoid_ring/ZArithRing.v +++ b/plugins/setoid_ring/ZArithRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* match G with - | context c [Zpower _ (Zneg _)] => + | context c [Z.pow _ (Zneg _)] => let t := context c [Z0] in change t end end. Add Ring Zr : Zth - (decidable Zeq_bool_eq, constants [Zcst], preprocess [Zpower_neg;unfold Zsucc], + (decidable Zeq_bool_eq, constants [Zcst], preprocess [Zpower_neg;unfold Z.succ], power_tac Zpower_theory [Zpow_tac], (* The two following option are not needed, it is the default chose when the set of coefficiant is usual ring Z *) diff --git a/plugins/setoid_ring/newring.ml4 b/plugins/setoid_ring/newring.ml4 index 9d61c06d..580e78f6 100644 --- a/plugins/setoid_ring/newring.ml4 +++ b/plugins/setoid_ring/newring.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x :: unfold f b' | None -> [] + +let find_annot loc id ctx = + try rel_index id ctx + with Not_found -> + user_err_loc(loc,"", + str "No parameter named " ++ Nameops.pr_id id ++ str".") + let compute_possible_guardness_evidences (n,_) (_, fixctx) fixtype = match n with - | Some (loc, n) -> [rel_index n fixctx] + | Some (loc, id) -> [find_annot loc id fixctx] | None -> (* If recursive argument was not given by user, we try all args. An earlier approach was to look only for inductive arguments, diff --git a/plugins/subtac/subtac_pretyping.ml b/plugins/subtac/subtac_pretyping.ml index e56fa4f5..fac6b567 100644 --- a/plugins/subtac/subtac_pretyping.ml +++ b/plugins/subtac/subtac_pretyping.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* > *) +let threshold = of_int 5000 + let nat_of_int dloc n = if is_pos_or_zero n then begin - if less_than (of_string "5000") n then + if less_than threshold n then Flags.if_warn msg_warning (strbrk "Stack overflow or segmentation fault happens when " ++ strbrk "working with large numbers in nat (observed threshold " ++ diff --git a/plugins/syntax/numbers_syntax.ml b/plugins/syntax/numbers_syntax.ml index 19a3c899..b8636a74 100644 --- a/plugins/syntax/numbers_syntax.ml +++ b/plugins/syntax/numbers_syntax.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* - ConstructRef ((bigN_t,0), - if less_than i n_inlined then - (to_int i)+1 - else - (to_int n_inlined)+1 - ) +let n_inlined = 7 + +let bigN_constructor i = + ConstructRef ((bigN_t,0),(min i n_inlined)+1) (*bigZ stuff*) let bigZ_module = ["Coq"; "Numbers"; "Integer"; "BigZ"; "BigZ" ] @@ -150,55 +134,54 @@ let _ = Notation.declare_numeral_interpreter int31_scope (*** Parsing for bigN in digital notation ***) (* the base for bigN (in Coq) that is 2^31 in our case *) -let base = pow two (of_string "31") +let base = pow two 31 -(* base of the bigN of height N : *) -let rank n = pow base (pow two n) +(* base of the bigN of height N : (2^31)^(2^n) *) +let rank n = + let rec rk n pow2 = + if n <= 0 then pow2 + else rk (n-1) (mult pow2 pow2) + in rk n base (* splits a number bi at height n, that is the rest needs 2^n int31 to be stored it is expected to be used only when the quotient would also need 2^n int31 to be stored *) let split_at n bi = - euclid bi (rank (sub_1 n)) + euclid bi (rank (n-1)) (* search the height of the Coq bigint needed to represent the integer bi *) let height bi = - let rec height_aux n = - if less_than bi (rank n) then - n - else - height_aux (add_1 n) - in - height_aux zero - + let rec hght n pow2 = + if less_than bi pow2 then n + else hght (n+1) (mult pow2 pow2) + in hght 0 base (* n must be a non-negative integer (from bigint.ml) *) let word_of_pos_bigint dloc hght n = let ref_W0 = GRef (dloc, zn2z_W0) in let ref_WW = GRef (dloc, zn2z_WW) in let rec decomp hgt n = - if is_neg_or_zero hgt then + if hgt <= 0 then int31_of_pos_bigint dloc n else if equal n zero then GApp (dloc, ref_W0, [GHole (dloc, Evd.InternalHole)]) else let (h,l) = split_at hgt n in GApp (dloc, ref_WW, [GHole (dloc, Evd.InternalHole); - decomp (sub_1 hgt) h; - decomp (sub_1 hgt) l]) + decomp (hgt-1) h; + decomp (hgt-1) l]) in decomp hght n let bigN_of_pos_bigint dloc n = - let ref_constructor i = GRef (dloc, bigN_constructor i) in - let result h word = GApp (dloc, ref_constructor h, if less_than h n_inlined then - [word] - else - [Nat_syntax.nat_of_int dloc (sub h n_inlined); - word]) + let h = height n in + let ref_constructor = GRef (dloc, bigN_constructor h) in + let word = word_of_pos_bigint dloc h n in + let args = + if h < n_inlined then [word] + else [Nat_syntax.nat_of_int dloc (of_int (h-n_inlined));word] in - let hght = height n in - result hght (word_of_pos_bigint dloc hght n) + GApp (dloc, ref_constructor, args) let bigN_error_negative dloc = Util.user_err_loc (dloc, "interp_bigN", Pp.str "bigN are only non-negative numbers.") @@ -216,22 +199,17 @@ let bigint_of_word = let rec get_height rc = match rc with | GApp (_,GRef(_,c), [_;lft;rght]) when c = zn2z_WW -> - let hleft = get_height lft in - let hright = get_height rght in - add_1 - (if less_than hleft hright then - hright - else - hleft) - | _ -> zero + 1+max (get_height lft) (get_height rght) + | _ -> 0 in let rec transform hght rc = match rc with | GApp (_,GRef(_,c),_) when c = zn2z_W0-> zero - | GApp (_,GRef(_,c), [_;lft;rght]) when c=zn2z_WW-> let new_hght = sub_1 hght in - add (mult (rank new_hght) - (transform (new_hght) lft)) - (transform (new_hght) rght) + | GApp (_,GRef(_,c), [_;lft;rght]) when c=zn2z_WW-> + let new_hght = hght-1 in + add (mult (rank new_hght) + (transform new_hght lft)) + (transform new_hght rght) | _ -> bigint_of_int31 rc in fun rc -> @@ -256,12 +234,12 @@ let uninterp_bigN rc = let bigN_list_of_constructors = let rec build i = - if less_than i (add_1 n_inlined) then - GRef (Util.dummy_loc, bigN_constructor i)::(build (add_1 i)) + if i < n_inlined+1 then + GRef (Util.dummy_loc, bigN_constructor i)::(build (i+1)) else [] in - build zero + build 0 (* Actually declares the interpreter for bigN *) let _ = Notation.declare_numeral_interpreter bigN_scope diff --git a/plugins/syntax/r_syntax.ml b/plugins/syntax/r_syntax.ml index b9c0bcd6..401c23f7 100644 --- a/plugins/syntax/r_syntax.ml +++ b/plugins/syntax/r_syntax.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* eq_constr c term) subst in - if subst' = [] then error "Too complex unification problem." else - Evd.define evk (mkVar (fst (List.hd subst'))) evd + if subst' = [] then evd, false else + Evd.define evk (mkVar (fst (List.hd subst'))) evd, true let apply_on_subterm f c t = let rec applyrec (k,c as kc) t = @@ -733,12 +733,12 @@ let apply_conversion_problem_heuristic ts env evd pbty t1 t2 = & array_for_all (fun a -> eq_constr a term2 or isEvar a) args1 -> (* The typical kind of constraint coming from pattern-matching return type inference *) - choose_less_dependent_instance evk1 evd term2 args1, true + choose_less_dependent_instance evk1 evd term2 args1 | (Rel _|Var _), Evar (evk2,args2) when l1 = [] & l2 = [] & array_for_all (fun a -> eq_constr a term1 or isEvar a) args2 -> (* The typical kind of constraint coming from pattern-matching return type inference *) - choose_less_dependent_instance evk2 evd term1 args2, true + choose_less_dependent_instance evk2 evd term1 args2 | Evar (evk1,args1), Evar (evk2,args2) when evk1 = evk2 -> let f env evd pbty x y = (evd,is_trans_fconv pbty ts env evd x y) in solve_refl ~can_drop:true f env evd evk1 args1 args2, true @@ -818,14 +818,30 @@ let solve_unconstrained_impossible_cases evd = | _,ImpossibleCase -> Evd.define evk (j_type (coq_unit_judge ())) evd' | _ -> evd') evd evd + let consider_remaining_unif_problems ?(ts=full_transparent_state) env evd = let evd = solve_unconstrained_evars_with_canditates evd in - let (evd,pbs) = extract_all_conv_pbs evd in - let heuristic_solved_evd = List.fold_left - (fun evd (pbty,env,t1,t2) -> + let rec aux evd pbs progress stuck = + match pbs with + | (pbty,env,t1,t2 as pb) :: pbs -> let evd', b = apply_conversion_problem_heuristic ts env evd pbty t1 t2 in - if b then evd' else Pretype_errors.error_cannot_unify env evd (t1, t2)) - evd pbs in + if b then + let (evd', rest) = extract_all_conv_pbs evd' in + if rest = [] then aux evd' pbs true stuck + else (* Unification got actually stuck, postpone *) + aux evd pbs progress (pb :: stuck) + else Pretype_errors.error_cannot_unify env evd (t1, t2) + | _ -> + if progress then aux evd stuck false [] + else + match stuck with + | [] -> (* We're finished *) evd + | (pbty,env,t1,t2) :: _ -> + (* There remains stuck problems *) + Pretype_errors.error_cannot_unify env evd (t1, t2) + in + let (evd,pbs) = extract_all_conv_pbs evd in + let heuristic_solved_evd = aux evd pbs false [] in check_problems_are_solved env heuristic_solved_evd; solve_unconstrained_impossible_cases heuristic_solved_evd diff --git a/pretyping/evarconv.mli b/pretyping/evarconv.mli index 3e2ca7ae..dd68f16f 100644 --- a/pretyping/evarconv.mli +++ b/pretyping/evarconv.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* false +let normalize_evar evd ev = + match kind_of_term (whd_evar evd (mkEvar ev)) with + | Evar (evk,args) -> (evk,args) + | _ -> assert false + (**********************) (* Creating new metas *) (**********************) @@ -1591,6 +1596,8 @@ let rec invert_definition conv_algo choose env evd (evk,argsv as ev) rhs = let ty = get_type_of env' !evdref t in let (evd,evar'',ev'') = materialize_evar (evar_define conv_algo) env' !evdref k ev ty in + (* materialize_evar may instantiate ev' by another evar; adjust it *) + let (evk',args' as ev') = normalize_evar evd ev' in let evd = (* Try to project (a restriction of) the left evar ... *) try @@ -1772,44 +1779,50 @@ let evars_of_term c = in evrec Intset.empty c -(* spiwack: a few functions to gather the existential variables - that occur in the types of goals present or past. *) -let add_evars_of_evars_of_term acc evm c = - let evars = evars_of_term c in - Intset.fold begin fun e r -> - let body = (Evd.find evm e).evar_body in - let subevars = - match body with - | Evar_empty -> None - | Evar_defined c' -> Some (evars_of_term c') - in - Intmap.add e subevars r - end evars acc - -let evars_of_evars_of_term = add_evars_of_evars_of_term Intmap.empty +(* spiwack: a few functions to gather evars on which goals depend. *) +let queue_set q is_dependent set = + Intset.iter (fun a -> Queue.push (is_dependent,a) q) set +let queue_term q is_dependent c = + queue_set q is_dependent (evars_of_term c) -let add_evars_of_evars_in_type acc evm e = +let process_dependent_evar q acc evm is_dependent e = let evi = Evd.find evm e in - let acc_with_concl = add_evars_of_evars_of_term acc evm evi.evar_concl in - let hyps = Environ.named_context_of_val evi.evar_hyps in - List.fold_left begin fun r (_,b,t) -> - let r = add_evars_of_evars_of_term r evm t in + (* Queues evars appearing in the types of the goal (conclusion, then + hypotheses), they are all dependent. *) + queue_term q true evi.evar_concl; + List.iter begin fun (_,b,t) -> + queue_term q true t; match b with - | None -> r - | Some b -> add_evars_of_evars_of_term r evm b - end acc_with_concl hyps - -let rec add_evars_of_evars_in_types_of_set acc evm s = - Intset.fold begin fun e r -> - let r = add_evars_of_evars_in_type r evm e in - match (Evd.find evm e).evar_body with - | Evar_empty -> r - | Evar_defined b -> add_evars_of_evars_in_types_of_set r evm (evars_of_term b) - end s acc - -let evars_of_evars_in_types_of_list evm l = - let set_of_l = List.fold_left (fun x y -> Intset.add y x) Intset.empty l in - add_evars_of_evars_in_types_of_set Intmap.empty evm set_of_l + | None -> () + | Some b -> queue_term q true b + end (Environ.named_context_of_val evi.evar_hyps); + match evi.evar_body with + | Evar_empty -> + if is_dependent then Intmap.add e None acc else acc + | Evar_defined b -> + let subevars = evars_of_term b in + (* evars appearing in the definition of an evar [e] are marked + as dependent when [e] is dependent itself: if [e] is a + non-dependent goal, then, unless they are reach from another + path, these evars are just other non-dependent goals. *) + queue_set q is_dependent subevars; + if is_dependent then Intmap.add e (Some subevars) acc else acc + +let gather_dependent_evars q evm = + let acc = ref Intmap.empty in + while not (Queue.is_empty q) do + let (is_dependent,e) = Queue.pop q in + (* checks if [e] has already been added to [!acc] *) + begin if not (Intmap.mem e !acc) then + acc := process_dependent_evar q !acc evm is_dependent e + end + done; + !acc + +let gather_dependent_evars evm l = + let q = Queue.create () in + List.iter (fun a -> Queue.add (false,a) q) l; + gather_dependent_evars q evm (* /spiwack *) diff --git a/pretyping/evarutil.mli b/pretyping/evarutil.mli index d3f6845c..2b326fd1 100644 --- a/pretyping/evarutil.mli +++ b/pretyping/evarutil.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* constr list -> constr -> constr val evars_of_term : constr -> Intset.t -(** returns the evars contained in the term associated with - the evars they contain themselves in their body, if any. - If the evar has no body, [None] is associated to it. *) -val evars_of_evars_of_term : evar_map -> constr -> (Intset.t option) Intmap.t val evars_of_named_context : named_context -> Intset.t val evars_of_evar_info : evar_info -> Intset.t -(** returns the evars which can be found in the typing context of the argument evars, - in the same format as {!evars_of_evars_of_term}. - It explores recursively the evars in the body of the argument evars -- but does - not return them. *) -(* spiwack: tongue in cheek: it should have been called - [evars_of_evars_in_types_of_list_and_recursively_in_bodies] *) -val evars_of_evars_in_types_of_list : evar_map -> evar list -> (Intset.t option) Intmap.t - +(** [gather_dependent_evars evm seeds] classifies the evars in [evm] + as dependent_evars and goals (these may overlap). A goal is an + evar in [seeds] or an evar appearing in the (partial) definition + of a goal. A dependent evar is an evar appearing in the type + (hypotheses and conclusion) of a goal, or in the type or (partial) + definition of a dependent evar. The value return is a map + associating to each dependent evar [None] if it has no (partial) + definition or [Some s] if [s] is the list of evars appearing in + its (partial) definition. *) +val gather_dependent_evars : evar_map -> evar list -> (Intset.t option) Intmap.t (** The following functions return the set of undefined evars contained in the object, the defined evars being traversed. diff --git a/pretyping/evd.ml b/pretyping/evd.ml index 3cfad524..6d5c98ce 100644 --- a/pretyping/evd.ml +++ b/pretyping/evd.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* + (* Section variable *) + (try let (_,_,ty) = lookup_named id env in make_judge (mkVar id) ty + with Not_found -> + (* This may happen if env is a goal env and section variables have + been cleared - section variables should be different from goal + variables *) + Pretype_errors.error_var_not_found_loc loc id) + | ref -> + let c = constr_of_global ref in + make_judge c (Retyping.get_type_of env Evd.empty c) let pretype_sort evdref = function | GProp c -> judge_of_prop_contents c @@ -335,7 +347,7 @@ module Pretyping_F (Coercion : Coercion.S) = struct let rec pretype (tycon : type_constraint) env evdref lvar = function | GRef (loc,ref) -> inh_conv_coerce_to_tycon loc env evdref - (pretype_ref evdref env ref) + (pretype_ref loc evdref env ref) tycon | GVar (loc, id) -> diff --git a/pretyping/pretyping.mli b/pretyping/pretyping.mli index b79e9489..761e1641 100644 --- a/pretyping/pretyping.mli +++ b/pretyping/pretyping.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* iter_constr occrec c in try occrec c; false with Occur | Not_found -> true +let occur_meta_evd sigma mv c = + let rec occrec c = + (* Note: evars are not instantiated by terms with metas *) + let c = whd_evar sigma (whd_meta sigma c) in + match kind_of_term c with + | Meta mv' when mv = mv' -> raise Occur + | _ -> iter_constr occrec c + in try occrec c; false with Occur -> true + (* if lname_typ is [xn,An;..;x1,A1] and l is a list of terms, gives [x1:A1]..[xn:An]c' such that c converts to ([x1:A1]..[xn:An]c' l) *) @@ -388,7 +397,8 @@ let unify_0_with_initial_metas (sigma,ms,es as subst) conv_at_top env cv_pb flag check_compatibility curenv substn tyM tyN); if k2 < k1 then sigma,(k1,cN,stN)::metasubst,evarsubst else sigma,(k2,cM,stM)::metasubst,evarsubst - | Meta k, _ when not (dependent cM cN) -> + | Meta k, _ + when not (dependent cM cN) (* helps early trying alternatives *) -> if wt && flags.check_applied_meta_types then (let tyM = Typing.meta_type sigma k in let tyN = get_type_of curenv sigma cN in @@ -401,7 +411,8 @@ let unify_0_with_initial_metas (sigma,ms,es as subst) conv_at_top env cv_pb flag (k,lift (-nb) cN,snd (extract_instance_status pb))::metasubst, evarsubst) else error_cannot_unify_local curenv sigma (m,n,cN) - | _, Meta k when not (dependent cN cM) -> + | _, Meta k + when not (dependent cN cM) (* helps early trying alternatives *) -> if wt && flags.check_applied_meta_types then (let tyM = get_type_of curenv sigma cM in let tyN = Typing.meta_type sigma k in @@ -904,8 +915,13 @@ let w_merge env with_types flags (evd,metas,evars) = in w_merge_rec evd' (metas'@metas@metas'') (evars'@evars'') eqns else - let evd' = meta_assign mv (c,(status,TypeProcessed)) evd in - w_merge_rec evd' (metas''@metas) evars'' eqns + let evd' = + if occur_meta_evd evd mv c then + if isMetaOf mv (whd_betadeltaiota env evd c) then evd + else error_cannot_unify env evd (mkMeta mv,c) + else + meta_assign mv (c,(status,TypeProcessed)) evd in + w_merge_rec evd' (metas''@metas) evars'' eqns | [] -> (* Process type eqns *) let rec process_eqns failures = function diff --git a/pretyping/unification.mli b/pretyping/unification.mli index e4bca4d3..e3fd46af 100644 --- a/pretyping/unification.mli +++ b/pretyping/unification.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Proof_global.discard_current (); raise e let restart_proof () = undo_todepth 1 diff --git a/proofs/pfedit.mli b/proofs/pfedit.mli index 5d45ea7c..89e12c01 100644 --- a/proofs/pfedit.mli +++ b/proofs/pfedit.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* assert false + | [_] -> [] + | a::l -> f a :: (map_minus_one f l) + in + let stack = + map_minus_one (fun (_,_,c) -> Proofview.focus_context c) p.focus_stack + in + (goals,stack,sigma) + let rec unroll_focus pv = function | (_,_,ctx)::stk -> unroll_focus (Proofview.unfocus ctx pv) stk | [] -> pv (* spiwack: a proof is considered completed even if its still focused, if the focus - doesn't hide any goal. + doesn't hide any goal. Unfocusing is handled in {!return}. *) let is_done p = Proofview.finished p.state.proofview && diff --git a/proofs/proof.mli b/proofs/proof.mli index 715b3341..2e7c7a5a 100644 --- a/proofs/proof.mli +++ b/proofs/proof.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Goal.goal list * (Goal.goal list * Goal.goal list) list * Evd.evar_map (*** General proof functions ***) diff --git a/proofs/proof_global.ml b/proofs/proof_global.ml index ae0f7d12..6cc5f9dc 100644 --- a/proofs/proof_global.ml +++ b/proofs/proof_global.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Goal.goal list * Evd.evar_map + (* Initialises a proofview, the argument is a list of environement, conclusion types, creating that many initial goals. *) val init : (Environ.env * Term.types) list -> proofview @@ -46,6 +56,14 @@ exception IndexOutOfRange (* Type of the object which allow to unfocus a view.*) type focus_context +(* Returns a stylised view of a focus_context for use by, for + instance, ide-s. *) +(* spiwack: the type of [focus_context] will change as we push more + refined functions to ide-s. This would be better than spawning a + new nearly identical function everytime. Hence the generic name. *) +(* In this version: returns the number of goals that are held *) +val focus_context : focus_context -> Goal.goal list * Goal.goal list + (* [focus i j] focuses a proofview on the goals from index [i] to index [j] (inclusive). (i.e. goals number [i] to [j] become the only goals of the returned proofview). diff --git a/proofs/redexpr.ml b/proofs/redexpr.ml index 0430a239..d5750cfa 100644 --- a/proofs/redexpr.ml +++ b/proofs/redexpr.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Sys.command ("\""^cmd^"\"") + else Sys.command + (* Objects to link *) (* 1. Core objects *) @@ -52,17 +61,19 @@ let top = ref false let echo = ref false let no_start = ref false -let src_dirs () = +let is_ocaml4 = Coq_config.caml_version.[0] <> '3' + +let src_dirs = [ []; ["kernel";"byterun"]; [ "config" ]; [ "toplevel" ] ] let includes () = - let coqlib = Envars.coqlib () in - let camlp4lib = Envars.camlp4lib () in - List.fold_right - (fun d l -> "-I" :: ("\"" ^ List.fold_left Filename.concat coqlib d ^ "\"") :: l) - (src_dirs ()) - (["-I"; "\"" ^ camlp4lib ^ "\""] @ - ["-I"; "\"" ^ coqlib ^ "\""]) + (if !Flags.boot then [] (* the include flags are given on the cmdline *) + else + let coqlib = Envars.coqlib () in + let mkdir d = "\"" ^ List.fold_left Filename.concat coqlib d ^ "\"" in + let camlp4incl = ["-I"; "\"" ^ Envars.camlp4lib () ^ "\""] in + List.fold_right (fun d l -> "-I" :: mkdir d :: l) src_dirs camlp4incl) + @ (if is_ocaml4 then ["-I"; "+compiler-libs"] else []) (* Transform bytecode object file names in native object file names *) let native_suffix f = @@ -257,12 +268,14 @@ let main () = if !opt then begin (* native code *) if !top then failwith "no custom toplevel in native code !"; - let ocamloptexec = Filename.concat camlbin "ocamlopt" in + let ocamloptexec = Filename.quote (Filename.concat camlbin "ocamlopt") in ocamloptexec^" -linkall" end else (* bytecode (we shunt ocamlmktop script which fails on win32) *) - let ocamlmktoplib = " toplevellib.cma" in - let ocamlcexec = Filename.concat camlbin "ocamlc" in + let ocamlmktoplib = if is_ocaml4 + then " ocamlcommon.cma ocamlbytecomp.cma ocamltoplevel.cma" + else " toplevellib.cma" in + let ocamlcexec = Filename.quote (Filename.concat camlbin "ocamlc") in let ocamlccustom = Printf.sprintf "%s %s -linkall " ocamlcexec Coq_config.coqrunbyteflags in (if !top then ocamlccustom^ocamlmktoplib else ocamlccustom) @@ -277,7 +290,7 @@ let main () = [] in (* the list of the loaded modules *) - let main_file = create_tmp_main_file modules in + let main_file = Filename.quote (create_tmp_main_file modules) in try let args = options @ (includes ()) @ copts @ tolink @ dynlink @ [ main_file ] in @@ -293,7 +306,7 @@ let main () = (string_of_int (String.length command)) ^ " characters)"); flush Pervasives.stdout end; - let retcode = Sys.command command in + let retcode = safe_sys_command command in clean main_file; (* command gives the exit code in HSB, and signal in LSB !!! *) if retcode > 255 then retcode lsr 8 else retcode diff --git a/states/MakeInitial.v b/states/MakeInitial.v index e5551d20..109e0c30 100644 --- a/states/MakeInitial.v +++ b/states/MakeInitial.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* str"Ø" | PathEpsilon -> str"ε" -let rec subst_hints_path subst hp = - match hp with - | PathAtom PathAny -> hp - | PathAtom (PathHints grs) -> +let subst_path_atom subst p = + match p with + | PathAny -> p + | PathHints grs -> let gr' gr = fst (subst_global subst gr) in let grs' = list_smartmap gr' grs in - if grs' == grs then hp else PathAtom (PathHints grs') + if grs' == grs then p else PathHints grs' + +let rec subst_hints_path subst hp = + match hp with + | PathAtom p -> + let p' = subst_path_atom subst p in + if p' == p then hp else PathAtom p' | PathStar p -> let p' = subst_hints_path subst p in if p' == p then hp else PathStar p' | PathSeq (p, q) -> @@ -386,7 +392,7 @@ module Hint_db = struct let db = if db.use_dn && rebuild then rebuild_db st' db else db in addkv k (next_hint_id db) v db - let add_list l db = List.fold_right add_one l db + let add_list l db = List.fold_left (fun db k -> add_one k db) db l let remove_sdl p sdl = list_smartfilter p sdl let remove_he st p (sl1, sl2, dn as he) = @@ -672,9 +678,10 @@ let subst_autohint (subst,(local,name,hintlist as obj)) = let tac' = !forward_subst_tactic subst tac in if tac==tac' then data.code else Extern tac' in + let name' = subst_path_atom subst data.name in let data' = - if data.pat==pat' && data.code==code' then data - else { data with pat = pat'; code = code' } + if data.pat==pat' && data.name == name' && data.code==code' then data + else { data with pat = pat'; name = name'; code = code' } in if k' == k && data' == data then hint else (k',data') in @@ -848,6 +855,7 @@ let interp_hints h = | HintsConstructors lqid -> let constr_hints_of_ind qid = let ind = global_inductive_with_alias qid in + Dumpglob.dump_reference (fst (qualid_of_reference qid)) "<>" (string_of_reference qid) "ind"; list_tabulate (fun i -> let c = (ind,i+1) in None, true, PathHints [ConstructRef c], mkConstruct c) (nconstructors ind) in diff --git a/tactics/auto.mli b/tactics/auto.mli index 87786e5b..7daebb36 100644 --- a/tactics/auto.mli +++ b/tactics/auto.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* tclFAIL 0 (str "Not a variable or hypothesis") ] END +TACTIC EXTEND is_fix +| [ "is_fix" constr(x) ] -> + [ match kind_of_term x with + | Fix _ -> Tacticals.tclIDTAC + | _ -> Tacticals.tclFAIL 0 (Pp.str "not a fix definition") ] +END;; (* Command to grab the evars left unresolved at the end of a proof. *) (* spiwack: I put it in extratactics because it is somewhat tied with diff --git a/tactics/extratactics.mli b/tactics/extratactics.mli index 66f46722..3f30ddb4 100644 --- a/tactics/extratactics.mli +++ b/tactics/extratactics.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* ElimOnAnonHyp n let h_induction_destruct isrec ev lcl = - let lcl' = on_fst (List.map (fun (a,b,c) ->(List.map out_indarg a,b,c))) lcl in + let lcl' = on_pi1 (List.map (fun (a,b) ->(out_indarg a,b))) lcl in abstract_tactic (TacInductionDestruct (isrec,ev,lcl')) (induction_destruct isrec ev lcl) -let h_new_induction ev c e idl cl = - h_induction_destruct true ev ([c,e,idl],cl) -let h_new_destruct ev c e idl cl = h_induction_destruct false ev ([c,e,idl],cl) +let h_new_induction ev c idl e cl = + h_induction_destruct true ev ([c,idl],e,cl) +let h_new_destruct ev c idl e cl = h_induction_destruct false ev ([c,idl],e,cl) let h_specialize n d = abstract_tactic (TacSpecialize (n,d)) (specialize n d) let h_lapply c = abstract_tactic (TacLApply c) (cut_and_apply c) diff --git a/tactics/hiddentac.mli b/tactics/hiddentac.mli index 96e7e3f0..f31b3a80 100644 --- a/tactics/hiddentac.mli +++ b/tactics/hiddentac.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* tactic val h_generalize : constr list -> tactic val h_generalize_gen : (constr with_occurrences * name) list -> tactic val h_generalize_dep : constr -> tactic -val h_let_tac : letin_flag -> name -> constr -> - Tacticals.clause -> tactic +val h_let_tac : letin_flag -> name -> constr -> Tacticals.clause -> + intro_pattern_expr located option -> tactic val h_let_pat_tac : letin_flag -> name -> evar_map * constr -> - Tacticals.clause -> tactic + Tacticals.clause -> intro_pattern_expr located option -> + tactic (** Derived basic tactics *) @@ -66,19 +67,19 @@ val h_simple_induction : quantified_hypothesis -> tactic val h_simple_destruct : quantified_hypothesis -> tactic val h_simple_induction_destruct : rec_flag -> quantified_hypothesis -> tactic val h_new_induction : evars_flag -> - (evar_map * constr with_bindings) induction_arg list -> - constr with_bindings option -> + (evar_map * constr with_bindings) induction_arg -> intro_pattern_expr located option * intro_pattern_expr located option -> + constr with_bindings option -> Tacticals.clause option -> tactic val h_new_destruct : evars_flag -> - (evar_map * constr with_bindings) induction_arg list -> - constr with_bindings option -> + (evar_map * constr with_bindings) induction_arg -> intro_pattern_expr located option * intro_pattern_expr located option -> + constr with_bindings option -> Tacticals.clause option -> tactic val h_induction_destruct : rec_flag -> evars_flag -> - ((evar_map * constr with_bindings) induction_arg list * - constr with_bindings option * + ((evar_map * constr with_bindings) induction_arg * (intro_pattern_expr located option * intro_pattern_expr located option)) list + * constr with_bindings option * Tacticals.clause option -> tactic val h_specialize : int option -> constr with_bindings -> tactic diff --git a/tactics/hipattern.ml4 b/tactics/hipattern.ml4 index 9057c60d..8a1b5996 100644 --- a/tactics/hipattern.ml4 +++ b/tactics/hipattern.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* assert false) | _ -> assert false +let arrow_morphism ta tb a b = + let ap = is_Prop ta and bp = is_Prop tb in + if ap && bp then mkApp (Lazy.force impl, [| a; b |]), unfold_impl + else if ap then (* Domain in Prop, CoDomain in Type *) + mkProd (Anonymous, a, b), (fun x -> x) + else if bp then (* Dummy forall *) + mkApp (Lazy.force coq_all, [| a; mkLambda (Anonymous, a, b) |]), unfold_forall + else (* None in Prop, use arrow *) + mkApp (Lazy.force arrow, [| a; b |]), unfold_impl + let rec decomp_pointwise n c = if n = 0 then c else @@ -814,9 +819,10 @@ let subterm all flags (s : strategy) : strategy = | Prod (n, x, b) when noccurn 1 b -> let b = subst1 mkProp b in let tx = Typing.type_of env (goalevars evars) x and tb = Typing.type_of env (goalevars evars) b in - let res = aux env avoid (mkApp (arrow_morphism tx tb, [| x; b |])) ty cstr evars in + let mor, unfold = arrow_morphism tx tb x b in + let res = aux env avoid mor ty cstr evars in (match res with - | Some (Some r) -> Some (Some { r with rew_to = unfold_impl r.rew_to }) + | Some (Some r) -> Some (Some { r with rew_to = unfold r.rew_to }) | _ -> res) (* if x' = None && flags.under_lambdas then *) @@ -1048,6 +1054,22 @@ module Strategies = rew_prf = RewCast DEFAULTcast; rew_evars = sigma, cstrevars evars }) with _ -> None + + let fold_glob c : strategy = + fun env avoid t ty cstr evars -> +(* let sigma, (c,_) = Tacinterp.interp_open_constr_with_bindings is env (goalevars evars) c in *) + let sigma, c = Pretyping.Default.understand_tcc (goalevars evars) env c in + let unfolded = + try Tacred.try_red_product env sigma c + with _ -> error "fold: the term is not unfoldable !" + in + try + let sigma = Unification.w_unify env sigma CONV ~flags:Unification.elim_flags unfolded t in + let c' = Evarutil.nf_evar sigma c in + Some (Some { rew_car = ty; rew_from = t; rew_to = c'; + rew_prf = RewCast DEFAULTcast; + rew_evars = sigma, cstrevars evars }) + with _ -> None end @@ -1096,8 +1118,6 @@ let map_rewprf f = function | RewPrf (rel, prf) -> RewPrf (f rel, f prf) | RewCast c -> RewCast c -exception RewriteFailure - type result = (evar_map * constr option * types) option option let cl_rewrite_clause_aux ?(abs=None) strat env avoid sigma concl is_hyp : result = @@ -1162,9 +1182,9 @@ let cl_rewrite_clause_tac ?abs strat meta clause gl = let evartac evd = Refiner.tclEVARS evd in let treat res = match res with - | None -> raise RewriteFailure + | None -> tclFAIL 0 (str "Nothing to rewrite") | Some None -> - tclFAIL 0 (str"setoid rewrite failed: no progress made") + tclFAIL 0 (str"No progress made") | Some (Some (undef, p, newt)) -> let tac = match clause, p with @@ -1195,7 +1215,7 @@ let cl_rewrite_clause_tac ?abs strat meta clause gl = | Loc.Exc_located (_, TypeClassError (env, (UnsatisfiableConstraints _ as e))) | TypeClassError (env, (UnsatisfiableConstraints _ as e)) -> Refiner.tclFAIL_lazy 0 - (lazy (str"setoid rewrite failed: unable to satisfy the rewriting constraints." + (lazy (str"Unable to satisfy the rewriting constraints." ++ fnl () ++ Himsg.explain_typeclass_error env e)) in tac gl @@ -1243,12 +1263,15 @@ let assert_replacing id newt tac = in Proofview.tclTHEN (Proofview.tclSENSITIVE sens) (Proofview.tclFOCUS 2 2 tac) +let newfail n s = + Proofview.tclZERO (Refiner.FailError (n, lazy s)) + let cl_rewrite_clause_newtac ?abs strat clause = let treat (res, is_hyp) = match res with - | None -> raise RewriteFailure + | None -> newfail 0 (str "Nothing to rewrite") | Some None -> - fail 0 (str"setoid rewrite failed: no progress made") + newfail 0 (str"No progress made") | Some (Some res) -> match is_hyp, res with | Some id, (undef, Some p, newt) -> @@ -1288,22 +1311,25 @@ let cl_rewrite_clause_newtac ?abs strat clause = let cl_rewrite_clause_new_strat ?abs strat clause = init_setoid (); - try cl_rewrite_clause_newtac ?abs strat clause - with RewriteFailure -> - fail 0 (str"setoid rewrite failed: strategy failed") + cl_rewrite_clause_newtac ?abs strat clause let cl_rewrite_clause_newtac' l left2right occs clause = Proof_global.run_tactic (Proofview.tclFOCUS 1 1 (cl_rewrite_clause_new_strat (rewrite_with rewrite_unif_flags l left2right occs) clause)) -let cl_rewrite_clause_strat strat clause gl = - init_setoid (); - let meta = Evarutil.new_meta() in -(* let gl = { gl with sigma = Typeclasses.mark_unresolvables gl.sigma } in *) + +let tactic_init_setoid () = + init_setoid (); tclIDTAC + +let cl_rewrite_clause_strat strat clause = + tclTHEN (tactic_init_setoid ()) + (fun gl -> + let meta = Evarutil.new_meta() in try cl_rewrite_clause_tac strat (mkMeta meta) clause gl - with RewriteFailure -> - tclFAIL 0 (str"setoid rewrite failed: strategy failed") gl + with + | Refiner.FailError (n, pp) -> + tclFAIL n (str"setoid rewrite failed: " ++ Lazy.force pp) gl) let cl_rewrite_clause l left2right occs clause gl = cl_rewrite_clause_strat (rewrite_with (general_rewrite_unif_flags ()) l left2right occs) clause gl @@ -1329,13 +1355,25 @@ let apply_constr_expr c l2r occs = fun env avoid t ty cstr evars -> apply_lemma (general_rewrite_unif_flags ()) (evd, (c, NoBindings)) l2r occs env avoid t ty cstr (evd, cstrevars evars) +let apply_glob_constr c l2r occs = fun env avoid t ty cstr evars -> + let evd, c = (Pretyping.Default.understand_tcc (goalevars evars) env c) in + apply_lemma (general_rewrite_unif_flags ()) (evd, (c, NoBindings)) + l2r occs env avoid t ty cstr (evd, cstrevars evars) + let interp_constr_list env sigma = List.map (fun c -> let evd, c = Constrintern.interp_open_constr sigma env c in (evd, (c, NoBindings)), true) +let interp_glob_constr_list env sigma = + List.map (fun c -> + let evd, c = Pretyping.Default.understand_tcc sigma env c in + (evd, (c, NoBindings)), true) + open Pcoq +(* Syntax for rewriting with strategies *) + type constr_expr_with_bindings = constr_expr with_bindings type glob_constr_with_bindings = glob_constr_and_expr with_bindings type glob_constr_with_bindings_sign = interp_sign * glob_constr_and_expr with_bindings @@ -1364,58 +1402,127 @@ ARGUMENT EXTEND glob_constr_with_bindings [ constr_with_bindings(bl) ] -> [ bl ] END -let _ = - (Genarg.create_arg None "strategy" : - ((strategy, Genarg.tlevel) Genarg.abstract_argument_type * - (strategy, Genarg.glevel) Genarg.abstract_argument_type * - (strategy, Genarg.rlevel) Genarg.abstract_argument_type)) - - +type ('constr,'redexpr) strategy_ast = + | StratId | StratFail | StratRefl + | StratUnary of string * ('constr,'redexpr) strategy_ast + | StratBinary of string * ('constr,'redexpr) strategy_ast * ('constr,'redexpr) strategy_ast + | StratConstr of 'constr * bool + | StratTerms of 'constr list + | StratHints of bool * string + | StratEval of 'redexpr + | StratFold of 'constr + +let rec map_strategy (f : 'a -> 'a2) (g : 'b -> 'b2) : ('a,'b) strategy_ast -> ('a2,'b2) strategy_ast = function + | StratId | StratFail | StratRefl as s -> s + | StratUnary (s, str) -> StratUnary (s, map_strategy f g str) + | StratBinary (s, str, str') -> StratBinary (s, map_strategy f g str, map_strategy f g str') + | StratConstr (c, b) -> StratConstr (f c, b) + | StratTerms l -> StratTerms (List.map f l) + | StratHints (b, id) -> StratHints (b, id) + | StratEval r -> StratEval (g r) + | StratFold c -> StratFold (f c) + +let rec strategy_of_ast = function + | StratId -> Strategies.id + | StratFail -> Strategies.fail + | StratRefl -> Strategies.refl + | StratUnary (f, s) -> + let s' = strategy_of_ast s in + let f' = match f with + | "subterms" -> all_subterms + | "subterm" -> one_subterm + | "innermost" -> Strategies.innermost + | "outermost" -> Strategies.outermost + | "bottomup" -> Strategies.bu + | "topdown" -> Strategies.td + | "progress" -> Strategies.progress + | "try" -> Strategies.try_ + | "any" -> Strategies.any + | "repeat" -> Strategies.repeat + | _ -> anomalylabstrm "strategy_of_ast" (str"Unkwnon strategy: " ++ str f) + in f' s' + | StratBinary (f, s, t) -> + let s' = strategy_of_ast s in + let t' = strategy_of_ast t in + let f' = match f with + | "compose" -> Strategies.seq + | "choice" -> Strategies.choice + | _ -> anomalylabstrm "strategy_of_ast" (str"Unkwnon strategy: " ++ str f) + in f' s' t' + | StratConstr (c, b) -> apply_glob_constr (fst c) b all_occurrences + | StratHints (old, id) -> if old then Strategies.old_hints id else Strategies.hints id + | StratTerms l -> + (fun env avoid t ty cstr evars -> + let l' = interp_glob_constr_list env (goalevars evars) (List.map fst l) in + Strategies.lemmas rewrite_unif_flags l' env avoid t ty cstr evars) + | StratEval r -> + (fun env avoid t ty cstr evars -> + let (sigma,r_interp) = Tacinterp.interp_redexp env (goalevars evars) r in + Strategies.reduce r_interp env avoid t ty cstr (sigma,cstrevars evars)) + | StratFold c -> Strategies.fold_glob (fst c) + + +type raw_strategy = (constr_expr, Tacexpr.raw_red_expr) strategy_ast +type glob_strategy = (glob_constr_and_expr, Tacexpr.raw_red_expr) strategy_ast + +let interp_strategy ist gl s = + let sigma = project gl in + sigma, strategy_of_ast s +let glob_strategy ist s = map_strategy (Tacinterp.intern_constr ist) (fun c -> c) s +let subst_strategy s str = str let pr_strategy _ _ _ (s : strategy) = Pp.str "" +let pr_raw_strategy _ _ _ (s : raw_strategy) = Pp.str "" +let pr_glob_strategy _ _ _ (s : glob_strategy) = Pp.str "" -let interp_strategy ist gl c = project gl , c -let glob_strategy ist l = l -let subst_strategy evm l = l - - -ARGUMENT EXTEND rewstrategy TYPED AS strategy +ARGUMENT EXTEND rewstrategy PRINTED BY pr_strategy + INTERPRETED BY interp_strategy GLOBALIZED BY glob_strategy SUBSTITUTED BY subst_strategy - [ constr(c) ] -> [ apply_constr_expr c true all_occurrences ] - | [ "<-" constr(c) ] -> [ apply_constr_expr c false all_occurrences ] - | [ "subterms" rewstrategy(h) ] -> [ all_subterms h ] - | [ "subterm" rewstrategy(h) ] -> [ one_subterm h ] - | [ "innermost" rewstrategy(h) ] -> [ Strategies.innermost h ] - | [ "outermost" rewstrategy(h) ] -> [ Strategies.outermost h ] - | [ "bottomup" rewstrategy(h) ] -> [ Strategies.bu h ] - | [ "topdown" rewstrategy(h) ] -> [ Strategies.td h ] - | [ "id" ] -> [ Strategies.id ] - | [ "refl" ] -> [ Strategies.refl ] - | [ "progress" rewstrategy(h) ] -> [ Strategies.progress h ] - | [ "fail" ] -> [ Strategies.fail ] - | [ "try" rewstrategy(h) ] -> [ Strategies.try_ h ] - | [ "any" rewstrategy(h) ] -> [ Strategies.any h ] - | [ "repeat" rewstrategy(h) ] -> [ Strategies.repeat h ] - | [ rewstrategy(h) ";" rewstrategy(h') ] -> [ Strategies.seq h h' ] + RAW_TYPED AS raw_strategy + RAW_PRINTED BY pr_raw_strategy + + GLOB_TYPED AS glob_strategy + GLOB_PRINTED BY pr_glob_strategy + + [ glob(c) ] -> [ StratConstr (c, true) ] + | [ "<-" constr(c) ] -> [ StratConstr (c, false) ] + | [ "subterms" rewstrategy(h) ] -> [ StratUnary ("all_subterms", h) ] + | [ "subterm" rewstrategy(h) ] -> [ StratUnary ("one_subterm", h) ] + | [ "innermost" rewstrategy(h) ] -> [ StratUnary("innermost", h) ] + | [ "outermost" rewstrategy(h) ] -> [ StratUnary("outermost", h) ] + | [ "bottomup" rewstrategy(h) ] -> [ StratUnary("bottomup", h) ] + | [ "topdown" rewstrategy(h) ] -> [ StratUnary("topdown", h) ] + | [ "id" ] -> [ StratId ] + | [ "fail" ] -> [ StratFail ] + | [ "refl" ] -> [ StratRefl ] + | [ "progress" rewstrategy(h) ] -> [ StratUnary ("progress", h) ] + | [ "try" rewstrategy(h) ] -> [ StratUnary ("try", h) ] + | [ "any" rewstrategy(h) ] -> [ StratUnary ("any", h) ] + | [ "repeat" rewstrategy(h) ] -> [ StratUnary ("repeat", h) ] + | [ rewstrategy(h) ";" rewstrategy(h') ] -> [ StratBinary ("compose", h, h') ] | [ "(" rewstrategy(h) ")" ] -> [ h ] - | [ "choice" rewstrategy(h) rewstrategy(h') ] -> [ Strategies.choice h h' ] - | [ "old_hints" preident(h) ] -> [ Strategies.old_hints h ] - | [ "hints" preident(h) ] -> [ Strategies.hints h ] - | [ "terms" constr_list(h) ] -> [ fun env avoid t ty cstr evars -> - Strategies.lemmas rewrite_unif_flags (interp_constr_list env (goalevars evars) h) env avoid t ty cstr evars ] - | [ "eval" red_expr(r) ] -> [ fun env avoid t ty cstr evars -> - let (sigma,r_interp) = Tacinterp.interp_redexp env (goalevars evars) r in - Strategies.reduce r_interp env avoid t ty cstr (sigma,cstrevars evars) ] - | [ "fold" constr(c) ] -> [ Strategies.fold c ] + | [ "choice" rewstrategy(h) rewstrategy(h') ] -> [ StratBinary ("choice", h, h') ] + | [ "old_hints" preident(h) ] -> [ StratHints (true, h) ] + | [ "hints" preident(h) ] -> [ StratHints (false, h) ] + | [ "terms" constr_list(h) ] -> [ StratTerms h ] + | [ "eval" red_expr(r) ] -> [ StratEval r ] + | [ "fold" constr(c) ] -> [ StratFold c ] END +(* By default the strategy for "rewrite_db" is top-down *) + +let db_strat db = Strategies.td (Strategies.hints db) +let cl_rewrite_clause_db db cl = cl_rewrite_clause_strat (db_strat db) cl + TACTIC EXTEND rewrite_strat | [ "rewrite_strat" rewstrategy(s) "in" hyp(id) ] -> [ cl_rewrite_clause_strat s (Some id) ] | [ "rewrite_strat" rewstrategy(s) ] -> [ cl_rewrite_clause_strat s None ] +| [ "rewrite_db" preident(db) "in" hyp(id) ] -> [ cl_rewrite_clause_db db (Some id) ] +| [ "rewrite_db" preident(db) ] -> [ cl_rewrite_clause_db db None ] END let clsubstitute o c = @@ -1841,16 +1948,10 @@ let apply_lemma gl (c,l) cl l2r occs = let general_s_rewrite cl l2r occs (c,l) ~new_goals gl = let meta = Evarutil.new_meta() in let hypinfo, strat = apply_lemma gl (c,l) cl l2r occs in - try - tclWEAK_PROGRESS - (tclTHEN - (Refiner.tclEVARS hypinfo.cl.evd) - (cl_rewrite_clause_tac ~abs:hypinfo.abs strat (mkMeta meta) cl)) gl - with RewriteFailure -> - let {l2r=l2r; c1=x; c2=y} = hypinfo in - raise (Pretype_errors.PretypeError - (pf_env gl,project gl, - Pretype_errors.NoOccurrenceFound ((if l2r then x else y), cl))) + tclWEAK_PROGRESS + (tclTHEN + (Refiner.tclEVARS hypinfo.cl.evd) + (cl_rewrite_clause_tac ~abs:hypinfo.abs strat (mkMeta meta) cl)) gl let general_s_rewrite_clause x = init_setoid (); @@ -1948,7 +2049,7 @@ let implify id gl = let sigma = project gl in let tyhd = Typing.type_of env sigma ty and tyconcl = Typing.type_of (Environ.push_rel hd env) sigma concl in - let app = mkApp (arrow_morphism tyhd (subst1 mkProp tyconcl), [| ty; (subst1 mkProp concl) |]) in + let app, unfold = arrow_morphism tyhd (subst1 mkProp tyconcl) ty (subst1 mkProp concl) in it_mkProd_or_LetIn app tl | _ -> ctype in convert_hyp_no_check (id, b, ctype') gl diff --git a/tactics/tacinterp.ml b/tactics/tacinterp.ml index 3efff8fa..3ff0cf93 100644 --- a/tactics/tacinterp.ml +++ b/tactics/tacinterp.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* List.iter (fun (_, r) -> + try + Dumpglob.add_glob (loc_of_or_by_notation Libnames.loc_of_reference r) + (Smartlocate.smart_global r) + with _ -> ()) occs + | Cbv grf | Lazy grf -> + List.iter (fun r -> + try + Dumpglob.add_glob (loc_of_or_by_notation Libnames.loc_of_reference r) + (Smartlocate.smart_global r) + with _ -> ()) grf.rConst + | _ -> () + let intern_red_expr ist = function | Unfold l -> Unfold (List.map (intern_unfold ist) l) | Fold l -> Fold (List.map (intern_constr ist) l) @@ -707,10 +723,11 @@ let rec intern_atomic lf ist x = intern_constr_with_occurrences ist c, intern_name lf ist na) cl) | TacGeneralizeDep c -> TacGeneralizeDep (intern_constr ist c) - | TacLetTac (na,c,cls,b) -> + | TacLetTac (na,c,cls,b,eqpat) -> let na = intern_name lf ist na in TacLetTac (na,intern_constr ist c, - (clause_app (intern_hyp_location ist) cls),b) + (clause_app (intern_hyp_location ist) cls),b, + (Option.map (intern_intro_pattern lf ist) eqpat)) (* Automation tactics *) | TacTrivial (d,lems,l) -> TacTrivial (d,List.map (intern_constr ist) lems,l) @@ -721,12 +738,12 @@ let rec intern_atomic lf ist x = (* Derived basic tactics *) | TacSimpleInductionDestruct (isrec,h) -> TacSimpleInductionDestruct (isrec,intern_quantified_hypothesis ist h) - | TacInductionDestruct (ev,isrec,(l,cls)) -> - TacInductionDestruct (ev,isrec,(List.map (fun (lc,cbo,(ipato,ipats)) -> - (List.map (intern_induction_arg ist) lc, - Option.map (intern_constr_with_bindings ist) cbo, + | TacInductionDestruct (ev,isrec,(l,el,cls)) -> + TacInductionDestruct (ev,isrec,(List.map (fun (c,(ipato,ipats)) -> + (intern_induction_arg ist c, (Option.map (intern_intro_pattern lf ist) ipato, Option.map (intern_intro_pattern lf ist) ipats))) l, + Option.map (intern_constr_with_bindings ist) el, Option.map (clause_app (intern_hyp_location ist)) cls)) | TacDoubleInduction (h1,h2) -> let h1 = intern_quantified_hypothesis ist h1 in @@ -759,6 +776,7 @@ let rec intern_atomic lf ist x = (* Conversion *) | TacReduce (r,cl) -> + dump_glob_red_expr r; TacReduce (intern_red_expr ist r, clause_app (intern_hyp_location ist) cl) | TacChange (None,c,cl) -> TacChange (None, @@ -2384,18 +2402,18 @@ and interp_atomic ist gl tac = tclTHEN (tclEVARS sigma) (h_generalize_dep c_interp) - | TacLetTac (na,c,clp,b) -> + | TacLetTac (na,c,clp,b,eqpat) -> let clp = interp_clause ist gl clp in if clp = nowhere then - (* We try to fully-typechect the term *) + (* We try to fully-typecheck the term *) let (sigma,c_interp) = pf_interp_constr ist gl c in tclTHEN (tclEVARS sigma) - (h_let_tac b (interp_fresh_name ist env na) c_interp clp) + (h_let_tac b (interp_fresh_name ist env na) c_interp clp eqpat) else (* We try to keep the pattern structure as much as possible *) h_let_pat_tac b (interp_fresh_name ist env na) - (interp_pure_open_constr ist env sigma c) clp + (interp_pure_open_constr ist env sigma c) clp eqpat (* Automation tactics *) | TacTrivial (debug,lems,l) -> @@ -2410,17 +2428,17 @@ and interp_atomic ist gl tac = (* Derived basic tactics *) | TacSimpleInductionDestruct (isrec,h) -> h_simple_induction_destruct isrec (interp_quantified_hypothesis ist h) - | TacInductionDestruct (isrec,ev,(l,cls)) -> + | TacInductionDestruct (isrec,ev,(l,el,cls)) -> let sigma, l = - list_fold_map (fun sigma (lc,cbo,(ipato,ipats)) -> - let lc = List.map (interp_induction_arg ist gl) lc in - let sigma,cbo = - Option.fold_map (interp_constr_with_bindings ist env) sigma cbo in - (sigma,(lc,cbo, + list_fold_map (fun sigma (c,(ipato,ipats)) -> + let c = interp_induction_arg ist gl c in + (sigma,(c, (Option.map (interp_intro_pattern ist gl) ipato, Option.map (interp_intro_pattern ist gl) ipats)))) sigma l in + let sigma,el = + Option.fold_map (interp_constr_with_bindings ist env) sigma el in let cls = Option.map (interp_clause ist gl) cls in - tclWITHHOLES ev (h_induction_destruct isrec ev) sigma (l,cls) + tclWITHHOLES ev (h_induction_destruct isrec ev) sigma (l,el,cls) | TacDoubleInduction (h1,h2) -> let h1 = interp_quantified_hypothesis ist h1 in let h2 = interp_quantified_hypothesis ist h2 in @@ -2839,7 +2857,8 @@ let rec subst_atomic subst (t:glob_atomic_tactic_expr) = match t with | TacGeneralize cl -> TacGeneralize (List.map (on_fst (subst_constr_with_occurrences subst))cl) | TacGeneralizeDep c -> TacGeneralizeDep (subst_glob_constr subst c) - | TacLetTac (id,c,clp,b) -> TacLetTac (id,subst_glob_constr subst c,clp,b) + | TacLetTac (id,c,clp,b,eqpat) -> + TacLetTac (id,subst_glob_constr subst c,clp,b,eqpat) (* Automation tactics *) | TacTrivial (d,lems,l) -> TacTrivial (d,List.map (subst_glob_constr subst) lems,l) @@ -2847,10 +2866,10 @@ let rec subst_atomic subst (t:glob_atomic_tactic_expr) = match t with (* Derived basic tactics *) | TacSimpleInductionDestruct (isrec,h) as x -> x - | TacInductionDestruct (isrec,ev,(l,cls)) -> - TacInductionDestruct (isrec,ev,(List.map (fun (lc,cbo,ids) -> - List.map (subst_induction_arg subst) lc, - Option.map (subst_glob_with_bindings subst) cbo, ids) l, cls)) + | TacInductionDestruct (isrec,ev,(l,el,cls)) -> + let l' = List.map (fun (c,ids) -> subst_induction_arg subst c, ids) l in + let el' = Option.map (subst_glob_with_bindings subst) el in + TacInductionDestruct (isrec,ev,(l',el',cls)) | TacDoubleInduction (h1,h2) as x -> x | TacDecomposeAnd c -> TacDecomposeAnd (subst_glob_constr subst c) | TacDecomposeOr c -> TacDecomposeOr (subst_glob_constr subst c) diff --git a/tactics/tacinterp.mli b/tactics/tacinterp.mli index b9fd64f6..573efb19 100644 --- a/tactics/tacinterp.mli +++ b/tactics/tacinterp.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* goal sigma -> glob_tactic_expr -> Evd.evar_map * constr (** Interprets redexp arguments *) +val dump_glob_red_expr : raw_red_expr -> unit val interp_redexp : Environ.env -> Evd.evar_map -> raw_red_expr -> Evd.evar_map * red_expr (** Interprets tactic expressions *) diff --git a/tactics/tactic_option.ml b/tactics/tactic_option.ml index 57b8c540..b846c9eb 100644 --- a/tactics/tactic_option.ml +++ b/tactics/tactic_option.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* tclIDTAC - | [a,b,c],cl -> induct_destruct isrec with_evars (a,b,c,cl) - | (a,b,c)::l,cl -> + | [],_,_ -> tclIDTAC + | [a,b],el,cl -> induct_destruct isrec with_evars ([a],el,b,cl) + | (a,b)::l,None,cl -> tclTHEN - (induct_destruct isrec with_evars (a,b,c,cl)) - (tclMAP (fun (a,b,c) -> induct_destruct false with_evars (a,b,c,cl)) l) + (induct_destruct isrec with_evars ([a],None,b,cl)) + (tclMAP (fun (a,b) -> induct_destruct false with_evars ([a],None,b,cl)) l) + | l,Some el,cl -> + let check_basic_using = function + | a,(None,None) -> a + | _ -> error "Unsupported syntax for \"using\"." + in + let l' = List.map check_basic_using l in + induct_destruct isrec with_evars (l', Some el, (None,None), cl) let new_induct ev lc e idl cls = induct_destruct true ev (lc,e,idl,cls) let new_destruct ev lc e idl cls = induct_destruct false ev (lc,e,idl,cls) @@ -3406,7 +3413,7 @@ let intros_symmetry = (* Transitivity tactics *) -(* This tactic first tries to apply a constant named trans_eq, where eq +(* This tactic first tries to apply a constant named eq_trans, where eq is the name of the equality predicate. If this constant is not defined and the conclusion is a=b, it solves the goal doing Cut x1=x2; diff --git a/tactics/tactics.mli b/tactics/tactics.mli index f8f32b79..7e24156a 100644 --- a/tactics/tactics.mli +++ b/tactics/tactics.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (** {6 Generic case analysis / induction tactics. } *) val induction_destruct : rec_flag -> evars_flag -> - ((evar_map * constr with_bindings) induction_arg list * - constr with_bindings option * + ((evar_map * constr with_bindings) induction_arg * (intro_pattern_expr located option * intro_pattern_expr located option)) list * + constr with_bindings option * clause option -> tactic (** {6 Eliminations giving the type instead of the proof. } *) diff --git a/tactics/tauto.ml4 b/tactics/tauto.ml4 index b7a58be4..4189832e 100644 --- a/tactics/tauto.ml4 +++ b/tactics/tauto.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* t1 | Node l1 v1 r1 h1, Node l2 v2 r2 h2 => if (Z_ge_lt_dec h1 h2) then - if (Z_eq_dec h2 1) + if (Z.eq_dec h2 1) then add v2 s else let (l2', r2') := split v1 u in join (union l1 l2' _ _ _ _) v1 (union r1 (snd r2') _ _ _ _) else - if (Z_eq_dec h1 1) + if (Z.eq_dec h1 1) then add v1 s else let (l1', r1') := split v2 u in diff --git a/test-suite/bugs/closed/shouldsucceed/1784.v b/test-suite/bugs/closed/shouldsucceed/1784.v index 718b0e86..fb2f0ca9 100644 --- a/test-suite/bugs/closed/shouldsucceed/1784.v +++ b/test-suite/bugs/closed/shouldsucceed/1784.v @@ -58,7 +58,7 @@ Program Fixpoint lt_dec (x y:sv) { struct x } : {slt x y}+{~slt x y} := match x with | I x => match y with - | I y => if (Z_eq_dec x y) then in_left else in_right + | I y => if (Z.eq_dec x y) then in_left else in_right | S ys => in_right end | S xs => diff --git a/test-suite/bugs/closed/shouldsucceed/1844.v b/test-suite/bugs/closed/shouldsucceed/1844.v index 5627612f..17eeb352 100644 --- a/test-suite/bugs/closed/shouldsucceed/1844.v +++ b/test-suite/bugs/closed/shouldsucceed/1844.v @@ -1,6 +1,6 @@ Require Import ZArith. -Definition zeq := Z_eq_dec. +Definition zeq := Z.eq_dec. Definition update (A: Set) (x: Z) (v: A) (s: Z -> A) : Z -> A := fun y => if zeq x y then v else s y. diff --git a/test-suite/bugs/closed/shouldsucceed/1935.v b/test-suite/bugs/closed/shouldsucceed/1935.v index 72396d49..d5837619 100644 --- a/test-suite/bugs/closed/shouldsucceed/1935.v +++ b/test-suite/bugs/closed/shouldsucceed/1935.v @@ -13,7 +13,7 @@ Qed. Require Import ZArith. -Definition f'' (a:bool) := if a then eq (A:= Z) else Zlt. +Definition f'' (a:bool) := if a then eq (A:= Z) else Z.lt. Lemma f_refl'' : forall n , f'' true n n. Proof. diff --git a/test-suite/bugs/closed/shouldsucceed/2127.v b/test-suite/bugs/closed/shouldsucceed/2127.v index 0fc854b6..142ada26 100644 --- a/test-suite/bugs/closed/shouldsucceed/2127.v +++ b/test-suite/bugs/closed/shouldsucceed/2127.v @@ -1,8 +1,8 @@ -(* Check that "apply refl_equal" is not exported as an interactive +(* Check that "apply eq_refl" is not exported as an interactive tactic but as a statically globalized one *) (* (this is a simplification of the original bug report) *) Module A. -Hint Rewrite sym_equal using apply refl_equal : foo. +Hint Rewrite eq_sym using apply eq_refl : foo. End A. diff --git a/test-suite/bugs/closed/shouldsucceed/2817.v b/test-suite/bugs/closed/shouldsucceed/2817.v new file mode 100644 index 00000000..08dff992 --- /dev/null +++ b/test-suite/bugs/closed/shouldsucceed/2817.v @@ -0,0 +1,9 @@ +(** Occur-check for Meta (up to application of already known instances) *) + +Goal forall (f: nat -> nat -> Prop) (x:bool) + (H: forall (u: nat), f u u -> True) + (H0: forall x0, f (if x then x0 else x0) x0), +False. + +intros. +Fail apply H in H0. (* should fail without exhausting the stack *) diff --git a/test-suite/bugs/closed/shouldsucceed/2836.v b/test-suite/bugs/closed/shouldsucceed/2836.v new file mode 100644 index 00000000..a948b75e --- /dev/null +++ b/test-suite/bugs/closed/shouldsucceed/2836.v @@ -0,0 +1,39 @@ +(* Check that possible instantiation made during evar materialization + are taken into account and do not raise Not_found *) + +Set Implicit Arguments. + +Record SpecializedCategory (obj : Type) (Morphism : obj -> obj -> Type) := { + Object :> _ := obj; + + Identity' : forall o, Morphism o o; + Compose' : forall s d d', Morphism d d' -> Morphism s d -> Morphism s d' +}. + +Section SpecializedCategoryInterface. + Variable obj : Type. + Variable mor : obj -> obj -> Type. + Variable C : @SpecializedCategory obj mor. + + Definition Morphism (s d : C) := mor s d. + Definition Identity (o : C) : Morphism o o := C.(Identity') o. + Definition Compose (s d d' : C) (m : Morphism d d') (m0 : Morphism s d) : +Morphism s d' := C.(Compose') s d d' m m0. +End SpecializedCategoryInterface. + +Section ProductCategory. + Variable objC : Type. + Variable morC : objC -> objC -> Type. + Variable objD : Type. + Variable morD : objD -> objD -> Type. + Variable C : SpecializedCategory morC. + Variable D : SpecializedCategory morD. + +(* Should fail nicely *) +Definition ProductCategory : @SpecializedCategory (objC * objD)%type (fun s d +=> (morC (fst s) (fst d) * morD (snd s) (snd d))%type). +Fail refine {| + Identity' := (fun o => (Identity (fst o), Identity (snd o))); + Compose' := (fun s d d' m2 m1 => (Compose (fst m2) (fst m1), Compose (snd +m2) (snd m1))) + |}. diff --git a/test-suite/complexity/ring2.v b/test-suite/complexity/ring2.v index 6945edc8..52dae265 100644 --- a/test-suite/complexity/ring2.v +++ b/test-suite/complexity/ring2.v @@ -3,7 +3,7 @@ Require Import BinInt Zbool. -Definition Zplus x y := +Definition Zadd x y := match x with | 0%Z => y | Zpos x' => @@ -30,9 +30,10 @@ match x with end end. + Require Import Ring. -Lemma Zth : ring_theory Z0 (Zpos xH) Zplus Zmult Zminus Zopp (@eq Z). +Lemma Zth : ring_theory Z0 (Zpos xH) Zadd Z.mul Z.sub Z.opp (@eq Z). Admitted. Ltac Zcst t := @@ -45,7 +46,7 @@ Add Ring Zr : Zth (decidable Zeq_bool_eq, constants [Zcst]). Open Scope Z_scope. -Infix "+" := Zplus : Z_scope. +Infix "+" := Zadd : Z_scope. Goal forall a, a+a+a+a+a+a+a+a+a+a+a+a+a = a*13. Timeout 5 Time intro; ring. diff --git a/test-suite/failure/Tauto.v b/test-suite/failure/Tauto.v index a08c5154..cbe7473c 100644 --- a/test-suite/failure/Tauto.v +++ b/test-suite/failure/Tauto.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* prop, induct i -> up (i WF). Proof. intros i y. apply y. -unfold le, WF, induct in |- *. +unfold le, WF, induct. intros x H0. apply y. exact H0. @@ -39,7 +39,7 @@ Qed. Lemma lemma1 : induct (fun u => down (I u)). Proof. -unfold induct in |- *. +unfold induct. intros x p. intro q. apply (q (fun u => down (I u)) p). diff --git a/test-suite/failure/clash_cons.v b/test-suite/failure/clash_cons.v index d000f965..25d3c165 100644 --- a/test-suite/failure/clash_cons.v +++ b/test-suite/failure/clash_cons.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Prop. Goal forall p : n = n, P n p. intro. -pattern n, p in |- *. +pattern n, p. diff --git a/test-suite/failure/positivity.v b/test-suite/failure/positivity.v index e9fbe969..03cc1109 100644 --- a/test-suite/failure/positivity.v +++ b/test-suite/failure/positivity.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* WF A Rof. - red in |- *; intros; apply ACC_inverse_image; auto. + red; intros; apply ACC_inverse_image; auto. Qed. End Inverse_Image. @@ -104,7 +104,7 @@ generalize eqx0; clear eqx0. elim eqy using eq_ind_r; intro. case (inj _ _ _ _ eqx0); intros. exists X1 R1 X3 R3 (fun x : X1 => f0 (x0 (f x))) maj0; trivial. -red in |- *; auto. +red; auto. Defined. @@ -122,7 +122,7 @@ apply sym_eq; assumption. intros. apply H1 with (y := f (x1 maj)) (f := fun x : X1 => f (x1 (f0 x))); - try red in |- *; auto. + try red; auto. Defined. (* The embedding relation is well founded *) @@ -158,7 +158,7 @@ Section Subsets. exists sub (Rof _ _ emb witness) A0 emb witness a; trivial. exact WF_emb. -red in |- *; trivial. +red; trivial. exact emb_wit. Defined. @@ -174,7 +174,7 @@ End Subsets. - the upper bound is a, which is in F(b) since a < b *) Lemma F_morphism : morphism A0 emb A0 emb F. -red in |- *; intros. +red; intros. exists (sub x) (Rof _ _ emb (witness x)) @@ -185,10 +185,10 @@ exists apply WF_inverse_image. exact WF_emb. -unfold morphism, Rof, fsub in |- *; simpl in |- *; intros. +unfold morphism, Rof, fsub; simpl; intros. trivial. -unfold Rof, fsub in |- *; simpl in |- *; intros. +unfold Rof, fsub; simpl; intros. apply emb_wit. Defined. @@ -230,10 +230,10 @@ intros. change match i0' X1 R1, i0' X2 R2 with | i0 x1 r1, i0 x2 r2 => exists f : _, morphism x1 r1 x2 r2 f - end in |- *. -case H; simpl in |- *. + end. +case H; simpl. exists (fun x : X1 => x). -red in |- *; trivial. +red; trivial. Defined. (* The following command raises 'Error: Universe Inconsistency'. diff --git a/test-suite/failure/universes-buraliforti-redef.v b/test-suite/failure/universes-buraliforti-redef.v index 034b7f09..a8b5b975 100644 --- a/test-suite/failure/universes-buraliforti-redef.v +++ b/test-suite/failure/universes-buraliforti-redef.v @@ -54,7 +54,7 @@ Section Inverse_Image. Qed. Lemma WF_inverse_image : WF B R -> WF A Rof. - red in |- *; intros; apply ACC_inverse_image; auto. + red; intros; apply ACC_inverse_image; auto. Qed. End Inverse_Image. @@ -106,7 +106,7 @@ generalize eqx0; clear eqx0. elim eqy using eq_ind_r; intro. case (inj _ _ _ _ eqx0); intros. exists X1 R1 X4 R4 (fun x : X1 => f0 (x0 (f x))) maj0; trivial. -red in |- *; auto. +red; auto. Defined. @@ -124,7 +124,7 @@ apply sym_eq; assumption. intros. apply H1 with (y := f (x1 maj)) (f := fun x : X1 => f (x1 (f0 x))); - try red in |- *; auto. + try red; auto. Defined. (* The embedding relation is well founded *) @@ -160,7 +160,7 @@ Section Subsets. exists sub (Rof _ _ emb witness) A0 emb witness a; trivial. exact WF_emb. -red in |- *; trivial. +red; trivial. exact emb_wit. Defined. @@ -176,7 +176,7 @@ End Subsets. - the upper bound is a, which is in F(b) since a < b *) Lemma F_morphism : morphism A0 emb A0 emb F. -red in |- *; intros. +red; intros. exists (sub x) (Rof _ _ emb (witness x)) @@ -187,10 +187,10 @@ exists apply WF_inverse_image. exact WF_emb. -unfold morphism, Rof, fsub in |- *; simpl in |- *; intros. +unfold morphism, Rof, fsub; simpl; intros. trivial. -unfold Rof, fsub in |- *; simpl in |- *; intros. +unfold Rof, fsub; simpl; intros. apply emb_wit. Defined. @@ -231,10 +231,10 @@ intros. change match i0 X1 R1, i0 X2 R2 with | i1 x1 r1, i1 x2 r2 => exists f : _, morphism x1 r1 x2 r2 f - end in |- *. -case H; simpl in |- *. + end. +case H; simpl. exists (fun x : X1 => x). -red in |- *; trivial. +red; trivial. Defined. (* The following command raises 'Error: Universe Inconsistency'. diff --git a/test-suite/failure/universes-buraliforti.v b/test-suite/failure/universes-buraliforti.v index 1f96ab34..7b62a0c5 100644 --- a/test-suite/failure/universes-buraliforti.v +++ b/test-suite/failure/universes-buraliforti.v @@ -37,7 +37,7 @@ Section Inverse_Image. Qed. Lemma WF_inverse_image : WF B R -> WF A Rof. - red in |- *; intros; apply ACC_inverse_image; auto. + red; intros; apply ACC_inverse_image; auto. Qed. End Inverse_Image. @@ -90,7 +90,7 @@ generalize eqx0; clear eqx0. elim eqy using eq_ind_r; intro. case (inj _ _ _ _ eqx0); intros. exists X1 R1 X3 R3 (fun x : X1 => f0 (x0 (f x))) maj0; trivial. -red in |- *; auto. +red; auto. Defined. @@ -108,7 +108,7 @@ apply sym_eq; assumption. intros. apply H1 with (y := f (x1 maj)) (f := fun x : X1 => f (x1 (f0 x))); - try red in |- *; auto. + try red; auto. Defined. (* The embedding relation is well founded *) @@ -144,7 +144,7 @@ Section Subsets. exists sub (Rof _ _ emb witness) A0 emb witness a; trivial. exact WF_emb. -red in |- *; trivial. +red; trivial. exact emb_wit. Defined. @@ -160,7 +160,7 @@ End Subsets. - the upper bound is a, which is in F(b) since a < b *) Lemma F_morphism : morphism A0 emb A0 emb F. -red in |- *; intros. +red; intros. exists (sub x) (Rof _ _ emb (witness x)) @@ -171,10 +171,10 @@ exists apply WF_inverse_image. exact WF_emb. -unfold morphism, Rof, fsub in |- *; simpl in |- *; intros. +unfold morphism, Rof, fsub; simpl; intros. trivial. -unfold Rof, fsub in |- *; simpl in |- *; intros. +unfold Rof, fsub; simpl; intros. apply emb_wit. Defined. @@ -222,10 +222,10 @@ intros. change match i0 X1 R1, i0 X2 R2 with | i0 x1 r1, i0 x2 r2 => exists f : _, morphism x1 r1 x2 r2 f - end in |- *. -case H; simpl in |- *. + end. +case H; simpl. exists (fun x : X1 => x). -red in |- *; trivial. +red; trivial. Defined. (* The following command raises 'Error: Universe Inconsistency'. diff --git a/test-suite/ideal-features/Apply.v b/test-suite/ideal-features/Apply.v index 8b36f44b..7628b961 100644 --- a/test-suite/ideal-features/Apply.v +++ b/test-suite/ideal-features/Apply.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0=O. -intro H; eapply trans_equal; +intro H; eapply eq_trans; [apply H | match goal with |- ?x = ?x => reflexivity end]. Qed. diff --git a/test-suite/micromega/example.v b/test-suite/micromega/example.v index f424f0fc..d648c2e4 100644 --- a/test-suite/micromega/example.v +++ b/test-suite/micromega/example.v @@ -77,13 +77,13 @@ Definition rbound2 (C:Z -> Z -> Z) : Prop := Lemma bounded_drift : forall s t p q C D, s <= t /\ correct p t /\ correct q t /\ rbound1 C /\ rbound2 C /\ rbound1 D /\ rbound2 D -> - Zabs (C p t - D q t) <= Zabs (C p s - D q s) + 2 * rho * (t- s). + Z.abs (C p t - D q t) <= Z.abs (C p s - D q s) + 2 * rho * (t- s). Proof. intros. - generalize (Zabs_eq (C p t - D q t)). - generalize (Zabs_non_eq (C p t - D q t)). - generalize (Zabs_eq (C p s -D q s)). - generalize (Zabs_non_eq (C p s - D q s)). + generalize (Z.abs_eq (C p t - D q t)). + generalize (Z.abs_neq (C p t - D q t)). + generalize (Z.abs_eq (C p s -D q s)). + generalize (Z.abs_neq (C p s - D q s)). unfold rbound2 in H. unfold rbound1 in H. intuition. diff --git a/test-suite/micromega/square.v b/test-suite/micromega/square.v index 4c00ffe4..8767f687 100644 --- a/test-suite/micromega/square.v +++ b/test-suite/micromega/square.v @@ -9,17 +9,17 @@ Require Import ZArith Zwf Psatz QArith. Open Scope Z_scope. -Lemma Zabs_square : forall x, (Zabs x)^2 = x^2. +Lemma Zabs_square : forall x, (Z.abs x)^2 = x^2. Proof. intros ; case (Zabs_dec x) ; intros ; psatz Z 2. Qed. -Hint Resolve Zabs_pos Zabs_square. +Hint Resolve Z.abs_nonneg Zabs_square. Lemma integer_statement : ~exists n, exists p, n^2 = 2*p^2 /\ n <> 0. Proof. -intros [n [p [Heq Hnz]]]; pose (n' := Zabs n); pose (p':=Zabs p). -assert (facts : 0 <= Zabs n /\ 0 <= Zabs p /\ Zabs n^2=n^2 - /\ Zabs p^2 = p^2) by auto. +intros [n [p [Heq Hnz]]]; pose (n' := Z.abs n); pose (p':=Z.abs p). +assert (facts : 0 <= Z.abs n /\ 0 <= Z.abs p /\ Z.abs n^2=n^2 + /\ Z.abs p^2 = p^2) by auto. assert (H : (0 < n' /\ 0 <= p' /\ n' ^2 = 2* p' ^2)) by (destruct facts as [Hf1 [Hf2 [Hf3 Hf4]]]; unfold n', p' ; psatz Z 2). generalize p' H; elim n' using (well_founded_ind (Zwf_well_founded 0)); clear. @@ -35,7 +35,7 @@ Lemma QnumZpower : forall x : Q, Qnum (x ^ 2)%Q = ((Qnum x) ^ 2) %Z. Proof. intros. destruct x. - cbv beta iota zeta delta - [Zmult]. + cbv beta iota zeta delta - [Z.mul]. ring. Qed. @@ -45,15 +45,15 @@ Proof. intros. destruct x. simpl. - unfold Zpower_pos. + unfold Z.pow_pos. simpl. - rewrite Pmult_1_r. + rewrite Pos.mul_1_r. reflexivity. Qed. Theorem sqrt2_not_rational : ~exists x:Q, x^2==2#1. Proof. - unfold Qeq; intros [x]; simpl (Qden (2#1)); rewrite Zmult_1_r. + unfold Qeq; intros [x]; simpl (Qden (2#1)); rewrite Z.mul_1_r. intros HQeq. assert (Heq : (Qnum x ^ 2 = 2 * ' Qden x ^ 2%Q)%Z) by (rewrite QnumZpower in HQeq ; rewrite QdenZpower in HQeq ; auto). diff --git a/test-suite/misc/berardi_test.v b/test-suite/misc/berardi_test.v index 2b388687..38377573 100644 --- a/test-suite/misc/berardi_test.v +++ b/test-suite/misc/berardi_test.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Q e1) -> (~ B -> Q e2) -> Q (IFProp B e1 e2). Proof. intros P B e1 e2 Q p1 p2. -unfold IFProp in |- *. +unfold IFProp. case (EM B); assumption. Qed. @@ -76,7 +76,7 @@ Record retract_cond : Prop := Lemma AC : forall r:retract_cond, retract -> forall a:A, j2 r (i2 r a) = a. Proof. intros r. -case r; simpl in |- *. +case r; simpl. trivial. Qed. @@ -113,7 +113,7 @@ Lemma retract_pow_U_U : retract (pow U) U. Proof. exists g f. intro a. -unfold f, g in |- *; simpl in |- *. +unfold f, g; simpl. apply AC. exists (fun x:pow U => x) (fun x:pow U => x). trivial. @@ -130,8 +130,8 @@ Definition R : U := g (fun u:U => Not_b (u U u)). Lemma not_has_fixpoint : R R = Not_b (R R). Proof. -unfold R at 1 in |- *. -unfold g in |- *. +unfold R at 1. +unfold g. rewrite AC with (r := L1 U U) (a := fun u:U => Not_b (u U u)). trivial. exists (fun x:pow U => x) (fun x:pow U => x); trivial. @@ -141,7 +141,7 @@ Qed. Theorem classical_proof_irrelevence : T = F. Proof. generalize not_has_fixpoint. -unfold Not_b in |- *. +unfold Not_b. apply AC_IF. intros is_true is_false. elim is_true; elim is_false; trivial. diff --git a/test-suite/modules/PO.v b/test-suite/modules/PO.v index 71d33177..6198f29a 100644 --- a/test-suite/modules/PO.v +++ b/test-suite/modules/PO.v @@ -27,13 +27,13 @@ Module Pair (X: PO) (Y: PO) <: PO. Qed. Lemma le_trans : forall p1 p2 p3 : T, le p1 p2 -> le p2 p3 -> le p1 p3. - unfold le in |- *; intuition; info eauto. + unfold le; intuition; info eauto. Qed. Lemma le_antis : forall p1 p2 : T, le p1 p2 -> le p2 p1 -> p1 = p2. destruct p1. destruct p2. - unfold le in |- *. + unfold le. intuition. cutrewrite (t = t1). cutrewrite (t0 = t2). diff --git a/test-suite/modules/Przyklad.v b/test-suite/modules/Przyklad.v index e3694b81..341805a1 100644 --- a/test-suite/modules/Przyklad.v +++ b/test-suite/modules/Przyklad.v @@ -66,7 +66,7 @@ Module FuncDict (E: ELEM). Lemma find_add_true : forall (s : T) (e : E.T), find e (add e s) = true. intros. - unfold find, add in |- *. + unfold find, add. elim (Reflexivity_provable _ _ (E.eq_dec e e)). intros. rewrite H. @@ -77,13 +77,13 @@ Module FuncDict (E: ELEM). Lemma find_add_false : forall (s : T) (e e' : E.T), e <> e' -> find e (add e' s) = find e s. intros. - unfold add, find in |- *. + unfold add, find. cut (exists x : _, E.eq_dec e' e = right _ x). intros. elim H0. intros. rewrite H1. - unfold ifte in |- *. + unfold ifte. reflexivity. apply Disequality_provable. @@ -123,7 +123,7 @@ Module Lemmas (G: SET) (E: ELEM). forall a : E.T, ESet.find a S1 = ESet.find a S2. intros. - unfold S1, S2 in |- *. + unfold S1, S2. elim (E.eq_dec a a1); elim (E.eq_dec a a2); intros H1 H2; try rewrite <- H1; try rewrite <- H2; repeat @@ -153,7 +153,7 @@ Module ListDict (E: ELEM). Lemma find_add_true : forall (s : T) (e : E.T), find e (add e s) = true. intros. - simpl in |- *. + simpl. elim (Reflexivity_provable _ _ (E.eq_dec e e)). intros. rewrite H. @@ -165,11 +165,11 @@ Module ListDict (E: ELEM). Lemma find_add_false : forall (s : T) (e e' : E.T), e <> e' -> find e (add e' s) = find e s. intros. - simpl in |- *. + simpl. elim (Disequality_provable _ _ _ H (E.eq_dec e e')). intros. rewrite H0. - simpl in |- *. + simpl. reflexivity. Qed. diff --git a/test-suite/output/Notations.out b/test-suite/output/Notations.out index ada524f1..beba8df9 100644 --- a/test-suite/output/Notations.out +++ b/test-suite/output/Notations.out @@ -122,3 +122,8 @@ fun x : option Z => match x with : option Z -> Z s : s +Identifier 'foo' now a keyword +10 + : nat +fun _ : nat => 9 + : nat -> nat diff --git a/test-suite/output/Notations.v b/test-suite/output/Notations.v index 4a2c411e..52f499ab 100644 --- a/test-suite/output/Notations.v +++ b/test-suite/output/Notations.v @@ -253,3 +253,12 @@ Check (fun x => match x with SOME3 x => x | NONE3 => 0 end). Notation s := Type. Check s. + +(* Test bug #2835: notations were not uniformly managed under prod and lambda *) + +Open Scope nat_scope. + +Notation "'foo' n" := (S n) (at level 50): nat_scope. + +Check (foo 9). +Check (fun _ : nat => 9). diff --git a/test-suite/output/ZSyntax.out b/test-suite/output/ZSyntax.out index 1b7a2903..dc41b0aa 100644 --- a/test-suite/output/ZSyntax.out +++ b/test-suite/output/ZSyntax.out @@ -2,19 +2,19 @@ : Z fun f : nat -> Z => (f 0%nat + 0)%Z : (nat -> Z) -> Z -fun x : positive => Zpos x~0 +fun x : positive => Z.pos x~0 : positive -> Z -fun x : positive => (Zpos x + 1)%Z +fun x : positive => (Z.pos x + 1)%Z : positive -> Z -fun x : positive => Zpos x +fun x : positive => Z.pos x : positive -> Z -fun x : positive => Zneg x~0 +fun x : positive => Z.neg x~0 : positive -> Z -fun x : positive => (Zpos x~0 + 0)%Z +fun x : positive => (Z.pos x~0 + 0)%Z : positive -> Z -fun x : positive => (- Zpos x~0)%Z +fun x : positive => (- Z.pos x~0)%Z : positive -> Z -fun x : positive => (- Zpos x~0 + 0)%Z +fun x : positive => (- Z.pos x~0 + 0)%Z : positive -> Z (Z.of_nat 0 + 1)%Z : Z diff --git a/test-suite/success/Check.v b/test-suite/success/Check.v index 47180ef6..21a9722d 100644 --- a/test-suite/success/Check.v +++ b/test-suite/success/Check.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* iszero n = true. intros x eg. - functional induction iszero x; simpl in |- *. + functional induction iszero x; simpl. trivial. inversion eg. Qed. @@ -212,19 +212,19 @@ Function plus_x_not_five'' (n m : nat) {struct n} : nat := Lemma notplusfive'' : forall x y : nat, y = 5 -> plus_x_not_five'' x y = x. intros a b. - functional induction plus_x_not_five'' a b; intros hyp; simpl in |- *; auto. + functional induction plus_x_not_five'' a b; intros hyp; simpl; auto. Qed. Lemma iseq_eq : forall n m : nat, n = m -> nat_equal_bool n m = true. intros n m. - functional induction nat_equal_bool n m; simpl in |- *; intros hyp; auto. + functional induction nat_equal_bool n m; simpl; intros hyp; auto. rewrite <- hyp in y; simpl in y;tauto. inversion hyp. Qed. Lemma iseq_eq' : forall n m : nat, nat_equal_bool n m = true -> n = m. intros n m. - functional induction nat_equal_bool n m; simpl in |- *; intros eg; auto. + functional induction nat_equal_bool n m; simpl; intros eg; auto. inversion eg. inversion eg. Qed. @@ -245,7 +245,7 @@ Qed. Lemma inf_x_plusxy'' : forall x : nat, x <= x + 0. intros n. -unfold plus in |- *. +unfold plus. functional induction plus n 0; intros. auto with arith. apply le_n_S. @@ -266,7 +266,7 @@ Function mod2 (n : nat) : nat := Lemma princ_mod2 : forall n : nat, mod2 n <= n. intros n. - functional induction mod2 n; simpl in |- *; auto with arith. + functional induction mod2 n; simpl; auto with arith. Qed. Function isfour (n : nat) : bool := @@ -284,7 +284,7 @@ Function isononeorfour (n : nat) : bool := Lemma toto'' : forall n : nat, istrue (isfour n) -> istrue (isononeorfour n). intros n. - functional induction isononeorfour n; intros istr; simpl in |- *; + functional induction isononeorfour n; intros istr; simpl; inversion istr. apply istrue0. destruct n. inversion istr. @@ -367,7 +367,7 @@ Function ftest2 (n m : nat) {struct n} : nat := Lemma test2' : forall n m : nat, ftest2 n m <= 2. intros n m. - functional induction ftest2 n m; simpl in |- *; intros; auto. + functional induction ftest2 n m; simpl; intros; auto. Qed. Function ftest3 (n m : nat) {struct n} : nat := @@ -387,7 +387,7 @@ auto. intros. auto. intros. -simpl in |- *. +simpl. auto. Qed. @@ -408,7 +408,7 @@ auto. intros. auto. intros. -simpl in |- *. +simpl. auto. Qed. @@ -451,7 +451,7 @@ Qed. Lemma essai6 : forall n m : nat, ftest6 n m <= 2. intros n m. - functional induction ftest6 n m; simpl in |- *; auto. + functional induction ftest6 n m; simpl; auto. Qed. (* Some tests with modules *) diff --git a/test-suite/success/Hints.v b/test-suite/success/Hints.v index 071fb957..cc8cec47 100644 --- a/test-suite/success/Hints.v +++ b/test-suite/success/Hints.v @@ -2,26 +2,26 @@ (* Checks that qualified names are accepted *) (* New-style syntax *) -Hint Resolve refl_equal: core arith. -Hint Immediate trans_equal. -Hint Unfold sym_equal: core. +Hint Resolve eq_refl: core arith. +Hint Immediate eq_trans. +Hint Unfold eq_sym: core. Hint Constructors eq: foo bar. -Hint Extern 3 (_ = _) => apply refl_equal: foo bar. +Hint Extern 3 (_ = _) => apply eq_refl: foo bar. (* Old-style syntax *) -Hint Resolve refl_equal sym_equal. -Hint Resolve refl_equal sym_equal: foo. -Hint Immediate refl_equal sym_equal. -Hint Immediate refl_equal sym_equal: foo. -Hint Unfold fst sym_equal. -Hint Unfold fst sym_equal: foo. +Hint Resolve eq_refl eq_sym. +Hint Resolve eq_refl eq_sym: foo. +Hint Immediate eq_refl eq_sym. +Hint Immediate eq_refl eq_sym: foo. +Hint Unfold fst eq_sym. +Hint Unfold fst eq_sym: foo. (* Checks that local names are accepted *) Section A. Remark Refl : forall (A : Set) (x : A), x = x. - Proof. exact @refl_equal. Defined. - Definition Sym := sym_equal. - Let Trans := trans_equal. + Proof. exact @eq_refl. Defined. + Definition Sym := eq_sym. + Let Trans := eq_trans. Hint Resolve Refl: foo. Hint Resolve Sym: bar. diff --git a/test-suite/success/LegacyField.v b/test-suite/success/LegacyField.v index df4da431..d55ae384 100644 --- a/test-suite/success/LegacyField.v +++ b/test-suite/success/LegacyField.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* fail 1 - | _ => rewrite (BinInt.Zpos_xI v) + | _ => rewrite (BinInt.Pos2Z.inj_xI v) end | |- context [(Zpos (xO ?X1))] => let v := constr:X1 in match constr:v with | 1%positive => fail 1 - | _ => rewrite (BinInt.Zpos_xO v) + | _ => rewrite (BinInt.Pos2Z.inj_xO v) end end. diff --git a/test-suite/success/Mod_type.v b/test-suite/success/Mod_type.v index b847833f..d5e1a38c 100644 --- a/test-suite/success/Mod_type.v +++ b/test-suite/success/Mod_type.v @@ -17,3 +17,15 @@ Module Bar : BAR. Module Foo := Fu. End Bar. + +(* Check bug #2809: correct printing of modules with notations *) + +Module C. + Inductive test : Type := + | c1 : test + | c2 : nat -> test. + + Notation "! x" := (c2 x) (at level 50). +End C. + +Print C. (* Should print test_rect without failing *) diff --git a/test-suite/success/Notations.v b/test-suite/success/Notations.v index 89f11059..2371d32c 100644 --- a/test-suite/success/Notations.v +++ b/test-suite/success/Notations.v @@ -96,3 +96,8 @@ Notation "'FORALL' x .. y , P" := (forall x, .. (forall y, P) ..) (at level 200, x binder, y binder, right associativity) : type_scope. Fail Check fun x => match x with S (FORALL x, _) => 0 end. + +(* Bug #2708: don't check for scope of variables used as binder *) + +Parameter traverse : (nat -> unit) -> (nat -> unit). +Notation traverse_var f l := (traverse (fun l => f l) l). diff --git a/test-suite/success/OmegaPre.v b/test-suite/success/OmegaPre.v index f4996734..17531064 100644 --- a/test-suite/success/OmegaPre.v +++ b/test-suite/success/OmegaPre.v @@ -14,38 +14,38 @@ Open Scope Z_scope. (* zify_op *) -Goal forall a:Z, Zmax a a = a. +Goal forall a:Z, Z.max a a = a. intros. omega with *. Qed. -Goal forall a b:Z, Zmax a b = Zmax b a. +Goal forall a b:Z, Z.max a b = Z.max b a. intros. omega with *. Qed. -Goal forall a b c:Z, Zmax a (Zmax b c) = Zmax (Zmax a b) c. +Goal forall a b c:Z, Z.max a (Z.max b c) = Z.max (Z.max a b) c. intros. omega with *. Qed. -Goal forall a b:Z, Zmax a b + Zmin a b = a + b. +Goal forall a b:Z, Z.max a b + Z.min a b = a + b. intros. omega with *. Qed. -Goal forall a:Z, (Zabs a)*(Zsgn a) = a. +Goal forall a:Z, (Z.abs a)*(Z.sgn a) = a. intros. zify. intuition; subst; omega. (* pure multiplication: omega alone can't do it *) Qed. -Goal forall a:Z, Zabs a = a -> a >= 0. +Goal forall a:Z, Z.abs a = a -> a >= 0. intros. omega with *. Qed. -Goal forall a:Z, Zsgn a = a -> a = 1 \/ a = 0 \/ a = -1. +Goal forall a:Z, Z.sgn a = a -> a = 1 \/ a = 0 \/ a = -1. intros. omega with *. Qed. @@ -119,7 +119,7 @@ Qed. (* mix of datatypes *) -Goal forall p, Z_of_N (N_of_nat (nat_of_N (Npos p))) = Zpos p. +Goal forall p, Z.of_N (N.of_nat (N.to_nat (Npos p))) = Zpos p. intros. omega with *. Qed. diff --git a/test-suite/success/ProgramWf.v b/test-suite/success/ProgramWf.v index 00a13aed..3b7f0d84 100644 --- a/test-suite/success/ProgramWf.v +++ b/test-suite/success/ProgramWf.v @@ -22,14 +22,14 @@ Program Fixpoint merge (n m : nat) {measure (n + m) (lt)} : nat := Print merge. -Print Zlt. +Print Z.lt. Print Zwf. -Open Local Scope Z_scope. +Local Open Scope Z_scope. Program Fixpoint Zwfrec (n m : Z) {measure (n + m) (Zwf 0)} : Z := match n ?= m with - | Lt => Zwfrec n (Zpred m) + | Lt => Zwfrec n (Z.pred m) | _ => 0 end. diff --git a/test-suite/success/ROmegaPre.v b/test-suite/success/ROmegaPre.v index bd473fa6..fa659273 100644 --- a/test-suite/success/ROmegaPre.v +++ b/test-suite/success/ROmegaPre.v @@ -14,38 +14,38 @@ Open Scope Z_scope. (* zify_op *) -Goal forall a:Z, Zmax a a = a. +Goal forall a:Z, Z.max a a = a. intros. romega with *. Qed. -Goal forall a b:Z, Zmax a b = Zmax b a. +Goal forall a b:Z, Z.max a b = Z.max b a. intros. romega with *. Qed. -Goal forall a b c:Z, Zmax a (Zmax b c) = Zmax (Zmax a b) c. +Goal forall a b c:Z, Z.max a (Z.max b c) = Z.max (Z.max a b) c. intros. romega with *. Qed. -Goal forall a b:Z, Zmax a b + Zmin a b = a + b. +Goal forall a b:Z, Z.max a b + Z.min a b = a + b. intros. romega with *. Qed. -Goal forall a:Z, (Zabs a)*(Zsgn a) = a. +Goal forall a:Z, (Z.abs a)*(Z.sgn a) = a. intros. zify. intuition; subst; romega. (* pure multiplication: omega alone can't do it *) Qed. -Goal forall a:Z, Zabs a = a -> a >= 0. +Goal forall a:Z, Z.abs a = a -> a >= 0. intros. romega with *. Qed. -Goal forall a:Z, Zsgn a = a -> a = 1 \/ a = 0 \/ a = -1. +Goal forall a:Z, Z.sgn a = a -> a = 1 \/ a = 0 \/ a = -1. intros. romega with *. Qed. @@ -119,7 +119,7 @@ Qed. (* mix of datatypes *) -Goal forall p, Z_of_N (N_of_nat (nat_of_N (Npos p))) = Zpos p. +Goal forall p, Z.of_N (N.of_nat (N.to_nat (Npos p))) = Zpos p. intros. romega with *. Qed. diff --git a/test-suite/success/RecTutorial.v b/test-suite/success/RecTutorial.v index 64048fe2..459645f6 100644 --- a/test-suite/success/RecTutorial.v +++ b/test-suite/success/RecTutorial.v @@ -378,18 +378,18 @@ Inductive itree : Set := Definition isingle l := inode l (fun i => ileaf). -Definition t1 := inode 0 (fun n => isingle (Z_of_nat (2*n))). +Definition t1 := inode 0 (fun n => isingle (Z.of_nat (2*n))). Definition t2 := inode 0 (fun n : nat => - inode (Z_of_nat n) - (fun p => isingle (Z_of_nat (n*p)))). + inode (Z.of_nat n) + (fun p => isingle (Z.of_nat (n*p)))). Inductive itree_le : itree-> itree -> Prop := | le_leaf : forall t, itree_le ileaf t | le_node : forall l l' s s', - Zle l l' -> + Z.le l l' -> (forall i, exists j:nat, itree_le (s i) (s' j)) -> itree_le (inode l s) (inode l' s'). @@ -424,7 +424,7 @@ Qed. Inductive itree_le' : itree-> itree -> Prop := | le_leaf' : forall t, itree_le' ileaf t | le_node' : forall l l' s s' g, - Zle l l' -> + Z.le l l' -> (forall i, itree_le' (s i) (s' (g i))) -> itree_le' (inode l s) (inode l' s'). diff --git a/test-suite/success/Reg.v b/test-suite/success/Reg.v index 89b3032c..c2d5cb2f 100644 --- a/test-suite/success/Reg.v +++ b/test-suite/success/Reg.v @@ -39,7 +39,7 @@ Lemma essai7 : derivable_pt (fun x : R => (cos (/ sqrt x) * Rsqr (sin x + 1))%R) 1. reg. apply Rlt_0_1. -red in |- *; intro; rewrite sqrt_1 in H; assert (H0 := R1_neq_R0); elim H0; +red; intro; rewrite sqrt_1 in H; assert (H0 := R1_neq_R0); elim H0; assumption. Qed. @@ -127,7 +127,7 @@ Lemma essai23 : (fun x : R => (sin (sqrt (x - 1)) + exp (Rsqr (sqrt x + 3)))%R) 1. reg. left; apply Rlt_0_1. -right; unfold Rminus in |- *; rewrite Rplus_opp_r; reflexivity. +right; unfold Rminus; rewrite Rplus_opp_r; reflexivity. Qed. Lemma essai24 : @@ -135,8 +135,8 @@ Lemma essai24 : reg. replace (x * x + 2 * x + 2)%R with (Rsqr (x + 1) + 1)%R. apply Rplus_le_lt_0_compat; [ apply Rle_0_sqr | apply Rlt_0_1 ]. -unfold Rsqr in |- *; ring. -red in |- *; intro; cut (0 < x * x + 1)%R. +unfold Rsqr; ring. +red; intro; cut (0 < x * x + 1)%R. intro; rewrite H in H0; elim (Rlt_irrefl _ H0). apply Rplus_le_lt_0_compat; [ replace (x * x)%R with (Rsqr x); [ apply Rle_0_sqr | reflexivity ] diff --git a/test-suite/success/Scopes.v b/test-suite/success/Scopes.v index 55d8343e..a79d28fa 100644 --- a/test-suite/success/Scopes.v +++ b/test-suite/success/Scopes.v @@ -3,6 +3,6 @@ Require Import ZArith. Module A. -Definition opp := Zopp. +Definition opp := Z.opp. End A. Check (A.opp 3). diff --git a/test-suite/success/Tauto.v b/test-suite/success/Tauto.v index c4e67677..73ef3720 100644 --- a/test-suite/success/Tauto.v +++ b/test-suite/success/Tauto.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x * z < y * z -> x <= y)%Z. -intros; apply Znot_le_gt, Zgt_lt in H. -apply Zmult_lt_reg_r, Zlt_le_weak in H0; auto. +intros; apply Znot_le_gt, Z.gt_lt in H. +apply Zmult_lt_reg_r, Z.lt_le_incl in H0; auto. Qed. (* Test application under tuples *) @@ -266,7 +266,7 @@ Qed. (* This works because unfold calls clos_norm_flags which calls nf_evar *) Lemma eapply_evar_unfold : let x:=O in O=x -> 0=O. -intros x H; eapply trans_equal; +intros x H; eapply eq_trans; [apply H | unfold x;match goal with |- ?x = ?x => reflexivity end]. Qed. diff --git a/test-suite/success/change.v b/test-suite/success/change.v index c65cf303..7bed7ecb 100644 --- a/test-suite/success/change.v +++ b/test-suite/success/change.v @@ -14,7 +14,7 @@ Abort. (* Check the combination of at, with and in (see bug #2146) *) Goal 3=3 -> 3=3. intro H. -change 3 at 2 with (1+2) in |- *. +change 3 at 2 with (1+2). change 3 at 2 with (1+2) in H |-. change 3 with (1+2) in H at 1 |- * at 1. (* Now check that there are no more 3's *) @@ -25,10 +25,10 @@ Qed. change 3 at 1 with (1+2) at 3. change 3 at 1 with (1+2) in *. change 3 at 1 with (1+2) in H at 2 |-. -change 3 at 1 with (1+2) in |- * at 3. +change 3 at 1 with (1+2) at 3. change 3 at 1 with (1+2) in H |- *. change 3 at 1 with (1+2) in H, H|-. -change 3 in |- * at 1. +change 3 at 1. *) (* Test that pretyping checks allowed elimination sorts *) diff --git a/test-suite/success/decl_mode.v b/test-suite/success/decl_mode.v index bc1757fd..52575eca 100644 --- a/test-suite/success/decl_mode.v +++ b/test-suite/success/decl_mode.v @@ -138,7 +138,7 @@ Coercion IZR: Z >->R.*) Open Scope R_scope. Lemma square_abs_square: - forall p,(INR (Zabs_nat p) * INR (Zabs_nat p)) = (IZR p * IZR p). + forall p,(INR (Z.abs_nat p) * INR (Z.abs_nat p)) = (IZR p * IZR p). proof. assume p:Z. per cases on p. @@ -147,7 +147,7 @@ proof. suppose it is (Zpos z). thus thesis. suppose it is (Zneg z). - have ((INR (Zabs_nat (Zneg z)) * INR (Zabs_nat (Zneg z))) = + have ((INR (Z.abs_nat (Zneg z)) * INR (Z.abs_nat (Zneg z))) = (IZR (Zpos z) * IZR (Zpos z))). ~= ((- IZR (Zpos z)) * (- IZR (Zpos z))). thus ~= (IZR (Zneg z) * IZR (Zneg z)). @@ -165,15 +165,15 @@ proof. have H_in_R:(INR q<>0:>R) by H. have triv:((IZR p/INR q* INR q) =IZR p :>R) by * using field. have sqrt2:((sqrt (INR 2%nat) * sqrt (INR 2%nat))= INR 2%nat:>R) by sqrt_def. - have (INR (Zabs_nat p * Zabs_nat p) - = (INR (Zabs_nat p) * INR (Zabs_nat p))) + have (INR (Z.abs_nat p * Z.abs_nat p) + = (INR (Z.abs_nat p) * INR (Z.abs_nat p))) by mult_INR. ~= (IZR p* IZR p) by square_abs_square. ~= ((IZR p/INR q*INR q)*(IZR p/INR q*INR q)) by triv. (* we have to factor because field is too weak *) ~= ((IZR p/INR q)*(IZR p/INR q)*(INR q*INR q)) using ring. ~= (sqrt (INR 2%nat) * sqrt (INR 2%nat)*(INR q*INR q)) by H0. ~= (INR (2%nat * (q*q))) by sqrt2,mult_INR. - then (Zabs_nat p * Zabs_nat p = 2* (q * q))%nat. + then (Z.abs_nat p * Z.abs_nat p = 2* (q * q))%nat. ~= ((q*q)+(q*q))%nat. ~= (Div2.double (q*q)). then (q=0%nat) by main_theorem. diff --git a/test-suite/success/dependentind.v b/test-suite/success/dependentind.v index 79d12a06..12ddbda8 100644 --- a/test-suite/success/dependentind.v +++ b/test-suite/success/dependentind.v @@ -68,7 +68,7 @@ where " Γ ⊢ Ï„ " := (term Γ Ï„) : type_scope. Hint Constructors term : lambda. -Open Local Scope context_scope. +Local Open Scope context_scope. Ltac eqns := subst ; reverse ; simplify_dep_elim ; simplify_IH_hyps. diff --git a/test-suite/success/eauto.v b/test-suite/success/eauto.v index a94d8b1d..49bf8b15 100644 --- a/test-suite/success/eauto.v +++ b/test-suite/success/eauto.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x + x + x = 3. intros x H. diff --git a/test-suite/success/mutual_ind.v b/test-suite/success/mutual_ind.v index fcadd150..5fe760bf 100644 --- a/test-suite/success/mutual_ind.v +++ b/test-suite/success/mutual_ind.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Prop), P nat 0 -> P nat 0. intros. Fail remember nat as X. Fail remember nat as X in H. (* This line used to succeed in 8.3 *) -Fail remember nat as X in |- *. +Fail remember nat as X. Abort. diff --git a/test-suite/success/searchabout.v b/test-suite/success/searchabout.v index d9ade314..9edfd825 100644 --- a/test-suite/success/searchabout.v +++ b/test-suite/success/searchabout.v @@ -55,6 +55,6 @@ SearchAbout [-"*"%nat "+"%nat] outside Logic. Require Import ZArith. -SearchAbout Zmult Zplus "distr". +SearchAbout Z.mul Z.add "distr". SearchAbout "+"%Z "*"%Z "distr" -positive -Prop. SearchAbout (?x * _ + ?x * _)%Z outside OmegaLemmas. diff --git a/test-suite/success/setoid_test.v b/test-suite/success/setoid_test.v index 19693d70..653b5bf9 100644 --- a/test-suite/success/setoid_test.v +++ b/test-suite/success/setoid_test.v @@ -18,10 +18,10 @@ Definition same (s t : set) : Prop := forall a : A, In a s <-> In a t. Lemma setoid_set : Setoid_Theory set same. -unfold same in |- *; split ; red. -red in |- *; auto. +unfold same; split ; red. +red; auto. -red in |- *. +red. intros. elim (H a); auto. @@ -33,19 +33,19 @@ Qed. Add Setoid set same setoid_set as setsetoid. Add Morphism In : In_ext. -unfold same in |- *; intros a s t H; elim (H a); auto. +unfold same; intros a s t H; elim (H a); auto. Qed. Lemma add_aux : forall s t : set, same s t -> forall a b : A, In a (Add b s) -> In a (Add b t). -unfold same in |- *; simple induction 2; intros. +unfold same; simple induction 2; intros. rewrite H1. -simpl in |- *; left; reflexivity. +simpl; left; reflexivity. elim (H a). intros. -simpl in |- *; right. +simpl; right. apply (H2 H1). Qed. @@ -74,15 +74,15 @@ setoid_replace (remove a (Add a Empty)) with Empty. auto. -unfold same in |- *. +unfold same. split. -simpl in |- *. +simpl. case (eq_dec a a). intros e ff; elim ff. intros; absurd (a = a); trivial. -simpl in |- *. +simpl. intro H; elim H. Qed. diff --git a/test-suite/success/specialize.v b/test-suite/success/specialize.v index 57837321..c5f032be 100644 --- a/test-suite/success/specialize.v +++ b/test-suite/success/specialize.v @@ -5,20 +5,20 @@ intros. (* "compatibility" mode: specializing a global name means a kind of generalize *) -specialize trans_equal. intros _. -specialize trans_equal with (1:=H)(2:=H0). intros _. -specialize trans_equal with (x:=a)(y:=b)(z:=c). intros _. -specialize trans_equal with (1:=H)(z:=c). intros _. -specialize trans_equal with nat a b c. intros _. -specialize (@trans_equal nat). intros _. -specialize (@trans_equal _ a b c). intros _. -specialize (trans_equal (x:=a)). intros _. -specialize (trans_equal (x:=a)(y:=b)). intros _. -specialize (trans_equal H H0). intros _. -specialize (trans_equal H0 (z:=b)). intros _. +specialize eq_trans. intros _. +specialize eq_trans with (1:=H)(2:=H0). intros _. +specialize eq_trans with (x:=a)(y:=b)(z:=c). intros _. +specialize eq_trans with (1:=H)(z:=c). intros _. +specialize eq_trans with nat a b c. intros _. +specialize (@eq_trans nat). intros _. +specialize (@eq_trans _ a b c). intros _. +specialize (eq_trans (x:=a)). intros _. +specialize (eq_trans (x:=a)(y:=b)). intros _. +specialize (eq_trans H H0). intros _. +specialize (eq_trans H0 (z:=b)). intros _. (* local "in place" specialization *) -assert (Eq:=trans_equal). +assert (Eq:=eq_trans). specialize Eq. specialize Eq with (1:=H)(2:=H0). Undo. @@ -38,10 +38,10 @@ specialize (Eq _ _ _ b H0). Undo. presque ok... *) (* 2) echoue moins lorsque zero premise de mangé *) -specialize trans_equal with (1:=Eq). (* mal typé !! *) +specialize eq_trans with (1:=Eq). (* mal typé !! *) (* 3) *) -specialize trans_equal with _ a b c. intros _. +specialize eq_trans with _ a b c. intros _. (* Anomaly: Evar ?88 was not declared. Please report. *) *) diff --git a/test-suite/success/unfold.v b/test-suite/success/unfold.v index 5649e2f7..62ecb1aa 100644 --- a/test-suite/success/unfold.v +++ b/test-suite/success/unfold.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* r < q -> in_int p q r. Proof. - red in |- *; auto with arith. + red; auto with arith. Qed. Hint Resolve in_int_intro: arith v62. @@ -149,7 +149,7 @@ Section Between. between k l -> (forall n:nat, in_int k l n -> P n -> ~ Q n) -> ~ exists_between k l. Proof. - induction 1; red in |- *; intros. + induction 1; red; intros. absurd (k < k); auto with arith. absurd (Q l); auto with arith. elim (exists_in_int k (S l)); auto with arith; intros l' inl' Ql'. diff --git a/theories/Arith/Bool_nat.v b/theories/Arith/Bool_nat.v index f384e148..4c15a173 100644 --- a/theories/Arith/Bool_nat.v +++ b/theories/Arith/Bool_nat.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* leb m n = true. Proof. induction m as [| m IHm]. trivial. destruct n. intro H. elim (le_Sn_O _ H). - intros. simpl in |- *. apply IHm. apply le_S_n. assumption. + intros. simpl. apply IHm. apply le_S_n. assumption. Qed. Lemma leb_complete : forall m n, leb m n = true -> m <= n. diff --git a/theories/Arith/Div2.v b/theories/Arith/Div2.v index da1d9e98..56115c7f 100644 --- a/theories/Arith/Div2.v +++ b/theories/Arith/Div2.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* div2 n < n. Proof. - intro n. pattern n in |- *. apply ind_0_1_SS. + intro n. pattern n. apply ind_0_1_SS. (* n = 0 *) inversion 1. (* n=1 *) @@ -99,12 +99,12 @@ Hint Unfold double: arith. Lemma double_S : forall n, double (S n) = S (S (double n)). Proof. - intro. unfold double in |- *. simpl in |- *. auto with arith. + intro. unfold double. simpl. auto with arith. Qed. Lemma double_plus : forall n (m:nat), double (n + m) = double n + double m. Proof. - intros m n. unfold double in |- *. + intros m n. unfold double. do 2 rewrite plus_assoc_reverse. rewrite (plus_permute n). reflexivity. Qed. @@ -115,7 +115,7 @@ Lemma even_odd_double : forall n, (even n <-> n = double (div2 n)) /\ (odd n <-> n = S (double (div2 n))). Proof. - intro n. pattern n in |- *. apply ind_0_1_SS. + intro n. pattern n. apply ind_0_1_SS. (* n = 0 *) split; split; auto with arith. intro H. inversion H. @@ -126,11 +126,11 @@ Proof. intros. destruct H as ((IH1,IH2),(IH3,IH4)). split; split. intro H. inversion H. inversion H1. - simpl in |- *. rewrite (double_S (div2 n0)). auto with arith. - simpl in |- *. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith. + simpl. rewrite (double_S (div2 n0)). auto with arith. + simpl. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith. intro H. inversion H. inversion H1. - simpl in |- *. rewrite (double_S (div2 n0)). auto with arith. - simpl in |- *. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith. + simpl. rewrite (double_S (div2 n0)). auto with arith. + simpl. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith. Qed. (** Specializations *) diff --git a/theories/Arith/EqNat.v b/theories/Arith/EqNat.v index 94986278..ce8eb478 100644 --- a/theories/Arith/EqNat.v +++ b/theories/Arith/EqNat.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* n = m. - induction n; induction m; simpl in |- *; contradiction || auto with arith. + induction n; induction m; simpl; contradiction || auto with arith. Qed. Hint Immediate eq_nat_eq: arith v62. @@ -55,11 +55,11 @@ Proof. induction n. destruct m as [| n]. auto with arith. - intros; right; red in |- *; trivial with arith. + intros; right; red; trivial with arith. destruct m as [| n0]. - right; red in |- *; auto with arith. + right; red; auto with arith. intros. - simpl in |- *. + simpl. apply IHn. Defined. @@ -76,12 +76,12 @@ Fixpoint beq_nat n m : bool := Lemma beq_nat_refl : forall n, true = beq_nat n n. Proof. - intro x; induction x; simpl in |- *; auto. + intro x; induction x; simpl; auto. Qed. Definition beq_nat_eq : forall x y, true = beq_nat x y -> x = y. Proof. - double induction x y; simpl in |- *. + double induction x y; simpl. reflexivity. intros n H1 H2. discriminate H2. intros n H1 H2. discriminate H2. diff --git a/theories/Arith/Euclid.v b/theories/Arith/Euclid.v index 513fd110..3abdff98 100644 --- a/theories/Arith/Euclid.v +++ b/theories/Arith/Euclid.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 -> forall m:nat, diveucl m n. Proof. - intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0. + intros b H a; pattern a; apply gt_wf_rec; intros n H0. elim (le_gt_dec b n). intro lebn. elim (H0 (n - b)); auto with arith. intros q r g e. - apply divex with (S q) r; simpl in |- *; auto with arith. + apply divex with (S q) r; simpl; auto with arith. elim plus_assoc. elim e; auto with arith. intros gtbn. - apply divex with 0 n; simpl in |- *; auto with arith. + apply divex with 0 n; simpl; auto with arith. Defined. Lemma quotient : @@ -36,17 +36,17 @@ Lemma quotient : n > 0 -> forall m:nat, {q : nat | exists r : nat, m = q * n + r /\ n > r}. Proof. - intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0. + intros b H a; pattern a; apply gt_wf_rec; intros n H0. elim (le_gt_dec b n). intro lebn. elim (H0 (n - b)); auto with arith. intros q Hq; exists (S q). elim Hq; intros r Hr. - exists r; simpl in |- *; elim Hr; intros. + exists r; simpl; elim Hr; intros. elim plus_assoc. elim H1; auto with arith. intros gtbn. - exists 0; exists n; simpl in |- *; auto with arith. + exists 0; exists n; simpl; auto with arith. Defined. Lemma modulo : @@ -54,15 +54,15 @@ Lemma modulo : n > 0 -> forall m:nat, {r : nat | exists q : nat, m = q * n + r /\ n > r}. Proof. - intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0. + intros b H a; pattern a; apply gt_wf_rec; intros n H0. elim (le_gt_dec b n). intro lebn. elim (H0 (n - b)); auto with arith. intros r Hr; exists r. elim Hr; intros q Hq. - elim Hq; intros; exists (S q); simpl in |- *. + elim Hq; intros; exists (S q); simpl. elim plus_assoc. elim H1; auto with arith. intros gtbn. - exists n; exists 0; simpl in |- *; auto with arith. + exists n; exists 0; simpl; auto with arith. Defined. diff --git a/theories/Arith/Even.v b/theories/Arith/Even.v index cd4dae98..4f679fe2 100644 --- a/theories/Arith/Even.v +++ b/theories/Arith/Even.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* odd n /\ odd m) /\ (even (n * m) <-> even n \/ even m). Proof. - intros n; elim n; simpl in |- *; auto with arith. + intros n; elim n; simpl; auto with arith. intros m; split; split; auto with arith. intros H'; inversion H'. intros H'; elim H'; auto. diff --git a/theories/Arith/Factorial.v b/theories/Arith/Factorial.v index 146546dc..37aa1b2c 100644 --- a/theories/Arith/Factorial.v +++ b/theories/Arith/Factorial.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0. Proof. intro. - apply sym_not_eq. + apply not_eq_sym. apply lt_O_neq. apply lt_O_fact. Qed. diff --git a/theories/Arith/Gt.v b/theories/Arith/Gt.v index 32f453e5..31b15507 100644 --- a/theories/Arith/Gt.v +++ b/theories/Arith/Gt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* m -> n > m \/ m = n. Proof. - intros n m H; unfold gt in |- *; apply le_lt_or_eq; auto with arith. + intros n m H; unfold gt; apply le_lt_or_eq; auto with arith. Qed. Lemma gt_pred : forall n m, m > S n -> pred m > n. @@ -110,23 +110,23 @@ Hint Resolve le_gt_S: arith v62. Theorem le_gt_trans : forall n m p, m <= n -> m > p -> n > p. Proof. - red in |- *; intros; apply lt_le_trans with m; auto with arith. + red; intros; apply lt_le_trans with m; auto with arith. Qed. Theorem gt_le_trans : forall n m p, n > m -> p <= m -> n > p. Proof. - red in |- *; intros; apply le_lt_trans with m; auto with arith. + red; intros; apply le_lt_trans with m; auto with arith. Qed. Lemma gt_trans : forall n m p, n > m -> m > p -> n > p. Proof. - red in |- *; intros n m p H1 H2. + red; intros n m p H1 H2. apply lt_trans with m; auto with arith. Qed. Theorem gt_trans_S : forall n m p, S n > m -> m > p -> n > p. Proof. - red in |- *; intros; apply lt_le_trans with m; auto with arith. + red; intros; apply lt_le_trans with m; auto with arith. Qed. Hint Resolve gt_trans_S le_gt_trans gt_le_trans: arith v62. @@ -142,7 +142,7 @@ Qed. Lemma plus_gt_reg_l : forall n m p, p + n > p + m -> n > m. Proof. - red in |- *; intros n m p H; apply plus_lt_reg_l with p; auto with arith. + red; intros n m p H; apply plus_lt_reg_l with p; auto with arith. Qed. Lemma plus_gt_compat_l : forall n m p, n > m -> p + n > p + m. diff --git a/theories/Arith/Le.v b/theories/Arith/Le.v index f0ebf162..1febb76b 100644 --- a/theories/Arith/Le.v +++ b/theories/Arith/Le.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* > *) -Open Local Scope nat_scope. +Local Open Scope nat_scope. Implicit Types m n p : nat. @@ -46,8 +46,8 @@ Qed. Theorem le_Sn_0 : forall n, ~ S n <= 0. Proof. - red in |- *; intros n H. - change (IsSucc 0) in |- *; elim H; simpl in |- *; auto with arith. + red; intros n H. + change (IsSucc 0); elim H; simpl; auto with arith. Qed. Hint Resolve le_0_n le_Sn_0: arith v62. diff --git a/theories/Arith/Lt.v b/theories/Arith/Lt.v index e07bba8d..8559b782 100644 --- a/theories/Arith/Lt.v +++ b/theories/Arith/Lt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* ~ m <= n. Proof. - red in |- *; intros n m Lt Le; exact (le_not_lt m n Le Lt). + red; intros n m Lt Le; exact (le_not_lt m n Le Lt). Qed. Hint Immediate le_not_lt lt_not_le: arith v62. @@ -107,12 +107,12 @@ Qed. Lemma lt_pred : forall n m, S n < m -> n < pred m. Proof. -induction 1; simpl in |- *; auto with arith. +induction 1; simpl; auto with arith. Qed. Hint Immediate lt_pred: arith v62. Lemma lt_pred_n_n : forall n, 0 < n -> pred n < n. -destruct 1; simpl in |- *; auto with arith. +destruct 1; simpl; auto with arith. Qed. Hint Resolve lt_pred_n_n: arith v62. @@ -159,7 +159,7 @@ Hint Immediate lt_le_weak: arith v62. Theorem le_or_lt : forall n m, n <= m \/ m < n. Proof. - intros n m; pattern n, m in |- *; apply nat_double_ind; auto with arith. + intros n m; pattern n, m; apply nat_double_ind; auto with arith. induction 1; auto with arith. Qed. diff --git a/theories/Arith/Max.v b/theories/Arith/Max.v index 77dfa508..5623564a 100644 --- a/theories/Arith/Max.v +++ b/theories/Arith/Max.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* S (n - m) = S n - m. Proof. - intros n m Le; pattern m, n in |- *; apply le_elim_rel; simpl in |- *; + intros n m Le; pattern m, n; apply le_elim_rel; simpl; auto with arith. Qed. Hint Resolve minus_Sn_m: arith v62. Theorem pred_of_minus : forall n, pred n = n - 1. Proof. - intro x; induction x; simpl in |- *; auto with arith. + intro x; induction x; simpl; auto with arith. Qed. (** * Diagonal *) Lemma minus_diag : forall n, n - n = 0. Proof. - induction n; simpl in |- *; auto with arith. + induction n; simpl; auto with arith. Qed. Lemma minus_diag_reverse : forall n, 0 = n - n. @@ -66,7 +66,7 @@ Notation minus_n_n := minus_diag_reverse. Lemma minus_plus_simpl_l_reverse : forall n m p, n - m = p + n - (p + m). Proof. - induction p; simpl in |- *; auto with arith. + induction p; simpl; auto with arith. Qed. Hint Resolve minus_plus_simpl_l_reverse: arith v62. @@ -74,7 +74,7 @@ Hint Resolve minus_plus_simpl_l_reverse: arith v62. Lemma plus_minus : forall n m p, n = m + p -> p = n - m. Proof. - intros n m p; pattern m, n in |- *; apply nat_double_ind; simpl in |- *; + intros n m p; pattern m, n; apply nat_double_ind; simpl; intros. replace (n0 - 0) with n0; auto with arith. absurd (0 = S (n0 + p)); auto with arith. @@ -83,20 +83,20 @@ Qed. Hint Immediate plus_minus: arith v62. Lemma minus_plus : forall n m, n + m - n = m. - symmetry in |- *; auto with arith. + symmetry ; auto with arith. Qed. Hint Resolve minus_plus: arith v62. Lemma le_plus_minus : forall n m, n <= m -> m = n + (m - n). Proof. - intros n m Le; pattern n, m in |- *; apply le_elim_rel; simpl in |- *; + intros n m Le; pattern n, m; apply le_elim_rel; simpl; auto with arith. Qed. Hint Resolve le_plus_minus: arith v62. Lemma le_plus_minus_r : forall n m, n <= m -> n + (m - n) = m. Proof. - symmetry in |- *; auto with arith. + symmetry ; auto with arith. Qed. Hint Resolve le_plus_minus_r: arith v62. @@ -132,7 +132,7 @@ Qed. Lemma lt_minus : forall n m, m <= n -> 0 < m -> n - m < n. Proof. - intros n m Le; pattern m, n in |- *; apply le_elim_rel; simpl in |- *; + intros n m Le; pattern m, n; apply le_elim_rel; simpl; auto using le_minus with arith. intros; absurd (0 < 0); auto with arith. Qed. @@ -140,7 +140,7 @@ Hint Resolve lt_minus: arith v62. Lemma lt_O_minus_lt : forall n m, 0 < n - m -> m < n. Proof. - intros n m; pattern n, m in |- *; apply nat_double_ind; simpl in |- *; + intros n m; pattern n, m; apply nat_double_ind; simpl; auto with arith. intros; absurd (0 < 0); trivial with arith. Qed. @@ -148,9 +148,9 @@ Hint Immediate lt_O_minus_lt: arith v62. Theorem not_le_minus_0 : forall n m, ~ m <= n -> n - m = 0. Proof. - intros y x; pattern y, x in |- *; apply nat_double_ind; - [ simpl in |- *; trivial with arith + intros y x; pattern y, x; apply nat_double_ind; + [ simpl; trivial with arith | intros n H; absurd (0 <= S n); [ assumption | apply le_O_n ] - | simpl in |- *; intros n m H1 H2; apply H1; unfold not in |- *; intros H3; + | simpl; intros n m H1 H2; apply H1; unfold not; intros H3; apply H2; apply le_n_S; assumption ]. Qed. diff --git a/theories/Arith/Mult.v b/theories/Arith/Mult.v index 479138a9..cbb9b376 100644 --- a/theories/Arith/Mult.v +++ b/theories/Arith/Mult.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* p * n <= p * m. Proof. - induction p as [| p IHp]; intros; simpl in |- *. + induction p as [| p IHp]; intros; simpl. apply le_n. auto using plus_le_compat. Qed. @@ -167,7 +167,7 @@ Proof. assumption. apply le_plus_l. (* m*p<=m0*q -> m*p<=(S m0)*q *) - simpl in |- *; apply le_trans with (m0 * q). + simpl; apply le_trans with (m0 * q). assumption. apply le_plus_r. Qed. @@ -232,7 +232,7 @@ Fixpoint mult_acc (s:nat) m n : nat := Lemma mult_acc_aux : forall n m p, m + n * p = mult_acc m p n. Proof. - induction n as [| p IHp]; simpl in |- *; auto. + induction n as [| p IHp]; simpl; auto. intros s m; rewrite <- plus_tail_plus; rewrite <- IHp. rewrite <- plus_assoc_reverse; apply f_equal2; auto. rewrite plus_comm; auto. @@ -242,7 +242,7 @@ Definition tail_mult n m := mult_acc 0 m n. Lemma mult_tail_mult : forall n m, n * m = tail_mult n m. Proof. - intros; unfold tail_mult in |- *; rewrite <- mult_acc_aux; auto. + intros; unfold tail_mult; rewrite <- mult_acc_aux; auto. Qed. (** [TailSimpl] transforms any [tail_plus] and [tail_mult] into [plus] @@ -250,4 +250,4 @@ Qed. Ltac tail_simpl := repeat rewrite <- plus_tail_plus; repeat rewrite <- mult_tail_mult; - simpl in |- *. + simpl. diff --git a/theories/Arith/Peano_dec.v b/theories/Arith/Peano_dec.v index 6eb667c1..e0bed0d3 100644 --- a/theories/Arith/Peano_dec.v +++ b/theories/Arith/Peano_dec.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* n = m. Proof. - intros m p n; induction n; simpl in |- *; auto with arith. + intros m p n; induction n; simpl; auto with arith. Qed. Lemma plus_le_reg_l : forall n m p, p + n <= p + m -> n <= m. Proof. - induction p; simpl in |- *; auto with arith. + induction p; simpl; auto with arith. Qed. Lemma plus_lt_reg_l : forall n m p, p + n < p + m -> n < m. Proof. - induction p; simpl in |- *; auto with arith. + induction p; simpl; auto with arith. Qed. (** * Compatibility with order *) Lemma plus_le_compat_l : forall n m p, n <= m -> p + n <= p + m. Proof. - induction p; simpl in |- *; auto with arith. + induction p; simpl; auto with arith. Qed. Hint Resolve plus_le_compat_l: arith v62. Lemma plus_le_compat_r : forall n m p, n <= m -> n + p <= m + p. Proof. - induction 1; simpl in |- *; auto with arith. + induction 1; simpl; auto with arith. Qed. Hint Resolve plus_le_compat_r: arith v62. Lemma le_plus_l : forall n m, n <= n + m. Proof. - induction n; simpl in |- *; auto with arith. + induction n; simpl; auto with arith. Qed. Hint Resolve le_plus_l: arith v62. Lemma le_plus_r : forall n m, m <= n + m. Proof. - intros n m; elim n; simpl in |- *; auto with arith. + intros n m; elim n; simpl; auto with arith. Qed. Hint Resolve le_plus_r: arith v62. @@ -117,7 +117,7 @@ Hint Immediate lt_plus_trans: arith v62. Lemma plus_lt_compat_l : forall n m p, n < m -> p + n < p + m. Proof. - induction p; simpl in |- *; auto with arith. + induction p; simpl; auto with arith. Qed. Hint Resolve plus_lt_compat_l: arith v62. @@ -131,18 +131,18 @@ Hint Resolve plus_lt_compat_r: arith v62. Lemma plus_le_compat : forall n m p q, n <= m -> p <= q -> n + p <= m + q. Proof. intros n m p q H H0. - elim H; simpl in |- *; auto with arith. + elim H; simpl; auto with arith. Qed. Lemma plus_le_lt_compat : forall n m p q, n <= m -> p < q -> n + p < m + q. Proof. - unfold lt in |- *. intros. change (S n + p <= m + q) in |- *. rewrite plus_Snm_nSm. + unfold lt. intros. change (S n + p <= m + q). rewrite plus_Snm_nSm. apply plus_le_compat; assumption. Qed. Lemma plus_lt_le_compat : forall n m p q, n < m -> p <= q -> n + p < m + q. Proof. - unfold lt in |- *. intros. change (S n + p <= m + q) in |- *. apply plus_le_compat; assumption. + unfold lt. intros. change (S n + p <= m + q). apply plus_le_compat; assumption. Qed. Lemma plus_lt_compat : forall n m p q, n < m -> p < q -> n + p < m + q. @@ -190,8 +190,8 @@ Fixpoint tail_plus n m : nat := end. Lemma plus_tail_plus : forall n m, n + m = tail_plus n m. -induction n as [| n IHn]; simpl in |- *; auto. -intro m; rewrite <- IHn; simpl in |- *; auto. +induction n as [| n IHn]; simpl; auto. +intro m; rewrite <- IHn; simpl; auto. Qed. (** * Discrimination *) diff --git a/theories/Arith/Wf_nat.v b/theories/Arith/Wf_nat.v index b4468dd1..b5545123 100644 --- a/theories/Arith/Wf_nat.v +++ b/theories/Arith/Wf_nat.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* f a. Theorem well_founded_ltof : well_founded ltof. Proof. - red in |- *. + red. cut (forall n (a:A), f a < n -> Acc ltof a). intros H a; apply (H (S (f a))); auto with arith. induction n. intros; absurd (f a < 0); auto with arith. intros a ltSma. apply Acc_intro. - unfold ltof in |- *; intros b ltfafb. + unfold ltof; intros b ltfafb. apply IHn. apply lt_le_trans with (f a); auto with arith. Defined. @@ -73,7 +73,7 @@ Proof. intros; absurd (f a < 0); auto with arith. intros a ltSma. apply F. - unfold ltof in |- *; intros b ltfafb. + unfold ltof; intros b ltfafb. apply IHn. apply lt_le_trans with (f a); auto with arith. Defined. @@ -108,7 +108,7 @@ Hypothesis H_compat : forall x y:A, R x y -> f x < f y. Theorem well_founded_lt_compat : well_founded R. Proof. - red in |- *. + red. cut (forall n (a:A), f a < n -> Acc R a). intros H a; apply (H (S (f a))); auto with arith. induction n. @@ -161,8 +161,8 @@ Lemma lt_wf_double_rec : (forall p q, p < n -> P p q) -> (forall p, p < m -> P n p) -> P n m) -> forall n m, P n m. Proof. - intros P Hrec p; pattern p in |- *; apply lt_wf_rec. - intros n H q; pattern q in |- *; apply lt_wf_rec; auto with arith. + intros P Hrec p; pattern p; apply lt_wf_rec. + intros n H q; pattern q; apply lt_wf_rec; auto with arith. Defined. Lemma lt_wf_double_ind : @@ -171,8 +171,8 @@ Lemma lt_wf_double_ind : (forall p (q:nat), p < n -> P p q) -> (forall p, p < m -> P n p) -> P n m) -> forall n m, P n m. Proof. - intros P Hrec p; pattern p in |- *; apply lt_wf_ind. - intros n H q; pattern q in |- *; apply lt_wf_ind; auto with arith. + intros P Hrec p; pattern p; apply lt_wf_ind. + intros n H q; pattern q; apply lt_wf_ind; auto with arith. Qed. Hint Resolve lt_wf: arith. @@ -190,7 +190,7 @@ Section LT_WF_REL. Remark acc_lt_rel : forall x:A, (exists n, F x n) -> Acc R x. Proof. intros x [n fxn]; generalize dependent x. - pattern n in |- *; apply lt_wf_ind; intros. + pattern n; apply lt_wf_ind; intros. constructor; intros. destruct (F_compat y x) as (x0,H1,H2); trivial. apply (H x0); auto. diff --git a/theories/Bool/Bool.v b/theories/Bool/Bool.v index d5d11cea..a947e4fd 100644 --- a/theories/Bool/Bool.v +++ b/theories/Bool/Bool.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* y = z -> x = z. Proof. - apply trans_eq. + apply eq_trans. Qed. Hint Resolve trans_eq_bool. @@ -754,7 +754,7 @@ Notation "a &&& b" := (if a then b else false) Notation "a ||| b" := (if a then true else b) (at level 50, left associativity) : lazy_bool_scope. -Open Local Scope lazy_bool_scope. +Local Open Scope lazy_bool_scope. Lemma andb_lazy_alt : forall a b : bool, a && b = a &&& b. Proof. diff --git a/theories/Bool/BoolEq.v b/theories/Bool/BoolEq.v index d40e56bf..34777491 100644 --- a/theories/Bool/BoolEq.v +++ b/theories/Bool/BoolEq.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* y -> false = beq x y. Proof. intros x y H. - symmetry in |- *. + symmetry . apply not_true_is_false. intro. apply H. apply beq_eq. - symmetry in |- *. + symmetry . assumption. Defined. diff --git a/theories/Bool/Bvector.v b/theories/Bool/Bvector.v index 0c218163..d7162e62 100644 --- a/theories/Bool/Bvector.v +++ b/theories/Bool/Bvector.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* @left _ _ H end. -Open Local Scope program_scope. +Local Open Scope program_scope. (** Invert the branches. *) diff --git a/theories/Classes/Equivalence.v b/theories/Classes/Equivalence.v index d9e9fe25..e0f5a395 100644 --- a/theories/Classes/Equivalence.v +++ b/theories/Classes/Equivalence.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* ... ==>?) f] by repeated introductions and setoid rewrites. It should work diff --git a/theories/Classes/Morphisms_Prop.v b/theories/Classes/Morphisms_Prop.v index 256bcc37..2252e42f 100644 --- a/theories/Classes/Morphisms_Prop.v +++ b/theories/Classes/Morphisms_Prop.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* " := predicate_equivalence (at level 95, no associativity) : predicate_scope. Infix "-∙>" := predicate_implication (at level 70, right associativity) : predicate_scope. -Open Local Scope predicate_scope. +Local Open Scope predicate_scope. (** The pointwise liftings of conjunction and disjunctions. Note that these are [binary_operation]s, building new relations out of old ones. *) diff --git a/theories/Classes/SetoidClass.v b/theories/Classes/SetoidClass.v index 591671d9..6efc2302 100644 --- a/theories/Classes/SetoidClass.v +++ b/theories/Classes/SetoidClass.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* elt -> A -> A) (a : A), fold f s a = fold' f s a. Proof. - unfold fold', elements in |- *. - simple induction s; simpl in |- *; auto; intros. + unfold fold', elements. + simple induction s; simpl; auto; intros. rewrite fold_equiv_aux. rewrite H0. - simpl in |- *; auto. + simpl; auto. Qed. Lemma fold_1 : diff --git a/theories/FSets/FMapFullAVL.v b/theories/FSets/FMapFullAVL.v index 774bcd9b..e1c60351 100644 --- a/theories/FSets/FMapFullAVL.v +++ b/theories/FSets/FMapFullAVL.v @@ -34,8 +34,8 @@ Module AvlProofs (Import I:Int)(X: OrderedType). Module Import Raw := Raw I X. Module Import II:=MoreInt(I). Import Raw.Proofs. -Open Local Scope pair_scope. -Open Local Scope Int_scope. +Local Open Scope pair_scope. +Local Open Scope Int_scope. Ltac omega_max := i2z_refl; romega with Z. diff --git a/theories/FSets/FMapPositive.v b/theories/FSets/FMapPositive.v index 2e2eb166..c59f7c22 100644 --- a/theories/FSets/FMapPositive.v +++ b/theories/FSets/FMapPositive.v @@ -11,7 +11,7 @@ Require Import Bool ZArith OrderedType OrderedTypeEx FMapInterface. Set Implicit Arguments. -Open Local Scope positive_scope. +Local Open Scope positive_scope. Local Unset Elimination Schemes. Local Unset Case Analysis Schemes. diff --git a/theories/FSets/FSetBridge.v b/theories/FSets/FSetBridge.v index 25ce5577..1ac544e1 100644 --- a/theories/FSets/FSetBridge.v +++ b/theories/FSets/FSetBridge.v @@ -44,7 +44,7 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E. Definition add : forall (x : elt) (s : t), {s' : t | Add x s s'}. Proof. intros; exists (add x s); auto. - unfold Add in |- *; intuition. + unfold Add; intuition. elim (E.eq_dec x y); auto. intros; right. eapply add_3; eauto. @@ -131,7 +131,7 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E. forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}), compat_P E.eq P -> compat_bool E.eq (fdec Pdec). Proof. - unfold compat_P, compat_bool, Proper, respectful, fdec in |- *; intros. + unfold compat_P, compat_bool, Proper, respectful, fdec; intros. generalize (E.eq_sym H0); case (Pdec x); case (Pdec y); firstorder. Qed. @@ -147,11 +147,11 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E. intuition. eauto with set. generalize (filter_2 H0 H1). - unfold fdec in |- *. + unfold fdec. case (Pdec x); intuition. inversion H2. apply filter_3; auto. - unfold fdec in |- *; simpl in |- *. + unfold fdec; simpl. case (Pdec x); intuition. Qed. @@ -162,17 +162,17 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E. intros. generalize (for_all_1 (s:=s) (f:=fdec Pdec)) (for_all_2 (s:=s) (f:=fdec Pdec)). - case (for_all (fdec Pdec) s); unfold For_all in |- *; [ left | right ]; + case (for_all (fdec Pdec) s); unfold For_all; [ left | right ]; intros. assert (compat_bool E.eq (fdec Pdec)); auto. - generalize (H0 H3 (refl_equal _) _ H2). - unfold fdec in |- *. + generalize (H0 H3 Logic.eq_refl _ H2). + unfold fdec. case (Pdec x); intuition. inversion H4. intuition. absurd (false = true); [ auto with bool | apply H; auto ]. intro. - unfold fdec in |- *. + unfold fdec. case (Pdec x); intuition. Qed. @@ -183,19 +183,19 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E. intros. generalize (exists_1 (s:=s) (f:=fdec Pdec)) (exists_2 (s:=s) (f:=fdec Pdec)). - case (exists_ (fdec Pdec) s); unfold Exists in |- *; [ left | right ]; + case (exists_ (fdec Pdec) s); unfold Exists; [ left | right ]; intros. elim H0; auto; intros. exists x; intuition. generalize H4. - unfold fdec in |- *. + unfold fdec. case (Pdec x); intuition. inversion H2. intuition. elim H2; intros. absurd (false = true); [ auto with bool | apply H; auto ]. exists x; intuition. - unfold fdec in |- *. + unfold fdec. case (Pdec x); intuition. Qed. @@ -212,26 +212,26 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E. exists (partition (fdec Pdec) s). generalize (partition_1 s (f:=fdec Pdec)) (partition_2 s (f:=fdec Pdec)). case (partition (fdec Pdec) s). - intros s1 s2; simpl in |- *. + intros s1 s2; simpl. intros; assert (compat_bool E.eq (fdec Pdec)); auto. intros; assert (compat_bool E.eq (fun x => negb (fdec Pdec x))). - generalize H2; unfold compat_bool, Proper, respectful in |- *; intuition; + generalize H2; unfold compat_bool, Proper, respectful; intuition; apply (f_equal negb); auto. intuition. - generalize H4; unfold For_all, Equal in |- *; intuition. + generalize H4; unfold For_all, Equal; intuition. elim (H0 x); intros. assert (fdec Pdec x = true). eapply filter_2; eauto with set. - generalize H8; unfold fdec in |- *; case (Pdec x); intuition. + generalize H8; unfold fdec; case (Pdec x); intuition. inversion H9. - generalize H; unfold For_all, Equal in |- *; intuition. + generalize H; unfold For_all, Equal; intuition. elim (H0 x); intros. cut ((fun x => negb (fdec Pdec x)) x = true). - unfold fdec in |- *; case (Pdec x); intuition. - change ((fun x => negb (fdec Pdec x)) x = true) in |- *. + unfold fdec; case (Pdec x); intuition. + change ((fun x => negb (fdec Pdec x)) x = true). apply (filter_2 (s:=s) (x:=x)); auto. - set (b := fdec Pdec x) in *; generalize (refl_equal b); - pattern b at -1 in |- *; case b; unfold b in |- *; + set (b := fdec Pdec x) in *; generalize (Logic.eq_refl b); + pattern b at -1; case b; unfold b; [ left | right ]. elim (H4 x); intros _ B; apply B; auto with set. elim (H x); intros _ B; apply B; auto with set. @@ -308,7 +308,7 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E. intros; generalize (min_elt_1 (s:=s)) (min_elt_2 (s:=s)) (min_elt_3 (s:=s)). case (min_elt s); [ left | right ]; auto. - exists e; unfold For_all in |- *; eauto. + exists e; unfold For_all; eauto. Qed. Definition max_elt : @@ -318,7 +318,7 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E. intros; generalize (max_elt_1 (s:=s)) (max_elt_2 (s:=s)) (max_elt_3 (s:=s)). case (max_elt s); [ left | right ]; auto. - exists e; unfold For_all in |- *; eauto. + exists e; unfold For_all; eauto. Qed. Definition elt := elt. @@ -360,7 +360,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma empty_1 : Empty empty. Proof. - unfold empty in |- *; case M.empty; auto. + unfold empty; case M.empty; auto. Qed. Definition is_empty (s : t) : bool := @@ -368,12 +368,12 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma is_empty_1 : forall s : t, Empty s -> is_empty s = true. Proof. - intros; unfold is_empty in |- *; case (M.is_empty s); auto. + intros; unfold is_empty; case (M.is_empty s); auto. Qed. Lemma is_empty_2 : forall s : t, is_empty s = true -> Empty s. Proof. - intro s; unfold is_empty in |- *; case (M.is_empty s); auto. + intro s; unfold is_empty; case (M.is_empty s); auto. intros; discriminate H. Qed. @@ -382,12 +382,12 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma mem_1 : forall (s : t) (x : elt), In x s -> mem x s = true. Proof. - intros; unfold mem in |- *; case (M.mem x s); auto. + intros; unfold mem; case (M.mem x s); auto. Qed. Lemma mem_2 : forall (s : t) (x : elt), mem x s = true -> In x s. Proof. - intros s x; unfold mem in |- *; case (M.mem x s); auto. + intros s x; unfold mem; case (M.mem x s); auto. intros; discriminate H. Qed. @@ -398,12 +398,12 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma equal_1 : forall s s' : t, Equal s s' -> equal s s' = true. Proof. - intros; unfold equal in |- *; case M.equal; intuition. + intros; unfold equal; case M.equal; intuition. Qed. Lemma equal_2 : forall s s' : t, equal s s' = true -> Equal s s'. Proof. - intros s s'; unfold equal in |- *; case (M.equal s s'); intuition; + intros s s'; unfold equal; case (M.equal s s'); intuition; inversion H. Qed. @@ -412,12 +412,12 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma subset_1 : forall s s' : t, Subset s s' -> subset s s' = true. Proof. - intros; unfold subset in |- *; case M.subset; intuition. + intros; unfold subset; case M.subset; intuition. Qed. Lemma subset_2 : forall s s' : t, subset s s' = true -> Subset s s'. Proof. - intros s s'; unfold subset in |- *; case (M.subset s s'); intuition; + intros s s'; unfold subset; case (M.subset s s'); intuition; inversion H. Qed. @@ -429,14 +429,14 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma choose_1 : forall (s : t) (x : elt), choose s = Some x -> In x s. Proof. - intros s x; unfold choose in |- *; case (M.choose s). + intros s x; unfold choose; case (M.choose s). simple destruct s0; intros; injection H; intros; subst; auto. intros; discriminate H. Qed. Lemma choose_2 : forall s : t, choose s = None -> Empty s. Proof. - intro s; unfold choose in |- *; case (M.choose s); auto. + intro s; unfold choose; case (M.choose s); auto. simple destruct s0; intros; discriminate H. Qed. @@ -453,17 +453,17 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma elements_1 : forall (s : t) (x : elt), In x s -> InA E.eq x (elements s). Proof. - intros; unfold elements in |- *; case (M.elements s); firstorder. + intros; unfold elements; case (M.elements s); firstorder. Qed. Lemma elements_2 : forall (s : t) (x : elt), InA E.eq x (elements s) -> In x s. Proof. - intros s x; unfold elements in |- *; case (M.elements s); firstorder. + intros s x; unfold elements; case (M.elements s); firstorder. Qed. Lemma elements_3 : forall s : t, sort E.lt (elements s). Proof. - intros; unfold elements in |- *; case (M.elements s); firstorder. + intros; unfold elements; case (M.elements s); firstorder. Qed. Hint Resolve elements_3. @@ -478,7 +478,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma min_elt_1 : forall (s : t) (x : elt), min_elt s = Some x -> In x s. Proof. - intros s x; unfold min_elt in |- *; case (M.min_elt s). + intros s x; unfold min_elt; case (M.min_elt s). simple destruct s0; intros; injection H; intros; subst; intuition. intros; discriminate H. Qed. @@ -486,15 +486,15 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma min_elt_2 : forall (s : t) (x y : elt), min_elt s = Some x -> In y s -> ~ E.lt y x. Proof. - intros s x y; unfold min_elt in |- *; case (M.min_elt s). - unfold For_all in |- *; simple destruct s0; intros; injection H; intros; + intros s x y; unfold min_elt; case (M.min_elt s). + unfold For_all; simple destruct s0; intros; injection H; intros; subst; firstorder. intros; discriminate H. Qed. Lemma min_elt_3 : forall s : t, min_elt s = None -> Empty s. Proof. - intros s; unfold min_elt in |- *; case (M.min_elt s); auto. + intros s; unfold min_elt; case (M.min_elt s); auto. simple destruct s0; intros; discriminate H. Qed. @@ -506,7 +506,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma max_elt_1 : forall (s : t) (x : elt), max_elt s = Some x -> In x s. Proof. - intros s x; unfold max_elt in |- *; case (M.max_elt s). + intros s x; unfold max_elt; case (M.max_elt s). simple destruct s0; intros; injection H; intros; subst; intuition. intros; discriminate H. Qed. @@ -514,15 +514,15 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma max_elt_2 : forall (s : t) (x y : elt), max_elt s = Some x -> In y s -> ~ E.lt x y. Proof. - intros s x y; unfold max_elt in |- *; case (M.max_elt s). - unfold For_all in |- *; simple destruct s0; intros; injection H; intros; + intros s x y; unfold max_elt; case (M.max_elt s). + unfold For_all; simple destruct s0; intros; injection H; intros; subst; firstorder. intros; discriminate H. Qed. Lemma max_elt_3 : forall s : t, max_elt s = None -> Empty s. Proof. - intros s; unfold max_elt in |- *; case (M.max_elt s); auto. + intros s; unfold max_elt; case (M.max_elt s); auto. simple destruct s0; intros; discriminate H. Qed. @@ -530,20 +530,20 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma add_1 : forall (s : t) (x y : elt), E.eq x y -> In y (add x s). Proof. - intros; unfold add in |- *; case (M.add x s); unfold Add in |- *; + intros; unfold add; case (M.add x s); unfold Add; firstorder. Qed. Lemma add_2 : forall (s : t) (x y : elt), In y s -> In y (add x s). Proof. - intros; unfold add in |- *; case (M.add x s); unfold Add in |- *; + intros; unfold add; case (M.add x s); unfold Add; firstorder. Qed. Lemma add_3 : forall (s : t) (x y : elt), ~ E.eq x y -> In y (add x s) -> In y s. Proof. - intros s x y; unfold add in |- *; case (M.add x s); unfold Add in |- *; + intros s x y; unfold add; case (M.add x s); unfold Add; firstorder. Qed. @@ -551,30 +551,30 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma remove_1 : forall (s : t) (x y : elt), E.eq x y -> ~ In y (remove x s). Proof. - intros; unfold remove in |- *; case (M.remove x s); firstorder. + intros; unfold remove; case (M.remove x s); firstorder. Qed. Lemma remove_2 : forall (s : t) (x y : elt), ~ E.eq x y -> In y s -> In y (remove x s). Proof. - intros; unfold remove in |- *; case (M.remove x s); firstorder. + intros; unfold remove; case (M.remove x s); firstorder. Qed. Lemma remove_3 : forall (s : t) (x y : elt), In y (remove x s) -> In y s. Proof. - intros s x y; unfold remove in |- *; case (M.remove x s); firstorder. + intros s x y; unfold remove; case (M.remove x s); firstorder. Qed. Definition singleton (x : elt) : t := let (s, _) := singleton x in s. Lemma singleton_1 : forall x y : elt, In y (singleton x) -> E.eq x y. Proof. - intros x y; unfold singleton in |- *; case (M.singleton x); firstorder. + intros x y; unfold singleton; case (M.singleton x); firstorder. Qed. Lemma singleton_2 : forall x y : elt, E.eq x y -> In y (singleton x). Proof. - intros x y; unfold singleton in |- *; case (M.singleton x); firstorder. + intros x y; unfold singleton; case (M.singleton x); firstorder. Qed. Definition union (s s' : t) : t := let (s'', _) := union s s' in s''. @@ -582,60 +582,60 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Lemma union_1 : forall (s s' : t) (x : elt), In x (union s s') -> In x s \/ In x s'. Proof. - intros s s' x; unfold union in |- *; case (M.union s s'); firstorder. + intros s s' x; unfold union; case (M.union s s'); firstorder. Qed. Lemma union_2 : forall (s s' : t) (x : elt), In x s -> In x (union s s'). Proof. - intros s s' x; unfold union in |- *; case (M.union s s'); firstorder. + intros s s' x; unfold union; case (M.union s s'); firstorder. Qed. Lemma union_3 : forall (s s' : t) (x : elt), In x s' -> In x (union s s'). Proof. - intros s s' x; unfold union in |- *; case (M.union s s'); firstorder. + intros s s' x; unfold union; case (M.union s s'); firstorder. Qed. Definition inter (s s' : t) : t := let (s'', _) := inter s s' in s''. Lemma inter_1 : forall (s s' : t) (x : elt), In x (inter s s') -> In x s. Proof. - intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder. + intros s s' x; unfold inter; case (M.inter s s'); firstorder. Qed. Lemma inter_2 : forall (s s' : t) (x : elt), In x (inter s s') -> In x s'. Proof. - intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder. + intros s s' x; unfold inter; case (M.inter s s'); firstorder. Qed. Lemma inter_3 : forall (s s' : t) (x : elt), In x s -> In x s' -> In x (inter s s'). Proof. - intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder. + intros s s' x; unfold inter; case (M.inter s s'); firstorder. Qed. Definition diff (s s' : t) : t := let (s'', _) := diff s s' in s''. Lemma diff_1 : forall (s s' : t) (x : elt), In x (diff s s') -> In x s. Proof. - intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder. + intros s s' x; unfold diff; case (M.diff s s'); firstorder. Qed. Lemma diff_2 : forall (s s' : t) (x : elt), In x (diff s s') -> ~ In x s'. Proof. - intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder. + intros s s' x; unfold diff; case (M.diff s s'); firstorder. Qed. Lemma diff_3 : forall (s s' : t) (x : elt), In x s -> ~ In x s' -> In x (diff s s'). Proof. - intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder. + intros s s' x; unfold diff; case (M.diff s s'); firstorder. Qed. Definition cardinal (s : t) : nat := let (f, _) := cardinal s in f. Lemma cardinal_1 : forall s, cardinal s = length (elements s). Proof. - intros; unfold cardinal in |- *; case (M.cardinal s); unfold elements in *; + intros; unfold cardinal; case (M.cardinal s); unfold elements in *; destruct (M.elements s); auto. Qed. @@ -646,7 +646,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. forall (s : t) (A : Type) (i : A) (f : elt -> A -> A), fold f s i = fold_left (fun a e => f e a) (elements s) i. Proof. - intros; unfold fold in |- *; case (M.fold f s i); unfold elements in *; + intros; unfold fold; case (M.fold f s i); unfold elements in *; destruct (M.elements s); auto. Qed. @@ -673,7 +673,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. forall (s : t) (x : elt) (f : elt -> bool), compat_bool E.eq f -> In x (filter f s) -> In x s. Proof. - intros s x f; unfold filter in |- *; case M.filter; intuition. + intros s x f; unfold filter; case M.filter; intuition. generalize (i (compat_P_aux H)); firstorder. Qed. @@ -681,7 +681,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. forall (s : t) (x : elt) (f : elt -> bool), compat_bool E.eq f -> In x (filter f s) -> f x = true. Proof. - intros s x f; unfold filter in |- *; case M.filter; intuition. + intros s x f; unfold filter; case M.filter; intuition. generalize (i (compat_P_aux H)); firstorder. Qed. @@ -689,7 +689,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. forall (s : t) (x : elt) (f : elt -> bool), compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s). Proof. - intros s x f; unfold filter in |- *; case M.filter; intuition. + intros s x f; unfold filter; case M.filter; intuition. generalize (i (compat_P_aux H)); firstorder. Qed. @@ -703,7 +703,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. compat_bool E.eq f -> For_all (fun x => f x = true) s -> for_all f s = true. Proof. - intros s f; unfold for_all in |- *; case M.for_all; intuition; elim n; + intros s f; unfold for_all; case M.for_all; intuition; elim n; auto. Qed. @@ -712,7 +712,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. compat_bool E.eq f -> for_all f s = true -> For_all (fun x => f x = true) s. Proof. - intros s f; unfold for_all in |- *; case M.for_all; intuition; + intros s f; unfold for_all; case M.for_all; intuition; inversion H0. Qed. @@ -725,7 +725,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. forall (s : t) (f : elt -> bool), compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true. Proof. - intros s f; unfold exists_ in |- *; case M.exists_; intuition; elim n; + intros s f; unfold exists_; case M.exists_; intuition; elim n; auto. Qed. @@ -733,7 +733,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. forall (s : t) (f : elt -> bool), compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s. Proof. - intros s f; unfold exists_ in |- *; case M.exists_; intuition; + intros s f; unfold exists_; case M.exists_; intuition; inversion H0. Qed. @@ -745,10 +745,10 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. forall (s : t) (f : elt -> bool), compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s). Proof. - intros s f; unfold partition in |- *; case M.partition. + intros s f; unfold partition; case M.partition. intro p; case p; clear p; intros s1 s2 H C. generalize (H (compat_P_aux C)); clear H; intro H. - simpl in |- *; unfold Equal in |- *; intuition. + simpl; unfold Equal; intuition. apply filter_3; firstorder. elim (H2 a); intros. assert (In a s). @@ -763,13 +763,13 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. forall (s : t) (f : elt -> bool), compat_bool E.eq f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s). Proof. - intros s f; unfold partition in |- *; case M.partition. + intros s f; unfold partition; case M.partition. intro p; case p; clear p; intros s1 s2 H C. generalize (H (compat_P_aux C)); clear H; intro H. assert (D : compat_bool E.eq (fun x => negb (f x))). generalize C; unfold compat_bool, Proper, respectful; intros; apply (f_equal negb); auto. - simpl in |- *; unfold Equal in |- *; intuition. + simpl; unfold Equal; intuition. apply filter_3; firstorder. elim (H2 a); intros. assert (In a s). diff --git a/theories/FSets/FSetEqProperties.v b/theories/FSets/FSetEqProperties.v index 755bc7dd..ac495c04 100644 --- a/theories/FSets/FSetEqProperties.v +++ b/theories/FSets/FSetEqProperties.v @@ -206,7 +206,7 @@ intros. generalize (@choose_1 s) (@choose_2 s). destruct (choose s);intros. exists e;auto with set. -generalize (H1 (refl_equal None)); clear H1. +generalize (H1 Logic.eq_refl); clear H1. intros; rewrite (is_empty_1 H1) in H; discriminate. Qed. @@ -631,7 +631,7 @@ destruct (choose (filter f s)). intros H0 _; apply exists_1; auto. exists e; generalize (H0 e); rewrite filter_iff; auto. intros _ H0. -rewrite (is_empty_1 (H0 (refl_equal None))) in H; auto; discriminate. +rewrite (is_empty_1 (H0 Logic.eq_refl)) in H; auto; discriminate. Qed. Lemma partition_filter_1: @@ -881,8 +881,8 @@ generalize (@add_filter_1 f Hf s0 (add x s0) x) (@add_filter_2 f Hf s0 (add x s0 assert (~ In x (filter f s0)). intro H1; rewrite (mem_1 (filter_1 Hf H1)) in H; discriminate H. case (f x); simpl; intros. -rewrite (MP.cardinal_2 H1 (H2 (refl_equal true) (MP.Add_add s0 x))); auto. -rewrite <- (MP.Equal_cardinal (H3 (refl_equal false) (MP.Add_add s0 x))); auto. +rewrite (MP.cardinal_2 H1 (H2 Logic.eq_refl (MP.Add_add s0 x))); auto. +rewrite <- (MP.Equal_cardinal (H3 Logic.eq_refl (MP.Add_add s0 x))); auto. intros; rewrite fold_empty;auto. rewrite MP.cardinal_1; auto. unfold Empty; intros. diff --git a/theories/FSets/FSetFacts.v b/theories/FSets/FSetFacts.v index f473b334..b240ede4 100644 --- a/theories/FSets/FSetFacts.v +++ b/theories/FSets/FSetFacts.v @@ -315,11 +315,11 @@ symmetry. rewrite <- H1; intros a Ha. rewrite <- (H a) in Ha. destruct H0 as (_,H0). -exact (H0 (refl_equal true) _ Ha). +exact (H0 Logic.eq_refl _ Ha). rewrite <- H0; intros a Ha. rewrite (H a) in Ha. destruct H1 as (_,H1). -exact (H1 (refl_equal true) _ Ha). +exact (H1 Logic.eq_refl _ Ha). Qed. Instance Empty_m : Proper (Equal ==> iff) Empty. @@ -489,5 +489,3 @@ End WFacts_fun. Module WFacts (M:WS) := WFacts_fun M.E M. Module Facts := WFacts. - - diff --git a/theories/FSets/FSetProperties.v b/theories/FSets/FSetProperties.v index 1bad8061..d53ce0c8 100644 --- a/theories/FSets/FSetProperties.v +++ b/theories/FSets/FSetProperties.v @@ -823,7 +823,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E). rewrite (inter_subset_equal H). generalize (@cardinal_inv_1 (diff s' s)). destruct (cardinal (diff s' s)). - intro H2; destruct (H2 (refl_equal _) x). + intro H2; destruct (H2 Logic.eq_refl x). set_iff; auto. intros _. change (0 + cardinal s < S n + cardinal s). diff --git a/theories/Init/Datatypes.v b/theories/Init/Datatypes.v index 41f6b70b..fc620f71 100644 --- a/theories/Init/Datatypes.v +++ b/theories/Init/Datatypes.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* andb b1 b2 = true. Proof. - destruct b1; destruct b2; simpl in |- *; tauto || auto with bool. + destruct b1; destruct b2; simpl; intros [? ?]; assumption. Qed. Hint Resolve andb_true_intro: bool. @@ -203,7 +203,7 @@ Lemma injective_projections : forall (A B:Type) (p1 p2:A * B), fst p1 = fst p2 -> snd p1 = snd p2 -> p1 = p2. Proof. - destruct p1; destruct p2; simpl in |- *; intros Hfst Hsnd. + destruct p1; destruct p2; simpl; intros Hfst Hsnd. rewrite Hfst; rewrite Hsnd; reflexivity. Qed. @@ -344,14 +344,14 @@ Definition id : ID := fun A x => x. (* Compatibility *) -Notation prodT := prod (only parsing). -Notation pairT := pair (only parsing). -Notation prodT_rect := prod_rect (only parsing). -Notation prodT_rec := prod_rec (only parsing). -Notation prodT_ind := prod_ind (only parsing). -Notation fstT := fst (only parsing). -Notation sndT := snd (only parsing). -Notation prodT_uncurry := prod_uncurry (only parsing). -Notation prodT_curry := prod_curry (only parsing). +Notation prodT := prod (compat "8.2"). +Notation pairT := pair (compat "8.2"). +Notation prodT_rect := prod_rect (compat "8.2"). +Notation prodT_rec := prod_rec (compat "8.2"). +Notation prodT_ind := prod_ind (compat "8.2"). +Notation fstT := fst (compat "8.2"). +Notation sndT := snd (compat "8.2"). +Notation prodT_uncurry := prod_uncurry (compat "8.2"). +Notation prodT_curry := prod_curry (compat "8.2"). (* end hide *) diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v index 9cd0b31b..4e6df444 100644 --- a/theories/Init/Logic.v +++ b/theories/Init/Logic.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* P x) -> P x. Proof. - unfold all in |- *; auto. + unfold all; auto. Qed. Theorem gen : forall (B:Prop) (f:forall y:A, B -> P y), B -> all P. Proof. - red in |- *; auto. + red; auto. Qed. End universal_quantification. @@ -284,7 +284,7 @@ Section Logic_lemmas. Theorem absurd : forall A C:Prop, A -> ~ A -> C. Proof. - unfold not in |- *; intros A C h1 h2. + unfold not; intros A C h1 h2. destruct (h2 h1). Qed. @@ -313,7 +313,7 @@ Section Logic_lemmas. Theorem not_eq_sym : x <> y -> y <> x. Proof. - red in |- *; intros h1 h2; apply h1; destruct h2; trivial. + red; intros h1 h2; apply h1; destruct h2; trivial. Qed. End equality. @@ -378,14 +378,14 @@ Qed. (* Aliases *) -Notation sym_eq := eq_sym (only parsing). -Notation trans_eq := eq_trans (only parsing). -Notation sym_not_eq := not_eq_sym (only parsing). +Notation sym_eq := eq_sym (compat "8.3"). +Notation trans_eq := eq_trans (compat "8.3"). +Notation sym_not_eq := not_eq_sym (compat "8.3"). -Notation refl_equal := eq_refl (only parsing). -Notation sym_equal := eq_sym (only parsing). -Notation trans_equal := eq_trans (only parsing). -Notation sym_not_equal := not_eq_sym (only parsing). +Notation refl_equal := eq_refl (compat "8.3"). +Notation sym_equal := eq_sym (compat "8.3"). +Notation trans_equal := eq_trans (compat "8.3"). +Notation sym_not_equal := not_eq_sym (compat "8.3"). Hint Immediate eq_sym not_eq_sym: core. diff --git a/theories/Init/Logic_Type.v b/theories/Init/Logic_Type.v index 2a833576..0281c516 100644 --- a/theories/Init/Logic_Type.v +++ b/theories/Init/Logic_Type.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* notT (identity y x). Proof. - red in |- *; intros H H'; apply H; destruct H'; trivial. + red; intros H H'; apply H; destruct H'; trivial. Qed. End identity_is_a_congruence. @@ -66,7 +66,7 @@ Defined. Hint Immediate identity_sym not_identity_sym: core v62. -Notation refl_id := identity_refl (only parsing). -Notation sym_id := identity_sym (only parsing). -Notation trans_id := identity_trans (only parsing). -Notation sym_not_id := not_identity_sym (only parsing). +Notation refl_id := identity_refl (compat "8.3"). +Notation sym_id := identity_sym (compat "8.3"). +Notation trans_id := identity_trans (compat "8.3"). +Notation sym_not_id := not_identity_sym (compat "8.3"). diff --git a/theories/Init/Notations.v b/theories/Init/Notations.v index 490cbf57..323dab90 100644 --- a/theories/Init/Notations.v +++ b/theories/Init/Notations.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* m -> S n <> S m. Proof. - red in |- *; auto. + red; auto. Qed. Hint Resolve not_eq_S: core. @@ -93,7 +93,7 @@ Hint Resolve (f_equal2 (A1:=nat) (A2:=nat)): core. Lemma plus_n_O : forall n:nat, n = n + 0. Proof. - induction n; simpl in |- *; auto. + induction n; simpl; auto. Qed. Hint Resolve plus_n_O: core. @@ -104,7 +104,7 @@ Qed. Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m. Proof. - intros n m; induction n; simpl in |- *; auto. + intros n m; induction n; simpl; auto. Qed. Hint Resolve plus_n_Sm: core. @@ -115,8 +115,8 @@ Qed. (** Standard associated names *) -Notation plus_0_r_reverse := plus_n_O (only parsing). -Notation plus_succ_r_reverse := plus_n_Sm (only parsing). +Notation plus_0_r_reverse := plus_n_O (compat "8.2"). +Notation plus_succ_r_reverse := plus_n_Sm (compat "8.2"). (** Multiplication *) @@ -132,22 +132,22 @@ Hint Resolve (f_equal2 mult): core. Lemma mult_n_O : forall n:nat, 0 = n * 0. Proof. - induction n; simpl in |- *; auto. + induction n; simpl; auto. Qed. Hint Resolve mult_n_O: core. Lemma mult_n_Sm : forall n m:nat, n * m + n = n * S m. Proof. - intros; induction n as [| p H]; simpl in |- *; auto. - destruct H; rewrite <- plus_n_Sm; apply (f_equal S). - pattern m at 1 3 in |- *; elim m; simpl in |- *; auto. + intros; induction n as [| p H]; simpl; auto. + destruct H; rewrite <- plus_n_Sm; apply eq_S. + pattern m at 1 3; elim m; simpl; auto. Qed. Hint Resolve mult_n_Sm: core. (** Standard associated names *) -Notation mult_0_r_reverse := mult_n_O (only parsing). -Notation mult_succ_r_reverse := mult_n_Sm (only parsing). +Notation mult_0_r_reverse := mult_n_O (compat "8.2"). +Notation mult_succ_r_reverse := mult_n_Sm (compat "8.2"). (** Truncated subtraction: [m-n] is [0] if [n>=m] *) @@ -219,7 +219,7 @@ Theorem nat_double_ind : (forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m. Proof. induction n; auto. - destruct m as [| n0]; auto. + destruct m; auto. Qed. (** Maximum and minimum : definitions and specifications *) diff --git a/theories/Init/Prelude.v b/theories/Init/Prelude.v index d85f5363..e723cadf 100644 --- a/theories/Init/Prelude.v +++ b/theories/Init/Prelude.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Fix y). Proof. - intro x; unfold Fix in |- *. + intro x; unfold Fix. rewrite <- Fix_F_eq. apply F_ext; intros. apply Fix_F_inv. diff --git a/theories/Lists/List.v b/theories/Lists/List.v index ecadddbc..69475a6f 100644 --- a/theories/Lists/List.v +++ b/theories/Lists/List.v @@ -1,12 +1,12 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* count_occ l x > 0. + Theorem count_occ_In (l : list A) (x : A) : In x l <-> count_occ l x > 0. Proof. - induction l as [|y l]. - simpl; intros; split; [destruct 1 | apply gt_irrefl]. - simpl. intro x; destruct (eq_dec y x) as [Heq|Hneq]. - rewrite Heq; intuition. - pose (IHl x). intuition. + induction l as [|y l]; simpl. + - split; [destruct 1 | apply gt_irrefl]. + - destruct eq_dec as [->|Hneq]; rewrite IHl; intuition. Qed. - Theorem count_occ_inv_nil : forall (l : list A), (forall x:A, count_occ l x = 0) <-> l = []. + Theorem count_occ_inv_nil (l : list A) : + (forall x:A, count_occ l x = 0) <-> l = []. Proof. split. - (* Case -> *) - induction l as [|x l]. - trivial. - intro H. - elim (O_S (count_occ l x)). - apply sym_eq. - generalize (H x). - simpl. destruct (eq_dec x x) as [|HF]. - trivial. - elim HF; reflexivity. - (* Case <- *) - intro H; rewrite H; simpl; reflexivity. + - induction l as [|x l]; trivial. + intros H. specialize (H x). simpl in H. + destruct eq_dec as [_|NEQ]; [discriminate|now elim NEQ]. + - now intros ->. Qed. Lemma count_occ_nil : forall (x : A), count_occ [] x = 0. @@ -754,22 +745,11 @@ Section ListOps. Hypothesis eq_dec : forall (x y : A), {x = y}+{x <> y}. - Lemma list_eq_dec : - forall l l':list A, {l = l'} + {l <> l'}. - Proof. - induction l as [| x l IHl]; destruct l' as [| y l']. - left; trivial. - right; apply nil_cons. - right; unfold not; intro HF; apply (nil_cons (sym_eq HF)). - destruct (eq_dec x y) as [xeqy|xneqy]; destruct (IHl l') as [leql'|lneql']; - try (right; unfold not; intro HF; injection HF; intros; contradiction). - rewrite xeqy; rewrite leql'; left; trivial. - Qed. - + Lemma list_eq_dec : forall l l':list A, {l = l'} + {l <> l'}. + Proof. decide equality. Defined. End ListOps. - (***************************************************) (** * Applying functions to the elements of a list *) (***************************************************) diff --git a/theories/Lists/ListSet.v b/theories/Lists/ListSet.v index d67baf57..b846c48d 100644 --- a/theories/Lists/ListSet.v +++ b/theories/Lists/ListSet.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* P y) -> P z -> P (if set_mem a x then y else z). Proof. - simple induction x; simpl in |- *; intros. + simple induction x; simpl; intros. assumption. elim (Aeq_dec a a0); auto with datatypes. Qed. @@ -113,11 +113,11 @@ Section first_definitions. (~ set_In a x -> P z) -> P (if set_mem a x then y else z). Proof. - simple induction x; simpl in |- *; intros. - apply H0; red in |- *; trivial. + simple induction x; simpl; intros. + apply H0; red; trivial. case (Aeq_dec a a0); auto with datatypes. intro; apply H; intros; auto. - apply H1; red in |- *; intro. + apply H1; red; intro. case H3; auto. Qed. @@ -125,7 +125,7 @@ Section first_definitions. Lemma set_mem_correct1 : forall (a:A) (x:set), set_mem a x = true -> set_In a x. Proof. - simple induction x; simpl in |- *. + simple induction x; simpl. discriminate. intros a0 l; elim (Aeq_dec a a0); auto with datatypes. Qed. @@ -133,7 +133,7 @@ Section first_definitions. Lemma set_mem_correct2 : forall (a:A) (x:set), set_In a x -> set_mem a x = true. Proof. - simple induction x; simpl in |- *. + simple induction x; simpl. intro Ha; elim Ha. intros a0 l; elim (Aeq_dec a a0); auto with datatypes. intros H1 H2 [H3| H4]. @@ -144,17 +144,17 @@ Section first_definitions. Lemma set_mem_complete1 : forall (a:A) (x:set), set_mem a x = false -> ~ set_In a x. Proof. - simple induction x; simpl in |- *. + simple induction x; simpl. tauto. intros a0 l; elim (Aeq_dec a a0). intros; discriminate H0. - unfold not in |- *; intros; elim H1; auto with datatypes. + unfold not; intros; elim H1; auto with datatypes. Qed. Lemma set_mem_complete2 : forall (a:A) (x:set), ~ set_In a x -> set_mem a x = false. Proof. - simple induction x; simpl in |- *. + simple induction x; simpl. tauto. intros a0 l; elim (Aeq_dec a a0). intros; elim H0; auto with datatypes. @@ -165,7 +165,7 @@ Section first_definitions. forall (a b:A) (x:set), set_In a x -> set_In a (set_add b x). Proof. - unfold set_In in |- *; simple induction x; simpl in |- *. + unfold set_In; simple induction x; simpl. auto with datatypes. intros a0 l H [Ha0a| Hal]. elim (Aeq_dec b a0); left; assumption. @@ -176,11 +176,11 @@ Section first_definitions. forall (a b:A) (x:set), a = b -> set_In a (set_add b x). Proof. - unfold set_In in |- *; simple induction x; simpl in |- *. + unfold set_In; simple induction x; simpl. auto with datatypes. intros a0 l H Hab. elim (Aeq_dec b a0); - [ rewrite Hab; intro Hba0; rewrite Hba0; simpl in |- *; + [ rewrite Hab; intro Hba0; rewrite Hba0; simpl; auto with datatypes | auto with datatypes ]. Qed. @@ -198,13 +198,13 @@ Section first_definitions. forall (a b:A) (x:set), set_In a (set_add b x) -> a = b \/ set_In a x. Proof. - unfold set_In in |- *. + unfold set_In. simple induction x. - simpl in |- *; intros [H1| H2]; auto with datatypes. - simpl in |- *; do 3 intro. + simpl; intros [H1| H2]; auto with datatypes. + simpl; do 3 intro. elim (Aeq_dec b a0). - simpl in |- *; tauto. - simpl in |- *; intros; elim H0. + simpl; tauto. + simpl; intros; elim H0. trivial with datatypes. tauto. tauto. @@ -220,7 +220,7 @@ Section first_definitions. Lemma set_add_not_empty : forall (a:A) (x:set), set_add a x <> empty_set. Proof. - simple induction x; simpl in |- *. + simple induction x; simpl. discriminate. intros; elim (Aeq_dec a a0); intros; discriminate. Qed. @@ -229,13 +229,13 @@ Section first_definitions. Lemma set_union_intro1 : forall (a:A) (x y:set), set_In a x -> set_In a (set_union x y). Proof. - simple induction y; simpl in |- *; auto with datatypes. + simple induction y; simpl; auto with datatypes. Qed. Lemma set_union_intro2 : forall (a:A) (x y:set), set_In a y -> set_In a (set_union x y). Proof. - simple induction y; simpl in |- *. + simple induction y; simpl. tauto. intros; elim H0; auto with datatypes. Qed. @@ -253,7 +253,7 @@ Section first_definitions. forall (a:A) (x y:set), set_In a (set_union x y) -> set_In a x \/ set_In a y. Proof. - simple induction y; simpl in |- *. + simple induction y; simpl. auto with datatypes. intros. generalize (set_add_elim _ _ _ H0). @@ -280,11 +280,11 @@ Section first_definitions. Proof. simple induction x. auto with datatypes. - simpl in |- *; intros a0 l Hrec y [Ha0a| Hal] Hy. - simpl in |- *; rewrite Ha0a. + simpl; intros a0 l Hrec y [Ha0a| Hal] Hy. + simpl; rewrite Ha0a. generalize (set_mem_correct1 a y). generalize (set_mem_complete1 a y). - elim (set_mem a y); simpl in |- *; intros. + elim (set_mem a y); simpl; intros. auto with datatypes. absurd (set_In a y); auto with datatypes. elim (set_mem a0 y); [ right; auto with datatypes | auto with datatypes ]. @@ -295,9 +295,9 @@ Section first_definitions. Proof. simple induction x. auto with datatypes. - simpl in |- *; intros a0 l Hrec y. + simpl; intros a0 l Hrec y. generalize (set_mem_correct1 a0 y). - elim (set_mem a0 y); simpl in |- *; intros. + elim (set_mem a0 y); simpl; intros. elim H0; eauto with datatypes. eauto with datatypes. Qed. @@ -306,10 +306,10 @@ Section first_definitions. forall (a:A) (x y:set), set_In a (set_inter x y) -> set_In a y. Proof. simple induction x. - simpl in |- *; tauto. - simpl in |- *; intros a0 l Hrec y. + simpl; tauto. + simpl; intros a0 l Hrec y. generalize (set_mem_correct1 a0 y). - elim (set_mem a0 y); simpl in |- *; intros. + elim (set_mem a0 y); simpl; intros. elim H0; [ intro Hr; rewrite <- Hr; eauto with datatypes | eauto with datatypes ]. eauto with datatypes. @@ -329,8 +329,8 @@ Section first_definitions. set_In a x -> ~ set_In a y -> set_In a (set_diff x y). Proof. simple induction x. - simpl in |- *; tauto. - simpl in |- *; intros a0 l Hrec y [Ha0a| Hal] Hay. + simpl; tauto. + simpl; intros a0 l Hrec y [Ha0a| Hal] Hay. rewrite Ha0a; generalize (set_mem_complete2 _ _ Hay). elim (set_mem a y); [ intro Habs; discriminate Habs | auto with datatypes ]. @@ -341,8 +341,8 @@ Section first_definitions. forall (a:A) (x y:set), set_In a (set_diff x y) -> set_In a x. Proof. simple induction x. - simpl in |- *; tauto. - simpl in |- *; intros a0 l Hrec y; elim (set_mem a0 y). + simpl; tauto. + simpl; intros a0 l Hrec y; elim (set_mem a0 y). eauto with datatypes. intro; generalize (set_add_elim _ _ _ H). intros [H1| H2]; eauto with datatypes. @@ -350,7 +350,7 @@ Section first_definitions. Lemma set_diff_elim2 : forall (a:A) (x y:set), set_In a (set_diff x y) -> ~ set_In a y. - intros a x y; elim x; simpl in |- *. + intros a x y; elim x; simpl. intros; contradiction. intros a0 l Hrec. apply set_mem_ind2; auto. @@ -359,7 +359,7 @@ Section first_definitions. Qed. Lemma set_diff_trivial : forall (a:A) (x:set), ~ set_In a (set_diff x x). - red in |- *; intros a x H. + red; intros a x H. apply (set_diff_elim2 _ _ _ H). apply (set_diff_elim1 _ _ _ H). Qed. diff --git a/theories/Lists/ListTactics.v b/theories/Lists/ListTactics.v index 3343aa6f..74336555 100644 --- a/theories/Lists/ListTactics.v +++ b/theories/Lists/ListTactics.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* fail 100 "anomaly: Find_at" | a :: _ => eval compute in n - | _ :: ?l => find (Psucc n) l + | _ :: ?l => find (Pos.succ n) l end in find 1%positive l. diff --git a/theories/Lists/SetoidList.v b/theories/Lists/SetoidList.v index 97915055..0fd1693e 100644 --- a/theories/Lists/SetoidList.v +++ b/theories/Lists/SetoidList.v @@ -7,7 +7,7 @@ (***********************************************************************) Require Export List. -Require Export Sorting. +Require Export Sorted. Require Export Setoid Basics Morphisms. Set Implicit Arguments. Unset Strict Implicit. @@ -199,7 +199,29 @@ Proof. rewrite <- In_rev; auto. Qed. +(** Some more facts about InA *) +Lemma InA_singleton x y : InA x (y::nil) <-> eqA x y. +Proof. + rewrite InA_cons, InA_nil; tauto. +Qed. + +Lemma InA_double_head x y l : + InA x (y :: y :: l) <-> InA x (y :: l). +Proof. + rewrite !InA_cons; tauto. +Qed. + +Lemma InA_permute_heads x y z l : + InA x (y :: z :: l) <-> InA x (z :: y :: l). +Proof. + rewrite !InA_cons; tauto. +Qed. + +Lemma InA_app_idem x l : InA x (l ++ l) <-> InA x l. +Proof. + rewrite InA_app_iff; tauto. +Qed. Section NoDupA. @@ -270,7 +292,56 @@ Proof. eapply NoDupA_split; eauto. Qed. -Lemma equivlistA_NoDupA_split : forall l l1 l2 x y, eqA x y -> +Lemma NoDupA_singleton x : NoDupA (x::nil). +Proof. + repeat constructor. inversion 1. +Qed. + +End NoDupA. + +Section EquivlistA. + +Global Instance equivlistA_cons_proper: + Proper (eqA ==> equivlistA ==> equivlistA) (@cons A). +Proof. + intros ? ? E1 ? ? E2 ?; now rewrite !InA_cons, E1, E2. +Qed. + +Global Instance equivlistA_app_proper: + Proper (equivlistA ==> equivlistA ==> equivlistA) (@app A). +Proof. + intros ? ? E1 ? ? E2 ?. now rewrite !InA_app_iff, E1, E2. +Qed. + +Lemma equivlistA_cons_nil x l : ~ equivlistA (x :: l) nil. +Proof. + intros E. now eapply InA_nil, E, InA_cons_hd. +Qed. + +Lemma equivlistA_nil_eq l : equivlistA l nil -> l = nil. +Proof. + destruct l. + - trivial. + - intros H. now apply equivlistA_cons_nil in H. +Qed. + +Lemma equivlistA_double_head x l : equivlistA (x :: x :: l) (x :: l). +Proof. + intro. apply InA_double_head. +Qed. + +Lemma equivlistA_permute_heads x y l : + equivlistA (x :: y :: l) (y :: x :: l). +Proof. + intro. apply InA_permute_heads. +Qed. + +Lemma equivlistA_app_idem l : equivlistA (l ++ l) l. +Proof. + intro. apply InA_app_idem. +Qed. + +Lemma equivlistA_NoDupA_split l l1 l2 x y : eqA x y -> NoDupA (x::l) -> NoDupA (l1++y::l2) -> equivlistA (x::l) (l1++y::l2) -> equivlistA l (l1++l2). Proof. @@ -290,9 +361,7 @@ Proof. rewrite <-H,<-EQN; auto. Qed. -End NoDupA. - - +End EquivlistA. Section Fold. @@ -588,10 +657,9 @@ Proof. Qed. (** For compatibility, can be deduced from [InfA_compat] *) -Lemma InfA_eqA : - forall l x y, eqA x y -> InfA y l -> InfA x l. +Lemma InfA_eqA l x y : eqA x y -> InfA y l -> InfA x l. Proof. - intros l x y H; rewrite H; auto. + intros H; now rewrite H. Qed. Hint Immediate InfA_ltA InfA_eqA. @@ -785,9 +853,11 @@ Qed. End Filter. End Type_with_equality. - Hint Constructors InA eqlistA NoDupA sort lelistA. +Arguments equivlistA_cons_nil {A} eqA {eqA_equiv} x l _. +Arguments equivlistA_nil_eq {A} eqA {eqA_equiv} l _. + Section Find. Variable A B : Type. @@ -838,7 +908,6 @@ Qed. End Find. - (** Compatibility aliases. [Proper] is rather to be used directly now.*) Definition compat_bool {A} (eqA:A->A->Prop)(f:A->bool) := @@ -852,4 +921,3 @@ Definition compat_P {A} (eqA:A->A->Prop)(P:A->Prop) := Definition compat_op {A B} (eqA:A->A->Prop)(eqB:B->B->Prop)(f:A->B->B) := Proper (eqA==>eqB==>eqB) f. - diff --git a/theories/Lists/SetoidPermutation.v b/theories/Lists/SetoidPermutation.v new file mode 100644 index 00000000..b0657b63 --- /dev/null +++ b/theories/Lists/SetoidPermutation.v @@ -0,0 +1,125 @@ +(***********************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* list A -> Prop := + | permA_nil: PermutationA nil nil + | permA_skip xâ‚ xâ‚‚ lâ‚ lâ‚‚ : + eqA xâ‚ xâ‚‚ -> PermutationA lâ‚ lâ‚‚ -> PermutationA (xâ‚ :: lâ‚) (xâ‚‚ :: lâ‚‚) + | permA_swap x y l : PermutationA (y :: x :: l) (x :: y :: l) + | permA_trans lâ‚ lâ‚‚ l₃ : + PermutationA lâ‚ lâ‚‚ -> PermutationA lâ‚‚ l₃ -> PermutationA lâ‚ l₃. +Local Hint Constructors PermutationA. + +Global Instance: Equivalence PermutationA. +Proof. + constructor. + - intro l. induction l; intuition. + - intros lâ‚ lâ‚‚. induction 1; eauto. apply permA_skip; intuition. + - exact permA_trans. +Qed. + +Global Instance PermutationA_cons : + Proper (eqA ==> PermutationA ==> PermutationA) (@cons A). +Proof. + repeat intro. now apply permA_skip. +Qed. + +Lemma PermutationA_app_head lâ‚ lâ‚‚ l : + PermutationA lâ‚ lâ‚‚ -> PermutationA (l ++ lâ‚) (l ++ lâ‚‚). +Proof. + induction l; trivial; intros. apply permA_skip; intuition. +Qed. + +Global Instance PermutationA_app : + Proper (PermutationA ==> PermutationA ==> PermutationA) (@app A). +Proof. + intros lâ‚ lâ‚‚ Pl kâ‚ kâ‚‚ Pk. + induction Pl. + - easy. + - now apply permA_skip. + - etransitivity. + * rewrite <-!app_comm_cons. now apply permA_swap. + * rewrite !app_comm_cons. now apply PermutationA_app_head. + - do 2 (etransitivity; try eassumption). + apply PermutationA_app_head. now symmetry. +Qed. + +Lemma PermutationA_app_tail lâ‚ lâ‚‚ l : + PermutationA lâ‚ lâ‚‚ -> PermutationA (lâ‚ ++ l) (lâ‚‚ ++ l). +Proof. + intros E. now rewrite E. +Qed. + +Lemma PermutationA_cons_append l x : + PermutationA (x :: l) (l ++ x :: nil). +Proof. + induction l. + - easy. + - simpl. rewrite <-IHl. intuition. +Qed. + +Lemma PermutationA_app_comm lâ‚ lâ‚‚ : + PermutationA (lâ‚ ++ lâ‚‚) (lâ‚‚ ++ lâ‚). +Proof. + induction lâ‚. + - now rewrite app_nil_r. + - rewrite <-app_comm_cons, IHlâ‚, app_comm_cons. + now rewrite PermutationA_cons_append, <-app_assoc. +Qed. + +Lemma PermutationA_cons_app l lâ‚ lâ‚‚ x : + PermutationA l (lâ‚ ++ lâ‚‚) -> PermutationA (x :: l) (lâ‚ ++ x :: lâ‚‚). +Proof. + intros E. rewrite E. + now rewrite app_comm_cons, PermutationA_cons_append, <-app_assoc. +Qed. + +Lemma PermutationA_middle lâ‚ lâ‚‚ x : + PermutationA (x :: lâ‚ ++ lâ‚‚) (lâ‚ ++ x :: lâ‚‚). +Proof. + now apply PermutationA_cons_app. +Qed. + +Lemma PermutationA_equivlistA lâ‚ lâ‚‚ : + PermutationA lâ‚ lâ‚‚ -> equivlistA eqA lâ‚ lâ‚‚. +Proof. + induction 1. + - reflexivity. + - now apply equivlistA_cons_proper. + - now apply equivlistA_permute_heads. + - etransitivity; eassumption. +Qed. + +Lemma NoDupA_equivlistA_PermutationA lâ‚ lâ‚‚ : + NoDupA eqA lâ‚ -> NoDupA eqA lâ‚‚ -> + equivlistA eqA lâ‚ lâ‚‚ -> PermutationA lâ‚ lâ‚‚. +Proof. + intros Plâ‚. revert lâ‚‚. induction Plâ‚ as [|x lâ‚ E1]. + - intros lâ‚‚ _ Hâ‚‚. symmetry in Hâ‚‚. now rewrite (equivlistA_nil_eq eqA). + - intros lâ‚‚ Plâ‚‚ E2. + destruct (@InA_split _ eqA lâ‚‚ x) as [lâ‚‚h [y [lâ‚‚t [E3 ?]]]]. + { rewrite <-E2. intuition. } + subst. transitivity (y :: lâ‚); [intuition |]. + apply PermutationA_cons_app, IHPlâ‚. + now apply NoDupA_split with y. + apply equivlistA_NoDupA_split with x y; intuition. +Qed. + +End Permutation. diff --git a/theories/Lists/StreamMemo.v b/theories/Lists/StreamMemo.v index 45490c62..67882cde 100644 --- a/theories/Lists/StreamMemo.v +++ b/theories/Lists/StreamMemo.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* left True (refl_equal 0) + | 0, 0 =>left True (eq_refl 0) | 0, S m1 => right (0 = S m1) I | S n1, 0 => right (S n1 = 0) I | S n1, S m1 => @@ -98,7 +97,7 @@ match v with match is_eq n m with | left H => match H in (eq _ y) return (A y -> A n) with - | refl_equal => fun v1 : A n => v1 + | eq_refl => fun v1 : A n => v1 end | right _ => fun _ : A m => f n end x @@ -115,7 +114,7 @@ Proof. intros n; unfold dmemo_get, dmemo_list. rewrite (memo_get_correct memo_val mf n); simpl. case (is_eq n n); simpl; auto; intros e. -assert (e = refl_equal n). +assert (e = eq_refl n). apply eq_proofs_unicity. induction x as [| x Hx]; destruct y as [| y]. left; auto. @@ -144,7 +143,7 @@ Proof. intros n; unfold dmemo_get, dimemo_list. rewrite (imemo_get_correct memo_val mf mg); simpl. case (is_eq n n); simpl; auto; intros e. -assert (e = refl_equal n). +assert (e = eq_refl n). apply eq_proofs_unicity. induction x as [| x Hx]; destruct y as [| y]. left; auto. @@ -169,11 +168,11 @@ Open Scope Z_scope. Fixpoint tfact (n: nat) := match n with | O => 1 - | S n1 => Z_of_nat n * tfact n1 + | S n1 => Z.of_nat n * tfact n1 end. Definition lfact_list := - dimemo_list _ tfact (fun n z => (Z_of_nat (S n) * z)). + dimemo_list _ tfact (fun n z => (Z.of_nat (S n) * z)). Definition lfact n := dmemo_get _ tfact n lfact_list. diff --git a/theories/Lists/Streams.v b/theories/Lists/Streams.v index 7a6f38fc..e1122cf9 100644 --- a/theories/Lists/Streams.v +++ b/theories/Lists/Streams.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* EqSt s2 s1. coinduction Eq_sym. -case H; intros; symmetry in |- *; assumption. +case H; intros; symmetry ; assumption. case H; intros; assumption. Qed. @@ -110,10 +110,10 @@ Qed. Theorem eqst_ntheq : forall (n:nat) (s1 s2:Stream), EqSt s1 s2 -> Str_nth n s1 = Str_nth n s2. -unfold Str_nth in |- *; simple induction n. +unfold Str_nth; simple induction n. intros s1 s2 H; case H; trivial with datatypes. intros m hypind. -simpl in |- *. +simpl. intros s1 s2 H. apply hypind. case H; trivial with datatypes. diff --git a/theories/Lists/vo.itarget b/theories/Lists/vo.itarget index adcfba49..04994f59 100644 --- a/theories/Lists/vo.itarget +++ b/theories/Lists/vo.itarget @@ -2,5 +2,6 @@ ListSet.vo ListTactics.vo List.vo SetoidList.vo +SetoidPermutation.vo StreamMemo.vo Streams.vo diff --git a/theories/Logic/Berardi.v b/theories/Logic/Berardi.v index 2b388687..38377573 100644 --- a/theories/Logic/Berardi.v +++ b/theories/Logic/Berardi.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Q e1) -> (~ B -> Q e2) -> Q (IFProp B e1 e2). Proof. intros P B e1 e2 Q p1 p2. -unfold IFProp in |- *. +unfold IFProp. case (EM B); assumption. Qed. @@ -76,7 +76,7 @@ Record retract_cond : Prop := Lemma AC : forall r:retract_cond, retract -> forall a:A, j2 r (i2 r a) = a. Proof. intros r. -case r; simpl in |- *. +case r; simpl. trivial. Qed. @@ -113,7 +113,7 @@ Lemma retract_pow_U_U : retract (pow U) U. Proof. exists g f. intro a. -unfold f, g in |- *; simpl in |- *. +unfold f, g; simpl. apply AC. exists (fun x:pow U => x) (fun x:pow U => x). trivial. @@ -130,8 +130,8 @@ Definition R : U := g (fun u:U => Not_b (u U u)). Lemma not_has_fixpoint : R R = Not_b (R R). Proof. -unfold R at 1 in |- *. -unfold g in |- *. +unfold R at 1. +unfold g. rewrite AC with (r := L1 U U) (a := fun u:U => Not_b (u U u)). trivial. exists (fun x:pow U => x) (fun x:pow U => x); trivial. @@ -141,7 +141,7 @@ Qed. Theorem classical_proof_irrelevence : T = F. Proof. generalize not_has_fixpoint. -unfold Not_b in |- *. +unfold Not_b. apply AC_IF. intros is_true is_false. elim is_true; elim is_false; trivial. diff --git a/theories/Logic/ChoiceFacts.v b/theories/Logic/ChoiceFacts.v index fb7898c6..1a32d518 100644 --- a/theories/Logic/ChoiceFacts.v +++ b/theories/Logic/ChoiceFacts.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* ProofIrrelevance -> GuardedRelationalChoice. Proof. intros rel_choice proof_irrel. - red in |- *; intros A B P R H. + red; intros A B P R H. destruct (rel_choice _ _ (fun (x:sigT P) (y:B) => R (projT1 x) y)) as (R',(HR'R,H0)). intros (x,HPx). destruct (H x HPx) as (y,HRxy). @@ -580,7 +580,7 @@ Lemma classical_denumerable_description_imp_fun_choice : (forall x y, decidable (R x y)) -> FunctionalChoice_on_rel R. Proof. intros A Descr. - red in |- *; intros R Rdec H. + red; intros R Rdec H. set (R':= fun x y => R x y /\ forall y', R x y' -> y <= y'). destruct (Descr R') as (f,Hf). intro x. diff --git a/theories/Logic/Classical.v b/theories/Logic/Classical.v index 9362a11f..d25e0e21 100644 --- a/theories/Logic/Classical.v +++ b/theories/Logic/Classical.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* forall A:Prop, inhabited A -> (A -> A) = A. @@ -148,7 +148,7 @@ Proof. case (prop_ext_retract_A_A_imp_A Ext A a); intros g1 g2 g1_o_g2. exists (fun f => (fun x:A => f (g1 x x)) (g2 (fun x => f (g1 x x)))). intro f. - pattern (g1 (g2 (fun x:A => f (g1 x x)))) at 1 in |- *. + pattern (g1 (g2 (fun x:A => f (g1 x x)))) at 1. rewrite (g1_o_g2 (fun x:A => f (g1 x x))). reflexivity. Qed. @@ -191,13 +191,13 @@ Section Proof_irrelevance_gen. intros Ext Ind. case (ext_prop_fixpoint Ext bool true); intros G Gfix. set (neg := fun b:bool => bool_elim bool false true b). - generalize (refl_equal (G neg)). - pattern (G neg) at 1 in |- *. + generalize (eq_refl (G neg)). + pattern (G neg) at 1. apply Ind with (b := G neg); intro Heq. rewrite (bool_elim_redl bool false true). - change (true = neg true) in |- *; rewrite Heq; apply Gfix. + change (true = neg true); rewrite Heq; apply Gfix. rewrite (bool_elim_redr bool false true). - change (neg false = false) in |- *; rewrite Heq; symmetry in |- *; + change (neg false = false); rewrite Heq; symmetry ; apply Gfix. Qed. @@ -207,9 +207,9 @@ Section Proof_irrelevance_gen. intros Ext Ind A a1 a2. set (f := fun b:bool => bool_elim A a1 a2 b). rewrite (bool_elim_redl A a1 a2). - change (f true = a2) in |- *. + change (f true = a2). rewrite (bool_elim_redr A a1 a2). - change (f true = f false) in |- *. + change (f true = f false). rewrite (aux Ext Ind). reflexivity. Qed. @@ -228,9 +228,9 @@ Section Proof_irrelevance_Prop_Ext_CC. Definition FalseP : BoolP := fun C c1 c2 => c2. Definition BoolP_elim C c1 c2 (b:BoolP) := b C c1 c2. Definition BoolP_elim_redl (C:Prop) (c1 c2:C) : - c1 = BoolP_elim C c1 c2 TrueP := refl_equal c1. + c1 = BoolP_elim C c1 c2 TrueP := eq_refl c1. Definition BoolP_elim_redr (C:Prop) (c1 c2:C) : - c2 = BoolP_elim C c1 c2 FalseP := refl_equal c2. + c2 = BoolP_elim C c1 c2 FalseP := eq_refl c2. Definition BoolP_dep_induction := forall P:BoolP -> Prop, P TrueP -> P FalseP -> forall b:BoolP, P b. @@ -263,9 +263,9 @@ Section Proof_irrelevance_CIC. | trueP : boolP | falseP : boolP. Definition boolP_elim_redl (C:Prop) (c1 c2:C) : - c1 = boolP_ind C c1 c2 trueP := refl_equal c1. + c1 = boolP_ind C c1 c2 trueP := eq_refl c1. Definition boolP_elim_redr (C:Prop) (c1 c2:C) : - c2 = boolP_ind C c1 c2 falseP := refl_equal c2. + c2 = boolP_ind C c1 c2 falseP := eq_refl c2. Scheme boolP_indd := Induction for boolP Sort Prop. Lemma ext_prop_dep_proof_irrel_cic : prop_extensionality -> proof_irrelevance. @@ -344,8 +344,8 @@ Section Proof_irrelevance_EM_CC. Lemma p2p1 : forall A:Prop, A -> b2p (p2b A). Proof. - unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A); - unfold b2p in |- *; intros. + unfold p2b; intro A; apply or_dep_elim with (b := em A); + unfold b2p; intros. apply (or_elim_redl A (~ A) B (fun _ => b1) (fun _ => b2)). destruct (b H). Qed. @@ -353,8 +353,8 @@ Section Proof_irrelevance_EM_CC. Lemma p2p2 : b1 <> b2 -> forall A:Prop, b2p (p2b A) -> A. Proof. intro not_eq_b1_b2. - unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A); - unfold b2p in |- *; intros. + unfold p2b; intro A; apply or_dep_elim with (b := em A); + unfold b2p; intros. assumption. destruct not_eq_b1_b2. rewrite <- (or_elim_redr A (~ A) B (fun _ => b1) (fun _ => b2)) in H. @@ -392,9 +392,9 @@ Section Proof_irrelevance_CCI. Hypothesis em : forall A:Prop, A \/ ~ A. Definition or_elim_redl (A B C:Prop) (f:A -> C) (g:B -> C) - (a:A) : f a = or_ind f g (or_introl B a) := refl_equal (f a). + (a:A) : f a = or_ind f g (or_introl B a) := eq_refl (f a). Definition or_elim_redr (A B C:Prop) (f:A -> C) (g:B -> C) - (b:B) : g b = or_ind f g (or_intror A b) := refl_equal (g b). + (b:B) : g b = or_ind f g (or_intror A b) := eq_refl (g b). Scheme or_indd := Induction for or Sort Prop. Theorem proof_irrelevance_cci : forall (B:Prop) (b1 b2:B), b1 = b2. diff --git a/theories/Logic/ClassicalUniqueChoice.v b/theories/Logic/ClassicalUniqueChoice.v index ebb73b19..4a4fc23f 100644 --- a/theories/Logic/ClassicalUniqueChoice.v +++ b/theories/Logic/ClassicalUniqueChoice.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Prop, ~ (exists n : U, P n) -> forall n:U, ~ P n. Proof. (* Intuitionistic *) -unfold not in |- *; intros P notex n abs. +unfold not; intros P notex n abs. apply notex. exists n; trivial. Qed. @@ -52,20 +52,20 @@ Lemma not_ex_not_all : Proof. intros P H n. apply NNPP. -red in |- *; intro K; apply H; exists n; trivial. +red; intro K; apply H; exists n; trivial. Qed. Lemma ex_not_not_all : forall P:U -> Prop, (exists n : U, ~ P n) -> ~ (forall n:U, P n). Proof. (* Intuitionistic *) -unfold not in |- *; intros P exnot allP. +unfold not; intros P exnot allP. elim exnot; auto. Qed. Lemma all_not_not_ex : forall P:U -> Prop, (forall n:U, ~ P n) -> ~ (exists n : U, P n). Proof. (* Intuitionistic *) -unfold not in |- *; intros P allnot exP; elim exP; intros n p. +unfold not; intros P allnot exP; elim exP; intros n p. apply allnot with n; auto. Qed. diff --git a/theories/Logic/Classical_Prop.v b/theories/Logic/Classical_Prop.v index d2b35da2..1f6b05f5 100644 --- a/theories/Logic/Classical_Prop.v +++ b/theories/Logic/Classical_Prop.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* p. Proof. -unfold not in |- *; intros; elim (classic p); auto. +unfold not; intros; elim (classic p); auto. intro NP; elim (H NP). Qed. @@ -35,7 +35,7 @@ Qed. Lemma not_imply_elim : forall P Q:Prop, ~ (P -> Q) -> P. Proof. -intros; apply NNPP; red in |- *. +intros; apply NNPP; red. intro; apply H; intro; absurd P; trivial. Qed. @@ -68,7 +68,7 @@ Qed. Lemma or_not_and : forall P Q:Prop, ~ P \/ ~ Q -> ~ (P /\ Q). Proof. -simple induction 1; red in |- *; simple induction 2; auto. +simple induction 1; red; simple induction 2; auto. Qed. Lemma not_or_and : forall P Q:Prop, ~ (P \/ Q) -> ~ P /\ ~ Q. @@ -112,7 +112,7 @@ Module Eq_rect_eq. Lemma eq_rect_eq : forall (U:Type) (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h. Proof. -intros; rewrite proof_irrelevance with (p1:=h) (p2:=refl_equal p); reflexivity. +intros; rewrite proof_irrelevance with (p1:=h) (p2:=eq_refl p); reflexivity. Qed. End Eq_rect_eq. diff --git a/theories/Logic/Classical_Type.v b/theories/Logic/Classical_Type.v index 9b28a6ab..86fdd69f 100644 --- a/theories/Logic/Classical_Type.v +++ b/theories/Logic/Classical_Type.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* acc x. Proof. diff --git a/theories/Logic/Decidable.v b/theories/Logic/Decidable.v index fec7904e..aaf1813b 100644 --- a/theories/Logic/Decidable.v +++ b/theories/Logic/Decidable.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* B) -> A = B. Proof. intros A B H. - change ((fun _ => A) true = (fun _ => B) true) in |- *. + change ((fun _ => A) true = (fun _ => B) true). rewrite pred_extensionality with (P := fun _:bool => A) (Q := fun _:bool => B). reflexivity. @@ -134,8 +134,8 @@ right. intro HP. assert (Hequiv : forall b:bool, class_of_true b <-> class_of_false b). intro b; split. -unfold class_of_false in |- *; right; assumption. -unfold class_of_true in |- *; right; assumption. +unfold class_of_false; right; assumption. +unfold class_of_true; right; assumption. assert (Heq : class_of_true = class_of_false). apply pred_extensionality with (1 := Hequiv). apply diff_true_false. @@ -188,8 +188,8 @@ Lemma projT1_injective : a1=a2 -> a1'=a2'. Proof. intro Heq ; unfold a1', a2', A'. rewrite Heq. - replace (or_introl (a2=a2) (refl_equal a2)) - with (or_intror (a2=a2) (refl_equal a2)). + replace (or_introl (a2=a2) (eq_refl a2)) + with (or_intror (a2=a2) (eq_refl a2)). reflexivity. apply proof_irrelevance. Qed. @@ -265,7 +265,7 @@ End ProofIrrel_RelChoice_imp_EqEM. (** Proof sketch from Bell [Bell93] (with thanks to P. Castéran) *) -Notation Local inhabited A := A (only parsing). +Local Notation inhabited A := A (only parsing). Section ExtensionalEpsilon_imp_EM. @@ -279,7 +279,7 @@ Hypothesis epsilon_extensionality : forall (A:Type) (i:inhabited A) (P Q:A->Prop), (forall a, P a <-> Q a) -> epsilon A i P = epsilon A i Q. -Notation Local eps := (epsilon bool true) (only parsing). +Local Notation eps := (epsilon bool true) (only parsing). Theorem extensional_epsilon_imp_EM : forall P:Prop, P \/ ~ P. Proof. diff --git a/theories/Logic/Epsilon.v b/theories/Logic/Epsilon.v index cb8f8a73..da3e5b08 100644 --- a/theories/Logic/Epsilon.v +++ b/theories/Logic/Epsilon.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* eq_dep1 p x q y. Proof. destruct 1. - apply eq_dep1_intro with (refl_equal p). + apply eq_dep1_intro with (eq_refl p). simpl; trivial. Qed. @@ -121,7 +121,7 @@ Proof. apply eq_dep_intro. Qed. -Notation eq_sigS_eq_dep := eq_sigT_eq_dep (only parsing). (* Compatibility *) +Notation eq_sigS_eq_dep := eq_sigT_eq_dep (compat "8.2"). (* Compatibility *) Lemma eq_dep_eq_sigT : forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q), @@ -250,12 +250,12 @@ Section Equivalences. (** Uniqueness of Reflexive Identity Proofs *) Definition UIP_refl_ := - forall (x:U) (p:x = x), p = refl_equal x. + forall (x:U) (p:x = x), p = eq_refl x. (** Streicher's axiom K *) Definition Streicher_K_ := - forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p. + forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p. (** Injectivity of Dependent Equality is a consequence of *) (** Invariance by Substitution of Reflexive Equality Proof *) @@ -389,14 +389,14 @@ Proof (eq_dep_eq__UIP U eq_dep_eq). (** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *) -Lemma UIP_refl : forall (x:U) (p:x = x), p = refl_equal x. +Lemma UIP_refl : forall (x:U) (p:x = x), p = eq_refl x. Proof (UIP__UIP_refl U UIP). (** Streicher's axiom K is a direct consequence of Uniqueness of Reflexive Identity Proofs *) Lemma Streicher_K : - forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p. + forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p. Proof (UIP_refl__Streicher_K U UIP_refl). End Axioms. diff --git a/theories/Logic/Eqdep_dec.v b/theories/Logic/Eqdep_dec.v index 59088aa7..3a6f6a23 100644 --- a/theories/Logic/Eqdep_dec.v +++ b/theories/Logic/Eqdep_dec.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* a = y') eq2 _ eq1. - Remark trans_sym_eq : forall (x y:A) (u:x = y), comp u u = refl_equal y. + Remark trans_sym_eq : forall (x y:A) (u:x = y), comp u u = eq_refl y. Proof. intros. case u; trivial. @@ -61,7 +61,7 @@ Section EqdepDec. Let nu_constant : forall (y:A) (u v:x = y), nu u = nu v. intros. - unfold nu in |- *. + unfold nu. case (eq_dec x y); intros. reflexivity. @@ -69,13 +69,13 @@ Section EqdepDec. Qed. - Let nu_inv (y:A) (v:x = y) : x = y := comp (nu (refl_equal x)) v. + Let nu_inv (y:A) (v:x = y) : x = y := comp (nu (eq_refl x)) v. Remark nu_left_inv : forall (y:A) (u:x = y), nu_inv (nu u) = u. Proof. intros. - case u; unfold nu_inv in |- *. + case u; unfold nu_inv. apply trans_sym_eq. Qed. @@ -90,10 +90,10 @@ Section EqdepDec. Qed. Theorem K_dec : - forall P:x = x -> Prop, P (refl_equal x) -> forall p:x = x, P p. + forall P:x = x -> Prop, P (eq_refl x) -> forall p:x = x, P p. Proof. intros. - elim eq_proofs_unicity with x (refl_equal x) p. + elim eq_proofs_unicity with x (eq_refl x) p. trivial. Qed. @@ -115,7 +115,7 @@ Section EqdepDec. Proof. intros. cut (proj (ex_intro P x y) y = proj (ex_intro P x y') y). - simpl in |- *. + simpl. case (eq_dec x x). intro e. elim e using K_dec; trivial. @@ -135,7 +135,7 @@ Require Import EqdepFacts. Theorem K_dec_type : forall A:Type, (forall x y:A, {x = y} + {x <> y}) -> - forall (x:A) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p. + forall (x:A) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p. Proof. intros A eq_dec x P H p. elim p using K_dec; intros. @@ -146,7 +146,7 @@ Qed. Theorem K_dec_set : forall A:Set, (forall x y:A, {x = y} + {x <> y}) -> - forall (x:A) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p. + forall (x:A) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p. Proof fun A => K_dec_type (A:=A). (** We deduce the [eq_rect_eq] axiom for (decidable) types *) @@ -212,13 +212,13 @@ Module DecidableEqDep (M:DecidableType). (** Uniqueness of Reflexive Identity Proofs *) - Lemma UIP_refl : forall (x:U) (p:x = x), p = refl_equal x. + Lemma UIP_refl : forall (x:U) (p:x = x), p = eq_refl x. Proof (UIP__UIP_refl U UIP). (** Streicher's axiom K *) Lemma Streicher_K : - forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p. + forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p. Proof (K_dec_type eq_dec). (** Injectivity of equality on dependent pairs in [Type] *) @@ -281,13 +281,13 @@ Module DecidableEqDepSet (M:DecidableSet). (** Uniqueness of Reflexive Identity Proofs *) - Lemma UIP_refl : forall (x:U) (p:x = x), p = refl_equal x. + Lemma UIP_refl : forall (x:U) (p:x = x), p = eq_refl x. Proof N.UIP_refl. (** Streicher's axiom K *) Lemma Streicher_K : - forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p. + forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p. Proof N.Streicher_K. (** Proof-irrelevance on subsets of decidable sets *) @@ -301,7 +301,7 @@ Module DecidableEqDepSet (M:DecidableSet). Lemma inj_pair2 : forall (P:U -> Type) (p:U) (x y:P p), - existS P p x = existS P p y -> x = y. + existT P p x = existT P p y -> x = y. Proof eq_dep_eq__inj_pair2 U N.eq_dep_eq. (** Injectivity of equality on dependent pairs with second component diff --git a/theories/Logic/ExtensionalityFacts.v b/theories/Logic/ExtensionalityFacts.v index f5e71ef4..9cbf756d 100644 --- a/theories/Logic/ExtensionalityFacts.v +++ b/theories/Logic/ExtensionalityFacts.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* bool, induct i -> b2p (i WF). Proof. intros i y. apply y. -unfold le, WF, induct in |- *. +unfold le, WF, induct. apply p2p2. intros x H0. apply y. @@ -55,7 +55,7 @@ Qed. Lemma lemma1 : induct (fun u => p2b (I u)). Proof. -unfold induct in |- *. +unfold induct. intros x p. apply (p2p2 (I x)). intro q. diff --git a/theories/Logic/IndefiniteDescription.v b/theories/Logic/IndefiniteDescription.v index 8badc07c..5424eea8 100644 --- a/theories/Logic/IndefiniteDescription.v +++ b/theories/Logic/IndefiniteDescription.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h. Proof. - intros; rewrite M.proof_irrelevance with (p1:=h) (p2:=refl_equal p). + intros; rewrite M.proof_irrelevance with (p1:=h) (p2:=eq_refl p). reflexivity. Qed. End Eq_rect_eq. diff --git a/theories/Logic/RelationalChoice.v b/theories/Logic/RelationalChoice.v index d0d58e37..efec03d4 100644 --- a/theories/Logic/RelationalChoice.v +++ b/theories/Logic/RelationalChoice.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* treeify_cont (treeify_aux false n) (treeify_aux pred n) end. -Fixpoint plength (l:list elt) := match l with - | nil => 1%positive - | _::l => Psucc (plength l) +Fixpoint plength_aux (l:list elt)(p:positive) := match l with + | nil => p + | _::l => plength_aux l (Pos.succ p) end. +Definition plength l := plength_aux l 1. + Definition treeify (l:list elt) := fst (treeify_aux true (plength l) l). @@ -975,18 +977,18 @@ Proof. specialize (Hf acc). destruct (f acc) as (t1,acc1). destruct Hf as (Hf1,Hf2). - { lia. } + { transitivity size; trivial. subst. auto with arith. } destruct acc1 as [|x acc1]. - { exfalso. subst acc. - rewrite <- app_nil_end, <- elements_cardinal in LE. lia. } + { exfalso. revert LE. apply Nat.lt_nge. subst. + rewrite <- app_nil_end, <- elements_cardinal; auto with arith. } specialize (Hg acc1). destruct (g acc1) as (t2,acc2). destruct Hg as (Hg1,Hg2). - { subst acc. rewrite app_length, <- elements_cardinal in LE. - simpl in LE. unfold elt in *. lia. } - simpl. split. - * lia. - * rewrite elements_node, app_ass. simpl. unfold elt in *; congruence. + { revert LE. subst. + rewrite app_length, <- elements_cardinal. simpl. + rewrite Nat.add_succ_r, <- Nat.succ_le_mono. + apply Nat.add_le_mono_l. } + simpl. rewrite elements_node, app_ass. now subst. Qed. Lemma treeify_aux_spec n (p:bool) : @@ -995,17 +997,29 @@ Proof. revert p. induction n as [n|n|]; intros p; simpl treeify_aux. - eapply treeify_cont_spec; [ apply (IHn false) | apply (IHn p) | ]. - rewrite Pos2Nat.inj_xI. generalize (Pos2Nat.is_pos n). - destruct p; simpl; lia. + rewrite Pos2Nat.inj_xI. + assert (H := Pos2Nat.is_pos n). apply Nat.neq_0_lt_0 in H. + destruct p; simpl; intros; rewrite Nat.add_0_r; trivial. + now rewrite <- Nat.add_succ_r, Nat.succ_pred; trivial. - eapply treeify_cont_spec; [ apply (IHn p) | apply (IHn true) | ]. - rewrite Pos2Nat.inj_xO. generalize (Pos2Nat.is_pos n). - destruct p; simpl; lia. + rewrite Pos2Nat.inj_xO. + assert (H := Pos2Nat.is_pos n). apply Nat.neq_0_lt_0 in H. + rewrite <- Nat.add_succ_r, Nat.succ_pred by trivial. + destruct p; simpl; intros; rewrite Nat.add_0_r; trivial. + symmetry. now apply Nat.add_pred_l. - destruct p; [ apply treeify_zero_spec | apply treeify_one_spec ]. Qed. +Lemma plength_aux_spec l p : + Pos.to_nat (plength_aux l p) = length l + Pos.to_nat p. +Proof. + revert p. induction l; simpl; trivial. + intros. now rewrite IHl, Pos2Nat.inj_succ, Nat.add_succ_r. +Qed. + Lemma plength_spec l : Pos.to_nat (plength l) = S (length l). Proof. - induction l; simpl; now rewrite ?Pos2Nat.inj_succ, ?IHl. + unfold plength. rewrite plength_aux_spec. apply Nat.add_1_r. Qed. Lemma treeify_elements l : elements (treeify l) = l. @@ -1016,7 +1030,9 @@ Proof. subst l. rewrite plength_spec, app_length, <- elements_cardinal in *. destruct acc. * now rewrite app_nil_r. - * simpl in H. lia. + * exfalso. revert H. simpl. + rewrite Nat.add_succ_r, Nat.add_comm. + apply Nat.succ_add_discr. Qed. Lemma treeify_spec x l : InT x (treeify l) <-> InA X.eq x l. @@ -1531,10 +1547,10 @@ Proof. simpl maxdepth. simpl redcarac. rewrite Nat.add_succ_r, <- Nat.succ_le_mono. now apply Nat.max_lub. - - simpl. Nat.nzsimpl. rewrite <- Nat.succ_le_mono. - apply Nat.max_lub; eapply Nat.le_trans; eauto. - destree l; simpl; lia. - destree r; simpl; lia. + - simpl. rewrite <- Nat.succ_le_mono. + apply Nat.max_lub; eapply Nat.le_trans; eauto; + [destree l | destree r]; simpl; + rewrite !Nat.add_0_r, ?Nat.add_1_r; auto with arith. Qed. Lemma rb_mindepth s n : rbt n s -> n + redcarac s <= mindepth s. @@ -1546,7 +1562,8 @@ Proof. replace (redcarac l) with 0 in * by now destree l. replace (redcarac r) with 0 in * by now destree r. now apply Nat.min_glb. - - apply -> Nat.succ_le_mono. apply Nat.min_glb; lia. + - apply -> Nat.succ_le_mono. rewrite Nat.add_0_r. + apply Nat.min_glb; eauto with arith. Qed. Lemma maxdepth_upperbound s : Rbt s -> @@ -1554,8 +1571,14 @@ Lemma maxdepth_upperbound s : Rbt s -> Proof. intros (n,H). eapply Nat.le_trans; [eapply rb_maxdepth; eauto|]. - generalize (rb_mindepth s n H). - generalize (mindepth_log_cardinal s). lia. + transitivity (2*(n+redcarac s)). + - rewrite Nat.mul_add_distr_l. apply Nat.add_le_mono_l. + rewrite <- Nat.mul_1_l at 1. apply Nat.mul_le_mono_r. + auto with arith. + - apply Nat.mul_le_mono_l. + transitivity (mindepth s). + + now apply rb_mindepth. + + apply mindepth_log_cardinal. Qed. Lemma maxdepth_lowerbound s : s<>Leaf -> @@ -1792,12 +1815,18 @@ Proof. unfold treeify_cont. specialize (Hf acc). destruct (f acc) as (l, acc1). simpl in *. - destruct Hf as (Hf1, Hf2). { lia. } - destruct acc1 as [|x acc2]; simpl in *. { lia. } - specialize (Hg acc2). - destruct (g acc2) as (r, acc3). simpl in *. - destruct Hg as (Hg1, Hg2). { lia. } - split; [auto | lia]. + destruct Hf as (Hf1, Hf2). { subst. eauto with arith. } + destruct acc1 as [|x acc2]; simpl in *. + - exfalso. revert Hacc. apply Nat.lt_nge. rewrite H, <- Hf2. + auto with arith. + - specialize (Hg acc2). + destruct (g acc2) as (r, acc3). simpl in *. + destruct Hg as (Hg1, Hg2). + { revert Hacc. + rewrite H, <- Hf2, Nat.add_succ_r, <- Nat.succ_le_mono. + apply Nat.add_le_mono_l. } + split; auto. + now rewrite H, <- Hf2, <- Hg2, Nat.add_succ_r, Nat.add_assoc. Qed. Lemma treeify_aux_rb n : @@ -1807,12 +1836,17 @@ Proof. induction n as [n (d,IHn)|n (d,IHn)| ]. - exists (S d). intros b. eapply treeify_cont_rb; [ apply (IHn false) | apply (IHn b) | ]. - rewrite Pos2Nat.inj_xI. generalize (Pos2Nat.is_pos n). - destruct b; simpl; lia. + rewrite Pos2Nat.inj_xI. + assert (H := Pos2Nat.is_pos n). apply Nat.neq_0_lt_0 in H. + destruct b; simpl; intros; rewrite Nat.add_0_r; trivial. + now rewrite <- Nat.add_succ_r, Nat.succ_pred; trivial. - exists (S d). intros b. eapply treeify_cont_rb; [ apply (IHn b) | apply (IHn true) | ]. - rewrite Pos2Nat.inj_xO. generalize (Pos2Nat.is_pos n). - destruct b; simpl; lia. + rewrite Pos2Nat.inj_xO. + assert (H := Pos2Nat.is_pos n). apply Nat.neq_0_lt_0 in H. + rewrite <- Nat.add_succ_r, Nat.succ_pred by trivial. + destruct b; simpl; intros; rewrite Nat.add_0_r; trivial. + symmetry. now apply Nat.add_pred_l. - exists 0; destruct b; [ apply treeify_zero_rb | apply treeify_one_rb ]. Qed. diff --git a/theories/MSets/MSetWeakList.v b/theories/MSets/MSetWeakList.v index 76f09c76..fd4114cd 100644 --- a/theories/MSets/MSetWeakList.v +++ b/theories/MSets/MSetWeakList.v @@ -396,7 +396,7 @@ Module MakeRaw (X:DecidableType) <: WRawSets X. induction s; simpl. intuition; inv. intros. - destruct (f a) as [ ]_eqn:E; rewrite ?InA_cons, IHs; intuition. + destruct (f a) eqn:E; rewrite ?InA_cons, IHs; intuition. setoid_replace x with a; auto. setoid_replace a with x in E; auto. congruence. Qed. @@ -420,7 +420,7 @@ Module MakeRaw (X:DecidableType) <: WRawSets X. unfold For_all; induction s; simpl. intuition. inv. intros; inv. - destruct (f a) as [ ]_eqn:F. + destruct (f a) eqn:F. rewrite IHs; intuition. inv; auto. setoid_replace x with a; auto. split; intros H'; try discriminate. @@ -436,7 +436,7 @@ Module MakeRaw (X:DecidableType) <: WRawSets X. unfold Exists; induction s; simpl. split; [discriminate| intros (x & Hx & _); inv]. intros. - destruct (f a) as [ ]_eqn:F. + destruct (f a) eqn:F. split; auto. exists a; auto. rewrite IHs; firstorder. diff --git a/theories/NArith/BinNat.v b/theories/NArith/BinNat.v index 30e35f50..5b1e83e6 100644 --- a/theories/NArith/BinNat.v +++ b/theories/NArith/BinNat.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Type) (f0 : P 0) (f2 : forall n, P n -> P (double n)) (fS2 : forall n, P n -> P (succ_double n)) (n : N) : P n := - let P' p := P (Npos p) in - let f2' p := f2 (Npos p) in - let fS2' p := fS2 (Npos p) in + let P' p := P (pos p) in + let f2' p := f2 (pos p) in + let fS2' p := fS2 (pos p) in match n with | 0 => f0 - | Npos p => positive_rect P' fS2' f2' (fS2 0 f0) p + | pos p => positive_rect P' fS2' f2' (fS2 0 f0) p end. Definition binary_rec (P:N -> Set) := binary_rect P. @@ -103,11 +103,11 @@ Definition binary_ind (P:N -> Prop) := binary_rect P. Definition peano_rect (P : N -> Type) (f0 : P 0) (f : forall n : N, P n -> P (succ n)) (n : N) : P n := -let P' p := P (Npos p) in -let f' p := f (Npos p) in +let P' p := P (pos p) in +let f' p := f (pos p) in match n with | 0 => f0 -| Npos p => Pos.peano_rect P' (f 0 f0) f' p +| pos p => Pos.peano_rect P' (f 0 f0) f' p end. Theorem peano_rect_base P a f : peano_rect P a f 0 = a. @@ -140,12 +140,12 @@ Qed. (** Properties of mixed successor and predecessor. *) -Lemma pos_pred_spec p : Pos.pred_N p = pred (Npos p). +Lemma pos_pred_spec p : Pos.pred_N p = pred (pos p). Proof. now destruct p. Qed. -Lemma succ_pos_spec n : Npos (succ_pos n) = succ n. +Lemma succ_pos_spec n : pos (succ_pos n) = succ n. Proof. now destruct n. Qed. @@ -155,7 +155,7 @@ Proof. destruct n. trivial. apply Pos.pred_N_succ. Qed. -Lemma succ_pos_pred p : succ (Pos.pred_N p) = Npos p. +Lemma succ_pos_pred p : succ (Pos.pred_N p) = pos p. Proof. destruct p; simpl; trivial. f_equal. apply Pos.succ_pred_double. Qed. @@ -472,7 +472,7 @@ Lemma log2_spec n : 0 < n -> 2^(log2 n) <= n < 2^(succ (log2 n)). Proof. destruct n as [|[p|p|]]; discriminate || intros _; simpl; split. - apply (size_le (Npos p)). + apply (size_le (pos p)). apply Pos.size_gt. apply Pos.size_le. apply Pos.size_gt. @@ -494,7 +494,7 @@ Proof. trivial. destruct p; simpl; split; try easy. intros (m,H). now destruct m. - now exists (Npos p). + now exists (pos p). intros (m,H). now destruct m. Qed. @@ -504,7 +504,7 @@ Proof. split. discriminate. intros (m,H). now destruct m. destruct p; simpl; split; try easy. - now exists (Npos p). + now exists (pos p). intros (m,H). now destruct m. now exists 0. Qed. @@ -512,19 +512,19 @@ Qed. (** Specification of the euclidean division *) Theorem pos_div_eucl_spec (a:positive)(b:N) : - let (q,r) := pos_div_eucl a b in Npos a = q * b + r. + let (q,r) := pos_div_eucl a b in pos a = q * b + r. Proof. induction a; cbv beta iota delta [pos_div_eucl]; fold pos_div_eucl; cbv zeta. (* a~1 *) destruct pos_div_eucl as (q,r). - change (Npos a~1) with (succ_double (Npos a)). + change (pos a~1) with (succ_double (pos a)). rewrite IHa, succ_double_add, double_mul. case leb_spec; intros H; trivial. rewrite succ_double_mul, <- add_assoc. f_equal. now rewrite (add_comm b), sub_add. (* a~0 *) destruct pos_div_eucl as (q,r). - change (Npos a~0) with (double (Npos a)). + change (pos a~0) with (double (pos a)). rewrite IHa, double_add, double_mul. case leb_spec; intros H; trivial. rewrite succ_double_mul, <- add_assoc. f_equal. @@ -537,7 +537,7 @@ Theorem div_eucl_spec a b : let (q,r) := div_eucl a b in a = b * q + r. Proof. destruct a as [|a], b as [|b]; unfold div_eucl; trivial. - generalize (pos_div_eucl_spec a (Npos b)). + generalize (pos_div_eucl_spec a (pos b)). destruct pos_div_eucl. now rewrite mul_comm. Qed. @@ -664,7 +664,7 @@ Proof. destruct (Pos.gcd_greatest p q r) as (u,H). exists s. now inversion Hs. exists t. now inversion Ht. - exists (Npos u). simpl; now f_equal. + exists (pos u). simpl; now f_equal. Qed. Lemma gcd_nonneg a b : 0 <= gcd a b. @@ -862,7 +862,7 @@ Program Definition testbit_wd : Proper (eq==>eq==>Logic.eq) testbit := _. Theorem bi_induction : forall A : N -> Prop, Proper (Logic.eq==>iff) A -> - A N0 -> (forall n, A n <-> A (succ n)) -> forall n : N, A n. + A 0 -> (forall n, A n <-> A (succ n)) -> forall n : N, A n. Proof. intros A A_wd A0 AS. apply peano_rect. assumption. intros; now apply -> AS. Qed. @@ -893,11 +893,11 @@ Qed. (** Instantiation of generic properties of natural numbers *) -Include NProp - <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties. +(** The Bind Scope prevents N to stay associated with abstract_scope. + (TODO FIX) *) -(** Otherwise N stays associated with abstract_scope : (TODO FIX) *) -Bind Scope N_scope with N. +Include NProp. Bind Scope N_scope with N. +Include UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties. (** In generic statements, the predicates [lt] and [le] have been favored, whereas [gt] and [ge] don't even exist in the abstract @@ -1013,95 +1013,95 @@ Notation "( p | q )" := (N.divide p q) (at level 0) : N_scope. (** Compatibility notations *) -(*Notation N := N (only parsing).*) (*hidden by module N above *) +(*Notation N := N (compat "8.3").*) (*hidden by module N above *) Notation N_rect := N_rect (only parsing). Notation N_rec := N_rec (only parsing). Notation N_ind := N_ind (only parsing). Notation N0 := N0 (only parsing). -Notation Npos := Npos (only parsing). - -Notation Ndiscr := N.discr (only parsing). -Notation Ndouble_plus_one := N.succ_double. -Notation Ndouble := N.double (only parsing). -Notation Nsucc := N.succ (only parsing). -Notation Npred := N.pred (only parsing). -Notation Nsucc_pos := N.succ_pos (only parsing). -Notation Ppred_N := Pos.pred_N (only parsing). -Notation Nplus := N.add (only parsing). -Notation Nminus := N.sub (only parsing). -Notation Nmult := N.mul (only parsing). -Notation Neqb := N.eqb (only parsing). -Notation Ncompare := N.compare (only parsing). -Notation Nlt := N.lt (only parsing). -Notation Ngt := N.gt (only parsing). -Notation Nle := N.le (only parsing). -Notation Nge := N.ge (only parsing). -Notation Nmin := N.min (only parsing). -Notation Nmax := N.max (only parsing). -Notation Ndiv2 := N.div2 (only parsing). -Notation Neven := N.even (only parsing). -Notation Nodd := N.odd (only parsing). -Notation Npow := N.pow (only parsing). -Notation Nlog2 := N.log2 (only parsing). - -Notation nat_of_N := N.to_nat (only parsing). -Notation N_of_nat := N.of_nat (only parsing). -Notation N_eq_dec := N.eq_dec (only parsing). -Notation Nrect := N.peano_rect (only parsing). -Notation Nrect_base := N.peano_rect_base (only parsing). -Notation Nrect_step := N.peano_rect_succ (only parsing). -Notation Nind := N.peano_ind (only parsing). -Notation Nrec := N.peano_rec (only parsing). -Notation Nrec_base := N.peano_rec_base (only parsing). -Notation Nrec_succ := N.peano_rec_succ (only parsing). - -Notation Npred_succ := N.pred_succ (only parsing). -Notation Npred_minus := N.pred_sub (only parsing). -Notation Nsucc_pred := N.succ_pred (only parsing). -Notation Ppred_N_spec := N.pos_pred_spec (only parsing). -Notation Nsucc_pos_spec := N.succ_pos_spec (only parsing). -Notation Ppred_Nsucc := N.pos_pred_succ (only parsing). -Notation Nplus_0_l := N.add_0_l (only parsing). -Notation Nplus_0_r := N.add_0_r (only parsing). -Notation Nplus_comm := N.add_comm (only parsing). -Notation Nplus_assoc := N.add_assoc (only parsing). -Notation Nplus_succ := N.add_succ_l (only parsing). -Notation Nsucc_0 := N.succ_0_discr (only parsing). -Notation Nsucc_inj := N.succ_inj (only parsing). -Notation Nminus_N0_Nle := N.sub_0_le (only parsing). -Notation Nminus_0_r := N.sub_0_r (only parsing). -Notation Nminus_succ_r:= N.sub_succ_r (only parsing). -Notation Nmult_0_l := N.mul_0_l (only parsing). -Notation Nmult_1_l := N.mul_1_l (only parsing). -Notation Nmult_1_r := N.mul_1_r (only parsing). -Notation Nmult_comm := N.mul_comm (only parsing). -Notation Nmult_assoc := N.mul_assoc (only parsing). -Notation Nmult_plus_distr_r := N.mul_add_distr_r (only parsing). -Notation Neqb_eq := N.eqb_eq (only parsing). -Notation Nle_0 := N.le_0_l (only parsing). -Notation Ncompare_refl := N.compare_refl (only parsing). -Notation Ncompare_Eq_eq := N.compare_eq (only parsing). -Notation Ncompare_eq_correct := N.compare_eq_iff (only parsing). -Notation Nlt_irrefl := N.lt_irrefl (only parsing). -Notation Nlt_trans := N.lt_trans (only parsing). -Notation Nle_lteq := N.lt_eq_cases (only parsing). -Notation Nlt_succ_r := N.lt_succ_r (only parsing). -Notation Nle_trans := N.le_trans (only parsing). -Notation Nle_succ_l := N.le_succ_l (only parsing). -Notation Ncompare_spec := N.compare_spec (only parsing). -Notation Ncompare_0 := N.compare_0_r (only parsing). -Notation Ndouble_div2 := N.div2_double (only parsing). -Notation Ndouble_plus_one_div2 := N.div2_succ_double (only parsing). -Notation Ndouble_inj := N.double_inj (only parsing). -Notation Ndouble_plus_one_inj := N.succ_double_inj (only parsing). -Notation Npow_0_r := N.pow_0_r (only parsing). -Notation Npow_succ_r := N.pow_succ_r (only parsing). -Notation Nlog2_spec := N.log2_spec (only parsing). -Notation Nlog2_nonpos := N.log2_nonpos (only parsing). -Notation Neven_spec := N.even_spec (only parsing). -Notation Nodd_spec := N.odd_spec (only parsing). -Notation Nlt_not_eq := N.lt_neq (only parsing). -Notation Ngt_Nlt := N.gt_lt (only parsing). +Notation Npos := N.pos (only parsing). + +Notation Ndiscr := N.discr (compat "8.3"). +Notation Ndouble_plus_one := N.succ_double (compat "8.3"). +Notation Ndouble := N.double (compat "8.3"). +Notation Nsucc := N.succ (compat "8.3"). +Notation Npred := N.pred (compat "8.3"). +Notation Nsucc_pos := N.succ_pos (compat "8.3"). +Notation Ppred_N := Pos.pred_N (compat "8.3"). +Notation Nplus := N.add (compat "8.3"). +Notation Nminus := N.sub (compat "8.3"). +Notation Nmult := N.mul (compat "8.3"). +Notation Neqb := N.eqb (compat "8.3"). +Notation Ncompare := N.compare (compat "8.3"). +Notation Nlt := N.lt (compat "8.3"). +Notation Ngt := N.gt (compat "8.3"). +Notation Nle := N.le (compat "8.3"). +Notation Nge := N.ge (compat "8.3"). +Notation Nmin := N.min (compat "8.3"). +Notation Nmax := N.max (compat "8.3"). +Notation Ndiv2 := N.div2 (compat "8.3"). +Notation Neven := N.even (compat "8.3"). +Notation Nodd := N.odd (compat "8.3"). +Notation Npow := N.pow (compat "8.3"). +Notation Nlog2 := N.log2 (compat "8.3"). + +Notation nat_of_N := N.to_nat (compat "8.3"). +Notation N_of_nat := N.of_nat (compat "8.3"). +Notation N_eq_dec := N.eq_dec (compat "8.3"). +Notation Nrect := N.peano_rect (compat "8.3"). +Notation Nrect_base := N.peano_rect_base (compat "8.3"). +Notation Nrect_step := N.peano_rect_succ (compat "8.3"). +Notation Nind := N.peano_ind (compat "8.3"). +Notation Nrec := N.peano_rec (compat "8.3"). +Notation Nrec_base := N.peano_rec_base (compat "8.3"). +Notation Nrec_succ := N.peano_rec_succ (compat "8.3"). + +Notation Npred_succ := N.pred_succ (compat "8.3"). +Notation Npred_minus := N.pred_sub (compat "8.3"). +Notation Nsucc_pred := N.succ_pred (compat "8.3"). +Notation Ppred_N_spec := N.pos_pred_spec (compat "8.3"). +Notation Nsucc_pos_spec := N.succ_pos_spec (compat "8.3"). +Notation Ppred_Nsucc := N.pos_pred_succ (compat "8.3"). +Notation Nplus_0_l := N.add_0_l (compat "8.3"). +Notation Nplus_0_r := N.add_0_r (compat "8.3"). +Notation Nplus_comm := N.add_comm (compat "8.3"). +Notation Nplus_assoc := N.add_assoc (compat "8.3"). +Notation Nplus_succ := N.add_succ_l (compat "8.3"). +Notation Nsucc_0 := N.succ_0_discr (compat "8.3"). +Notation Nsucc_inj := N.succ_inj (compat "8.3"). +Notation Nminus_N0_Nle := N.sub_0_le (compat "8.3"). +Notation Nminus_0_r := N.sub_0_r (compat "8.3"). +Notation Nminus_succ_r:= N.sub_succ_r (compat "8.3"). +Notation Nmult_0_l := N.mul_0_l (compat "8.3"). +Notation Nmult_1_l := N.mul_1_l (compat "8.3"). +Notation Nmult_1_r := N.mul_1_r (compat "8.3"). +Notation Nmult_comm := N.mul_comm (compat "8.3"). +Notation Nmult_assoc := N.mul_assoc (compat "8.3"). +Notation Nmult_plus_distr_r := N.mul_add_distr_r (compat "8.3"). +Notation Neqb_eq := N.eqb_eq (compat "8.3"). +Notation Nle_0 := N.le_0_l (compat "8.3"). +Notation Ncompare_refl := N.compare_refl (compat "8.3"). +Notation Ncompare_Eq_eq := N.compare_eq (compat "8.3"). +Notation Ncompare_eq_correct := N.compare_eq_iff (compat "8.3"). +Notation Nlt_irrefl := N.lt_irrefl (compat "8.3"). +Notation Nlt_trans := N.lt_trans (compat "8.3"). +Notation Nle_lteq := N.lt_eq_cases (compat "8.3"). +Notation Nlt_succ_r := N.lt_succ_r (compat "8.3"). +Notation Nle_trans := N.le_trans (compat "8.3"). +Notation Nle_succ_l := N.le_succ_l (compat "8.3"). +Notation Ncompare_spec := N.compare_spec (compat "8.3"). +Notation Ncompare_0 := N.compare_0_r (compat "8.3"). +Notation Ndouble_div2 := N.div2_double (compat "8.3"). +Notation Ndouble_plus_one_div2 := N.div2_succ_double (compat "8.3"). +Notation Ndouble_inj := N.double_inj (compat "8.3"). +Notation Ndouble_plus_one_inj := N.succ_double_inj (compat "8.3"). +Notation Npow_0_r := N.pow_0_r (compat "8.3"). +Notation Npow_succ_r := N.pow_succ_r (compat "8.3"). +Notation Nlog2_spec := N.log2_spec (compat "8.3"). +Notation Nlog2_nonpos := N.log2_nonpos (compat "8.3"). +Notation Neven_spec := N.even_spec (compat "8.3"). +Notation Nodd_spec := N.odd_spec (compat "8.3"). +Notation Nlt_not_eq := N.lt_neq (compat "8.3"). +Notation Ngt_Nlt := N.gt_lt (compat "8.3"). (** More complex compatibility facts, expressed as lemmas (to preserve scopes for instance) *) diff --git a/theories/NArith/BinNatDef.v b/theories/NArith/BinNatDef.v index d7660422..08e1138f 100644 --- a/theories/NArith/BinNatDef.v +++ b/theories/NArith/BinNatDef.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 1 - | Npos p => Npos p~1 + | pos p => pos p~1 end. (** ** Operation [x -> 2*x] *) @@ -38,7 +42,7 @@ Definition succ_double x := Definition double n := match n with | 0 => 0 - | Npos p => Npos p~0 + | pos p => pos p~0 end. (** ** Successor *) @@ -46,7 +50,7 @@ Definition double n := Definition succ n := match n with | 0 => 1 - | Npos p => Npos (Pos.succ p) + | pos p => pos (Pos.succ p) end. (** ** Predecessor *) @@ -54,15 +58,15 @@ Definition succ n := Definition pred n := match n with | 0 => 0 - | Npos p => Pos.pred_N p + | pos p => Pos.pred_N p end. (** ** The successor of a [N] can be seen as a [positive] *) Definition succ_pos (n : N) : positive := match n with - | N0 => 1%positive - | Npos p => Pos.succ p + | 0 => 1%positive + | pos p => Pos.succ p end. (** ** Addition *) @@ -71,7 +75,7 @@ Definition add n m := match n, m with | 0, _ => m | _, 0 => n - | Npos p, Npos q => Npos (p + q) + | pos p, pos q => pos (p + q) end. Infix "+" := add : N_scope. @@ -82,9 +86,9 @@ Definition sub n m := match n, m with | 0, _ => 0 | n, 0 => n -| Npos n', Npos m' => +| pos n', pos m' => match Pos.sub_mask n' m' with - | IsPos p => Npos p + | IsPos p => pos p | _ => 0 end end. @@ -97,7 +101,7 @@ Definition mul n m := match n, m with | 0, _ => 0 | _, 0 => 0 - | Npos p, Npos q => Npos (p * q) + | pos p, pos q => pos (p * q) end. Infix "*" := mul : N_scope. @@ -107,23 +111,19 @@ Infix "*" := mul : N_scope. Definition compare n m := match n, m with | 0, 0 => Eq - | 0, Npos m' => Lt - | Npos n', 0 => Gt - | Npos n', Npos m' => (n' ?= m')%positive + | 0, pos m' => Lt + | pos n', 0 => Gt + | pos n', pos m' => (n' ?= m')%positive end. Infix "?=" := compare (at level 70, no associativity) : N_scope. (** Boolean equality and comparison *) -(** Nota: this [eqb] is not convertible with the generated [N_beq], - since the underlying [Pos.eqb] differs from [positive_beq] - (cf BinIntDef). *) - Fixpoint eqb n m := match n, m with | 0, 0 => true - | Npos p, Npos q => Pos.eqb p q + | pos p, pos q => Pos.eqb p q | _, _ => false end. @@ -155,8 +155,8 @@ Definition div2 n := match n with | 0 => 0 | 1 => 0 - | Npos (p~0) => Npos p - | Npos (p~1) => Npos p + | pos (p~0) => pos p + | pos (p~1) => pos p end. (** Parity *) @@ -164,7 +164,7 @@ Definition div2 n := Definition even n := match n with | 0 => true - | Npos (xO _) => true + | pos (xO _) => true | _ => false end. @@ -176,7 +176,7 @@ Definition pow n p := match p, n with | 0, _ => 1 | _, 0 => 0 - | Npos p, Npos q => Npos (q^p) + | pos p, pos q => pos (q^p) end. Infix "^" := pow : N_scope. @@ -186,7 +186,7 @@ Infix "^" := pow : N_scope. Definition square n := match n with | 0 => 0 - | Npos p => Npos (Pos.square p) + | pos p => pos (Pos.square p) end. (** Base-2 logarithm *) @@ -195,8 +195,8 @@ Definition log2 n := match n with | 0 => 0 | 1 => 0 - | Npos (p~0) => Npos (Pos.size p) - | Npos (p~1) => Npos (Pos.size p) + | pos (p~0) => pos (Pos.size p) + | pos (p~1) => pos (Pos.size p) end. (** How many digits in a number ? @@ -206,13 +206,13 @@ Definition log2 n := Definition size n := match n with | 0 => 0 - | Npos p => Npos (Pos.size p) + | pos p => pos (Pos.size p) end. Definition size_nat n := match n with | 0 => O - | Npos p => Pos.size_nat p + | pos p => Pos.size_nat p end. (** Euclidean division *) @@ -237,7 +237,7 @@ Definition div_eucl (a b:N) : N * N := match a, b with | 0, _ => (0, 0) | _, 0 => (0, a) - | Npos na, _ => pos_div_eucl na b + | pos na, _ => pos_div_eucl na b end. Definition div a b := fst (div_eucl a b). @@ -252,7 +252,7 @@ Definition gcd a b := match a, b with | 0, _ => b | _, 0 => a - | Npos p, Npos q => Npos (Pos.gcd p q) + | pos p, pos q => pos (Pos.gcd p q) end. (** Generalized Gcd, also computing rests of [a] and [b] after @@ -262,9 +262,9 @@ Definition ggcd a b := match a, b with | 0, _ => (b,(0,1)) | _, 0 => (a,(1,0)) - | Npos p, Npos q => + | pos p, pos q => let '(g,(aa,bb)) := Pos.ggcd p q in - (Npos g, (Npos aa, Npos bb)) + (pos g, (pos aa, pos bb)) end. (** Square root *) @@ -272,17 +272,17 @@ Definition ggcd a b := Definition sqrtrem n := match n with | 0 => (0, 0) - | Npos p => + | pos p => match Pos.sqrtrem p with - | (s, IsPos r) => (Npos s, Npos r) - | (s, _) => (Npos s, 0) + | (s, IsPos r) => (pos s, pos r) + | (s, _) => (pos s, 0) end end. Definition sqrt n := match n with | 0 => 0 - | Npos p => Npos (Pos.sqrt p) + | pos p => pos (Pos.sqrt p) end. (** Operation over bits of a [N] number. *) @@ -293,7 +293,7 @@ Definition lor n m := match n, m with | 0, _ => m | _, 0 => n - | Npos p, Npos q => Npos (Pos.lor p q) + | pos p, pos q => pos (Pos.lor p q) end. (** Logical [and] *) @@ -302,7 +302,7 @@ Definition land n m := match n, m with | 0, _ => 0 | _, 0 => 0 - | Npos p, Npos q => Pos.land p q + | pos p, pos q => Pos.land p q end. (** Logical [diff] *) @@ -311,7 +311,7 @@ Fixpoint ldiff n m := match n, m with | 0, _ => 0 | _, 0 => n - | Npos p, Npos q => Pos.ldiff p q + | pos p, pos q => Pos.ldiff p q end. (** [xor] *) @@ -320,7 +320,7 @@ Definition lxor n m := match n, m with | 0, _ => m | _, 0 => n - | Npos p, Npos q => Pos.lxor p q + | pos p, pos q => Pos.lxor p q end. (** Shifts *) @@ -331,13 +331,13 @@ Definition shiftr_nat (a:N)(n:nat) := nat_iter n div2 a. Definition shiftl a n := match a with | 0 => 0 - | Npos a => Npos (Pos.shiftl a n) + | pos a => pos (Pos.shiftl a n) end. Definition shiftr a n := match n with | 0 => a - | Npos p => Pos.iter p div2 a + | pos p => Pos.iter p div2 a end. (** Checking whether a particular bit is set or not *) @@ -345,7 +345,7 @@ Definition shiftr a n := Definition testbit_nat (a:N) := match a with | 0 => fun _ => false - | Npos p => Pos.testbit_nat p + | pos p => Pos.testbit_nat p end. (** Same, but with index in N *) @@ -353,7 +353,7 @@ Definition testbit_nat (a:N) := Definition testbit a n := match a with | 0 => false - | Npos p => Pos.testbit p n + | pos p => Pos.testbit p n end. (** Translation from [N] to [nat] and back. *) @@ -361,13 +361,13 @@ Definition testbit a n := Definition to_nat (a:N) := match a with | 0 => O - | Npos p => Pos.to_nat p + | pos p => Pos.to_nat p end. Definition of_nat (n:nat) := match n with | O => 0 - | S n' => Npos (Pos.of_succ_nat n') + | S n' => pos (Pos.of_succ_nat n') end. (** Iteration of a function *) @@ -375,7 +375,7 @@ Definition of_nat (n:nat) := Definition iter (n:N) {A} (f:A->A) (x:A) : A := match n with | 0 => x - | Npos p => Pos.iter p f x + | pos p => Pos.iter p f x end. End N. \ No newline at end of file diff --git a/theories/NArith/NArith.v b/theories/NArith/NArith.v index 4a5f4ee1..d0664d37 100644 --- a/theories/NArith/NArith.v +++ b/theories/NArith/NArith.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* p = p'. -Proof. - intros. now apply (Peqb_eq p p'). -Qed. +Lemma Peqb_complete p p' : Pos.eqb p p' = true -> p = p'. +Proof. now apply Pos.eqb_eq. Qed. -Lemma Peqb_Pcompare : forall p p', Peqb p p' = true -> Pos.compare p p' = Eq. -Proof. - intros. now rewrite Pos.compare_eq_iff, <- Peqb_eq. -Qed. - -Lemma Pcompare_Peqb : forall p p', Pos.compare p p' = Eq -> Peqb p p' = true. -Proof. - intros; now rewrite Peqb_eq, <- Pos.compare_eq_iff. -Qed. +Lemma Peqb_Pcompare p p' : Pos.eqb p p' = true -> Pos.compare p p' = Eq. +Proof. now rewrite Pos.compare_eq_iff, <- Pos.eqb_eq. Qed. -Lemma Neqb_correct : forall n, Neqb n n = true. -Proof. - intros; now rewrite Neqb_eq. -Qed. +Lemma Pcompare_Peqb p p' : Pos.compare p p' = Eq -> Pos.eqb p p' = true. +Proof. now rewrite Pos.eqb_eq, <- Pos.compare_eq_iff. Qed. -Lemma Neqb_Ncompare : forall n n', Neqb n n' = true -> Ncompare n n' = Eq. -Proof. - intros; now rewrite Ncompare_eq_correct, <- Neqb_eq. -Qed. +Lemma Neqb_Ncompare n n' : N.eqb n n' = true -> N.compare n n' = Eq. +Proof. now rewrite N.compare_eq_iff, <- N.eqb_eq. Qed. -Lemma Ncompare_Neqb : forall n n', Ncompare n n' = Eq -> Neqb n n' = true. -Proof. - intros; now rewrite Neqb_eq, <- Ncompare_eq_correct. -Qed. +Lemma Ncompare_Neqb n n' : N.compare n n' = Eq -> N.eqb n n' = true. +Proof. now rewrite N.eqb_eq, <- N.compare_eq_iff. Qed. -Lemma Neqb_complete : forall a a', Neqb a a' = true -> a = a'. -Proof. - intros; now rewrite <- Neqb_eq. -Qed. +Lemma Neqb_complete n n' : N.eqb n n' = true -> n = n'. +Proof. now apply N.eqb_eq. Qed. -Lemma Neqb_comm : forall a a', Neqb a a' = Neqb a' a. +Lemma Nxor_eq_true n n' : N.lxor n n' = 0 -> N.eqb n n' = true. Proof. - intros; apply eq_true_iff_eq. rewrite 2 Neqb_eq; auto with *. + intro H. apply N.lxor_eq in H. subst. apply N.eqb_refl. Qed. -Lemma Nxor_eq_true : - forall a a', Nxor a a' = N0 -> Neqb a a' = true. -Proof. - intros. rewrite (Nxor_eq a a' H). apply Neqb_correct. -Qed. +Ltac eqb2eq := rewrite <- ?not_true_iff_false in *; rewrite ?N.eqb_eq in *. -Lemma Nxor_eq_false : - forall a a' p, Nxor a a' = Npos p -> Neqb a a' = false. +Lemma Nxor_eq_false n n' p : + N.lxor n n' = N.pos p -> N.eqb n n' = false. Proof. - intros. elim (sumbool_of_bool (Neqb a a')). intro H0. - rewrite (Neqb_complete a a' H0) in H. - rewrite (Nxor_nilpotent a') in H. discriminate H. - trivial. + intros. eqb2eq. intro. subst. now rewrite N.lxor_nilpotent in *. Qed. -Lemma Nodd_not_double : - forall a, - Nodd a -> forall a0, Neqb (Ndouble a0) a = false. +Lemma Nodd_not_double a : + Nodd a -> forall a0, N.eqb (N.double a0) a = false. Proof. - intros. elim (sumbool_of_bool (Neqb (Ndouble a0) a)). intro H0. - rewrite <- (Neqb_complete _ _ H0) in H. - unfold Nodd in H. - rewrite (Ndouble_bit0 a0) in H. discriminate H. - trivial. + intros. eqb2eq. intros <-. + unfold Nodd in *. now rewrite Ndouble_bit0 in *. Qed. -Lemma Nnot_div2_not_double : - forall a a0, - Neqb (Ndiv2 a) a0 = false -> Neqb a (Ndouble a0) = false. +Lemma Nnot_div2_not_double a a0 : + N.eqb (N.div2 a) a0 = false -> N.eqb a (N.double a0) = false. Proof. - intros. elim (sumbool_of_bool (Neqb (Ndouble a0) a)). intro H0. - rewrite <- (Neqb_complete _ _ H0) in H. rewrite (Ndouble_div2 a0) in H. - rewrite (Neqb_correct a0) in H. discriminate H. - intro. rewrite Neqb_comm. assumption. + intros H. eqb2eq. contradict H. subst. apply N.div2_double. Qed. -Lemma Neven_not_double_plus_one : - forall a, - Neven a -> forall a0, Neqb (Ndouble_plus_one a0) a = false. +Lemma Neven_not_double_plus_one a : + Neven a -> forall a0, N.eqb (N.succ_double a0) a = false. Proof. - intros. elim (sumbool_of_bool (Neqb (Ndouble_plus_one a0) a)). intro H0. - rewrite <- (Neqb_complete _ _ H0) in H. - unfold Neven in H. - rewrite (Ndouble_plus_one_bit0 a0) in H. - discriminate H. - trivial. + intros. eqb2eq. intros <-. + unfold Neven in *. now rewrite Ndouble_plus_one_bit0 in *. Qed. -Lemma Nnot_div2_not_double_plus_one : - forall a a0, - Neqb (Ndiv2 a) a0 = false -> Neqb (Ndouble_plus_one a0) a = false. +Lemma Nnot_div2_not_double_plus_one a a0 : + N.eqb (N.div2 a) a0 = false -> N.eqb (N.succ_double a0) a = false. Proof. - intros. elim (sumbool_of_bool (Neqb a (Ndouble_plus_one a0))). intro H0. - rewrite (Neqb_complete _ _ H0) in H. rewrite (Ndouble_plus_one_div2 a0) in H. - rewrite (Neqb_correct a0) in H. discriminate H. - intro H0. rewrite Neqb_comm. assumption. + intros H. eqb2eq. contradict H. subst. apply N.div2_succ_double. Qed. -Lemma Nbit0_neq : - forall a a', - Nbit0 a = false -> Nbit0 a' = true -> Neqb a a' = false. +Lemma Nbit0_neq a a' : + N.odd a = false -> N.odd a' = true -> N.eqb a a' = false. Proof. - intros. elim (sumbool_of_bool (Neqb a a')). intro H1. - rewrite (Neqb_complete _ _ H1) in H. - rewrite H in H0. discriminate H0. - trivial. + intros. eqb2eq. now intros <-. Qed. -Lemma Ndiv2_eq : - forall a a', Neqb a a' = true -> Neqb (Ndiv2 a) (Ndiv2 a') = true. +Lemma Ndiv2_eq a a' : + N.eqb a a' = true -> N.eqb (N.div2 a) (N.div2 a') = true. Proof. - intros. cut (a = a'). intros. rewrite H0. apply Neqb_correct. - apply Neqb_complete. exact H. + intros. eqb2eq. now subst. Qed. -Lemma Ndiv2_neq : - forall a a', - Neqb (Ndiv2 a) (Ndiv2 a') = false -> Neqb a a' = false. +Lemma Ndiv2_neq a a' : + N.eqb (N.div2 a) (N.div2 a') = false -> N.eqb a a' = false. Proof. - intros. elim (sumbool_of_bool (Neqb a a')). intro H0. - rewrite (Neqb_complete _ _ H0) in H. - rewrite (Neqb_correct (Ndiv2 a')) in H. discriminate H. - trivial. + intros H. eqb2eq. contradict H. now subst. Qed. -Lemma Ndiv2_bit_eq : - forall a a', - Nbit0 a = Nbit0 a' -> Ndiv2 a = Ndiv2 a' -> a = a'. +Lemma Ndiv2_bit_eq a a' : + N.odd a = N.odd a' -> N.div2 a = N.div2 a' -> a = a'. Proof. - intros. apply Nbit_faithful. unfold eqf in |- *. destruct n. - rewrite Nbit0_correct. rewrite Nbit0_correct. assumption. - rewrite <- Ndiv2_correct. rewrite <- Ndiv2_correct. - rewrite H0. reflexivity. + intros H H'; now rewrite (N.div2_odd a), (N.div2_odd a'), H, H'. Qed. -Lemma Ndiv2_bit_neq : - forall a a', - Neqb a a' = false -> - Nbit0 a = Nbit0 a' -> Neqb (Ndiv2 a) (Ndiv2 a') = false. +Lemma Ndiv2_bit_neq a a' : + N.eqb a a' = false -> + N.odd a = N.odd a' -> N.eqb (N.div2 a) (N.div2 a') = false. Proof. - intros. elim (sumbool_of_bool (Neqb (Ndiv2 a) (Ndiv2 a'))). intro H1. - rewrite (Ndiv2_bit_eq _ _ H0 (Neqb_complete _ _ H1)) in H. - rewrite (Neqb_correct a') in H. discriminate H. - trivial. + intros H H'. eqb2eq. contradict H. now apply Ndiv2_bit_eq. Qed. -Lemma Nneq_elim : - forall a a', - Neqb a a' = false -> - Nbit0 a = negb (Nbit0 a') \/ - Neqb (Ndiv2 a) (Ndiv2 a') = false. +Lemma Nneq_elim a a' : + N.eqb a a' = false -> + N.odd a = negb (N.odd a') \/ + N.eqb (N.div2 a) (N.div2 a') = false. Proof. - intros. cut (Nbit0 a = Nbit0 a' \/ Nbit0 a = negb (Nbit0 a')). + intros. cut (N.odd a = N.odd a' \/ N.odd a = negb (N.odd a')). intros. elim H0. intro. right. apply Ndiv2_bit_neq. assumption. assumption. intro. left. assumption. - case (Nbit0 a); case (Nbit0 a'); auto. + case (N.odd a), (N.odd a'); auto. Qed. -Lemma Ndouble_or_double_plus_un : - forall a, - {a0 : N | a = Ndouble a0} + {a1 : N | a = Ndouble_plus_one a1}. +Lemma Ndouble_or_double_plus_un a : + {a0 : N | a = N.double a0} + {a1 : N | a = N.succ_double a1}. Proof. - intro. elim (sumbool_of_bool (Nbit0 a)). intro H. right. split with (Ndiv2 a). - rewrite (Ndiv2_double_plus_one a H). reflexivity. - intro H. left. split with (Ndiv2 a). rewrite (Ndiv2_double a H). reflexivity. + elim (sumbool_of_bool (N.odd a)); intros H; [right|left]; + exists (N.div2 a); symmetry; + apply Ndiv2_double_plus_one || apply Ndiv2_double; auto. Qed. -(** A boolean order on [N] *) +(** An inefficient boolean order on [N]. Please use [N.leb] instead now. *) -Definition Nleb (a b:N) := leb (nat_of_N a) (nat_of_N b). +Definition Nleb (a b:N) := leb (N.to_nat a) (N.to_nat b). -Lemma Nleb_Nle : forall a b, Nleb a b = true <-> Nle a b. +Lemma Nleb_alt a b : Nleb a b = N.leb a b. Proof. - intros; unfold Nle; rewrite nat_of_Ncompare. - unfold Nleb; apply leb_compare. + unfold Nleb. + now rewrite eq_iff_eq_true, N.leb_le, leb_compare, <- N2Nat.inj_compare. Qed. -Lemma Nleb_refl : forall a, Nleb a a = true. -Proof. - intro. unfold Nleb in |- *. apply leb_correct. apply le_n. -Qed. +Lemma Nleb_Nle a b : Nleb a b = true <-> a <= b. +Proof. now rewrite Nleb_alt, N.leb_le. Qed. -Lemma Nleb_antisym : - forall a b, Nleb a b = true -> Nleb b a = true -> a = b. -Proof. - unfold Nleb in |- *. intros. rewrite <- (N_of_nat_of_N a). rewrite <- (N_of_nat_of_N b). - rewrite (le_antisym _ _ (leb_complete _ _ H) (leb_complete _ _ H0)). reflexivity. -Qed. +Lemma Nleb_refl a : Nleb a a = true. +Proof. rewrite Nleb_Nle; apply N.le_refl. Qed. -Lemma Nleb_trans : - forall a b c, Nleb a b = true -> Nleb b c = true -> Nleb a c = true. -Proof. - unfold Nleb in |- *. intros. apply leb_correct. apply le_trans with (m := nat_of_N b). - apply leb_complete. assumption. - apply leb_complete. assumption. -Qed. +Lemma Nleb_antisym a b : Nleb a b = true -> Nleb b a = true -> a = b. +Proof. rewrite !Nleb_Nle. apply N.le_antisymm. Qed. + +Lemma Nleb_trans a b c : Nleb a b = true -> Nleb b c = true -> Nleb a c = true. +Proof. rewrite !Nleb_Nle. apply N.le_trans. Qed. -Lemma Nleb_ltb_trans : - forall a b c, - Nleb a b = true -> Nleb c b = false -> Nleb c a = false. +Lemma Nleb_ltb_trans a b c : + Nleb a b = true -> Nleb c b = false -> Nleb c a = false. Proof. - unfold Nleb in |- *. intros. apply leb_correct_conv. apply le_lt_trans with (m := nat_of_N b). + unfold Nleb. intros. apply leb_correct_conv. + apply le_lt_trans with (m := N.to_nat b). apply leb_complete. assumption. apply leb_complete_conv. assumption. Qed. -Lemma Nltb_leb_trans : - forall a b c, - Nleb b a = false -> Nleb b c = true -> Nleb c a = false. +Lemma Nltb_leb_trans a b c : + Nleb b a = false -> Nleb b c = true -> Nleb c a = false. Proof. - unfold Nleb in |- *. intros. apply leb_correct_conv. apply lt_le_trans with (m := nat_of_N b). + unfold Nleb. intros. apply leb_correct_conv. + apply lt_le_trans with (m := N.to_nat b). apply leb_complete_conv. assumption. apply leb_complete. assumption. Qed. -Lemma Nltb_trans : - forall a b c, - Nleb b a = false -> Nleb c b = false -> Nleb c a = false. +Lemma Nltb_trans a b c : + Nleb b a = false -> Nleb c b = false -> Nleb c a = false. Proof. - unfold Nleb in |- *. intros. apply leb_correct_conv. apply lt_trans with (m := nat_of_N b). + unfold Nleb. intros. apply leb_correct_conv. + apply lt_trans with (m := N.to_nat b). apply leb_complete_conv. assumption. apply leb_complete_conv. assumption. Qed. -Lemma Nltb_leb_weak : forall a b:N, Nleb b a = false -> Nleb a b = true. +Lemma Nltb_leb_weak a b : Nleb b a = false -> Nleb a b = true. Proof. - unfold Nleb in |- *. intros. apply leb_correct. apply lt_le_weak. + unfold Nleb. intros. apply leb_correct. apply lt_le_weak. apply leb_complete_conv. assumption. Qed. -Lemma Nleb_double_mono : - forall a b, - Nleb a b = true -> Nleb (Ndouble a) (Ndouble b) = true. +Lemma Nleb_double_mono a b : + Nleb a b = true -> Nleb (N.double a) (N.double b) = true. Proof. - unfold Nleb in |- *. intros. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. apply leb_correct. - simpl in |- *. apply plus_le_compat. apply leb_complete. assumption. - apply plus_le_compat. apply leb_complete. assumption. - apply le_n. + unfold Nleb. intros. rewrite !N2Nat.inj_double. apply leb_correct. + apply mult_le_compat_l. now apply leb_complete. Qed. -Lemma Nleb_double_plus_one_mono : - forall a b, - Nleb a b = true -> - Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = true. +Lemma Nleb_double_plus_one_mono a b : + Nleb a b = true -> + Nleb (N.succ_double a) (N.succ_double b) = true. Proof. - unfold Nleb in |- *. intros. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one. - apply leb_correct. apply le_n_S. simpl in |- *. apply plus_le_compat. apply leb_complete. - assumption. - apply plus_le_compat. apply leb_complete. assumption. - apply le_n. + unfold Nleb. intros. rewrite !N2Nat.inj_succ_double. apply leb_correct. + apply le_n_S, mult_le_compat_l. now apply leb_complete. Qed. -Lemma Nleb_double_mono_conv : - forall a b, - Nleb (Ndouble a) (Ndouble b) = true -> Nleb a b = true. +Lemma Nleb_double_mono_conv a b : + Nleb (N.double a) (N.double b) = true -> Nleb a b = true. Proof. - unfold Nleb in |- *. intros a b. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. intro. - apply leb_correct. apply (mult_S_le_reg_l 1). apply leb_complete. assumption. + unfold Nleb. rewrite !N2Nat.inj_double. intro. apply leb_correct. + apply (mult_S_le_reg_l 1). now apply leb_complete. Qed. -Lemma Nleb_double_plus_one_mono_conv : - forall a b, - Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = true -> +Lemma Nleb_double_plus_one_mono_conv a b : + Nleb (N.succ_double a) (N.succ_double b) = true -> Nleb a b = true. Proof. - unfold Nleb in |- *. intros a b. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one. - intro. apply leb_correct. apply (mult_S_le_reg_l 1). apply le_S_n. apply leb_complete. - assumption. + unfold Nleb. rewrite !N2Nat.inj_succ_double. intro. apply leb_correct. + apply (mult_S_le_reg_l 1). apply le_S_n. now apply leb_complete. Qed. -Lemma Nltb_double_mono : - forall a b, - Nleb a b = false -> Nleb (Ndouble a) (Ndouble b) = false. +Lemma Nltb_double_mono a b : + Nleb a b = false -> Nleb (N.double a) (N.double b) = false. Proof. - intros. elim (sumbool_of_bool (Nleb (Ndouble a) (Ndouble b))). intro H0. + intros. elim (sumbool_of_bool (Nleb (N.double a) (N.double b))). intro H0. rewrite (Nleb_double_mono_conv _ _ H0) in H. discriminate H. trivial. Qed. -Lemma Nltb_double_plus_one_mono : - forall a b, - Nleb a b = false -> - Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = false. +Lemma Nltb_double_plus_one_mono a b : + Nleb a b = false -> + Nleb (N.succ_double a) (N.succ_double b) = false. Proof. - intros. elim (sumbool_of_bool (Nleb (Ndouble_plus_one a) (Ndouble_plus_one b))). intro H0. + intros. elim (sumbool_of_bool (Nleb (N.succ_double a) (N.succ_double b))). + intro H0. rewrite (Nleb_double_plus_one_mono_conv _ _ H0) in H. discriminate H. trivial. Qed. -Lemma Nltb_double_mono_conv : - forall a b, - Nleb (Ndouble a) (Ndouble b) = false -> Nleb a b = false. +Lemma Nltb_double_mono_conv a b : + Nleb (N.double a) (N.double b) = false -> Nleb a b = false. Proof. - intros. elim (sumbool_of_bool (Nleb a b)). intro H0. rewrite (Nleb_double_mono _ _ H0) in H. - discriminate H. + intros. elim (sumbool_of_bool (Nleb a b)). intro H0. + rewrite (Nleb_double_mono _ _ H0) in H. discriminate H. trivial. Qed. -Lemma Nltb_double_plus_one_mono_conv : - forall a b, - Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = false -> +Lemma Nltb_double_plus_one_mono_conv a b : + Nleb (N.succ_double a) (N.succ_double b) = false -> Nleb a b = false. Proof. intros. elim (sumbool_of_bool (Nleb a b)). intro H0. @@ -331,110 +254,52 @@ Proof. trivial. Qed. -(* Nleb and Ncompare *) +(* Nleb and N.compare *) -(* NB: No need to prove that Nleb a b = true <-> Ncompare a b <> Gt, +(* NB: No need to prove that Nleb a b = true <-> N.compare a b <> Gt, this statement is in fact Nleb_Nle! *) -Lemma Nltb_Ncompare : forall a b, - Nleb a b = false <-> Ncompare a b = Gt. +Lemma Nltb_Ncompare a b : Nleb a b = false <-> N.compare a b = Gt. Proof. - intros. - assert (IFF : forall x:bool, x = false <-> ~ x = true) - by (destruct x; intuition). - rewrite IFF, Nleb_Nle; unfold Nle. - destruct (Ncompare a b); split; intro H; auto; - elim H; discriminate. + now rewrite N.compare_nle_iff, <- Nleb_Nle, not_true_iff_false. Qed. -Lemma Ncompare_Gt_Nltb : forall a b, - Ncompare a b = Gt -> Nleb a b = false. -Proof. - intros; apply <- Nltb_Ncompare; auto. -Qed. +Lemma Ncompare_Gt_Nltb a b : N.compare a b = Gt -> Nleb a b = false. +Proof. apply <- Nltb_Ncompare; auto. Qed. -Lemma Ncompare_Lt_Nltb : forall a b, - Ncompare a b = Lt -> Nleb b a = false. +Lemma Ncompare_Lt_Nltb a b : N.compare a b = Lt -> Nleb b a = false. Proof. - intros a b H. - rewrite Nltb_Ncompare, <- Ncompare_antisym, H; auto. + intros H. rewrite Nltb_Ncompare, N.compare_antisym, H; auto. Qed. -(* An alternate [min] function over [N] *) +(* Old results about [N.min] *) -Definition Nmin' (a b:N) := if Nleb a b then a else b. +Notation Nmin_choice := N.min_dec (compat "8.3"). -Lemma Nmin_Nmin' : forall a b, Nmin a b = Nmin' a b. -Proof. - unfold Nmin, Nmin', Nleb; intros. - rewrite nat_of_Ncompare. - generalize (leb_compare (nat_of_N a) (nat_of_N b)); - destruct (nat_compare (nat_of_N a) (nat_of_N b)); - destruct (leb (nat_of_N a) (nat_of_N b)); intuition. - lapply H1; intros; discriminate. - lapply H1; intros; discriminate. -Qed. +Lemma Nmin_le_1 a b : Nleb (N.min a b) a = true. +Proof. rewrite Nleb_Nle. apply N.le_min_l. Qed. -Lemma Nmin_choice : forall a b, {Nmin a b = a} + {Nmin a b = b}. -Proof. - unfold Nmin in *; intros; destruct (Ncompare a b); auto. -Qed. +Lemma Nmin_le_2 a b : Nleb (N.min a b) b = true. +Proof. rewrite Nleb_Nle. apply N.le_min_r. Qed. -Lemma Nmin_le_1 : forall a b, Nleb (Nmin a b) a = true. -Proof. - intros; rewrite Nmin_Nmin'. - unfold Nmin'; elim (sumbool_of_bool (Nleb a b)). intro H. rewrite H. - apply Nleb_refl. - intro H. rewrite H. apply Nltb_leb_weak. assumption. -Qed. +Lemma Nmin_le_3 a b c : Nleb a (N.min b c) = true -> Nleb a b = true. +Proof. rewrite !Nleb_Nle. apply N.min_glb_l. Qed. -Lemma Nmin_le_2 : forall a b, Nleb (Nmin a b) b = true. -Proof. - intros; rewrite Nmin_Nmin'. - unfold Nmin'; elim (sumbool_of_bool (Nleb a b)). intro H. rewrite H. assumption. - intro H. rewrite H. apply Nleb_refl. -Qed. +Lemma Nmin_le_4 a b c : Nleb a (N.min b c) = true -> Nleb a c = true. +Proof. rewrite !Nleb_Nle. apply N.min_glb_r. Qed. -Lemma Nmin_le_3 : - forall a b c, Nleb a (Nmin b c) = true -> Nleb a b = true. -Proof. - intros; rewrite Nmin_Nmin' in *. - unfold Nmin' in *; elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H. - assumption. - intro H0. rewrite H0 in H. apply Nltb_leb_weak. apply Nleb_ltb_trans with (b := c); assumption. -Qed. +Lemma Nmin_le_5 a b c : + Nleb a b = true -> Nleb a c = true -> Nleb a (N.min b c) = true. +Proof. rewrite !Nleb_Nle. apply N.min_glb. Qed. -Lemma Nmin_le_4 : - forall a b c, Nleb a (Nmin b c) = true -> Nleb a c = true. +Lemma Nmin_lt_3 a b c : Nleb (N.min b c) a = false -> Nleb b a = false. Proof. - intros; rewrite Nmin_Nmin' in *. - unfold Nmin' in *; elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H. - apply Nleb_trans with (b := b); assumption. - intro H0. rewrite H0 in H. assumption. -Qed. - -Lemma Nmin_le_5 : - forall a b c, - Nleb a b = true -> Nleb a c = true -> Nleb a (Nmin b c) = true. -Proof. - intros. elim (Nmin_choice b c). intro H1. rewrite H1. assumption. - intro H1. rewrite H1. assumption. -Qed. - -Lemma Nmin_lt_3 : - forall a b c, Nleb (Nmin b c) a = false -> Nleb b a = false. -Proof. - intros; rewrite Nmin_Nmin' in *. - unfold Nmin' in *. intros. elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H. - assumption. - intro H0. rewrite H0 in H. apply Nltb_trans with (b := c); assumption. + rewrite <- !not_true_iff_false, !Nleb_Nle. + rewrite N.min_le_iff; auto. Qed. -Lemma Nmin_lt_4 : - forall a b c, Nleb (Nmin b c) a = false -> Nleb c a = false. +Lemma Nmin_lt_4 a b c : Nleb (N.min b c) a = false -> Nleb c a = false. Proof. - intros; rewrite Nmin_Nmin' in *. - unfold Nmin' in *. elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H. - apply Nltb_leb_trans with (b := b); assumption. - intro H0. rewrite H0 in H. assumption. + rewrite <- !not_true_iff_false, !Nleb_Nle. + rewrite N.min_le_iff; auto. Qed. diff --git a/theories/NArith/Ndigits.v b/theories/NArith/Ndigits.v index b0c33595..4ea8e1d4 100644 --- a/theories/NArith/Ndigits.v +++ b/theories/NArith/Ndigits.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* - Nbit (N.shiftl_nat a n) m = Nbit a (m-n). + N.testbit_nat (N.shiftl_nat a n) m = N.testbit_nat a (m-n). Proof. induction n; intros m H. now rewrite <- minus_n_O. @@ -118,7 +118,7 @@ Proof. Qed. Lemma Nshiftl_nat_spec_low : forall a n m, (m - Nbit (N.shiftl_nat a n) m = false. + N.testbit_nat (N.shiftl_nat a n) m = false. Proof. induction n; intros m H. inversion H. rewrite Nshiftl_nat_S. @@ -151,52 +151,52 @@ Proof. rewrite 2 Pshiftl_nat_S. now f_equal. Qed. -(** Semantics of bitwise operations with respect to [Nbit] *) +(** Semantics of bitwise operations with respect to [N.testbit_nat] *) Lemma Pxor_semantics p p' n : - Nbit (Pos.lxor p p') n = xorb (Pbit p n) (Pbit p' n). + N.testbit_nat (Pos.lxor p p') n = xorb (Pos.testbit_nat p n) (Pos.testbit_nat p' n). Proof. rewrite <- Ntestbit_Nbit, <- !Ptestbit_Pbit. apply N.pos_lxor_spec. Qed. Lemma Nxor_semantics a a' n : - Nbit (N.lxor a a') n = xorb (Nbit a n) (Nbit a' n). + N.testbit_nat (N.lxor a a') n = xorb (N.testbit_nat a n) (N.testbit_nat a' n). Proof. rewrite <- !Ntestbit_Nbit. apply N.lxor_spec. Qed. Lemma Por_semantics p p' n : - Pbit (Pos.lor p p') n = (Pbit p n) || (Pbit p' n). + Pos.testbit_nat (Pos.lor p p') n = (Pos.testbit_nat p n) || (Pos.testbit_nat p' n). Proof. rewrite <- !Ptestbit_Pbit. apply N.pos_lor_spec. Qed. Lemma Nor_semantics a a' n : - Nbit (N.lor a a') n = (Nbit a n) || (Nbit a' n). + N.testbit_nat (N.lor a a') n = (N.testbit_nat a n) || (N.testbit_nat a' n). Proof. rewrite <- !Ntestbit_Nbit. apply N.lor_spec. Qed. Lemma Pand_semantics p p' n : - Nbit (Pos.land p p') n = (Pbit p n) && (Pbit p' n). + N.testbit_nat (Pos.land p p') n = (Pos.testbit_nat p n) && (Pos.testbit_nat p' n). Proof. rewrite <- Ntestbit_Nbit, <- !Ptestbit_Pbit. apply N.pos_land_spec. Qed. Lemma Nand_semantics a a' n : - Nbit (N.land a a') n = (Nbit a n) && (Nbit a' n). + N.testbit_nat (N.land a a') n = (N.testbit_nat a n) && (N.testbit_nat a' n). Proof. rewrite <- !Ntestbit_Nbit. apply N.land_spec. Qed. Lemma Pdiff_semantics p p' n : - Nbit (Pos.ldiff p p') n = (Pbit p n) && negb (Pbit p' n). + N.testbit_nat (Pos.ldiff p p') n = (Pos.testbit_nat p n) && negb (Pos.testbit_nat p' n). Proof. rewrite <- Ntestbit_Nbit, <- !Ptestbit_Pbit. apply N.pos_ldiff_spec. Qed. Lemma Ndiff_semantics a a' n : - Nbit (N.ldiff a a') n = (Nbit a n) && negb (Nbit a' n). + N.testbit_nat (N.ldiff a a') n = (N.testbit_nat a n) && negb (N.testbit_nat a' n). Proof. rewrite <- !Ntestbit_Nbit. apply N.ldiff_spec. Qed. @@ -213,13 +213,13 @@ Local Infix "==" := eqf (at level 70, no associativity). Local Notation Step H := (fun n => H (S n)). -Lemma Pbit_faithful_0 : forall p, ~(Pbit p == (fun _ => false)). +Lemma Pbit_faithful_0 : forall p, ~(Pos.testbit_nat p == (fun _ => false)). Proof. induction p as [p IHp|p IHp| ]; intros H; try discriminate (H O). apply (IHp (Step H)). Qed. -Lemma Pbit_faithful : forall p p', Pbit p == Pbit p' -> p = p'. +Lemma Pbit_faithful : forall p p', Pos.testbit_nat p == Pos.testbit_nat p' -> p = p'. Proof. induction p as [p IHp|p IHp| ]; intros [p'|p'|] H; trivial; try discriminate (H O). @@ -229,7 +229,7 @@ Proof. symmetry in H. destruct (Pbit_faithful_0 _ (Step H)). Qed. -Lemma Nbit_faithful : forall n n', Nbit n == Nbit n' -> n = n'. +Lemma Nbit_faithful : forall n n', N.testbit_nat n == N.testbit_nat n' -> n = n'. Proof. intros [|p] [|p'] H; trivial. symmetry in H. destruct (Pbit_faithful_0 _ H). @@ -237,7 +237,7 @@ Proof. f_equal. apply Pbit_faithful, H. Qed. -Lemma Nbit_faithful_iff : forall n n', Nbit n == Nbit n' <-> n = n'. +Lemma Nbit_faithful_iff : forall n n', N.testbit_nat n == N.testbit_nat n' <-> n = n'. Proof. split. apply Nbit_faithful. intros; now subst. Qed. @@ -247,30 +247,30 @@ Local Close Scope N_scope. (** Checking whether a number is odd, i.e. if its lower bit is set. *) -Notation Nbit0 := N.odd (only parsing). +Notation Nbit0 := N.odd (compat "8.3"). -Definition Nodd (n:N) := Nbit0 n = true. -Definition Neven (n:N) := Nbit0 n = false. +Definition Nodd (n:N) := N.odd n = true. +Definition Neven (n:N) := N.odd n = false. -Lemma Nbit0_correct : forall n:N, Nbit n 0 = Nbit0 n. +Lemma Nbit0_correct : forall n:N, N.testbit_nat n 0 = N.odd n. Proof. destruct n; trivial. destruct p; trivial. Qed. -Lemma Ndouble_bit0 : forall n:N, Nbit0 (Ndouble n) = false. +Lemma Ndouble_bit0 : forall n:N, N.odd (N.double n) = false. Proof. destruct n; trivial. Qed. Lemma Ndouble_plus_one_bit0 : - forall n:N, Nbit0 (Ndouble_plus_one n) = true. + forall n:N, N.odd (N.succ_double n) = true. Proof. destruct n; trivial. Qed. Lemma Ndiv2_double : - forall n:N, Neven n -> Ndouble (Ndiv2 n) = n. + forall n:N, Neven n -> N.double (N.div2 n) = n. Proof. destruct n. trivial. destruct p. intro H. discriminate H. intros. reflexivity. @@ -278,7 +278,7 @@ Proof. Qed. Lemma Ndiv2_double_plus_one : - forall n:N, Nodd n -> Ndouble_plus_one (Ndiv2 n) = n. + forall n:N, Nodd n -> N.succ_double (N.div2 n) = n. Proof. destruct n. intro. discriminate H. destruct p. intros. reflexivity. @@ -287,31 +287,31 @@ Proof. Qed. Lemma Ndiv2_correct : - forall (a:N) (n:nat), Nbit (Ndiv2 a) n = Nbit a (S n). + forall (a:N) (n:nat), N.testbit_nat (N.div2 a) n = N.testbit_nat a (S n). Proof. destruct a; trivial. destruct p; trivial. Qed. Lemma Nxor_bit0 : - forall a a':N, Nbit0 (Nxor a a') = xorb (Nbit0 a) (Nbit0 a'). + forall a a':N, N.odd (N.lxor a a') = xorb (N.odd a) (N.odd a'). Proof. intros. rewrite <- Nbit0_correct, (Nxor_semantics a a' O). rewrite Nbit0_correct, Nbit0_correct. reflexivity. Qed. Lemma Nxor_div2 : - forall a a':N, Ndiv2 (Nxor a a') = Nxor (Ndiv2 a) (Ndiv2 a'). + forall a a':N, N.div2 (N.lxor a a') = N.lxor (N.div2 a) (N.div2 a'). Proof. intros. apply Nbit_faithful. unfold eqf. intro. - rewrite (Nxor_semantics (Ndiv2 a) (Ndiv2 a') n), Ndiv2_correct, (Nxor_semantics a a' (S n)). + rewrite (Nxor_semantics (N.div2 a) (N.div2 a') n), Ndiv2_correct, (Nxor_semantics a a' (S n)). rewrite 2! Ndiv2_correct. reflexivity. Qed. Lemma Nneg_bit0 : forall a a':N, - Nbit0 (Nxor a a') = true -> Nbit0 a = negb (Nbit0 a'). + N.odd (N.lxor a a') = true -> N.odd a = negb (N.odd a'). Proof. intros. rewrite <- true_xorb, <- H, Nxor_bit0, xorb_assoc, @@ -320,24 +320,24 @@ Proof. Qed. Lemma Nneg_bit0_1 : - forall a a':N, Nxor a a' = Npos 1 -> Nbit0 a = negb (Nbit0 a'). + forall a a':N, N.lxor a a' = Npos 1 -> N.odd a = negb (N.odd a'). Proof. intros. apply Nneg_bit0. rewrite H. reflexivity. Qed. Lemma Nneg_bit0_2 : forall (a a':N) (p:positive), - Nxor a a' = Npos (xI p) -> Nbit0 a = negb (Nbit0 a'). + N.lxor a a' = Npos (xI p) -> N.odd a = negb (N.odd a'). Proof. intros. apply Nneg_bit0. rewrite H. reflexivity. Qed. Lemma Nsame_bit0 : forall (a a':N) (p:positive), - Nxor a a' = Npos (xO p) -> Nbit0 a = Nbit0 a'. + N.lxor a a' = Npos (xO p) -> N.odd a = N.odd a'. Proof. - intros. rewrite <- (xorb_false (Nbit0 a)). - assert (H0: Nbit0 (Npos (xO p)) = false) by reflexivity. + intros. rewrite <- (xorb_false (N.odd a)). + assert (H0: N.odd (Npos (xO p)) = false) by reflexivity. rewrite <- H0, <- H, Nxor_bit0, <- xorb_assoc, xorb_nilpotent, false_xorb. reflexivity. Qed. @@ -346,77 +346,77 @@ Qed. Fixpoint Nless_aux (a a':N) (p:positive) : bool := match p with - | xO p' => Nless_aux (Ndiv2 a) (Ndiv2 a') p' - | _ => andb (negb (Nbit0 a)) (Nbit0 a') + | xO p' => Nless_aux (N.div2 a) (N.div2 a') p' + | _ => andb (negb (N.odd a)) (N.odd a') end. Definition Nless (a a':N) := - match Nxor a a' with + match N.lxor a a' with | N0 => false | Npos p => Nless_aux a a' p end. Lemma Nbit0_less : forall a a', - Nbit0 a = false -> Nbit0 a' = true -> Nless a a' = true. + N.odd a = false -> N.odd a' = true -> Nless a a' = true. Proof. - intros. destruct (Ndiscr (Nxor a a')) as [(p,H2)|H1]. unfold Nless. + intros. destruct (N.discr (N.lxor a a')) as [(p,H2)|H1]. unfold Nless. rewrite H2. destruct p. simpl. rewrite H, H0. reflexivity. - assert (H1: Nbit0 (Nxor a a') = false) by (rewrite H2; reflexivity). + assert (H1: N.odd (N.lxor a a') = false) by (rewrite H2; reflexivity). rewrite (Nxor_bit0 a a'), H, H0 in H1. discriminate H1. simpl. rewrite H, H0. reflexivity. - assert (H2: Nbit0 (Nxor a a') = false) by (rewrite H1; reflexivity). + assert (H2: N.odd (N.lxor a a') = false) by (rewrite H1; reflexivity). rewrite (Nxor_bit0 a a'), H, H0 in H2. discriminate H2. Qed. Lemma Nbit0_gt : forall a a', - Nbit0 a = true -> Nbit0 a' = false -> Nless a a' = false. + N.odd a = true -> N.odd a' = false -> Nless a a' = false. Proof. - intros. destruct (Ndiscr (Nxor a a')) as [(p,H2)|H1]. unfold Nless. + intros. destruct (N.discr (N.lxor a a')) as [(p,H2)|H1]. unfold Nless. rewrite H2. destruct p. simpl. rewrite H, H0. reflexivity. - assert (H1: Nbit0 (Nxor a a') = false) by (rewrite H2; reflexivity). + assert (H1: N.odd (N.lxor a a') = false) by (rewrite H2; reflexivity). rewrite (Nxor_bit0 a a'), H, H0 in H1. discriminate H1. simpl. rewrite H, H0. reflexivity. - assert (H2: Nbit0 (Nxor a a') = false) by (rewrite H1; reflexivity). + assert (H2: N.odd (N.lxor a a') = false) by (rewrite H1; reflexivity). rewrite (Nxor_bit0 a a'), H, H0 in H2. discriminate H2. Qed. Lemma Nless_not_refl : forall a, Nless a a = false. Proof. - intro. unfold Nless. rewrite (Nxor_nilpotent a). reflexivity. + intro. unfold Nless. rewrite (N.lxor_nilpotent a). reflexivity. Qed. Lemma Nless_def_1 : - forall a a', Nless (Ndouble a) (Ndouble a') = Nless a a'. + forall a a', Nless (N.double a) (N.double a') = Nless a a'. Proof. destruct a; destruct a'. reflexivity. trivial. unfold Nless. simpl. destruct p; trivial. - unfold Nless. simpl. destruct (Pxor p p0). reflexivity. + unfold Nless. simpl. destruct (Pos.lxor p p0). reflexivity. trivial. Qed. Lemma Nless_def_2 : forall a a', - Nless (Ndouble_plus_one a) (Ndouble_plus_one a') = Nless a a'. + Nless (N.succ_double a) (N.succ_double a') = Nless a a'. Proof. destruct a; destruct a'. reflexivity. trivial. unfold Nless. simpl. destruct p; trivial. - unfold Nless. simpl. destruct (Pxor p p0). reflexivity. + unfold Nless. simpl. destruct (Pos.lxor p p0). reflexivity. trivial. Qed. Lemma Nless_def_3 : - forall a a', Nless (Ndouble a) (Ndouble_plus_one a') = true. + forall a a', Nless (N.double a) (N.succ_double a') = true. Proof. intros. apply Nbit0_less. apply Ndouble_bit0. apply Ndouble_plus_one_bit0. Qed. Lemma Nless_def_4 : - forall a a', Nless (Ndouble_plus_one a) (Ndouble a') = false. + forall a a', Nless (N.succ_double a) (N.double a') = false. Proof. intros. apply Nbit0_gt. apply Ndouble_plus_one_bit0. apply Ndouble_bit0. @@ -425,7 +425,7 @@ Qed. Lemma Nless_z : forall a, Nless a N0 = false. Proof. induction a. reflexivity. - unfold Nless. rewrite (Nxor_neutral_right (Npos p)). induction p; trivial. + unfold Nless. rewrite (N.lxor_0_r (Npos p)). induction p; trivial. Qed. Lemma N0_less_1 : @@ -445,26 +445,26 @@ Lemma Nless_trans : forall a a' a'', Nless a a' = true -> Nless a' a'' = true -> Nless a a'' = true. Proof. - induction a as [|a IHa|a IHa] using N_ind_double; intros a' a'' H H0. + induction a as [|a IHa|a IHa] using N.binary_ind; intros a' a'' H H0. case_eq (Nless N0 a'') ; intros Heqn. trivial. rewrite (N0_less_2 a'' Heqn), (Nless_z a') in H0. discriminate H0. - induction a' as [|a' _|a' _] using N_ind_double. - rewrite (Nless_z (Ndouble a)) in H. discriminate H. + induction a' as [|a' _|a' _] using N.binary_ind. + rewrite (Nless_z (N.double a)) in H. discriminate H. rewrite (Nless_def_1 a a') in H. - induction a'' using N_ind_double. - rewrite (Nless_z (Ndouble a')) in H0. discriminate H0. + induction a'' using N.binary_ind. + rewrite (Nless_z (N.double a')) in H0. discriminate H0. rewrite (Nless_def_1 a' a'') in H0. rewrite (Nless_def_1 a a''). exact (IHa _ _ H H0). apply Nless_def_3. - induction a'' as [|a'' _|a'' _] using N_ind_double. - rewrite (Nless_z (Ndouble_plus_one a')) in H0. discriminate H0. + induction a'' as [|a'' _|a'' _] using N.binary_ind. + rewrite (Nless_z (N.succ_double a')) in H0. discriminate H0. rewrite (Nless_def_4 a' a'') in H0. discriminate H0. apply Nless_def_3. - induction a' as [|a' _|a' _] using N_ind_double. - rewrite (Nless_z (Ndouble_plus_one a)) in H. discriminate H. + induction a' as [|a' _|a' _] using N.binary_ind. + rewrite (Nless_z (N.succ_double a)) in H. discriminate H. rewrite (Nless_def_4 a a') in H. discriminate H. - induction a'' using N_ind_double. - rewrite (Nless_z (Ndouble_plus_one a')) in H0. discriminate H0. + induction a'' using N.binary_ind. + rewrite (Nless_z (N.succ_double a')) in H0. discriminate H0. rewrite (Nless_def_4 a' a'') in H0. discriminate H0. rewrite (Nless_def_2 a' a'') in H0. rewrite (Nless_def_2 a a') in H. rewrite (Nless_def_2 a a''). exact (IHa _ _ H H0). @@ -473,17 +473,17 @@ Qed. Lemma Nless_total : forall a a', {Nless a a' = true} + {Nless a' a = true} + {a = a'}. Proof. - induction a using N_rec_double; intro a'. + induction a using N.binary_rec; intro a'. case_eq (Nless N0 a') ; intros Heqb. left. left. auto. right. rewrite (N0_less_2 a' Heqb). reflexivity. - induction a' as [|a' _|a' _] using N_rec_double. - case_eq (Nless N0 (Ndouble a)) ; intros Heqb. left. right. auto. + induction a' as [|a' _|a' _] using N.binary_rec. + case_eq (Nless N0 (N.double a)) ; intros Heqb. left. right. auto. right. exact (N0_less_2 _ Heqb). rewrite 2!Nless_def_1. destruct (IHa a') as [ | ->]. left. assumption. right. reflexivity. left. left. apply Nless_def_3. - induction a' as [|a' _|a' _] using N_rec_double. + induction a' as [|a' _|a' _] using N.binary_rec. left. right. destruct a; reflexivity. left. right. apply Nless_def_3. rewrite 2!Nless_def_2. destruct (IHa a') as [ | ->]. @@ -493,19 +493,19 @@ Qed. (** Number of digits in a number *) -Notation Nsize := N.size_nat (only parsing). +Notation Nsize := N.size_nat (compat "8.3"). (** conversions between N and bit vectors. *) -Fixpoint P2Bv (p:positive) : Bvector (Psize p) := - match p return Bvector (Psize p) with +Fixpoint P2Bv (p:positive) : Bvector (Pos.size_nat p) := + match p return Bvector (Pos.size_nat p) with | xH => Bvect_true 1%nat - | xO p => Bcons false (Psize p) (P2Bv p) - | xI p => Bcons true (Psize p) (P2Bv p) + | xO p => Bcons false (Pos.size_nat p) (P2Bv p) + | xI p => Bcons true (Pos.size_nat p) (P2Bv p) end. -Definition N2Bv (n:N) : Bvector (Nsize n) := - match n as n0 return Bvector (Nsize n0) with +Definition N2Bv (n:N) : Bvector (N.size_nat n) := + match n as n0 return Bvector (N.size_nat n0) with | N0 => Bnil | Npos p => P2Bv p end. @@ -513,8 +513,8 @@ Definition N2Bv (n:N) : Bvector (Nsize n) := Fixpoint Bv2N (n:nat)(bv:Bvector n) : N := match bv with | Vector.nil => N0 - | Vector.cons false n bv => Ndouble (Bv2N n bv) - | Vector.cons true n bv => Ndouble_plus_one (Bv2N n bv) + | Vector.cons false n bv => N.double (Bv2N n bv) + | Vector.cons true n bv => N.succ_double (Bv2N n bv) end. Lemma Bv2N_N2Bv : forall n, Bv2N _ (N2Bv n) = n. @@ -528,7 +528,7 @@ Qed. bit vector has some zeros on its right, they will disappear during the return [Bv2N] translation: *) -Lemma Bv2N_Nsize : forall n (bv:Bvector n), Nsize (Bv2N n bv) <= n. +Lemma Bv2N_Nsize : forall n (bv:Bvector n), N.size_nat (Bv2N n bv) <= n. Proof. induction bv; intros. auto. @@ -543,7 +543,7 @@ Qed. Lemma Bv2N_Nsize_1 : forall n (bv:Bvector (S n)), Bsign _ bv = true <-> - Nsize (Bv2N _ bv) = (S n). + N.size_nat (Bv2N _ bv) = (S n). Proof. apply Vector.rectS ; intros ; simpl. destruct a ; compute ; split ; intros x ; now inversion x. @@ -567,7 +567,7 @@ Fixpoint N2Bv_gen (n:nat)(a:N) : Bvector n := (** The first [N2Bv] is then a special case of [N2Bv_gen] *) -Lemma N2Bv_N2Bv_gen : forall (a:N), N2Bv a = N2Bv_gen (Nsize a) a. +Lemma N2Bv_N2Bv_gen : forall (a:N), N2Bv a = N2Bv_gen (N.size_nat a) a. Proof. destruct a; simpl. auto. @@ -578,7 +578,7 @@ Qed. [a] plus some zeros. *) Lemma N2Bv_N2Bv_gen_above : forall (a:N)(k:nat), - N2Bv_gen (Nsize a + k) a = Vector.append (N2Bv a) (Bvect_false k). + N2Bv_gen (N.size_nat a + k) a = Vector.append (N2Bv a) (Bvect_false k). Proof. destruct a; simpl. destruct k; simpl; auto. @@ -603,7 +603,7 @@ Qed. (** accessing some precise bits. *) Lemma Nbit0_Blow : forall n, forall (bv:Bvector (S n)), - Nbit0 (Bv2N _ bv) = Blow _ bv. + N.odd (Bv2N _ bv) = Blow _ bv. Proof. apply Vector.caseS. intros. @@ -616,7 +616,7 @@ Qed. Notation Bnth := (@Vector.nth_order bool). Lemma Bnth_Nbit : forall n (bv:Bvector n) p (H:p Nbit n p = false. +Lemma Nbit_Nsize : forall n p, N.size_nat n <= p -> N.testbit_nat n p = false. Proof. destruct n as [|n]. simpl; auto. @@ -635,7 +635,8 @@ inversion H. inversion H. Qed. -Lemma Nbit_Bth: forall n p (H:p < Nsize n), Nbit n p = Bnth (N2Bv n) H. +Lemma Nbit_Bth: forall n p (H:p < N.size_nat n), + N.testbit_nat n p = Bnth (N2Bv n) H. Proof. destruct n as [|n]. inversion H. @@ -646,7 +647,7 @@ Qed. (** Binary bitwise operations are the same in the two worlds. *) Lemma Nxor_BVxor : forall n (bv bv' : Bvector n), - Bv2N _ (BVxor _ bv bv') = Nxor (Bv2N _ bv) (Bv2N _ bv'). + Bv2N _ (BVxor _ bv bv') = N.lxor (Bv2N _ bv) (Bv2N _ bv'). Proof. apply Vector.rect2 ; intros. now simpl. diff --git a/theories/NArith/Ndist.v b/theories/NArith/Ndist.v index 22adc505..ce4f7663 100644 --- a/theories/NArith/Ndist.v +++ b/theories/NArith/Ndist.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* a = N0. Proof. simple induction a; trivial. - unfold Nplength in |- *; intros; discriminate H. + unfold Nplength; intros; discriminate H. Qed. Lemma Nplength_zeros : forall (a:N) (n:nat), - Nplength a = ni n -> forall k:nat, k < n -> Nbit a k = false. + Nplength a = ni n -> forall k:nat, k < n -> N.testbit_nat a k = false. Proof. simple induction a; trivial. simple induction p. simple induction n. intros. inversion H1. @@ -46,33 +46,33 @@ Proof. intros. simpl in H1. discriminate H1. simple induction k. trivial. generalize H0. case n. intros. inversion H3. - intros. simpl in |- *. unfold Nbit in H. apply (H n0). simpl in H1. inversion H1. reflexivity. + intros. simpl. unfold N.testbit_nat in H. apply (H n0). simpl in H1. inversion H1. reflexivity. exact (lt_S_n n1 n0 H3). - simpl in |- *. intros n H. inversion H. intros. inversion H0. + simpl. intros n H. inversion H. intros. inversion H0. Qed. Lemma Nplength_one : - forall (a:N) (n:nat), Nplength a = ni n -> Nbit a n = true. + forall (a:N) (n:nat), Nplength a = ni n -> N.testbit_nat a n = true. Proof. simple induction a. intros. inversion H. simple induction p. intros. simpl in H0. inversion H0. reflexivity. - intros. simpl in H0. inversion H0. simpl in |- *. unfold Nbit in H. apply H. reflexivity. + intros. simpl in H0. inversion H0. simpl. unfold N.testbit_nat in H. apply H. reflexivity. intros. simpl in H. inversion H. reflexivity. Qed. Lemma Nplength_first_one : forall (a:N) (n:nat), - (forall k:nat, k < n -> Nbit a k = false) -> - Nbit a n = true -> Nplength a = ni n. + (forall k:nat, k < n -> N.testbit_nat a k = false) -> + N.testbit_nat a n = true -> Nplength a = ni n. Proof. simple induction a. intros. simpl in H0. discriminate H0. simple induction p. intros. generalize H0. case n. intros. reflexivity. - intros. absurd (Nbit (Npos (xI p0)) 0 = false). trivial with bool. + intros. absurd (N.testbit_nat (Npos (xI p0)) 0 = false). trivial with bool. auto with bool arith. intros. generalize H0 H1. case n. intros. simpl in H3. discriminate H3. - intros. simpl in |- *. unfold Nplength in H. + intros. simpl. unfold Nplength in H. cut (ni (Pplength p0) = ni n0). intro. inversion H4. reflexivity. - apply H. intros. change (Nbit (Npos (xO p0)) (S k) = false) in |- *. apply H2. apply lt_n_S. exact H4. + apply H. intros. change (N.testbit_nat (Npos (xO p0)) (S k) = false). apply H2. apply lt_n_S. exact H4. exact H3. intro. case n. trivial. intros. simpl in H0. discriminate H0. @@ -90,10 +90,10 @@ Definition ni_min (d d':natinf) := Lemma ni_min_idemp : forall d:natinf, ni_min d d = d. Proof. simple induction d; trivial. - unfold ni_min in |- *. + unfold ni_min. simple induction n; trivial. intros. - simpl in |- *. + simpl. inversion H. rewrite H1. rewrite H1. @@ -105,7 +105,7 @@ Proof. simple induction d. simple induction d'; trivial. simple induction d'; trivial. elim n. simple induction n0; trivial. intros. elim n1; trivial. intros. unfold ni_min in H. cut (min n0 n2 = min n2 n0). - intro. unfold ni_min in |- *. simpl in |- *. rewrite H1. reflexivity. + intro. unfold ni_min. simpl. rewrite H1. reflexivity. cut (ni (min n0 n2) = ni (min n2 n0)). intros. inversion H1; trivial. exact (H n2). @@ -116,11 +116,11 @@ Lemma ni_min_assoc : Proof. simple induction d; trivial. simple induction d'; trivial. simple induction d''; trivial. - unfold ni_min in |- *. intro. cut (min (min n n0) n1 = min n (min n0 n1)). + unfold ni_min. intro. cut (min (min n n0) n1 = min n (min n0 n1)). intro. rewrite H. reflexivity. generalize n0 n1. elim n; trivial. simple induction n3; trivial. simple induction n5; trivial. - intros. simpl in |- *. auto. + intros. simpl. auto. Qed. Lemma ni_min_O_l : forall d:natinf, ni_min (ni 0) d = ni 0. @@ -152,42 +152,42 @@ Qed. Lemma ni_le_antisym : forall d d':natinf, ni_le d d' -> ni_le d' d -> d = d'. Proof. - unfold ni_le in |- *. intros d d'. rewrite ni_min_comm. intro H. rewrite H. trivial. + unfold ni_le. intros d d'. rewrite ni_min_comm. intro H. rewrite H. trivial. Qed. Lemma ni_le_trans : forall d d' d'':natinf, ni_le d d' -> ni_le d' d'' -> ni_le d d''. Proof. - unfold ni_le in |- *. intros. rewrite <- H. rewrite ni_min_assoc. rewrite H0. reflexivity. + unfold ni_le. intros. rewrite <- H. rewrite ni_min_assoc. rewrite H0. reflexivity. Qed. Lemma ni_le_min_1 : forall d d':natinf, ni_le (ni_min d d') d. Proof. - unfold ni_le in |- *. intros. rewrite (ni_min_comm d d'). rewrite ni_min_assoc. + unfold ni_le. intros. rewrite (ni_min_comm d d'). rewrite ni_min_assoc. rewrite ni_min_idemp. reflexivity. Qed. Lemma ni_le_min_2 : forall d d':natinf, ni_le (ni_min d d') d'. Proof. - unfold ni_le in |- *. intros. rewrite ni_min_assoc. rewrite ni_min_idemp. reflexivity. + unfold ni_le. intros. rewrite ni_min_assoc. rewrite ni_min_idemp. reflexivity. Qed. Lemma ni_min_case : forall d d':natinf, ni_min d d' = d \/ ni_min d d' = d'. Proof. simple induction d. intro. right. exact (ni_min_inf_l d'). simple induction d'. left. exact (ni_min_inf_r (ni n)). - unfold ni_min in |- *. cut (forall n0:nat, min n n0 = n \/ min n n0 = n0). + unfold ni_min. cut (forall n0:nat, min n n0 = n \/ min n n0 = n0). intros. case (H n0). intro. left. rewrite H0. reflexivity. intro. right. rewrite H0. reflexivity. elim n. intro. left. reflexivity. simple induction n1. right. reflexivity. - intros. case (H n2). intro. left. simpl in |- *. rewrite H1. reflexivity. - intro. right. simpl in |- *. rewrite H1. reflexivity. + intros. case (H n2). intro. left. simpl. rewrite H1. reflexivity. + intro. right. simpl. rewrite H1. reflexivity. Qed. Lemma ni_le_total : forall d d':natinf, ni_le d d' \/ ni_le d' d. Proof. - unfold ni_le in |- *. intros. rewrite (ni_min_comm d' d). apply ni_min_case. + unfold ni_le. intros. rewrite (ni_min_comm d' d). apply ni_min_case. Qed. Lemma ni_le_min_induc : @@ -201,7 +201,7 @@ Proof. apply ni_le_antisym. apply H1. apply ni_le_refl. exact H2. exact H. - intro. rewrite H2. apply ni_le_antisym. apply H1. unfold ni_le in |- *. rewrite ni_min_comm. exact H2. + intro. rewrite H2. apply ni_le_antisym. apply H1. unfold ni_le. rewrite ni_min_comm. exact H2. apply ni_le_refl. exact H0. Qed. @@ -209,40 +209,40 @@ Qed. Lemma le_ni_le : forall m n:nat, m <= n -> ni_le (ni m) (ni n). Proof. cut (forall m n:nat, m <= n -> min m n = m). - intros. unfold ni_le, ni_min in |- *. rewrite (H m n H0). reflexivity. + intros. unfold ni_le, ni_min. rewrite (H m n H0). reflexivity. simple induction m. trivial. simple induction n0. intro. inversion H0. - intros. simpl in |- *. rewrite (H n1 (le_S_n n n1 H1)). reflexivity. + intros. simpl. rewrite (H n1 (le_S_n n n1 H1)). reflexivity. Qed. Lemma ni_le_le : forall m n:nat, ni_le (ni m) (ni n) -> m <= n. Proof. - unfold ni_le in |- *. unfold ni_min in |- *. intros. inversion H. apply le_min_r. + unfold ni_le. unfold ni_min. intros. inversion H. apply le_min_r. Qed. Lemma Nplength_lb : forall (a:N) (n:nat), - (forall k:nat, k < n -> Nbit a k = false) -> ni_le (ni n) (Nplength a). + (forall k:nat, k < n -> N.testbit_nat a k = false) -> ni_le (ni n) (Nplength a). Proof. simple induction a. intros. exact (ni_min_inf_r (ni n)). - intros. unfold Nplength in |- *. apply le_ni_le. case (le_or_lt n (Pplength p)). trivial. - intro. absurd (Nbit (Npos p) (Pplength p) = false). + intros. unfold Nplength. apply le_ni_le. case (le_or_lt n (Pplength p)). trivial. + intro. absurd (N.testbit_nat (Npos p) (Pplength p) = false). rewrite (Nplength_one (Npos p) (Pplength p) - (refl_equal (Nplength (Npos p)))). + (eq_refl (Nplength (Npos p)))). discriminate. apply H. exact H0. Qed. Lemma Nplength_ub : - forall (a:N) (n:nat), Nbit a n = true -> ni_le (Nplength a) (ni n). + forall (a:N) (n:nat), N.testbit_nat a n = true -> ni_le (Nplength a) (ni n). Proof. simple induction a. intros. discriminate H. - intros. unfold Nplength in |- *. apply le_ni_le. case (le_or_lt (Pplength p) n). trivial. - intro. absurd (Nbit (Npos p) n = true). + intros. unfold Nplength. apply le_ni_le. case (le_or_lt (Pplength p) n). trivial. + intro. absurd (N.testbit_nat (Npos p) n = true). rewrite (Nplength_zeros (Npos p) (Pplength p) - (refl_equal (Nplength (Npos p))) n H0). + (eq_refl (Nplength (Npos p))) n H0). discriminate. exact H. Qed. @@ -255,26 +255,26 @@ Qed. Instead of working with $d$, we work with $pd$, namely [Npdist]: *) -Definition Npdist (a a':N) := Nplength (Nxor a a'). +Definition Npdist (a a':N) := Nplength (N.lxor a a'). (** d is a distance, so $d(a,a')=0$ iff $a=a'$; this means that $pd(a,a')=infty$ iff $a=a'$: *) Lemma Npdist_eq_1 : forall a:N, Npdist a a = infty. Proof. - intros. unfold Npdist in |- *. rewrite Nxor_nilpotent. reflexivity. + intros. unfold Npdist. rewrite N.lxor_nilpotent. reflexivity. Qed. Lemma Npdist_eq_2 : forall a a':N, Npdist a a' = infty -> a = a'. Proof. - intros. apply Nxor_eq. apply Nplength_infty. exact H. + intros. apply N.lxor_eq. apply Nplength_infty. exact H. Qed. (** $d$ is a distance, so $d(a,a')=d(a',a)$: *) Lemma Npdist_comm : forall a a':N, Npdist a a' = Npdist a' a. Proof. - unfold Npdist in |- *. intros. rewrite Nxor_comm. reflexivity. + unfold Npdist. intros. rewrite N.lxor_comm. reflexivity. Qed. (** $d$ is an ultrametric distance, that is, not only $d(a,a')\leq @@ -292,21 +292,21 @@ Qed. Lemma Nplength_ultra_1 : forall a a':N, ni_le (Nplength a) (Nplength a') -> - ni_le (Nplength a) (Nplength (Nxor a a')). + ni_le (Nplength a) (Nplength (N.lxor a a')). Proof. simple induction a. intros. unfold ni_le in H. unfold Nplength at 1 3 in H. rewrite (ni_min_inf_l (Nplength a')) in H. - rewrite (Nplength_infty a' H). simpl in |- *. apply ni_le_refl. - intros. unfold Nplength at 1 in |- *. apply Nplength_lb. intros. - cut (forall a'':N, Nxor (Npos p) a' = a'' -> Nbit a'' k = false). + rewrite (Nplength_infty a' H). simpl. apply ni_le_refl. + intros. unfold Nplength at 1. apply Nplength_lb. intros. + cut (forall a'':N, N.lxor (Npos p) a' = a'' -> N.testbit_nat a'' k = false). intros. apply H1. reflexivity. intro a''. case a''. intro. reflexivity. intros. rewrite <- H1. rewrite (Nxor_semantics (Npos p) a' k). rewrite (Nplength_zeros (Npos p) (Pplength p) - (refl_equal (Nplength (Npos p))) k H0). + (eq_refl (Nplength (Npos p))) k H0). generalize H. case a'. trivial. - intros. cut (Nbit (Npos p1) k = false). intros. rewrite H3. reflexivity. + intros. cut (N.testbit_nat (Npos p1) k = false). intros. rewrite H3. reflexivity. apply Nplength_zeros with (n := Pplength p1). reflexivity. apply (lt_le_trans k (Pplength p) (Pplength p1)). exact H0. apply ni_le_le. exact H2. @@ -314,14 +314,14 @@ Qed. Lemma Nplength_ultra : forall a a':N, - ni_le (ni_min (Nplength a) (Nplength a')) (Nplength (Nxor a a')). + ni_le (ni_min (Nplength a) (Nplength a')) (Nplength (N.lxor a a')). Proof. intros. case (ni_le_total (Nplength a) (Nplength a')). intro. cut (ni_min (Nplength a) (Nplength a') = Nplength a). intro. rewrite H0. apply Nplength_ultra_1. exact H. exact H. intro. cut (ni_min (Nplength a) (Nplength a') = Nplength a'). - intro. rewrite H0. rewrite Nxor_comm. apply Nplength_ultra_1. exact H. + intro. rewrite H0. rewrite N.lxor_comm. apply Nplength_ultra_1. exact H. rewrite ni_min_comm. exact H. Qed. @@ -329,8 +329,8 @@ Lemma Npdist_ultra : forall a a' a'':N, ni_le (ni_min (Npdist a a'') (Npdist a'' a')) (Npdist a a'). Proof. - intros. unfold Npdist in |- *. cut (Nxor (Nxor a a'') (Nxor a'' a') = Nxor a a'). + intros. unfold Npdist. cut (N.lxor (N.lxor a a'') (N.lxor a'' a') = N.lxor a a'). intro. rewrite <- H. apply Nplength_ultra. - rewrite Nxor_assoc. rewrite <- (Nxor_assoc a'' a'' a'). rewrite Nxor_nilpotent. - rewrite Nxor_neutral_left. reflexivity. + rewrite N.lxor_assoc. rewrite <- (N.lxor_assoc a'' a'' a'). rewrite N.lxor_nilpotent. + rewrite N.lxor_0_l. reflexivity. Qed. diff --git a/theories/NArith/Ndiv_def.v b/theories/NArith/Ndiv_def.v index 559f01f1..0b220f5d 100644 --- a/theories/NArith/Ndiv_def.v +++ b/theories/NArith/Ndiv_def.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* N.sqrt_spec n (N.le_0_l n)) (only parsing). -Notation Nsqrtrem_sqrt := N.sqrtrem_sqrt (only parsing). +Notation Nsqrtrem := N.sqrtrem (compat "8.3"). +Notation Nsqrt := N.sqrt (compat "8.3"). +Notation Nsqrtrem_spec := N.sqrtrem_spec (compat "8.3"). +Notation Nsqrt_spec := (fun n => N.sqrt_spec n (N.le_0_l n)) (compat "8.3"). +Notation Nsqrtrem_sqrt := N.sqrtrem_sqrt (compat "8.3"). diff --git a/theories/Numbers/BigNumPrelude.v b/theories/Numbers/BigNumPrelude.v index 26850688..56d48eb5 100644 --- a/theories/Numbers/BigNumPrelude.v +++ b/theories/Numbers/BigNumPrelude.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* n<>0. Proof. @@ -43,22 +43,22 @@ Definition Z_div_plus_l a b c H := Zdiv.Z_div_plus_full_l a b c (Zlt0_not_eq _ H (* Automation *) -Hint Extern 2 (Zle _ _) => +Hint Extern 2 (Z.le _ _) => (match goal with - |- Zpos _ <= Zpos _ => exact (refl_equal _) -| H: _ <= ?p |- _ <= ?p => apply Zle_trans with (2 := H) -| H: _ < ?p |- _ <= ?p => apply Zlt_le_weak; apply Zle_lt_trans with (2 := H) + |- Zpos _ <= Zpos _ => exact (eq_refl _) +| H: _ <= ?p |- _ <= ?p => apply Z.le_trans with (2 := H) +| H: _ < ?p |- _ <= ?p => apply Z.lt_le_incl; apply Z.le_lt_trans with (2 := H) end). -Hint Extern 2 (Zlt _ _) => +Hint Extern 2 (Z.lt _ _) => (match goal with - |- Zpos _ < Zpos _ => exact (refl_equal _) -| H: _ <= ?p |- _ <= ?p => apply Zlt_le_trans with (2 := H) -| H: _ < ?p |- _ <= ?p => apply Zle_lt_trans with (2 := H) + |- Zpos _ < Zpos _ => exact (eq_refl _) +| H: _ <= ?p |- _ <= ?p => apply Z.lt_le_trans with (2 := H) +| H: _ < ?p |- _ <= ?p => apply Z.le_lt_trans with (2 := H) end). -Hint Resolve Zlt_gt Zle_ge Z_div_pos: zarith. +Hint Resolve Z.lt_gt Z.le_ge Z_div_pos: zarith. (************************************** Properties of order and product @@ -71,9 +71,9 @@ Hint Resolve Zlt_gt Zle_ge Z_div_pos: zarith. Proof. intros a b c d beta H1 (H3, H4) (H5, H6). assert (a - c < 1); auto with zarith. - apply Zmult_lt_reg_r with beta; auto with zarith. - apply Zle_lt_trans with (d - b); auto with zarith. - rewrite Zmult_minus_distr_r; auto with zarith. + apply Z.mul_lt_mono_pos_r with beta; auto with zarith. + apply Z.le_lt_trans with (d - b); auto with zarith. + rewrite Z.mul_sub_distr_r; auto with zarith. Qed. Theorem beta_lex_inv: forall a b c d beta, @@ -82,15 +82,15 @@ Hint Resolve Zlt_gt Zle_ge Z_div_pos: zarith. a * beta + b < c * beta + d. Proof. intros a b c d beta H1 (H3, H4) (H5, H6). - case (Zle_or_lt (c * beta + d) (a * beta + b)); auto with zarith. - intros H7; contradict H1;apply Zle_not_lt;apply beta_lex with (1 := H7);auto. + case (Z.le_gt_cases (c * beta + d) (a * beta + b)); auto with zarith. + intros H7. contradict H1. apply Z.le_ngt. apply beta_lex with (1 := H7); auto. Qed. Lemma beta_mult : forall h l beta, 0 <= h < beta -> 0 <= l < beta -> 0 <= h*beta+l < beta^2. Proof. intros h l beta H1 H2;split. auto with zarith. - rewrite <- (Zplus_0_r (beta^2)); rewrite Zpower_2; + rewrite <- (Z.add_0_r (beta^2)); rewrite Z.pow_2_r; apply beta_lex_inv;auto with zarith. Qed. @@ -98,9 +98,9 @@ Hint Resolve Zlt_gt Zle_ge Z_div_pos: zarith. forall b x y, 0 <= x < b -> 0 <= y < b -> 0 <= x * y <= b^2 - 2*b + 1. Proof. intros b x y (Hx1,Hx2) (Hy1,Hy2);split;auto with zarith. - apply Zle_trans with ((b-1)*(b-1)). - apply Zmult_le_compat;auto with zarith. - apply Zeq_le; ring. + apply Z.le_trans with ((b-1)*(b-1)). + apply Z.mul_le_mono_nonneg;auto with zarith. + apply Z.eq_le_incl; ring. Qed. Lemma sum_mul_carry : forall xh xl yh yl wc cc beta, @@ -129,11 +129,10 @@ Hint Resolve Zlt_gt Zle_ge Z_div_pos: zarith. Proof. intros x y cross beta HH HH1 HH2. split; auto with zarith. - apply Zle_lt_trans with ((beta-1)*(beta-1)+(beta-1)); auto with zarith. - apply Zplus_le_compat; auto with zarith. - apply Zmult_le_compat; auto with zarith. - repeat (rewrite Zmult_minus_distr_l || rewrite Zmult_minus_distr_r); - rewrite Zpower_2; auto with zarith. + apply Z.le_lt_trans with ((beta-1)*(beta-1)+(beta-1)); auto with zarith. + apply Z.add_le_mono; auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. + rewrite ?Z.mul_sub_distr_l, ?Z.mul_sub_distr_r, Z.pow_2_r; auto with zarith. Qed. Theorem mult_add_ineq2: forall x y c cross beta, @@ -144,11 +143,10 @@ Hint Resolve Zlt_gt Zle_ge Z_div_pos: zarith. Proof. intros x y c cross beta HH HH1 HH2. split; auto with zarith. - apply Zle_lt_trans with ((beta-1)*(beta-1)+(2*beta-2));auto with zarith. - apply Zplus_le_compat; auto with zarith. - apply Zmult_le_compat; auto with zarith. - repeat (rewrite Zmult_minus_distr_l || rewrite Zmult_minus_distr_r); - rewrite Zpower_2; auto with zarith. + apply Z.le_lt_trans with ((beta-1)*(beta-1)+(2*beta-2));auto with zarith. + apply Z.add_le_mono; auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. + rewrite ?Z.mul_sub_distr_l, ?Z.mul_sub_distr_r, Z.pow_2_r; auto with zarith. Qed. Theorem mult_add_ineq3: forall x y c cross beta, @@ -161,20 +159,20 @@ Theorem mult_add_ineq3: forall x y c cross beta, intros x y c cross beta HH HH1 HH2 HH3. apply mult_add_ineq2;auto with zarith. split;auto with zarith. - apply Zle_trans with (1*beta+cross);auto with zarith. + apply Z.le_trans with (1*beta+cross);auto with zarith. Qed. -Hint Rewrite Zmult_1_r Zmult_0_r Zmult_1_l Zmult_0_l Zplus_0_l Zplus_0_r Zminus_0_r: rm10. +Hint Rewrite Z.mul_1_r Z.mul_0_r Z.mul_1_l Z.mul_0_l Z.add_0_l Z.add_0_r Z.sub_0_r: rm10. (************************************** - Properties of Zdiv and Zmod + Properties of Z.div and Z.modulo **************************************) Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. Proof. intros a b H H1;case (Z_mod_lt a b);auto with zarith;intros H2 H3;split;auto. - case (Zle_or_lt b a); intros H4; auto with zarith. + case (Z.le_gt_cases b a); intros H4; auto with zarith. rewrite Zmod_small; auto with zarith. Qed. @@ -184,26 +182,26 @@ Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. Proof. intros a b r t (H1, H2) H3 (H4, H5). assert (t < 2 ^ b). - apply Zlt_le_trans with (1:= H5); auto with zarith. + apply Z.lt_le_trans with (1:= H5); auto with zarith. apply Zpower_le_monotone; auto with zarith. rewrite Zplus_mod; auto with zarith. rewrite Zmod_small with (a := t); auto with zarith. apply Zmod_small; auto with zarith. split; auto with zarith. assert (0 <= 2 ^a * r); auto with zarith. - apply Zplus_le_0_compat; auto with zarith. + apply Z.add_nonneg_nonneg; auto with zarith. match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; auto with zarith. pattern (2 ^ b) at 2; replace (2 ^ b) with ((2 ^ b - 2 ^a) + 2 ^ a); try ring. - apply Zplus_le_lt_compat; auto with zarith. + apply Z.add_le_lt_mono; auto with zarith. replace b with ((b - a) + a); try ring. rewrite Zpower_exp; auto with zarith. - pattern (2 ^a) at 4; rewrite <- (Zmult_1_l (2 ^a)); - try rewrite <- Zmult_minus_distr_r. - rewrite (Zmult_comm (2 ^(b - a))); rewrite Zmult_mod_distr_l; + pattern (2 ^a) at 4; rewrite <- (Z.mul_1_l (2 ^a)); + try rewrite <- Z.mul_sub_distr_r. + rewrite (Z.mul_comm (2 ^(b - a))); rewrite Zmult_mod_distr_l; auto with zarith. - rewrite (Zmult_comm (2 ^a)); apply Zmult_le_compat_r; auto with zarith. + rewrite (Z.mul_comm (2 ^a)); apply Z.mul_le_mono_nonneg_r; auto with zarith. match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; auto with zarith. Qed. @@ -214,25 +212,25 @@ Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. Proof. intros a b r t (H1, H2) H3 (H4, H5). assert (t < 2 ^ b). - apply Zlt_le_trans with (1:= H5); auto with zarith. + apply Z.lt_le_trans with (1:= H5); auto with zarith. apply Zpower_le_monotone; auto with zarith. rewrite Zplus_mod; auto with zarith. rewrite Zmod_small with (a := t); auto with zarith. apply Zmod_small; auto with zarith. split; auto with zarith. assert (0 <= 2 ^a * r); auto with zarith. - apply Zplus_le_0_compat; auto with zarith. + apply Z.add_nonneg_nonneg; auto with zarith. match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; auto with zarith. pattern (2 ^ b) at 2;replace (2 ^ b) with ((2 ^ b - 2 ^a) + 2 ^ a); try ring. - apply Zplus_le_lt_compat; auto with zarith. + apply Z.add_le_lt_mono; auto with zarith. replace b with ((b - a) + a); try ring. rewrite Zpower_exp; auto with zarith. - pattern (2 ^a) at 4; rewrite <- (Zmult_1_l (2 ^a)); - try rewrite <- Zmult_minus_distr_r. - repeat rewrite (fun x => Zmult_comm x (2 ^ a)); rewrite Zmult_mod_distr_l; + pattern (2 ^a) at 4; rewrite <- (Z.mul_1_l (2 ^a)); + try rewrite <- Z.mul_sub_distr_r. + repeat rewrite (fun x => Z.mul_comm x (2 ^ a)); rewrite Zmult_mod_distr_l; auto with zarith. - apply Zmult_le_compat_l; auto with zarith. + apply Z.mul_le_mono_nonneg_l; auto with zarith. match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; auto with zarith. Qed. @@ -243,13 +241,13 @@ Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. Proof. intros a b r t (H1, H2) H3 (H4, H5). assert (Eq: t < 2 ^ b); auto with zarith. - apply Zlt_le_trans with (1 := H5); auto with zarith. + apply Z.lt_le_trans with (1 := H5); auto with zarith. apply Zpower_le_monotone; auto with zarith. pattern (r * 2 ^ a) at 1; rewrite Z_div_mod_eq with (b := 2 ^ b); auto with zarith. - rewrite <- Zplus_assoc. + rewrite <- Z.add_assoc. rewrite <- Zmod_shift_r; auto with zarith. - rewrite (Zmult_comm (2 ^ b)); rewrite Z_div_plus_full_l; auto with zarith. + rewrite (Z.mul_comm (2 ^ b)); rewrite Z_div_plus_full_l; auto with zarith. rewrite (fun x y => @Zdiv_small (x mod y)); auto with zarith. match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; auto with zarith. @@ -264,7 +262,7 @@ Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. intros n p a H1 H2. pattern (a*2^p) at 1;replace (a*2^p) with (a*2^p/2^n * 2^n + a*2^p mod 2^n). - 2:symmetry;rewrite (Zmult_comm (a*2^p/2^n));apply Z_div_mod_eq. + 2:symmetry;rewrite (Z.mul_comm (a*2^p/2^n));apply Z_div_mod_eq. replace (a * 2 ^ p / 2 ^ n) with (a / 2 ^ (n - p));trivial. replace (2^n) with (2^(n-p)*2^p). symmetry;apply Zdiv_mult_cancel_r. @@ -273,7 +271,7 @@ Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. rewrite <- Zpower_exp. replace (n-p+p) with n;trivial. ring. omega. omega. - apply Zlt_gt. apply Zpower_gt_0;auto with zarith. + apply Z.lt_gt. apply Z.pow_pos_nonneg;auto with zarith. Qed. @@ -284,15 +282,15 @@ Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. intros. rewrite Zmod_small. rewrite Zmod_eq by (auto with zarith). - unfold Zminus at 1. + unfold Z.sub at 1. rewrite Z_div_plus_l by (auto with zarith). assert (2^n = 2^(n-p)*2^p). rewrite <- Zpower_exp by (auto with zarith). replace (n-p+p) with n; auto with zarith. rewrite H0. rewrite <- Zdiv_Zdiv, Z_div_mult by (auto with zarith). - rewrite (Zmult_comm (2^(n-p))), Zmult_assoc. - rewrite Zopp_mult_distr_l. + rewrite (Z.mul_comm (2^(n-p))), Z.mul_assoc. + rewrite <- Z.mul_opp_l. rewrite Z_div_mult by (auto with zarith). symmetry; apply Zmod_eq; auto with zarith. @@ -301,9 +299,9 @@ Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. split. apply Z_div_pos; auto with zarith. apply Zdiv_lt_upper_bound; auto with zarith. - apply Zlt_le_trans with (2^n); auto with zarith. - rewrite <- (Zmult_1_r (2^n)) at 1. - apply Zmult_le_compat; auto with zarith. + apply Z.lt_le_trans with (2^n); auto with zarith. + rewrite <- (Z.mul_1_r (2^n)) at 1. + apply Z.mul_le_mono_nonneg; auto with zarith. cut (0 < 2 ^ (n-p)); auto with zarith. Qed. @@ -320,8 +318,8 @@ Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. Proof. intros p x y H;destruct (Z_le_gt_dec 0 p). apply Zdiv_lt_upper_bound;auto with zarith. - apply Zlt_le_trans with y;auto with zarith. - rewrite <- (Zmult_1_r y);apply Zmult_le_compat;auto with zarith. + apply Z.lt_le_trans with y;auto with zarith. + rewrite <- (Z.mul_1_r y);apply Z.mul_le_mono_nonneg;auto with zarith. assert (0 < 2^p);auto with zarith. replace (2^p) with 0. destruct x;change (0 0 < b -> 0 <= a mod b <= a. Qed. Theorem Zgcd_div_pos a b: - 0 < b -> 0 < Zgcd a b -> 0 < b / Zgcd a b. + 0 < b -> 0 < Z.gcd a b -> 0 < b / Z.gcd a b. Proof. - intros Ha Hg. - case (Zle_lt_or_eq 0 (b/Zgcd a b)); auto. - apply Z_div_pos; auto with zarith. - intros H; generalize Ha. - pattern b at 1; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto. - rewrite <- H; auto with zarith. - assert (F := (Zgcd_is_gcd a b)); inversion F; auto. + intros Hb Hg. + assert (H : 0 <= b / Z.gcd a b) by (apply Z.div_pos; auto with zarith). + Z.le_elim H; trivial. + rewrite (Zdivide_Zdiv_eq (Z.gcd a b) b), <- H, Z.mul_0_r in Hb; + auto using Z.gcd_divide_r with zarith. Qed. Theorem Zdiv_neg a b: @@ -347,7 +343,7 @@ Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. assert (b > 0) by omega. generalize (Z_mult_div_ge a _ H); intros. assert (b * (a / b) < 0)%Z. - apply Zle_lt_trans with a; auto with zarith. + apply Z.le_lt_trans with a; auto with zarith. destruct b; try (compute in Hb; discriminate). destruct (a/Zpos p)%Z. compute in H1; discriminate. @@ -355,20 +351,20 @@ Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. compute; auto. Qed. - Lemma Zdiv_gcd_zero : forall a b, b / Zgcd a b = 0 -> b <> 0 -> - Zgcd a b = 0. + Lemma Zdiv_gcd_zero : forall a b, b / Z.gcd a b = 0 -> b <> 0 -> + Z.gcd a b = 0. Proof. intros. generalize (Zgcd_is_gcd a b); destruct 1. destruct H2 as (k,Hk). generalize H; rewrite Hk at 1. - destruct (Z_eq_dec (Zgcd a b) 0) as [H'|H']; auto. + destruct (Z.eq_dec (Z.gcd a b) 0) as [H'|H']; auto. rewrite Z_div_mult_full; auto. intros; subst k; simpl in *; subst b; elim H0; auto. Qed. Lemma Zgcd_mult_rel_prime : forall a b c, - Zgcd a c = 1 -> Zgcd b c = 1 -> Zgcd (a*b) c = 1. + Z.gcd a c = 1 -> Z.gcd b c = 1 -> Z.gcd (a*b) c = 1. Proof. intros. rewrite Zgcd_1_rel_prime in *. @@ -396,23 +392,20 @@ intros Q b Q0 QS. set (Q' := fun n => (n < b /\ Q n) \/ (b <= n)). assert (H : forall n, 0 <= n -> Q' n). apply natlike_rec2; unfold Q'. -destruct (Zle_or_lt b 0) as [H | H]. now right. left; now split. +destruct (Z.le_gt_cases b 0) as [H | H]. now right. left; now split. intros n H IH. destruct IH as [[IH1 IH2] | IH]. -destruct (Zle_or_lt (b - 1) n) as [H1 | H1]. +destruct (Z.le_gt_cases (b - 1) n) as [H1 | H1]. right; auto with zarith. left. split; [auto with zarith | now apply (QS n)]. right; auto with zarith. unfold Q' in *; intros n H1 H2. destruct (H n H1) as [[H3 H4] | H3]. -assumption. apply Zle_not_lt in H3. false_hyp H2 H3. +assumption. now apply Z.le_ngt in H3. Qed. -Lemma Zsquare_le : forall x, x <= x*x. +Lemma Zsquare_le x : x <= x*x. Proof. -intros. -destruct (Z_lt_le_dec 0 x). -pattern x at 1; rewrite <- (Zmult_1_l x). -apply Zmult_le_compat; auto with zarith. -apply Zle_trans with 0; auto with zarith. -rewrite <- Zmult_opp_opp. -apply Zmult_le_0_compat; auto with zarith. +destruct (Z.lt_ge_cases 0 x). +- rewrite <- Z.mul_1_l at 1. + rewrite <- Z.mul_le_mono_pos_r; auto with zarith. +- pose proof (Z.square_nonneg x); auto with zarith. Qed. diff --git a/theories/Numbers/BinNums.v b/theories/Numbers/BinNums.v index dfb2c502..aab2c14f 100644 --- a/theories/Numbers/BinNums.v +++ b/theories/Numbers/BinNums.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x == y. Proof. intros. unfold eqb, eq. rewrite ZnZ.spec_compare. - case Zcompare_spec; intuition; try discriminate. + case Z.compare_spec; intuition; try discriminate. Qed. -(* POUR HUGO: -Lemma eqb_eq : forall x y, eqb x y = true <-> x == y. -Proof. - intros. unfold eqb, eq. generalize (ZnZ.spec_compare x y). - case (ZnZ.compare x y); intuition; try discriminate. - (* BUG ?! using destruct instead of case won't work: - it gives 3 subcases, but ZnZ.compare x y is still there in them! *) -Qed. -*) - Lemma eqb_correct : forall x y, eqb x y = true -> x==y. Proof. now apply eqb_eq. Qed. diff --git a/theories/Numbers/Cyclic/Abstract/NZCyclic.v b/theories/Numbers/Cyclic/Abstract/NZCyclic.v index c52cbe10..1d5b78ec 100644 --- a/theories/Numbers/Cyclic/Abstract/NZCyclic.v +++ b/theories/Numbers/Cyclic/Abstract/NZCyclic.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* eq ==> eq) mul. Theorem gt_wB_1 : 1 < wB. Proof. -unfold base. apply Zpower_gt_1; unfold Zlt; auto with zarith. +unfold base. apply Zpower_gt_1; unfold Z.lt; auto with zarith. Qed. Theorem gt_wB_0 : 0 < wB. @@ -161,20 +161,20 @@ End Induction. Theorem add_0_l : forall n, 0 + n == n. Proof. intro n. zify. -rewrite Zplus_0_l. apply Zmod_small. apply ZnZ.spec_to_Z. +rewrite Z.add_0_l. apply Zmod_small. apply ZnZ.spec_to_Z. Qed. Theorem add_succ_l : forall n m, (S n) + m == S (n + m). Proof. intros n m. zify. rewrite succ_mod_wB. repeat rewrite Zplus_mod_idemp_l; try apply gt_wB_0. -rewrite <- (Zplus_assoc ([| n |] mod wB) 1 [| m |]). rewrite Zplus_mod_idemp_l. -rewrite (Zplus_comm 1 [| m |]); now rewrite Zplus_assoc. +rewrite <- (Z.add_assoc ([| n |] mod wB) 1 [| m |]). rewrite Zplus_mod_idemp_l. +rewrite (Z.add_comm 1 [| m |]); now rewrite Z.add_assoc. Qed. Theorem sub_0_r : forall n, n - 0 == n. Proof. -intro n. zify. rewrite Zminus_0_r. apply NZ_to_Z_mod. +intro n. zify. rewrite Z.sub_0_r. apply NZ_to_Z_mod. Qed. Theorem sub_succ_r : forall n m, n - (S m) == P (n - m). @@ -192,7 +192,7 @@ Qed. Theorem mul_succ_l : forall n m, (S n) * m == n * m + m. Proof. intros n m. zify. rewrite Zplus_mod_idemp_l, Zmult_mod_idemp_l. -now rewrite Zmult_plus_distr_l, Zmult_1_l. +now rewrite Z.mul_add_distr_r, Z.mul_1_l. Qed. Definition t := t. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v index deb216dd..35d8b595 100644 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v +++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x < wwB. Proof. - intros x H;apply Zlt_trans with wB;trivial;apply lt_wB_wwB. + intros x H;apply Z.lt_trans with wB;trivial;apply lt_wB_wwB. Qed. Lemma spec_ww_to_Z : forall x, 0 <= [[x]] < wwB. Proof. clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1. destruct x as [ |h l];simpl. - split;[apply Zle_refl|apply lt_0_wwB]. + split;[apply Z.le_refl|apply lt_0_wwB]. assert (H:=spec_to_Z h);assert (L:=spec_to_Z l);split. - apply Zplus_le_0_compat;auto with zarith. - rewrite <- (Zplus_0_r wwB);rewrite wwB_wBwB; rewrite Zpower_2; + apply Z.add_nonneg_nonneg;auto with zarith. + rewrite <- (Z.add_0_r wwB);rewrite wwB_wBwB; rewrite Z.pow_2_r; apply beta_lex_inv;auto with zarith. Qed. Lemma double_wB_wwB : forall n, double_wB n * double_wB n = double_wB (S n). Proof. intros n;unfold double_wB;simpl. - unfold base. rewrite Pshiftl_nat_S, (Zpos_xO (_ << _)). + unfold base. rewrite Pshiftl_nat_S, (Pos2Z.inj_xO (_ << _)). replace (2 * Zpos (w_digits << n)) with (Zpos (w_digits << n) + Zpos (w_digits << n)) by ring. symmetry; apply Zpower_exp;intro;discriminate. @@ -306,14 +306,14 @@ Section DoubleBase. intros n; elim n; clear n; auto. unfold double_wB, "<<"; auto with zarith. intros n H1; rewrite <- double_wB_wwB. - apply Zle_trans with (wB * 1). - rewrite Zmult_1_r; apply Zle_refl. - apply Zmult_le_compat; auto with zarith. - apply Zle_trans with wB; auto with zarith. - unfold base. - rewrite <- (Zpower_0_r 2). - apply Zpower_le_monotone2; auto with zarith. + apply Z.le_trans with (wB * 1). + rewrite Z.mul_1_r; apply Z.le_refl. unfold base; auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. + apply Z.le_trans with wB; auto with zarith. + unfold base. + rewrite <- (Z.pow_0_r 2). + apply Z.pow_le_mono_r; auto with zarith. Qed. Lemma spec_double_to_Z : @@ -326,9 +326,9 @@ Section DoubleBase. unfold double_wB,base;split;auto with zarith. assert (U0:= IHn w0);assert (U1:= IHn w1). split;auto with zarith. - apply Zlt_le_trans with ((double_wB n - 1) * double_wB n + double_wB n). + apply Z.lt_le_trans with ((double_wB n - 1) * double_wB n + double_wB n). assert (double_to_Z n w0*double_wB n <= (double_wB n - 1)*double_wB n). - apply Zmult_le_compat_r;auto with zarith. + apply Z.mul_le_mono_nonneg_r;auto with zarith. auto with zarith. rewrite <- double_wB_wwB. replace ((double_wB n - 1) * double_wB n + double_wB n) with (double_wB n * double_wB n); @@ -342,22 +342,19 @@ Section DoubleBase. clear spec_w_1 spec_w_Bm1. intros n; elim n; auto; clear n. intros n Hrec x; case x; clear x; auto. - intros xx yy H1; simpl in H1. - assert (F1: [!n | xx!] = 0). - case (Zle_lt_or_eq 0 ([!n | xx!])); auto. - case (spec_double_to_Z n xx); auto. - intros F2. - assert (F3 := double_wB_more_digits n). - assert (F4: 0 <= [!n | yy!]). - case (spec_double_to_Z n yy); auto. + intros xx yy; simpl. + destruct (spec_double_to_Z n xx) as [F1 _]. Z.le_elim F1. + - (* 0 < [!n | xx!] *) + intros; exfalso. + assert (F3 := double_wB_more_digits n). + destruct (spec_double_to_Z n yy) as [F4 _]. assert (F5: 1 * wB <= [!n | xx!] * double_wB n); auto with zarith. - apply Zmult_le_compat; auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. unfold base; auto with zarith. - simpl get_low; simpl double_to_Z. - generalize H1; clear H1. - rewrite F1; rewrite Zmult_0_l; rewrite Zplus_0_l. - intros H1; apply Hrec; auto. + - (* 0 = [!n | xx!] *) + rewrite <- F1; rewrite Z.mul_0_l, Z.add_0_l. + intros; apply Hrec; auto. Qed. Lemma spec_double_WW : forall n (h l : word w n), @@ -399,36 +396,36 @@ Section DoubleBase. Ltac comp2ord := match goal with | |- Lt = (?x ?= ?y) => symmetry; change (x < y) - | |- Gt = (?x ?= ?y) => symmetry; change (x > y); apply Zlt_gt + | |- Gt = (?x ?= ?y) => symmetry; change (x > y); apply Z.lt_gt end. Lemma spec_ww_compare : forall x y, - ww_compare x y = Zcompare [[x]] [[y]]. + ww_compare x y = Z.compare [[x]] [[y]]. Proof. destruct x as [ |xh xl];destruct y as [ |yh yl];simpl;trivial. (* 1st case *) rewrite 2 spec_w_compare, spec_w_0. - destruct (Zcompare_spec 0 [|yh|]) as [H|H|H]. + destruct (Z.compare_spec 0 [|yh|]) as [H|H|H]. rewrite <- H;simpl. reflexivity. symmetry. change (0 < [|yh|]*wB+[|yl|]). change 0 with (0*wB+0). rewrite <- spec_w_0 at 2. apply wB_lex_inv;trivial. - absurd (0 <= [|yh|]). apply Zlt_not_le; trivial. + absurd (0 <= [|yh|]). apply Z.lt_nge; trivial. destruct (spec_to_Z yh);trivial. (* 2nd case *) rewrite 2 spec_w_compare, spec_w_0. - destruct (Zcompare_spec [|xh|] 0) as [H|H|H]. + destruct (Z.compare_spec [|xh|] 0) as [H|H|H]. rewrite H;simpl;reflexivity. - absurd (0 <= [|xh|]). apply Zlt_not_le; trivial. + absurd (0 <= [|xh|]). apply Z.lt_nge; trivial. destruct (spec_to_Z xh);trivial. comp2ord. change 0 with (0*wB+0). rewrite <- spec_w_0 at 2. apply wB_lex_inv;trivial. (* 3rd case *) rewrite 2 spec_w_compare. - destruct (Zcompare_spec [|xh|] [|yh|]) as [H|H|H]. + destruct (Z.compare_spec [|xh|] [|yh|]) as [H|H|H]. rewrite H. - symmetry. apply Zcompare_plus_compat. + symmetry. apply Z.add_compare_mono_l. comp2ord. apply wB_lex_inv;trivial. comp2ord. apply wB_lex_inv;trivial. Qed. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v index 00a84052..35fe948e 100644 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v +++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* [|x|] mod 2 = 1 end. Proof. - refine (@spec_ww_is_even t w_is_even w_0 w_1 w_Bm1 w_digits _ _ _ _ _); auto. + refine (@spec_ww_is_even t w_is_even w_digits _ _ ). exact ZnZ.spec_is_even. Qed. @@ -798,7 +798,7 @@ refine exact ZnZ.spec_zdigits. unfold w_to_Z, w_zdigits. rewrite ZnZ.spec_zdigits. - rewrite <- Zpos_xO; exact spec_ww_digits. + rewrite <- Pos2Z.inj_xO; exact spec_ww_digits. Qed. Global Instance mk_zn2z_specs_karatsuba : ZnZ.Specs mk_zn2z_ops_karatsuba. @@ -811,7 +811,7 @@ refine exact ZnZ.spec_zdigits. unfold w_to_Z, w_zdigits. rewrite ZnZ.spec_zdigits. - rewrite <- Zpos_xO; exact spec_ww_digits. + rewrite <- Pos2Z.inj_xO; exact spec_ww_digits. Qed. End Z_2nZ. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v index 0cb6848e..8525b0e1 100644 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v +++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (Zmult_comm (2 ^ x))); rewrite Zmult_plus_distr_l. - unfold base; rewrite <- Zmult_assoc; rewrite <- Zpower_exp; + rewrite (fun x => (Z.mul_comm (2 ^ x))); rewrite Z.mul_add_distr_r. + unfold base; rewrite <- Z.mul_assoc; rewrite <- Zpower_exp; auto with zarith. rewrite F0; auto with zarith. - rewrite <- Zplus_assoc; rewrite Zplus_mod; auto with zarith. + rewrite <- Z.add_assoc; rewrite Zplus_mod; auto with zarith. rewrite Z_mod_mult; auto with zarith. autorewrite with rm10. rewrite Zmod_mod; auto with zarith. - apply sym_equal; apply Zmod_small; auto with zarith. + symmetry; apply Zmod_small; auto with zarith. case (spec_to_Z xh); intros U1 U2. case (spec_to_Z xl); intros U3 U4. split; auto with zarith. - apply Zplus_le_0_compat; auto with zarith. - apply Zmult_le_0_compat; auto with zarith. + apply Z.add_nonneg_nonneg; auto with zarith. + apply Z.mul_nonneg_nonneg; auto with zarith. match goal with |- 0 <= ?X mod ?Y => case (Z_mod_lt X Y); auto with zarith end. match goal with |- ?X mod ?Y * ?U + ?Z < ?T => - apply Zle_lt_trans with ((Y - 1) * U + Z ); + apply Z.le_lt_trans with ((Y - 1) * U + Z ); [case (Z_mod_lt X Y); auto with zarith | idtac] end. match goal with |- ?X * ?U + ?Y < ?Z => - apply Zle_lt_trans with (X * U + (U - 1)) + apply Z.le_lt_trans with (X * U + (U - 1)) end. - apply Zplus_le_compat_l; auto with zarith. + apply Z.add_le_mono_l; auto with zarith. case (spec_to_Z xl); unfold base; auto with zarith. - rewrite Zmult_minus_distr_r; rewrite <- Zpower_exp; auto with zarith. + rewrite Z.mul_sub_distr_r; rewrite <- Zpower_exp; auto with zarith. rewrite F0; auto with zarith. rewrite Zmod_small; auto with zarith. case (spec_to_w_Z (WW xh xl)); intros U1 U2. split; auto with zarith. - apply Zlt_le_trans with (1:= U2). + apply Z.lt_le_trans with (1:= U2). unfold base; rewrite spec_ww_digits. apply Zpower_le_monotone; auto with zarith. split; auto with zarith. - rewrite Zpos_xO; auto with zarith. + rewrite Pos2Z.inj_xO; auto with zarith. Qed. End POS_MOD. @@ -260,7 +260,7 @@ Section DoubleDiv32. Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. Variable spec_compare : - forall x y, w_compare x y = Zcompare [|x|] [|y|]. + forall x y, w_compare x y = Z.compare [|x|] [|y|]. Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|]. Variable spec_w_add_carry_c : forall x y, [+|w_add_carry_c x y|] = [|x|] + [|y|] + 1. @@ -290,14 +290,14 @@ Section DoubleDiv32. assert (H:= spec_ww_to_Z w_digits w_to_Z spec_to_Z x). Theorem wB_div2: forall x, wB/2 <= x -> wB <= 2 * x. - intros x H; rewrite <- wB_div_2; apply Zmult_le_compat_l; auto with zarith. + intros x H; rewrite <- wB_div_2; apply Z.mul_le_mono_nonneg_l; auto with zarith. Qed. Lemma Zmult_lt_0_reg_r_2 : forall n m : Z, 0 <= n -> 0 < m * n -> 0 < m. Proof. - intros n m H1 H2;apply Zmult_lt_0_reg_r with n;trivial. - destruct (Zle_lt_or_eq _ _ H1);trivial. - subst;rewrite Zmult_0_r in H2;discriminate H2. + intros n m H1 H2;apply Z.mul_pos_cancel_r with n;trivial. + Z.le_elim H1; trivial. + subst;rewrite Z.mul_0_r in H2;discriminate H2. Qed. Theorem spec_w_div32 : forall a1 a2 a3 b1 b2, @@ -311,7 +311,7 @@ Section DoubleDiv32. intros a1 a2 a3 b1 b2 Hle Hlt. assert (U:= lt_0_wB w_digits); assert (U1:= lt_0_wwB w_digits). Spec_w_to_Z a1;Spec_w_to_Z a2;Spec_w_to_Z a3;Spec_w_to_Z b1;Spec_w_to_Z b2. - rewrite wwB_wBwB; rewrite Zpower_2; rewrite Zmult_assoc;rewrite <- Zmult_plus_distr_l. + rewrite wwB_wBwB; rewrite Z.pow_2_r; rewrite Z.mul_assoc;rewrite <- Z.mul_add_distr_r. change (w_div32 a1 a2 a3 b1 b2) with match w_compare a1 b1 with | Lt => @@ -332,7 +332,7 @@ Section DoubleDiv32. (WW (w_sub a2 b2) a3) (WW b1 b2) | Gt => (w_0, W0) (* cas absurde *) end. - rewrite spec_compare. case Zcompare_spec; intro Hcmp. + rewrite spec_compare. case Z.compare_spec; intro Hcmp. simpl in Hlt. rewrite Hcmp in Hlt;assert ([|a2|] < [|b2|]). omega. assert ([[WW (w_sub a2 b2) a3]] = ([|a2|]-[|b2|])*wB + [|a3|] + wwB). @@ -351,17 +351,17 @@ Section DoubleDiv32. rewrite H0;intros r. repeat (rewrite spec_ww_add;eauto || rewrite spec_w_Bm1 || rewrite spec_w_Bm2); - simpl ww_to_Z;try rewrite Zmult_1_l;intros H1. + simpl ww_to_Z;try rewrite Z.mul_1_l;intros H1. assert (0<= ([[r]] + ([|b1|] * wB + [|b2|])) - wwB < [|b1|] * wB + [|b2|]). Spec_ww_to_Z r;split;zarith. rewrite H1. assert (H12:= wB_div2 Hle). assert (wwB <= 2 * [|b1|] * wB). - rewrite wwB_wBwB; rewrite Zpower_2; zarith. + rewrite wwB_wBwB; rewrite Z.pow_2_r; zarith. assert (-wwB < ([|a2|] - [|b2|]) * wB + [|a3|] < 0). - split. apply Zlt_le_trans with (([|a2|] - [|b2|]) * wB);zarith. + split. apply Z.lt_le_trans with (([|a2|] - [|b2|]) * wB);zarith. rewrite wwB_wBwB;replace (-(wB^2)) with (-wB*wB);[zarith | ring]. - apply Zmult_lt_compat_r;zarith. - apply Zle_lt_trans with (([|a2|] - [|b2|]) * wB + (wB -1));zarith. + apply Z.mul_lt_mono_pos_r;zarith. + apply Z.le_lt_trans with (([|a2|] - [|b2|]) * wB + (wB -1));zarith. replace ( ([|a2|] - [|b2|]) * wB + (wB - 1)) with (([|a2|] - [|b2|] + 1) * wB + - 1);[zarith | ring]. assert (([|a2|] - [|b2|] + 1) * wB <= 0);zarith. @@ -376,13 +376,13 @@ Section DoubleDiv32. Spec_ww_to_Z (WW b1 b2). simpl in HH4;zarith. rewrite H0;intros r;repeat (rewrite spec_w_Bm1 || rewrite spec_w_Bm2); - simpl ww_to_Z;try rewrite Zmult_1_l;intros H1. + simpl ww_to_Z;try rewrite Z.mul_1_l;intros H1. assert ([[r]]=([|a2|]-[|b2|])*wB+[|a3|]+([|b1|]*wB+[|b2|])). zarith. split. rewrite H2;rewrite Hcmp;ring. split. Spec_ww_to_Z r;zarith. rewrite H2. assert (([|a2|] - [|b2|]) * wB + [|a3|] < 0);zarith. - apply Zle_lt_trans with (([|a2|] - [|b2|]) * wB + (wB -1));zarith. + apply Z.le_lt_trans with (([|a2|] - [|b2|]) * wB + (wB -1));zarith. replace ( ([|a2|] - [|b2|]) * wB + (wB - 1)) with (([|a2|] - [|b2|] + 1) * wB + - 1);[zarith|ring]. assert (([|a2|] - [|b2|] + 1) * wB <= 0);zarith. @@ -400,7 +400,7 @@ Section DoubleDiv32. rewrite H1. split. ring. split. rewrite <- H1;destruct (spec_ww_to_Z w_digits w_to_Z spec_to_Z r1);trivial. - apply Zle_lt_trans with ([|r|] * wB + [|a3|]). + apply Z.le_lt_trans with ([|r|] * wB + [|a3|]). assert ( 0 <= [|q|] * [|b2|]);zarith. apply beta_lex_inv;zarith. assert ([[r1]] = [|r|] * wB + [|a3|] - [|q|] * [|b2|] + wwB). @@ -418,10 +418,10 @@ Section DoubleDiv32. intros r2;repeat (rewrite spec_pred || rewrite spec_ww_add;eauto); simpl ww_to_Z;intros H7. assert (0 < [|q|] - 1). - assert (1 <= [|q|]). zarith. - destruct (Zle_lt_or_eq _ _ H6);zarith. - rewrite <- H8 in H2;rewrite H2 in H7. - assert (0 < [|b1|]*wB). apply Zmult_lt_0_compat;zarith. + assert (H6 : 1 <= [|q|]) by zarith. + Z.le_elim H6;zarith. + rewrite <- H6 in H2;rewrite H2 in H7. + assert (0 < [|b1|]*wB). apply Z.mul_pos_pos;zarith. Spec_ww_to_Z r2. zarith. rewrite (Zmod_small ([|q|] -1));zarith. rewrite (Zmod_small ([|q|] -1 -1));zarith. @@ -439,7 +439,7 @@ Section DoubleDiv32. < wwB). split;try omega. replace (2*([|b1|]*wB+[|b2|])) with ((2*[|b1|])*wB+2*[|b2|]). 2:ring. assert (H12:= wB_div2 Hle). assert (wwB <= 2 * [|b1|] * wB). - rewrite wwB_wBwB; rewrite Zpower_2; zarith. omega. + rewrite wwB_wBwB; rewrite Z.pow_2_r; zarith. omega. rewrite <- (Zmod_unique ([[r2]] + ([|b1|] * wB + [|b2|])) wwB @@ -534,13 +534,13 @@ Section DoubleDiv21. 0 <= [[r]] < [|b1|] * wB + [|b2|]. Variable spec_ww_1 : [[ww_1]] = 1. Variable spec_ww_compare : forall x y, - ww_compare x y = Zcompare [[x]] [[y]]. + ww_compare x y = Z.compare [[x]] [[y]]. Variable spec_ww_sub : forall x y, [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB. Theorem wwB_div: wwB = 2 * (wwB / 2). Proof. - rewrite wwB_div_2; rewrite Zmult_assoc; rewrite wB_div_2; auto. - rewrite <- Zpower_2; apply wwB_wBwB. + rewrite wwB_div_2; rewrite Z.mul_assoc; rewrite wB_div_2; auto. + rewrite <- Z.pow_2_r; apply wwB_wBwB. Qed. Ltac Spec_w_to_Z x := @@ -562,7 +562,7 @@ Section DoubleDiv21. Spec_ww_to_Z b; assert (Eq: 0 < [[b]]). Spec_ww_to_Z a1;omega. generalize Hlt H ;clear Hlt H;case a1. intros H1 H2;simpl in H1;Spec_ww_to_Z a2. - rewrite spec_ww_compare. case Zcompare_spec; + rewrite spec_ww_compare. case Z.compare_spec; simpl;try rewrite spec_ww_1;autorewrite with rm10; intros;zarith. rewrite spec_ww_sub;simpl. rewrite Zmod_small;zarith. split. ring. @@ -570,32 +570,32 @@ Section DoubleDiv21. rewrite wwB_div;zarith. intros a1h a1l. Spec_w_to_Z a1h;Spec_w_to_Z a1l. Spec_ww_to_Z a2. destruct a2 as [ |a3 a4]; - (destruct b as [ |b1 b2];[unfold Zle in Eq;discriminate Eq|idtac]); + (destruct b as [ |b1 b2];[unfold Z.le in Eq;discriminate Eq|idtac]); try (Spec_w_to_Z a3; Spec_w_to_Z a4); Spec_w_to_Z b1; Spec_w_to_Z b2; intros Hlt H; match goal with |-context [w_div32 ?X ?Y ?Z ?T ?U] => generalize (@spec_w_div32 X Y Z T U); case (w_div32 X Y Z T U); intros q1 r H0 end; (assert (Eq1: wB / 2 <= [|b1|]);[ apply (@beta_lex (wB / 2) 0 [|b1|] [|b2|] wB); auto with zarith; - autorewrite with rm10;repeat rewrite (Zmult_comm wB); + autorewrite with rm10;repeat rewrite (Z.mul_comm wB); rewrite <- wwB_div_2; trivial | generalize (H0 Eq1 Hlt);clear H0;destruct r as [ |r1 r2];simpl; - try rewrite spec_w_0; try rewrite spec_w_0W;repeat rewrite Zplus_0_r; + try rewrite spec_w_0; try rewrite spec_w_0W;repeat rewrite Z.add_0_r; intros (H1,H2) ]). - split;[rewrite wwB_wBwB; rewrite Zpower_2 | trivial]. - rewrite Zmult_assoc;rewrite Zmult_plus_distr_l;rewrite <- Zmult_assoc; - rewrite <- Zpower_2; rewrite <- wwB_wBwB;rewrite H1;ring. + split;[rewrite wwB_wBwB; rewrite Z.pow_2_r | trivial]. + rewrite Z.mul_assoc;rewrite Z.mul_add_distr_r;rewrite <- Z.mul_assoc; + rewrite <- Z.pow_2_r; rewrite <- wwB_wBwB;rewrite H1;ring. destruct H2 as (H2,H3);match goal with |-context [w_div32 ?X ?Y ?Z ?T ?U] => generalize (@spec_w_div32 X Y Z T U); case (w_div32 X Y Z T U); intros q r H0;generalize (H0 Eq1 H3);clear H0;intros (H4,H5) end. split;[rewrite wwB_wBwB | trivial]. - rewrite Zpower_2. - rewrite Zmult_assoc;rewrite Zmult_plus_distr_l;rewrite <- Zmult_assoc; - rewrite <- Zpower_2. + rewrite Z.pow_2_r. + rewrite Z.mul_assoc;rewrite Z.mul_add_distr_r;rewrite <- Z.mul_assoc; + rewrite <- Z.pow_2_r. rewrite <- wwB_wBwB;rewrite H1. - rewrite spec_w_0 in H4;rewrite Zplus_0_r in H4. - repeat rewrite Zmult_plus_distr_l. rewrite <- (Zmult_assoc [|r1|]). - rewrite <- Zpower_2; rewrite <- wwB_wBwB;rewrite H4;simpl;ring. + rewrite spec_w_0 in H4;rewrite Z.add_0_r in H4. + repeat rewrite Z.mul_add_distr_r. rewrite <- (Z.mul_assoc [|r1|]). + rewrite <- Z.pow_2_r; rewrite <- wwB_wBwB;rewrite H4;simpl;ring. split;[rewrite wwB_wBwB | split;zarith]. replace (([|a1h|] * wB + [|a1l|]) * wB^2 + ([|a3|] * wB + [|a4|])) with (([|a1h|] * wwB + [|a1l|] * wB + [|a3|])*wB+ [|a4|]). @@ -793,7 +793,7 @@ Section DoubleDivGt. Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. Variable spec_w_0W : forall l, [[w_0W l]] = [|l|]. Variable spec_compare : - forall x y, w_compare x y = Zcompare [|x|] [|y|]. + forall x y, w_compare x y = Z.compare [|x|] [|y|]. Variable spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0. Variable spec_opp_c : forall x, [-|w_opp_c x|] = -[|x|]. @@ -893,42 +893,42 @@ Section DoubleDivGt. end in [[WW ah al]]=[[q]]*[[WW bh bl]]+[[r]] /\ 0 <=[[r]]< [[WW bh bl]]). assert (Hh := spec_head0 Hpos). lazy zeta. - rewrite spec_compare; case Zcompare_spec; + rewrite spec_compare; case Z.compare_spec; rewrite spec_w_0; intros HH. - generalize Hh; rewrite HH; simpl Zpower; - rewrite Zmult_1_l; intros (HH1, HH2); clear HH. + generalize Hh; rewrite HH; simpl Z.pow; + rewrite Z.mul_1_l; intros (HH1, HH2); clear HH. assert (wwB <= 2*[[WW bh bl]]). - apply Zle_trans with (2*[|bh|]*wB). - rewrite wwB_wBwB; rewrite Zpower_2; apply Zmult_le_compat_r; zarith. - rewrite <- wB_div_2; apply Zmult_le_compat_l; zarith. - simpl ww_to_Z;rewrite Zmult_plus_distr_r;rewrite Zmult_assoc. + apply Z.le_trans with (2*[|bh|]*wB). + rewrite wwB_wBwB; rewrite Z.pow_2_r; apply Z.mul_le_mono_nonneg_r; zarith. + rewrite <- wB_div_2; apply Z.mul_le_mono_nonneg_l; zarith. + simpl ww_to_Z;rewrite Z.mul_add_distr_l;rewrite Z.mul_assoc. Spec_w_to_Z bl;zarith. Spec_ww_to_Z (WW ah al). rewrite spec_ww_sub;eauto. - simpl;rewrite spec_ww_1;rewrite Zmult_1_l;simpl. + simpl;rewrite spec_ww_1;rewrite Z.mul_1_l;simpl. simpl ww_to_Z in Hgt, H, HH;rewrite Zmod_small;split;zarith. case (spec_to_Z (w_head0 bh)); auto with zarith. assert ([|w_head0 bh|] < Zpos w_digits). destruct (Z_lt_ge_dec [|w_head0 bh|] (Zpos w_digits));trivial. exfalso. assert (2 ^ [|w_head0 bh|] * [|bh|] >= wB);auto with zarith. - apply Zle_ge; replace wB with (wB * 1);try ring. - Spec_w_to_Z bh;apply Zmult_le_compat;zarith. + apply Z.le_ge; replace wB with (wB * 1);try ring. + Spec_w_to_Z bh;apply Z.mul_le_mono_nonneg;zarith. unfold base;apply Zpower_le_monotone;zarith. assert (HHHH : 0 < [|w_head0 bh|] < Zpos w_digits); auto with zarith. - assert (Hb:= Zlt_le_weak _ _ H). + assert (Hb:= Z.lt_le_incl _ _ H). generalize (spec_add_mul_div w_0 ah Hb) (spec_add_mul_div ah al Hb) (spec_add_mul_div al w_0 Hb) (spec_add_mul_div bh bl Hb) (spec_add_mul_div bl w_0 Hb); - rewrite spec_w_0; repeat rewrite Zmult_0_l;repeat rewrite Zplus_0_l; - rewrite Zdiv_0_l;repeat rewrite Zplus_0_r. + rewrite spec_w_0; repeat rewrite Z.mul_0_l;repeat rewrite Z.add_0_l; + rewrite Zdiv_0_l;repeat rewrite Z.add_0_r. Spec_w_to_Z ah;Spec_w_to_Z bh. unfold base;repeat rewrite Zmod_shift_r;zarith. assert (H3:=to_Z_div_minus_p ah HHHH);assert(H4:=to_Z_div_minus_p al HHHH); assert (H5:=to_Z_div_minus_p bl HHHH). - rewrite Zmult_comm in Hh. + rewrite Z.mul_comm in Hh. assert (2^[|w_head0 bh|] < wB). unfold base;apply Zpower_lt_monotone;zarith. unfold base in H0;rewrite Zmod_small;zarith. fold wB; rewrite (Zmod_small ([|bh|] * 2 ^ [|w_head0 bh|]));zarith. @@ -943,15 +943,15 @@ Section DoubleDivGt. (w_add_mul_div (w_head0 bh) al w_0) (w_add_mul_div (w_head0 bh) bh bl) (w_add_mul_div (w_head0 bh) bl w_0)) as (q,r). - rewrite V1;rewrite V2. rewrite Zmult_plus_distr_l. - rewrite <- (Zplus_assoc ([|bh|] * 2 ^ [|w_head0 bh|] * wB)). + rewrite V1;rewrite V2. rewrite Z.mul_add_distr_r. + rewrite <- (Z.add_assoc ([|bh|] * 2 ^ [|w_head0 bh|] * wB)). unfold base;rewrite <- shift_unshift_mod;zarith. fold wB. replace ([|bh|] * 2 ^ [|w_head0 bh|] * wB + [|bl|] * 2 ^ [|w_head0 bh|]) with ([[WW bh bl]] * 2^[|w_head0 bh|]). 2:simpl;ring. - fold wwB. rewrite wwB_wBwB. rewrite Zpower_2. rewrite U1;rewrite U2;rewrite U3. - rewrite Zmult_assoc. rewrite Zmult_plus_distr_l. - rewrite (Zplus_assoc ([|ah|] / 2^(Zpos(w_digits) - [|w_head0 bh|])*wB * wB)). - rewrite <- Zmult_plus_distr_l. rewrite <- Zplus_assoc. + fold wwB. rewrite wwB_wBwB. rewrite Z.pow_2_r. rewrite U1;rewrite U2;rewrite U3. + rewrite Z.mul_assoc. rewrite Z.mul_add_distr_r. + rewrite (Z.add_assoc ([|ah|] / 2^(Zpos(w_digits) - [|w_head0 bh|])*wB * wB)). + rewrite <- Z.mul_add_distr_r. rewrite <- Z.add_assoc. unfold base;repeat rewrite <- shift_unshift_mod;zarith. fold wB. replace ([|ah|] * 2 ^ [|w_head0 bh|] * wB + [|al|] * 2 ^ [|w_head0 bh|]) with ([[WW ah al]] * 2^[|w_head0 bh|]). 2:simpl;ring. @@ -962,42 +962,42 @@ Section DoubleDivGt. unfold base. replace (2^Zpos (w_digits)) with (2^(Zpos (w_digits) - 1)*2). rewrite Z_div_mult;zarith. rewrite <- Zpower_exp;zarith. - apply Zlt_le_trans with wB;zarith. + apply Z.lt_le_trans with wB;zarith. unfold base;apply Zpower_le_monotone;zarith. pattern 2 at 2;replace 2 with (2^1);trivial. rewrite <- Zpower_exp;zarith. ring_simplify (Zpos (w_digits) - 1 + 1);trivial. change [[WW w_0 q]] with ([|w_0|]*wB+[|q|]);rewrite spec_w_0;rewrite - Zmult_0_l;rewrite Zplus_0_l. + Z.mul_0_l;rewrite Z.add_0_l. replace [[ww_add_mul_div (ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c w_opp w_sub w_sub_carry _ww_zdigits (w_0W (w_head0 bh))) W0 r]] with ([[r]]/2^[|w_head0 bh|]). - assert (0 < 2^[|w_head0 bh|]). apply Zpower_gt_0;zarith. + assert (0 < 2^[|w_head0 bh|]). apply Z.pow_pos_nonneg;zarith. split. rewrite <- (Z_div_mult [[WW ah al]] (2^[|w_head0 bh|]));zarith. - rewrite H1;rewrite Zmult_assoc;apply Z_div_plus_l;trivial. + rewrite H1;rewrite Z.mul_assoc;apply Z_div_plus_l;trivial. split;[apply Zdiv_le_lower_bound| apply Zdiv_lt_upper_bound];zarith. rewrite spec_ww_add_mul_div. rewrite spec_ww_sub; auto with zarith. rewrite spec_ww_digits_. change (Zpos (xO (w_digits))) with (2*Zpos (w_digits));zarith. - simpl ww_to_Z;rewrite Zmult_0_l;rewrite Zplus_0_l. + simpl ww_to_Z;rewrite Z.mul_0_l;rewrite Z.add_0_l. rewrite spec_w_0W. rewrite (fun x y => Zmod_small (x-y)); auto with zarith. ring_simplify (2 * Zpos w_digits - (2 * Zpos w_digits - [|w_head0 bh|])). rewrite Zmod_small;zarith. split;[apply Zdiv_le_lower_bound| apply Zdiv_lt_upper_bound];zarith. Spec_ww_to_Z r. - apply Zlt_le_trans with wwB;zarith. - rewrite <- (Zmult_1_r wwB);apply Zmult_le_compat;zarith. + apply Z.lt_le_trans with wwB;zarith. + rewrite <- (Z.mul_1_r wwB);apply Z.mul_le_mono_nonneg;zarith. split; auto with zarith. - apply Zle_lt_trans with (2 * Zpos w_digits); auto with zarith. - unfold base, ww_digits; rewrite (Zpos_xO w_digits). + apply Z.le_lt_trans with (2 * Zpos w_digits); auto with zarith. + unfold base, ww_digits; rewrite (Pos2Z.inj_xO w_digits). apply Zpower2_lt_lin; auto with zarith. rewrite spec_ww_sub; auto with zarith. rewrite spec_ww_digits_; rewrite spec_w_0W. rewrite Zmod_small;zarith. - rewrite Zpos_xO; split; auto with zarith. - apply Zle_lt_trans with (2 * Zpos w_digits); auto with zarith. - unfold base, ww_digits; rewrite (Zpos_xO w_digits). + rewrite Pos2Z.inj_xO; split; auto with zarith. + apply Z.le_lt_trans with (2 * Zpos w_digits); auto with zarith. + unfold base, ww_digits; rewrite (Pos2Z.inj_xO w_digits). apply Zpower2_lt_lin; auto with zarith. Qed. @@ -1037,9 +1037,9 @@ Section DoubleDivGt. assert (H2:=spec_div_gt Hgt Hpos);destruct (w_div_gt al bl). repeat rewrite spec_w_0W;simpl;rewrite spec_w_0;simpl;trivial. clear H. - rewrite spec_compare; case Zcompare_spec; intros Hcmp. + rewrite spec_compare; case Z.compare_spec; intros Hcmp. rewrite spec_w_0 in Hcmp. change [[WW bh bl]] with ([|bh|]*wB+[|bl|]). - rewrite <- Hcmp;rewrite Zmult_0_l;rewrite Zplus_0_l. + rewrite <- Hcmp;rewrite Z.mul_0_l;rewrite Z.add_0_l. simpl in Hpos;rewrite <- Hcmp in Hpos;simpl in Hpos. assert (H2:= @spec_double_divn1 w w_digits w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21 w_compare w_sub w_to_Z spec_to_Z spec_w_zdigits spec_w_0 spec_w_WW spec_head0 @@ -1079,7 +1079,7 @@ Section DoubleDivGt. rewrite spec_mod_gt;trivial. assert (H:=spec_div_gt Hgt Hpos). destruct (w_div_gt a b) as (q,r);simpl. - rewrite Zmult_comm in H;destruct H. + rewrite Z.mul_comm in H;destruct H. symmetry;apply Zmod_unique with [|q|];trivial. Qed. @@ -1132,7 +1132,7 @@ Section DoubleDivGt. rewrite spec_w_0W;rewrite spec_w_mod_gt_eq;trivial. destruct (w_div_gt al bl);simpl;rewrite spec_w_0W;trivial. clear H. - rewrite spec_compare; case Zcompare_spec; intros H2. + rewrite spec_compare; case Z.compare_spec; intros H2. rewrite (@spec_double_modn1_aux w w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21 w_compare w_sub w_to_Z spec_w_0 spec_compare 1 (WW ah al) bl). destruct (double_divn1 w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21 w_compare w_sub 1 @@ -1149,7 +1149,7 @@ Section DoubleDivGt. rewrite (spec_ww_mod_gt_eq a b Hgt Hpos). destruct (ww_div_gt a b)as(q,r);destruct H. apply Zmod_unique with[[q]];simpl;trivial. - rewrite Zmult_comm;trivial. + rewrite Z.mul_comm;trivial. Qed. Lemma Zis_gcd_mod : forall a b d, @@ -1206,13 +1206,13 @@ Section DoubleDivGt. | Gt => W0 (* absurde *) end). rewrite spec_compare, spec_w_0. - case Zcompare_spec; intros Hbh. + case Z.compare_spec; intros Hbh. simpl ww_to_Z in *. rewrite <- Hbh. - rewrite Zmult_0_l;rewrite Zplus_0_l. + rewrite Z.mul_0_l;rewrite Z.add_0_l. rewrite spec_compare, spec_w_0. - case Zcompare_spec; intros Hbl. + case Z.compare_spec; intros Hbl. rewrite <- Hbl;apply Zis_gcd_0. - simpl;rewrite spec_w_0;rewrite Zmult_0_l;rewrite Zplus_0_l. + simpl;rewrite spec_w_0;rewrite Z.mul_0_l;rewrite Z.add_0_l. apply Zis_gcd_mod;zarith. change ([|ah|] * wB + [|al|]) with (double_to_Z w_digits w_to_Z 1 (WW ah al)). rewrite <- (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW w_head0 w_add_mul_div @@ -1220,19 +1220,19 @@ Section DoubleDivGt. spec_div21 spec_compare spec_sub 1 (WW ah al) bl Hbl). apply spec_gcd_gt. rewrite (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW); trivial. - apply Zlt_gt;match goal with | |- ?x mod ?y < ?y => + apply Z.lt_gt;match goal with | |- ?x mod ?y < ?y => destruct (Z_mod_lt x y);zarith end. Spec_w_to_Z bl;exfalso;omega. assert (H:= spec_ww_mod_gt_aux _ _ _ Hgt Hbh). assert (H2 : 0 < [[WW bh bl]]). - simpl;Spec_w_to_Z bl. apply Zlt_le_trans with ([|bh|]*wB);zarith. - apply Zmult_lt_0_compat;zarith. + simpl;Spec_w_to_Z bl. apply Z.lt_le_trans with ([|bh|]*wB);zarith. + apply Z.mul_pos_pos;zarith. apply Zis_gcd_mod;trivial. rewrite <- H. simpl in *;destruct (ww_mod_gt_aux ah al bh bl) as [ |mh ml]. simpl;apply Zis_gcd_0;zarith. - rewrite spec_compare, spec_w_0; case Zcompare_spec; intros Hmh. + rewrite spec_compare, spec_w_0; case Z.compare_spec; intros Hmh. simpl;rewrite <- Hmh;simpl. - rewrite spec_compare, spec_w_0; case Zcompare_spec; intros Hml. + rewrite spec_compare, spec_w_0; case Z.compare_spec; intros Hml. rewrite <- Hml;simpl;apply Zis_gcd_0. simpl; rewrite spec_w_0; simpl. apply Zis_gcd_mod;zarith. @@ -1242,38 +1242,38 @@ Section DoubleDivGt. spec_div21 spec_compare spec_sub 1 (WW bh bl) ml Hml). apply spec_gcd_gt. rewrite (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW); trivial. - apply Zlt_gt;match goal with | |- ?x mod ?y < ?y => + apply Z.lt_gt;match goal with | |- ?x mod ?y < ?y => destruct (Z_mod_lt x y);zarith end. Spec_w_to_Z ml;exfalso;omega. assert ([[WW bh bl]] > [[WW mh ml]]). - rewrite H;simpl; apply Zlt_gt;match goal with | |- ?x mod ?y < ?y => + rewrite H;simpl; apply Z.lt_gt;match goal with | |- ?x mod ?y < ?y => destruct (Z_mod_lt x y);zarith end. assert (H1:= spec_ww_mod_gt_aux _ _ _ H0 Hmh). assert (H3 : 0 < [[WW mh ml]]). - simpl;Spec_w_to_Z ml. apply Zlt_le_trans with ([|mh|]*wB);zarith. - apply Zmult_lt_0_compat;zarith. + simpl;Spec_w_to_Z ml. apply Z.lt_le_trans with ([|mh|]*wB);zarith. + apply Z.mul_pos_pos;zarith. apply Zis_gcd_mod;zarith. simpl in *;rewrite <- H1. destruct (ww_mod_gt_aux bh bl mh ml) as [ |rh rl]. simpl; apply Zis_gcd_0. simpl;apply Hcont. simpl in H1;rewrite H1. - apply Zlt_gt;match goal with | |- ?x mod ?y < ?y => + apply Z.lt_gt;match goal with | |- ?x mod ?y < ?y => destruct (Z_mod_lt x y);zarith end. - apply Zle_trans with (2^n/2). + apply Z.le_trans with (2^n/2). apply Zdiv_le_lower_bound;zarith. - apply Zle_trans with ([|bh|] * wB + [|bl|]);zarith. - assert (H3' := Z_div_mod_eq [[WW bh bl]] [[WW mh ml]] (Zlt_gt _ _ H3)). - assert (H4' : 0 <= [[WW bh bl]]/[[WW mh ml]]). - apply Zge_le;apply Z_div_ge0;zarith. simpl in *;rewrite H1. + apply Z.le_trans with ([|bh|] * wB + [|bl|]);zarith. + assert (H3' := Z_div_mod_eq [[WW bh bl]] [[WW mh ml]] (Z.lt_gt _ _ H3)). + assert (H4 : 0 <= [[WW bh bl]]/[[WW mh ml]]). + apply Z.ge_le;apply Z_div_ge0;zarith. simpl in *;rewrite H1. pattern ([|bh|] * wB + [|bl|]) at 2;rewrite H3'. - destruct (Zle_lt_or_eq _ _ H4'). + Z.le_elim H4. assert (H6' : [[WW bh bl]] mod [[WW mh ml]] = [[WW bh bl]] - [[WW mh ml]] * ([[WW bh bl]]/[[WW mh ml]])). simpl;pattern ([|bh|] * wB + [|bl|]) at 2;rewrite H3';ring. simpl in H6'. assert ([[WW mh ml]] <= [[WW mh ml]] * ([[WW bh bl]]/[[WW mh ml]])). - simpl;pattern ([|mh|]*wB+[|ml|]) at 1;rewrite <- Zmult_1_r;zarith. + simpl;pattern ([|mh|]*wB+[|ml|]) at 1;rewrite <- Z.mul_1_r;zarith. simpl in *;assert (H8 := Z_mod_lt [[WW bh bl]] [[WW mh ml]]);simpl in H8; zarith. assert (H8 := Z_mod_lt [[WW bh bl]] [[WW mh ml]]);simpl in *;zarith. - rewrite <- H4 in H3';rewrite Zmult_0_r in H3';simpl in H3';zarith. + rewrite <- H4 in H3';rewrite Z.mul_0_r in H3';simpl in H3';zarith. pattern n at 1;replace n with (n-1+1);try ring. rewrite Zpower_exp;zarith. change (2^1) with 2. rewrite Z_div_mult;zarith. @@ -1295,27 +1295,27 @@ Section DoubleDivGt. [[ww_gcd_gt_aux p cont ah al bh bl]]. Proof. induction p;intros cont n Hcont ah al bh bl Hgt Hs;simpl ww_gcd_gt_aux. - assert (0 < Zpos p). unfold Zlt;reflexivity. + assert (0 < Zpos p). unfold Z.lt;reflexivity. apply spec_ww_gcd_gt_aux_body with (n := Zpos (xI p) + n); - trivial;rewrite Zpos_xI. + trivial;rewrite Pos2Z.inj_xI. intros. apply IHp with (n := Zpos p + n);zarith. intros. apply IHp with (n := n );zarith. - apply Zle_trans with (2 ^ (2* Zpos p + 1+ n -1));zarith. - apply Zpower_le_monotone2;zarith. - assert (0 < Zpos p). unfold Zlt;reflexivity. + apply Z.le_trans with (2 ^ (2* Zpos p + 1+ n -1));zarith. + apply Z.pow_le_mono_r;zarith. + assert (0 < Zpos p). unfold Z.lt;reflexivity. apply spec_ww_gcd_gt_aux_body with (n := Zpos (xO p) + n );trivial. - rewrite (Zpos_xO p). + rewrite (Pos2Z.inj_xO p). intros. apply IHp with (n := Zpos p + n - 1);zarith. intros. apply IHp with (n := n -1 );zarith. intros;apply Hcont;zarith. - apply Zle_trans with (2^(n-1));zarith. - apply Zpower_le_monotone2;zarith. - apply Zle_trans with (2 ^ (Zpos p + n -1));zarith. - apply Zpower_le_monotone2;zarith. - apply Zle_trans with (2 ^ (2*Zpos p + n -1));zarith. - apply Zpower_le_monotone2;zarith. + apply Z.le_trans with (2^(n-1));zarith. + apply Z.pow_le_mono_r;zarith. + apply Z.le_trans with (2 ^ (Zpos p + n -1));zarith. + apply Z.pow_le_mono_r;zarith. + apply Z.le_trans with (2 ^ (2*Zpos p + n -1));zarith. + apply Z.pow_le_mono_r;zarith. apply spec_ww_gcd_gt_aux_body with (n := n+1);trivial. - rewrite Zplus_comm;trivial. + rewrite Z.add_comm;trivial. ring_simplify (n + 1 - 1);trivial. Qed. @@ -1353,7 +1353,7 @@ Section DoubleDiv. Variable spec_to_Z : forall x, 0 <= [|x|] < wB. Variable spec_ww_1 : [[ww_1]] = 1. Variable spec_ww_compare : forall x y, - ww_compare x y = Zcompare [[x]] [[y]]. + ww_compare x y = Z.compare [[x]] [[y]]. Variable spec_ww_div_gt : forall a b, [[a]] > [[b]] -> 0 < [[b]] -> let (q,r) := ww_div_gt a b in [[a]] = [[q]] * [[b]] + [[r]] /\ @@ -1375,7 +1375,7 @@ Section DoubleDiv. 0 <= [[r]] < [[b]]. Proof. intros a b Hpos;unfold ww_div. - rewrite spec_ww_compare; case Zcompare_spec; intros. + rewrite spec_ww_compare; case Z.compare_spec; intros. simpl;rewrite spec_ww_1;split;zarith. simpl;split;[ring|Spec_ww_to_Z a;zarith]. apply spec_ww_div_gt;auto with zarith. @@ -1385,7 +1385,7 @@ Section DoubleDiv. [[ww_mod a b]] = [[a]] mod [[b]]. Proof. intros a b Hpos;unfold ww_mod. - rewrite spec_ww_compare; case Zcompare_spec; intros. + rewrite spec_ww_compare; case Z.compare_spec; intros. simpl;apply Zmod_unique with 1;try rewrite H;zarith. Spec_ww_to_Z a;symmetry;apply Zmod_small;zarith. apply spec_ww_mod_gt;auto with zarith. @@ -1406,7 +1406,7 @@ Section DoubleDiv. Variable spec_w_0 : [|w_0|] = 0. Variable spec_w_1 : [|w_1|] = 1. Variable spec_compare : - forall x y, w_compare x y = Zcompare [|x|] [|y|]. + forall x y, w_compare x y = Z.compare [|x|] [|y|]. Variable spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0. Variable spec_gcd_gt : forall a b, [|a|] > [|b|] -> Zis_gcd [|a|] [|b|] [|w_gcd_gt a b|]. @@ -1439,7 +1439,7 @@ Section DoubleDiv. assert (H1:= beta_lex _ _ _ _ _ Hle (spec_to_Z yl) H). Spec_w_to_Z yh;zarith. unfold gcd_cont; rewrite spec_compare, spec_w_1. - case Zcompare_spec; intros Hcmpy. + case Z.compare_spec; intros Hcmpy. simpl;rewrite H;simpl; rewrite spec_ww_1;rewrite <- Hcmpy;apply Zis_gcd_mod;zarith. rewrite <- (Zmod_unique ([|xh|]*wB+[|xl|]) 1 ([|xh|]*wB+[|xl|]) 0);zarith. @@ -1485,7 +1485,7 @@ Section DoubleDiv. Spec_w_to_Z bh;assert ([|bh|] = 0);zarith. rewrite H1 in Hgt;simpl in Hgt. rewrite H1;simpl;auto. clear H. apply spec_gcd_gt_fix with (n:= 0);trivial. - rewrite Zplus_0_r;rewrite spec_ww_digits_. + rewrite Z.add_0_r;rewrite spec_ww_digits_. change (2 ^ Zpos (xO w_digits)) with wwB. Spec_ww_to_Z (WW bh bl);zarith. Qed. @@ -1498,7 +1498,7 @@ Section DoubleDiv. | Eq => a | Lt => ww_gcd_gt b a end). - rewrite spec_ww_compare; case Zcompare_spec; intros Hcmp. + rewrite spec_ww_compare; case Z.compare_spec; intros Hcmp. Spec_ww_to_Z b;rewrite Hcmp. apply Zis_gcd_for_euclid with 1;zarith. ring_simplify ([[b]] - 1 * [[b]]). apply Zis_gcd_0;zarith. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v index 062282f2..5cb7405a 100644 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v +++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* [|w_head0 x|] = Zpos w_digits. Variable spec_w_head0 : forall x, 0 < [|x|] -> @@ -140,20 +140,20 @@ Section DoubleLift. case (spec_to_Z xh); intros Hx1 Hx2. case (spec_to_Z xl); intros Hy1 Hy2. assert (F1: [|xh|] = 0). - case (Zle_lt_or_eq _ _ Hy1); auto; intros Hy3. - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith. - apply Zlt_le_trans with (1 := Hy3); auto with zarith. - pattern [|xl|] at 1; rewrite <- (Zplus_0_l [|xl|]). - apply Zplus_le_compat_r; auto with zarith. - case (Zle_lt_or_eq _ _ Hx1); auto; intros Hx3. - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith. - rewrite <- Hy3; rewrite Zplus_0_r; auto with zarith. - apply Zmult_lt_0_compat; auto with zarith. - rewrite spec_compare. case Zcompare_spec. + { Z.le_elim Hy1; auto. + - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith. + apply Z.lt_le_trans with (1 := Hy1); auto with zarith. + pattern [|xl|] at 1; rewrite <- (Z.add_0_l [|xl|]). + apply Z.add_le_mono_r; auto with zarith. + - Z.le_elim Hx1; auto. + absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith. + rewrite <- Hy1; rewrite Z.add_0_r; auto with zarith. + apply Z.mul_pos_pos; auto with zarith. } + rewrite spec_compare. case Z.compare_spec. intros H; simpl. rewrite spec_w_add; rewrite spec_w_head00. rewrite spec_zdigits; rewrite spec_ww_digits. - rewrite Zpos_xO; auto with zarith. + rewrite Pos2Z.inj_xO; auto with zarith. rewrite F1 in Hx; auto with zarith. rewrite spec_w_0; auto with zarith. rewrite spec_w_0; auto with zarith. @@ -163,43 +163,43 @@ Section DoubleLift. wwB/ 2 <= 2 ^ [[ww_head0 x]] * [[x]] < wwB. Proof. clear spec_ww_zdigits. - rewrite wwB_div_2;rewrite Zmult_comm;rewrite wwB_wBwB. + rewrite wwB_div_2;rewrite Z.mul_comm;rewrite wwB_wBwB. assert (U:= lt_0_wB w_digits); destruct x as [ |xh xl];simpl ww_to_Z;intros H. - unfold Zlt in H;discriminate H. - rewrite spec_compare, spec_w_0. case Zcompare_spec; intros H0. - rewrite <- H0 in *. simpl Zplus. simpl in H. + unfold Z.lt in H;discriminate H. + rewrite spec_compare, spec_w_0. case Z.compare_spec; intros H0. + rewrite <- H0 in *. simpl Z.add. simpl in H. case (spec_to_Z w_zdigits); case (spec_to_Z (w_head0 xl)); intros HH1 HH2 HH3 HH4. rewrite spec_w_add. rewrite spec_zdigits; rewrite Zpower_exp; auto with zarith. case (spec_w_head0 H); intros H1 H2. - rewrite Zpower_2; fold wB; rewrite <- Zmult_assoc; split. - apply Zmult_le_compat_l; auto with zarith. - apply Zmult_lt_compat_l; auto with zarith. + rewrite Z.pow_2_r; fold wB; rewrite <- Z.mul_assoc; split. + apply Z.mul_le_mono_nonneg_l; auto with zarith. + apply Z.mul_lt_mono_pos_l; auto with zarith. assert (H1 := spec_w_head0 H0). rewrite spec_w_0W. split. - rewrite Zmult_plus_distr_r;rewrite Zmult_assoc. - apply Zle_trans with (2 ^ [|w_head0 xh|] * [|xh|] * wB). - rewrite Zmult_comm; zarith. + rewrite Z.mul_add_distr_l;rewrite Z.mul_assoc. + apply Z.le_trans with (2 ^ [|w_head0 xh|] * [|xh|] * wB). + rewrite Z.mul_comm; zarith. assert (0 <= 2 ^ [|w_head0 xh|] * [|xl|]);zarith. - assert (H2:=spec_to_Z xl);apply Zmult_le_0_compat;zarith. + assert (H2:=spec_to_Z xl);apply Z.mul_nonneg_nonneg;zarith. case (spec_to_Z (w_head0 xh)); intros H2 _. generalize ([|w_head0 xh|]) H1 H2;clear H1 H2; intros p H1 H2. assert (Eq1 : 2^p < wB). - rewrite <- (Zmult_1_r (2^p));apply Zle_lt_trans with (2^p*[|xh|]);zarith. + rewrite <- (Z.mul_1_r (2^p));apply Z.le_lt_trans with (2^p*[|xh|]);zarith. assert (Eq2: p < Zpos w_digits). - destruct (Zle_or_lt (Zpos w_digits) p);trivial;contradict Eq1. - apply Zle_not_lt;unfold base;apply Zpower_le_monotone;zarith. + destruct (Z.le_gt_cases (Zpos w_digits) p);trivial;contradict Eq1. + apply Z.le_ngt;unfold base;apply Zpower_le_monotone;zarith. assert (Zpos w_digits = p + (Zpos w_digits - p)). ring. - rewrite Zpower_2. + rewrite Z.pow_2_r. unfold base at 2;rewrite H3;rewrite Zpower_exp;zarith. - rewrite <- Zmult_assoc; apply Zmult_lt_compat_l; zarith. - rewrite <- (Zplus_0_r (2^(Zpos w_digits - p)*wB));apply beta_lex_inv;zarith. - apply Zmult_lt_reg_r with (2 ^ p); zarith. + rewrite <- Z.mul_assoc; apply Z.mul_lt_mono_pos_l; zarith. + rewrite <- (Z.add_0_r (2^(Zpos w_digits - p)*wB));apply beta_lex_inv;zarith. + apply Z.mul_lt_mono_pos_r with (2 ^ p); zarith. rewrite <- Zpower_exp;zarith. - rewrite Zmult_comm;ring_simplify (Zpos w_digits - p + p);fold wB;zarith. + rewrite Z.mul_comm;ring_simplify (Zpos w_digits - p + p);fold wB;zarith. assert (H1 := spec_to_Z xh);zarith. Qed. @@ -211,22 +211,22 @@ Section DoubleLift. case (spec_to_Z xh); intros Hx1 Hx2. case (spec_to_Z xl); intros Hy1 Hy2. assert (F1: [|xh|] = 0). - case (Zle_lt_or_eq _ _ Hy1); auto; intros Hy3. - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith. - apply Zlt_le_trans with (1 := Hy3); auto with zarith. - pattern [|xl|] at 1; rewrite <- (Zplus_0_l [|xl|]). - apply Zplus_le_compat_r; auto with zarith. - case (Zle_lt_or_eq _ _ Hx1); auto; intros Hx3. - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith. - rewrite <- Hy3; rewrite Zplus_0_r; auto with zarith. - apply Zmult_lt_0_compat; auto with zarith. + { Z.le_elim Hy1; auto. + - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith. + apply Z.lt_le_trans with (1 := Hy1); auto with zarith. + pattern [|xl|] at 1; rewrite <- (Z.add_0_l [|xl|]). + apply Z.add_le_mono_r; auto with zarith. + - Z.le_elim Hx1; auto. + absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith. + rewrite <- Hy1; rewrite Z.add_0_r; auto with zarith. + apply Z.mul_pos_pos; auto with zarith. } assert (F2: [|xl|] = 0). rewrite F1 in Hx; auto with zarith. - rewrite spec_compare; case Zcompare_spec. + rewrite spec_compare; case Z.compare_spec. intros H; simpl. rewrite spec_w_add; rewrite spec_w_tail00; auto. rewrite spec_zdigits; rewrite spec_ww_digits. - rewrite Zpos_xO; auto with zarith. + rewrite Pos2Z.inj_xO; auto with zarith. rewrite spec_w_0; auto with zarith. rewrite spec_w_0; auto with zarith. Qed. @@ -236,51 +236,51 @@ Section DoubleLift. Proof. clear spec_ww_zdigits. destruct x as [ |xh xl];simpl ww_to_Z;intros H. - unfold Zlt in H;discriminate H. - rewrite spec_compare, spec_w_0. case Zcompare_spec; intros H0. - rewrite <- H0; rewrite Zplus_0_r. + unfold Z.lt in H;discriminate H. + rewrite spec_compare, spec_w_0. case Z.compare_spec; intros H0. + rewrite <- H0; rewrite Z.add_0_r. case (spec_to_Z (w_tail0 xh)); intros HH1 HH2. - generalize H; rewrite <- H0; rewrite Zplus_0_r; clear H; intros H. + generalize H; rewrite <- H0; rewrite Z.add_0_r; clear H; intros H. case (@spec_w_tail0 xh). - apply Zmult_lt_reg_r with wB; auto with zarith. + apply Z.mul_lt_mono_pos_r with wB; auto with zarith. unfold base; auto with zarith. intros z (Hz1, Hz2); exists z; split; auto. - rewrite spec_w_add; rewrite (fun x => Zplus_comm [|x|]). + rewrite spec_w_add; rewrite (fun x => Z.add_comm [|x|]). rewrite spec_zdigits; rewrite Zpower_exp; auto with zarith. - rewrite Zmult_assoc; rewrite <- Hz2; auto. + rewrite Z.mul_assoc; rewrite <- Hz2; auto. case (spec_to_Z (w_tail0 xh)); intros HH1 HH2. case (spec_w_tail0 H0); intros z (Hz1, Hz2). assert (Hp: [|w_tail0 xl|] < Zpos w_digits). - case (Zle_or_lt (Zpos w_digits) [|w_tail0 xl|]); auto; intros H1. + case (Z.le_gt_cases (Zpos w_digits) [|w_tail0 xl|]); auto; intros H1. absurd (2 ^ (Zpos w_digits) <= 2 ^ [|w_tail0 xl|]). - apply Zlt_not_le. + apply Z.lt_nge. case (spec_to_Z xl); intros HH3 HH4. - apply Zle_lt_trans with (2 := HH4). - apply Zle_trans with (1 * 2 ^ [|w_tail0 xl|]); auto with zarith. + apply Z.le_lt_trans with (2 := HH4). + apply Z.le_trans with (1 * 2 ^ [|w_tail0 xl|]); auto with zarith. rewrite Hz2. - apply Zmult_le_compat_r; auto with zarith. + apply Z.mul_le_mono_nonneg_r; auto with zarith. apply Zpower_le_monotone; auto with zarith. exists ([|xh|] * (2 ^ ((Zpos w_digits - [|w_tail0 xl|]) - 1)) + z); split. - apply Zplus_le_0_compat; auto. - apply Zmult_le_0_compat; auto with zarith. + apply Z.add_nonneg_nonneg; auto. + apply Z.mul_nonneg_nonneg; auto with zarith. case (spec_to_Z xh); auto. rewrite spec_w_0W. - rewrite (Zmult_plus_distr_r 2); rewrite <- Zplus_assoc. - rewrite Zmult_plus_distr_l; rewrite <- Hz2. - apply f_equal2 with (f := Zplus); auto. - rewrite (Zmult_comm 2). - repeat rewrite <- Zmult_assoc. - apply f_equal2 with (f := Zmult); auto. + rewrite (Z.mul_add_distr_l 2); rewrite <- Z.add_assoc. + rewrite Z.mul_add_distr_r; rewrite <- Hz2. + apply f_equal2 with (f := Z.add); auto. + rewrite (Z.mul_comm 2). + repeat rewrite <- Z.mul_assoc. + apply f_equal2 with (f := Z.mul); auto. case (spec_to_Z (w_tail0 xl)); intros HH3 HH4. - pattern 2 at 2; rewrite <- Zpower_1_r. + pattern 2 at 2; rewrite <- Z.pow_1_r. lazy beta; repeat rewrite <- Zpower_exp; auto with zarith. - unfold base; apply f_equal with (f := Zpower 2); auto with zarith. + unfold base; apply f_equal with (f := Z.pow 2); auto with zarith. contradict H0; case (spec_to_Z xl); auto with zarith. Qed. - Hint Rewrite Zdiv_0_l Zmult_0_l Zplus_0_l Zmult_0_r Zplus_0_r + Hint Rewrite Zdiv_0_l Z.mul_0_l Z.add_0_l Z.mul_0_r Z.add_0_r spec_w_W0 spec_w_0W spec_w_WW spec_w_0 (wB_div w_digits w_to_Z spec_to_Z) (wB_div_plus w_digits w_to_Z spec_to_Z) : w_rewrite. @@ -304,20 +304,20 @@ Section DoubleLift. intros xh xl yh yl p zdigits;assert (HwwB := wwB_pos w_digits). case (spec_to_w_Z p); intros Hv1 Hv2. replace (Zpos (xO w_digits)) with (Zpos w_digits + Zpos w_digits). - 2 : rewrite Zpos_xO;ring. + 2 : rewrite Pos2Z.inj_xO;ring. replace (Zpos w_digits + Zpos w_digits - [[p]]) with (Zpos w_digits + (Zpos w_digits - [[p]])). 2:ring. intros Hp; assert (Hxh := spec_to_Z xh);assert (Hxl:=spec_to_Z xl); assert (Hx := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh xl)); simpl in Hx;assert (Hyh := spec_to_Z yh);assert (Hyl:=spec_to_Z yl); assert (Hy:=spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW yh yl));simpl in Hy. - rewrite spec_ww_compare; case Zcompare_spec; intros H1. + rewrite spec_ww_compare; case Z.compare_spec; intros H1. rewrite H1; unfold zdigits; rewrite spec_w_0W. - rewrite spec_zdigits; rewrite Zminus_diag; rewrite Zplus_0_r. + rewrite spec_zdigits; rewrite Z.sub_diag; rewrite Z.add_0_r. simpl ww_to_Z; w_rewrite;zarith. fold wB. - rewrite Zmult_plus_distr_l;rewrite <- Zmult_assoc;rewrite <- Zplus_assoc. - rewrite <- Zpower_2. + rewrite Z.mul_add_distr_r;rewrite <- Z.mul_assoc;rewrite <- Z.add_assoc. + rewrite <- Z.pow_2_r. rewrite <- wwB_wBwB;apply Zmod_unique with [|xh|]. exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xl yh)). ring. simpl ww_to_Z; w_rewrite;zarith. @@ -327,7 +327,7 @@ Section DoubleLift. case (spec_to_w_Z p); intros HH1 HH2; split; auto. generalize H1; unfold zdigits; rewrite spec_w_0W; rewrite spec_zdigits; intros tmp. - apply Zlt_le_trans with (1 := tmp). + apply Z.lt_le_trans with (1 := tmp). unfold base. apply Zpower2_le_lin; auto with zarith. 2: generalize H1; unfold zdigits; rewrite spec_w_0W; @@ -338,16 +338,16 @@ Section DoubleLift. rewrite HH0; auto with zarith. repeat rewrite spec_w_add_mul_div with (1 := HH). rewrite HH0. - rewrite Zmult_plus_distr_l. + rewrite Z.mul_add_distr_r. pattern ([|xl|] * 2 ^ [[p]]) at 2; rewrite shift_unshift_mod with (n:= Zpos w_digits);fold wB;zarith. replace ([|xh|] * wB * 2^[[p]]) with ([|xh|] * 2^[[p]] * wB). 2:ring. - rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l. rewrite <- Zplus_assoc. + rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. rewrite <- Z.add_assoc. unfold base at 5;rewrite <- Zmod_shift_r;zarith. unfold base;rewrite Zmod_shift_r with (b:= Zpos (ww_digits w_digits)); fold wB;fold wwB;zarith. - rewrite wwB_wBwB;rewrite Zpower_2; rewrite Zmult_mod_distr_r;zarith. - unfold ww_digits;rewrite Zpos_xO;zarith. apply Z_mod_lt;zarith. + rewrite wwB_wBwB;rewrite Z.pow_2_r; rewrite Zmult_mod_distr_r;zarith. + unfold ww_digits;rewrite Pos2Z.inj_xO;zarith. apply Z_mod_lt;zarith. split;zarith. apply Zdiv_lt_upper_bound;zarith. rewrite <- Zpower_exp;zarith. ring_simplify ([[p]] + (Zpos w_digits - [[p]]));fold wB;zarith. @@ -362,10 +362,10 @@ Section DoubleLift. rewrite <- Zmod_div_mod; auto with zarith. rewrite Zmod_small; auto with zarith. split; auto with zarith. - apply Zle_lt_trans with (Zpos w_digits); auto with zarith. + apply Z.le_lt_trans with (Zpos w_digits); auto with zarith. unfold base; apply Zpower2_lt_lin; auto with zarith. exists wB; unfold base. - unfold ww_digits; rewrite (Zpos_xO w_digits). + unfold ww_digits; rewrite (Pos2Z.inj_xO w_digits). rewrite <- Zpower_exp; auto with zarith. apply f_equal with (f := fun x => 2 ^ x); auto with zarith. assert (HH: [|low (ww_sub p zdigits)|] <= Zpos w_digits). @@ -378,25 +378,25 @@ Section DoubleLift. pattern wB at 5;replace wB with (2^(([[p]] - Zpos w_digits) + (Zpos w_digits - ([[p]] - Zpos w_digits)))). - rewrite Zpower_exp;zarith. rewrite Zmult_assoc. + rewrite Zpower_exp;zarith. rewrite Z.mul_assoc. rewrite Z_div_plus_l;zarith. rewrite shift_unshift_mod with (a:= [|yh|]) (p:= [[p]] - Zpos w_digits) (n := Zpos w_digits);zarith. fold wB. set (u := [[p]] - Zpos w_digits). replace [[p]] with (u + Zpos w_digits);zarith. - rewrite Zpower_exp;zarith. rewrite Zmult_assoc. fold wB. - repeat rewrite Zplus_assoc. rewrite <- Zmult_plus_distr_l. - repeat rewrite <- Zplus_assoc. + rewrite Zpower_exp;zarith. rewrite Z.mul_assoc. fold wB. + repeat rewrite Z.add_assoc. rewrite <- Z.mul_add_distr_r. + repeat rewrite <- Z.add_assoc. unfold base;rewrite Zmod_shift_r with (b:= Zpos (ww_digits w_digits)); fold wB;fold wwB;zarith. unfold base;rewrite Zmod_shift_r with (a:= Zpos w_digits) (b:= Zpos w_digits);fold wB;fold wwB;zarith. - rewrite wwB_wBwB; rewrite Zpower_2; rewrite Zmult_mod_distr_r;zarith. - rewrite Zmult_plus_distr_l. + rewrite wwB_wBwB; rewrite Z.pow_2_r; rewrite Zmult_mod_distr_r;zarith. + rewrite Z.mul_add_distr_r. replace ([|xh|] * wB * 2 ^ u) with ([|xh|]*2^u*wB). 2:ring. - repeat rewrite <- Zplus_assoc. - rewrite (Zplus_comm ([|xh|] * 2 ^ u * wB)). + repeat rewrite <- Z.add_assoc. + rewrite (Z.add_comm ([|xh|] * 2 ^ u * wB)). rewrite Z_mod_plus;zarith. rewrite Z_mod_mult;zarith. unfold base;rewrite <- Zmod_shift_r;zarith. fold base;apply Z_mod_lt;zarith. unfold u; split;zarith. @@ -404,7 +404,7 @@ Section DoubleLift. rewrite <- Zpower_exp;zarith. fold u. ring_simplify (u + (Zpos w_digits - u)); fold - wB;zarith. unfold ww_digits;rewrite Zpos_xO;zarith. + wB;zarith. unfold ww_digits;rewrite Pos2Z.inj_xO;zarith. unfold base;rewrite <- Zmod_shift_r;zarith. fold base;apply Z_mod_lt;zarith. unfold u; split;zarith. unfold u; split;zarith. @@ -434,14 +434,14 @@ Section DoubleLift. clear H1;w_rewrite);simpl ww_add_mul_div. replace [[WW w_0 w_0]] with 0;[w_rewrite|simpl;w_rewrite;trivial]. intros Heq;rewrite <- Heq;clear Heq; auto. - rewrite spec_ww_compare. case Zcompare_spec; intros H1; w_rewrite. + rewrite spec_ww_compare. case Z.compare_spec; intros H1; w_rewrite. rewrite (spec_w_add_mul_div w_0 w_0);w_rewrite;zarith. generalize H1; w_rewrite; rewrite spec_zdigits; clear H1; intros H1. assert (HH0: [|low p|] = [[p]]). rewrite spec_low. apply Zmod_small. case (spec_to_w_Z p); intros HH1 HH2; split; auto. - apply Zlt_le_trans with (1 := H1). + apply Z.lt_le_trans with (1 := H1). unfold base; apply Zpower2_le_lin; auto with zarith. rewrite HH0; auto with zarith. replace [[WW w_0 w_0]] with 0;[w_rewrite|simpl;w_rewrite;trivial]. @@ -449,7 +449,7 @@ Section DoubleLift. generalize (spec_ww_compare p (w_0W w_zdigits)); case ww_compare; intros H1; w_rewrite. rewrite (spec_w_add_mul_div w_0 w_0);w_rewrite;zarith. - rewrite Zpos_xO in H;zarith. + rewrite Pos2Z.inj_xO in H;zarith. assert (HH: [|low (ww_sub p (w_0W w_zdigits)) |] = [[p]] - Zpos w_digits). symmetry in H1; change ([[p]] > [[w_0W w_zdigits]]) in H1. revert H1. @@ -458,12 +458,12 @@ Section DoubleLift. rewrite <- Zmod_div_mod; auto with zarith. rewrite Zmod_small; auto with zarith. split; auto with zarith. - apply Zle_lt_trans with (Zpos w_digits); auto with zarith. + apply Z.le_lt_trans with (Zpos w_digits); auto with zarith. unfold base; apply Zpower2_lt_lin; auto with zarith. unfold base; auto with zarith. unfold base; auto with zarith. exists wB; unfold base. - unfold ww_digits; rewrite (Zpos_xO w_digits). + unfold ww_digits; rewrite (Pos2Z.inj_xO w_digits). rewrite <- Zpower_exp; auto with zarith. apply f_equal with (f := fun x => 2 ^ x); auto with zarith. case (spec_to_Z xh); auto with zarith. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v index 0032d2c3..7a92ff0c 100644 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v +++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* w->w->w->zn2z w -> zn2z w -> w*zn2z w, @@ -361,7 +361,7 @@ Section DoubleMul. forall x y, [||double_mul_c cross x y||] = [[x]] * [[y]]. Proof. intros cross Hcross x y;destruct x as [ |xh xl];simpl;trivial. - destruct y as [ |yh yl];simpl. rewrite Zmult_0_r;trivial. + destruct y as [ |yh yl];simpl. rewrite Z.mul_0_r;trivial. assert (H1:= spec_w_mul_c xh yh);assert (H2:= spec_w_mul_c xl yl). generalize (Hcross _ _ _ _ _ _ H1 H2). destruct (cross xh xl yh yl (w_mul_c xh yh) (w_mul_c xl yl)) as (wc,cc). @@ -382,7 +382,7 @@ Section DoubleMul. Lemma spec_w_2: [|w_2|] = 2. unfold w_2; rewrite spec_w_add; rewrite spec_w_1; simpl. apply Zmod_small; split; auto with zarith. - rewrite <- (Zpower_1_r 2); unfold base; apply Zpower_lt_monotone; auto with zarith. + rewrite <- (Z.pow_1_r 2); unfold base; apply Zpower_lt_monotone; auto with zarith. Qed. Lemma kara_prod_aux : forall xh xl yh yl, @@ -401,19 +401,19 @@ Section DoubleMul. assert (Hyh := (spec_to_Z yh)); assert (Hyl := (spec_to_Z yl)). generalize (spec_ww_add_c hh ll); case (ww_add_c hh ll); intros z Hz; rewrite <- Hz; unfold interp_carry; assert (Hz1 := (spec_ww_to_Z z)). - rewrite spec_w_compare; case Zcompare_spec; intros Hxlh; + rewrite spec_w_compare; case Z.compare_spec; intros Hxlh; try rewrite Hxlh; try rewrite spec_w_0; try (ring; fail). - rewrite spec_w_compare; case Zcompare_spec; intros Hylh. + rewrite spec_w_compare; case Z.compare_spec; intros Hylh. rewrite Hylh; rewrite spec_w_0; try (ring; fail). rewrite spec_w_0; try (ring; fail). repeat (rewrite spec_ww_sub || rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). split; auto with zarith. simpl in Hz; rewrite Hz; rewrite H; rewrite H0. - rewrite kara_prod_aux; apply Zplus_le_0_compat; apply Zmult_le_0_compat; auto with zarith. - apply Zle_lt_trans with ([[z]]-0); auto with zarith. - unfold Zminus; apply Zplus_le_compat_l; apply Zle_left_rev; simpl; rewrite Zopp_involutive. - apply Zmult_le_0_compat; auto with zarith. + rewrite kara_prod_aux; apply Z.add_nonneg_nonneg; apply Z.mul_nonneg_nonneg; auto with zarith. + apply Z.le_lt_trans with ([[z]]-0); auto with zarith. + unfold Z.sub; apply Z.add_le_mono_l; apply Z.le_0_sub; simpl; rewrite Z.opp_involutive. + apply Z.mul_nonneg_nonneg; auto with zarith. match goal with |- context[ww_add_c ?x ?y] => generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_0; intros z1 Hz2 @@ -423,7 +423,7 @@ Section DoubleMul. rewrite spec_w_1; unfold interp_carry in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_compare; case Zcompare_spec; intros Hylh. + rewrite spec_w_compare; case Z.compare_spec; intros Hylh. rewrite Hylh; rewrite spec_w_0; try (ring; fail). match goal with |- context[ww_add_c ?x ?y] => generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_0; @@ -442,15 +442,15 @@ Section DoubleMul. replace ((x - y) * (z - t)) with ((y - x) * (t - z)); [idtac | ring] end. simpl in Hz; rewrite Hz; rewrite H; rewrite H0. - rewrite kara_prod_aux; apply Zplus_le_0_compat; apply Zmult_le_0_compat; auto with zarith. - apply Zle_lt_trans with ([[z]]-0); auto with zarith. - unfold Zminus; apply Zplus_le_compat_l; apply Zle_left_rev; simpl; rewrite Zopp_involutive. - apply Zmult_le_0_compat; auto with zarith. + rewrite kara_prod_aux; apply Z.add_nonneg_nonneg; apply Z.mul_nonneg_nonneg; auto with zarith. + apply Z.le_lt_trans with ([[z]]-0); auto with zarith. + unfold Z.sub; apply Z.add_le_mono_l; apply Z.le_0_sub; simpl; rewrite Z.opp_involutive. + apply Z.mul_nonneg_nonneg; auto with zarith. (** there is a carry in hh + ll **) - rewrite Zmult_1_l. - rewrite spec_w_compare; case Zcompare_spec; intros Hxlh; + rewrite Z.mul_1_l. + rewrite spec_w_compare; case Z.compare_spec; intros Hxlh; try rewrite Hxlh; try rewrite spec_w_1; try (ring; fail). - rewrite spec_w_compare; case Zcompare_spec; intros Hylh; + rewrite spec_w_compare; case Z.compare_spec; intros Hylh; try rewrite Hylh; try rewrite spec_w_1; try (ring; fail). match goal with |- context[ww_sub_c ?x ?y] => generalize (spec_ww_sub_c x y); case (ww_sub_c x y); try rewrite spec_w_1; @@ -458,7 +458,7 @@ Section DoubleMul. end. simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_0; rewrite Zmult_0_l; rewrite Zplus_0_l. + rewrite spec_w_0; rewrite Z.mul_0_l; rewrite Z.add_0_l. generalize Hz2; clear Hz2; unfold interp_carry. repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). @@ -469,11 +469,11 @@ Section DoubleMul. simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). rewrite spec_w_2; unfold interp_carry in Hz2. - apply trans_equal with (wwB + (1 * wwB + [[z1]])). + transitivity (wwB + (1 * wwB + [[z1]])). ring. rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_compare; case Zcompare_spec; intros Hylh; + rewrite spec_w_compare; case Z.compare_spec; intros Hylh; try rewrite Hylh; try rewrite spec_w_1; try (ring; fail). match goal with |- context[ww_add_c ?x ?y] => generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_1; @@ -482,7 +482,7 @@ Section DoubleMul. simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). rewrite spec_w_2; unfold interp_carry in Hz2. - apply trans_equal with (wwB + (1 * wwB + [[z1]])). + transitivity (wwB + (1 * wwB + [[z1]])). ring. rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). @@ -492,7 +492,7 @@ Section DoubleMul. end. simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_0; rewrite Zmult_0_l; rewrite Zplus_0_l. + rewrite spec_w_0; rewrite Z.mul_0_l; rewrite Z.add_0_l. match goal with |- context[(?x - ?y) * (?z - ?t)] => replace ((x - y) * (z - t)) with ((y - x) * (t - z)); [idtac | ring] end. @@ -513,7 +513,7 @@ Section DoubleMul. rewrite <- wwB_wBwB;intros H1 H2. assert (H3 := wB_pos w_digits). assert (2*wB <= wwB). - rewrite wwB_wBwB; rewrite Zpower_2; apply Zmult_le_compat;zarith. + rewrite wwB_wBwB; rewrite Z.pow_2_r; apply Z.mul_le_mono_nonneg;zarith. omega. Qed. @@ -537,14 +537,14 @@ Section DoubleMul. assert (U1:= lt_0_wwB w_digits). intros x y; case x; auto; intros xh xl. case y; auto. - simpl; rewrite Zmult_0_r; rewrite Zmod_small; auto with zarith. + simpl; rewrite Z.mul_0_r; rewrite Zmod_small; auto with zarith. intros yh yl;simpl. repeat (rewrite spec_ww_add || rewrite spec_w_W0 || rewrite spec_w_mul_c || rewrite spec_w_add || rewrite spec_w_mul). rewrite <- Zplus_mod; auto with zarith. - repeat (rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r). + repeat (rewrite Z.mul_add_distr_r || rewrite Z.mul_add_distr_l). rewrite <- Zmult_mod_distr_r; auto with zarith. - rewrite <- Zpower_2; rewrite <- wwB_wBwB; auto with zarith. + rewrite <- Z.pow_2_r; rewrite <- wwB_wBwB; auto with zarith. rewrite Zplus_mod; auto with zarith. rewrite Zmod_mod; auto with zarith. rewrite <- Zplus_mod; auto with zarith. @@ -564,10 +564,10 @@ Section DoubleMul. apply (spec_mul_aux xh xl xh xl wc cc);trivial. generalize Heq (spec_ww_add_c (w_mul_c xh xl) (w_mul_c xh xl));clear Heq. rewrite spec_w_mul_c;destruct (ww_add_c (w_mul_c xh xl) (w_mul_c xh xl)); - unfold interp_carry;try rewrite Zmult_1_l;intros Heq Heq';inversion Heq; - rewrite (Zmult_comm [|xl|]);subst. - rewrite spec_w_0;rewrite Zmult_0_l;rewrite Zplus_0_l;trivial. - rewrite spec_w_1;rewrite Zmult_1_l;rewrite <- wwB_wBwB;trivial. + unfold interp_carry;try rewrite Z.mul_1_l;intros Heq Heq';inversion Heq; + rewrite (Z.mul_comm [|xl|]);subst. + rewrite spec_w_0;rewrite Z.mul_0_l;rewrite Z.add_0_l;trivial. + rewrite spec_w_1;rewrite Z.mul_1_l;rewrite <- wwB_wBwB;trivial. Qed. Section DoubleMulAddn1Proof. @@ -589,8 +589,8 @@ Section DoubleMul. assert(H:=IHn xl y r);destruct (double_mul_add_n1 w_mul_add n xl y r)as(rl,l). assert(U:=IHn xh y rl);destruct(double_mul_add_n1 w_mul_add n xh y rl)as(rh,h). rewrite <- double_wB_wwB. rewrite spec_double_WW;simpl;trivial. - rewrite Zmult_plus_distr_l;rewrite <- Zplus_assoc;rewrite <- H. - rewrite Zmult_assoc;rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l. + rewrite Z.mul_add_distr_r;rewrite <- Z.add_assoc;rewrite <- H. + rewrite Z.mul_assoc;rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. rewrite U;ring. Qed. @@ -604,9 +604,9 @@ Section DoubleMul. destruct (w_mul_c x y) as [ |h l];simpl;rewrite <- H. rewrite spec_w_0;trivial. assert (U:=spec_w_add_c l r);destruct (w_add_c l r) as [lr|lr];unfold - interp_carry in U;try rewrite Zmult_1_l in H;simpl. + interp_carry in U;try rewrite Z.mul_1_l in H;simpl. rewrite U;ring. rewrite spec_w_succ. rewrite Zmod_small. - rewrite <- Zplus_assoc;rewrite <- U;ring. + rewrite <- Z.add_assoc;rewrite <- U;ring. simpl in H;assert (H1:= Zmult_lt_b _ _ _ (spec_to_Z x) (spec_to_Z y)). rewrite <- H in H1. assert (H2:=spec_to_Z h);split;zarith. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v index b073d6be..40556c4a 100644 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v +++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* [| w_add_mul_div p x y |] = ([|x|] * (2 ^ [|p|]) + - [|y|] / (Zpower 2 ((Zpos w_digits) - [|p|]))) mod wB. + [|y|] / (Z.pow 2 ((Zpos w_digits) - [|p|]))) mod wB. Variable spec_ww_add_mul_div : forall x y p, [[p]] <= Zpos (xO w_digits) -> [[ ww_add_mul_div p x y ]] = @@ -251,7 +251,7 @@ Section DoubleSqrt. Variable spec_ww_pred : forall x, [[ww_pred x]] = ([[x]] - 1) mod wwB. Variable spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]]. Variable spec_ww_compare : forall x y, - ww_compare x y = Zcompare [[x]] [[y]]. + ww_compare x y = Z.compare [[x]] [[y]]. Variable spec_ww_head0 : forall x, 0 < [[x]] -> wwB/ 2 <= 2 ^ [[ww_head0 x]] * [[x]] < wwB. Variable spec_low: forall x, [|low x|] = [[x]] mod wB. @@ -272,10 +272,9 @@ intros x; case x; simpl ww_is_even. unfold base. rewrite Zplus_mod; auto with zarith. rewrite (fun x y => (Zdivide_mod (x * y))); auto with zarith. - rewrite Zplus_0_l; rewrite Zmod_mod; auto with zarith. + rewrite Z.add_0_l; rewrite Zmod_mod; auto with zarith. apply spec_w_is_even; auto with zarith. - apply Zdivide_mult_r; apply Zpower_divide; auto with zarith. - red; simpl; auto. + apply Z.divide_mul_r; apply Zpower_divide; auto with zarith. Qed. @@ -286,10 +285,10 @@ intros x; case x; simpl ww_is_even. intros a1 a2 b Hb; unfold w_div21c. assert (H: 0 < [|b|]); auto with zarith. assert (U := wB_pos w_digits). - apply Zlt_le_trans with (2 := Hb); auto with zarith. - apply Zlt_le_trans with 1; auto with zarith. + apply Z.lt_le_trans with (2 := Hb); auto with zarith. + apply Z.lt_le_trans with 1; auto with zarith. apply Zdiv_le_lower_bound; auto with zarith. - rewrite !spec_w_compare. repeat case Zcompare_spec. + rewrite !spec_w_compare. repeat case Z.compare_spec. intros H1 H2; split. unfold interp_carry; autorewrite with w_rewrite rm10; auto with zarith. rewrite H1; rewrite H2; ring. @@ -308,7 +307,7 @@ intros x; case x; simpl ww_is_even. rewrite Zmod_small; auto with zarith. split; auto with zarith. assert ([|a2|] < 2 * [|b|]); auto with zarith. - apply Zlt_le_trans with (2 * (wB / 2)); auto with zarith. + apply Z.lt_le_trans with (2 * (wB / 2)); auto with zarith. rewrite wB_div_2; auto. intros H1. match goal with |- context[w_div21 ?y ?z ?t] => @@ -321,7 +320,7 @@ intros x; case x; simpl ww_is_even. rewrite spec_w_sub; auto with zarith. rewrite Zmod_small; auto with zarith. assert ([|a1|] < 2 * [|b|]); auto with zarith. - apply Zlt_le_trans with (2 * (wB / 2)); auto with zarith. + apply Z.lt_le_trans with (2 * (wB / 2)); auto with zarith. rewrite wB_div_2; auto. destruct (spec_to_Z a1);auto with zarith. destruct (spec_to_Z a1);auto with zarith. @@ -333,11 +332,11 @@ intros x; case x; simpl ww_is_even. intros w0 w1; replace [+|C1 w0|] with (wB + [|w0|]). rewrite Zmod_small; auto with zarith. intros (H3, H4); split; auto. - rewrite Zmult_plus_distr_l. - rewrite <- Zplus_assoc; rewrite <- H3; ring. + rewrite Z.mul_add_distr_r. + rewrite <- Z.add_assoc; rewrite <- H3; ring. split; auto with zarith. assert ([|a1|] < 2 * [|b|]); auto with zarith. - apply Zlt_le_trans with (2 * (wB / 2)); auto with zarith. + apply Z.lt_le_trans with (2 * (wB / 2)); auto with zarith. rewrite wB_div_2; auto. destruct (spec_to_Z a1);auto with zarith. destruct (spec_to_Z a1);auto with zarith. @@ -355,14 +354,14 @@ intros x; case x; simpl ww_is_even. rewrite spec_pred; rewrite spec_w_zdigits. rewrite Zmod_small; auto with zarith. split; auto with zarith. - apply Zlt_le_trans with (Zpos w_digits); auto with zarith. + apply Z.lt_le_trans with (Zpos w_digits); auto with zarith. unfold base; apply Zpower2_le_lin; auto with zarith. rewrite spec_w_add_mul_div; auto with zarith. autorewrite with w_rewrite rm10. match goal with |- context[?X - ?Y] => replace (X - Y) with 1 end. - rewrite Zpower_1_r; rewrite Zmod_small; auto with zarith. + rewrite Z.pow_1_r; rewrite Zmod_small; auto with zarith. destruct (spec_to_Z w1) as [H1 H2];auto with zarith. split; auto with zarith. apply Zdiv_lt_upper_bound; auto with zarith. @@ -377,15 +376,15 @@ intros x; case x; simpl ww_is_even. rewrite spec_pred; rewrite spec_w_zdigits. rewrite Zmod_small; auto with zarith. split; auto with zarith. - apply Zlt_le_trans with (Zpos w_digits); auto with zarith. + apply Z.lt_le_trans with (Zpos w_digits); auto with zarith. unfold base; apply Zpower2_le_lin; auto with zarith. autorewrite with w_rewrite rm10; auto with zarith. match goal with |- context[?X - ?Y] => replace (X - Y) with 1 end; rewrite Hp; try ring. - rewrite Zpos_minus; auto with zarith. - rewrite Zmax_right; auto with zarith. - rewrite Zpower_1_r; rewrite Zmod_small; auto with zarith. + rewrite Pos2Z.inj_sub_max; auto with zarith. + rewrite Z.max_r; auto with zarith. + rewrite Z.pow_1_r; rewrite Zmod_small; auto with zarith. destruct (spec_to_Z w1) as [H1 H2];auto with zarith. split; auto with zarith. unfold base. @@ -393,14 +392,14 @@ intros x; case x; simpl ww_is_even. assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith; rewrite <- (tmp X); clear tmp end. - rewrite Zpower_exp; try rewrite Zpower_1_r; auto with zarith. + rewrite Zpower_exp; try rewrite Z.pow_1_r; auto with zarith. assert (tmp: forall p, 1 + (p -1) - 1 = p - 1); auto with zarith; rewrite tmp; clear tmp; auto with zarith. match goal with |- ?X + ?Y < _ => assert (Y < X); auto with zarith end. apply Zdiv_lt_upper_bound; auto with zarith. - pattern 2 at 2; rewrite <- Zpower_1_r; rewrite <- Zpower_exp; + pattern 2 at 2; rewrite <- Z.pow_1_r; rewrite <- Zpower_exp; auto with zarith. assert (tmp: forall p, (p - 1) + 1 = p); auto with zarith; rewrite tmp; clear tmp; auto with zarith. @@ -410,8 +409,8 @@ intros x; case x; simpl ww_is_even. [|w_add_mul_div w_1 w w_0|] = 2 * [|w|] mod wB. intros w1. autorewrite with w_rewrite rm10; auto with zarith. - rewrite Zpower_1_r; auto with zarith. - rewrite Zmult_comm; auto. + rewrite Z.pow_1_r; auto with zarith. + rewrite Z.mul_comm; auto. Qed. Theorem ww_add_mult_mult_2: forall w, @@ -420,8 +419,8 @@ intros x; case x; simpl ww_is_even. rewrite spec_ww_add_mul_div; auto with zarith. autorewrite with w_rewrite rm10. rewrite spec_w_0W; rewrite spec_w_1. - rewrite Zpower_1_r; auto with zarith. - rewrite Zmult_comm; auto. + rewrite Z.pow_1_r; auto with zarith. + rewrite Z.mul_comm; auto. rewrite spec_w_0W; rewrite spec_w_1; auto with zarith. red; simpl; intros; discriminate. Qed. @@ -432,18 +431,18 @@ intros x; case x; simpl ww_is_even. intros w1. rewrite spec_ww_add_mul_div; auto with zarith. rewrite spec_w_0W; rewrite spec_w_1; auto with zarith. - rewrite Zpower_1_r; auto with zarith. + rewrite Z.pow_1_r; auto with zarith. f_equal; auto. - rewrite Zmult_comm; f_equal; auto. + rewrite Z.mul_comm; f_equal; auto. autorewrite with w_rewrite rm10. unfold ww_digits, base. - apply sym_equal; apply Zdiv_unique with (r := 2 ^ (Zpos (ww_digits w_digits) - 1) -1); + symmetry; apply Zdiv_unique with (r := 2 ^ (Zpos (ww_digits w_digits) - 1) -1); auto with zarith. unfold ww_digits; split; auto with zarith. match goal with |- 0 <= ?X - 1 => assert (0 < X); auto with zarith end. - apply Zpower_gt_0; auto with zarith. + apply Z.pow_pos_nonneg; auto with zarith. match goal with |- 0 <= ?X - 1 => assert (0 < X); auto with zarith; red; reflexivity end. @@ -453,7 +452,7 @@ intros x; case x; simpl ww_is_even. assert (tmp: forall p, p + p = 2 * p); auto with zarith; rewrite tmp; clear tmp. f_equal; auto. - pattern 2 at 2; rewrite <- Zpower_1_r; rewrite <- Zpower_exp; + pattern 2 at 2; rewrite <- Z.pow_1_r; rewrite <- Zpower_exp; auto with zarith. assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith; rewrite tmp; clear tmp; auto. @@ -466,7 +465,7 @@ intros x; case x; simpl ww_is_even. Theorem Zplus_mod_one: forall a1 b1, 0 < b1 -> (a1 + b1) mod b1 = a1 mod b1. intros a1 b1 H; rewrite Zplus_mod; auto with zarith. - rewrite Z_mod_same; try rewrite Zplus_0_r; auto with zarith. + rewrite Z_mod_same; try rewrite Z.add_0_r; auto with zarith. apply Zmod_mod; auto. Qed. @@ -481,8 +480,8 @@ intros x; case x; simpl ww_is_even. intros a1 a2 b H. assert (HH: 0 < [|b|]); auto with zarith. assert (U := wB_pos w_digits). - apply Zlt_le_trans with (2 := H); auto with zarith. - apply Zlt_le_trans with 1; auto with zarith. + apply Z.lt_le_trans with (2 := H); auto with zarith. + apply Z.lt_le_trans with 1; auto with zarith. apply Zdiv_le_lower_bound; auto with zarith. unfold w_div2s; case a1; intros w0 H0. match goal with |- context[w_div21c ?y ?z ?t] => @@ -528,10 +527,10 @@ intros x; case x; simpl ww_is_even. match goal with |- context[_ ^ ?X] => assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith; rewrite <- (tmp X); clear tmp; rewrite Zpower_exp; - try rewrite Zpower_1_r; auto with zarith + try rewrite Z.pow_1_r; auto with zarith end. - rewrite Zpos_minus; auto with zarith. - rewrite Zmax_right; auto with zarith. + rewrite Pos2Z.inj_sub_max; auto with zarith. + rewrite Z.max_r; auto with zarith. ring. repeat rewrite C0_id. rewrite spec_w_add_c; auto with zarith. @@ -545,10 +544,10 @@ intros x; case x; simpl ww_is_even. match goal with |- context[_ ^ ?X] => assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith; rewrite <- (tmp X); clear tmp; rewrite Zpower_exp; - try rewrite Zpower_1_r; auto with zarith + try rewrite Z.pow_1_r; auto with zarith end. - rewrite Zpos_minus; auto with zarith. - rewrite Zmax_right; auto with zarith. + rewrite Pos2Z.inj_sub_max; auto with zarith. + rewrite Z.max_r; auto with zarith. ring. repeat rewrite C1_plus_wB in H0. rewrite C1_plus_wB. @@ -570,7 +569,7 @@ intros x; case x; simpl ww_is_even. rewrite add_mult_div_2_plus_1. replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB)); auto with zarith. - rewrite Zmult_plus_distr_l; rewrite <- Zplus_assoc. + rewrite Z.mul_add_distr_r; rewrite <- Z.add_assoc. rewrite Hw1. pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2); auto with zarith. @@ -578,10 +577,10 @@ intros x; case x; simpl ww_is_even. match goal with |- context[_ ^ ?X] => assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith; rewrite <- (tmp X); clear tmp; rewrite Zpower_exp; - try rewrite Zpower_1_r; auto with zarith + try rewrite Z.pow_1_r; auto with zarith end. - rewrite Zpos_minus; auto with zarith. - rewrite Zmax_right; auto with zarith. + rewrite Pos2Z.inj_sub_max; auto with zarith. + rewrite Z.max_r; auto with zarith. ring. repeat rewrite C0_id. rewrite add_mult_div_2_plus_1. @@ -589,7 +588,7 @@ intros x; case x; simpl ww_is_even. intros H1; split; auto with zarith. replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB)); auto with zarith. - rewrite Zmult_plus_distr_l; rewrite <- Zplus_assoc. + rewrite Z.mul_add_distr_r; rewrite <- Z.add_assoc. rewrite Hw1. pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2); auto with zarith. @@ -597,10 +596,10 @@ intros x; case x; simpl ww_is_even. match goal with |- context[_ ^ ?X] => assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith; rewrite <- (tmp X); clear tmp; rewrite Zpower_exp; - try rewrite Zpower_1_r; auto with zarith + try rewrite Z.pow_1_r; auto with zarith end. - rewrite Zpos_minus; auto with zarith. - rewrite Zmax_right; auto with zarith. + rewrite Pos2Z.inj_sub_max; auto with zarith. + rewrite Z.max_r; auto with zarith. ring. split; auto with zarith. destruct (spec_to_Z b);auto with zarith. @@ -620,7 +619,7 @@ intros x; case x; simpl ww_is_even. rewrite add_mult_div_2. replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB)); auto with zarith. - rewrite Zmult_plus_distr_l; rewrite <- Zplus_assoc. + rewrite Z.mul_add_distr_r; rewrite <- Z.add_assoc. rewrite Hw1. pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2); auto with zarith. @@ -631,7 +630,7 @@ intros x; case x; simpl ww_is_even. rewrite add_mult_div_2. replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB)); auto with zarith. - rewrite Zmult_plus_distr_l; rewrite <- Zplus_assoc. + rewrite Z.mul_add_distr_r; rewrite <- Z.add_assoc. rewrite Hw1. pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2); auto with zarith. @@ -652,20 +651,20 @@ intros x; case x; simpl ww_is_even. rewrite <- Zpower_exp; auto with zarith. f_equal; auto with zarith. rewrite H. - rewrite (fun x => (Zmult_comm 4 (2 ^x))). + rewrite (fun x => (Z.mul_comm 4 (2 ^x))). rewrite Z_div_mult; auto with zarith. Qed. Theorem Zsquare_mult: forall p, p ^ 2 = p * p. intros p; change 2 with (1 + 1); rewrite Zpower_exp; - try rewrite Zpower_1_r; auto with zarith. + try rewrite Z.pow_1_r; auto with zarith. Qed. Theorem Zsquare_pos: forall p, 0 <= p ^ 2. - intros p; case (Zle_or_lt 0 p); intros H1. - rewrite Zsquare_mult; apply Zmult_le_0_compat; auto with zarith. + intros p; case (Z.le_gt_cases 0 p); intros H1. + rewrite Zsquare_mult; apply Z.mul_nonneg_nonneg; auto with zarith. rewrite Zsquare_mult; replace (p * p) with ((- p) * (- p)); try ring. - apply Zmult_le_0_compat; auto with zarith. + apply Z.mul_nonneg_nonneg; auto with zarith. Qed. Lemma spec_split: forall x, @@ -676,13 +675,12 @@ intros x; case x; simpl ww_is_even. Theorem mult_wwB: forall x y, [|x|] * [|y|] < wwB. Proof. - intros x y; rewrite wwB_wBwB; rewrite Zpower_2. + intros x y; rewrite wwB_wBwB; rewrite Z.pow_2_r. generalize (spec_to_Z x); intros U. generalize (spec_to_Z y); intros U1. - apply Zle_lt_trans with ((wB -1 ) * (wB - 1)); auto with zarith. - apply Zmult_le_compat; auto with zarith. - repeat (rewrite Zmult_minus_distr_r || rewrite Zmult_minus_distr_l); - auto with zarith. + apply Z.le_lt_trans with ((wB -1 ) * (wB - 1)); auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. + rewrite ?Z.mul_sub_distr_l, ?Z.mul_sub_distr_r; auto with zarith. Qed. Hint Resolve mult_wwB. @@ -697,22 +695,22 @@ intros x; case x; simpl ww_is_even. end; simpl fst; simpl snd. intros w0 w1 Hw0 w2 w3 Hw1. assert (U: wB/4 <= [|w2|]). - case (Zle_or_lt (wB / 4) [|w2|]); auto; intros H1. - contradict H; apply Zlt_not_le. - rewrite wwB_wBwB; rewrite Zpower_2. - pattern wB at 1; rewrite <- wB_div_4; rewrite <- Zmult_assoc; - rewrite Zmult_comm. + case (Z.le_gt_cases (wB / 4) [|w2|]); auto; intros H1. + contradict H; apply Z.lt_nge. + rewrite wwB_wBwB; rewrite Z.pow_2_r. + pattern wB at 1; rewrite <- wB_div_4; rewrite <- Z.mul_assoc; + rewrite Z.mul_comm. rewrite Z_div_mult; auto with zarith. rewrite <- Hw1. match goal with |- _ < ?X => - pattern X; rewrite <- Zplus_0_r; apply beta_lex_inv; + pattern X; rewrite <- Z.add_0_r; apply beta_lex_inv; auto with zarith end. destruct (spec_to_Z w3);auto with zarith. generalize (@spec_w_sqrt2 w2 w3 U); case (w_sqrt2 w2 w3). intros w4 c (H1, H2). assert (U1: wB/2 <= [|w4|]). - case (Zle_or_lt (wB/2) [|w4|]); auto with zarith. + case (Z.le_gt_cases (wB/2) [|w4|]); auto with zarith. intros U1. assert (U2 : [|w4|] <= wB/2 -1); auto with zarith. assert (U3 : [|w4|] ^ 2 <= wB/4 * wB - wB + 1); auto with zarith. @@ -720,19 +718,19 @@ intros x; case x; simpl ww_is_even. rewrite Zsquare_mult; replace Y with ((wB/2 - 1) * (wB/2 -1)) end. - apply Zmult_le_compat; auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. destruct (spec_to_Z w4);auto with zarith. destruct (spec_to_Z w4);auto with zarith. pattern wB at 4 5; rewrite <- wB_div_2. - rewrite Zmult_assoc. + rewrite Z.mul_assoc. replace ((wB / 4) * 2) with (wB / 2). ring. pattern wB at 1; rewrite <- wB_div_4. change 4 with (2 * 2). - rewrite <- Zmult_assoc; rewrite (Zmult_comm 2). + rewrite <- Z.mul_assoc; rewrite (Z.mul_comm 2). rewrite Z_div_mult; try ring; auto with zarith. assert (U4 : [+|c|] <= wB -2); auto with zarith. - apply Zle_trans with (1 := H2). + apply Z.le_trans with (1 := H2). match goal with |- ?X <= ?Y => replace Y with (2 * (wB/ 2 - 1)); auto with zarith end. @@ -741,10 +739,10 @@ intros x; case x; simpl ww_is_even. assert (U5: X < wB / 4 * wB) end. rewrite H1; auto with zarith. - contradict U; apply Zlt_not_le. - apply Zmult_lt_reg_r with wB; auto with zarith. + contradict U; apply Z.lt_nge. + apply Z.mul_lt_mono_pos_r with wB; auto with zarith. destruct (spec_to_Z w4);auto with zarith. - apply Zle_lt_trans with (2 := U5). + apply Z.le_lt_trans with (2 := U5). unfold ww_to_Z, zn2z_to_Z. destruct (spec_to_Z w3);auto with zarith. generalize (@spec_w_div2s c w0 w4 U1 H2). @@ -766,7 +764,7 @@ intros x; case x; simpl ww_is_even. unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1. rewrite <- Hw0. match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U => - apply trans_equal with ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) + transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) end. repeat rewrite Zsquare_mult. rewrite wwB_wBwB; ring. @@ -779,17 +777,17 @@ intros x; case x; simpl ww_is_even. match goal with |- ?X - ?Y * ?Y <= _ => assert (V := Zsquare_pos Y); rewrite Zsquare_mult in V; - apply Zle_trans with X; auto with zarith; + apply Z.le_trans with X; auto with zarith; clear V end. match goal with |- ?X * wB + ?Y <= 2 * (?Z * wB + ?T) => - apply Zle_trans with ((2 * Z - 1) * wB + wB); auto with zarith + apply Z.le_trans with ((2 * Z - 1) * wB + wB); auto with zarith end. destruct (spec_to_Z w1);auto with zarith. match goal with |- ?X <= _ => replace X with (2 * [|w4|] * wB); auto with zarith end. - rewrite Zmult_plus_distr_r; rewrite Zmult_assoc. + rewrite Z.mul_add_distr_l; rewrite Z.mul_assoc. destruct (spec_to_Z w5); auto with zarith. ring. intros z; replace [-[C1 z]] with (- wwB + [[z]]). @@ -815,7 +813,7 @@ intros x; case x; simpl ww_is_even. unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1. rewrite <- Hw0. match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U => - apply trans_equal with ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) + transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) end. repeat rewrite Zsquare_mult. rewrite wwB_wBwB; ring. @@ -828,11 +826,11 @@ intros x; case x; simpl ww_is_even. destruct (spec_ww_to_Z w_digits w_to_Z spec_to_Z z);auto with zarith. assert (V1 := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w4 w5)). assert (0 < [[WW w4 w5]]); auto with zarith. - apply Zlt_le_trans with (wB/ 2 * wB + 0); auto with zarith. - autorewrite with rm10; apply Zmult_lt_0_compat; auto with zarith. - apply Zmult_lt_reg_r with 2; auto with zarith. + apply Z.lt_le_trans with (wB/ 2 * wB + 0); auto with zarith. + autorewrite with rm10; apply Z.mul_pos_pos; auto with zarith. + apply Z.mul_lt_mono_pos_r with 2; auto with zarith. autorewrite with rm10. - rewrite Zmult_comm; rewrite wB_div_2; auto with zarith. + rewrite Z.mul_comm; rewrite wB_div_2; auto with zarith. case (spec_to_Z w5);auto with zarith. case (spec_to_Z w5);auto with zarith. simpl. @@ -840,11 +838,11 @@ intros x; case x; simpl ww_is_even. assert (V1 := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w4 w5)); auto with zarith. split; auto with zarith. assert (wwB <= 2 * [[WW w4 w5]]); auto with zarith. - apply Zle_trans with (2 * ([|w4|] * wB)). - rewrite wwB_wBwB; rewrite Zpower_2. - rewrite Zmult_assoc; apply Zmult_le_compat_r; auto with zarith. - rewrite <- wB_div_2; auto with zarith. + apply Z.le_trans with (2 * ([|w4|] * wB)). + rewrite wwB_wBwB; rewrite Z.pow_2_r. + rewrite Z.mul_assoc; apply Z.mul_le_mono_nonneg_r; auto with zarith. assert (V2 := spec_to_Z w5);auto with zarith. + rewrite <- wB_div_2; auto with zarith. simpl ww_to_Z; assert (V2 := spec_to_Z w5);auto with zarith. assert (V1 := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w4 w5)); auto with zarith. intros z1; change [-[C1 z1]] with (-wwB + [[z1]]). @@ -856,21 +854,21 @@ intros x; case x; simpl ww_is_even. rewrite ww_add_mult_mult_2. rename V1 into VV1. assert (VV2: 0 < [[WW w4 w5]]); auto with zarith. - apply Zlt_le_trans with (wB/ 2 * wB + 0); auto with zarith. - autorewrite with rm10; apply Zmult_lt_0_compat; auto with zarith. - apply Zmult_lt_reg_r with 2; auto with zarith. + apply Z.lt_le_trans with (wB/ 2 * wB + 0); auto with zarith. + autorewrite with rm10; apply Z.mul_pos_pos; auto with zarith. + apply Z.mul_lt_mono_pos_r with 2; auto with zarith. autorewrite with rm10. - rewrite Zmult_comm; rewrite wB_div_2; auto with zarith. + rewrite Z.mul_comm; rewrite wB_div_2; auto with zarith. assert (VV3 := spec_to_Z w5);auto with zarith. assert (VV3 := spec_to_Z w5);auto with zarith. simpl. assert (VV3 := spec_to_Z w5);auto with zarith. assert (VV3: wwB <= 2 * [[WW w4 w5]]); auto with zarith. - apply Zle_trans with (2 * ([|w4|] * wB)). - rewrite wwB_wBwB; rewrite Zpower_2. - rewrite Zmult_assoc; apply Zmult_le_compat_r; auto with zarith. - rewrite <- wB_div_2; auto with zarith. + apply Z.le_trans with (2 * ([|w4|] * wB)). + rewrite wwB_wBwB; rewrite Z.pow_2_r. + rewrite Z.mul_assoc; apply Z.mul_le_mono_nonneg_r; auto with zarith. case (spec_to_Z w5);auto with zarith. + rewrite <- wB_div_2; auto with zarith. simpl ww_to_Z; assert (V4 := spec_to_Z w5);auto with zarith. rewrite <- Zmod_unique with (q := 1) (r := -wwB + 2 * [[WW w4 w5]]); auto with zarith. @@ -892,7 +890,7 @@ intros x; case x; simpl ww_is_even. rewrite <- Hw0. split. match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U => - apply trans_equal with ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) + transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) end. repeat rewrite Zsquare_mult. rewrite wwB_wBwB; ring. @@ -905,17 +903,17 @@ intros x; case x; simpl ww_is_even. assert (V2 := spec_ww_to_Z w_digits w_to_Z spec_to_Z z);auto with zarith. assert (V3 := spec_ww_to_Z w_digits w_to_Z spec_to_Z z1);auto with zarith. split; auto with zarith. - rewrite (Zplus_comm (-wwB)); rewrite <- Zplus_assoc. + rewrite (Z.add_comm (-wwB)); rewrite <- Z.add_assoc. rewrite H5. match goal with |- 0 <= ?X + (?Y - ?Z) => - apply Zle_trans with (X - Z); auto with zarith + apply Z.le_trans with (X - Z); auto with zarith end. 2: generalize (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w6 w1)); unfold ww_to_Z; auto with zarith. rewrite V1. match goal with |- 0 <= ?X - 1 - ?Y => assert (Y < X); auto with zarith end. - apply Zlt_le_trans with wwB; auto with zarith. + apply Z.lt_le_trans with wwB; auto with zarith. intros (H3, H4). match goal with |- context [ww_sub_c ?y ?z] => generalize (spec_ww_sub_c y z); case (ww_sub_c y z) @@ -933,7 +931,7 @@ intros x; case x; simpl ww_is_even. unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1. rewrite <- Hw0. match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U => - apply trans_equal with ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) + transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) end. repeat rewrite Zsquare_mult. rewrite wwB_wBwB; ring. @@ -945,27 +943,27 @@ intros x; case x; simpl ww_is_even. simpl ww_to_Z. rewrite H5. simpl ww_to_Z. - rewrite wwB_wBwB; rewrite Zpower_2. + rewrite wwB_wBwB; rewrite Z.pow_2_r. match goal with |- ?X * ?Y + (?Z * ?Y + ?T - ?U) <= _ => - apply Zle_trans with (X * Y + (Z * Y + T - 0)); + apply Z.le_trans with (X * Y + (Z * Y + T - 0)); auto with zarith end. assert (V := Zsquare_pos [|w5|]); rewrite Zsquare_mult in V; auto with zarith. autorewrite with rm10. match goal with |- _ <= 2 * (?U * ?V + ?W) => - apply Zle_trans with (2 * U * V + 0); + apply Z.le_trans with (2 * U * V + 0); auto with zarith end. match goal with |- ?X * ?Y + (?Z * ?Y + ?T) <= _ => replace (X * Y + (Z * Y + T)) with ((X + Z) * Y + T); try ring end. - apply Zlt_le_weak; apply beta_lex_inv; auto with zarith. + apply Z.lt_le_incl; apply beta_lex_inv; auto with zarith. destruct (spec_to_Z w1);auto with zarith. destruct (spec_to_Z w5);auto with zarith. - rewrite Zmult_plus_distr_r; auto with zarith. - rewrite Zmult_assoc; auto with zarith. + rewrite Z.mul_add_distr_l; auto with zarith. + rewrite Z.mul_assoc; auto with zarith. intros z; replace [-[C1 z]] with (- wwB + [[z]]). 2: simpl; case wwB; auto with zarith. intros H5; rewrite spec_w_square_c in H5; @@ -984,7 +982,7 @@ intros x; case x; simpl ww_is_even. rewrite <- Hw0. split. match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U => - apply trans_equal with ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) + transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) end. repeat rewrite Zsquare_mult. rewrite wwB_wBwB; ring. @@ -995,40 +993,38 @@ intros x; case x; simpl ww_is_even. repeat rewrite Zsquare_mult; ring. rewrite V. simpl ww_to_Z. - rewrite wwB_wBwB; rewrite Zpower_2. + rewrite wwB_wBwB; rewrite Z.pow_2_r. match goal with |- (?Z * ?Y + ?T - ?U) + ?X * ?Y <= _ => - apply Zle_trans with ((Z * Y + T - 0) + X * Y); + apply Z.le_trans with ((Z * Y + T - 0) + X * Y); auto with zarith end. assert (V1 := Zsquare_pos [|w5|]); rewrite Zsquare_mult in V1; auto with zarith. autorewrite with rm10. match goal with |- _ <= 2 * (?U * ?V + ?W) => - apply Zle_trans with (2 * U * V + 0); + apply Z.le_trans with (2 * U * V + 0); auto with zarith end. match goal with |- (?Z * ?Y + ?T) + ?X * ?Y <= _ => replace ((Z * Y + T) + X * Y) with ((X + Z) * Y + T); try ring end. - apply Zlt_le_weak; apply beta_lex_inv; auto with zarith. + apply Z.lt_le_incl; apply beta_lex_inv; auto with zarith. destruct (spec_to_Z w1);auto with zarith. destruct (spec_to_Z w5);auto with zarith. - rewrite Zmult_plus_distr_r; auto with zarith. - rewrite Zmult_assoc; auto with zarith. - case Zle_lt_or_eq with (1 := H2); clear H2; intros H2. + rewrite Z.mul_add_distr_l; auto with zarith. + rewrite Z.mul_assoc; auto with zarith. + Z.le_elim H2. intros c1 (H3, H4). - match type of H3 with ?X = ?Y => - absurd (X < Y) - end. - apply Zle_not_lt; rewrite <- H3; auto with zarith. - rewrite Zmult_plus_distr_l. - apply Zlt_le_trans with ((2 * [|w4|]) * wB + 0); + match type of H3 with ?X = ?Y => absurd (X < Y) end. + apply Z.le_ngt; rewrite <- H3; auto with zarith. + rewrite Z.mul_add_distr_r. + apply Z.lt_le_trans with ((2 * [|w4|]) * wB + 0); auto with zarith. apply beta_lex_inv; auto with zarith. destruct (spec_to_Z w0);auto with zarith. assert (V1 := spec_to_Z w5);auto with zarith. - rewrite (Zmult_comm wB); auto with zarith. + rewrite (Z.mul_comm wB); auto with zarith. assert (0 <= [|w5|] * (2 * [|w4|])); auto with zarith. intros c1 (H3, H4); rewrite H2 in H3. match type of H3 with ?X + ?Y = (?Z + ?T) * ?U + ?V => @@ -1038,20 +1034,19 @@ intros x; case x; simpl ww_is_even. end. assert (V1 := spec_to_Z w0);auto with zarith. assert (V2 := spec_to_Z w5);auto with zarith. - case (Zle_lt_or_eq 0 [|w5|]); auto with zarith; intros V3. - match type of VV with ?X = ?Y => - absurd (X < Y) - end. - apply Zle_not_lt; rewrite <- VV; auto with zarith. - apply Zlt_le_trans with wB; auto with zarith. + case V2; intros V3 _. + Z.le_elim V3; auto with zarith. + match type of VV with ?X = ?Y => absurd (X < Y) end. + apply Z.le_ngt; rewrite <- VV; auto with zarith. + apply Z.lt_le_trans with wB; auto with zarith. match goal with |- _ <= ?X + _ => - apply Zle_trans with X; auto with zarith + apply Z.le_trans with X; auto with zarith end. match goal with |- _ <= _ * ?X => - apply Zle_trans with (1 * X); auto with zarith + apply Z.le_trans with (1 * X); auto with zarith end. autorewrite with rm10. - rewrite <- wB_div_2; apply Zmult_le_compat_l; auto with zarith. + rewrite <- wB_div_2; apply Z.mul_le_mono_nonneg_l; auto with zarith. rewrite <- V3 in VV; generalize VV; autorewrite with rm10; clear VV; intros VV. rewrite spec_ww_add_c; auto with zarith. @@ -1067,7 +1062,7 @@ intros x; case x; simpl ww_is_even. simpl ww_to_Z in H1; rewrite H1. rewrite <- Hw0. match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U => - apply trans_equal with ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) + transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) end. repeat rewrite Zsquare_mult. rewrite wwB_wBwB; ring. @@ -1079,41 +1074,41 @@ intros x; case x; simpl ww_is_even. simpl ww_to_Z; unfold ww_to_Z. rewrite spec_w_Bm1; auto with zarith. split. - rewrite wwB_wBwB; rewrite Zpower_2. + rewrite wwB_wBwB; rewrite Z.pow_2_r. match goal with |- _ <= -?X + (2 * (?Z * ?T + ?U) + ?V) => assert (X <= 2 * Z * T); auto with zarith end. - apply Zmult_le_compat_r; auto with zarith. - rewrite <- wB_div_2; apply Zmult_le_compat_l; auto with zarith. - rewrite Zmult_plus_distr_r; auto with zarith. - rewrite Zmult_assoc; auto with zarith. + apply Z.mul_le_mono_nonneg_r; auto with zarith. + rewrite <- wB_div_2; apply Z.mul_le_mono_nonneg_l; auto with zarith. + rewrite Z.mul_add_distr_l; auto with zarith. + rewrite Z.mul_assoc; auto with zarith. match goal with |- _ + ?X < _ => replace X with ((2 * (([|w4|]) + 1) * wB) - 1); try ring end. assert (2 * ([|w4|] + 1) * wB <= 2 * wwB); auto with zarith. - rewrite <- Zmult_assoc; apply Zmult_le_compat_l; auto with zarith. - rewrite wwB_wBwB; rewrite Zpower_2. - apply Zmult_le_compat_r; auto with zarith. + rewrite <- Z.mul_assoc; apply Z.mul_le_mono_nonneg_l; auto with zarith. + rewrite wwB_wBwB; rewrite Z.pow_2_r. + apply Z.mul_le_mono_nonneg_r; auto with zarith. case (spec_to_Z w4);auto with zarith. Qed. Lemma spec_ww_is_zero: forall x, if ww_is_zero x then [[x]] = 0 else 0 < [[x]]. intro x; unfold ww_is_zero. - rewrite spec_ww_compare. case Zcompare_spec; + rewrite spec_ww_compare. case Z.compare_spec; auto with zarith. simpl ww_to_Z. assert (V4 := spec_ww_to_Z w_digits w_to_Z spec_to_Z x);auto with zarith. Qed. Lemma wwB_4_2: 2 * (wwB / 4) = wwB/ 2. - pattern wwB at 1; rewrite wwB_wBwB; rewrite Zpower_2. + pattern wwB at 1; rewrite wwB_wBwB; rewrite Z.pow_2_r. rewrite <- wB_div_2. match goal with |- context[(2 * ?X) * (2 * ?Z)] => replace ((2 * X) * (2 * Z)) with ((X * Z) * 4); try ring end. rewrite Z_div_mult; auto with zarith. - rewrite Zmult_assoc; rewrite wB_div_2. + rewrite Z.mul_assoc; rewrite wB_div_2. rewrite wwB_div_2; ring. Qed. @@ -1129,10 +1124,10 @@ Qed. intros H2. generalize (spec_ww_head0 x H2); case (ww_head0 x); autorewrite with rm10. intros (H3, H4); split; auto with zarith. - apply Zle_trans with (2 := H3). + apply Z.le_trans with (2 := H3). apply Zdiv_le_compat_l; auto with zarith. intros xh xl (H3, H4); split; auto with zarith. - apply Zle_trans with (2 := H3). + apply Z.le_trans with (2 := H3). apply Zdiv_le_compat_l; auto with zarith. intros H1. case (spec_to_w_Z (ww_head0 x)); intros Hv1 Hv2. @@ -1156,24 +1151,24 @@ Qed. case (spec_ww_head0 x); auto; intros Hv3 Hv4. assert (Hu: forall u, 0 < u -> 2 * 2 ^ (u - 1) = 2 ^u). intros u Hu. - pattern 2 at 1; rewrite <- Zpower_1_r. + pattern 2 at 1; rewrite <- Z.pow_1_r. rewrite <- Zpower_exp; auto with zarith. ring_simplify (1 + (u - 1)); auto with zarith. split; auto with zarith. - apply Zmult_le_reg_r with 2; auto with zarith. - repeat rewrite (fun x => Zmult_comm x 2). + apply Z.mul_le_mono_pos_r with 2; auto with zarith. + repeat rewrite (fun x => Z.mul_comm x 2). rewrite wwB_4_2. - rewrite Zmult_assoc; rewrite Hu; auto with zarith. - apply Zle_lt_trans with (2 * 2 ^ ([[ww_head0 x]] - 1) * [[x]]); auto with zarith; + rewrite Z.mul_assoc; rewrite Hu; auto with zarith. + apply Z.le_lt_trans with (2 * 2 ^ ([[ww_head0 x]] - 1) * [[x]]); auto with zarith; rewrite Hu; auto with zarith. - apply Zmult_le_compat_r; auto with zarith. + apply Z.mul_le_mono_nonneg_r; auto with zarith. apply Zpower_le_monotone; auto with zarith. Qed. Theorem wwB_4_wB_4: wwB / 4 = wB / 4 * wB. - apply sym_equal; apply Zdiv_unique with 0; - auto with zarith. - rewrite Zmult_assoc; rewrite wB_div_4; auto with zarith. + Proof. + symmetry; apply Zdiv_unique with 0; auto with zarith. + rewrite Z.mul_assoc; rewrite wB_div_4; auto with zarith. rewrite wwB_wBwB; ring. Qed. @@ -1182,10 +1177,10 @@ Qed. assert (U := wB_pos w_digits). intro x; unfold ww_sqrt. generalize (spec_ww_is_zero x); case (ww_is_zero x). - simpl ww_to_Z; simpl Zpower; unfold Zpower_pos; simpl; + simpl ww_to_Z; simpl Z.pow; unfold Z.pow_pos; simpl; auto with zarith. intros H1. - rewrite spec_ww_compare. case Zcompare_spec; + rewrite spec_ww_compare. case Z.compare_spec; simpl ww_to_Z; autorewrite with rm10. generalize H1; case x. intros HH; contradict HH; simpl ww_to_Z; auto with zarith. @@ -1203,7 +1198,7 @@ Qed. intros w3 (H6, H7); rewrite H6. assert (V1 := spec_to_Z w3);auto with zarith. split; auto with zarith. - apply Zle_lt_trans with ([|w2|] ^2 + 2 * [|w2|]); auto with zarith. + apply Z.le_lt_trans with ([|w2|] ^2 + 2 * [|w2|]); auto with zarith. match goal with |- ?X < ?Z => replace Z with (X + 1); auto with zarith end. @@ -1211,7 +1206,7 @@ Qed. intros w3 (H6, H7); rewrite H6. assert (V1 := spec_to_Z w3);auto with zarith. split; auto with zarith. - apply Zle_lt_trans with ([|w2|] ^2 + 2 * [|w2|]); auto with zarith. + apply Z.le_lt_trans with ([|w2|] ^2 + 2 * [|w2|]); auto with zarith. match goal with |- ?X < ?Z => replace Z with (X + 1); auto with zarith end. @@ -1221,42 +1216,42 @@ Qed. case (spec_ww_head1 x); intros Hp1 Hp2. generalize (Hp2 H1); clear Hp2; intros Hp2. assert (Hv2: [[ww_head1 x]] <= Zpos (xO w_digits)). - case (Zle_or_lt (Zpos (xO w_digits)) [[ww_head1 x]]); auto with zarith; intros HH1. + case (Z.le_gt_cases (Zpos (xO w_digits)) [[ww_head1 x]]); auto with zarith; intros HH1. case Hp2; intros _ HH2; contradict HH2. - apply Zle_not_lt; unfold base. - apply Zle_trans with (2 ^ [[ww_head1 x]]). + apply Z.le_ngt; unfold base. + apply Z.le_trans with (2 ^ [[ww_head1 x]]). apply Zpower_le_monotone; auto with zarith. pattern (2 ^ [[ww_head1 x]]) at 1; - rewrite <- (Zmult_1_r (2 ^ [[ww_head1 x]])). - apply Zmult_le_compat_l; auto with zarith. + rewrite <- (Z.mul_1_r (2 ^ [[ww_head1 x]])). + apply Z.mul_le_mono_nonneg_l; auto with zarith. generalize (spec_ww_add_mul_div x W0 (ww_head1 x) Hv2); case ww_add_mul_div. simpl ww_to_Z; autorewrite with w_rewrite rm10. rewrite Zmod_small; auto with zarith. - intros H2; case (Zmult_integral _ _ (sym_equal H2)); clear H2; intros H2. - rewrite H2; unfold Zpower, Zpower_pos; simpl; auto with zarith. + intros H2. symmetry in H2. rewrite Z.mul_eq_0 in H2. destruct H2 as [H2|H2]. + rewrite H2; unfold Z.pow, Z.pow_pos; simpl; auto with zarith. match type of H2 with ?X = ?Y => absurd (Y < X); try (rewrite H2; auto with zarith; fail) end. - apply Zpower_gt_0; auto with zarith. + apply Z.pow_pos_nonneg; auto with zarith. split; auto with zarith. - case Hp2; intros _ tmp; apply Zle_lt_trans with (2 := tmp); + case Hp2; intros _ tmp; apply Z.le_lt_trans with (2 := tmp); clear tmp. - rewrite Zmult_comm; apply Zmult_le_compat_r; auto with zarith. + rewrite Z.mul_comm; apply Z.mul_le_mono_nonneg_r; auto with zarith. assert (Hv0: [[ww_head1 x]] = 2 * ([[ww_head1 x]]/2)). pattern [[ww_head1 x]] at 1; rewrite (Z_div_mod_eq [[ww_head1 x]] 2); auto with zarith. generalize (spec_ww_is_even (ww_head1 x)); rewrite Hp1; - intros tmp; rewrite tmp; rewrite Zplus_0_r; auto. + intros tmp; rewrite tmp; rewrite Z.add_0_r; auto. intros w0 w1; autorewrite with w_rewrite rm10. rewrite Zmod_small; auto with zarith. - 2: rewrite Zmult_comm; auto with zarith. + 2: rewrite Z.mul_comm; auto with zarith. intros H2. assert (V: wB/4 <= [|w0|]). apply beta_lex with 0 [|w1|] wB; auto with zarith; autorewrite with rm10. simpl ww_to_Z in H2; rewrite H2. rewrite <- wwB_4_wB_4; auto with zarith. - rewrite Zmult_comm; auto with zarith. + rewrite Z.mul_comm; auto with zarith. assert (V1 := spec_to_Z w1);auto with zarith. generalize (@spec_w_sqrt2 w0 w1 V);auto with zarith. case (w_sqrt2 w0 w1); intros w2 c. @@ -1267,13 +1262,13 @@ Qed. rewrite spec_ww_pred; rewrite spec_ww_zdigits. rewrite Zmod_small; auto with zarith. split; auto with zarith. - apply Zlt_le_trans with (Zpos (xO w_digits)); auto with zarith. + apply Z.lt_le_trans with (Zpos (xO w_digits)); auto with zarith. unfold base; apply Zpower2_le_lin; auto with zarith. assert (Hv4: [[ww_head1 x]]/2 < wB). - apply Zle_lt_trans with (Zpos w_digits). - apply Zmult_le_reg_r with 2; auto with zarith. - repeat rewrite (fun x => Zmult_comm x 2). - rewrite <- Hv0; rewrite <- Zpos_xO; auto. + apply Z.le_lt_trans with (Zpos w_digits). + apply Z.mul_le_mono_pos_r with 2; auto with zarith. + repeat rewrite (fun x => Z.mul_comm x 2). + rewrite <- Hv0; rewrite <- Pos2Z.inj_xO; auto. unfold base; apply Zpower2_lt_lin; auto with zarith. assert (Hv5: [[(ww_add_mul_div (ww_pred ww_zdigits) W0 (ww_head1 x))]] = [[ww_head1 x]]/2). @@ -1281,12 +1276,12 @@ Qed. simpl ww_to_Z; autorewrite with rm10. rewrite Hv3. ring_simplify (Zpos (xO w_digits) - (Zpos (xO w_digits) - 1)). - rewrite Zpower_1_r. + rewrite Z.pow_1_r. rewrite Zmod_small; auto with zarith. split; auto with zarith. - apply Zlt_le_trans with (1 := Hv4); auto with zarith. + apply Z.lt_le_trans with (1 := Hv4); auto with zarith. unfold base; apply Zpower_le_monotone; auto with zarith. - split; unfold ww_digits; try rewrite Zpos_xO; auto with zarith. + split; unfold ww_digits; try rewrite Pos2Z.inj_xO; auto with zarith. rewrite Hv3; auto with zarith. assert (Hv6: [|low(ww_add_mul_div (ww_pred ww_zdigits) W0 (ww_head1 x))|] = [[ww_head1 x]]/2). @@ -1302,13 +1297,13 @@ Qed. rewrite Zmod_small. simpl ww_to_Z in H2; rewrite H2; auto with zarith. intros (H4, H5); split. - apply Zmult_le_reg_r with (2 ^ [[ww_head1 x]]); auto with zarith. + apply Z.mul_le_mono_pos_r with (2 ^ [[ww_head1 x]]); auto with zarith. rewrite H4. - apply Zle_trans with ([|w2|] ^ 2); auto with zarith. - rewrite Zmult_comm. + apply Z.le_trans with ([|w2|] ^ 2); auto with zarith. + rewrite Z.mul_comm. pattern [[ww_head1 x]] at 1; rewrite Hv0; auto with zarith. - rewrite (Zmult_comm 2); rewrite Zpower_mult; + rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r; auto with zarith. assert (tmp: forall p q, p ^ 2 * q ^ 2 = (p * q) ^2); try (intros; repeat rewrite Zsquare_mult; ring); @@ -1324,17 +1319,17 @@ Qed. case (Z_mod_lt [|w2|] (2 ^ ([[ww_head1 x]] / 2))); auto with zarith. case c; unfold interp_carry; autorewrite with rm10; intros w3; assert (V3 := spec_to_Z w3);auto with zarith. - apply Zmult_lt_reg_r with (2 ^ [[ww_head1 x]]); auto with zarith. + apply Z.mul_lt_mono_pos_r with (2 ^ [[ww_head1 x]]); auto with zarith. rewrite H4. - apply Zle_lt_trans with ([|w2|] ^ 2 + 2 * [|w2|]); auto with zarith. - apply Zlt_le_trans with (([|w2|] + 1) ^ 2); auto with zarith. + apply Z.le_lt_trans with ([|w2|] ^ 2 + 2 * [|w2|]); auto with zarith. + apply Z.lt_le_trans with (([|w2|] + 1) ^ 2); auto with zarith. match goal with |- ?X < ?Y => replace Y with (X + 1); auto with zarith end. repeat rewrite (Zsquare_mult); ring. - rewrite Zmult_comm. + rewrite Z.mul_comm. pattern [[ww_head1 x]] at 1; rewrite Hv0. - rewrite (Zmult_comm 2); rewrite Zpower_mult; + rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r; auto with zarith. assert (tmp: forall p q, p ^ 2 * q ^ 2 = (p * q) ^2); try (intros; repeat rewrite Zsquare_mult; ring); @@ -1343,20 +1338,20 @@ Qed. split; auto with zarith. pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] (2 ^ ([[ww_head1 x]]/2))); auto with zarith. - rewrite <- Zplus_assoc; rewrite Zmult_plus_distr_r. - autorewrite with rm10; apply Zplus_le_compat_l; auto with zarith. + rewrite <- Z.add_assoc; rewrite Z.mul_add_distr_l. + autorewrite with rm10; apply Z.add_le_mono_l; auto with zarith. case (Z_mod_lt [|w2|] (2 ^ ([[ww_head1 x]]/2))); auto with zarith. split; auto with zarith. - apply Zle_lt_trans with ([|w2|]); auto with zarith. + apply Z.le_lt_trans with ([|w2|]); auto with zarith. apply Zdiv_le_upper_bound; auto with zarith. pattern [|w2|] at 1; replace [|w2|] with ([|w2|] * 2 ^0); auto with zarith. - apply Zmult_le_compat_l; auto with zarith. + apply Z.mul_le_mono_nonneg_l; auto with zarith. apply Zpower_le_monotone; auto with zarith. - rewrite Zpower_0_r; autorewrite with rm10; auto. + rewrite Z.pow_0_r; autorewrite with rm10; auto. split; auto with zarith. - rewrite Hv0 in Hv2; rewrite (Zpos_xO w_digits) in Hv2; auto with zarith. - apply Zle_lt_trans with (Zpos w_digits); auto with zarith. + rewrite Hv0 in Hv2; rewrite (Pos2Z.inj_xO w_digits) in Hv2; auto with zarith. + apply Z.le_lt_trans with (Zpos w_digits); auto with zarith. unfold base; apply Zpower2_lt_lin; auto with zarith. rewrite spec_w_sub; auto with zarith. rewrite Hv6; rewrite spec_w_zdigits; auto with zarith. @@ -1364,10 +1359,10 @@ Qed. rewrite Zmod_small; auto with zarith. split; auto with zarith. assert ([[ww_head1 x]]/2 <= Zpos w_digits); auto with zarith. - apply Zmult_le_reg_r with 2; auto with zarith. - repeat rewrite (fun x => Zmult_comm x 2). - rewrite <- Hv0; rewrite <- Zpos_xO; auto with zarith. - apply Zle_lt_trans with (Zpos w_digits); auto with zarith. + apply Z.mul_le_mono_pos_r with 2; auto with zarith. + repeat rewrite (fun x => Z.mul_comm x 2). + rewrite <- Hv0; rewrite <- Pos2Z.inj_xO; auto with zarith. + apply Z.le_lt_trans with (Zpos w_digits); auto with zarith. unfold base; apply Zpower2_lt_lin; auto with zarith. Qed. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleSub.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleSub.v index e63e20c6..799c4e42 100644 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleSub.v +++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleSub.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* - match b with D0 => Zdouble | D1 => Zdouble_plus_one end. + match b with D0 => Z.double | D1 => Z.succ_double end. Definition phibis_aux n x := recrbis_aux n _ Z0 Phi x. @@ -381,7 +381,7 @@ Section Basics. (** Recursive equations satisfied by [phi] *) Lemma phi_eqn1 : forall x, firstr x = D0 -> - phi x = Zdouble (phi (shiftr x)). + phi x = Z.double (phi (shiftr x)). Proof. intros. case_eq (iszero x); intros. @@ -391,7 +391,7 @@ Section Basics. Qed. Lemma phi_eqn2 : forall x, firstr x = D1 -> - phi x = Zdouble_plus_one (phi (shiftr x)). + phi x = Z.succ_double (phi (shiftr x)). Proof. intros. case_eq (iszero x); intros. @@ -401,7 +401,7 @@ Section Basics. Qed. Lemma phi_twice_firstl : forall x, firstl x = D0 -> - phi (twice x) = Zdouble (phi x). + phi (twice x) = Z.double (phi x). Proof. intros. rewrite phi_eqn1; auto; [ | destruct x; auto ]. @@ -410,7 +410,7 @@ Section Basics. Qed. Lemma phi_twice_plus_one_firstl : forall x, firstl x = D0 -> - phi (twice_plus_one x) = Zdouble_plus_one (phi x). + phi (twice_plus_one x) = Z.succ_double (phi x). Proof. intros. rewrite phi_eqn2; auto; [ | destruct x; auto ]. @@ -430,13 +430,13 @@ Section Basics. unfold phibis_aux, recrbis_aux; fold recrbis_aux; fold (phibis_aux n (shiftr x)). destruct (firstr x). - specialize IHn with (shiftr x); rewrite Zdouble_mult; omega. - specialize IHn with (shiftr x); rewrite Zdouble_plus_one_mult; omega. + specialize IHn with (shiftr x); rewrite Z.double_spec; omega. + specialize IHn with (shiftr x); rewrite Z.succ_double_spec; omega. Qed. Lemma phibis_aux_bounded : forall n x, n <= size -> - (phibis_aux n (nshiftr (size-n) x) < 2 ^ (Z_of_nat n))%Z. + (phibis_aux n (nshiftr (size-n) x) < 2 ^ (Z.of_nat n))%Z. Proof. induction n. simpl; unfold phibis_aux; simpl; auto with zarith. @@ -450,13 +450,13 @@ Section Basics. assert (H1 : n <= size) by omega. specialize (IHn x H1). set (y:=phibis_aux n (nshiftr (size - n) x)) in *. - rewrite inj_S, Zpower_Zsucc; auto with zarith. + rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith. case_eq (firstr (nshiftr (size - S n) x)); intros. - rewrite Zdouble_mult; auto with zarith. - rewrite Zdouble_plus_one_mult; auto with zarith. + rewrite Z.double_spec; auto with zarith. + rewrite Z.succ_double_spec; auto with zarith. Qed. - Lemma phi_bounded : forall x, (0 <= phi x < 2 ^ (Z_of_nat size))%Z. + Lemma phi_bounded : forall x, (0 <= phi x < 2 ^ (Z.of_nat size))%Z. Proof. intros. rewrite <- phibis_aux_equiv. @@ -468,32 +468,32 @@ Section Basics. Lemma phibis_aux_lowerbound : forall n x, firstr (nshiftr n x) = D1 -> - (2 ^ Z_of_nat n <= phibis_aux (S n) x)%Z. + (2 ^ Z.of_nat n <= phibis_aux (S n) x)%Z. Proof. induction n. intros. unfold nshiftr in H; simpl in *. unfold phibis_aux, recrbis_aux. - rewrite H, Zdouble_plus_one_mult; omega. + rewrite H, Z.succ_double_spec; omega. intros. remember (S n) as m. unfold phibis_aux, recrbis_aux; fold recrbis_aux; fold (phibis_aux m (shiftr x)). subst m. - rewrite inj_S, Zpower_Zsucc; auto with zarith. - assert (2^(Z_of_nat n) <= phibis_aux (S n) (shiftr x))%Z. + rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith. + assert (2^(Z.of_nat n) <= phibis_aux (S n) (shiftr x))%Z. apply IHn. rewrite <- nshiftr_S_tail; auto. destruct (firstr x). - change (Zdouble (phibis_aux (S n) (shiftr x))) with + change (Z.double (phibis_aux (S n) (shiftr x))) with (2*(phibis_aux (S n) (shiftr x)))%Z. omega. - rewrite Zdouble_plus_one_mult; omega. + rewrite Z.succ_double_spec; omega. Qed. Lemma phi_lowerbound : - forall x, firstl x = D1 -> (2^(Z_of_nat (pred size)) <= phi x)%Z. + forall x, firstl x = D1 -> (2^(Z.of_nat (pred size)) <= phi x)%Z. Proof. intros. generalize (phibis_aux_lowerbound (pred size) x). @@ -776,7 +776,7 @@ Section Basics. (** First, recursive equations *) Lemma phi_inv_double_plus_one : forall z, - phi_inv (Zdouble_plus_one z) = twice_plus_one (phi_inv z). + phi_inv (Z.succ_double z) = twice_plus_one (phi_inv z). Proof. destruct z; simpl; auto. induction p; simpl. @@ -788,20 +788,20 @@ Section Basics. Qed. Lemma phi_inv_double : forall z, - phi_inv (Zdouble z) = twice (phi_inv z). + phi_inv (Z.double z) = twice (phi_inv z). Proof. destruct z; simpl; auto. rewrite incr_twice_plus_one; auto. Qed. Lemma phi_inv_incr : forall z, - phi_inv (Zsucc z) = incr (phi_inv z). + phi_inv (Z.succ z) = incr (phi_inv z). Proof. destruct z. simpl; auto. simpl; auto. induction p; simpl; auto. - rewrite Pplus_one_succ_r, IHp, incr_twice_plus_one; auto. + rewrite <- Pos.add_1_r, IHp, incr_twice_plus_one; auto. rewrite incr_twice; auto. simpl; auto. destruct p; simpl; auto. @@ -908,15 +908,15 @@ Section Basics. Local Open Scope Z_scope. Lemma p2ibis_spec : forall n p, (n<=size)%nat -> - Zpos p = (Z_of_N (fst (p2ibis n p)))*2^(Z_of_nat n) + + Zpos p = (Z.of_N (fst (p2ibis n p)))*2^(Z.of_nat n) + phi (snd (p2ibis n p)). Proof. induction n; intros. - simpl; rewrite Pmult_1_r; auto. - replace (2^(Z_of_nat (S n)))%Z with (2*2^(Z_of_nat n))%Z by - (rewrite <- Zpower_Zsucc, <- Zpos_P_of_succ_nat; + simpl; rewrite Pos.mul_1_r; auto. + replace (2^(Z.of_nat (S n)))%Z with (2*2^(Z.of_nat n))%Z by + (rewrite <- Z.pow_succ_r, <- Zpos_P_of_succ_nat; auto with zarith). - rewrite (Zmult_comm 2). + rewrite (Z.mul_comm 2). assert (n<=size)%nat by omega. destruct p; simpl; [ | | auto]; specialize (IHn p H0); @@ -924,13 +924,13 @@ Section Basics. destruct (p2ibis n p) as (r,i); simpl in *; intros. change (Zpos p~1) with (2*Zpos p + 1)%Z. - rewrite phi_twice_plus_one_firstl, Zdouble_plus_one_mult. + rewrite phi_twice_plus_one_firstl, Z.succ_double_spec. rewrite IHn; ring. apply (nshiftr_0_firstl n); auto; try omega. change (Zpos p~0) with (2*Zpos p)%Z. rewrite phi_twice_firstl. - change (Zdouble (phi i)) with (2*(phi i))%Z. + change (Z.double (phi i)) with (2*(phi i))%Z. rewrite IHn; ring. apply (nshiftr_0_firstl n); auto; try omega. Qed. @@ -956,12 +956,12 @@ Section Basics. for the positive case. *) Lemma phi_phi_inv_positive : forall p, - phi (phi_inv_positive p) = (Zpos p) mod (2^(Z_of_nat size)). + phi (phi_inv_positive p) = (Zpos p) mod (2^(Z.of_nat size)). Proof. intros. replace (phi_inv_positive p) with (snd (p2ibis size p)). rewrite (p2ibis_spec size p) by auto. - rewrite Zplus_comm, Z_mod_plus. + rewrite Z.add_comm, Z_mod_plus. symmetry; apply Zmod_small. apply phi_bounded. auto with zarith. @@ -978,7 +978,7 @@ Section Basics. Proof. intros. unfold mul31. - rewrite <- Zdouble_mult, <- phi_twice_firstl, phi_inv_phi; auto. + rewrite <- Z.double_spec, <- phi_twice_firstl, phi_inv_phi; auto. Qed. Lemma double_twice_plus_one_firstl : forall x, firstl x = D0 -> @@ -987,7 +987,7 @@ Section Basics. intros. rewrite double_twice_firstl; auto. unfold add31. - rewrite phi_twice_firstl, <- Zdouble_plus_one_mult, + rewrite phi_twice_firstl, <- Z.succ_double_spec, <- phi_twice_plus_one_firstl, phi_inv_phi; auto. Qed. @@ -1016,7 +1016,7 @@ Section Basics. Qed. Lemma positive_to_int31_spec : forall p, - Zpos p = (Z_of_N (fst (positive_to_int31 p)))*2^(Z_of_nat size) + + Zpos p = (Z.of_N (fst (positive_to_int31 p)))*2^(Z.of_nat size) + phi (snd (positive_to_int31 p)). Proof. unfold positive_to_int31. @@ -1029,43 +1029,43 @@ Section Basics. [phi o twice] and so one. *) Lemma phi_twice : forall x, - phi (twice x) = (Zdouble (phi x)) mod 2^(Z_of_nat size). + phi (twice x) = (Z.double (phi x)) mod 2^(Z.of_nat size). Proof. intros. pattern x at 1; rewrite <- (phi_inv_phi x). rewrite <- phi_inv_double. - assert (0 <= Zdouble (phi x)). - rewrite Zdouble_mult; generalize (phi_bounded x); omega. - destruct (Zdouble (phi x)). + assert (0 <= Z.double (phi x)). + rewrite Z.double_spec; generalize (phi_bounded x); omega. + destruct (Z.double (phi x)). simpl; auto. apply phi_phi_inv_positive. compute in H; elim H; auto. Qed. Lemma phi_twice_plus_one : forall x, - phi (twice_plus_one x) = (Zdouble_plus_one (phi x)) mod 2^(Z_of_nat size). + phi (twice_plus_one x) = (Z.succ_double (phi x)) mod 2^(Z.of_nat size). Proof. intros. pattern x at 1; rewrite <- (phi_inv_phi x). rewrite <- phi_inv_double_plus_one. - assert (0 <= Zdouble_plus_one (phi x)). - rewrite Zdouble_plus_one_mult; generalize (phi_bounded x); omega. - destruct (Zdouble_plus_one (phi x)). + assert (0 <= Z.succ_double (phi x)). + rewrite Z.succ_double_spec; generalize (phi_bounded x); omega. + destruct (Z.succ_double (phi x)). simpl; auto. apply phi_phi_inv_positive. compute in H; elim H; auto. Qed. Lemma phi_incr : forall x, - phi (incr x) = (Zsucc (phi x)) mod 2^(Z_of_nat size). + phi (incr x) = (Z.succ (phi x)) mod 2^(Z.of_nat size). Proof. intros. pattern x at 1; rewrite <- (phi_inv_phi x). rewrite <- phi_inv_incr. - assert (0 <= Zsucc (phi x)). - change (Zsucc (phi x)) with ((phi x)+1)%Z; + assert (0 <= Z.succ (phi x)). + change (Z.succ (phi x)) with ((phi x)+1)%Z; generalize (phi_bounded x); omega. - destruct (Zsucc (phi x)). + destruct (Z.succ (phi x)). simpl; auto. apply phi_phi_inv_positive. compute in H; elim H; auto. @@ -1075,7 +1075,7 @@ Section Basics. in the negative case *) Lemma phi_phi_inv_negative : - forall p, phi (incr (complement_negative p)) = (Zneg p) mod 2^(Z_of_nat size). + forall p, phi (incr (complement_negative p)) = (Zneg p) mod 2^(Z.of_nat size). Proof. induction p. @@ -1083,21 +1083,21 @@ Section Basics. rewrite phi_incr in IHp. rewrite incr_twice, phi_twice_plus_one. remember (phi (complement_negative p)) as q. - rewrite Zdouble_plus_one_mult. - replace (2*q+1) with (2*(Zsucc q)-1) by omega. + rewrite Z.succ_double_spec. + replace (2*q+1) with (2*(Z.succ q)-1) by omega. rewrite <- Zminus_mod_idemp_l, <- Zmult_mod_idemp_r, IHp. rewrite Zmult_mod_idemp_r, Zminus_mod_idemp_l; auto with zarith. simpl complement_negative. rewrite incr_twice_plus_one, phi_twice. remember (phi (incr (complement_negative p))) as q. - rewrite Zdouble_mult, IHp, Zmult_mod_idemp_r; auto with zarith. + rewrite Z.double_spec, IHp, Zmult_mod_idemp_r; auto with zarith. simpl; auto. Qed. Lemma phi_phi_inv : - forall z, phi (phi_inv z) = z mod 2 ^ (Z_of_nat size). + forall z, phi (phi_inv z) = z mod 2 ^ (Z.of_nat size). Proof. destruct z. simpl; auto. @@ -1167,7 +1167,7 @@ Section Int31_Specs. Notation "[| x |]" := (phi x) (at level 0, x at level 99). - Local Notation wB := (2 ^ (Z_of_nat size)). + Local Notation wB := (2 ^ (Z.of_nat size)). Lemma wB_pos : wB > 0. Proof. @@ -1221,14 +1221,14 @@ Section Int31_Specs. set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y. assert ((X+Y) mod wB ?= X+Y <> Eq -> [+|C1 (phi_inv (X+Y))|] = X+Y). - unfold interp_carry; rewrite phi_phi_inv, Zcompare_Eq_iff_eq; intros. + unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros. destruct (Z_lt_le_dec (X+Y) wB). contradict H1; auto using Zmod_small with zarith. rewrite <- (Z_mod_plus_full (X+Y) (-1) wB). rewrite Zmod_small; romega. - generalize (Zcompare_Eq_eq ((X+Y) mod wB) (X+Y)); intros Heq. - destruct Zcompare; intros; + generalize (Z.compare_eq ((X+Y) mod wB) (X+Y)); intros Heq. + destruct Z.compare; intros; [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1]. Qed. @@ -1245,14 +1245,14 @@ Section Int31_Specs. set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y. assert ((X+Y+1) mod wB ?= X+Y+1 <> Eq -> [+|C1 (phi_inv (X+Y+1))|] = X+Y+1). - unfold interp_carry; rewrite phi_phi_inv, Zcompare_Eq_iff_eq; intros. + unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros. destruct (Z_lt_le_dec (X+Y+1) wB). contradict H1; auto using Zmod_small with zarith. rewrite <- (Z_mod_plus_full (X+Y+1) (-1) wB). rewrite Zmod_small; romega. - generalize (Zcompare_Eq_eq ((X+Y+1) mod wB) (X+Y+1)); intros Heq. - destruct Zcompare; intros; + generalize (Z.compare_eq ((X+Y+1) mod wB) (X+Y+1)); intros Heq. + destruct Z.compare; intros; [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1]. Qed. @@ -1284,14 +1284,14 @@ Section Int31_Specs. set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y. assert ((X-Y) mod wB ?= X-Y <> Eq -> [-|C1 (phi_inv (X-Y))|] = X-Y). - unfold interp_carry; rewrite phi_phi_inv, Zcompare_Eq_iff_eq; intros. + unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros. destruct (Z_lt_le_dec (X-Y) 0). rewrite <- (Z_mod_plus_full (X-Y) 1 wB). rewrite Zmod_small; romega. contradict H1; apply Zmod_small; romega. - generalize (Zcompare_Eq_eq ((X-Y) mod wB) (X-Y)); intros Heq. - destruct Zcompare; intros; + generalize (Z.compare_eq ((X-Y) mod wB) (X-Y)); intros Heq. + destruct Z.compare; intros; [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1]. Qed. @@ -1303,14 +1303,14 @@ Section Int31_Specs. set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y. assert ((X-Y-1) mod wB ?= X-Y-1 <> Eq -> [-|C1 (phi_inv (X-Y-1))|] = X-Y-1). - unfold interp_carry; rewrite phi_phi_inv, Zcompare_Eq_iff_eq; intros. + unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros. destruct (Z_lt_le_dec (X-Y-1) 0). rewrite <- (Z_mod_plus_full (X-Y-1) 1 wB). rewrite Zmod_small; romega. contradict H1; apply Zmod_small; romega. - generalize (Zcompare_Eq_eq ((X-Y-1) mod wB) (X-Y-1)); intros Heq. - destruct Zcompare; intros; + generalize (Z.compare_eq ((X-Y-1) mod wB) (X-Y-1)); intros Heq. + destruct Z.compare; intros; [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1]. Qed. @@ -1386,7 +1386,7 @@ Section Int31_Specs. apply Zmod_small. generalize (phi_bounded x)(phi_bounded y); intros. change (wB^2) with (wB * wB). - auto using Zmult_lt_compat with zarith. + auto using Z.mul_lt_mono_nonneg with zarith. Qed. Lemma spec_mul : forall x y, [|x*y|] = ([|x|] * [|y|]) mod wB. @@ -1412,29 +1412,26 @@ Section Int31_Specs. generalize (phi_bounded a1)(phi_bounded a2)(phi_bounded b); intros. assert ([|b|]>0) by (auto with zarith). generalize (Z_div_mod (phi2 a1 a2) [|b|] H4) (Z_div_pos (phi2 a1 a2) [|b|] H4). - unfold Zdiv; destruct (Zdiv_eucl (phi2 a1 a2) [|b|]); simpl. + unfold Z.div; destruct (Z.div_eucl (phi2 a1 a2) [|b|]); simpl. rewrite ?phi_phi_inv. destruct 1; intros. unfold phi2 in *. change base with wB; change base with wB in H5. - change (Zpower_pos 2 31) with wB; change (Zpower_pos 2 31) with wB in H. - rewrite H5, Zmult_comm. + change (Z.pow_pos 2 31) with wB; change (Z.pow_pos 2 31) with wB in H. + rewrite H5, Z.mul_comm. replace (z0 mod wB) with z0 by (symmetry; apply Zmod_small; omega). replace (z mod wB) with z; auto with zarith. symmetry; apply Zmod_small. split. apply H7; change base with wB; auto with zarith. - apply Zmult_gt_0_lt_reg_r with [|b|]. - omega. - rewrite Zmult_comm. - apply Zle_lt_trans with ([|b|]*z+z0). - omega. + apply Z.mul_lt_mono_pos_r with [|b|]; [omega| ]. + rewrite Z.mul_comm. + apply Z.le_lt_trans with ([|b|]*z+z0); [omega| ]. rewrite <- H5. - apply Zle_lt_trans with ([|a1|]*wB+(wB-1)). - omega. + apply Z.le_lt_trans with ([|a1|]*wB+(wB-1)); [omega | ]. replace ([|a1|]*wB+(wB-1)) with (wB*([|a1|]+1)-1) by ring. assert (wB*([|a1|]+1) <= wB*[|b|]); try omega. - apply Zmult_le_compat; omega. + apply Z.mul_le_mono_nonneg; omega. Qed. Lemma spec_div : forall a b, 0 < [|b|] -> @@ -1445,20 +1442,20 @@ Section Int31_Specs. unfold div31; intros. assert ([|b|]>0) by (auto with zarith). generalize (Z_div_mod [|a|] [|b|] H0) (Z_div_pos [|a|] [|b|] H0). - unfold Zdiv; destruct (Zdiv_eucl [|a|] [|b|]); simpl. + unfold Z.div; destruct (Z.div_eucl [|a|] [|b|]); simpl. rewrite ?phi_phi_inv. destruct 1; intros. - rewrite H1, Zmult_comm. + rewrite H1, Z.mul_comm. generalize (phi_bounded a)(phi_bounded b); intros. replace (z0 mod wB) with z0 by (symmetry; apply Zmod_small; omega). replace (z mod wB) with z; auto with zarith. symmetry; apply Zmod_small. split; auto with zarith. - apply Zle_lt_trans with [|a|]; auto with zarith. + apply Z.le_lt_trans with [|a|]; auto with zarith. rewrite H1. - apply Zle_trans with ([|b|]*z); try omega. - rewrite <- (Zmult_1_l z) at 1. - apply Zmult_le_compat; auto with zarith. + apply Z.le_trans with ([|b|]*z); try omega. + rewrite <- (Z.mul_1_l z) at 1. + apply Z.mul_le_mono_nonneg; auto with zarith. Qed. Lemma spec_mod : forall a b, 0 < [|b|] -> @@ -1466,9 +1463,9 @@ Section Int31_Specs. Proof. unfold div31; intros. assert ([|b|]>0) by (auto with zarith). - unfold Zmod. + unfold Z.modulo. generalize (Z_div_mod [|a|] [|b|] H0). - destruct (Zdiv_eucl [|a|] [|b|]); simpl. + destruct (Z.div_eucl [|a|] [|b|]); simpl. rewrite ?phi_phi_inv. destruct 1; intros. generalize (phi_bounded b); intros. @@ -1506,12 +1503,12 @@ Section Int31_Specs. destruct [|b|]. unfold size; auto with zarith. intros (_,H). - cut (Psize p <= size)%nat; [ omega | rewrite <- Zpower2_Psize; auto]. + cut (Pos.size_nat p <= size)%nat; [ omega | rewrite <- Zpower2_Psize; auto]. intros (H,_); compute in H; elim H; auto. Qed. Lemma iter_int31_iter_nat : forall A f i a, - iter_int31 i A f a = iter_nat (Zabs_nat [|i|]) A f a. + iter_int31 i A f a = iter_nat (Z.abs_nat [|i|]) A f a. Proof. intros. unfold iter_int31. @@ -1528,15 +1525,15 @@ Section Int31_Specs. rewrite <- iter_nat_plus. f_equal. - rewrite Zdouble_mult, Zmult_comm, <- Zplus_diag_eq_mult_2. - symmetry; apply Zabs_nat_Zplus; auto with zarith. + rewrite Z.double_spec, <- Z.add_diag. + symmetry; apply Zabs2Nat.inj_add; auto with zarith. - change (iter_nat (S (Zabs_nat z + Zabs_nat z)) A f a = - iter_nat (Zabs_nat (Zdouble_plus_one z)) A f a); f_equal. - rewrite Zdouble_plus_one_mult, Zmult_comm, <- Zplus_diag_eq_mult_2. - rewrite Zabs_nat_Zplus; auto with zarith. - rewrite Zabs_nat_Zplus; auto with zarith. - change (Zabs_nat 1) with 1%nat; omega. + change (iter_nat (S (Z.abs_nat z + Z.abs_nat z)) A f a = + iter_nat (Z.abs_nat (Z.succ_double z)) A f a); f_equal. + rewrite Z.succ_double_spec, <- Z.add_diag. + rewrite Zabs2Nat.inj_add; auto with zarith. + rewrite Zabs2Nat.inj_add; auto with zarith. + change (Z.abs_nat 1) with 1%nat; omega. Qed. Fixpoint addmuldiv31_alt n i j := @@ -1546,12 +1543,12 @@ Section Int31_Specs. end. Lemma addmuldiv31_equiv : forall p x y, - addmuldiv31 p x y = addmuldiv31_alt (Zabs_nat [|p|]) x y. + addmuldiv31 p x y = addmuldiv31_alt (Z.abs_nat [|p|]) x y. Proof. intros. unfold addmuldiv31. rewrite iter_int31_iter_nat. - set (n:=Zabs_nat [|p|]); clearbody n; clear p. + set (n:=Z.abs_nat [|p|]); clearbody n; clear p. revert x y; induction n. simpl; auto. intros. @@ -1566,21 +1563,21 @@ Section Int31_Specs. Proof. intros. rewrite addmuldiv31_equiv. - assert ([|p|] = Z_of_nat (Zabs_nat [|p|])). - rewrite inj_Zabs_nat; symmetry; apply Zabs_eq. + assert ([|p|] = Z.of_nat (Z.abs_nat [|p|])). + rewrite Zabs2Nat.id_abs; symmetry; apply Z.abs_eq. destruct (phi_bounded p); auto. - rewrite H0; rewrite H0 in H; clear H0; rewrite Zabs_nat_Z_of_nat. - set (n := Zabs_nat [|p|]) in *; clearbody n. + rewrite H0; rewrite H0 in H; clear H0; rewrite Zabs2Nat.id. + set (n := Z.abs_nat [|p|]) in *; clearbody n. assert (n <= 31)%nat. - rewrite inj_le_iff; auto with zarith. + rewrite Nat2Z.inj_le; auto with zarith. clear p H; revert x y. induction n. simpl; intros. - change (Zpower_pos 2 31) with (2^31). - rewrite Zmult_1_r. + change (Z.pow_pos 2 31) with (2^31). + rewrite Z.mul_1_r. replace ([|y|] / 2^31) with 0. - rewrite Zplus_0_r. + rewrite Z.add_0_r. symmetry; apply Zmod_small; apply phi_bounded. symmetry; apply Zdiv_small; apply phi_bounded. @@ -1588,43 +1585,43 @@ Section Int31_Specs. rewrite IHn; [ | omega ]. case_eq (firstl y); intros. - rewrite phi_twice, Zdouble_mult. + rewrite phi_twice, Z.double_spec. rewrite phi_twice_firstl; auto. - change (Zdouble [|y|]) with (2*[|y|]). - rewrite inj_S, Zpower_Zsucc; auto with zarith. + change (Z.double [|y|]) with (2*[|y|]). + rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith. rewrite Zplus_mod; rewrite Zmult_mod_idemp_l; rewrite <- Zplus_mod. f_equal. - apply Zplus_eq_compat. + f_equal. ring. - replace (31-Z_of_nat n) with (Zsucc(31-Zsucc(Z_of_nat n))) by ring. - rewrite Zpower_Zsucc, <- Zdiv_Zdiv; auto with zarith. - rewrite Zmult_comm, Z_div_mult; auto with zarith. + replace (31-Z.of_nat n) with (Z.succ(31-Z.succ(Z.of_nat n))) by ring. + rewrite Z.pow_succ_r, <- Zdiv_Zdiv; auto with zarith. + rewrite Z.mul_comm, Z_div_mult; auto with zarith. - rewrite phi_twice_plus_one, Zdouble_plus_one_mult. + rewrite phi_twice_plus_one, Z.succ_double_spec. rewrite phi_twice; auto. - change (Zdouble [|y|]) with (2*[|y|]). - rewrite inj_S, Zpower_Zsucc; auto with zarith. + change (Z.double [|y|]) with (2*[|y|]). + rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith. rewrite Zplus_mod; rewrite Zmult_mod_idemp_l; rewrite <- Zplus_mod. - rewrite Zmult_plus_distr_l, Zmult_1_l, <- Zplus_assoc. + rewrite Z.mul_add_distr_r, Z.mul_1_l, <- Z.add_assoc. + f_equal. f_equal. - apply Zplus_eq_compat. ring. assert ((2*[|y|]) mod wB = 2*[|y|] - wB). clear - H. symmetry. apply Zmod_unique with 1; [ | ring ]. generalize (phi_lowerbound _ H) (phi_bounded y). - set (wB' := 2^Z_of_nat (pred size)). + set (wB' := 2^Z.of_nat (pred size)). replace wB with (2*wB'); [ omega | ]. - unfold wB'. rewrite <- Zpower_Zsucc, <- inj_S by (auto with zarith). + unfold wB'. rewrite <- Z.pow_succ_r, <- Nat2Z.inj_succ by (auto with zarith). f_equal. rewrite H1. - replace wB with (2^(Z_of_nat n)*2^(31-Z_of_nat n)) by + replace wB with (2^(Z.of_nat n)*2^(31-Z.of_nat n)) by (rewrite <- Zpower_exp; auto with zarith; f_equal; unfold size; ring). - unfold Zminus; rewrite Zopp_mult_distr_l. + unfold Z.sub; rewrite <- Z.mul_opp_l. rewrite Z_div_plus; auto with zarith. ring_simplify. - replace (31+-Z_of_nat n) with (Zsucc(31-Zsucc(Z_of_nat n))) by ring. - rewrite Zpower_Zsucc, <- Zdiv_Zdiv; auto with zarith. - rewrite Zmult_comm, Z_div_mult; auto with zarith. + replace (31+-Z.of_nat n) with (Z.succ(31-Z.succ(Z.of_nat n))) by ring. + rewrite Z.pow_succ_r, <- Zdiv_Zdiv; auto with zarith. + rewrite Z.mul_comm, Z_div_mult; auto with zarith. Qed. Lemma spec_pos_mod : forall w p, @@ -1637,25 +1634,25 @@ Section Int31_Specs. generalize (phi_bounded w). symmetry; apply Zmod_small. split; auto with zarith. - apply Zlt_le_trans with wB; auto with zarith. + apply Z.lt_le_trans with wB; auto with zarith. apply Zpower_le_monotone; auto with zarith. intros. case_eq ([|p|] ?= 31); intros; - [ apply H; rewrite (Zcompare_Eq_eq _ _ H0); auto with zarith | | + [ apply H; rewrite (Z.compare_eq _ _ H0); auto with zarith | | apply H; change ([|p|]>31)%Z in H0; auto with zarith ]. change ([|p|]<31) in H0. rewrite spec_add_mul_div by auto with zarith. - change [|0|] with 0%Z; rewrite Zmult_0_l, Zplus_0_l. + change [|0|] with 0%Z; rewrite Z.mul_0_l, Z.add_0_l. generalize (phi_bounded p)(phi_bounded w); intros. assert (31-[|p|] 0 < j -> i < ((j + (i/j))/2 + 1) ^ 2. Proof. intros Hi Hj. assert (Hij: 0 <= i/j) by (apply Z_div_pos; auto with zarith). - apply Zlt_le_trans with (2 := sqrt_main_trick _ _ (Zlt_le_weak _ _ Hj) Hij). + apply Z.lt_le_trans with (2 := sqrt_main_trick _ _ (Z.lt_le_incl _ _ Hj) Hij). pattern i at 1; rewrite (Z_div_mod_eq i j); case (Z_mod_lt i j); auto with zarith. Qed. @@ -1919,48 +1916,34 @@ Section Int31_Specs. assert (H1: 0 <= i - 2) by auto with zarith. assert (H2: 1 <= (i / 2) ^ 2); auto with zarith. replace i with (1* 2 + (i - 2)); auto with zarith. - rewrite Zpower_2, Z_div_plus_full_l; auto with zarith. + rewrite Z.pow_2_r, Z_div_plus_full_l; auto with zarith. generalize (sqr_pos ((i - 2)/ 2)) (Z_div_pos (i - 2) 2). - rewrite Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r. + rewrite Z.mul_add_distr_r; repeat rewrite Z.mul_add_distr_l. auto with zarith. generalize (quotient_by_2 i). - rewrite Zpower_2 in H2 |- *; - repeat (rewrite Zmult_plus_distr_l || - rewrite Zmult_plus_distr_r || - rewrite Zmult_1_l || rewrite Zmult_1_r). + rewrite Z.pow_2_r in H2 |- *; + repeat (rewrite Z.mul_add_distr_r || + rewrite Z.mul_add_distr_l || + rewrite Z.mul_1_l || rewrite Z.mul_1_r). auto with zarith. Qed. Lemma sqrt_test_true i j: 0 <= i -> 0 < j -> i/j >= j -> j ^ 2 <= i. Proof. - intros Hi Hj Hd; rewrite Zpower_2. - apply Zle_trans with (j * (i/j)); auto with zarith. + intros Hi Hj Hd; rewrite Z.pow_2_r. + apply Z.le_trans with (j * (i/j)); auto with zarith. apply Z_mult_div_ge; auto with zarith. Qed. Lemma sqrt_test_false i j: 0 <= i -> 0 < j -> i/j < j -> (j + (i/j))/2 < j. Proof. - intros Hi Hj H; case (Zle_or_lt j ((j + (i/j))/2)); auto. - intros H1; contradict H; apply Zle_not_lt. + intros Hi Hj H; case (Z.le_gt_cases j ((j + (i/j))/2)); auto. + intros H1; contradict H; apply Z.le_ngt. assert (2 * j <= j + (i/j)); auto with zarith. - apply Zle_trans with (2 * ((j + (i/j))/2)); auto with zarith. + apply Z.le_trans with (2 * ((j + (i/j))/2)); auto with zarith. apply Z_mult_div_ge; auto with zarith. Qed. - (* George's trick *) - Inductive ZcompareSpec (i j: Z): comparison -> Prop := - ZcompareSpecEq: i = j -> ZcompareSpec i j Eq - | ZcompareSpecLt: i < j -> ZcompareSpec i j Lt - | ZcompareSpecGt: j < i -> ZcompareSpec i j Gt. - - Lemma Zcompare_spec i j: ZcompareSpec i j (i ?= j). - Proof. - case_eq (Zcompare i j); intros H. - apply ZcompareSpecEq; apply Zcompare_Eq_eq; auto. - apply ZcompareSpecLt; auto. - apply ZcompareSpecGt; apply Zgt_lt; auto. - Qed. - Lemma sqrt31_step_def rec i j: sqrt31_step rec i j = match (fst (i/j) ?= j)%int31 with @@ -1987,65 +1970,66 @@ Section Int31_Specs. [|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) -> [|sqrt31_step rec i j|] ^ 2 <= [|i|] < ([|sqrt31_step rec i j|] + 1) ^ 2. Proof. - assert (Hp2: 0 < [|2|]) by exact (refl_equal Lt). + assert (Hp2: 0 < [|2|]) by exact (eq_refl Lt). intros Hi Hj Hij H31 Hrec; rewrite sqrt31_step_def. rewrite spec_compare, div31_phi; auto. - case Zcompare_spec; auto; intros Hc; + case Z.compare_spec; auto; intros Hc; try (split; auto; apply sqrt_test_true; auto with zarith; fail). apply Hrec; repeat rewrite div31_phi; auto with zarith. replace [|(j + fst (i / j)%int31)|] with ([|j|] + [|i|] / [|j|]). split. - case (Zle_lt_or_eq 1 [|j|]); auto with zarith; intros Hj1. + apply Z.le_succ_l in Hj. change (1 <= [|j|]) in Hj. + Z.le_elim Hj. replace ([|j|] + [|i|]/[|j|]) with (1 * 2 + (([|j|] - 2) + [|i|] / [|j|])); try ring. rewrite Z_div_plus_full_l; auto with zarith. assert (0 <= [|i|]/ [|j|]) by (apply Z_div_pos; auto with zarith). assert (0 <= ([|j|] - 2 + [|i|] / [|j|]) / [|2|]) ; auto with zarith. - rewrite <- Hj1, Zdiv_1_r. + rewrite <- Hj, Zdiv_1_r. replace (1 + [|i|])%Z with (1 * 2 + ([|i|] - 1))%Z; try ring. rewrite Z_div_plus_full_l; auto with zarith. assert (0 <= ([|i|] - 1) /2)%Z by (apply Z_div_pos; auto with zarith). change ([|2|]) with 2%Z; auto with zarith. apply sqrt_test_false; auto with zarith. rewrite spec_add, div31_phi; auto. - apply sym_equal; apply Zmod_small. + symmetry; apply Zmod_small. split; auto with zarith. replace [|j + fst (i / j)%int31|] with ([|j|] + [|i|] / [|j|]). apply sqrt_main; auto with zarith. rewrite spec_add, div31_phi; auto. - apply sym_equal; apply Zmod_small. + symmetry; apply Zmod_small. split; auto with zarith. Qed. Lemma iter31_sqrt_correct n rec i j: 0 < [|i|] -> 0 < [|j|] -> - [|i|] < ([|j|] + 1) ^ 2 -> 2 * [|j|] < 2 ^ (Z_of_nat size) -> - (forall j1, 0 < [|j1|] -> 2^(Z_of_nat n) + [|j1|] <= [|j|] -> - [|i|] < ([|j1|] + 1) ^ 2 -> 2 * [|j1|] < 2 ^ (Z_of_nat size) -> + [|i|] < ([|j|] + 1) ^ 2 -> 2 * [|j|] < 2 ^ (Z.of_nat size) -> + (forall j1, 0 < [|j1|] -> 2^(Z.of_nat n) + [|j1|] <= [|j|] -> + [|i|] < ([|j1|] + 1) ^ 2 -> 2 * [|j1|] < 2 ^ (Z.of_nat size) -> [|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) -> [|iter31_sqrt n rec i j|] ^ 2 <= [|i|] < ([|iter31_sqrt n rec i j|] + 1) ^ 2. Proof. revert rec i j; elim n; unfold iter31_sqrt; fold iter31_sqrt; clear n. intros rec i j Hi Hj Hij H31 Hrec; apply sqrt31_step_correct; auto with zarith. intros; apply Hrec; auto with zarith. - rewrite Zpower_0_r; auto with zarith. + rewrite Z.pow_0_r; auto with zarith. intros n Hrec rec i j Hi Hj Hij H31 HHrec. apply sqrt31_step_correct; auto. intros j1 Hj1 Hjp1; apply Hrec; auto with zarith. intros j2 Hj2 H2j2 Hjp2 Hj31; apply Hrec; auto with zarith. intros j3 Hj3 Hpj3. apply HHrec; auto. - rewrite inj_S, Zpower_Zsucc. - apply Zle_trans with (2 ^Z_of_nat n + [|j2|]); auto with zarith. - apply Zle_0_nat. + rewrite Nat2Z.inj_succ, Z.pow_succ_r. + apply Z.le_trans with (2 ^Z.of_nat n + [|j2|]); auto with zarith. + apply Nat2Z.is_nonneg. Qed. Lemma spec_sqrt : forall x, [|sqrt31 x|] ^ 2 <= [|x|] < ([|sqrt31 x|] + 1) ^ 2. Proof. intros i; unfold sqrt31. - rewrite spec_compare. case Zcompare_spec; change [|1|] with 1; + rewrite spec_compare. case Z.compare_spec; change [|1|] with 1; intros Hi; auto with zarith. - repeat rewrite Zpower_2; auto with zarith. + repeat rewrite Z.pow_2_r; auto with zarith. apply iter31_sqrt_correct; auto with zarith. rewrite div31_phi; change ([|2|]) with 2; auto with zarith. replace ([|i|]) with (1 * 2 + ([|i|] - 2))%Z; try ring. @@ -2054,18 +2038,18 @@ Section Int31_Specs. rewrite div31_phi; change ([|2|]) with 2; auto with zarith. apply sqrt_init; auto. rewrite div31_phi; change ([|2|]) with 2; auto with zarith. - apply Zle_lt_trans with ([|i|]). + apply Z.le_lt_trans with ([|i|]). apply Z_mult_div_ge; auto with zarith. case (phi_bounded i); auto. - intros j2 H1 H2; contradict H2; apply Zlt_not_le. + intros j2 H1 H2; contradict H2; apply Z.lt_nge. rewrite div31_phi; change ([|2|]) with 2; auto with zarith. - apply Zle_lt_trans with ([|i|]); auto with zarith. + apply Z.le_lt_trans with ([|i|]); auto with zarith. assert (0 <= [|i|]/2)%Z by (apply Z_div_pos; auto with zarith). - apply Zle_trans with (2 * ([|i|]/2)); auto with zarith. + apply Z.le_trans with (2 * ([|i|]/2)); auto with zarith. apply Z_mult_div_ge; auto with zarith. case (phi_bounded i); unfold size; auto with zarith. change [|0|] with 0; auto with zarith. - case (phi_bounded i); repeat rewrite Zpower_2; auto with zarith. + case (phi_bounded i); repeat rewrite Z.pow_2_r; auto with zarith. Qed. Lemma sqrt312_step_def rec ih il j: @@ -2095,10 +2079,10 @@ Section Int31_Specs. case (phi_bounded il); intros Hbil _. case (phi_bounded ih); intros Hbih Hbih1. assert (([|ih|] < [|j|] + 1)%Z); auto with zarith. - apply Zlt_square_simpl; auto with zarith. - repeat rewrite <-Zpower_2; apply Zle_lt_trans with (2 := H1). - apply Zle_trans with ([|ih|] * base)%Z; unfold phi2, base; - try rewrite Zpower_2; auto with zarith. + apply Z.square_lt_simpl_nonneg; auto with zarith. + repeat rewrite <-Z.pow_2_r; apply Z.le_lt_trans with (2 := H1). + apply Z.le_trans with ([|ih|] * base)%Z; unfold phi2, base; + try rewrite Z.pow_2_r; auto with zarith. Qed. Lemma div312_phi ih il j: (2^30 <= [|j|] -> [|ih|] < [|j|] -> @@ -2108,7 +2092,7 @@ Section Int31_Specs. generalize (spec_div21 ih il j Hj Hj1). case div3121; intros q r (Hq, Hr). apply Zdiv_unique with (phi r); auto with zarith. - simpl fst; apply trans_equal with (1 := Hq); ring. + simpl fst; apply eq_trans with (1 := Hq); ring. Qed. Lemma sqrt312_step_correct rec ih il j: @@ -2118,32 +2102,33 @@ Section Int31_Specs. [|sqrt312_step rec ih il j|] ^ 2 <= phi2 ih il < ([|sqrt312_step rec ih il j|] + 1) ^ 2. Proof. - assert (Hp2: (0 < [|2|])%Z) by exact (refl_equal Lt). + assert (Hp2: (0 < [|2|])%Z) by exact (eq_refl Lt). intros Hih Hj Hij Hrec; rewrite sqrt312_step_def. assert (H1: ([|ih|] <= [|j|])%Z) by (apply sqrt312_lower_bound with il; auto). case (phi_bounded ih); intros Hih1 _. case (phi_bounded il); intros Hil1 _. case (phi_bounded j); intros _ Hj1. assert (Hp3: (0 < phi2 ih il)). - unfold phi2; apply Zlt_le_trans with ([|ih|] * base)%Z; auto with zarith. - apply Zmult_lt_0_compat; auto with zarith. - apply Zlt_le_trans with (2:= Hih); auto with zarith. - rewrite spec_compare. case Zcompare_spec; intros Hc1. + unfold phi2; apply Z.lt_le_trans with ([|ih|] * base)%Z; auto with zarith. + apply Z.mul_pos_pos; auto with zarith. + apply Z.lt_le_trans with (2:= Hih); auto with zarith. + rewrite spec_compare. case Z.compare_spec; intros Hc1. split; auto. apply sqrt_test_true; auto. unfold phi2, base; auto with zarith. unfold phi2; rewrite Hc1. assert (0 <= [|il|]/[|j|]) by (apply Z_div_pos; auto with zarith). - rewrite Zmult_comm, Z_div_plus_full_l; unfold base; auto with zarith. - unfold Zpower, Zpower_pos in Hj1; simpl in Hj1; auto with zarith. - case (Zle_or_lt (2 ^ 30) [|j|]); intros Hjj. - rewrite spec_compare; case Zcompare_spec; + rewrite Z.mul_comm, Z_div_plus_full_l; unfold base; auto with zarith. + unfold Z.pow, Z.pow_pos in Hj1; simpl in Hj1; auto with zarith. + case (Z.le_gt_cases (2 ^ 30) [|j|]); intros Hjj. + rewrite spec_compare; case Z.compare_spec; rewrite div312_phi; auto; intros Hc; try (split; auto; apply sqrt_test_true; auto with zarith; fail). apply Hrec. assert (Hf1: 0 <= phi2 ih il/ [|j|]) by (apply Z_div_pos; auto with zarith). - case (Zle_lt_or_eq 1 ([|j|])); auto with zarith; intros Hf2. - 2: contradict Hc; apply Zle_not_lt; rewrite <- Hf2, Zdiv_1_r; auto with zarith. + apply Z.le_succ_l in Hj. change (1 <= [|j|]) in Hj. + Z.le_elim Hj. + 2: contradict Hc; apply Z.le_ngt; rewrite <- Hj, Zdiv_1_r; auto with zarith. assert (Hf3: 0 < ([|j|] + phi2 ih il / [|j|]) / 2). replace ([|j|] + phi2 ih il/ [|j|])%Z with (1 * 2 + (([|j|] - 2) + phi2 ih il / [|j|])); try ring. @@ -2157,9 +2142,9 @@ Section Int31_Specs. rewrite div31_phi; change [|2|] with 2%Z; auto with zarith. intros HH; rewrite HH; clear HH; auto with zarith. rewrite spec_add, div31_phi; change [|2|] with 2%Z; auto. - rewrite Zmult_1_l; intros HH. - rewrite Zplus_comm, <- Z_div_plus_full_l; auto with zarith. - change (phi v30 * 2) with (2 ^ Z_of_nat size). + rewrite Z.mul_1_l; intros HH. + rewrite Z.add_comm, <- Z_div_plus_full_l; auto with zarith. + change (phi v30 * 2) with (2 ^ Z.of_nat size). rewrite HH, Zmod_small; auto with zarith. replace (phi match j +c fst (div3121 ih il j) with @@ -2173,41 +2158,41 @@ Section Int31_Specs. rewrite div31_phi; auto with zarith. intros HH; rewrite HH; auto with zarith. intros HH; rewrite <- HH. - change (1 * 2 ^ Z_of_nat size) with (phi (v30) * 2). + change (1 * 2 ^ Z.of_nat size) with (phi (v30) * 2). rewrite Z_div_plus_full_l; auto with zarith. - rewrite Zplus_comm. + rewrite Z.add_comm. rewrite spec_add, Zmod_small. rewrite div31_phi; auto. split; auto with zarith. case (phi_bounded (fst (r/2)%int31)); case (phi_bounded v30); auto with zarith. rewrite div31_phi; change (phi 2) with 2%Z; auto. - change (2 ^Z_of_nat size) with (base/2 + phi v30). + change (2 ^Z.of_nat size) with (base/2 + phi v30). assert (phi r / 2 < base/2); auto with zarith. - apply Zmult_gt_0_lt_reg_r with 2; auto with zarith. + apply Z.mul_lt_mono_pos_r with 2; auto with zarith. change (base/2 * 2) with base. - apply Zle_lt_trans with (phi r). - rewrite Zmult_comm; apply Z_mult_div_ge; auto with zarith. + apply Z.le_lt_trans with (phi r). + rewrite Z.mul_comm; apply Z_mult_div_ge; auto with zarith. case (phi_bounded r); auto with zarith. - contradict Hij; apply Zle_not_lt. + contradict Hij; apply Z.le_ngt. assert ((1 + [|j|]) <= 2 ^ 30); auto with zarith. - apply Zle_trans with ((2 ^ 30) * (2 ^ 30)); auto with zarith. + apply Z.le_trans with ((2 ^ 30) * (2 ^ 30)); auto with zarith. assert (0 <= 1 + [|j|]); auto with zarith. - apply Zmult_le_compat; auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. change ((2 ^ 30) * (2 ^ 30)) with ((2 ^ 29) * base). - apply Zle_trans with ([|ih|] * base); auto with zarith. + apply Z.le_trans with ([|ih|] * base); auto with zarith. unfold phi2, base; auto with zarith. split; auto. apply sqrt_test_true; auto. unfold phi2, base; auto with zarith. - apply Zle_ge; apply Zle_trans with (([|j|] * base)/[|j|]). - rewrite Zmult_comm, Z_div_mult; auto with zarith. - apply Zge_le; apply Z_div_ge; auto with zarith. + apply Z.le_ge; apply Z.le_trans with (([|j|] * base)/[|j|]). + rewrite Z.mul_comm, Z_div_mult; auto with zarith. + apply Z.ge_le; apply Z_div_ge; auto with zarith. Qed. Lemma iter312_sqrt_correct n rec ih il j: 2^29 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 -> - (forall j1, 0 < [|j1|] -> 2^(Z_of_nat n) + [|j1|] <= [|j|] -> + (forall j1, 0 < [|j1|] -> 2^(Z.of_nat n) + [|j1|] <= [|j|] -> phi2 ih il < ([|j1|] + 1) ^ 2 -> [|rec ih il j1|] ^ 2 <= phi2 ih il < ([|rec ih il j1|] + 1) ^ 2) -> [|iter312_sqrt n rec ih il j|] ^ 2 <= phi2 ih il @@ -2216,16 +2201,16 @@ Section Int31_Specs. revert rec ih il j; elim n; unfold iter312_sqrt; fold iter312_sqrt; clear n. intros rec ih il j Hi Hj Hij Hrec; apply sqrt312_step_correct; auto with zarith. intros; apply Hrec; auto with zarith. - rewrite Zpower_0_r; auto with zarith. + rewrite Z.pow_0_r; auto with zarith. intros n Hrec rec ih il j Hi Hj Hij HHrec. apply sqrt312_step_correct; auto. intros j1 Hj1 Hjp1; apply Hrec; auto with zarith. intros j2 Hj2 H2j2 Hjp2; apply Hrec; auto with zarith. intros j3 Hj3 Hpj3. apply HHrec; auto. - rewrite inj_S, Zpower_Zsucc. - apply Zle_trans with (2 ^Z_of_nat n + [|j2|])%Z; auto with zarith. - apply Zle_0_nat. + rewrite Nat2Z.inj_succ, Z.pow_succ_r. + apply Z.le_trans with (2 ^Z.of_nat n + [|j2|])%Z; auto with zarith. + apply Nat2Z.is_nonneg. Qed. Lemma spec_sqrt2 : forall x y, @@ -2240,30 +2225,30 @@ Section Int31_Specs. (intros s; ring). assert (Hb: 0 <= base) by (red; intros HH; discriminate). assert (Hi2: phi2 ih il < (phi Tn + 1) ^ 2). - change ((phi Tn + 1) ^ 2) with (2^62). - apply Zle_lt_trans with ((2^31 -1) * base + (2^31 - 1)); auto with zarith. - 2: simpl; unfold Zpower_pos; simpl; auto with zarith. - case (phi_bounded ih); case (phi_bounded il); intros H1 H2 H3 H4. - unfold base, Zpower, Zpower_pos in H2,H4; simpl in H2,H4. - unfold phi2,Zpower, Zpower_pos. simpl Pos.iter; auto with zarith. + { change ((phi Tn + 1) ^ 2) with (2^62). + apply Z.le_lt_trans with ((2^31 -1) * base + (2^31 - 1)); auto with zarith. + 2: simpl; unfold Z.pow_pos; simpl; auto with zarith. + case (phi_bounded ih); case (phi_bounded il); intros H1 H2 H3 H4. + unfold base, Z.pow, Z.pow_pos in H2,H4; simpl in H2,H4. + unfold phi2,Z.pow, Z.pow_pos. simpl Pos.iter; auto with zarith. } case (iter312_sqrt_correct 31 (fun _ _ j => j) ih il Tn); auto with zarith. change [|Tn|] with 2147483647; auto with zarith. intros j1 _ HH; contradict HH. - apply Zlt_not_le. + apply Z.lt_nge. change [|Tn|] with 2147483647; auto with zarith. - change (2 ^ Z_of_nat 31) with 2147483648; auto with zarith. + change (2 ^ Z.of_nat 31) with 2147483648; auto with zarith. case (phi_bounded j1); auto with zarith. set (s := iter312_sqrt 31 (fun _ _ j : int31 => j) ih il Tn). intros Hs1 Hs2. generalize (spec_mul_c s s); case mul31c. simpl zn2z_to_Z; intros HH. assert ([|s|] = 0). - case (Zmult_integral _ _ (sym_equal HH)); auto. - contradict Hs2; apply Zle_not_lt; rewrite H. + { symmetry in HH. rewrite Z.mul_eq_0 in HH. destruct HH; auto. } + contradict Hs2; apply Z.le_ngt; rewrite H. change ((0 + 1) ^ 2) with 1. - apply Zle_trans with (2 ^ Z_of_nat size / 4 * base). + apply Z.le_trans with (2 ^ Z.of_nat size / 4 * base). simpl; auto with zarith. - apply Zle_trans with ([|ih|] * base); auto with zarith. + apply Z.le_trans with ([|ih|] * base); auto with zarith. unfold phi2; case (phi_bounded il); auto with zarith. intros ih1 il1. change [||WW ih1 il1||] with (phi2 ih1 il1). @@ -2271,10 +2256,10 @@ Section Int31_Specs. generalize (spec_sub_c il il1). case sub31c; intros il2 Hil2. simpl interp_carry in Hil2. - rewrite spec_compare; case Zcompare_spec. + rewrite spec_compare; case Z.compare_spec. unfold interp_carry. intros H1; split. - rewrite Zpower_2, <- Hihl1. + rewrite Z.pow_2_r, <- Hihl1. unfold phi2; ring[Hil2 H1]. replace [|il2|] with (phi2 ih il - phi2 ih1 il1). rewrite Hihl1. @@ -2282,109 +2267,111 @@ Section Int31_Specs. unfold phi2; rewrite H1, Hil2; ring. unfold interp_carry. intros H1; contradict Hs1. - apply Zlt_not_le; rewrite Zpower_2, <-Hihl1. + apply Z.lt_nge; rewrite Z.pow_2_r, <-Hihl1. unfold phi2. case (phi_bounded il); intros _ H2. - apply Zlt_le_trans with (([|ih|] + 1) * base + 0). - rewrite Zmult_plus_distr_l, Zplus_0_r; auto with zarith. + apply Z.lt_le_trans with (([|ih|] + 1) * base + 0). + rewrite Z.mul_add_distr_r, Z.add_0_r; auto with zarith. case (phi_bounded il1); intros H3 _. - apply Zplus_le_compat; auto with zarith. - unfold interp_carry; change (1 * 2 ^ Z_of_nat size) with base. - rewrite Zpower_2, <- Hihl1, Hil2. + apply Z.add_le_mono; auto with zarith. + unfold interp_carry; change (1 * 2 ^ Z.of_nat size) with base. + rewrite Z.pow_2_r, <- Hihl1, Hil2. intros H1. - case (Zle_lt_or_eq ([|ih1|] + 1) ([|ih|])); auto with zarith. - intros H2; contradict Hs2; apply Zle_not_lt. + rewrite <- Z.le_succ_l, <- Z.add_1_r in H1. + Z.le_elim H1. + contradict Hs2; apply Z.le_ngt. replace (([|s|] + 1) ^ 2) with (phi2 ih1 il1 + 2 * [|s|] + 1). unfold phi2. case (phi_bounded il); intros Hpil _. assert (Hl1l: [|il1|] <= [|il|]). - case (phi_bounded il2); rewrite Hil2; auto with zarith. + { case (phi_bounded il2); rewrite Hil2; auto with zarith. } assert ([|ih1|] * base + 2 * [|s|] + 1 <= [|ih|] * base); auto with zarith. - case (phi_bounded s); change (2 ^ Z_of_nat size) with base; intros _ Hps. + case (phi_bounded s); change (2 ^ Z.of_nat size) with base; intros _ Hps. case (phi_bounded ih1); intros Hpih1 _; auto with zarith. - apply Zle_trans with (([|ih1|] + 2) * base); auto with zarith. - rewrite Zmult_plus_distr_l. + apply Z.le_trans with (([|ih1|] + 2) * base); auto with zarith. + rewrite Z.mul_add_distr_r. assert (2 * [|s|] + 1 <= 2 * base); auto with zarith. rewrite Hihl1, Hbin; auto. - intros H2; split. - unfold phi2; rewrite <- H2; ring. + split. + unfold phi2; rewrite <- H1; ring. replace (base + ([|il|] - [|il1|])) with (phi2 ih il - ([|s|] * [|s|])). rewrite <-Hbin in Hs2; auto with zarith. - rewrite <- Hihl1; unfold phi2; rewrite <- H2; ring. + rewrite <- Hihl1; unfold phi2; rewrite <- H1; ring. unfold interp_carry in Hil2 |- *. - unfold interp_carry; change (1 * 2 ^ Z_of_nat size) with base. + unfold interp_carry; change (1 * 2 ^ Z.of_nat size) with base. assert (Hsih: [|ih - 1|] = [|ih|] - 1). - rewrite spec_sub, Zmod_small; auto; change [|1|] with 1. - case (phi_bounded ih); intros H1 H2. - generalize Hih; change (2 ^ Z_of_nat size / 4) with 536870912. - split; auto with zarith. - rewrite spec_compare; case Zcompare_spec. + { rewrite spec_sub, Zmod_small; auto; change [|1|] with 1. + case (phi_bounded ih); intros H1 H2. + generalize Hih; change (2 ^ Z.of_nat size / 4) with 536870912. + split; auto with zarith. } + rewrite spec_compare; case Z.compare_spec. rewrite Hsih. intros H1; split. - rewrite Zpower_2, <- Hihl1. + rewrite Z.pow_2_r, <- Hihl1. unfold phi2; rewrite <-H1. - apply trans_equal with ([|ih|] * base + [|il1|] + ([|il|] - [|il1|])). + transitivity ([|ih|] * base + [|il1|] + ([|il|] - [|il1|])). ring. rewrite <-Hil2. - change (2 ^ Z_of_nat size) with base; ring. + change (2 ^ Z.of_nat size) with base; ring. replace [|il2|] with (phi2 ih il - phi2 ih1 il1). rewrite Hihl1. rewrite <-Hbin in Hs2; auto with zarith. unfold phi2. rewrite <-H1. ring_simplify. - apply trans_equal with (base + ([|il|] - [|il1|])). + transitivity (base + ([|il|] - [|il1|])). ring. rewrite <-Hil2. - change (2 ^ Z_of_nat size) with base; ring. + change (2 ^ Z.of_nat size) with base; ring. rewrite Hsih; intros H1. assert (He: [|ih|] = [|ih1|]). - apply Zle_antisym; auto with zarith. - case (Zle_or_lt [|ih1|] [|ih|]); auto; intros H2. - contradict Hs1; apply Zlt_not_le; rewrite Zpower_2, <-Hihl1. - unfold phi2. - case (phi_bounded il); change (2 ^ Z_of_nat size) with base; + { apply Z.le_antisymm; auto with zarith. + case (Z.le_gt_cases [|ih1|] [|ih|]); auto; intros H2. + contradict Hs1; apply Z.lt_nge; rewrite Z.pow_2_r, <-Hihl1. + unfold phi2. + case (phi_bounded il); change (2 ^ Z.of_nat size) with base; intros _ Hpil1. - apply Zlt_le_trans with (([|ih|] + 1) * base). - rewrite Zmult_plus_distr_l, Zmult_1_l; auto with zarith. - case (phi_bounded il1); intros Hpil2 _. - apply Zle_trans with (([|ih1|]) * base); auto with zarith. - rewrite Zpower_2, <-Hihl1; unfold phi2; rewrite <-He. - contradict Hs1; apply Zlt_not_le; rewrite Zpower_2, <-Hihl1. + apply Z.lt_le_trans with (([|ih|] + 1) * base). + rewrite Z.mul_add_distr_r, Z.mul_1_l; auto with zarith. + case (phi_bounded il1); intros Hpil2 _. + apply Z.le_trans with (([|ih1|]) * base); auto with zarith. } + rewrite Z.pow_2_r, <-Hihl1; unfold phi2; rewrite <-He. + contradict Hs1; apply Z.lt_nge; rewrite Z.pow_2_r, <-Hihl1. unfold phi2; rewrite He. assert (phi il - phi il1 < 0); auto with zarith. rewrite <-Hil2. case (phi_bounded il2); auto with zarith. intros H1. - rewrite Zpower_2, <-Hihl1. - case (Zle_lt_or_eq ([|ih1|] + 2) [|ih|]); auto with zarith. - intros H2; contradict Hs2; apply Zle_not_lt. + rewrite Z.pow_2_r, <-Hihl1. + assert (H2 : [|ih1|]+2 <= [|ih|]); auto with zarith. + Z.le_elim H2. + contradict Hs2; apply Z.le_ngt. replace (([|s|] + 1) ^ 2) with (phi2 ih1 il1 + 2 * [|s|] + 1). unfold phi2. assert ([|ih1|] * base + 2 * phi s + 1 <= [|ih|] * base + ([|il|] - [|il1|])); auto with zarith. rewrite <-Hil2. - change (-1 * 2 ^ Z_of_nat size) with (-base). + change (-1 * 2 ^ Z.of_nat size) with (-base). case (phi_bounded il2); intros Hpil2 _. - apply Zle_trans with ([|ih|] * base + - base); auto with zarith. - case (phi_bounded s); change (2 ^ Z_of_nat size) with base; intros _ Hps. + apply Z.le_trans with ([|ih|] * base + - base); auto with zarith. + case (phi_bounded s); change (2 ^ Z.of_nat size) with base; intros _ Hps. assert (2 * [|s|] + 1 <= 2 * base); auto with zarith. - apply Zle_trans with ([|ih1|] * base + 2 * base); auto with zarith. + apply Z.le_trans with ([|ih1|] * base + 2 * base); auto with zarith. assert (Hi: ([|ih1|] + 3) * base <= [|ih|] * base); auto with zarith. - rewrite Zmult_plus_distr_l in Hi; auto with zarith. + rewrite Z.mul_add_distr_r in Hi; auto with zarith. rewrite Hihl1, Hbin; auto. - intros H2; unfold phi2; rewrite <-H2. + unfold phi2; rewrite <-H2. split. replace [|il|] with (([|il|] - [|il1|]) + [|il1|]); try ring. rewrite <-Hil2. - change (-1 * 2 ^ Z_of_nat size) with (-base); ring. + change (-1 * 2 ^ Z.of_nat size) with (-base); ring. replace (base + [|il2|]) with (phi2 ih il - phi2 ih1 il1). rewrite Hihl1. rewrite <-Hbin in Hs2; auto with zarith. unfold phi2; rewrite <-H2. replace [|il|] with (([|il|] - [|il1|]) + [|il1|]); try ring. rewrite <-Hil2. - change (-1 * 2 ^ Z_of_nat size) with (-base); ring. + change (-1 * 2 ^ Z.of_nat size) with (-base); ring. Qed. (** [iszero] *) @@ -2394,7 +2381,7 @@ Qed. clear; unfold ZnZ.eq0; simpl. unfold compare31; simpl; intros. change [|0|] with 0 in H. - apply Zcompare_Eq_eq. + apply Z.compare_eq. now destruct ([|x|] ?= 0). Qed. @@ -2412,7 +2399,7 @@ Qed. destruct H; auto with zarith. replace ([|x|] mod 2) with [|r|]. destruct H; auto with zarith. - case Zcompare_spec; auto with zarith. + case Z.compare_spec; auto with zarith. apply Zmod_unique with [|q|]; auto with zarith. Qed. diff --git a/theories/Numbers/Cyclic/Int31/Int31.v b/theories/Numbers/Cyclic/Int31/Int31.v index 20f750f6..f414663a 100644 --- a/theories/Numbers/Cyclic/Int31/Int31.v +++ b/theories/Numbers/Cyclic/Int31/Int31.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* bool := Eval compute in It seems to work, but later "unfold iszero" takes forever. *) -(** [base] is [2^31], obtained via iterations of [Zdouble]. +(** [base] is [2^31], obtained via iterations of [Z.double]. It can also be seen as the smallest b > 0 s.t. phi_inv b = 0 (see below) *) Definition base := Eval compute in - iter_nat size Z Zdouble 1%Z. + iter_nat size Z Z.double 1%Z. (** * Recursors *) @@ -155,11 +155,11 @@ Definition recr := recr_aux size. (** * Conversions *) -(** From int31 to Z, we simply iterates [Zdouble] or [Zdouble_plus_one]. *) +(** From int31 to Z, we simply iterates [Z.double] or [Z.succ_double]. *) Definition phi : int31 -> Z := recr Z (0%Z) - (fun b _ => match b with D0 => Zdouble | D1 => Zdouble_plus_one end). + (fun b _ => match b with D0 => Z.double | D1 => Z.succ_double end). (** From positive to int31. An abstract definition could be : [ phi_inv (2n) = 2*(phi_inv n) /\ @@ -293,13 +293,13 @@ Notation "n '*c' m" := (mul31c n m) (at level 40, no associativity) : int31_scop (** Division of a double size word modulo [2^31] *) Definition div3121 (nh nl m : int31) := - let (q,r) := Zdiv_eucl (phi2 nh nl) (phi m) in + let (q,r) := Z.div_eucl (phi2 nh nl) (phi m) in (phi_inv q, phi_inv r). (** Division modulo [2^31] *) Definition div31 (n m : int31) := - let (q,r) := Zdiv_eucl (phi n) (phi m) in + let (q,r) := Z.div_eucl (phi n) (phi m) in (phi_inv q, phi_inv r). Notation "n / m" := (div31 n m) : int31_scope. @@ -391,7 +391,7 @@ Eval lazy delta [On In Twon] in | Lt => iter31_sqrt 31 (fun i j => j) i (fst (i/Twon)) end. -Definition v30 := Eval compute in (addmuldiv31 (phi_inv (Z_of_nat size - 1)) In On). +Definition v30 := Eval compute in (addmuldiv31 (phi_inv (Z.of_nat size - 1)) In On). Definition sqrt312_step (rec: int31 -> int31 -> int31 -> int31) (ih il j: int31) := @@ -452,7 +452,7 @@ Definition positive_to_int31 (p:positive) := p2i size p. It is used as default answer for numbers of zeros in [head0] and [tail0] *) -Definition T31 : int31 := Eval compute in phi_inv (Z_of_nat size). +Definition T31 : int31 := Eval compute in phi_inv (Z.of_nat size). Definition head031 (i:int31) := recl _ (fun _ => T31) diff --git a/theories/Numbers/Cyclic/Int31/Ring31.v b/theories/Numbers/Cyclic/Int31/Ring31.v index 23e8bd33..f5a08438 100644 --- a/theories/Numbers/Cyclic/Int31/Ring31.v +++ b/theories/Numbers/Cyclic/Int31/Ring31.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x=y. Proof. unfold eqb31. intros x y. -rewrite Cyclic31.spec_compare. case Zcompare_spec. +rewrite Cyclic31.spec_compare. case Z.compare_spec. intuition. apply Int31_canonic; auto. intuition; subst; auto with zarith; try discriminate. intuition; subst; auto with zarith; try discriminate. diff --git a/theories/Numbers/Cyclic/ZModulo/ZModulo.v b/theories/Numbers/Cyclic/ZModulo/ZModulo.v index d039fdcb..9e3f4ef4 100644 --- a/theories/Numbers/Cyclic/ZModulo/ZModulo.v +++ b/theories/Numbers/Cyclic/ZModulo/ZModulo.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 -> (x-y) mod z = 0 -> x mod z = y mod z. Proof. intros. - generalize (Z_div_mod_eq (x-y) z H); rewrite H0, Zplus_0_r. + generalize (Z_div_mod_eq (x-y) z H); rewrite H0, Z.add_0_r. remember ((x-y)/z) as k. - intros H1; symmetry in H1; rewrite <- Zeq_plus_swap in H1. - subst x. - rewrite Zplus_comm, Zmult_comm, Z_mod_plus; auto. + rewrite Z.sub_move_r, Z.add_comm, Z.mul_comm. intros ->. + now apply Z_mod_plus. Qed. Lemma spec_succ_c : forall x, [+|succ_c x|] = [|x|] + 1. Proof. - intros; unfold succ_c, to_Z, Zsucc. + intros; unfold succ_c, to_Z, Z.succ. case_eq (eq0 (x+1)); intros; unfold interp_carry. - rewrite Zmult_1_l. + rewrite Z.mul_1_l. replace (wB + 0 mod wB) with wB by auto with zarith. - symmetry; rewrite Zeq_plus_swap. + symmetry. rewrite Z.add_move_r. assert ((x+1) mod wB = 0) by (apply spec_eq0; auto). replace (wB-1) with ((wB-1) mod wB) by (apply Zmod_small; generalize wB_pos; omega). @@ -227,7 +226,7 @@ Section ZModulo. unfold eq0, to_Z in *; now destruct ((x+1) mod wB). assert (x mod wB + 1 <> wB). contradict H0. - rewrite Zeq_plus_swap in H0; simpl in H0. + rewrite Z.add_move_r in H0; simpl in H0. rewrite <- Zplus_mod_idemp_l; rewrite H0. replace (wB-1+1) with wB; auto with zarith; apply Z_mod_same; auto. rewrite <- Zplus_mod_idemp_l. @@ -241,7 +240,7 @@ Section ZModulo. destruct Z_lt_le_dec. apply Zmod_small; generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. - rewrite Zmult_1_l, Zplus_comm, Zeq_plus_swap. + rewrite Z.mul_1_l, Z.add_comm, Z.add_move_r. apply Zmod_small; generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. Qed. @@ -252,14 +251,14 @@ Section ZModulo. destruct Z_lt_le_dec. apply Zmod_small; generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. - rewrite Zmult_1_l, Zplus_comm, Zeq_plus_swap. + rewrite Z.mul_1_l, Z.add_comm, Z.add_move_r. apply Zmod_small; generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. Qed. Lemma spec_succ : forall x, [|succ x|] = ([|x|] + 1) mod wB. Proof. - intros; unfold succ, to_Z, Zsucc. + intros; unfold succ, to_Z, Z.succ. symmetry; apply Zplus_mod_idemp_l. Qed. @@ -288,8 +287,8 @@ Section ZModulo. let z := [|x|]-[|y|]-1 in if Z_lt_le_dec z 0 then C1 (wB+z) else C0 z. - Definition pred := Zpred. - Definition sub := Zminus. + Definition pred := Z.pred. + Definition sub := Z.sub. Definition sub_carry x y := x - y - 1. Lemma spec_pred_c : forall x, [-|pred_c x|] = [|x|] - 1. @@ -337,7 +336,7 @@ Section ZModulo. Lemma spec_pred : forall x, [|pred x|] = ([|x|] - 1) mod wB. Proof. - intros; unfold pred, to_Z, Zpred. + intros; unfold pred, to_Z, Z.pred. rewrite <- Zplus_mod_idemp_l; auto. Qed. @@ -357,19 +356,19 @@ Section ZModulo. Qed. Definition mul_c x y := - let (h,l) := Zdiv_eucl ([|x|]*[|y|]) wB in + let (h,l) := Z.div_eucl ([|x|]*[|y|]) wB in if eq0 h then if eq0 l then W0 else WW h l else WW h l. - Definition mul := Zmult. + Definition mul := Z.mul. Definition square_c x := mul_c x x. Lemma spec_mul_c : forall x y, [|| mul_c x y ||] = [|x|] * [|y|]. Proof. intros; unfold mul_c, zn2z_to_Z. - assert (Zdiv_eucl ([|x|]*[|y|]) wB = (([|x|]*[|y|])/wB,([|x|]*[|y|]) mod wB)). - unfold Zmod, Zdiv; destruct Zdiv_eucl; auto. - generalize (Z_div_mod ([|x|]*[|y|]) wB wB_pos); destruct Zdiv_eucl as (h,l). + assert (Z.div_eucl ([|x|]*[|y|]) wB = (([|x|]*[|y|])/wB,([|x|]*[|y|]) mod wB)). + unfold Z.modulo, Z.div; destruct Z.div_eucl; auto. + generalize (Z_div_mod ([|x|]*[|y|]) wB wB_pos); destruct Z.div_eucl as (h,l). destruct 1; injection H; clear H; intros. rewrite H0. assert ([|l|] = l). @@ -380,7 +379,7 @@ Section ZModulo. split. apply Z_div_pos; auto with zarith. apply Zdiv_lt_upper_bound; auto with zarith. - apply Zmult_lt_compat; auto with zarith. + apply Z.mul_lt_mono_nonneg; auto with zarith. clear H H0 H1 H2. case_eq (eq0 h); simpl; intros. case_eq (eq0 l); simpl; intros. @@ -399,7 +398,7 @@ Section ZModulo. intros x; exact (spec_mul_c x x). Qed. - Definition div x y := Zdiv_eucl [|x|] [|y|]. + Definition div x y := Z.div_eucl [|x|] [|y|]. Lemma spec_div : forall a b, 0 < [|b|] -> let (q,r) := div a b in @@ -408,10 +407,10 @@ Section ZModulo. Proof. intros; unfold div. assert ([|b|]>0) by auto with zarith. - assert (Zdiv_eucl [|a|] [|b|] = ([|a|]/[|b|], [|a|] mod [|b|])). - unfold Zmod, Zdiv; destruct Zdiv_eucl; auto. + assert (Z.div_eucl [|a|] [|b|] = ([|a|]/[|b|], [|a|] mod [|b|])). + unfold Z.modulo, Z.div; destruct Z.div_eucl; auto. generalize (Z_div_mod [|a|] [|b|] H0). - destruct Zdiv_eucl as (q,r); destruct 1; intros. + destruct Z.div_eucl as (q,r); destruct 1; intros. injection H1; clear H1; intros. assert ([|r|]=r). apply Zmod_small; generalize (Z_mod_lt b wB wB_pos); fold [|b|]; @@ -422,10 +421,10 @@ Section ZModulo. split. apply Z_div_pos; auto with zarith. apply Zdiv_lt_upper_bound; auto with zarith. - apply Zlt_le_trans with (wB*1). - rewrite Zmult_1_r; auto with zarith. - apply Zmult_le_compat; generalize wB_pos; auto with zarith. - rewrite H5, H6; rewrite Zmult_comm; auto with zarith. + apply Z.lt_le_trans with (wB*1). + rewrite Z.mul_1_r; auto with zarith. + apply Z.mul_le_mono_nonneg; generalize wB_pos; auto with zarith. + rewrite H5, H6; rewrite Z.mul_comm; auto with zarith. Qed. Definition div_gt := div. @@ -458,28 +457,28 @@ Section ZModulo. intros; apply spec_modulo; auto. Qed. - Definition gcd x y := Zgcd [|x|] [|y|]. - Definition gcd_gt x y := Zgcd [|x|] [|y|]. + Definition gcd x y := Z.gcd [|x|] [|y|]. + Definition gcd_gt x y := Z.gcd [|x|] [|y|]. - Lemma Zgcd_bound : forall a b, 0<=a -> 0<=b -> Zgcd a b <= Zmax a b. + Lemma Zgcd_bound : forall a b, 0<=a -> 0<=b -> Z.gcd a b <= Z.max a b. Proof. intros. generalize (Zgcd_is_gcd a b); inversion_clear 1. destruct H2 as (q,H2); destruct H3 as (q',H3); clear H4. - assert (H4:=Zgcd_is_pos a b). - destruct (Z_eq_dec (Zgcd a b) 0). + assert (H4:=Z.gcd_nonneg a b). + destruct (Z.eq_dec (Z.gcd a b) 0). rewrite e; generalize (Zmax_spec a b); omega. assert (0 <= q). - apply Zmult_le_reg_r with (Zgcd a b); auto with zarith. - destruct (Z_eq_dec q 0). + apply Z.mul_le_mono_pos_r with (Z.gcd a b); auto with zarith. + destruct (Z.eq_dec q 0). subst q; simpl in *; subst a; simpl; auto. generalize (Zmax_spec 0 b) (Zabs_spec b); omega. - apply Zle_trans with a. + apply Z.le_trans with a. rewrite H2 at 2. - rewrite <- (Zmult_1_l (Zgcd a b)) at 1. - apply Zmult_le_compat; auto with zarith. + rewrite <- (Z.mul_1_l (Z.gcd a b)) at 1. + apply Z.mul_le_mono_nonneg; auto with zarith. generalize (Zmax_spec a b); omega. Qed. @@ -488,12 +487,12 @@ Section ZModulo. intros; unfold gcd. generalize (Z_mod_lt a wB wB_pos)(Z_mod_lt b wB wB_pos); intros. fold [|a|] in *; fold [|b|] in *. - replace ([|Zgcd [|a|] [|b|]|]) with (Zgcd [|a|] [|b|]). + replace ([|Z.gcd [|a|] [|b|]|]) with (Z.gcd [|a|] [|b|]). apply Zgcd_is_gcd. symmetry; apply Zmod_small. split. - apply Zgcd_is_pos. - apply Zle_lt_trans with (Zmax [|a|] [|b|]). + apply Z.gcd_nonneg. + apply Z.le_lt_trans with (Z.max [|a|] [|b|]). apply Zgcd_bound; auto with zarith. generalize (Zmax_spec [|a|] [|b|]); omega. Qed. @@ -505,7 +504,7 @@ Section ZModulo. Qed. Definition div21 a1 a2 b := - Zdiv_eucl ([|a1|]*wB+[|a2|]) [|b|]. + Z.div_eucl ([|a1|]*wB+[|a2|]) [|b|]. Lemma spec_div21 : forall a1 a2 b, wB/2 <= [|b|] -> @@ -519,10 +518,10 @@ Section ZModulo. generalize (Z_mod_lt a2 wB wB_pos); fold [|a2|]; intros. assert ([|b|]>0) by auto with zarith. remember ([|a1|]*wB+[|a2|]) as a. - assert (Zdiv_eucl a [|b|] = (a/[|b|], a mod [|b|])). - unfold Zmod, Zdiv; destruct Zdiv_eucl; auto. + assert (Z.div_eucl a [|b|] = (a/[|b|], a mod [|b|])). + unfold Z.modulo, Z.div; destruct Z.div_eucl; auto. generalize (Z_div_mod a [|b|] H3). - destruct Zdiv_eucl as (q,r); destruct 1; intros. + destruct Z.div_eucl as (q,r); destruct 1; intros. injection H4; clear H4; intros. assert ([|r|]=r). apply Zmod_small; generalize (Z_mod_lt b wB wB_pos); fold [|b|]; @@ -536,8 +535,8 @@ Section ZModulo. apply Zdiv_lt_upper_bound; auto with zarith. subst a. replace (wB*[|b|]) with (([|b|]-1)*wB + wB) by ring. - apply Zlt_le_trans with ([|a1|]*wB+wB); auto with zarith. - rewrite H8, H9; rewrite Zmult_comm; auto with zarith. + apply Z.lt_le_trans with ([|a1|]*wB+wB); auto with zarith. + rewrite H8, H9; rewrite Z.mul_comm; auto with zarith. Qed. Definition add_mul_div p x y := @@ -560,17 +559,17 @@ Section ZModulo. generalize (Z_mod_lt [|w|] (2 ^ [|p|])); intros. split. destruct H; auto with zarith. - apply Zle_lt_trans with [|w|]; auto with zarith. + apply Z.le_lt_trans with [|w|]; auto with zarith. apply Zmod_le; auto with zarith. Qed. Definition is_even x := - if Z_eq_dec ([|x|] mod 2) 0 then true else false. + if Z.eq_dec ([|x|] mod 2) 0 then true else false. Lemma spec_is_even : forall x, if is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1. Proof. - intros; unfold is_even; destruct Z_eq_dec; auto. + intros; unfold is_even; destruct Z.eq_dec; auto. generalize (Z_mod_lt [|x|] 2); omega. Qed. @@ -580,12 +579,12 @@ Section ZModulo. Proof. intros. unfold sqrt. - repeat rewrite Zpower_2. + repeat rewrite Z.pow_2_r. replace [|Z.sqrt [|x|]|] with (Z.sqrt [|x|]). apply Z.sqrt_spec; auto with zarith. symmetry; apply Zmod_small. split. apply Z.sqrt_nonneg; auto. - apply Zle_lt_trans with [|x|]; auto. + apply Z.le_lt_trans with [|x|]; auto. apply Z.sqrt_le_lin; auto. Qed. @@ -616,22 +615,22 @@ Section ZModulo. destruct (Z_lt_le_dec s wB); auto. assert (wB * wB <= Zpos p). rewrite U. - apply Zle_trans with (s*s); try omega. - apply Zmult_le_compat; generalize wB_pos; auto with zarith. + apply Z.le_trans with (s*s); try omega. + apply Z.mul_le_mono_nonneg; generalize wB_pos; auto with zarith. assert (Zpos p < wB*wB). rewrite Heqz. replace (wB*wB) with ((wB-1)*wB+wB) by ring. - apply Zplus_le_lt_compat; auto with zarith. - apply Zmult_le_compat; auto with zarith. + apply Z.add_le_lt_mono; auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. generalize (spec_to_Z x); auto with zarith. generalize wB_pos; auto with zarith. omega. replace [|s|] with s by (symmetry; apply Zmod_small; auto with zarith). destruct Z_lt_le_dec; unfold interp_carry. replace [|r|] with r by (symmetry; apply Zmod_small; auto with zarith). - rewrite Zpower_2; auto with zarith. + rewrite Z.pow_2_r; auto with zarith. replace [|r-wB|] with (r-wB) by (symmetry; apply Zmod_small; auto with zarith). - rewrite Zpower_2; omega. + rewrite Z.pow_2_r; omega. assert (0<=Zneg p). rewrite Heqz; generalize wB_pos; auto with zarith. @@ -667,15 +666,15 @@ Section ZModulo. cut (log_inf x < p - 1); [omega| ]. apply IHx. change (Zpos x~1) with (2*(Zpos x)+1) in H. - replace p with (Zsucc (p-1)) in H; auto with zarith. - rewrite Zpower_Zsucc in H; auto with zarith. + replace p with (Z.succ (p-1)) in H; auto with zarith. + rewrite Z.pow_succ_r in H; auto with zarith. assert (0 < p) by (destruct p; compute; auto with zarith; discriminate). cut (log_inf x < p - 1); [omega| ]. apply IHx. change (Zpos x~0) with (2*(Zpos x)) in H. - replace p with (Zsucc (p-1)) in H; auto with zarith. - rewrite Zpower_Zsucc in H; auto with zarith. + replace p with (Z.succ (p-1)) in H; auto with zarith. + rewrite Z.pow_succ_r in H; auto with zarith. simpl; intros; destruct p; compute; auto with zarith. Qed. @@ -696,27 +695,27 @@ Section ZModulo. unfold zdigits. unfold wB, base in *. apply log_inf_bounded; auto with zarith. - apply Zlt_trans with zdigits. + apply Z.lt_trans with zdigits. omega. unfold zdigits, wB, base; apply Zpower2_lt_lin; auto with zarith. unfold to_Z; rewrite (Zmod_small _ _ H3). destruct H2. split. - apply Zle_trans with (2^(zdigits - log_inf p - 1)*(2^log_inf p)). + apply Z.le_trans with (2^(zdigits - log_inf p - 1)*(2^log_inf p)). apply Zdiv_le_upper_bound; auto with zarith. rewrite <- Zpower_exp; auto with zarith. - rewrite Zmult_comm; rewrite <- Zpower_Zsucc; auto with zarith. - replace (Zsucc (zdigits - log_inf p -1 +log_inf p)) with zdigits + rewrite Z.mul_comm; rewrite <- Z.pow_succ_r; auto with zarith. + replace (Z.succ (zdigits - log_inf p -1 +log_inf p)) with zdigits by ring. unfold wB, base, zdigits; auto with zarith. - apply Zmult_le_compat; auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. - apply Zlt_le_trans - with (2^(zdigits - log_inf p - 1)*(2^(Zsucc (log_inf p)))). - apply Zmult_lt_compat_l; auto with zarith. + apply Z.lt_le_trans + with (2^(zdigits - log_inf p - 1)*(2^(Z.succ (log_inf p)))). + apply Z.mul_lt_mono_pos_l; auto with zarith. rewrite <- Zpower_exp; auto with zarith. - replace (zdigits - log_inf p -1 +Zsucc (log_inf p)) with zdigits + replace (zdigits - log_inf p -1 +Z.succ (log_inf p)) with zdigits by ring. unfold wB, base, zdigits; auto with zarith. Qed. @@ -739,18 +738,18 @@ Section ZModulo. assert (d <> xH). intro; subst. compute in H; destruct p; discriminate. - assert (Zsucc (Zpos (Ppred d)) = Zpos d). + assert (Z.succ (Zpos (Pos.pred d)) = Zpos d). simpl; f_equal. - rewrite <- Pplus_one_succ_r. - destruct (Psucc_pred d); auto. + rewrite Pos.add_1_r. + destruct (Pos.succ_pred_or d); auto. rewrite H1 in H0; elim H0; auto. - assert (Ptail p < Zpos (Ppred d)). + assert (Ptail p < Zpos (Pos.pred d)). apply IHp. - apply Zmult_lt_reg_r with 2; auto with zarith. - rewrite (Zmult_comm (Zpos p)). + apply Z.mul_lt_mono_pos_r with 2; auto with zarith. + rewrite (Z.mul_comm (Zpos p)). change (2 * Zpos p) with (Zpos p~0). - rewrite Zmult_comm. - rewrite <- Zpower_Zsucc; auto with zarith. + rewrite Z.mul_comm. + rewrite <- Z.pow_succ_r; auto with zarith. rewrite H1; auto. rewrite <- H1; omega. Qed. @@ -779,20 +778,20 @@ Section ZModulo. apply Zmod_small. split; auto. unfold wB, base in *. - apply Zlt_trans with (Zpos digits). + apply Z.lt_trans with (Zpos digits). apply Ptail_bounded; auto with zarith. apply Zpower2_lt_lin; auto with zarith. rewrite H1. clear; induction p. - exists (Zpos p); simpl; rewrite Pmult_1_r; auto with zarith. + exists (Zpos p); simpl; rewrite Pos.mul_1_r; auto with zarith. destruct IHp as (y & Yp & Ye). exists y. split; auto. change (Zpos p~0) with (2*Zpos p). rewrite Ye. - change (Ptail p~0) with (Zsucc (Ptail p)). - rewrite Zpower_Zsucc; auto; ring. + change (Ptail p~0) with (Z.succ (Ptail p)). + rewrite Z.pow_succ_r; auto; ring. exists 0; simpl; auto with zarith. Qed. diff --git a/theories/Numbers/Integer/Abstract/ZAdd.v b/theories/Numbers/Integer/Abstract/ZAdd.v index 647ab0ac..ac113dfd 100644 --- a/theories/Numbers/Integer/Abstract/ZAdd.v +++ b/theories/Numbers/Integer/Abstract/ZAdd.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* even (a^b) = even a. diff --git a/theories/Numbers/Integer/Abstract/ZProperties.v b/theories/Numbers/Integer/Abstract/ZProperties.v index c0455196..8973df35 100644 --- a/theories/Numbers/Integer/Abstract/ZProperties.v +++ b/theories/Numbers/Integer/Abstract/ZProperties.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x==y. Proof. now apply BigZ.eqb_eq. Qed. -Definition BigZ_of_N n := BigZ.of_Z (Z_of_N n). +Definition BigZ_of_N n := BigZ.of_Z (Z.of_N n). Lemma BigZpower : power_theory 1 BigZ.mul BigZ.eq BigZ_of_N BigZ.pow. Proof. @@ -139,7 +139,7 @@ BigZ.zify. auto with zarith. intros NEQ. generalize (BigZ.spec_div_eucl a b). generalize (Z_div_mod_full [a] [b] NEQ). -destruct BigZ.div_eucl as (q,r), Zdiv_eucl as (q',r'). +destruct BigZ.div_eucl as (q,r), Z.div_eucl as (q',r'). intros (EQ,_). injection 1. intros EQr EQq. BigZ.zify. rewrite EQr, EQq; auto. Qed. diff --git a/theories/Numbers/Integer/BigZ/ZMake.v b/theories/Numbers/Integer/BigZ/ZMake.v index 0142b36b..180fe0a9 100644 --- a/theories/Numbers/Integer/BigZ/ZMake.v +++ b/theories/Numbers/Integer/BigZ/ZMake.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* t_ - | Neg : N.t -> t_. + | Pos : NN.t -> t_ + | Neg : NN.t -> t_. Definition t := t_. Bind Scope abstract_scope with t t_. - Definition zero := Pos N.zero. - Definition one := Pos N.one. - Definition two := Pos N.two. - Definition minus_one := Neg N.one. + Definition zero := Pos NN.zero. + Definition one := Pos NN.one. + Definition two := Pos NN.two. + Definition minus_one := Neg NN.one. Definition of_Z x := match x with - | Zpos x => Pos (N.of_N (Npos x)) + | Zpos x => Pos (NN.of_N (Npos x)) | Z0 => zero - | Zneg x => Neg (N.of_N (Npos x)) + | Zneg x => Neg (NN.of_N (Npos x)) end. Definition to_Z x := match x with - | Pos nx => N.to_Z nx - | Neg nx => Zopp (N.to_Z nx) + | Pos nx => NN.to_Z nx + | Neg nx => Z.opp (NN.to_Z nx) end. Theorem spec_of_Z: forall x, to_Z (of_Z x) = x. Proof. intros x; case x; unfold to_Z, of_Z, zero. - exact N.spec_0. - intros; rewrite N.spec_of_N; auto. - intros; rewrite N.spec_of_N; auto. + exact NN.spec_0. + intros; rewrite NN.spec_of_N; auto. + intros; rewrite NN.spec_of_N; auto. Qed. Definition eq x y := (to_Z x = to_Z y). Theorem spec_0: to_Z zero = 0. - exact N.spec_0. + exact NN.spec_0. Qed. Theorem spec_1: to_Z one = 1. - exact N.spec_1. + exact NN.spec_1. Qed. Theorem spec_2: to_Z two = 2. - exact N.spec_2. + exact NN.spec_2. Qed. Theorem spec_m1: to_Z minus_one = -1. - simpl; rewrite N.spec_1; auto. + simpl; rewrite NN.spec_1; auto. Qed. Definition compare x y := match x, y with - | Pos nx, Pos ny => N.compare nx ny + | Pos nx, Pos ny => NN.compare nx ny | Pos nx, Neg ny => - match N.compare nx N.zero with + match NN.compare nx NN.zero with | Gt => Gt - | _ => N.compare ny N.zero + | _ => NN.compare ny NN.zero end | Neg nx, Pos ny => - match N.compare N.zero nx with + match NN.compare NN.zero nx with | Lt => Lt - | _ => N.compare N.zero ny + | _ => NN.compare NN.zero ny end - | Neg nx, Neg ny => N.compare ny nx + | Neg nx, Neg ny => NN.compare ny nx end. Theorem spec_compare : - forall x y, compare x y = Zcompare (to_Z x) (to_Z y). + forall x y, compare x y = Z.compare (to_Z x) (to_Z y). Proof. unfold compare, to_Z. destruct x as [x|x], y as [y|y]; - rewrite ?N.spec_compare, ?N.spec_0, <-?Zcompare_opp; auto; - assert (Hx:=N.spec_pos x); assert (Hy:=N.spec_pos y); - set (X:=N.to_Z x) in *; set (Y:=N.to_Z y) in *; clearbody X Y. - destruct (Zcompare_spec X 0) as [EQ|LT|GT]. - rewrite EQ. rewrite <- Zopp_0 at 2. apply Zcompare_opp. - exfalso. omega. - symmetry. change (X > -Y). omega. - destruct (Zcompare_spec 0 X) as [EQ|LT|GT]. - rewrite <- EQ. rewrite Zopp_0; auto. - symmetry. change (-X < Y). omega. - exfalso. omega. + rewrite ?NN.spec_compare, ?NN.spec_0, ?Z.compare_opp; auto; + assert (Hx:=NN.spec_pos x); assert (Hy:=NN.spec_pos y); + set (X:=NN.to_Z x) in *; set (Y:=NN.to_Z y) in *; clearbody X Y. + - destruct (Z.compare_spec X 0) as [EQ|LT|GT]. + + rewrite <- Z.opp_0 in EQ. now rewrite EQ, Z.compare_opp. + + exfalso. omega. + + symmetry. change (X > -Y). omega. + - destruct (Z.compare_spec 0 X) as [EQ|LT|GT]. + + rewrite <- EQ, Z.opp_0; auto. + + symmetry. change (-X < Y). omega. + + exfalso. omega. Qed. Definition eqb x y := @@ -155,14 +155,14 @@ Module Make (N:NType) <: ZType. Definition min n m := match compare n m with Gt => m | _ => n end. Definition max n m := match compare n m with Lt => m | _ => n end. - Theorem spec_min : forall n m, to_Z (min n m) = Zmin (to_Z n) (to_Z m). + Theorem spec_min : forall n m, to_Z (min n m) = Z.min (to_Z n) (to_Z m). Proof. - unfold min, Zmin. intros. rewrite spec_compare. destruct Zcompare; auto. + unfold min, Z.min. intros. rewrite spec_compare. destruct Z.compare; auto. Qed. - Theorem spec_max : forall n m, to_Z (max n m) = Zmax (to_Z n) (to_Z m). + Theorem spec_max : forall n m, to_Z (max n m) = Z.max (to_Z n) (to_Z m). Proof. - unfold max, Zmax. intros. rewrite spec_compare. destruct Zcompare; auto. + unfold max, Z.max. intros. rewrite spec_compare. destruct Z.compare; auto. Qed. Definition to_N x := @@ -173,11 +173,11 @@ Module Make (N:NType) <: ZType. Definition abs x := Pos (to_N x). - Theorem spec_abs: forall x, to_Z (abs x) = Zabs (to_Z x). + Theorem spec_abs: forall x, to_Z (abs x) = Z.abs (to_Z x). Proof. - intros x; case x; clear x; intros x; assert (F:=N.spec_pos x). - simpl; rewrite Zabs_eq; auto. - simpl; rewrite Zabs_non_eq; simpl; auto with zarith. + intros x; case x; clear x; intros x; assert (F:=NN.spec_pos x). + simpl; rewrite Z.abs_eq; auto. + simpl; rewrite Z.abs_neq; simpl; auto with zarith. Qed. Definition opp x := @@ -193,10 +193,10 @@ Module Make (N:NType) <: ZType. Definition succ x := match x with - | Pos n => Pos (N.succ n) + | Pos n => Pos (NN.succ n) | Neg n => - match N.compare N.zero n with - | Lt => Neg (N.pred n) + match NN.compare NN.zero n with + | Lt => Neg (NN.pred n) | _ => one end end. @@ -204,134 +204,134 @@ Module Make (N:NType) <: ZType. Theorem spec_succ: forall n, to_Z (succ n) = to_Z n + 1. Proof. intros x; case x; clear x; intros x. - exact (N.spec_succ x). - simpl. rewrite N.spec_compare. case Zcompare_spec; rewrite ?N.spec_0; simpl. - intros HH; rewrite <- HH; rewrite N.spec_1; ring. - intros HH; rewrite N.spec_pred, Zmax_r; auto with zarith. - generalize (N.spec_pos x); auto with zarith. + exact (NN.spec_succ x). + simpl. rewrite NN.spec_compare. case Z.compare_spec; rewrite ?NN.spec_0; simpl. + intros HH; rewrite <- HH; rewrite NN.spec_1; ring. + intros HH; rewrite NN.spec_pred, Z.max_r; auto with zarith. + generalize (NN.spec_pos x); auto with zarith. Qed. Definition add x y := match x, y with - | Pos nx, Pos ny => Pos (N.add nx ny) + | Pos nx, Pos ny => Pos (NN.add nx ny) | Pos nx, Neg ny => - match N.compare nx ny with - | Gt => Pos (N.sub nx ny) + match NN.compare nx ny with + | Gt => Pos (NN.sub nx ny) | Eq => zero - | Lt => Neg (N.sub ny nx) + | Lt => Neg (NN.sub ny nx) end | Neg nx, Pos ny => - match N.compare nx ny with - | Gt => Neg (N.sub nx ny) + match NN.compare nx ny with + | Gt => Neg (NN.sub nx ny) | Eq => zero - | Lt => Pos (N.sub ny nx) + | Lt => Pos (NN.sub ny nx) end - | Neg nx, Neg ny => Neg (N.add nx ny) + | Neg nx, Neg ny => Neg (NN.add nx ny) end. Theorem spec_add: forall x y, to_Z (add x y) = to_Z x + to_Z y. Proof. unfold add, to_Z; intros [x | x] [y | y]; - try (rewrite N.spec_add; auto with zarith); - rewrite N.spec_compare; case Zcompare_spec; - unfold zero; rewrite ?N.spec_0, ?N.spec_sub; omega with *. + try (rewrite NN.spec_add; auto with zarith); + rewrite NN.spec_compare; case Z.compare_spec; + unfold zero; rewrite ?NN.spec_0, ?NN.spec_sub; omega with *. Qed. Definition pred x := match x with | Pos nx => - match N.compare N.zero nx with - | Lt => Pos (N.pred nx) + match NN.compare NN.zero nx with + | Lt => Pos (NN.pred nx) | _ => minus_one end - | Neg nx => Neg (N.succ nx) + | Neg nx => Neg (NN.succ nx) end. Theorem spec_pred: forall x, to_Z (pred x) = to_Z x - 1. Proof. unfold pred, to_Z, minus_one; intros [x | x]; - try (rewrite N.spec_succ; ring). - rewrite N.spec_compare; case Zcompare_spec; - rewrite ?N.spec_0, ?N.spec_1, ?N.spec_pred; - generalize (N.spec_pos x); omega with *. + try (rewrite NN.spec_succ; ring). + rewrite NN.spec_compare; case Z.compare_spec; + rewrite ?NN.spec_0, ?NN.spec_1, ?NN.spec_pred; + generalize (NN.spec_pos x); omega with *. Qed. Definition sub x y := match x, y with | Pos nx, Pos ny => - match N.compare nx ny with - | Gt => Pos (N.sub nx ny) + match NN.compare nx ny with + | Gt => Pos (NN.sub nx ny) | Eq => zero - | Lt => Neg (N.sub ny nx) + | Lt => Neg (NN.sub ny nx) end - | Pos nx, Neg ny => Pos (N.add nx ny) - | Neg nx, Pos ny => Neg (N.add nx ny) + | Pos nx, Neg ny => Pos (NN.add nx ny) + | Neg nx, Pos ny => Neg (NN.add nx ny) | Neg nx, Neg ny => - match N.compare nx ny with - | Gt => Neg (N.sub nx ny) + match NN.compare nx ny with + | Gt => Neg (NN.sub nx ny) | Eq => zero - | Lt => Pos (N.sub ny nx) + | Lt => Pos (NN.sub ny nx) end end. Theorem spec_sub: forall x y, to_Z (sub x y) = to_Z x - to_Z y. Proof. unfold sub, to_Z; intros [x | x] [y | y]; - try (rewrite N.spec_add; auto with zarith); - rewrite N.spec_compare; case Zcompare_spec; - unfold zero; rewrite ?N.spec_0, ?N.spec_sub; omega with *. + try (rewrite NN.spec_add; auto with zarith); + rewrite NN.spec_compare; case Z.compare_spec; + unfold zero; rewrite ?NN.spec_0, ?NN.spec_sub; omega with *. Qed. Definition mul x y := match x, y with - | Pos nx, Pos ny => Pos (N.mul nx ny) - | Pos nx, Neg ny => Neg (N.mul nx ny) - | Neg nx, Pos ny => Neg (N.mul nx ny) - | Neg nx, Neg ny => Pos (N.mul nx ny) + | Pos nx, Pos ny => Pos (NN.mul nx ny) + | Pos nx, Neg ny => Neg (NN.mul nx ny) + | Neg nx, Pos ny => Neg (NN.mul nx ny) + | Neg nx, Neg ny => Pos (NN.mul nx ny) end. Theorem spec_mul: forall x y, to_Z (mul x y) = to_Z x * to_Z y. Proof. - unfold mul, to_Z; intros [x | x] [y | y]; rewrite N.spec_mul; ring. + unfold mul, to_Z; intros [x | x] [y | y]; rewrite NN.spec_mul; ring. Qed. Definition square x := match x with - | Pos nx => Pos (N.square nx) - | Neg nx => Pos (N.square nx) + | Pos nx => Pos (NN.square nx) + | Neg nx => Pos (NN.square nx) end. Theorem spec_square: forall x, to_Z (square x) = to_Z x * to_Z x. Proof. - unfold square, to_Z; intros [x | x]; rewrite N.spec_square; ring. + unfold square, to_Z; intros [x | x]; rewrite NN.spec_square; ring. Qed. Definition pow_pos x p := match x with - | Pos nx => Pos (N.pow_pos nx p) + | Pos nx => Pos (NN.pow_pos nx p) | Neg nx => match p with | xH => x - | xO _ => Pos (N.pow_pos nx p) - | xI _ => Neg (N.pow_pos nx p) + | xO _ => Pos (NN.pow_pos nx p) + | xI _ => Neg (NN.pow_pos nx p) end end. Theorem spec_pow_pos: forall x n, to_Z (pow_pos x n) = to_Z x ^ Zpos n. Proof. assert (F0: forall x, (-x)^2 = x^2). - intros x; rewrite Zpower_2; ring. + intros x; rewrite Z.pow_2_r; ring. unfold pow_pos, to_Z; intros [x | x] [p | p |]; - try rewrite N.spec_pow_pos; try ring. + try rewrite NN.spec_pow_pos; try ring. assert (F: 0 <= 2 * Zpos p). assert (0 <= Zpos p); auto with zarith. - rewrite Zpos_xI; repeat rewrite Zpower_exp; auto with zarith. - repeat rewrite Zpower_mult; auto with zarith. + rewrite Pos2Z.inj_xI; repeat rewrite Zpower_exp; auto with zarith. + repeat rewrite Z.pow_mul_r; auto with zarith. rewrite F0; ring. assert (F: 0 <= 2 * Zpos p). assert (0 <= Zpos p); auto with zarith. - rewrite Zpos_xO; repeat rewrite Zpower_exp; auto with zarith. - repeat rewrite Zpower_mult; auto with zarith. + rewrite Pos2Z.inj_xO; repeat rewrite Zpower_exp; auto with zarith. + repeat rewrite Z.pow_mul_r; auto with zarith. rewrite F0; ring. Qed. @@ -341,9 +341,9 @@ Module Make (N:NType) <: ZType. | Npos p => pow_pos x p end. - Theorem spec_pow_N: forall x n, to_Z (pow_N x n) = to_Z x ^ Z_of_N n. + Theorem spec_pow_N: forall x n, to_Z (pow_N x n) = to_Z x ^ Z.of_N n. Proof. - destruct n; simpl. apply N.spec_1. + destruct n; simpl. apply NN.spec_1. apply spec_pow_pos. Qed. @@ -357,38 +357,38 @@ Module Make (N:NType) <: ZType. Theorem spec_pow: forall x y, to_Z (pow x y) = to_Z x ^ to_Z y. Proof. intros. unfold pow. destruct (to_Z y); simpl. - apply N.spec_1. + apply NN.spec_1. apply spec_pow_pos. - apply N.spec_0. + apply NN.spec_0. Qed. Definition log2 x := match x with - | Pos nx => Pos (N.log2 nx) + | Pos nx => Pos (NN.log2 nx) | Neg nx => zero end. Theorem spec_log2: forall x, to_Z (log2 x) = Z.log2 (to_Z x). Proof. - intros. destruct x as [p|p]; simpl. apply N.spec_log2. - rewrite N.spec_0. - destruct (Z_le_lt_eq_dec _ _ (N.spec_pos p)) as [LT|EQ]. + intros. destruct x as [p|p]; simpl. apply NN.spec_log2. + rewrite NN.spec_0. + destruct (Z_le_lt_eq_dec _ _ (NN.spec_pos p)) as [LT|EQ]. rewrite Z.log2_nonpos; auto with zarith. now rewrite <- EQ. Qed. Definition sqrt x := match x with - | Pos nx => Pos (N.sqrt nx) - | Neg nx => Neg N.zero + | Pos nx => Pos (NN.sqrt nx) + | Neg nx => Neg NN.zero end. Theorem spec_sqrt: forall x, to_Z (sqrt x) = Z.sqrt (to_Z x). Proof. destruct x as [p|p]; simpl. - apply N.spec_sqrt. - rewrite N.spec_0. - destruct (Z_le_lt_eq_dec _ _ (N.spec_pos p)) as [LT|EQ]. + apply NN.spec_sqrt. + rewrite NN.spec_0. + destruct (Z_le_lt_eq_dec _ _ (NN.spec_pos p)) as [LT|EQ]. rewrite Z.sqrt_neg; auto with zarith. now rewrite <- EQ. Qed. @@ -396,68 +396,68 @@ Module Make (N:NType) <: ZType. Definition div_eucl x y := match x, y with | Pos nx, Pos ny => - let (q, r) := N.div_eucl nx ny in + let (q, r) := NN.div_eucl nx ny in (Pos q, Pos r) | Pos nx, Neg ny => - let (q, r) := N.div_eucl nx ny in - if N.eqb N.zero r + let (q, r) := NN.div_eucl nx ny in + if NN.eqb NN.zero r then (Neg q, zero) - else (Neg (N.succ q), Neg (N.sub ny r)) + else (Neg (NN.succ q), Neg (NN.sub ny r)) | Neg nx, Pos ny => - let (q, r) := N.div_eucl nx ny in - if N.eqb N.zero r + let (q, r) := NN.div_eucl nx ny in + if NN.eqb NN.zero r then (Neg q, zero) - else (Neg (N.succ q), Pos (N.sub ny r)) + else (Neg (NN.succ q), Pos (NN.sub ny r)) | Neg nx, Neg ny => - let (q, r) := N.div_eucl nx ny in + let (q, r) := NN.div_eucl nx ny in (Pos q, Neg r) end. Ltac break_nonneg x px EQx := let H := fresh "H" in - assert (H:=N.spec_pos x); - destruct (N.to_Z x) as [|px|px]_eqn:EQx; + assert (H:=NN.spec_pos x); + destruct (NN.to_Z x) as [|px|px] eqn:EQx; [clear H|clear H|elim H; reflexivity]. Theorem spec_div_eucl: forall x y, let (q,r) := div_eucl x y in - (to_Z q, to_Z r) = Zdiv_eucl (to_Z x) (to_Z y). + (to_Z q, to_Z r) = Z.div_eucl (to_Z x) (to_Z y). Proof. unfold div_eucl, to_Z. intros [x | x] [y | y]. (* Pos Pos *) - generalize (N.spec_div_eucl x y); destruct (N.div_eucl x y); auto. + generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y); auto. (* Pos Neg *) - generalize (N.spec_div_eucl x y); destruct (N.div_eucl x y) as (q,r). + generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y) as (q,r). break_nonneg x px EQx; break_nonneg y py EQy; - try (injection 1; intros Hr Hq; rewrite N.spec_eqb, N.spec_0, Hr; - simpl; rewrite Hq, N.spec_0; auto). + try (injection 1; intros Hr Hq; rewrite NN.spec_eqb, NN.spec_0, Hr; + simpl; rewrite Hq, NN.spec_0; auto). change (- Zpos py) with (Zneg py). assert (GT : Zpos py > 0) by (compute; auto). generalize (Z_div_mod (Zpos px) (Zpos py) GT). - unfold Zdiv_eucl. destruct (Zdiv_eucl_POS px (Zpos py)) as (q',r'). + unfold Z.div_eucl. destruct (Z.pos_div_eucl px (Zpos py)) as (q',r'). intros (EQ,MOD). injection 1. intros Hr' Hq'. - rewrite N.spec_eqb, N.spec_0, Hr'. + rewrite NN.spec_eqb, NN.spec_0, Hr'. break_nonneg r pr EQr. - subst; simpl. rewrite N.spec_0; auto. + subst; simpl. rewrite NN.spec_0; auto. subst. lazy iota beta delta [Z.eqb]. - rewrite N.spec_sub, N.spec_succ, EQy, EQr. f_equal. omega with *. + rewrite NN.spec_sub, NN.spec_succ, EQy, EQr. f_equal. omega with *. (* Neg Pos *) - generalize (N.spec_div_eucl x y); destruct (N.div_eucl x y) as (q,r). + generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y) as (q,r). break_nonneg x px EQx; break_nonneg y py EQy; - try (injection 1; intros Hr Hq; rewrite N.spec_eqb, N.spec_0, Hr; - simpl; rewrite Hq, N.spec_0; auto). + try (injection 1; intros Hr Hq; rewrite NN.spec_eqb, NN.spec_0, Hr; + simpl; rewrite Hq, NN.spec_0; auto). change (- Zpos px) with (Zneg px). assert (GT : Zpos py > 0) by (compute; auto). generalize (Z_div_mod (Zpos px) (Zpos py) GT). - unfold Zdiv_eucl. destruct (Zdiv_eucl_POS px (Zpos py)) as (q',r'). + unfold Z.div_eucl. destruct (Z.pos_div_eucl px (Zpos py)) as (q',r'). intros (EQ,MOD). injection 1. intros Hr' Hq'. - rewrite N.spec_eqb, N.spec_0, Hr'. + rewrite NN.spec_eqb, NN.spec_0, Hr'. break_nonneg r pr EQr. - subst; simpl. rewrite N.spec_0; auto. + subst; simpl. rewrite NN.spec_0; auto. subst. lazy iota beta delta [Z.eqb]. - rewrite N.spec_sub, N.spec_succ, EQy, EQr. f_equal. omega with *. + rewrite NN.spec_sub, NN.spec_succ, EQy, EQr. f_equal. omega with *. (* Neg Neg *) - generalize (N.spec_div_eucl x y); destruct (N.div_eucl x y) as (q,r). + generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y) as (q,r). break_nonneg x px EQx; break_nonneg y py EQy; try (injection 1; intros Hr Hq; rewrite Hr, Hq; auto). simpl. intros <-; auto. @@ -468,8 +468,8 @@ Module Make (N:NType) <: ZType. Definition spec_div: forall x y, to_Z (div x y) = to_Z x / to_Z y. Proof. - intros x y; generalize (spec_div_eucl x y); unfold div, Zdiv. - case div_eucl; case Zdiv_eucl; simpl; auto. + intros x y; generalize (spec_div_eucl x y); unfold div, Z.div. + case div_eucl; case Z.div_eucl; simpl; auto. intros q r q11 r1 H; injection H; auto. Qed. @@ -478,38 +478,38 @@ Module Make (N:NType) <: ZType. Theorem spec_modulo: forall x y, to_Z (modulo x y) = to_Z x mod to_Z y. Proof. - intros x y; generalize (spec_div_eucl x y); unfold modulo, Zmod. - case div_eucl; case Zdiv_eucl; simpl; auto. + intros x y; generalize (spec_div_eucl x y); unfold modulo, Z.modulo. + case div_eucl; case Z.div_eucl; simpl; auto. intros q r q11 r1 H; injection H; auto. Qed. Definition quot x y := match x, y with - | Pos nx, Pos ny => Pos (N.div nx ny) - | Pos nx, Neg ny => Neg (N.div nx ny) - | Neg nx, Pos ny => Neg (N.div nx ny) - | Neg nx, Neg ny => Pos (N.div nx ny) + | Pos nx, Pos ny => Pos (NN.div nx ny) + | Pos nx, Neg ny => Neg (NN.div nx ny) + | Neg nx, Pos ny => Neg (NN.div nx ny) + | Neg nx, Neg ny => Pos (NN.div nx ny) end. Definition rem x y := if eqb y zero then x else match x, y with - | Pos nx, Pos ny => Pos (N.modulo nx ny) - | Pos nx, Neg ny => Pos (N.modulo nx ny) - | Neg nx, Pos ny => Neg (N.modulo nx ny) - | Neg nx, Neg ny => Neg (N.modulo nx ny) + | Pos nx, Pos ny => Pos (NN.modulo nx ny) + | Pos nx, Neg ny => Pos (NN.modulo nx ny) + | Neg nx, Pos ny => Neg (NN.modulo nx ny) + | Neg nx, Neg ny => Neg (NN.modulo nx ny) end. Lemma spec_quot : forall x y, to_Z (quot x y) = (to_Z x) ÷ (to_Z y). Proof. - intros [x|x] [y|y]; simpl; symmetry; rewrite N.spec_div; + intros [x|x] [y|y]; simpl; symmetry; rewrite NN.spec_div; (* Nota: we rely here on [forall a b, a ÷ 0 = b / 0] *) - destruct (Z.eq_dec (N.to_Z y) 0) as [EQ|NEQ]; - try (rewrite EQ; now destruct (N.to_Z x)); + destruct (Z.eq_dec (NN.to_Z y) 0) as [EQ|NEQ]; + try (rewrite EQ; now destruct (NN.to_Z x)); rewrite ?Z.quot_opp_r, ?Z.quot_opp_l, ?Z.opp_involutive, ?Z.opp_inj_wd; trivial; apply Z.quot_div_nonneg; - generalize (N.spec_pos x) (N.spec_pos y); Z.order. + generalize (NN.spec_pos x) (NN.spec_pos y); Z.order. Qed. Lemma spec_rem : forall x y, @@ -521,26 +521,26 @@ Module Make (N:NType) <: ZType. rewrite Hy. now destruct (to_Z x). destruct x as [x|x], y as [y|y]; simpl in *; symmetry; rewrite ?Z.eq_opp_l, ?Z.opp_0 in Hy; - rewrite N.spec_modulo, ?Z.rem_opp_r, ?Z.rem_opp_l, ?Z.opp_involutive, + rewrite NN.spec_modulo, ?Z.rem_opp_r, ?Z.rem_opp_l, ?Z.opp_involutive, ?Z.opp_inj_wd; trivial; apply Z.rem_mod_nonneg; - generalize (N.spec_pos x) (N.spec_pos y); Z.order. + generalize (NN.spec_pos x) (NN.spec_pos y); Z.order. Qed. Definition gcd x y := match x, y with - | Pos nx, Pos ny => Pos (N.gcd nx ny) - | Pos nx, Neg ny => Pos (N.gcd nx ny) - | Neg nx, Pos ny => Pos (N.gcd nx ny) - | Neg nx, Neg ny => Pos (N.gcd nx ny) + | Pos nx, Pos ny => Pos (NN.gcd nx ny) + | Pos nx, Neg ny => Pos (NN.gcd nx ny) + | Neg nx, Pos ny => Pos (NN.gcd nx ny) + | Neg nx, Neg ny => Pos (NN.gcd nx ny) end. - Theorem spec_gcd: forall a b, to_Z (gcd a b) = Zgcd (to_Z a) (to_Z b). + Theorem spec_gcd: forall a b, to_Z (gcd a b) = Z.gcd (to_Z a) (to_Z b). Proof. - unfold gcd, Zgcd, to_Z; intros [x | x] [y | y]; rewrite N.spec_gcd; unfold Zgcd; - auto; case N.to_Z; simpl; auto with zarith; - try rewrite Zabs_Zopp; auto; - case N.to_Z; simpl; auto with zarith. + unfold gcd, Z.gcd, to_Z; intros [x | x] [y | y]; rewrite NN.spec_gcd; unfold Z.gcd; + auto; case NN.to_Z; simpl; auto with zarith; + try rewrite Z.abs_opp; auto; + case NN.to_Z; simpl; auto with zarith. Qed. Definition sgn x := @@ -550,124 +550,124 @@ Module Make (N:NType) <: ZType. | Gt => minus_one end. - Lemma spec_sgn : forall x, to_Z (sgn x) = Zsgn (to_Z x). + Lemma spec_sgn : forall x, to_Z (sgn x) = Z.sgn (to_Z x). Proof. - intros. unfold sgn. rewrite spec_compare. case Zcompare_spec. + intros. unfold sgn. rewrite spec_compare. case Z.compare_spec. rewrite spec_0. intros <-; auto. - rewrite spec_0, spec_1. symmetry. rewrite Zsgn_pos; auto. - rewrite spec_0, spec_m1. symmetry. rewrite Zsgn_neg; auto with zarith. + rewrite spec_0, spec_1. symmetry. rewrite Z.sgn_pos_iff; auto. + rewrite spec_0, spec_m1. symmetry. rewrite Z.sgn_neg_iff; auto with zarith. Qed. Definition even z := match z with - | Pos n => N.even n - | Neg n => N.even n + | Pos n => NN.even n + | Neg n => NN.even n end. Definition odd z := match z with - | Pos n => N.odd n - | Neg n => N.odd n + | Pos n => NN.odd n + | Neg n => NN.odd n end. - Lemma spec_even : forall z, even z = Zeven_bool (to_Z z). + Lemma spec_even : forall z, even z = Z.even (to_Z z). Proof. - intros [n|n]; simpl; rewrite N.spec_even; trivial. - destruct (N.to_Z n) as [|p|p]; now try destruct p. + intros [n|n]; simpl; rewrite NN.spec_even; trivial. + destruct (NN.to_Z n) as [|p|p]; now try destruct p. Qed. - Lemma spec_odd : forall z, odd z = Zodd_bool (to_Z z). + Lemma spec_odd : forall z, odd z = Z.odd (to_Z z). Proof. - intros [n|n]; simpl; rewrite N.spec_odd; trivial. - destruct (N.to_Z n) as [|p|p]; now try destruct p. + intros [n|n]; simpl; rewrite NN.spec_odd; trivial. + destruct (NN.to_Z n) as [|p|p]; now try destruct p. Qed. Definition norm_pos z := match z with | Pos _ => z - | Neg n => if N.eqb n N.zero then Pos n else z + | Neg n => if NN.eqb n NN.zero then Pos n else z end. Definition testbit a n := match norm_pos n, norm_pos a with - | Pos p, Pos a => N.testbit a p - | Pos p, Neg a => negb (N.testbit (N.pred a) p) + | Pos p, Pos a => NN.testbit a p + | Pos p, Neg a => negb (NN.testbit (NN.pred a) p) | Neg p, _ => false end. Definition shiftl a n := match norm_pos a, n with - | Pos a, Pos n => Pos (N.shiftl a n) - | Pos a, Neg n => Pos (N.shiftr a n) - | Neg a, Pos n => Neg (N.shiftl a n) - | Neg a, Neg n => Neg (N.succ (N.shiftr (N.pred a) n)) + | Pos a, Pos n => Pos (NN.shiftl a n) + | Pos a, Neg n => Pos (NN.shiftr a n) + | Neg a, Pos n => Neg (NN.shiftl a n) + | Neg a, Neg n => Neg (NN.succ (NN.shiftr (NN.pred a) n)) end. Definition shiftr a n := shiftl a (opp n). Definition lor a b := match norm_pos a, norm_pos b with - | Pos a, Pos b => Pos (N.lor a b) - | Neg a, Pos b => Neg (N.succ (N.ldiff (N.pred a) b)) - | Pos a, Neg b => Neg (N.succ (N.ldiff (N.pred b) a)) - | Neg a, Neg b => Neg (N.succ (N.land (N.pred a) (N.pred b))) + | Pos a, Pos b => Pos (NN.lor a b) + | Neg a, Pos b => Neg (NN.succ (NN.ldiff (NN.pred a) b)) + | Pos a, Neg b => Neg (NN.succ (NN.ldiff (NN.pred b) a)) + | Neg a, Neg b => Neg (NN.succ (NN.land (NN.pred a) (NN.pred b))) end. Definition land a b := match norm_pos a, norm_pos b with - | Pos a, Pos b => Pos (N.land a b) - | Neg a, Pos b => Pos (N.ldiff b (N.pred a)) - | Pos a, Neg b => Pos (N.ldiff a (N.pred b)) - | Neg a, Neg b => Neg (N.succ (N.lor (N.pred a) (N.pred b))) + | Pos a, Pos b => Pos (NN.land a b) + | Neg a, Pos b => Pos (NN.ldiff b (NN.pred a)) + | Pos a, Neg b => Pos (NN.ldiff a (NN.pred b)) + | Neg a, Neg b => Neg (NN.succ (NN.lor (NN.pred a) (NN.pred b))) end. Definition ldiff a b := match norm_pos a, norm_pos b with - | Pos a, Pos b => Pos (N.ldiff a b) - | Neg a, Pos b => Neg (N.succ (N.lor (N.pred a) b)) - | Pos a, Neg b => Pos (N.land a (N.pred b)) - | Neg a, Neg b => Pos (N.ldiff (N.pred b) (N.pred a)) + | Pos a, Pos b => Pos (NN.ldiff a b) + | Neg a, Pos b => Neg (NN.succ (NN.lor (NN.pred a) b)) + | Pos a, Neg b => Pos (NN.land a (NN.pred b)) + | Neg a, Neg b => Pos (NN.ldiff (NN.pred b) (NN.pred a)) end. Definition lxor a b := match norm_pos a, norm_pos b with - | Pos a, Pos b => Pos (N.lxor a b) - | Neg a, Pos b => Neg (N.succ (N.lxor (N.pred a) b)) - | Pos a, Neg b => Neg (N.succ (N.lxor a (N.pred b))) - | Neg a, Neg b => Pos (N.lxor (N.pred a) (N.pred b)) + | Pos a, Pos b => Pos (NN.lxor a b) + | Neg a, Pos b => Neg (NN.succ (NN.lxor (NN.pred a) b)) + | Pos a, Neg b => Neg (NN.succ (NN.lxor a (NN.pred b))) + | Neg a, Neg b => Pos (NN.lxor (NN.pred a) (NN.pred b)) end. Definition div2 x := shiftr x one. Lemma Zlnot_alt1 : forall x, -(x+1) = Z.lnot x. Proof. - unfold Z.lnot, Zpred; auto with zarith. + unfold Z.lnot, Z.pred; auto with zarith. Qed. Lemma Zlnot_alt2 : forall x, Z.lnot (x-1) = -x. Proof. - unfold Z.lnot, Zpred; auto with zarith. + unfold Z.lnot, Z.pred; auto with zarith. Qed. Lemma Zlnot_alt3 : forall x, Z.lnot (-x) = x-1. Proof. - unfold Z.lnot, Zpred; auto with zarith. + unfold Z.lnot, Z.pred; auto with zarith. Qed. Lemma spec_norm_pos : forall x, to_Z (norm_pos x) = to_Z x. Proof. intros [x|x]; simpl; trivial. - rewrite N.spec_eqb, N.spec_0. + rewrite NN.spec_eqb, NN.spec_0. case Z.eqb_spec; simpl; auto with zarith. Qed. Lemma spec_norm_pos_pos : forall x y, norm_pos x = Neg y -> - 0 < N.to_Z y. + 0 < NN.to_Z y. Proof. intros [x|x] y; simpl; try easy. - rewrite N.spec_eqb, N.spec_0. + rewrite NN.spec_eqb, NN.spec_0. case Z.eqb_spec; simpl; try easy. - inversion 2. subst. generalize (N.spec_pos y); auto with zarith. + inversion 2. subst. generalize (NN.spec_pos y); auto with zarith. Qed. Ltac destr_norm_pos x := @@ -682,9 +682,9 @@ Module Make (N:NType) <: ZType. Proof. intros x p. unfold testbit. destr_norm_pos p; simpl. destr_norm_pos x; simpl. - apply N.spec_testbit. - rewrite N.spec_testbit, N.spec_pred, Zmax_r by auto with zarith. - symmetry. apply Z.bits_opp. apply N.spec_pos. + apply NN.spec_testbit. + rewrite NN.spec_testbit, NN.spec_pred, Z.max_r by auto with zarith. + symmetry. apply Z.bits_opp. apply NN.spec_pos. symmetry. apply Z.testbit_neg_r; auto with zarith. Qed. @@ -692,13 +692,13 @@ Module Make (N:NType) <: ZType. Proof. intros x p. unfold shiftl. destr_norm_pos x; destruct p as [p|p]; simpl; - assert (Hp := N.spec_pos p). - apply N.spec_shiftl. - rewrite Z.shiftl_opp_r. apply N.spec_shiftr. - rewrite !N.spec_shiftl. - rewrite !Z.shiftl_mul_pow2 by apply N.spec_pos. - apply Zopp_mult_distr_l. - rewrite Z.shiftl_opp_r, N.spec_succ, N.spec_shiftr, N.spec_pred, Zmax_r + assert (Hp := NN.spec_pos p). + apply NN.spec_shiftl. + rewrite Z.shiftl_opp_r. apply NN.spec_shiftr. + rewrite !NN.spec_shiftl. + rewrite !Z.shiftl_mul_pow2 by apply NN.spec_pos. + symmetry. apply Z.mul_opp_l. + rewrite Z.shiftl_opp_r, NN.spec_succ, NN.spec_shiftr, NN.spec_pred, Z.max_r by auto with zarith. now rewrite Zlnot_alt1, Z.lnot_shiftr, Zlnot_alt2. Qed. @@ -713,8 +713,8 @@ Module Make (N:NType) <: ZType. Proof. intros x y. unfold land. destr_norm_pos x; destr_norm_pos y; simpl; - rewrite ?N.spec_succ, ?N.spec_land, ?N.spec_ldiff, ?N.spec_lor, - ?N.spec_pred, ?Zmax_r, ?Zlnot_alt1; auto with zarith. + rewrite ?NN.spec_succ, ?NN.spec_land, ?NN.spec_ldiff, ?NN.spec_lor, + ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith. now rewrite Z.ldiff_land, Zlnot_alt2. now rewrite Z.ldiff_land, Z.land_comm, Zlnot_alt2. now rewrite Z.lnot_lor, !Zlnot_alt2. @@ -724,8 +724,8 @@ Module Make (N:NType) <: ZType. Proof. intros x y. unfold lor. destr_norm_pos x; destr_norm_pos y; simpl; - rewrite ?N.spec_succ, ?N.spec_land, ?N.spec_ldiff, ?N.spec_lor, - ?N.spec_pred, ?Zmax_r, ?Zlnot_alt1; auto with zarith. + rewrite ?NN.spec_succ, ?NN.spec_land, ?NN.spec_ldiff, ?NN.spec_lor, + ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith. now rewrite Z.lnot_ldiff, Z.lor_comm, Zlnot_alt2. now rewrite Z.lnot_ldiff, Zlnot_alt2. now rewrite Z.lnot_land, !Zlnot_alt2. @@ -735,8 +735,8 @@ Module Make (N:NType) <: ZType. Proof. intros x y. unfold ldiff. destr_norm_pos x; destr_norm_pos y; simpl; - rewrite ?N.spec_succ, ?N.spec_land, ?N.spec_ldiff, ?N.spec_lor, - ?N.spec_pred, ?Zmax_r, ?Zlnot_alt1; auto with zarith. + rewrite ?NN.spec_succ, ?NN.spec_land, ?NN.spec_ldiff, ?NN.spec_lor, + ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith. now rewrite Z.ldiff_land, Zlnot_alt3. now rewrite Z.lnot_lor, Z.ldiff_land, <- Zlnot_alt2. now rewrite 2 Z.ldiff_land, Zlnot_alt2, Z.land_comm, Zlnot_alt3. @@ -746,7 +746,7 @@ Module Make (N:NType) <: ZType. Proof. intros x y. unfold lxor. destr_norm_pos x; destr_norm_pos y; simpl; - rewrite ?N.spec_succ, ?N.spec_lxor, ?N.spec_pred, ?Zmax_r, ?Zlnot_alt1; + rewrite ?NN.spec_succ, ?NN.spec_lxor, ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith. now rewrite !Z.lnot_lxor_r, Zlnot_alt2. now rewrite !Z.lnot_lxor_l, Zlnot_alt2. diff --git a/theories/Numbers/Integer/Binary/ZBinary.v b/theories/Numbers/Integer/Binary/ZBinary.v index d7c0abd8..fc600eae 100644 --- a/theories/Numbers/Integer/Binary/ZBinary.v +++ b/theories/Numbers/Integer/Binary/ZBinary.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* eq==>eq) modulo. Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b). Proof. -intros a b. zify. intros. apply Z_div_mod_eq_full; auto. +intros a b. zify. intros. apply Z.div_mod; auto. Qed. Theorem mod_pos_bound : diff --git a/theories/Numbers/NaryFunctions.v b/theories/Numbers/NaryFunctions.v index c1b7bafa..7cf3daea 100644 --- a/theories/Numbers/NaryFunctions.v +++ b/theories/Numbers/NaryFunctions.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0). +Theorem lt_0_mul n m : 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0). Proof. -intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]]. +split; [intro H | intros [[H1 H2] | [H1 H2]]]. destruct (lt_trichotomy n 0) as [H1 | [H1 | H1]]; [| rewrite H1 in H; rewrite mul_0_l in H; false_hyp H lt_irrefl |]; (destruct (lt_trichotomy m 0) as [H2 | [H2 | H2]]; diff --git a/theories/Numbers/NatInt/NZOrder.v b/theories/Numbers/NatInt/NZOrder.v index 8cf5b26f..37074aba 100644 --- a/theories/Numbers/NatInt/NZOrder.v +++ b/theories/Numbers/NatInt/NZOrder.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* )|(H,->)]. + - apply spec_pred0; generalize (spec_pos x); auto with zarith. + - apply spec_pred_pos; auto with zarith. Qed. (** * Subtraction *) @@ -230,11 +230,11 @@ Module Make (W0:CyclicType) <: NType. exact spec_0. Qed. - Lemma spec_sub : forall x y, [sub x y] = Zmax 0 ([x]-[y]). + Lemma spec_sub : forall x y, [sub x y] = Z.max 0 ([x]-[y]). Proof. - intros. destruct (Zle_or_lt [y] [x]). - rewrite Zmax_r; auto with zarith. apply spec_sub_pos; auto. - rewrite Zmax_l; auto with zarith. apply spec_sub0; auto. + intros. destruct (Z.le_gt_cases [y] [x]). + rewrite Z.max_r; auto with zarith. apply spec_sub_pos; auto. + rewrite Z.max_l; auto with zarith. apply spec_sub0; auto. Qed. (** * Comparison *) @@ -249,7 +249,7 @@ Module Make (W0:CyclicType) <: NType. Let spec_comparen_m: forall n m (x : word (dom_t n) (S m)) (y : dom_t n), - comparen_m n m x y = Zcompare (eval n (S m) x) (ZnZ.to_Z y). + comparen_m n m x y = Z.compare (eval n (S m) x) (ZnZ.to_Z y). Proof. intros n m x y. unfold comparen_m, eval. @@ -287,10 +287,8 @@ Module Make (W0:CyclicType) <: NType. lazy beta iota delta [iter_sym dom_op dom_t comparen_m]. reflexivity. Qed. -(** TODO: no need for ZnZ.Spec_rect , Spec_ind, and so on... *) - Theorem spec_compare : forall x y, - compare x y = Zcompare [x] [y]. + compare x y = Z.compare [x] [y]. Proof. intros x y. rewrite compare_fold. apply spec_iter_sym; clear x y. intros. apply ZnZ.spec_compare. @@ -298,7 +296,7 @@ Module Make (W0:CyclicType) <: NType. intros n m x y; unfold comparenm. rewrite (spec_cast_l n m x), (spec_cast_r n m y). unfold to_Z; apply ZnZ.spec_compare. - intros. subst. apply Zcompare_antisym. + intros. subst. now rewrite <- Z.compare_antisym. Qed. Definition eqb (x y : t) : bool := @@ -346,14 +344,14 @@ Module Make (W0:CyclicType) <: NType. Definition min (n m : t) : t := match compare n m with Gt => m | _ => n end. Definition max (n m : t) : t := match compare n m with Lt => m | _ => n end. - Theorem spec_max : forall n m, [max n m] = Zmax [n] [m]. + Theorem spec_max : forall n m, [max n m] = Z.max [n] [m]. Proof. - intros. unfold max, Zmax. rewrite spec_compare; destruct Zcompare; reflexivity. + intros. unfold max, Z.max. rewrite spec_compare; destruct Z.compare; reflexivity. Qed. - Theorem spec_min : forall n m, [min n m] = Zmin [n] [m]. + Theorem spec_min : forall n m, [min n m] = Z.min [n] [m]. Proof. - intros. unfold min, Zmin. rewrite spec_compare; destruct Zcompare; reflexivity. + intros. unfold min, Z.min. rewrite spec_compare; destruct Z.compare; reflexivity. Qed. (** * Multiplication *) @@ -437,7 +435,7 @@ Module Make (W0:CyclicType) <: NType. intros; unfold wn_mul. generalize (spec_mul_add_n1 n m x y ZnZ.zero). case DoubleMul.double_mul_add_n1; intros q r Hqr. - rewrite ZnZ.spec_0, Zplus_0_r in Hqr. rewrite <- Hqr. + rewrite ZnZ.spec_0, Z.add_0_r in Hqr. rewrite <- Hqr. generalize (ZnZ.spec_eq0 q); case ZnZ.eq0; intros HH. rewrite HH; auto. simpl. apply spec_mk_t_w'. clear. @@ -458,7 +456,7 @@ Module Make (W0:CyclicType) <: NType. intros n m x y; unfold mulnm. rewrite spec_reduce_n. rewrite (spec_cast_l n m x), (spec_cast_r n m y). apply spec_muln. - intros. rewrite Zmult_comm; auto. + intros. rewrite Z.mul_comm; auto. Qed. (** * Division by a smaller number *) @@ -519,7 +517,7 @@ Module Make (W0:CyclicType) <: NType. apply DoubleBase.spec_get_low. apply spec_zeron. exact ZnZ.spec_to_Z. - apply Zle_lt_trans with (ZnZ.to_Z y); auto. + apply Z.le_lt_trans with (ZnZ.to_Z y); auto. rewrite <- nmake_double; auto. case (ZnZ.spec_to_Z y); auto. Qed. @@ -580,9 +578,9 @@ Module Make (W0:CyclicType) <: NType. intros x y H1 H2; generalize (spec_div_gt_aux x y H1 H2); case div_gt. intros q r (H3, H4); split. apply (Zdiv_unique [x] [y] [q] [r]); auto. - rewrite Zmult_comm; auto. + rewrite Z.mul_comm; auto. apply (Zmod_unique [x] [y] [q] [r]); auto. - rewrite Zmult_comm; auto. + rewrite Z.mul_comm; auto. Qed. (** * General Division *) @@ -597,7 +595,7 @@ Module Make (W0:CyclicType) <: NType. Theorem spec_div_eucl: forall x y, let (q,r) := div_eucl x y in - ([q], [r]) = Zdiv_eucl [x] [y]. + ([q], [r]) = Z.div_eucl [x] [y]. Proof. intros x y. unfold div_eucl. rewrite spec_eqb, spec_compare, spec_0. @@ -606,16 +604,16 @@ Module Make (W0:CyclicType) <: NType. intros H'. assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith). clear H'. - case Zcompare_spec; intros Cmp; + case Z.compare_spec; intros Cmp; rewrite ?spec_0, ?spec_1; intros; auto with zarith. - rewrite Cmp; generalize (Z_div_same [y] (Zlt_gt _ _ H)) - (Z_mod_same [y] (Zlt_gt _ _ H)); - unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto. + rewrite Cmp; generalize (Z_div_same [y] (Z.lt_gt _ _ H)) + (Z_mod_same [y] (Z.lt_gt _ _ H)); + unfold Z.div, Z.modulo; case Z.div_eucl; intros; subst; auto. assert (LeLt: 0 <= [x] < [y]) by (generalize (spec_pos x); auto). generalize (Zdiv_small _ _ LeLt) (Zmod_small _ _ LeLt); - unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto. - generalize (spec_div_gt _ _ (Zlt_gt _ _ Cmp) H); auto. - unfold Zdiv, Zmod; case Zdiv_eucl; case div_gt. + unfold Z.div, Z.modulo; case Z.div_eucl; intros; subst; auto. + generalize (spec_div_gt _ _ (Z.lt_gt _ _ Cmp) H); auto. + unfold Z.div, Z.modulo; case Z.div_eucl; case div_gt. intros a b c d (H1, H2); subst; auto. Qed. @@ -626,7 +624,7 @@ Module Make (W0:CyclicType) <: NType. Proof. intros x y; unfold div; generalize (spec_div_eucl x y); case div_eucl; simpl fst. - intros xx yy; unfold Zdiv; case Zdiv_eucl; intros qq rr H; + intros xx yy; unfold Z.div; case Z.div_eucl; intros qq rr H; injection H; auto. Qed. @@ -730,10 +728,10 @@ Module Make (W0:CyclicType) <: NType. intro H'. assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith). clear H'. - case Zcompare_spec; + case Z.compare_spec; rewrite ?spec_0, ?spec_1; intros; try split; auto with zarith. - rewrite H0; apply sym_equal; apply Z_mod_same; auto with zarith. - apply sym_equal; apply Zmod_small; auto with zarith. + rewrite H0; symmetry; apply Z_mod_same; auto with zarith. + symmetry; apply Zmod_small; auto with zarith. generalize (spec_pos x); auto with zarith. apply spec_mod_gt; auto with zarith. Qed. @@ -775,7 +773,7 @@ Module Make (W0:CyclicType) <: NType. Proof. intros x. symmetry. apply Z.sqrt_unique. - rewrite <- ! Zpower_2. apply spec_sqrt_aux. + rewrite <- ! Z.pow_2_r. apply spec_sqrt_aux. Qed. (** * Power *) @@ -791,14 +789,14 @@ Module Make (W0:CyclicType) <: NType. Proof. intros x n; generalize x; elim n; clear n x; simpl pow_pos. intros; rewrite spec_mul; rewrite spec_square; rewrite H. - rewrite Zpos_xI; rewrite Zpower_exp; auto with zarith. - rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith. - rewrite Zpower_2; rewrite Zpower_1_r; auto. + rewrite Pos2Z.inj_xI; rewrite Zpower_exp; auto with zarith. + rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r; auto with zarith. + rewrite Z.pow_2_r; rewrite Z.pow_1_r; auto. intros; rewrite spec_square; rewrite H. - rewrite Zpos_xO; auto with zarith. - rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith. - rewrite Zpower_2; auto. - intros; rewrite Zpower_1_r; auto. + rewrite Pos2Z.inj_xO; auto with zarith. + rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r; auto with zarith. + rewrite Z.pow_2_r; auto. + intros; rewrite Z.pow_1_r; auto. Qed. Definition pow_N (x:t)(n:N) : t := match n with @@ -806,7 +804,7 @@ Module Make (W0:CyclicType) <: NType. | BinNat.Npos p => pow_pos x p end. - Theorem spec_pow_N: forall x n, [pow_N x n] = [x] ^ Z_of_N n. + Theorem spec_pow_N: forall x n, [pow_N x n] = [x] ^ Z.of_N n. Proof. destruct n; simpl. apply spec_1. apply spec_pow_pos. @@ -867,15 +865,15 @@ Module Make (W0:CyclicType) <: NType. Zis_gcd [a] [b] [gcd_gt_body a b cont]. Proof. intros a b cont p H2 H3 H4; unfold gcd_gt_body. - rewrite ! spec_compare, spec_0. case Zcompare_spec. + rewrite ! spec_compare, spec_0. case Z.compare_spec. intros ->; apply Zis_gcd_0. intros HH; absurd (0 <= [b]); auto with zarith. case (spec_digits b); auto with zarith. - intros H5; case Zcompare_spec. - intros H6; rewrite <- (Zmult_1_r [b]). + intros H5; case Z.compare_spec. + intros H6; rewrite <- (Z.mul_1_r [b]). rewrite (Z_div_mod_eq [a] [b]); auto with zarith. rewrite <- spec_mod_gt; auto with zarith. - rewrite H6; rewrite Zplus_0_r. + rewrite H6; rewrite Z.add_0_r. apply Zis_gcd_mult; apply Zis_gcd_1. intros; apply False_ind. case (spec_digits (mod_gt a b)); auto with zarith. @@ -890,24 +888,19 @@ Module Make (W0:CyclicType) <: NType. rewrite <- spec_mod_gt; auto with zarith. repeat rewrite <- spec_mod_gt; auto with zarith. apply H4; auto with zarith. - apply Zmult_lt_reg_r with 2; auto with zarith. - apply Zle_lt_trans with ([b] + [mod_gt a b]); auto with zarith. - apply Zle_lt_trans with (([a]/[b]) * [b] + [mod_gt a b]); auto with zarith. - apply Zplus_le_compat_r. - pattern [b] at 1; rewrite <- (Zmult_1_l [b]). - apply Zmult_le_compat_r; auto with zarith. - case (Zle_lt_or_eq 0 ([a]/[b])); auto with zarith. - intros HH; rewrite (Z_div_mod_eq [a] [b]) in H2; - try rewrite <- HH in H2; auto with zarith. - case (Z_mod_lt [a] [b]); auto with zarith. - rewrite Zmult_comm; rewrite spec_mod_gt; auto with zarith. - rewrite <- Z_div_mod_eq; auto with zarith. - pattern 2 at 2; rewrite <- (Zpower_1_r 2). - rewrite <- Zpower_exp; auto with zarith. - ring_simplify (p - 1 + 1); auto. - case (Zle_lt_or_eq 0 p); auto with zarith. - generalize H3; case p; simpl Zpower; auto with zarith. - intros HH; generalize H3; rewrite <- HH; simpl Zpower; auto with zarith. + apply Z.mul_lt_mono_pos_r with 2; auto with zarith. + apply Z.le_lt_trans with ([b] + [mod_gt a b]); auto with zarith. + apply Z.le_lt_trans with (([a]/[b]) * [b] + [mod_gt a b]); auto with zarith. + - apply Z.add_le_mono_r. + rewrite <- (Z.mul_1_l [b]) at 1. + apply Z.mul_le_mono_nonneg_r; auto with zarith. + change 1 with (Z.succ 0). apply Z.le_succ_l. + apply Z.div_str_pos; auto with zarith. + - rewrite Z.mul_comm; rewrite spec_mod_gt; auto with zarith. + rewrite <- Z_div_mod_eq; auto with zarith. + rewrite Z.mul_comm, <- Z.pow_succ_r, Z.sub_1_r, Z.succ_pred; auto. + apply Z.le_0_sub. change 1 with (Z.succ 0). apply Z.le_succ_l. + destruct p; simpl in H3; auto with zarith. Qed. Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) : t := @@ -931,7 +924,7 @@ Module Make (W0:CyclicType) <: NType. apply Hrec with (Zpos p + n); auto. replace (Zpos p + (Zpos p + n)) with (Zpos (xI p) + n - 1); auto. - rewrite Zpos_xI; ring. + rewrite Pos2Z.inj_xI; ring. intros a2 b2 H9 H10. apply Hrec with n; auto. intros p Hrec n a b cont H2 H3 H4. @@ -940,18 +933,18 @@ Module Make (W0:CyclicType) <: NType. apply Hrec with (Zpos p + n - 1); auto. replace (Zpos p + (Zpos p + n - 1)) with (Zpos (xO p) + n - 1); auto. - rewrite Zpos_xO; ring. + rewrite Pos2Z.inj_xO; ring. intros a2 b2 H9 H10. apply Hrec with (n - 1); auto. replace (Zpos p + (n - 1)) with (Zpos p + n - 1); auto with zarith. intros a3 b3 H12 H13; apply H4; auto with zarith. - apply Zlt_le_trans with (1 := H12). - apply Zpower_le_monotone2; auto with zarith. + apply Z.lt_le_trans with (1 := H12). + apply Z.pow_le_mono_r; auto with zarith. intros n a b cont H H2 H3. simpl gcd_gt_aux. apply Zspec_gcd_gt_body with (n + 1); auto with zarith. - rewrite Zplus_comm; auto. + rewrite Z.add_comm; auto. intros a1 b1 H5 H6; apply H3; auto. replace n with (n + 1 - 1); auto; try ring. Qed. @@ -965,14 +958,14 @@ Module Make (W0:CyclicType) <: NType. Definition gcd_gt a b := gcd_gt_aux (digits a) gcd_cont a b. Theorem spec_gcd_gt: forall a b, - [a] > [b] -> [gcd_gt a b] = Zgcd [a] [b]. + [a] > [b] -> [gcd_gt a b] = Z.gcd [a] [b]. Proof. intros a b H2. case (spec_digits (gcd_gt a b)); intros H3 H4. case (spec_digits a); intros H5 H6. - apply sym_equal; apply Zis_gcd_gcd; auto with zarith. + symmetry; apply Zis_gcd_gcd; auto with zarith. unfold gcd_gt; apply Zspec_gcd_gt_aux with 0; auto with zarith. - intros a1 a2; rewrite Zpower_0_r. + intros a1 a2; rewrite Z.pow_0_r. case (spec_digits a2); intros H7 H8; intros; apply False_ind; auto with zarith. Qed. @@ -984,18 +977,18 @@ Module Make (W0:CyclicType) <: NType. | Gt => gcd_gt a b end. - Theorem spec_gcd: forall a b, [gcd a b] = Zgcd [a] [b]. + Theorem spec_gcd: forall a b, [gcd a b] = Z.gcd [a] [b]. Proof. intros a b. case (spec_digits a); intros H1 H2. case (spec_digits b); intros H3 H4. - unfold gcd. rewrite spec_compare. case Zcompare_spec. - intros HH; rewrite HH; apply sym_equal; apply Zis_gcd_gcd; auto. + unfold gcd. rewrite spec_compare. case Z.compare_spec. + intros HH; rewrite HH; symmetry; apply Zis_gcd_gcd; auto. apply Zis_gcd_refl. - intros; apply trans_equal with (Zgcd [b] [a]). + intros; transitivity (Z.gcd [b] [a]). apply spec_gcd_gt; auto with zarith. apply Zis_gcd_gcd; auto with zarith. - apply Zgcd_is_pos. + apply Z.gcd_nonneg. apply Zis_gcd_sym; apply Zgcd_is_gcd. intros; apply spec_gcd_gt; auto with zarith. Qed. @@ -1017,22 +1010,22 @@ Module Make (W0:CyclicType) <: NType. exact (ZnZ.spec_is_even x). Qed. - Theorem spec_even: forall x, even x = Zeven_bool [x]. + Theorem spec_even: forall x, even x = Z.even [x]. Proof. intros x. assert (H := spec_even_aux x). symmetry. - rewrite (Z_div_mod_eq_full [x] 2); auto with zarith. - destruct (even x); rewrite H, ?Zplus_0_r. + rewrite (Z.div_mod [x] 2); auto with zarith. + destruct (even x); rewrite H, ?Z.add_0_r. rewrite Zeven_bool_iff. apply Zeven_2p. apply not_true_is_false. rewrite Zeven_bool_iff. apply Zodd_not_Zeven. apply Zodd_2p_plus_1. Qed. - Theorem spec_odd: forall x, odd x = Zodd_bool [x]. + Theorem spec_odd: forall x, odd x = Z.odd [x]. Proof. intros x. unfold odd. assert (H := spec_even_aux x). symmetry. - rewrite (Z_div_mod_eq_full [x] 2); auto with zarith. - destruct (even x); rewrite H, ?Zplus_0_r; simpl negb. + rewrite (Z.div_mod [x] 2); auto with zarith. + destruct (even x); rewrite H, ?Z.add_0_r; simpl negb. apply not_true_is_false. rewrite Zodd_bool_iff. apply Zeven_not_Zodd. apply Zeven_2p. apply Zodd_bool_iff. apply Zodd_2p_plus_1. @@ -1041,27 +1034,21 @@ Module Make (W0:CyclicType) <: NType. (** * Conversion *) Definition pheight p := - Peano.pred (nat_of_P (get_height (ZnZ.digits (dom_op 0)) (plength p))). + Peano.pred (Pos.to_nat (get_height (ZnZ.digits (dom_op 0)) (plength p))). Theorem pheight_correct: forall p, - Zpos p < 2 ^ (Zpos (ZnZ.digits (dom_op 0)) * 2 ^ (Z_of_nat (pheight p))). + Zpos p < 2 ^ (Zpos (ZnZ.digits (dom_op 0)) * 2 ^ (Z.of_nat (pheight p))). Proof. intros p; unfold pheight. - assert (F1: forall x, Z_of_nat (Peano.pred (nat_of_P x)) = Zpos x - 1). - intros x. - assert (Zsucc (Z_of_nat (Peano.pred (nat_of_P x))) = Zpos x); auto with zarith. - rewrite <- inj_S. - rewrite <- (fun x => S_pred x 0); auto with zarith. - rewrite Zpos_eq_Z_of_nat_o_nat_of_P; auto. - apply lt_le_trans with 1%nat; auto with zarith. - exact (le_Pmult_nat x 1). - rewrite F1; clear F1. + rewrite Nat2Z.inj_pred by apply Pos2Nat.is_pos. + rewrite positive_nat_Z. + rewrite <- Z.sub_1_r. assert (F2:= (get_height_correct (ZnZ.digits (dom_op 0)) (plength p))). - apply Zlt_le_trans with (Zpos (Psucc p)). - rewrite Zpos_succ_morphism; auto with zarith. - apply Zle_trans with (1 := plength_pred_correct (Psucc p)). - rewrite Ppred_succ. - apply Zpower_le_monotone2; auto with zarith. + apply Z.lt_le_trans with (Zpos (Pos.succ p)). + rewrite Pos2Z.inj_succ; auto with zarith. + apply Z.le_trans with (1 := plength_pred_correct (Pos.succ p)). + rewrite Pos.pred_succ. + apply Z.pow_le_mono_r; auto with zarith. Qed. Definition of_pos (x:positive) : t := @@ -1076,8 +1063,8 @@ Module Make (W0:CyclicType) <: NType. simpl. apply ZnZ.of_pos_correct. unfold base. - apply Zlt_le_trans with (1 := pheight_correct x). - apply Zpower_le_monotone2; auto with zarith. + apply Z.lt_le_trans with (1 := pheight_correct x). + apply Z.pow_le_mono_r; auto with zarith. rewrite (digits_dom_op (_ _)), Pshiftl_nat_Zpower. auto with zarith. Qed. @@ -1088,7 +1075,7 @@ Module Make (W0:CyclicType) <: NType. end. Theorem spec_of_N: forall x, - [of_N x] = Z_of_N x. + [of_N x] = Z.of_N x. Proof. intros x; case x. simpl of_N. exact spec_0. @@ -1122,7 +1109,7 @@ Module Make (W0:CyclicType) <: NType. intros. apply Zdiv_unique with 0; auto with zarith. change 2 with (2^1) at 2. rewrite <- Zpower_exp; auto with zarith. - rewrite Zplus_0_r. f_equal. auto with zarith. + rewrite Z.add_0_r. f_equal. auto with zarith. Qed. Theorem spec_head0: forall x, 0 < [x] -> @@ -1212,9 +1199,9 @@ Module Make (W0:CyclicType) <: NType. set (d := ZnZ.digits (dom_op n)) in *; clearbody d. destruct (Z_lt_le_dec h (Zpos d)); auto. exfalso. assert (1 * 2^Zpos d <= ZnZ.to_Z x * 2^h). - apply Zmult_le_compat; auto with zarith. - apply Zpower_le_monotone2; auto with zarith. - rewrite Zmult_comm in H0. auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. + apply Z.pow_le_mono_r; auto with zarith. + rewrite Z.mul_comm in H0. auto with zarith. Qed. Lemma spec_log2_pos : forall x, [x]<>0 -> @@ -1232,13 +1219,13 @@ Module Make (W0:CyclicType) <: NType. assert (H2 := ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))). assert (H3 := head0_zdigits n x). rewrite Zmod_small by auto with zarith. + rewrite Z.sub_simpl_r. rewrite (Z.mul_lt_mono_pos_l (2^(ZnZ.to_Z (ZnZ.head0 x)))); auto with zarith. rewrite (Z.mul_le_mono_pos_l _ _ (2^(ZnZ.to_Z (ZnZ.head0 x)))); auto with zarith. rewrite <- 2 Zpower_exp; auto with zarith. - rewrite Z.add_sub_assoc, Zplus_minus. - rewrite Z.sub_simpl_r, Zplus_minus. + rewrite !Z.add_sub_assoc, !Z.add_simpl_l. rewrite ZnZ.spec_zdigits. rewrite pow2_pos_minus_1 by (red; auto). apply ZnZ.spec_head0; auto with zarith. @@ -1294,12 +1281,12 @@ Module Make (W0:CyclicType) <: NType. Proof. intros x y z HH HH1 HH2. split; auto with zarith. - apply Zle_lt_trans with (2 := HH2); auto with zarith. + apply Z.le_lt_trans with (2 := HH2); auto with zarith. apply Zdiv_le_upper_bound; auto with zarith. pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith. - apply Zmult_le_compat_l; auto. - apply Zpower_le_monotone2; auto with zarith. - rewrite Zpower_0_r; ring. + apply Z.mul_le_mono_nonneg_l; auto. + apply Z.pow_le_mono_r; auto with zarith. + rewrite Z.pow_0_r; ring. Qed. Theorem spec_shiftr_pow2 : forall x n, @@ -1315,7 +1302,7 @@ Module Make (W0:CyclicType) <: NType. rewrite spec_reduce. rewrite ZnZ.spec_zdigits in H. rewrite ZnZ.spec_add_mul_div by auto with zarith. - rewrite ZnZ.spec_0, Zmult_0_l, Zplus_0_l. + rewrite ZnZ.spec_0, Z.mul_0_l, Z.add_0_l. rewrite Zmod_small. f_equal. f_equal. auto with zarith. split. auto with zarith. @@ -1324,8 +1311,8 @@ Module Make (W0:CyclicType) <: NType. rewrite ZnZ.spec_0. symmetry. apply Zdiv_small. split; auto with zarith. - apply Zlt_le_trans with (base (ZnZ.digits (dom_op n))); auto with zarith. - unfold base. apply Zpower_le_monotone2; auto with zarith. + apply Z.lt_le_trans with (base (ZnZ.digits (dom_op n))); auto with zarith. + unfold base. apply Z.pow_le_mono_r; auto with zarith. rewrite ZnZ.spec_zdigits in H. generalize (ZnZ.spec_to_Z d); auto with zarith. Qed. @@ -1370,21 +1357,21 @@ Module Make (W0:CyclicType) <: NType. destruct (ZnZ.spec_to_Z x). destruct (ZnZ.spec_to_Z p). rewrite ZnZ.spec_add_mul_div by (omega with *). - rewrite ZnZ.spec_0, Zdiv_0_l, Zplus_0_r. + rewrite ZnZ.spec_0, Zdiv_0_l, Z.add_0_r. apply Zmod_small. unfold base. split; auto with zarith. - rewrite Zmult_comm. - apply Zlt_le_trans with (2^(ZnZ.to_Z p + K)). + rewrite Z.mul_comm. + apply Z.lt_le_trans with (2^(ZnZ.to_Z p + K)). rewrite Zpower_exp; auto with zarith. - apply Zmult_lt_compat_l; auto with zarith. - apply Zpower_le_monotone2; auto with zarith. + apply Z.mul_lt_mono_pos_l; auto with zarith. + apply Z.pow_le_mono_r; auto with zarith. Qed. Theorem spec_unsafe_shiftl: forall x p, [p] <= [head0 x] -> [unsafe_shiftl x p] = [x] * 2 ^ [p]. Proof. intros. - destruct (Z_eq_dec [x] 0) as [EQ|NEQ]. + destruct (Z.eq_dec [x] 0) as [EQ|NEQ]. (* [x] = 0 *) apply spec_unsafe_shiftl_aux with 0; auto with zarith. now rewrite EQ. @@ -1421,7 +1408,7 @@ Module Make (W0:CyclicType) <: NType. Proof. intros x. rewrite ! digits_level, double_size_level. rewrite 2 digits_dom_op, 2 Pshiftl_nat_Zpower, - inj_S, Zpower_Zsucc; auto with zarith. + Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith. ring. Qed. @@ -1438,46 +1425,47 @@ Module Make (W0:CyclicType) <: NType. assert (F1:= spec_pos (head0 x)). assert (F2: 0 < Zpos (digits x)). red; auto. - case (Zle_lt_or_eq _ _ (spec_pos x)); intros HH. + assert (HH := spec_pos x). Z.le_elim HH. generalize HH; rewrite <- (spec_double_size x); intros HH1. case (spec_head0 x HH); intros _ HH2. case (spec_head0 _ HH1). rewrite (spec_double_size x); rewrite (spec_double_size_digits x). intros HH3 _. - case (Zle_or_lt ([head0 (double_size x)]) (2 * [head0 x])); auto; intros HH4. + case (Z.le_gt_cases ([head0 (double_size x)]) (2 * [head0 x])); auto; intros HH4. absurd (2 ^ (2 * [head0 x] )* [x] < 2 ^ [head0 (double_size x)] * [x]); auto. - apply Zle_not_lt. - apply Zmult_le_compat_r; auto with zarith. - apply Zpower_le_monotone2; auto; auto with zarith. + apply Z.le_ngt. + apply Z.mul_le_mono_nonneg_r; auto with zarith. + apply Z.pow_le_mono_r; auto; auto with zarith. assert (HH5: 2 ^[head0 x] <= 2 ^(Zpos (digits x) - 1)). - case (Zle_lt_or_eq 1 [x]); auto with zarith; intros HH5. - apply Zmult_le_reg_r with (2 ^ 1); auto with zarith. - rewrite <- (fun x y z => Zpower_exp x (y - z)); auto with zarith. - assert (tmp: forall x, x - 1 + 1 = x); [intros; ring | rewrite tmp; clear tmp]. - apply Zle_trans with (2 := Zlt_le_weak _ _ HH2). - apply Zmult_le_compat_l; auto with zarith. - rewrite Zpower_1_r; auto with zarith. - apply Zpower_le_monotone2; auto with zarith. - case (Zle_or_lt (Zpos (digits x)) [head0 x]); auto with zarith; intros HH6. - absurd (2 ^ Zpos (digits x) <= 2 ^ [head0 x] * [x]); auto with zarith. - rewrite <- HH5; rewrite Zmult_1_r. - apply Zpower_le_monotone2; auto with zarith. - rewrite (Zmult_comm 2). - rewrite Zpower_mult; auto with zarith. - rewrite Zpower_2. - apply Zlt_le_trans with (2 := HH3). - rewrite <- Zmult_assoc. + { apply Z.le_succ_l in HH. change (1 <= [x]) in HH. + Z.le_elim HH. + - apply Z.mul_le_mono_pos_r with (2 ^ 1); auto with zarith. + rewrite <- (fun x y z => Z.pow_add_r x (y - z)); auto with zarith. + rewrite Z.sub_add. + apply Z.le_trans with (2 := Z.lt_le_incl _ _ HH2). + apply Z.mul_le_mono_nonneg_l; auto with zarith. + rewrite Z.pow_1_r; auto with zarith. + - apply Z.pow_le_mono_r; auto with zarith. + case (Z.le_gt_cases (Zpos (digits x)) [head0 x]); auto with zarith; intros HH6. + absurd (2 ^ Zpos (digits x) <= 2 ^ [head0 x] * [x]); auto with zarith. + rewrite <- HH; rewrite Z.mul_1_r. + apply Z.pow_le_mono_r; auto with zarith. } + rewrite (Z.mul_comm 2). + rewrite Z.pow_mul_r; auto with zarith. + rewrite Z.pow_2_r. + apply Z.lt_le_trans with (2 := HH3). + rewrite <- Z.mul_assoc. replace (2 * Zpos (digits x) - 1) with ((Zpos (digits x) - 1) + (Zpos (digits x))). rewrite Zpower_exp; auto with zarith. apply Zmult_lt_compat2; auto with zarith. split; auto with zarith. - apply Zmult_lt_0_compat; auto with zarith. - rewrite Zpos_xO; ring. - apply Zlt_le_weak; auto. + apply Z.mul_pos_pos; auto with zarith. + rewrite Pos2Z.inj_xO; ring. + apply Z.lt_le_incl; auto. repeat rewrite spec_head00; auto. rewrite spec_double_size_digits. - rewrite Zpos_xO; auto with zarith. + rewrite Pos2Z.inj_xO; auto with zarith. rewrite spec_double_size; auto. Qed. @@ -1485,24 +1473,26 @@ Module Make (W0:CyclicType) <: NType. forall x, 0 < [head0 (double_size x)]. Proof. intros x. - assert (F: 0 < Zpos (digits x)). - red; auto. - case (Zle_lt_or_eq _ _ (spec_pos (head0 (double_size x)))); auto; intros F0. - case (Zle_lt_or_eq _ _ (spec_pos (head0 x))); intros F1. - apply Zlt_le_trans with (2 := (spec_double_size_head0 x)); auto with zarith. - case (Zle_lt_or_eq _ _ (spec_pos x)); intros F3. + assert (F := Pos2Z.is_pos (digits x)). + assert (F0 := spec_pos (head0 (double_size x))). + Z.le_elim F0; auto. + assert (F1 := spec_pos (head0 x)). + Z.le_elim F1. + apply Z.lt_le_trans with (2 := (spec_double_size_head0 x)); auto with zarith. + assert (F3 := spec_pos x). + Z.le_elim F3. generalize F3; rewrite <- (spec_double_size x); intros F4. absurd (2 ^ (Zpos (xO (digits x)) - 1) < 2 ^ (Zpos (digits x))). - apply Zle_not_lt. - apply Zpower_le_monotone2; auto with zarith. - rewrite Zpos_xO; auto with zarith. + { apply Z.le_ngt. + apply Z.pow_le_mono_r; auto with zarith. + rewrite Pos2Z.inj_xO; auto with zarith. } case (spec_head0 x F3). - rewrite <- F1; rewrite Zpower_0_r; rewrite Zmult_1_l; intros _ HH. - apply Zle_lt_trans with (2 := HH). + rewrite <- F1; rewrite Z.pow_0_r; rewrite Z.mul_1_l; intros _ HH. + apply Z.le_lt_trans with (2 := HH). case (spec_head0 _ F4). rewrite (spec_double_size x); rewrite (spec_double_size_digits x). - rewrite <- F0; rewrite Zpower_0_r; rewrite Zmult_1_l; auto. - generalize F1; rewrite (spec_head00 _ (sym_equal F3)); auto with zarith. + rewrite <- F0; rewrite Z.pow_0_r; rewrite Z.mul_1_l; auto. + generalize F1; rewrite (spec_head00 _ (eq_sym F3)); auto with zarith. Qed. (** Finally we iterate [double_size] enough before [unsafe_shiftl] @@ -1521,14 +1511,14 @@ Module Make (W0:CyclicType) <: NType. [shiftl_aux_body cont x n] = [x] * 2 ^ [n]. Proof. intros n x p cont H1 H2; unfold shiftl_aux_body. - rewrite spec_compare; case Zcompare_spec; intros H. + rewrite spec_compare; case Z.compare_spec; intros H. apply spec_unsafe_shiftl; auto with zarith. apply spec_unsafe_shiftl; auto with zarith. rewrite H2. rewrite spec_double_size; auto. - rewrite Zplus_comm; rewrite Zpower_exp; auto with zarith. - apply Zle_trans with (2 := spec_double_size_head0 x). - rewrite Zpower_1_r; apply Zmult_le_compat_l; auto with zarith. + rewrite Z.add_comm; rewrite Zpower_exp; auto with zarith. + apply Z.le_trans with (2 := spec_double_size_head0 x). + rewrite Z.pow_1_r; apply Z.mul_le_mono_nonneg_l; auto with zarith. Qed. Fixpoint shiftl_aux p cont x n := @@ -1550,27 +1540,27 @@ Module Make (W0:CyclicType) <: NType. apply spec_shiftl_aux_body with (q); auto. intros x1 H3; apply Hrec with (q + 1)%positive; auto. intros x2 H4; apply Hrec with (p + q + 1)%positive; auto. - rewrite <- Pplus_assoc. - rewrite Zpos_plus_distr; auto. + rewrite <- Pos.add_assoc. + rewrite Pos2Z.inj_add; auto. intros x3 H5; apply H2. - rewrite Zpos_xI. + rewrite Pos2Z.inj_xI. replace (2 * Zpos p + 1 + Zpos q) with (Zpos p + Zpos (p + q + 1)); auto. - repeat rewrite Zpos_plus_distr; ring. + rewrite !Pos2Z.inj_add; ring. intros p Hrec q n x cont H1 H2. apply spec_shiftl_aux_body with (q); auto. intros x1 H3; apply Hrec with (q); auto. - apply Zle_trans with (2 := H3); auto with zarith. - apply Zpower_le_monotone2; auto with zarith. + apply Z.le_trans with (2 := H3); auto with zarith. + apply Z.pow_le_mono_r; auto with zarith. intros x2 H4; apply Hrec with (p + q)%positive; auto. intros x3 H5; apply H2. - rewrite (Zpos_xO p). + rewrite (Pos2Z.inj_xO p). replace (2 * Zpos p + Zpos q) with (Zpos p + Zpos (p + q)); auto. - repeat rewrite Zpos_plus_distr; ring. + rewrite Pos2Z.inj_add; ring. intros q n x cont H1 H2. apply spec_shiftl_aux_body with (q); auto. - rewrite Zplus_comm; auto. + rewrite Z.add_comm; auto. Qed. Definition shiftl x n := @@ -1582,25 +1572,25 @@ Module Make (W0:CyclicType) <: NType. [shiftl x n] = [x] * 2 ^ [n]. Proof. intros x n; unfold shiftl, shiftl_aux_body. - rewrite spec_compare; case Zcompare_spec; intros H. + rewrite spec_compare; case Z.compare_spec; intros H. apply spec_unsafe_shiftl; auto with zarith. apply spec_unsafe_shiftl; auto with zarith. rewrite <- (spec_double_size x). - rewrite spec_compare; case Zcompare_spec; intros H1. + rewrite spec_compare; case Z.compare_spec; intros H1. apply spec_unsafe_shiftl; auto with zarith. apply spec_unsafe_shiftl; auto with zarith. rewrite <- (spec_double_size (double_size x)). apply spec_shiftl_aux with 1%positive. - apply Zle_trans with (2 := spec_double_size_head0 (double_size x)). + apply Z.le_trans with (2 := spec_double_size_head0 (double_size x)). replace (2 ^ 1) with (2 * 1). - apply Zmult_le_compat_l; auto with zarith. + apply Z.mul_le_mono_nonneg_l; auto with zarith. generalize (spec_double_size_head0_pos x); auto with zarith. - rewrite Zpower_1_r; ring. + rewrite Z.pow_1_r; ring. intros x1 H2; apply spec_unsafe_shiftl. - apply Zle_trans with (2 := H2). - apply Zle_trans with (2 ^ Zpos (digits n)); auto with zarith. + apply Z.le_trans with (2 := H2). + apply Z.le_trans with (2 ^ Zpos (digits n)); auto with zarith. case (spec_digits n); auto with zarith. - apply Zpower_le_monotone2; auto with zarith. + apply Z.pow_le_mono_r; auto with zarith. Qed. Lemma spec_shiftl: forall x p, [shiftl x p] = Z.shiftl [x] [p]. diff --git a/theories/Numbers/Natural/BigN/NMake_gen.ml b/theories/Numbers/Natural/BigN/NMake_gen.ml index 59d440c3..278cc8bf 100644 --- a/theories/Numbers/Natural/BigN/NMake_gen.ml +++ b/theories/Numbers/Natural/BigN/NMake_gen.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* xH - | xO p1 => Psucc (plength p1) - | xI p1 => Psucc (plength p1) + | xO p1 => Pos.succ (plength p1) + | xI p1 => Pos.succ (plength p1) end. Theorem plength_correct: forall p, (Zpos p < 2 ^ Zpos (plength p))%Z. -assert (F: (forall p, 2 ^ (Zpos (Psucc p)) = 2 * 2 ^ Zpos p)%Z). -intros p; replace (Zpos (Psucc p)) with (1 + Zpos p)%Z. +assert (F: (forall p, 2 ^ (Zpos (Pos.succ p)) = 2 * 2 ^ Zpos p)%Z). +intros p; replace (Zpos (Pos.succ p)) with (1 + Zpos p)%Z. rewrite Zpower_exp; auto with zarith. -rewrite Zpos_succ_morphism; unfold Zsucc; auto with zarith. +rewrite Pos2Z.inj_succ; unfold Z.succ; auto with zarith. intros p; elim p; simpl plength; auto. -intros p1 Hp1; rewrite F; repeat rewrite Zpos_xI. +intros p1 Hp1; rewrite F; repeat rewrite Pos2Z.inj_xI. assert (tmp: (forall p, 2 * p = p + p)%Z); try repeat rewrite tmp; auto with zarith. -intros p1 Hp1; rewrite F; rewrite (Zpos_xO p1). +intros p1 Hp1; rewrite F; rewrite (Pos2Z.inj_xO p1). assert (tmp: (forall p, 2 * p = p + p)%Z); try repeat rewrite tmp; auto with zarith. -rewrite Zpower_1_r; auto with zarith. +rewrite Z.pow_1_r; auto with zarith. Qed. -Theorem plength_pred_correct: forall p, (Zpos p <= 2 ^ Zpos (plength (Ppred p)))%Z. -intros p; case (Psucc_pred p); intros H1. +Theorem plength_pred_correct: forall p, (Zpos p <= 2 ^ Zpos (plength (Pos.pred p)))%Z. +intros p; case (Pos.succ_pred_or p); intros H1. subst; simpl plength. -rewrite Zpower_1_r; auto with zarith. +rewrite Z.pow_1_r; auto with zarith. pattern p at 1; rewrite <- H1. -rewrite Zpos_succ_morphism; unfold Zsucc; auto with zarith. -generalize (plength_correct (Ppred p)); auto with zarith. +rewrite Pos2Z.inj_succ; unfold Z.succ; auto with zarith. +generalize (plength_correct (Pos.pred p)); auto with zarith. Qed. Definition Pdiv p q := - match Zdiv (Zpos p) (Zpos q) with + match Z.div (Zpos p) (Zpos q) with Zpos q1 => match (Zpos p) - (Zpos q) * (Zpos q1) with Z0 => q1 - | _ => (Psucc q1) + | _ => (Pos.succ q1) end | _ => xH end. @@ -85,20 +85,20 @@ unfold Pdiv. assert (H1: Zpos q > 0); auto with zarith. assert (H1b: Zpos p >= 0); auto with zarith. generalize (Z_div_ge0 (Zpos p) (Zpos q) H1 H1b). -generalize (Z_div_mod_eq (Zpos p) (Zpos q) H1); case Zdiv. - intros HH _; rewrite HH; rewrite Zmult_0_r; rewrite Zmult_1_r; simpl. +generalize (Z_div_mod_eq (Zpos p) (Zpos q) H1); case Z.div. + intros HH _; rewrite HH; rewrite Z.mul_0_r; rewrite Z.mul_1_r; simpl. case (Z_mod_lt (Zpos p) (Zpos q) H1); auto with zarith. intros q1 H2. replace (Zpos p - Zpos q * Zpos q1) with (Zpos p mod Zpos q). 2: pattern (Zpos p) at 2; rewrite H2; auto with zarith. generalize H2 (Z_mod_lt (Zpos p) (Zpos q) H1); clear H2; - case Zmod. + case Z.modulo. intros HH _; rewrite HH; auto with zarith. - intros r1 HH (_,HH1); rewrite HH; rewrite Zpos_succ_morphism. - unfold Zsucc; rewrite Zmult_plus_distr_r; auto with zarith. + intros r1 HH (_,HH1); rewrite HH; rewrite Pos2Z.inj_succ. + unfold Z.succ; rewrite Z.mul_add_distr_l; auto with zarith. intros r1 _ (HH,_); case HH; auto. intros q1 HH; rewrite HH. -unfold Zge; simpl Zcompare; intros HH1; case HH1; auto. +unfold Z.ge; simpl Z.compare; intros HH1; case HH1; auto. Qed. Definition is_one p := match p with xH => true | _ => false end. @@ -109,7 +109,7 @@ Qed. Definition get_height digits p := let r := Pdiv p digits in - if is_one r then xH else Psucc (plength (Ppred r)). + if is_one r then xH else Pos.succ (plength (Pos.pred r)). Theorem get_height_correct: forall digits N, @@ -119,13 +119,13 @@ unfold get_height. assert (H1 := Pdiv_le N digits). case_eq (is_one (Pdiv N digits)); intros H2. rewrite (is_one_one _ H2) in H1. -rewrite Zmult_1_r in H1. -change (2^(1-1))%Z with 1; rewrite Zmult_1_r; auto. +rewrite Z.mul_1_r in H1. +change (2^(1-1))%Z with 1; rewrite Z.mul_1_r; auto. clear H2. -apply Zle_trans with (1 := H1). -apply Zmult_le_compat_l; auto with zarith. -rewrite Zpos_succ_morphism; unfold Zsucc. -rewrite Zplus_comm; rewrite Zminus_plus. +apply Z.le_trans with (1 := H1). +apply Z.mul_le_mono_nonneg_l; auto with zarith. +rewrite Pos2Z.inj_succ; unfold Z.succ. +rewrite Z.add_comm; rewrite Z.add_simpl_l. apply plength_pred_correct. Qed. @@ -152,18 +152,18 @@ Open Scope nat_scope. Fixpoint plusnS (n m: nat) {struct n} : (n + S m = S (n + m))%nat := match n return (n + S m = S (n + m))%nat with - | 0 => refl_equal (S m) + | 0 => eq_refl (S m) | S n1 => let v := S (S n1 + m) in - eq_ind_r (fun n => S n = v) (refl_equal v) (plusnS n1 m) + eq_ind_r (fun n => S n = v) (eq_refl v) (plusnS n1 m) end. Fixpoint plusn0 n : n + 0 = n := match n return (n + 0 = n) with - | 0 => refl_equal 0 + | 0 => eq_refl 0 | S n1 => let v := S n1 in - eq_ind_r (fun n : nat => S n = v) (refl_equal v) (plusn0 n1) + eq_ind_r (fun n : nat => S n = v) (eq_refl v) (plusn0 n1) end. Fixpoint diff (m n: nat) {struct m}: nat * nat := @@ -177,8 +177,8 @@ Fixpoint diff_l (m n : nat) {struct m} : fst (diff m n) + n = max m n := match m return fst (diff m n) + n = max m n with | 0 => match n return (n = max 0 n) with - | 0 => refl_equal _ - | S n0 => refl_equal _ + | 0 => eq_refl _ + | S n0 => eq_refl _ end | S m1 => match n return (fst (diff (S m1) n) + n = max (S m1) n) @@ -188,7 +188,7 @@ Fixpoint diff_l (m n : nat) {struct m} : fst (diff m n) + n = max m n := let v := fst (diff m1 n1) + n1 in let v1 := fst (diff m1 n1) + S n1 in eq_ind v (fun n => v1 = S n) - (eq_ind v1 (fun n => v1 = n) (refl_equal v1) (S v) (plusnS _ _)) + (eq_ind v1 (fun n => v1 = n) (eq_refl v1) (S v) (plusnS _ _)) _ (diff_l _ _) end end. @@ -197,17 +197,17 @@ Fixpoint diff_r (m n: nat) {struct m}: snd (diff m n) + m = max m n := match m return (snd (diff m n) + m = max m n) with | 0 => match n return (snd (diff 0 n) + 0 = max 0 n) with - | 0 => refl_equal _ + | 0 => eq_refl _ | S _ => plusn0 _ end | S m => match n return (snd (diff (S m) n) + S m = max (S m) n) with - | 0 => refl_equal (snd (diff (S m) 0) + S m) + | 0 => eq_refl (snd (diff (S m) 0) + S m) | S n1 => let v := S (max m n1) in eq_ind_r (fun n => n = v) (eq_ind_r (fun n => S n = v) - (refl_equal v) (diff_r _ _)) (plusnS _ _) + (eq_refl v) (diff_r _ _)) (plusnS _ _) end end. @@ -216,7 +216,7 @@ Fixpoint diff_r (m n: nat) {struct m}: snd (diff m n) + m = max m n := Definition castm (m n: nat) (H: m = n) (x: word w (S m)): (word w (S n)) := match H in (_ = y) return (word w (S y)) with - | refl_equal => x + | eq_refl => x end. Variable m: nat. @@ -314,7 +314,7 @@ Section CompareRec. Lemma base_xO: forall n, base (xO n) = (base n)^2. Proof. intros n1; unfold base. - rewrite (Zpos_xO n1); rewrite Zmult_comm; rewrite Zpower_mult; auto with zarith. + rewrite (Pos2Z.inj_xO n1); rewrite Z.mul_comm; rewrite Z.pow_mul_r; auto with zarith. Qed. Let double_to_Z_pos: forall n x, 0 <= double_to_Z n x < double_wB n := @@ -332,13 +332,13 @@ Section CompareRec. rewrite 2 Hrec. simpl double_to_Z. set (wB := DoubleBase.double_wB wm_base n). - case Zcompare_spec; intros Cmp. + case Z.compare_spec; intros Cmp. rewrite <- Cmp. reflexivity. - symmetry. apply Zgt_lt, Zlt_gt. (* ;-) *) + symmetry. apply Z.gt_lt, Z.lt_gt. (* ;-) *) assert (0 < wB). unfold wB, DoubleBase.double_wB, base; auto with zarith. - change 0 with (0 + 0); apply Zplus_lt_le_compat; auto with zarith. - apply Zmult_lt_0_compat; auto with zarith. + change 0 with (0 + 0); apply Z.add_lt_le_mono; auto with zarith. + apply Z.mul_pos_pos; auto with zarith. case (double_to_Z_pos n xl); auto with zarith. case (double_to_Z_pos n xh); intros; exfalso; omega. Qed. @@ -358,9 +358,9 @@ Section CompareRec. end. Variable spec_compare: forall x y, - compare x y = Zcompare (w_to_Z x) (w_to_Z y). + compare x y = Z.compare (w_to_Z x) (w_to_Z y). Variable spec_compare_m: forall x y, - compare_m x y = Zcompare (wm_to_Z x) (w_to_Z y). + compare_m x y = Z.compare (wm_to_Z x) (w_to_Z y). Variable wm_base_lt: forall x, 0 <= w_to_Z x < base (wm_base). @@ -369,35 +369,35 @@ Section CompareRec. Proof. intros n x; elim n; simpl; auto; clear n. intros n (H0, H); split; auto. - apply Zlt_le_trans with (1:= H). + apply Z.lt_le_trans with (1:= H). unfold double_wB, DoubleBase.double_wB; simpl. rewrite Pshiftl_nat_S, base_xO. set (u := base (Pos.shiftl_nat wm_base n)). assert (0 < u). unfold u, base; auto with zarith. replace (u^2) with (u * u); simpl; auto with zarith. - apply Zle_trans with (1 * u); auto with zarith. - unfold Zpower_pos; simpl; ring. + apply Z.le_trans with (1 * u); auto with zarith. + unfold Z.pow_pos; simpl; ring. Qed. Lemma spec_compare_mn_1: forall n x y, - compare_mn_1 n x y = Zcompare (double_to_Z n x) (w_to_Z y). + compare_mn_1 n x y = Z.compare (double_to_Z n x) (w_to_Z y). Proof. intros n; elim n; simpl; auto; clear n. intros n Hrec x; case x; clear x; auto. intros y; rewrite spec_compare; rewrite w_to_Z_0. reflexivity. intros xh xl y; simpl; - rewrite spec_compare0_mn, Hrec. case Zcompare_spec. + rewrite spec_compare0_mn, Hrec. case Z.compare_spec. intros H1b. - rewrite <- H1b; rewrite Zmult_0_l; rewrite Zplus_0_l; auto. - symmetry. apply Zlt_gt. + rewrite <- H1b; rewrite Z.mul_0_l; rewrite Z.add_0_l; auto. + symmetry. apply Z.lt_gt. case (double_wB_lt n y); intros _ H0. - apply Zlt_le_trans with (1:= H0). + apply Z.lt_le_trans with (1:= H0). fold double_wB. case (double_to_Z_pos n xl); intros H1 H2. - apply Zle_trans with (double_to_Z n xh * double_wB n); auto with zarith. - apply Zle_trans with (1 * double_wB n); auto with zarith. + apply Z.le_trans with (double_to_Z n xh * double_wB n); auto with zarith. + apply Z.le_trans with (1 * double_wB n); auto with zarith. case (double_to_Z_pos n xh); intros; exfalso; omega. Qed. @@ -440,8 +440,8 @@ End AddS. Proof. intros x; elim x; clear x; [intros x1 Hrec | intros x1 Hrec | idtac]; intros y; case y; clear y; intros y1 H || intros H; simpl length_pos; - try (rewrite (Zpos_xI x1) || rewrite (Zpos_xO x1)); - try (rewrite (Zpos_xI y1) || rewrite (Zpos_xO y1)); + try (rewrite (Pos2Z.inj_xI x1) || rewrite (Pos2Z.inj_xO x1)); + try (rewrite (Pos2Z.inj_xI y1) || rewrite (Pos2Z.inj_xO y1)); try (inversion H; fail); try (assert (Zpos x1 < Zpos y1); [apply Hrec; apply lt_S_n | idtac]; auto with zarith); assert (0 < Zpos y1); auto with zarith; red; auto. diff --git a/theories/Numbers/Natural/Binary/NBinary.v b/theories/Numbers/Natural/Binary/NBinary.v index 43ca67dd..3150c561 100644 --- a/theories/Numbers/Natural/Binary/NBinary.v +++ b/theories/Numbers/Natural/Binary/NBinary.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 -| xO p' => Nsucc (binposlog p') -| xI p' => Nsucc (binposlog p') +| xO p' => N.succ (binposlog p') +| xI p' => N.succ (binposlog p') end. Definition binlog (n : N) : N := diff --git a/theories/Numbers/Natural/Peano/NPeano.v b/theories/Numbers/Natural/Peano/NPeano.v index d5df6329..a510b3ae 100644 --- a/theories/Numbers/Natural/Peano/NPeano.v +++ b/theories/Numbers/Natural/Peano/NPeano.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* eq==>eq) modulo. Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b). Proof. -intros a b. zify. intros. apply Z_div_mod_eq_full; auto. +intros a b. zify. intros. apply Z.div_mod; auto. Qed. Theorem mod_bound_pos : forall a b, 0<=a -> 0 @@ -444,7 +444,7 @@ Qed. (** Recursion *) Definition recursion (A : Type) (a : A) (f : NN.t -> A -> A) (n : NN.t) := - Nrect (fun _ => A) a (fun n a => f (NN.of_N n) a) (NN.to_N n). + N.peano_rect (fun _ => A) a (fun n a => f (NN.of_N n) a) (NN.to_N n). Arguments recursion [A] a f n. Instance recursion_wd (A : Type) (Aeq : relation A) : @@ -457,7 +457,7 @@ unfold NN.to_N. rewrite <- Exx'; clear x' Exx'. induction (Z.to_N [x]) using N.peano_ind. simpl; auto. -rewrite 2 Nrect_step. now apply Eff'. +rewrite 2 N.peano_rect_succ. now apply Eff'. Qed. Theorem recursion_0 : @@ -474,7 +474,7 @@ Proof. unfold eq, recursion; intros A Aeq a f EAaa f_wd n. replace (to_N (succ n)) with (N.succ (to_N n)) by (zify; now rewrite <- Z2N.inj_succ by apply spec_pos). -rewrite Nrect_step. +rewrite N.peano_rect_succ. apply f_wd; auto. zify. now rewrite Z2N.id by apply spec_pos. fold (recursion a f n). apply recursion_wd; auto. red; auto. diff --git a/theories/Numbers/NumPrelude.v b/theories/Numbers/NumPrelude.v index ba7859ee..d637295e 100644 --- a/theories/Numbers/NumPrelude.v +++ b/theories/Numbers/NumPrelude.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Z.t. - Parameter spec_Z_of_N : forall n, Z.to_Z (Z_of_N n) = N.to_Z n. - Parameter Zabs_N : Z.t -> N.t. - Parameter spec_Zabs_N : forall z, N.to_Z (Zabs_N z) = Zabs (Z.to_Z z). +Module Type NType_ZType (NN:NType)(ZZ:ZType). + Parameter Z_of_N : NN.t -> ZZ.t. + Parameter spec_Z_of_N : forall n, ZZ.to_Z (Z_of_N n) = NN.to_Z n. + Parameter Zabs_N : ZZ.t -> NN.t. + Parameter spec_Zabs_N : forall z, NN.to_Z (Zabs_N z) = Z.abs (ZZ.to_Z z). End NType_ZType. -Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. +Module Make (NN:NType)(ZZ:ZType)(Import NZ:NType_ZType NN ZZ) <: QType. (** The notation of a rational number is either an integer x, interpreted as itself or a pair (x,y) of an integer x and a natural @@ -34,8 +34,8 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. interpreted as 0. *) Inductive t_ := - | Qz : Z.t -> t_ - | Qq : Z.t -> N.t -> t_. + | Qz : ZZ.t -> t_ + | Qq : ZZ.t -> NN.t -> t_. Definition t := t_. @@ -45,41 +45,41 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Local Open Scope Q_scope. - Definition of_Z x: t := Qz (Z.of_Z x). + Definition of_Z x: t := Qz (ZZ.of_Z x). Definition of_Q (q:Q) : t := let (x,y) := q in match y with - | 1%positive => Qz (Z.of_Z x) - | _ => Qq (Z.of_Z x) (N.of_N (Npos y)) + | 1%positive => Qz (ZZ.of_Z x) + | _ => Qq (ZZ.of_Z x) (NN.of_N (Npos y)) end. Definition to_Q (q: t) := match q with - | Qz x => Z.to_Z x # 1 - | Qq x y => if N.eqb y N.zero then 0 - else Z.to_Z x # Z2P (N.to_Z y) + | Qz x => ZZ.to_Z x # 1 + | Qq x y => if NN.eqb y NN.zero then 0 + else ZZ.to_Z x # Z.to_pos (NN.to_Z y) end. Notation "[ x ]" := (to_Q x). Lemma N_to_Z_pos : - forall x, (N.to_Z x <> N.to_Z N.zero)%Z -> (0 < N.to_Z x)%Z. + forall x, (NN.to_Z x <> NN.to_Z NN.zero)%Z -> (0 < NN.to_Z x)%Z. Proof. - intros x; rewrite N.spec_0; generalize (N.spec_pos x). romega. + intros x; rewrite NN.spec_0; generalize (NN.spec_pos x). romega. Qed. Ltac destr_zcompare := case Z.compare_spec; intros ?H. Ltac destr_eqb := match goal with - | |- context [Z.eqb ?x ?y] => - rewrite (Z.spec_eqb x y); - case (Z.eqb_spec (Z.to_Z x) (Z.to_Z y)); + | |- context [ZZ.eqb ?x ?y] => + rewrite (ZZ.spec_eqb x y); + case (Z.eqb_spec (ZZ.to_Z x) (ZZ.to_Z y)); destr_eqb - | |- context [N.eqb ?x ?y] => - rewrite (N.spec_eqb x y); - case (Z.eqb_spec (N.to_Z x) (N.to_Z y)); + | |- context [NN.eqb ?x ?y] => + rewrite (NN.spec_eqb x y); + case (Z.eqb_spec (NN.to_Z x) (NN.to_Z y)); [ | let H:=fresh "H" in try (intro H;generalize (N_to_Z_pos _ H); clear H)]; destr_eqb @@ -87,11 +87,11 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. end. Hint Rewrite - Zplus_0_r Zplus_0_l Zmult_0_r Zmult_0_l Zmult_1_r Zmult_1_l - Z.spec_0 N.spec_0 Z.spec_1 N.spec_1 Z.spec_m1 Z.spec_opp - Z.spec_compare N.spec_compare - Z.spec_add N.spec_add Z.spec_mul N.spec_mul Z.spec_div N.spec_div - Z.spec_gcd N.spec_gcd Zgcd_Zabs Zgcd_1 + Z.add_0_r Z.add_0_l Z.mul_0_r Z.mul_0_l Z.mul_1_r Z.mul_1_l + ZZ.spec_0 NN.spec_0 ZZ.spec_1 NN.spec_1 ZZ.spec_m1 ZZ.spec_opp + ZZ.spec_compare NN.spec_compare + ZZ.spec_add NN.spec_add ZZ.spec_mul NN.spec_mul ZZ.spec_div NN.spec_div + ZZ.spec_gcd NN.spec_gcd Z.gcd_abs_l Z.gcd_1_r spec_Z_of_N spec_Zabs_N : nz. @@ -99,13 +99,13 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Ltac qsimpl := try red; unfold to_Q; simpl; intros; destr_eqb; simpl; nzsimpl; intros; - rewrite ?Z2P_correct by auto; + rewrite ?Z2Pos.id by auto; auto. Theorem strong_spec_of_Q: forall q: Q, [of_Q q] = q. Proof. - intros(x,y); destruct y; simpl; rewrite ?Z.spec_of_Z; auto; - destr_eqb; now rewrite ?N.spec_0, ?N.spec_of_N. + intros(x,y); destruct y; simpl; rewrite ?ZZ.spec_of_Z; auto; + destr_eqb; now rewrite ?NN.spec_0, ?NN.spec_of_N. Qed. Theorem spec_of_Q: forall q: Q, [of_Q q] == q. @@ -115,9 +115,9 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Definition eq x y := [x] == [y]. - Definition zero: t := Qz Z.zero. - Definition one: t := Qz Z.one. - Definition minus_one: t := Qz Z.minus_one. + Definition zero: t := Qz ZZ.zero. + Definition one: t := Qz ZZ.one. + Definition minus_one: t := Qz ZZ.minus_one. Lemma spec_0: [zero] == 0. Proof. @@ -136,20 +136,20 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Definition compare (x y: t) := match x, y with - | Qz zx, Qz zy => Z.compare zx zy + | Qz zx, Qz zy => ZZ.compare zx zy | Qz zx, Qq ny dy => - if N.eqb dy N.zero then Z.compare zx Z.zero - else Z.compare (Z.mul zx (Z_of_N dy)) ny + if NN.eqb dy NN.zero then ZZ.compare zx ZZ.zero + else ZZ.compare (ZZ.mul zx (Z_of_N dy)) ny | Qq nx dx, Qz zy => - if N.eqb dx N.zero then Z.compare Z.zero zy - else Z.compare nx (Z.mul zy (Z_of_N dx)) + if NN.eqb dx NN.zero then ZZ.compare ZZ.zero zy + else ZZ.compare nx (ZZ.mul zy (Z_of_N dx)) | Qq nx dx, Qq ny dy => - match N.eqb dx N.zero, N.eqb dy N.zero with + match NN.eqb dx NN.zero, NN.eqb dy NN.zero with | true, true => Eq - | true, false => Z.compare Z.zero ny - | false, true => Z.compare nx Z.zero - | false, false => Z.compare (Z.mul nx (Z_of_N dy)) - (Z.mul ny (Z_of_N dx)) + | true, false => ZZ.compare ZZ.zero ny + | false, true => ZZ.compare nx ZZ.zero + | false, false => ZZ.compare (ZZ.mul nx (Z_of_N dy)) + (ZZ.mul ny (Z_of_N dx)) end end. @@ -188,7 +188,7 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. (** [check_int] : is a reduced fraction [n/d] in fact a integer ? *) Definition check_int n d := - match N.compare N.one d with + match NN.compare NN.one d with | Lt => Qq n d | Eq => Qz n | Gt => zero (* n/0 encodes 0 *) @@ -207,9 +207,9 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. (** Normalisation function *) Definition norm n d : t := - let gcd := N.gcd (Zabs_N n) d in - match N.compare N.one gcd with - | Lt => check_int (Z.div n (Z_of_N gcd)) (N.div d gcd) + let gcd := NN.gcd (Zabs_N n) d in + match NN.compare NN.one gcd with + | Lt => check_int (ZZ.div n (Z_of_N gcd)) (NN.div d gcd) | Eq => check_int n d | Gt => zero (* gcd = 0 => both numbers are 0 *) end. @@ -217,8 +217,8 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Theorem spec_norm: forall n q, [norm n q] == [Qq n q]. Proof. intros p q; unfold norm. - assert (Hp := N.spec_pos (Zabs_N p)). - assert (Hq := N.spec_pos q). + assert (Hp := NN.spec_pos (Zabs_N p)). + assert (Hq := NN.spec_pos q). nzsimpl. destr_zcompare. (* Eq *) @@ -226,15 +226,15 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. (* Lt *) rewrite strong_spec_check_int. qsimpl. - generalize (Zgcd_div_pos (Z.to_Z p) (N.to_Z q)). romega. - replace (N.to_Z q) with 0%Z in * by assumption. + generalize (Zgcd_div_pos (ZZ.to_Z p) (NN.to_Z q)). romega. + replace (NN.to_Z q) with 0%Z in * by assumption. rewrite Zdiv_0_l in *; auto with zarith. apply Zgcd_div_swap0; romega. (* Gt *) qsimpl. - assert (H' : Zgcd (Z.to_Z p) (N.to_Z q) = 0%Z). - generalize (Zgcd_is_pos (Z.to_Z p) (N.to_Z q)); romega. - symmetry; apply (Zgcd_inv_0_l _ _ H'); auto. + assert (H' : Z.gcd (ZZ.to_Z p) (NN.to_Z q) = 0%Z). + generalize (Z.gcd_nonneg (ZZ.to_Z p) (NN.to_Z q)); romega. + symmetry; apply (Z.gcd_eq_0_l _ _ H'); auto. Qed. Theorem strong_spec_norm : forall p q, [norm p q] = Qred [Qq p q]. @@ -244,8 +244,8 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. (apply Qred_complete; apply spec_norm). symmetry; apply Qred_identity. unfold norm. - assert (Hp := N.spec_pos (Zabs_N p)). - assert (Hq := N.spec_pos q). + assert (Hp := NN.spec_pos (Zabs_N p)). + assert (Hq := NN.spec_pos q). nzsimpl. destr_zcompare; rewrite ?strong_spec_check_int. (* Eq *) @@ -253,10 +253,10 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. (* Lt *) qsimpl. rewrite Zgcd_1_rel_prime. - destruct (Z_lt_le_dec 0 (N.to_Z q)). + destruct (Z_lt_le_dec 0 (NN.to_Z q)). apply Zis_gcd_rel_prime; auto with zarith. apply Zgcd_is_gcd. - replace (N.to_Z q) with 0%Z in * by romega. + replace (NN.to_Z q) with 0%Z in * by romega. rewrite Zdiv_0_l in *; romega. (* Gt *) simpl; auto with zarith. @@ -292,20 +292,20 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. match x with | Qz zx => match y with - | Qz zy => Qz (Z.add zx zy) + | Qz zy => Qz (ZZ.add zx zy) | Qq ny dy => - if N.eqb dy N.zero then x - else Qq (Z.add (Z.mul zx (Z_of_N dy)) ny) dy + if NN.eqb dy NN.zero then x + else Qq (ZZ.add (ZZ.mul zx (Z_of_N dy)) ny) dy end | Qq nx dx => - if N.eqb dx N.zero then y + if NN.eqb dx NN.zero then y else match y with - | Qz zy => Qq (Z.add nx (Z.mul zy (Z_of_N dx))) dx + | Qz zy => Qq (ZZ.add nx (ZZ.mul zy (Z_of_N dx))) dx | Qq ny dy => - if N.eqb dy N.zero then x + if NN.eqb dy NN.zero then x else - let n := Z.add (Z.mul nx (Z_of_N dy)) (Z.mul ny (Z_of_N dx)) in - let d := N.mul dx dy in + let n := ZZ.add (ZZ.mul nx (Z_of_N dy)) (ZZ.mul ny (Z_of_N dx)) in + let d := NN.mul dx dy in Qq n d end end. @@ -314,30 +314,30 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Proof. intros [x | nx dx] [y | ny dy]; unfold Qplus; qsimpl; auto with zarith. - rewrite Pmult_1_r, Z2P_correct; auto. - rewrite Pmult_1_r, Z2P_correct; auto. - destruct (Zmult_integral (N.to_Z dx) (N.to_Z dy)); intuition. - rewrite Zpos_mult_morphism, 2 Z2P_correct; auto. + rewrite Pos.mul_1_r, Z2Pos.id; auto. + rewrite Pos.mul_1_r, Z2Pos.id; auto. + rewrite Z.mul_eq_0 in *; intuition. + rewrite Pos2Z.inj_mul, 2 Z2Pos.id; auto. Qed. Definition add_norm (x y: t): t := match x with | Qz zx => match y with - | Qz zy => Qz (Z.add zx zy) + | Qz zy => Qz (ZZ.add zx zy) | Qq ny dy => - if N.eqb dy N.zero then x - else norm (Z.add (Z.mul zx (Z_of_N dy)) ny) dy + if NN.eqb dy NN.zero then x + else norm (ZZ.add (ZZ.mul zx (Z_of_N dy)) ny) dy end | Qq nx dx => - if N.eqb dx N.zero then y + if NN.eqb dx NN.zero then y else match y with - | Qz zy => norm (Z.add nx (Z.mul zy (Z_of_N dx))) dx + | Qz zy => norm (ZZ.add nx (ZZ.mul zy (Z_of_N dx))) dx | Qq ny dy => - if N.eqb dy N.zero then x + if NN.eqb dy NN.zero then x else - let n := Z.add (Z.mul nx (Z_of_N dy)) (Z.mul ny (Z_of_N dx)) in - let d := N.mul dx dy in + let n := ZZ.add (ZZ.mul nx (Z_of_N dy)) (ZZ.mul ny (Z_of_N dx)) in + let d := NN.mul dx dy in norm n d end end. @@ -363,18 +363,18 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Definition opp (x: t): t := match x with - | Qz zx => Qz (Z.opp zx) - | Qq nx dx => Qq (Z.opp nx) dx + | Qz zx => Qz (ZZ.opp zx) + | Qq nx dx => Qq (ZZ.opp nx) dx end. Theorem strong_spec_opp: forall q, [opp q] = -[q]. Proof. intros [z | x y]; simpl. - rewrite Z.spec_opp; auto. - match goal with |- context[N.eqb ?X ?Y] => - generalize (N.spec_eqb X Y); case N.eqb - end; auto; rewrite N.spec_0. - rewrite Z.spec_opp; auto. + rewrite ZZ.spec_opp; auto. + match goal with |- context[NN.eqb ?X ?Y] => + generalize (NN.spec_eqb X Y); case NN.eqb + end; auto; rewrite NN.spec_0. + rewrite ZZ.spec_opp; auto. Qed. Theorem spec_opp : forall q, [opp q] == -[q]. @@ -416,28 +416,28 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Definition mul (x y: t): t := match x, y with - | Qz zx, Qz zy => Qz (Z.mul zx zy) - | Qz zx, Qq ny dy => Qq (Z.mul zx ny) dy - | Qq nx dx, Qz zy => Qq (Z.mul nx zy) dx - | Qq nx dx, Qq ny dy => Qq (Z.mul nx ny) (N.mul dx dy) + | Qz zx, Qz zy => Qz (ZZ.mul zx zy) + | Qz zx, Qq ny dy => Qq (ZZ.mul zx ny) dy + | Qq nx dx, Qz zy => Qq (ZZ.mul nx zy) dx + | Qq nx dx, Qq ny dy => Qq (ZZ.mul nx ny) (NN.mul dx dy) end. Ltac nsubst := - match goal with E : N.to_Z _ = _ |- _ => rewrite E in * end. + match goal with E : NN.to_Z _ = _ |- _ => rewrite E in * end. Theorem spec_mul : forall x y, [mul x y] == [x] * [y]. Proof. intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl; qsimpl. - rewrite Pmult_1_r, Z2P_correct; auto. - destruct (Zmult_integral (N.to_Z dx) (N.to_Z dy)); intuition. + rewrite Pos.mul_1_r, Z2Pos.id; auto. + rewrite Z.mul_eq_0 in *; intuition. nsubst; auto with zarith. nsubst; auto with zarith. nsubst; nzsimpl; auto with zarith. - rewrite Zpos_mult_morphism, 2 Z2P_correct; auto. + rewrite Pos2Z.inj_mul, 2 Z2Pos.id; auto. Qed. Definition norm_denum n d := - if N.eqb d N.one then Qz n else Qq n d. + if NN.eqb d NN.one then Qz n else Qq n d. Lemma spec_norm_denum : forall n d, [norm_denum n d] == [Qq n d]. @@ -448,40 +448,40 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Qed. Definition irred n d := - let gcd := N.gcd (Zabs_N n) d in - match N.compare gcd N.one with - | Gt => (Z.div n (Z_of_N gcd), N.div d gcd) + let gcd := NN.gcd (Zabs_N n) d in + match NN.compare gcd NN.one with + | Gt => (ZZ.div n (Z_of_N gcd), NN.div d gcd) | _ => (n, d) end. Lemma spec_irred : forall n d, exists g, let (n',d') := irred n d in - (Z.to_Z n' * g = Z.to_Z n)%Z /\ (N.to_Z d' * g = N.to_Z d)%Z. + (ZZ.to_Z n' * g = ZZ.to_Z n)%Z /\ (NN.to_Z d' * g = NN.to_Z d)%Z. Proof. intros. unfold irred; nzsimpl; simpl. destr_zcompare. exists 1%Z; nzsimpl; auto. exists 0%Z; nzsimpl. - assert (Zgcd (Z.to_Z n) (N.to_Z d) = 0%Z). - generalize (Zgcd_is_pos (Z.to_Z n) (N.to_Z d)); romega. + assert (Z.gcd (ZZ.to_Z n) (NN.to_Z d) = 0%Z). + generalize (Z.gcd_nonneg (ZZ.to_Z n) (NN.to_Z d)); romega. clear H. split. - symmetry; apply (Zgcd_inv_0_l _ _ H0). - symmetry; apply (Zgcd_inv_0_r _ _ H0). - exists (Zgcd (Z.to_Z n) (N.to_Z d)). + symmetry; apply (Z.gcd_eq_0_l _ _ H0). + symmetry; apply (Z.gcd_eq_0_r _ _ H0). + exists (Z.gcd (ZZ.to_Z n) (NN.to_Z d)). simpl. split. nzsimpl. - destruct (Zgcd_is_gcd (Z.to_Z n) (N.to_Z d)). - rewrite Zmult_comm; symmetry; apply Zdivide_Zdiv_eq; auto with zarith. + destruct (Zgcd_is_gcd (ZZ.to_Z n) (NN.to_Z d)). + rewrite Z.mul_comm; symmetry; apply Zdivide_Zdiv_eq; auto with zarith. nzsimpl. - destruct (Zgcd_is_gcd (Z.to_Z n) (N.to_Z d)). - rewrite Zmult_comm; symmetry; apply Zdivide_Zdiv_eq; auto with zarith. + destruct (Zgcd_is_gcd (ZZ.to_Z n) (NN.to_Z d)). + rewrite Z.mul_comm; symmetry; apply Zdivide_Zdiv_eq; auto with zarith. Qed. Lemma spec_irred_zero : forall n d, - (N.to_Z d = 0)%Z <-> (N.to_Z (snd (irred n d)) = 0)%Z. + (NN.to_Z d = 0)%Z <-> (NN.to_Z (snd (irred n d)) = 0)%Z. Proof. intros. unfold irred. @@ -494,8 +494,8 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. nzsimpl; destr_zcompare; simpl; auto. nzsimpl. intros. - generalize (N.spec_pos d); intros. - destruct (N.to_Z d); auto. + generalize (NN.spec_pos d); intros. + destruct (NN.to_Z d); auto. assert (0 < 0)%Z. rewrite <- H0 at 2. apply Zgcd_div_pos; auto with zarith. @@ -505,49 +505,49 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Qed. Lemma strong_spec_irred : forall n d, - (N.to_Z d <> 0%Z) -> - let (n',d') := irred n d in Zgcd (Z.to_Z n') (N.to_Z d') = 1%Z. + (NN.to_Z d <> 0%Z) -> + let (n',d') := irred n d in Z.gcd (ZZ.to_Z n') (NN.to_Z d') = 1%Z. Proof. unfold irred; intros. nzsimpl. destr_zcompare; simpl; auto. elim H. - apply (Zgcd_inv_0_r (Z.to_Z n)). - generalize (Zgcd_is_pos (Z.to_Z n) (N.to_Z d)); romega. + apply (Z.gcd_eq_0_r (ZZ.to_Z n)). + generalize (Z.gcd_nonneg (ZZ.to_Z n) (NN.to_Z d)); romega. nzsimpl. rewrite Zgcd_1_rel_prime. apply Zis_gcd_rel_prime. - generalize (N.spec_pos d); romega. - generalize (Zgcd_is_pos (Z.to_Z n) (N.to_Z d)); romega. + generalize (NN.spec_pos d); romega. + generalize (Z.gcd_nonneg (ZZ.to_Z n) (NN.to_Z d)); romega. apply Zgcd_is_gcd; auto. Qed. Definition mul_norm_Qz_Qq z n d := - if Z.eqb z Z.zero then zero + if ZZ.eqb z ZZ.zero then zero else - let gcd := N.gcd (Zabs_N z) d in - match N.compare gcd N.one with + let gcd := NN.gcd (Zabs_N z) d in + match NN.compare gcd NN.one with | Gt => - let z := Z.div z (Z_of_N gcd) in - let d := N.div d gcd in - norm_denum (Z.mul z n) d - | _ => Qq (Z.mul z n) d + let z := ZZ.div z (Z_of_N gcd) in + let d := NN.div d gcd in + norm_denum (ZZ.mul z n) d + | _ => Qq (ZZ.mul z n) d end. Definition mul_norm (x y: t): t := match x, y with - | Qz zx, Qz zy => Qz (Z.mul zx zy) + | Qz zx, Qz zy => Qz (ZZ.mul zx zy) | Qz zx, Qq ny dy => mul_norm_Qz_Qq zx ny dy | Qq nx dx, Qz zy => mul_norm_Qz_Qq zy nx dx | Qq nx dx, Qq ny dy => let (nx, dy) := irred nx dy in let (ny, dx) := irred ny dx in - norm_denum (Z.mul ny nx) (N.mul dx dy) + norm_denum (ZZ.mul ny nx) (NN.mul dx dy) end. Lemma spec_mul_norm_Qz_Qq : forall z n d, - [mul_norm_Qz_Qq z n d] == [Qq (Z.mul z n) d]. + [mul_norm_Qz_Qq z n d] == [Qq (ZZ.mul z n) d]. Proof. intros z n d; unfold mul_norm_Qz_Qq; nzsimpl; rewrite Zcompare_gt. destr_eqb; nzsimpl; intros Hz. @@ -558,7 +558,7 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. qsimpl. rewrite Zdiv_gcd_zero in GT; auto with zarith. nsubst. rewrite Zdiv_0_l in *; discriminate. - rewrite <- Zmult_assoc, (Zmult_comm (Z.to_Z n)), Zmult_assoc. + rewrite <- Z.mul_assoc, (Z.mul_comm (ZZ.to_Z n)), Z.mul_assoc. rewrite Zgcd_div_swap0; try romega. ring. Qed. @@ -582,34 +582,34 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. destr_eqb; simpl; nzsimpl; auto. nzsimpl; rewrite Hd, Zdiv_0_l; auto with zarith. - rewrite Z2P_correct in H; auto. + rewrite Z2Pos.id in H; auto. unfold mul_norm_Qz_Qq; nzsimpl; rewrite Zcompare_gt. destr_eqb; intros Hz; simpl; nzsimpl; simpl; auto. destruct Z_le_gt_dec as [H'|H']. simpl; nzsimpl. destr_eqb; simpl; nzsimpl; auto. intros. - rewrite Z2P_correct; auto. + rewrite Z2Pos.id; auto. apply Zgcd_mult_rel_prime; auto. - generalize (Zgcd_inv_0_l (Z.to_Z z) (N.to_Z d)) - (Zgcd_is_pos (Z.to_Z z) (N.to_Z d)); romega. + generalize (Z.gcd_eq_0_l (ZZ.to_Z z) (NN.to_Z d)) + (Z.gcd_nonneg (ZZ.to_Z z) (NN.to_Z d)); romega. destr_eqb; simpl; nzsimpl; auto. unfold norm_denum. destr_eqb; nzsimpl; simpl; destr_eqb; simpl; auto. intros; nzsimpl. - rewrite Z2P_correct; auto. + rewrite Z2Pos.id; auto. apply Zgcd_mult_rel_prime. rewrite Zgcd_1_rel_prime. apply Zis_gcd_rel_prime. - generalize (N.spec_pos d); romega. - generalize (Zgcd_is_pos (Z.to_Z z) (N.to_Z d)); romega. + generalize (NN.spec_pos d); romega. + generalize (Z.gcd_nonneg (ZZ.to_Z z) (NN.to_Z d)); romega. apply Zgcd_is_gcd. - destruct (Zgcd_is_gcd (Z.to_Z z) (N.to_Z d)) as [ (z0,Hz0) (d0,Hd0) Hzd]. - replace (N.to_Z d / Zgcd (Z.to_Z z) (N.to_Z d))%Z with d0. + destruct (Zgcd_is_gcd (ZZ.to_Z z) (NN.to_Z d)) as [ (z0,Hz0) (d0,Hd0) Hzd]. + replace (NN.to_Z d / Z.gcd (ZZ.to_Z z) (NN.to_Z d))%Z with d0. rewrite Zgcd_1_rel_prime in *. apply bezout_rel_prime. destruct (rel_prime_bezout _ _ H) as [u v Huv]. - apply Bezout_intro with u (v*(Zgcd (Z.to_Z z) (N.to_Z d)))%Z. + apply Bezout_intro with u (v*(Z.gcd (ZZ.to_Z z) (NN.to_Z d)))%Z. rewrite <- Huv; rewrite Hd0 at 2; ring. rewrite Hd0 at 1. symmetry; apply Z_div_mult_full; auto with zarith. @@ -634,14 +634,14 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. qsimpl. match goal with E : (_ * _ = 0)%Z |- _ => - destruct (Zmult_integral _ _ E) as [Eq|Eq] end. + rewrite Z.mul_eq_0 in E; destruct E as [Eq|Eq] end. rewrite Eq in *; simpl in *. rewrite <- Hg2' in *; auto with zarith. rewrite Eq in *; simpl in *. rewrite <- Hg2 in *; auto with zarith. match goal with E : (_ * _ = 0)%Z |- _ => - destruct (Zmult_integral _ _ E) as [Eq|Eq] end. + rewrite Z.mul_eq_0 in E; destruct E as [Eq|Eq] end. rewrite Hz' in Eq; rewrite Eq in *; auto with zarith. rewrite Hz in Eq; rewrite Eq in *; auto with zarith. @@ -671,31 +671,31 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. unfold norm_denum; qsimpl. - assert (NEQ : N.to_Z dy <> 0%Z) by + assert (NEQ : NN.to_Z dy <> 0%Z) by (rewrite Hz; intros EQ; rewrite EQ in *; romega). specialize (Hgc NEQ). - assert (NEQ' : N.to_Z dx <> 0%Z) by + assert (NEQ' : NN.to_Z dx <> 0%Z) by (rewrite Hz'; intro EQ; rewrite EQ in *; romega). specialize (Hgc' NEQ'). revert H H0. rewrite 2 strong_spec_red, 2 Qred_iff; simpl. destr_eqb; simpl; nzsimpl; try romega; intros. - rewrite Z2P_correct in *; auto. + rewrite Z2Pos.id in *; auto. - apply Zgcd_mult_rel_prime; rewrite Zgcd_comm; - apply Zgcd_mult_rel_prime; rewrite Zgcd_comm; auto. + apply Zgcd_mult_rel_prime; rewrite Z.gcd_comm; + apply Zgcd_mult_rel_prime; rewrite Z.gcd_comm; auto. rewrite Zgcd_1_rel_prime in *. apply bezout_rel_prime. - destruct (rel_prime_bezout (Z.to_Z ny) (N.to_Z dy)) as [u v Huv]; trivial. + destruct (rel_prime_bezout (ZZ.to_Z ny) (NN.to_Z dy)) as [u v Huv]; trivial. apply Bezout_intro with (u*g')%Z (v*g)%Z. rewrite <- Huv, <- Hg1', <- Hg2. ring. rewrite Zgcd_1_rel_prime in *. apply bezout_rel_prime. - destruct (rel_prime_bezout (Z.to_Z nx) (N.to_Z dx)) as [u v Huv]; trivial. + destruct (rel_prime_bezout (ZZ.to_Z nx) (NN.to_Z dx)) as [u v Huv]; trivial. apply Bezout_intro with (u*g)%Z (v*g')%Z. rewrite <- Huv, <- Hg2', <- Hg1. ring. Qed. @@ -703,16 +703,16 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Definition inv (x: t): t := match x with | Qz z => - match Z.compare Z.zero z with + match ZZ.compare ZZ.zero z with | Eq => zero - | Lt => Qq Z.one (Zabs_N z) - | Gt => Qq Z.minus_one (Zabs_N z) + | Lt => Qq ZZ.one (Zabs_N z) + | Gt => Qq ZZ.minus_one (Zabs_N z) end | Qq n d => - match Z.compare Z.zero n with + match ZZ.compare ZZ.zero n with | Eq => zero | Lt => Qq (Z_of_N d) (Zabs_N n) - | Gt => Qq (Z.opp (Z_of_N d)) (Zabs_N n) + | Gt => Qq (ZZ.opp (Z_of_N d)) (Zabs_N n) end end. @@ -721,29 +721,29 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. destruct x as [ z | n d ]. (* Qz z *) simpl. - rewrite Z.spec_compare; destr_zcompare. + rewrite ZZ.spec_compare; destr_zcompare. (* 0 = z *) rewrite <- H. simpl; nzsimpl; compute; auto. (* 0 < z *) simpl. - destr_eqb; nzsimpl; [ intros; rewrite Zabs_eq in *; romega | intros _ ]. - set (z':=Z.to_Z z) in *; clearbody z'. + destr_eqb; nzsimpl; [ intros; rewrite Z.abs_eq in *; romega | intros _ ]. + set (z':=ZZ.to_Z z) in *; clearbody z'. red; simpl. - rewrite Zabs_eq by romega. - rewrite Z2P_correct by auto. + rewrite Z.abs_eq by romega. + rewrite Z2Pos.id by auto. unfold Qinv; simpl; destruct z'; simpl; auto; discriminate. (* 0 > z *) simpl. - destr_eqb; nzsimpl; [ intros; rewrite Zabs_non_eq in *; romega | intros _ ]. - set (z':=Z.to_Z z) in *; clearbody z'. + destr_eqb; nzsimpl; [ intros; rewrite Z.abs_neq in *; romega | intros _ ]. + set (z':=ZZ.to_Z z) in *; clearbody z'. red; simpl. - rewrite Zabs_non_eq by romega. - rewrite Z2P_correct by romega. + rewrite Z.abs_neq by romega. + rewrite Z2Pos.id by romega. unfold Qinv; simpl; destruct z'; simpl; auto; discriminate. (* Qq n d *) simpl. - rewrite Z.spec_compare; destr_zcompare. + rewrite ZZ.spec_compare; destr_zcompare. (* 0 = n *) rewrite <- H. simpl; nzsimpl. @@ -751,51 +751,51 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. (* 0 < n *) simpl. destr_eqb; nzsimpl; intros. - intros; rewrite Zabs_eq in *; romega. - intros; rewrite Zabs_eq in *; romega. + intros; rewrite Z.abs_eq in *; romega. + intros; rewrite Z.abs_eq in *; romega. nsubst; compute; auto. - set (n':=Z.to_Z n) in *; clearbody n'. - rewrite Zabs_eq by romega. + set (n':=ZZ.to_Z n) in *; clearbody n'. + rewrite Z.abs_eq by romega. red; simpl. - rewrite Z2P_correct by auto. + rewrite Z2Pos.id by auto. unfold Qinv; simpl; destruct n'; simpl; auto; try discriminate. - rewrite Zpos_mult_morphism, Z2P_correct; auto. + rewrite Pos2Z.inj_mul, Z2Pos.id; auto. (* 0 > n *) simpl. destr_eqb; nzsimpl; intros. - intros; rewrite Zabs_non_eq in *; romega. - intros; rewrite Zabs_non_eq in *; romega. + intros; rewrite Z.abs_neq in *; romega. + intros; rewrite Z.abs_neq in *; romega. nsubst; compute; auto. - set (n':=Z.to_Z n) in *; clearbody n'. + set (n':=ZZ.to_Z n) in *; clearbody n'. red; simpl; nzsimpl. - rewrite Zabs_non_eq by romega. - rewrite Z2P_correct by romega. + rewrite Z.abs_neq by romega. + rewrite Z2Pos.id by romega. unfold Qinv; simpl; destruct n'; simpl; auto; try discriminate. - assert (T : forall x, Zneg x = Zopp (Zpos x)) by auto. - rewrite T, Zpos_mult_morphism, Z2P_correct; auto; ring. + assert (T : forall x, Zneg x = Z.opp (Zpos x)) by auto. + rewrite T, Pos2Z.inj_mul, Z2Pos.id; auto; ring. Qed. Definition inv_norm (x: t): t := match x with | Qz z => - match Z.compare Z.zero z with + match ZZ.compare ZZ.zero z with | Eq => zero - | Lt => Qq Z.one (Zabs_N z) - | Gt => Qq Z.minus_one (Zabs_N z) + | Lt => Qq ZZ.one (Zabs_N z) + | Gt => Qq ZZ.minus_one (Zabs_N z) end | Qq n d => - if N.eqb d N.zero then zero else - match Z.compare Z.zero n with + if NN.eqb d NN.zero then zero else + match ZZ.compare ZZ.zero n with | Eq => zero | Lt => - match Z.compare n Z.one with + match ZZ.compare n ZZ.one with | Gt => Qq (Z_of_N d) (Zabs_N n) | _ => Qz (Z_of_N d) end | Gt => - match Z.compare n Z.minus_one with - | Lt => Qq (Z.opp (Z_of_N d)) (Zabs_N n) - | _ => Qz (Z.opp (Z_of_N d)) + match ZZ.compare n ZZ.minus_one with + | Lt => Qq (ZZ.opp (Z_of_N d)) (Zabs_N n) + | _ => Qz (ZZ.opp (Z_of_N d)) end end end. @@ -807,7 +807,7 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. destruct x as [ z | n d ]. (* Qz z *) simpl. - rewrite Z.spec_compare; destr_zcompare; auto with qarith. + rewrite ZZ.spec_compare; destr_zcompare; auto with qarith. (* Qq n d *) simpl; nzsimpl; destr_eqb. destr_zcompare; simpl; auto with qarith. @@ -818,12 +818,12 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. (* 0 < n *) destr_zcompare; auto with qarith. destr_zcompare; nzsimpl; simpl; auto with qarith; intros. - destr_eqb; nzsimpl; [ intros; rewrite Zabs_eq in *; romega | intros _ ]. + destr_eqb; nzsimpl; [ intros; rewrite Z.abs_eq in *; romega | intros _ ]. rewrite H0; auto with qarith. romega. (* 0 > n *) destr_zcompare; nzsimpl; simpl; auto with qarith. - destr_eqb; nzsimpl; [ intros; rewrite Zabs_non_eq in *; romega | intros _ ]. + destr_eqb; nzsimpl; [ intros; rewrite Z.abs_neq in *; romega | intros _ ]. rewrite H0; auto with qarith. romega. Qed. @@ -847,36 +847,36 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. (* 0 < n *) destr_zcompare; simpl; nzsimpl; auto. destr_eqb; nzsimpl; simpl; auto. - rewrite Zabs_eq; romega. + rewrite Z.abs_eq; romega. intros _. rewrite strong_spec_norm; simpl; nzsimpl. destr_eqb; nzsimpl. - rewrite Zabs_eq; romega. + rewrite Z.abs_eq; romega. intros _. rewrite Qred_iff. simpl. - rewrite Zabs_eq; auto with zarith. - rewrite Z2P_correct in *; auto. - rewrite Zgcd_comm; auto. + rewrite Z.abs_eq; auto with zarith. + rewrite Z2Pos.id in *; auto. + rewrite Z.gcd_comm; auto. (* 0 > n *) destr_eqb; nzsimpl; simpl; auto; intros. destr_zcompare; simpl; nzsimpl; auto. destr_eqb; nzsimpl. - rewrite Zabs_non_eq; romega. + rewrite Z.abs_neq; romega. intros _. rewrite strong_spec_norm; simpl; nzsimpl. destr_eqb; nzsimpl. - rewrite Zabs_non_eq; romega. + rewrite Z.abs_neq; romega. intros _. rewrite Qred_iff. simpl. - rewrite Z2P_correct in *; auto. + rewrite Z2Pos.id in *; auto. intros. - rewrite Zgcd_comm, Zgcd_Zabs, Zgcd_comm. + rewrite Z.gcd_comm, Z.gcd_abs_l, Z.gcd_comm. apply Zis_gcd_gcd; auto with zarith. apply Zis_gcd_minus. - rewrite Zopp_involutive, <- H1; apply Zgcd_is_gcd. - rewrite Zabs_non_eq; romega. + rewrite Z.opp_involutive, <- H1; apply Zgcd_is_gcd. + rewrite Z.abs_neq; romega. Qed. Definition div x y := mul x (inv y). @@ -909,31 +909,30 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Definition square (x: t): t := match x with - | Qz zx => Qz (Z.square zx) - | Qq nx dx => Qq (Z.square nx) (N.square dx) + | Qz zx => Qz (ZZ.square zx) + | Qq nx dx => Qq (ZZ.square nx) (NN.square dx) end. Theorem spec_square : forall x, [square x] == [x] ^ 2. Proof. destruct x as [ z | n d ]. - simpl; rewrite Z.spec_square; red; auto. + simpl; rewrite ZZ.spec_square; red; auto. simpl. destr_eqb; nzsimpl; intros. apply Qeq_refl. - rewrite N.spec_square in *; nzsimpl. - match goal with E : (_ * _ = 0)%Z |- _ => - elim (Zmult_integral _ _ E); romega end. - rewrite N.spec_square in *; nzsimpl; nsubst; romega. - rewrite Z.spec_square, N.spec_square. + rewrite NN.spec_square in *; nzsimpl. + rewrite Z.mul_eq_0 in *; romega. + rewrite NN.spec_square in *; nzsimpl; nsubst; romega. + rewrite ZZ.spec_square, NN.spec_square. red; simpl. - rewrite Zpos_mult_morphism; rewrite !Z2P_correct; auto. - apply Zmult_lt_0_compat; auto. + rewrite Pos2Z.inj_mul; rewrite !Z2Pos.id; auto. + apply Z.mul_pos_pos; auto. Qed. Definition power_pos (x : t) p : t := match x with - | Qz zx => Qz (Z.pow_pos zx p) - | Qq nx dx => Qq (Z.pow_pos nx p) (N.pow_pos dx p) + | Qz zx => Qz (ZZ.pow_pos zx p) + | Qq nx dx => Qq (ZZ.pow_pos nx p) (NN.pow_pos dx p) end. Theorem spec_power_pos : forall x p, [power_pos x p] == [x] ^ Zpos p. @@ -941,26 +940,26 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. intros [ z | n d ] p; unfold power_pos. (* Qz *) simpl. - rewrite Z.spec_pow_pos. - rewrite Qpower_decomp. + rewrite ZZ.spec_pow_pos, Qpower_decomp. red; simpl; f_equal. - rewrite Zpower_pos_1_l; auto. + now rewrite Pos2Z.inj_pow, Z.pow_1_l. (* Qq *) simpl. - rewrite Z.spec_pow_pos. + rewrite ZZ.spec_pow_pos. destr_eqb; nzsimpl; intros. - apply Qeq_sym; apply Qpower_positive_0. - rewrite N.spec_pow_pos in *. - assert (0 < N.to_Z d ^ ' p)%Z by - (apply Zpower_gt_0; auto with zarith). - romega. - exfalso. - rewrite N.spec_pow_pos in *. nsubst. - rewrite Zpower_0_l in *; [romega|discriminate]. - rewrite Qpower_decomp. - red; simpl; do 3 f_equal. - rewrite Z2P_correct by (generalize (N.spec_pos d); romega). - rewrite N.spec_pow_pos. auto. + - apply Qeq_sym; apply Qpower_positive_0. + - rewrite NN.spec_pow_pos in *. + assert (0 < NN.to_Z d ^ ' p)%Z by + (apply Z.pow_pos_nonneg; auto with zarith). + romega. + - exfalso. + rewrite NN.spec_pow_pos in *. nsubst. + rewrite Z.pow_0_l' in *; [romega|discriminate]. + - rewrite Qpower_decomp. + red; simpl; do 3 f_equal. + apply Pos2Z.inj. rewrite Pos2Z.inj_pow. + rewrite 2 Z2Pos.id by (generalize (NN.spec_pos d); romega). + now rewrite NN.spec_pow_pos. Qed. Instance strong_spec_power_pos x p `(Reduced x) : Reduced (power_pos x p). @@ -976,10 +975,10 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. unfold Reduced; rewrite strong_spec_red, Qred_iff; simpl. destr_eqb; nzsimpl; simpl; intros. exfalso. - rewrite N.spec_pow_pos in *. nsubst. - rewrite Zpower_0_l in *; [romega|discriminate]. - rewrite Z2P_correct in *; auto. - rewrite N.spec_pow_pos, Z.spec_pow_pos; auto. + rewrite NN.spec_pow_pos in *. nsubst. + rewrite Z.pow_0_l' in *; [romega|discriminate]. + rewrite Z2Pos.id in *; auto. + rewrite NN.spec_pow_pos, ZZ.spec_pow_pos; auto. rewrite Zgcd_1_rel_prime in *. apply rel_prime_Zpower; auto with zarith. Qed. @@ -1086,7 +1085,7 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. [[add x y]] = [[x]] + [[y]]. Proof. unfold to_Qc. - apply trans_equal with (!! ([x] + [y])). + transitivity (!! ([x] + [y])). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_add; auto. @@ -1100,7 +1099,7 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. [[add_norm x y]] = [[x]] + [[y]]. Proof. unfold to_Qc. - apply trans_equal with (!! ([x] + [y])). + transitivity (!! ([x] + [y])). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_add_norm; auto. @@ -1148,7 +1147,7 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. [[mul x y]] = [[x]] * [[y]]. Proof. unfold to_Qc. - apply trans_equal with (!! ([x] * [y])). + transitivity (!! ([x] * [y])). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_mul; auto. @@ -1162,7 +1161,7 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. [[mul_norm x y]] = [[x]] * [[y]]. Proof. unfold to_Qc. - apply trans_equal with (!! ([x] * [y])). + transitivity (!! ([x] * [y])). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_mul_norm; auto. @@ -1186,7 +1185,7 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. [[inv x]] = /[[x]]. Proof. unfold to_Qc. - apply trans_equal with (!! (/[x])). + transitivity (!! (/[x])). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_inv; auto. @@ -1200,7 +1199,7 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. [[inv_norm x]] = /[[x]]. Proof. unfold to_Qc. - apply trans_equal with (!! (/[x])). + transitivity (!! (/[x])). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_inv_norm; auto. @@ -1248,7 +1247,7 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Theorem spec_squarec x: [[square x]] = [[x]]^2. Proof. unfold to_Qc. - apply trans_equal with (!! ([x]^2)). + transitivity (!! ([x]^2)). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_square; auto. @@ -1262,24 +1261,24 @@ Module Make (N:NType)(Z:ZType)(Import NZ:NType_ZType N Z) <: QType. Qed. Theorem spec_power_posc x p: - [[power_pos x p]] = [[x]] ^ nat_of_P p. + [[power_pos x p]] = [[x]] ^ Pos.to_nat p. Proof. unfold to_Qc. - apply trans_equal with (!! ([x]^Zpos p)). + transitivity (!! ([x]^Zpos p)). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_power_pos; auto. - induction p using Pind. + induction p using Pos.peano_ind. simpl; ring. - rewrite Psucc_S; simpl Qcpower. + rewrite Pos2Nat.inj_succ; simpl Qcpower. rewrite <- IHp; clear IHp. unfold Qcmult, Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete. - setoid_replace ([x] ^ ' Psucc p)%Q with ([x] * [x] ^ ' p)%Q. + setoid_replace ([x] ^ ' Pos.succ p)%Q with ([x] * [x] ^ ' p)%Q. apply Qmult_comp; apply Qeq_sym; apply Qred_correct. simpl. - rewrite Pplus_one_succ_l. + rewrite <- Pos.add_1_l. rewrite Qpower_plus_positive; simpl; apply Qeq_refl. Qed. diff --git a/theories/Numbers/Rational/SpecViaQ/QSig.v b/theories/Numbers/Rational/SpecViaQ/QSig.v index 29e1e795..e199c713 100644 --- a/theories/Numbers/Rational/SpecViaQ/QSig.v +++ b/theories/Numbers/Rational/SpecViaQ/QSig.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x=y. Proof. apply Pos.eqb_eq. Qed. Lemma Pcompare_eq_Gt p q : (p ?= q) = Gt <-> p > q. Proof. reflexivity. Qed. -Lemma Pplus_one_succ_r p : Psucc p = p + 1. +Lemma Pplus_one_succ_r p : Pos.succ p = p + 1. Proof (eq_sym (Pos.add_1_r p)). -Lemma Pplus_one_succ_l p : Psucc p = 1 + p. +Lemma Pplus_one_succ_l p : Pos.succ p = 1 + p. Proof (eq_sym (Pos.add_1_l p)). -Lemma Pcompare_refl p : Pcompare p p Eq = Eq. +Lemma Pcompare_refl p : Pos.compare_cont p p Eq = Eq. Proof (Pos.compare_cont_refl p Eq). -Lemma Pcompare_Eq_eq : forall p q, Pcompare p q Eq = Eq -> p = q. +Lemma Pcompare_Eq_eq : forall p q, Pos.compare_cont p q Eq = Eq -> p = q. Proof Pos.compare_eq. -Lemma ZC4 p q : Pcompare p q Eq = CompOpp (Pcompare q p Eq). +Lemma ZC4 p q : Pos.compare_cont p q Eq = CompOpp (Pos.compare_cont q p Eq). Proof (Pos.compare_antisym q p). -Lemma Ppred_minus p : Ppred p = p - 1. +Lemma Ppred_minus p : Pos.pred p = p - 1. Proof (eq_sym (Pos.sub_1_r p)). Lemma Pminus_mask_Gt p q : p > q -> exists h : positive, - Pminus_mask p q = IsPos h /\ - q + h = p /\ (h = 1 \/ Pminus_mask_carry p q = IsPos (Ppred h)). + Pos.sub_mask p q = IsPos h /\ + q + h = p /\ (h = 1 \/ Pos.sub_mask_carry p q = IsPos (Pos.pred h)). Proof. intros H. apply Pos.gt_lt in H. destruct (Pos.sub_mask_pos p q H) as (r & U). diff --git a/theories/PArith/BinPosDef.v b/theories/PArith/BinPosDef.v index 7916511a..4beeea31 100644 --- a/theories/PArith/BinPosDef.v +++ b/theories/PArith/BinPosDef.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* eqb p q diff --git a/theories/PArith/PArith.v b/theories/PArith/PArith.v index 26b8265b..9d294026 100644 --- a/theories/PArith/PArith.v +++ b/theories/PArith/PArith.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Pos.to_nat (p - q) = Pos.to_nat p - Pos.to_nat q. -Proof (fun H => Pos2Nat.inj_sub p q (ZC1 _ _ H)). + Pos.compare_cont p q Eq = Gt -> + Pos.to_nat (p - q) = Pos.to_nat p - Pos.to_nat q. +Proof (fun H => Pos2Nat.inj_sub p q (Pos.gt_lt _ _ H)). Lemma nat_of_P_lt_Lt_compare_morphism p q : - Pcompare p q Eq = Lt -> Pos.to_nat p < Pos.to_nat q. + Pos.compare_cont p q Eq = Lt -> Pos.to_nat p < Pos.to_nat q. Proof (proj1 (Pos2Nat.inj_lt p q)). Lemma nat_of_P_gt_Gt_compare_morphism p q : - Pcompare p q Eq = Gt -> Pos.to_nat p > Pos.to_nat q. + Pos.compare_cont p q Eq = Gt -> Pos.to_nat p > Pos.to_nat q. Proof (proj1 (Pos2Nat.inj_gt p q)). Lemma nat_of_P_lt_Lt_compare_complement_morphism p q : - Pos.to_nat p < Pos.to_nat q -> Pcompare p q Eq = Lt. + Pos.to_nat p < Pos.to_nat q -> Pos.compare_cont p q Eq = Lt. Proof (proj2 (Pos2Nat.inj_lt p q)). Definition nat_of_P_gt_Gt_compare_complement_morphism p q : - Pos.to_nat p > Pos.to_nat q -> Pcompare p q Eq = Gt. + Pos.to_nat p > Pos.to_nat q -> Pos.compare_cont p q Eq = Gt. Proof (proj2 (Pos2Nat.inj_gt p q)). (** Old intermediate results about [Pmult_nat] *) @@ -445,7 +446,7 @@ Proof. Qed. Lemma Pmult_nat_succ_morphism : - forall p n, Pmult_nat (Psucc p) n = n + Pmult_nat p n. + forall p n, Pmult_nat (Pos.succ p) n = n + Pmult_nat p n. Proof. intros. now rewrite !Pmult_nat_mult, Pos2Nat.inj_succ. Qed. @@ -457,7 +458,7 @@ Proof. Qed. Theorem Pmult_nat_plus_carry_morphism : - forall p q n, Pmult_nat (Pplus_carry p q) n = n + Pmult_nat (p + q) n. + forall p q n, Pmult_nat (Pos.add_carry p q) n = n + Pmult_nat (p + q) n. Proof. intros. now rewrite Pos.add_carry_spec, Pmult_nat_succ_morphism. Qed. diff --git a/theories/Program/Basics.v b/theories/Program/Basics.v index 7cef5c5a..22436de6 100644 --- a/theories/Program/Basics.v +++ b/theories/Program/Basics.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* B) -> (JMeq x y -> B). Proof. intros H J; apply H; apply (JMeq_eq J). Defined. +Definition conditional_eq {A} (x y : A) := eq x y. + Lemma simplification_existT2 A (P : A -> Type) B (p : A) (x y : P p) : - (x = y -> B) -> (existT P p x = existT P p y -> B). + (x = y -> B) -> (conditional_eq (existT P p x) (existT P p y) -> B). Proof. intros H E. apply H. apply inj_pair2. assumption. Defined. Lemma simplification_existT1 A (P : A -> Type) B (p q : A) (x : P p) (y : P q) : - (p = q -> existT P p x = existT P q y -> B) -> (existT P p x = existT P q y -> B). + (p = q -> conditional_eq (existT P p x) (existT P q y) -> B) -> (existT P p x = existT P q y -> B). Proof. injection 2. auto. Defined. Lemma simplification_K A (x : A) (B : x = x -> Type) : @@ -319,8 +321,10 @@ Ltac simplify_one_dep_elim_term c := | @JMeq _ _ _ _ -> _ => refine (simplification_heq _ _ _ _ _) | ?t = ?t -> _ => intros _ || refine (simplification_K _ t _ _) | eq (existT _ _ _) (existT _ _ _) -> _ => - refine (simplification_existT2 _ _ _ _ _ _ _) || refine (simplification_existT1 _ _ _ _ _ _ _ _) + | conditional_eq (existT _ _ _) (existT _ _ _) -> _ => + refine (simplification_existT2 _ _ _ _ _ _ _) || + (unfold conditional_eq; intro) | ?x = ?y -> _ => (* variables case *) (unfold x) || (unfold y) || (let hyp := fresh in intros hyp ; diff --git a/theories/Program/Program.v b/theories/Program/Program.v index 14a7ffca..be8d9a47 100644 --- a/theories/Program/Program.v +++ b/theories/Program/Program.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* match T with context [ match_eq ?A ?B ?t ?f ] => - rewrite (match_eq_rewrite A B t f (exist _ _ (sym_eq H))) + rewrite (match_eq_rewrite A B t f (exist _ _ (eq_sym H))) end end. diff --git a/theories/Program/Syntax.v b/theories/Program/Syntax.v index 61d389ed..a2948074 100644 --- a/theories/Program/Syntax.v +++ b/theories/Program/Syntax.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Fix_sub (proj1_sig y)). Proof. - intro x; unfold Fix_sub in |- *. + intro x; unfold Fix_sub. rewrite <- (Fix_F_eq ). apply F_ext; intros. apply Fix_F_inv. diff --git a/theories/QArith/QArith.v b/theories/QArith/QArith.v index fe8d639c..5d36ff12 100644 --- a/theories/QArith/QArith.v +++ b/theories/QArith/QArith.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (p ?= q) = Eq. +Lemma Qeq_alt p q : (p == q) <-> (p ?= q) = Eq. Proof. -unfold Qeq, Qcompare; intros; split; intros. -rewrite H; apply Zcompare_refl. -apply Zcompare_Eq_eq; auto. +symmetry. apply Z.compare_eq_iff. Qed. -Lemma Qlt_alt : forall p q, (p (p?=q = Lt). +Lemma Qlt_alt p q : (p (p?=q = Lt). Proof. -unfold Qlt, Qcompare, Zlt; split; auto. +reflexivity. Qed. -Lemma Qgt_alt : forall p q, (p>q) <-> (p?=q = Gt). +Lemma Qgt_alt p q : (p>q) <-> (p?=q = Gt). Proof. -unfold Qlt, Qcompare, Zlt. -intros; rewrite Zcompare_Gt_Lt_antisym; split; auto. +symmetry. apply Z.gt_lt_iff. Qed. -Lemma Qle_alt : forall p q, (p<=q) <-> (p?=q <> Gt). +Lemma Qle_alt p q : (p<=q) <-> (p?=q <> Gt). Proof. -unfold Qle, Qcompare, Zle; split; auto. +reflexivity. Qed. -Lemma Qge_alt : forall p q, (p>=q) <-> (p?=q <> Lt). +Lemma Qge_alt p q : (p>=q) <-> (p?=q <> Lt). Proof. -unfold Qle, Qcompare, Zle. -split; intros; contradict H. -rewrite Zcompare_Gt_Lt_antisym; auto. -rewrite Zcompare_Gt_Lt_antisym in H; auto. +symmetry. apply Z.ge_le_iff. Qed. Hint Unfold Qeq Qlt Qle : qarith. Hint Extern 5 (?X1 <> ?X2) => intro; discriminate: qarith. -Lemma Qcompare_antisym : forall x y, CompOpp (x ?= y) = (y ?= x). +Lemma Qcompare_antisym x y : CompOpp (x ?= y) = (y ?= x). Proof. - unfold "?=". intros. apply Zcompare_antisym. + symmetry. apply Z.compare_antisym. Qed. -Lemma Qcompare_spec : forall x y, CompareSpec (x==y) (x y == x. +Theorem Qeq_sym x y : x == y -> y == x. Proof. auto with qarith. Qed. -Theorem Qeq_trans : forall x y z, x == y -> y == z -> x == z. +Theorem Qeq_trans x y z : x == y -> y == z -> x == z. Proof. -unfold Qeq; intros. -apply Zmult_reg_l with (QDen y). -auto with qarith. -transitivity (Qnum x * QDen y * QDen z)%Z; try ring. -rewrite H. -transitivity (Qnum y * QDen z * QDen x)%Z; try ring. -rewrite H0; ring. +unfold Qeq; intros XY YZ. +apply Z.mul_reg_r with (QDen y); [auto with qarith|]. +now rewrite Z.mul_shuffle0, XY, Z.mul_shuffle0, YZ, Z.mul_shuffle0. Qed. -Hint Resolve Qeq_refl : qarith. -Hint Resolve Qeq_sym : qarith. -Hint Resolve Qeq_trans : qarith. +Hint Immediate Qeq_sym : qarith. +Hint Resolve Qeq_refl Qeq_trans : qarith. (** In a word, [Qeq] is a setoid equality. *) @@ -139,50 +125,48 @@ Proof. split; red; eauto with qarith. Qed. (** Furthermore, this equality is decidable: *) -Theorem Qeq_dec : forall x y, {x==y} + {~ x==y}. +Theorem Qeq_dec x y : {x==y} + {~ x==y}. Proof. - intros; case (Z_eq_dec (Qnum x * QDen y) (Qnum y * QDen x)); auto. + apply Z.eq_dec. Defined. Definition Qeq_bool x y := (Zeq_bool (Qnum x * QDen y) (Qnum y * QDen x))%Z. Definition Qle_bool x y := - (Zle_bool (Qnum x * QDen y) (Qnum y * QDen x))%Z. + (Z.leb (Qnum x * QDen y) (Qnum y * QDen x))%Z. -Lemma Qeq_bool_iff : forall x y, Qeq_bool x y = true <-> x == y. +Lemma Qeq_bool_iff x y : Qeq_bool x y = true <-> x == y. Proof. - unfold Qeq_bool, Qeq; intros. symmetry; apply Zeq_is_eq_bool. Qed. -Lemma Qeq_bool_eq : forall x y, Qeq_bool x y = true -> x == y. +Lemma Qeq_bool_eq x y : Qeq_bool x y = true -> x == y. Proof. - intros; rewrite <- Qeq_bool_iff; auto. + apply Qeq_bool_iff. Qed. -Lemma Qeq_eq_bool : forall x y, x == y -> Qeq_bool x y = true. +Lemma Qeq_eq_bool x y : x == y -> Qeq_bool x y = true. Proof. - intros; rewrite Qeq_bool_iff; auto. + apply Qeq_bool_iff. Qed. -Lemma Qeq_bool_neq : forall x y, Qeq_bool x y = false -> ~ x == y. +Lemma Qeq_bool_neq x y : Qeq_bool x y = false -> ~ x == y. Proof. - intros x y H; rewrite <- Qeq_bool_iff, H; discriminate. + rewrite <- Qeq_bool_iff. now intros ->. Qed. -Lemma Qle_bool_iff : forall x y, Qle_bool x y = true <-> x <= y. +Lemma Qle_bool_iff x y : Qle_bool x y = true <-> x <= y. Proof. - unfold Qle_bool, Qle; intros. symmetry; apply Zle_is_le_bool. Qed. -Lemma Qle_bool_imp_le : forall x y, Qle_bool x y = true -> x <= y. +Lemma Qle_bool_imp_le x y : Qle_bool x y = true -> x <= y. Proof. - intros; rewrite <- Qle_bool_iff; auto. + apply Qle_bool_iff. Qed. -Theorem Qnot_eq_sym : forall x y, ~x == y -> ~y == x. +Theorem Qnot_eq_sym x y : ~x == y -> ~y == x. Proof. auto with qarith. Qed. @@ -223,12 +207,9 @@ Infix "/" := Qdiv : Q_scope. Notation " ' x " := (Zpos x) (at level 20, no associativity) : Z_scope. -Lemma Qmake_Qdiv : forall a b, a#b==inject_Z a/inject_Z ('b). +Lemma Qmake_Qdiv a b : a#b==inject_Z a/inject_Z ('b). Proof. -intros a b. -unfold Qeq. -simpl. -ring. +unfold Qeq. simpl. ring. Qed. (** * Setoid compatibility results *) @@ -281,17 +262,13 @@ Instance Qinv_comp : Proper (Qeq==>Qeq) Qinv. Proof. unfold Qeq, Qinv; simpl. Open Scope Z_scope. - intros (p1, p2) (q1, q2); simpl. - case p1; simpl. - intros. - assert (q1 = 0). - elim (Zmult_integral q1 ('p2)); auto with zarith. - intros; discriminate. - subst; auto. - case q1; simpl; intros; try discriminate. - rewrite (Pmult_comm p2 p); rewrite (Pmult_comm q2 p0); auto. - case q1; simpl; intros; try discriminate. - rewrite (Pmult_comm p2 p); rewrite (Pmult_comm q2 p0); auto. + intros (p1, p2) (q1, q2) EQ; simpl in *. + destruct q1; simpl in *. + - apply Z.mul_eq_0 in EQ. destruct EQ; now subst. + - destruct p1; simpl in *; try discriminate. + now rewrite Pos.mul_comm, <- EQ, Pos.mul_comm. + - destruct p1; simpl in *; try discriminate. + now rewrite Pos.mul_comm, <- EQ, Pos.mul_comm. Close Scope Z_scope. Qed. @@ -368,7 +345,7 @@ Qed. Lemma Qplus_0_r : forall x, x+0 == x. Proof. intros (x1, x2); unfold Qeq, Qplus; simpl. - rewrite Pmult_comm; simpl; ring. + rewrite Pos.mul_comm; simpl; ring. Qed. (** Commutativity of addition: *) @@ -376,7 +353,7 @@ Qed. Theorem Qplus_comm : forall x y, x+y == y+x. Proof. intros (x1, x2); unfold Qeq, Qplus; simpl. - intros; rewrite Pmult_comm; ring. + intros; rewrite Pos.mul_comm; ring. Qed. @@ -419,7 +396,7 @@ Qed. Theorem Qmult_assoc : forall n m p, n*(m*p)==(n*m)*p. Proof. - intros; red; simpl; rewrite Pmult_assoc; ring. + intros; red; simpl; rewrite Pos.mul_assoc; ring. Qed. (** multiplication and zero *) @@ -444,15 +421,15 @@ Qed. Theorem Qmult_1_r : forall n, n*1==n. Proof. intro; red; simpl. - rewrite Zmult_1_r with (n := Qnum n). - rewrite Pmult_comm; simpl; trivial. + rewrite Z.mul_1_r with (n := Qnum n). + rewrite Pos.mul_comm; simpl; trivial. Qed. (** Commutativity of multiplication *) Theorem Qmult_comm : forall x y, x*y==y*x. Proof. - intros; red; simpl; rewrite Pmult_comm; ring. + intros; red; simpl; rewrite Pos.mul_comm; ring. Qed. (** Distributivity over [Qadd] *) @@ -474,17 +451,15 @@ Qed. Theorem Qmult_integral : forall x y, x*y==0 -> x==0 \/ y==0. Proof. intros (x1,x2) (y1,y2). - unfold Qeq, Qmult; simpl; intros. - destruct (Zmult_integral (x1*1)%Z (y1*1)%Z); auto. - rewrite <- H; ring. + unfold Qeq, Qmult; simpl. + now rewrite <- Z.mul_eq_0, !Z.mul_1_r. Qed. Theorem Qmult_integral_l : forall x y, ~ x == 0 -> x*y == 0 -> y == 0. Proof. intros (x1, x2) (y1, y2). - unfold Qeq, Qmult; simpl; intros. - apply Zmult_integral_l with x1; auto with zarith. - rewrite <- H0; ring. + unfold Qeq, Qmult; simpl. + rewrite !Z.mul_1_r, Z.mul_eq_0. intuition. Qed. @@ -561,12 +536,12 @@ Qed. (** * Properties of order upon Q. *) -Lemma Qle_refl : forall x, x<=x. +Lemma Qle_refl x : x<=x. Proof. unfold Qle; auto with zarith. Qed. -Lemma Qle_antisym : forall x y, x<=y -> y<=x -> x==y. +Lemma Qle_antisym x y : x<=y -> y<=x -> x==y. Proof. unfold Qle, Qeq; auto with zarith. Qed. @@ -575,52 +550,46 @@ Lemma Qle_trans : forall x y z, x<=y -> y<=z -> x<=z. Proof. unfold Qle; intros (x1, x2) (y1, y2) (z1, z2); simpl; intros. Open Scope Z_scope. - apply Zmult_le_reg_r with ('y2). - red; trivial. - apply Zle_trans with (y1 * 'x2 * 'z2). - replace (x1 * 'z2 * 'y2) with (x1 * 'y2 * 'z2) by ring. - apply Zmult_le_compat_r; auto with zarith. - replace (y1 * 'x2 * 'z2) with (y1 * 'z2 * 'x2) by ring. - replace (z1 * 'x2 * 'y2) with (z1 * 'y2 * 'x2) by ring. - apply Zmult_le_compat_r; auto with zarith. + apply Z.mul_le_mono_pos_r with ('y2); [easy|]. + apply Z.le_trans with (y1 * 'x2 * 'z2). + - rewrite Z.mul_shuffle0. now apply Z.mul_le_mono_pos_r. + - rewrite Z.mul_shuffle0, (Z.mul_shuffle0 z1). + now apply Z.mul_le_mono_pos_r. Close Scope Z_scope. Qed. Hint Resolve Qle_trans : qarith. -Lemma Qlt_irrefl : forall x, ~x ~ x==y. +Lemma Qlt_not_eq x y : x ~ x==y. Proof. unfold Qlt, Qeq; auto with zarith. Qed. Lemma Zle_Qle (x y: Z): (x <= y)%Z = (inject_Z x <= inject_Z y). Proof. - unfold Qle. intros. simpl. - do 2 rewrite Zmult_1_r. reflexivity. + unfold Qle. simpl. now rewrite !Z.mul_1_r. Qed. Lemma Zlt_Qlt (x y: Z): (x < y)%Z = (inject_Z x < inject_Z y). Proof. - unfold Qlt. intros. simpl. - do 2 rewrite Zmult_1_r. reflexivity. + unfold Qlt. simpl. now rewrite !Z.mul_1_r. Qed. (** Large = strict or equal *) -Lemma Qle_lteq : forall x y, x<=y <-> x x x<=y. +Lemma Qlt_le_weak x y : x x<=y. Proof. unfold Qle, Qlt; auto with zarith. Qed. @@ -629,15 +598,11 @@ Lemma Qle_lt_trans : forall x y z, x<=y -> y x y<=z -> x x -q <= -p. Proof. intros (a1,a2) (b1,b2); unfold Qle, Qlt; simpl. - do 2 rewrite <- Zopp_mult_distr_l; omega. + rewrite !Z.mul_opp_l. omega. Qed. Hint Resolve Qopp_le_compat : qarith. @@ -721,15 +682,13 @@ Hint Resolve Qopp_le_compat : qarith. Lemma Qle_minus_iff : forall p q, p <= q <-> 0 <= q+-p. Proof. intros (x1,x2) (y1,y2); unfold Qle; simpl. - rewrite <- Zopp_mult_distr_l. - split; omega. + rewrite Z.mul_opp_l. omega. Qed. Lemma Qlt_minus_iff : forall p q, p < q <-> 0 < q+-p. Proof. intros (x1,x2) (y1,y2); unfold Qlt; simpl. - rewrite <- Zopp_mult_distr_l. - split; omega. + rewrite Z.mul_opp_l. omega. Qed. Lemma Qplus_le_compat : @@ -740,8 +699,8 @@ Proof. Open Scope Z_scope. intros. match goal with |- ?a <= ?b => ring_simplify a b end. - rewrite Zplus_comm. - apply Zplus_le_compat. + rewrite Z.add_comm. + apply Z.add_le_mono. match goal with |- ?a <= ?b => ring_simplify z1 t1 ('z2) ('t2) a b end. auto with zarith. match goal with |- ?a <= ?b => ring_simplify x1 y1 ('x2) ('y2) a b end. @@ -757,13 +716,12 @@ Proof. Open Scope Z_scope. intros. match goal with |- ?a < ?b => ring_simplify a b end. - rewrite Zplus_comm. - apply Zplus_le_lt_compat. + rewrite Z.add_comm. + apply Z.add_le_lt_mono. match goal with |- ?a <= ?b => ring_simplify z1 t1 ('z2) ('t2) a b end. auto with zarith. match goal with |- ?a < ?b => ring_simplify x1 y1 ('x2) ('y2) a b end. - assert (forall p, 0 < ' p) by reflexivity. - repeat (apply Zmult_lt_compat_r; auto). + do 2 (apply Z.mul_lt_mono_pos_r;try easy). Close Scope Z_scope. Qed. @@ -802,20 +760,20 @@ Proof. intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl. Open Scope Z_scope. intros; simpl_mult. - replace (a1*c1*('b2*'c2)) with ((a1*'b2)*(c1*'c2)) by ring. - replace (b1*c1*('a2*'c2)) with ((b1*'a2)*(c1*'c2)) by ring. - apply Zmult_le_compat_r; auto with zarith. + rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1). + apply Z.mul_le_mono_nonneg_r; auto with zarith. Close Scope Z_scope. Qed. -Lemma Qmult_lt_0_le_reg_r : forall x y z, 0 < z -> x*z <= y*z -> x <= y. +Lemma Qmult_lt_0_le_reg_r : forall x y z, 0 < z -> x*z <= y*z -> x <= y. Proof. intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl. Open Scope Z_scope. simpl_mult. - replace (a1*c1*('b2*'c2)) with ((a1*'b2)*(c1*'c2)) by ring. - replace (b1*c1*('a2*'c2)) with ((b1*'a2)*(c1*'c2)) by ring. - intros; apply Zmult_le_reg_r with (c1*'c2); auto with zarith. + rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1). + intros LT LE. + apply Z.mul_le_mono_pos_r in LE; trivial. + apply Z.mul_pos_pos; [omega|easy]. Close Scope Z_scope. Qed. @@ -837,12 +795,9 @@ Proof. intros (a1,a2) (b1,b2) (c1,c2); unfold Qle, Qlt; simpl. Open Scope Z_scope. intros; simpl_mult. - replace (a1*c1*('b2*'c2)) with ((a1*'b2)*(c1*'c2)) by ring. - replace (b1*c1*('a2*'c2)) with ((b1*'a2)*(c1*'c2)) by ring. - apply Zmult_lt_compat_r; auto with zarith. - apply Zmult_lt_0_compat. - omega. - compute; auto. + rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1). + apply Z.mul_lt_mono_pos_r; auto with zarith. + apply Z.mul_pos_pos; [omega|reflexivity]. Close Scope Z_scope. Qed. @@ -852,15 +807,9 @@ Proof. intros (a1,a2) (b1,b2) (c1,c2). unfold Qle, Qlt; simpl. simpl_mult. - replace (a1*c1*('b2*'c2)) with ((a1*'b2)*(c1*'c2)) by ring. - replace (b1*c1*('a2*'c2)) with ((b1*'a2)*(c1*'c2)) by ring. - assert (forall p, 0 < ' p) by reflexivity. - split; intros. - apply Zmult_lt_reg_r with (c1*'c2); auto with zarith. - apply Zmult_lt_0_compat; auto with zarith. - apply Zmult_lt_compat_r; auto with zarith. - apply Zmult_lt_0_compat. omega. - compute; auto. + rewrite Z.mul_shuffle1, (Z.mul_shuffle1 b1). + intro LT. rewrite <- Z.mul_lt_mono_pos_r. reflexivity. + apply Z.mul_pos_pos; [omega|reflexivity]. Close Scope Z_scope. Qed. diff --git a/theories/QArith/QOrderedType.v b/theories/QArith/QOrderedType.v index 238de6fa..e146da25 100644 --- a/theories/QArith/QOrderedType.v +++ b/theories/QArith/QOrderedType.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Type), (0 <= x -> P x) -> (x <= 0 -> P (- x)) -> P (Qabs x). Proof. @@ -26,9 +26,9 @@ intros [xn xd] [yn yd] H. simpl. unfold Qeq in *. simpl in *. -change (' yd)%Z with (Zabs (' yd)). -change (' xd)%Z with (Zabs (' xd)). -repeat rewrite <- Zabs_Zmult. +change (' yd)%Z with (Z.abs (' yd)). +change (' xd)%Z with (Z.abs (' xd)). +repeat rewrite <- Z.abs_mul. congruence. Qed. @@ -61,7 +61,7 @@ auto. apply (Qopp_le_compat x 0). Qed. -Lemma Zabs_Qabs : forall n d, (Zabs n#d)==Qabs (n#d). +Lemma Zabs_Qabs : forall n d, (Z.abs n#d)==Qabs (n#d). Proof. intros [|n|n]; reflexivity. Qed. @@ -85,25 +85,25 @@ intros [xn xd] [yn yd]. unfold Qplus. unfold Qle. simpl. -apply Zmult_le_compat_r;auto with *. -change (' yd)%Z with (Zabs (' yd)). -change (' xd)%Z with (Zabs (' xd)). -repeat rewrite <- Zabs_Zmult. -apply Zabs_triangle. +apply Z.mul_le_mono_nonneg_r;auto with *. +change (' yd)%Z with (Z.abs (' yd)). +change (' xd)%Z with (Z.abs (' xd)). +repeat rewrite <- Z.abs_mul. +apply Z.abs_triangle. Qed. Lemma Qabs_Qmult : forall a b, Qabs (a*b) == (Qabs a)*(Qabs b). Proof. intros [an ad] [bn bd]. simpl. -rewrite Zabs_Zmult. +rewrite Z.abs_mul. reflexivity. Qed. Lemma Qabs_Qminus x y: Qabs (x - y) = Qabs (y - x). Proof. unfold Qminus, Qopp. simpl. - rewrite Pmult_comm, <- Zabs_Zopp. + rewrite Pos.mul_comm, <- Z.abs_opp. do 2 f_equal. ring. Qed. diff --git a/theories/QArith/Qcanon.v b/theories/QArith/Qcanon.v index fea2ba39..d1160cbe 100644 --- a/theories/QArith/Qcanon.v +++ b/theories/QArith/Qcanon.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Qred q = q. + forall q:Q, Z.gcd (Qnum q) (QDen q) = 1%Z -> Qred q = q. Proof. unfold Qred; intros (a,b); simpl. - generalize (Zggcd_gcd a ('b)) (Zggcd_correct_divisors a ('b)). + generalize (Z.ggcd_gcd a ('b)) (Z.ggcd_correct_divisors a ('b)). intros. rewrite H1 in H; clear H1. - destruct (Zggcd a ('b)) as (g,(aa,bb)); simpl in *; subst. + destruct (Z.ggcd a ('b)) as (g,(aa,bb)); simpl in *; subst. destruct H0. - rewrite Zmult_1_l in H, H0. + rewrite Z.mul_1_l in H, H0. subst; simpl; auto. Qed. Lemma Qred_identity2 : - forall q:Q, Qred q = q -> Zgcd (Qnum q) (QDen q) = 1%Z. + forall q:Q, Qred q = q -> Z.gcd (Qnum q) (QDen q) = 1%Z. Proof. unfold Qred; intros (a,b); simpl. - generalize (Zggcd_gcd a ('b)) (Zggcd_correct_divisors a ('b)) (Zgcd_is_pos a ('b)). + generalize (Z.ggcd_gcd a ('b)) (Z.ggcd_correct_divisors a ('b)) (Z.gcd_nonneg a ('b)). intros. rewrite <- H; rewrite <- H in H1; clear H. - destruct (Zggcd a ('b)) as (g,(aa,bb)); simpl in *; subst. + destruct (Z.ggcd a ('b)) as (g,(aa,bb)); simpl in *; subst. injection H2; intros; clear H2. destruct H0. clear H0 H3. destruct g as [|g|g]; destruct bb as [|bb|bb]; simpl in *; try discriminate. f_equal. - apply Pmult_reg_r with bb. + apply Pos.mul_reg_r with bb. injection H2; intros. rewrite <- H0. rewrite H; simpl; auto. elim H1; auto. Qed. -Lemma Qred_iff : forall q:Q, Qred q = q <-> Zgcd (Qnum q) (QDen q) = 1%Z. +Lemma Qred_iff : forall q:Q, Qred q = q <-> Z.gcd (Qnum q) (QDen q) = 1%Z. Proof. split; intros. apply Qred_identity2; auto. @@ -488,7 +488,7 @@ Definition Qc_eq_bool (x y : Qc) := Lemma Qc_eq_bool_correct : forall x y : Qc, Qc_eq_bool x y = true -> x=y. Proof. - intros x y; unfold Qc_eq_bool in |- *; case (Qc_eq_dec x y); simpl in |- *; auto. + intros x y; unfold Qc_eq_bool; case (Qc_eq_dec x y); simpl; auto. intros _ H; inversion H. Qed. diff --git a/theories/QArith/Qfield.v b/theories/QArith/Qfield.v index 5e27f381..3e162cdc 100644 --- a/theories/QArith/Qfield.v +++ b/theories/QArith/Qfield.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* N0 | Zpos ?n => Ncst (Npos n) - | Z_of_N ?n => Ncst n + | Z.of_N ?n => Ncst n | NtoZ ?n => Ncst n | _ => NotConstant end. diff --git a/theories/QArith/Qminmax.v b/theories/QArith/Qminmax.v index 2da24ee6..2b6c3980 100644 --- a/theories/QArith/Qminmax.v +++ b/theories/QArith/Qminmax.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Qpower_positive a (n-m)%positive == (Qpower_positive a n)/(Qpower_positive a m). +Lemma Qpower_minus_positive : forall a (n m:positive), + (m < n)%positive -> + Qpower_positive a (n-m)%positive == (Qpower_positive a n)/(Qpower_positive a m). Proof. intros a n m H. -destruct (Qeq_dec a 0). - rewrite q. - repeat rewrite Qpower_positive_0. - reflexivity. -rewrite <- (Qdiv_mult_l (Qpower_positive a (n - m)) (Qpower_positive a m)) by - (apply Qpower_not_0_positive; assumption). -apply Qdiv_comp;[|reflexivity]. -rewrite Qmult_comm. -rewrite <- Qpower_plus_positive. -rewrite Pplus_minus. -reflexivity. -assumption. +destruct (Qeq_dec a 0) as [EQ|NEQ]. +- now rewrite EQ, !Qpower_positive_0. +- rewrite <- (Qdiv_mult_l (Qpower_positive a (n - m)) (Qpower_positive a m)) by + (now apply Qpower_not_0_positive). + f_equiv. + rewrite <- Qpower_plus_positive. + now rewrite Pos.sub_add. Qed. Lemma Qpower_plus : forall a n m, ~a==0 -> a^(n+m) == a^n*a^m. @@ -140,8 +136,6 @@ rewrite ?Z.pos_sub_spec; case Pos.compare_spec; intros H0; simpl; subst; try rewrite Qpower_minus_positive; try (field; try split; apply Qpower_not_0_positive); - try assumption; - apply ZC2; assumption. Qed. @@ -158,13 +152,14 @@ apply Qpower_plus. assumption. Qed. -Lemma Qpower_mult_positive : forall a n m, Qpower_positive a (n*m) == Qpower_positive (Qpower_positive a n) m. +Lemma Qpower_mult_positive : forall a n m, + Qpower_positive a (n*m) == Qpower_positive (Qpower_positive a n) m. Proof. intros a n m. -induction n using Pind. +induction n using Pos.peano_ind. reflexivity. -rewrite Pmult_Sn_m. -rewrite Pplus_one_succ_l. +rewrite Pos.mul_succ_l. +rewrite <- Pos.add_1_l. do 2 rewrite Qpower_plus_positive. rewrite IHn. rewrite Qmult_power_positive. @@ -184,11 +179,11 @@ Qed. Lemma Zpower_Qpower : forall (a n:Z), (0<=n)%Z -> inject_Z (a^n) == (inject_Z a)^n. Proof. intros a [|n|n] H;[reflexivity| |elim H; reflexivity]. -induction n using Pind. +induction n using Pos.peano_ind. replace (a^1)%Z with a by ring. ring. -rewrite Zpos_succ_morphism. -unfold Zsucc. +rewrite Pos2Z.inj_succ. +unfold Z.succ. rewrite Zpower_exp; auto with *; try discriminate. rewrite Qpower_plus' by discriminate. rewrite <- IHn by discriminate. @@ -209,31 +204,20 @@ setoid_replace (0+ - a) with (-a) in A by ring. apply Qmult_le_0_compat; assumption. Qed. -Theorem Qpower_decomp: forall p x y, - Qpower_positive (x #y) p == x ^ Zpos p # (Z2P ((Zpos y) ^ Zpos p)). -Proof. -induction p; intros; unfold Qmult; simpl. -(* xI *) -rewrite IHp, xI_succ_xO, <-Pplus_diag, Pplus_one_succ_l. -repeat rewrite Zpower_pos_is_exp. -red; unfold Qmult, Qnum, Qden, Zpower. -repeat rewrite Zpos_mult_morphism. -repeat rewrite Z2P_correct. -repeat rewrite Zpower_pos_1_r; ring. -apply Zpower_pos_pos; red; auto. -repeat apply Zmult_lt_0_compat; red; auto; - apply Zpower_pos_pos; red; auto. -(* xO *) -rewrite IHp, <-Pplus_diag. -repeat rewrite Zpower_pos_is_exp. -red; unfold Qmult, Qnum, Qden, Zpower. -repeat rewrite Zpos_mult_morphism. -repeat rewrite Z2P_correct; try ring. -apply Zpower_pos_pos; red; auto. -repeat apply Zmult_lt_0_compat; auto; - apply Zpower_pos_pos; red; auto. -(* xO *) -unfold Qmult; simpl. -red; simpl; rewrite Zpower_pos_1_r; - rewrite Zpos_mult_morphism; ring. +Theorem Qpower_decomp p x y : + Qpower_positive (x#y) p = x ^ Zpos p # (y ^ p). +Proof. +induction p; intros; simpl Qpower_positive; rewrite ?IHp. +- (* xI *) + unfold Qmult, Qnum, Qden. f_equal. + + now rewrite <- Z.pow_twice_r, <- Z.pow_succ_r. + + apply Pos2Z.inj; rewrite !Pos2Z.inj_mul, !Pos2Z.inj_pow. + now rewrite <- Z.pow_twice_r, <- Z.pow_succ_r. +- (* xO *) + unfold Qmult, Qnum, Qden. f_equal. + + now rewrite <- Z.pow_twice_r. + + apply Pos2Z.inj; rewrite !Pos2Z.inj_mul, !Pos2Z.inj_pow. + now rewrite <- Z.pow_twice_r. +- (* xO *) + now rewrite Z.pow_1_r, Pos.pow_1_r. Qed. diff --git a/theories/QArith/Qreals.v b/theories/QArith/Qreals.v index 24f6d720..0c7a22bf 100644 --- a/theories/QArith/Qreals.v +++ b/theories/QArith/Qreals.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x==y. Proof. -unfold Qeq, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *; +unfold Qeq, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden; intros. apply eq_IZR. do 2 rewrite mult_IZR. @@ -36,24 +36,24 @@ Qed. Lemma Qeq_eqR : forall x y : Q, x==y -> Q2R x = Q2R y. Proof. -unfold Qeq, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *; +unfold Qeq, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden; intros. set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2); set (X2 := IZR (Zpos x2)) in *. set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2); set (Y2 := IZR (Zpos y2)) in *. assert ((X1 * Y2)%R = (Y1 * X2)%R). - unfold X1, X2, Y1, Y2 in |- *; do 2 rewrite <- mult_IZR. + unfold X1, X2, Y1, Y2; do 2 rewrite <- mult_IZR. apply IZR_eq; auto. clear H. field_simplify_eq; auto. ring_simplify X1 Y2 (Y2 * X1)%R. -rewrite H0 in |- *; ring. +rewrite H0; ring. Qed. Lemma Rle_Qle : forall x y : Q, (Q2R x <= Q2R y)%R -> x<=y. Proof. -unfold Qle, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *; +unfold Qle, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden; intros. apply le_IZR. do 2 rewrite mult_IZR. @@ -65,37 +65,37 @@ replace (X1 * Y2)%R with (X1 * / X2 * (X2 * Y2))%R; try (field; auto). replace (Y1 * X2)%R with (Y1 * / Y2 * (X2 * Y2))%R; try (field; auto). apply Rmult_le_compat_r; auto. apply Rmult_le_pos. -unfold X2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_le; +unfold X2; replace 0%R with (IZR 0); auto; apply IZR_le; auto with zarith. -unfold Y2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_le; +unfold Y2; replace 0%R with (IZR 0); auto; apply IZR_le; auto with zarith. Qed. Lemma Qle_Rle : forall x y : Q, x<=y -> (Q2R x <= Q2R y)%R. Proof. -unfold Qle, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *; +unfold Qle, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden; intros. set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2); set (X2 := IZR (Zpos x2)) in *. set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2); set (Y2 := IZR (Zpos y2)) in *. assert (X1 * Y2 <= Y1 * X2)%R. - unfold X1, X2, Y1, Y2 in |- *; do 2 rewrite <- mult_IZR. + unfold X1, X2, Y1, Y2; do 2 rewrite <- mult_IZR. apply IZR_le; auto. clear H. replace (X1 * / X2)%R with (X1 * Y2 * (/ X2 * / Y2))%R; try (field; auto). replace (Y1 * / Y2)%R with (Y1 * X2 * (/ X2 * / Y2))%R; try (field; auto). apply Rmult_le_compat_r; auto. apply Rmult_le_pos; apply Rlt_le; apply Rinv_0_lt_compat. -unfold X2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *; +unfold X2; replace 0%R with (IZR 0); auto; apply IZR_lt; red; auto with zarith. -unfold Y2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *; +unfold Y2; replace 0%R with (IZR 0); auto; apply IZR_lt; red; auto with zarith. Qed. Lemma Rlt_Qlt : forall x y : Q, (Q2R x < Q2R y)%R -> x (Q2R x < Q2R y)%R. Proof. -unfold Qlt, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *; +unfold Qlt, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden; intros. set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2); set (X2 := IZR (Zpos x2)) in *. set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2); set (Y2 := IZR (Zpos y2)) in *. assert (X1 * Y2 < Y1 * X2)%R. - unfold X1, X2, Y1, Y2 in |- *; do 2 rewrite <- mult_IZR. + unfold X1, X2, Y1, Y2; do 2 rewrite <- mult_IZR. apply IZR_lt; auto. clear H. replace (X1 * / X2)%R with (X1 * Y2 * (/ X2 * / Y2))%R; try (field; auto). replace (Y1 * / Y2)%R with (Y1 * X2 * (/ X2 * / Y2))%R; try (field; auto). apply Rmult_lt_compat_r; auto. apply Rmult_lt_0_compat; apply Rinv_0_lt_compat. -unfold X2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *; +unfold X2; replace 0%R with (IZR 0); auto; apply IZR_lt; red; auto with zarith. -unfold Y2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *; +unfold Y2; replace 0%R with (IZR 0); auto; apply IZR_lt; red; auto with zarith. Qed. Lemma Q2R_plus : forall x y : Q, Q2R (x+y) = (Q2R x + Q2R y)%R. Proof. -unfold Qplus, Qeq, Q2R in |- *; intros (x1, x2) (y1, y2); - unfold Qden, Qnum in |- *. +unfold Qplus, Qeq, Q2R; intros (x1, x2) (y1, y2); + unfold Qden, Qnum. simpl_mult. rewrite plus_IZR. do 3 rewrite mult_IZR. @@ -147,8 +147,8 @@ Qed. Lemma Q2R_mult : forall x y : Q, Q2R (x*y) = (Q2R x * Q2R y)%R. Proof. -unfold Qmult, Qeq, Q2R in |- *; intros (x1, x2) (y1, y2); - unfold Qden, Qnum in |- *. +unfold Qmult, Qeq, Q2R; intros (x1, x2) (y1, y2); + unfold Qden, Qnum. simpl_mult. do 2 rewrite mult_IZR. field; auto. @@ -156,24 +156,24 @@ Qed. Lemma Q2R_opp : forall x : Q, Q2R (- x) = (- Q2R x)%R. Proof. -unfold Qopp, Qeq, Q2R in |- *; intros (x1, x2); unfold Qden, Qnum in |- *. +unfold Qopp, Qeq, Q2R; intros (x1, x2); unfold Qden, Qnum. rewrite Ropp_Ropp_IZR. field; auto. Qed. Lemma Q2R_minus : forall x y : Q, Q2R (x-y) = (Q2R x - Q2R y)%R. -unfold Qminus in |- *; intros; rewrite Q2R_plus; rewrite Q2R_opp; auto. +unfold Qminus; intros; rewrite Q2R_plus; rewrite Q2R_opp; auto. Qed. Lemma Q2R_inv : forall x : Q, ~ x==0 -> Q2R (/x) = (/ Q2R x)%R. Proof. -unfold Qinv, Q2R, Qeq in |- *; intros (x1, x2); unfold Qden, Qnum in |- *. +unfold Qinv, Q2R, Qeq; intros (x1, x2); unfold Qden, Qnum. case x1. -simpl in |- *; intros; elim H; trivial. +simpl; intros; elim H; trivial. intros; field; auto. intros; - change (IZR (Zneg x2)) with (- IZR (' x2))%R in |- *; - change (IZR (Zneg p)) with (- IZR (' p))%R in |- *; + change (IZR (Zneg x2)) with (- IZR (' x2))%R; + change (IZR (Zneg p)) with (- IZR (' p))%R; field; (*auto 8 with real.*) repeat split; auto; auto with real. Qed. @@ -181,7 +181,7 @@ Qed. Lemma Q2R_div : forall x y : Q, ~ y==0 -> Q2R (x/y) = (Q2R x / Q2R y)%R. Proof. -unfold Qdiv, Rdiv in |- *. +unfold Qdiv, Rdiv. intros; rewrite Q2R_mult. rewrite Q2R_inv; auto. Qed. @@ -205,7 +205,7 @@ Qed. Let ex2 : forall x y : Q, ~ y==0 -> (x/y)*y == x. intros; QField. intro; apply H; apply eqR_Qeq. -rewrite H0; unfold Q2R in |- *; simpl in |- *; field; auto with real. +rewrite H0; unfold Q2R; simpl; field; auto with real. Qed. End LegacyQField. diff --git a/theories/QArith/Qreduction.v b/theories/QArith/Qreduction.v index e39eca0c..3b3a30eb 100644 --- a/theories/QArith/Qreduction.v +++ b/theories/QArith/Qreduction.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 1%positive - | Zpos p => p - | Zneg p => p - end. - -Lemma Z2P_correct : forall z : Z, (0 < z)%Z -> Zpos (Z2P z) = z. -Proof. - simple destruct z; simpl in |- *; auto; intros; discriminate. -Qed. - -Lemma Z2P_correct2 : forall z : Z, 0%Z <> z -> Zpos (Z2P z) = Zabs z. -Proof. - simple destruct z; simpl in |- *; auto; intros; elim H; auto. -Qed. - -(** Simplification of fractions using [Zgcd]. +(** Simplification of fractions using [Z.gcd]. This version can compute within Coq. *) Definition Qred (q:Q) := let (q1,q2) := q in - let (r1,r2) := snd (Zggcd q1 ('q2)) - in r1#(Z2P r2). + let (r1,r2) := snd (Z.ggcd q1 ('q2)) + in r1#(Z.to_pos r2). Lemma Qred_correct : forall q, (Qred q) == q. Proof. unfold Qred, Qeq; intros (n,d); simpl. - generalize (Zggcd_gcd n ('d)) (Zgcd_nonneg n ('d)) - (Zggcd_correct_divisors n ('d)). - destruct (Zggcd n (Zpos d)) as (g,(nn,dd)); simpl. + generalize (Z.ggcd_gcd n ('d)) (Z.gcd_nonneg n ('d)) + (Z.ggcd_correct_divisors n ('d)). + destruct (Z.ggcd n (Zpos d)) as (g,(nn,dd)); simpl. Open Scope Z_scope. intros Hg LE (Hn,Hd). rewrite Hd, Hn. rewrite <- Hg in LE; clear Hg. assert (0 <> g) by (intro; subst; discriminate). - rewrite Z2P_correct. ring. - apply Zmult_gt_0_lt_0_reg_r with g; auto with zarith. - now rewrite Zmult_comm, <- Hd. + rewrite Z2Pos.id. ring. + rewrite <- (Z.mul_pos_cancel_l g); [now rewrite <- Hd | omega]. Close Scope Z_scope. Qed. @@ -59,68 +42,54 @@ Proof. intros (a,b) (c,d). unfold Qred, Qeq in *; simpl in *. Open Scope Z_scope. - generalize (Zggcd_gcd a ('b)) (Zgcd_is_gcd a ('b)) - (Zgcd_nonneg a ('b)) (Zggcd_correct_divisors a ('b)). - destruct (Zggcd a (Zpos b)) as (g,(aa,bb)). - generalize (Zggcd_gcd c ('d)) (Zgcd_is_gcd c ('d)) - (Zgcd_nonneg c ('d)) (Zggcd_correct_divisors c ('d)). - destruct (Zggcd c (Zpos d)) as (g',(cc,dd)). - simpl. - intro H; rewrite <- H; clear H. - intros Hg'1 Hg'2 (Hg'3,Hg'4). - intro H; rewrite <- H; clear H. - intros Hg1 Hg2 (Hg3,Hg4). - intros. - assert (g <> 0) by (intro; subst g; discriminate). - assert (g' <> 0) by (intro; subst g'; discriminate). + intros H. + generalize (Z.ggcd_gcd a ('b)) (Zgcd_is_gcd a ('b)) + (Z.gcd_nonneg a ('b)) (Z.ggcd_correct_divisors a ('b)). + destruct (Z.ggcd a (Zpos b)) as (g,(aa,bb)). + simpl. intros <- Hg1 Hg2 (Hg3,Hg4). + assert (Hg0 : g <> 0) by (intro; now subst g). + generalize (Z.ggcd_gcd c ('d)) (Zgcd_is_gcd c ('d)) + (Z.gcd_nonneg c ('d)) (Z.ggcd_correct_divisors c ('d)). + destruct (Z.ggcd c (Zpos d)) as (g',(cc,dd)). + simpl. intros <- Hg'1 Hg'2 (Hg'3,Hg'4). + assert (Hg'0 : g' <> 0) by (intro; now subst g'). elim (rel_prime_cross_prod aa bb cc dd). - congruence. - unfold rel_prime in |- *. - (*rel_prime*) - constructor. - exists aa; auto with zarith. - exists bb; auto with zarith. - intros. - inversion Hg1. - destruct (H6 (g*x)) as (x',Hx). - rewrite Hg3. - destruct H2 as (xa,Hxa); exists xa; rewrite Hxa; ring. - rewrite Hg4. - destruct H3 as (xb,Hxb); exists xb; rewrite Hxb; ring. - exists x'. - apply Zmult_reg_l with g; auto. rewrite Hx at 1; ring. - (* /rel_prime *) - unfold rel_prime in |- *. - (* rel_prime *) - constructor. - exists cc; auto with zarith. - exists dd; auto with zarith. - intros. - inversion Hg'1. - destruct (H6 (g'*x)) as (x',Hx). - rewrite Hg'3. - destruct H2 as (xc,Hxc); exists xc; rewrite Hxc; ring. - rewrite Hg'4. - destruct H3 as (xd,Hxd); exists xd; rewrite Hxd; ring. - exists x'. - apply Zmult_reg_l with g'; auto. rewrite Hx at 1; ring. - (* /rel_prime *) - assert (0 - q < - p. Proof. intros (a1,a2) (b1,b2); unfold Qle, Qlt; simpl. -do 2 rewrite <- Zopp_mult_distr_l; omega. +rewrite !Z.mul_opp_l; omega. Qed. Hint Resolve Qopp_lt_compat : qarith. (************) -Coercion Local inject_Z : Z >-> Q. +Local Coercion inject_Z : Z >-> Q. -Definition Qfloor (x:Q) := let (n,d) := x in Zdiv n (Zpos d). +Definition Qfloor (x:Q) := let (n,d) := x in Z.div n (Zpos d). Definition Qceiling (x:Q) := (-(Qfloor (-x)))%Z. Lemma Qfloor_Z : forall z:Z, Qfloor z = z. @@ -46,7 +46,7 @@ simpl. unfold Qle. simpl. replace (n*1)%Z with n by ring. -rewrite Zmult_comm. +rewrite Z.mul_comm. apply Z_mult_div_ge. auto with *. Qed. @@ -81,7 +81,7 @@ ring_simplify. replace (n / ' d * ' d + ' d)%Z with (('d * (n / 'd) + n mod 'd) + 'd - n mod 'd)%Z by ring. rewrite <- Z_div_mod_eq; auto with*. -rewrite <- Zlt_plus_swap. +rewrite <- Z.lt_add_lt_sub_r. destruct (Z_mod_lt n ('d)); auto with *. Qed. @@ -107,7 +107,7 @@ unfold Qle in *. simpl in *. rewrite <- (Zdiv_mult_cancel_r xn ('xd) ('yd)); auto with *. rewrite <- (Zdiv_mult_cancel_r yn ('yd) ('xd)); auto with *. -rewrite (Zmult_comm ('yd) ('xd)). +rewrite (Z.mul_comm ('yd) ('xd)). apply Z_div_le; auto with *. Qed. @@ -125,7 +125,7 @@ Hint Resolve Qceiling_resp_le : qarith. Add Morphism Qfloor with signature Qeq ==> eq as Qfloor_comp. Proof. intros x y H. -apply Zle_antisym. +apply Z.le_antisymm. auto with *. symmetry in H; auto with *. Qed. @@ -133,7 +133,7 @@ Qed. Add Morphism Qceiling with signature Qeq ==> eq as Qceiling_comp. Proof. intros x y H. -apply Zle_antisym. +apply Z.le_antisymm. auto with *. symmetry in H; auto with *. Qed. @@ -142,9 +142,9 @@ Lemma Zdiv_Qdiv (n m: Z): (n / m)%Z = Qfloor (n / m). Proof. unfold Qfloor. intros. simpl. destruct m as [?|?|p]; simpl. - now rewrite Zdiv_0_r, Zmult_0_r. - now rewrite Zmult_1_r. - rewrite <- Zopp_eq_mult_neg_1. - rewrite <- (Zopp_involutive (Zpos p)). + now rewrite Zdiv_0_r, Z.mul_0_r. + now rewrite Z.mul_1_r. + rewrite <- Z.opp_eq_mul_m1. + rewrite <- (Z.opp_involutive (Zpos p)). now rewrite Zdiv_opp_opp. Qed. diff --git a/theories/Reals/Alembert.v b/theories/Reals/Alembert.v index 18612a68..13b33301 100644 --- a/theories/Reals/Alembert.v +++ b/theories/Reals/Alembert.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* sum_f_R0 An N) l }). intro X; apply X. apply completeness. - unfold Un_cv in H0; unfold bound in |- *; cut (0 < / 2); + unfold Un_cv in H0; unfold bound; cut (0 < / 2); [ intro | apply Rinv_0_lt_compat; prove_sup0 ]. elim (H0 (/ 2) H1); intros. exists (sum_f_R0 An x + 2 * An (S x)). - unfold is_upper_bound in |- *; intros; unfold EUn in H3; elim H3; intros. + unfold is_upper_bound; intros; unfold EUn in H3; elim H3; intros. rewrite H4; assert (H5 := lt_eq_lt_dec x1 x). elim H5; intros. elim a; intro. replace (sum_f_R0 An x) with (sum_f_R0 An x1 + sum_f_R0 (fun i:nat => An (S x1 + i)%nat) (x - S x1)). - pattern (sum_f_R0 An x1) at 1 in |- *; rewrite <- Rplus_0_r; + pattern (sum_f_R0 An x1) at 1; rewrite <- Rplus_0_r; rewrite Rplus_assoc; apply Rplus_le_compat_l. left; apply Rplus_lt_0_compat. apply tech1; intros; apply H. apply Rmult_lt_0_compat; [ prove_sup0 | apply H ]. - symmetry in |- *; apply tech2; assumption. - rewrite b; pattern (sum_f_R0 An x) at 1 in |- *; rewrite <- Rplus_0_r; + symmetry ; apply tech2; assumption. + rewrite b; pattern (sum_f_R0 An x) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l. left; apply Rmult_lt_0_compat; [ prove_sup0 | apply H ]. replace (sum_f_R0 An x1) with @@ -64,14 +64,14 @@ Proof. left; apply H. rewrite tech3. replace (1 - / 2) with (/ 2). - unfold Rdiv in |- *; rewrite Rinv_involutive. - pattern 2 at 3 in |- *; rewrite <- Rmult_1_r; rewrite <- (Rmult_comm 2); + unfold Rdiv; rewrite Rinv_involutive. + pattern 2 at 3; rewrite <- Rmult_1_r; rewrite <- (Rmult_comm 2); apply Rmult_le_compat_l. left; prove_sup0. left; apply Rplus_lt_reg_r with ((/ 2) ^ S (x1 - S x)). replace ((/ 2) ^ S (x1 - S x) + (1 - (/ 2) ^ S (x1 - S x))) with 1; [ idtac | ring ]. - rewrite <- (Rplus_comm 1); pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; + rewrite <- (Rplus_comm 1); pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l. apply pow_lt; apply Rinv_0_lt_compat; prove_sup0. discrR. @@ -80,14 +80,14 @@ Proof. ring. discrR. discrR. - pattern 1 at 3 in |- *; replace 1 with (/ 1); + pattern 1 at 3; replace 1 with (/ 1); [ apply tech7; discrR | apply Rinv_1 ]. replace (An (S x)) with (An (S x + 0)%nat). apply (tech6 (fun i:nat => An (S x + i)%nat) (/ 2)). left; apply Rinv_0_lt_compat; prove_sup0. intro; cut (forall n:nat, (n >= x)%nat -> An (S n) < / 2 * An n). intro; replace (S x + S i)%nat with (S (S x + i)). - apply H6; unfold ge in |- *; apply tech8. + apply H6; unfold ge; apply tech8. apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR; ring. intros; unfold R_dist in H2; apply Rmult_lt_reg_l with (/ An n). apply Rinv_0_lt_compat; apply H. @@ -96,20 +96,20 @@ Proof. rewrite Rmult_1_r; replace (An (S n) * / An n) with (Rabs (Rabs (An (S n) / An n) - 0)). apply H2; assumption. - unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; + unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; rewrite Rabs_right. - unfold Rdiv in |- *; reflexivity. - left; unfold Rdiv in |- *; change (0 < An (S n) * / An n) in |- *; + unfold Rdiv; reflexivity. + left; unfold Rdiv; change (0 < An (S n) * / An n); apply Rmult_lt_0_compat; [ apply H | apply Rinv_0_lt_compat; apply H ]. - red in |- *; intro; assert (H8 := H n); rewrite H7 in H8; + red; intro; assert (H8 := H n); rewrite H7 in H8; elim (Rlt_irrefl _ H8). replace (S x + 0)%nat with (S x); [ reflexivity | ring ]. - symmetry in |- *; apply tech2; assumption. - exists (sum_f_R0 An 0); unfold EUn in |- *; exists 0%nat; reflexivity. + symmetry ; apply tech2; assumption. + exists (sum_f_R0 An 0); unfold EUn; exists 0%nat; reflexivity. intro X; elim X; intros. exists x; apply Un_cv_crit_lub; - [ unfold Un_growing in |- *; intro; rewrite tech5; - pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r; + [ unfold Un_growing; intro; rewrite tech5; + pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; apply H | apply p ]. Defined. @@ -131,14 +131,14 @@ Proof. assert (H6 := Alembert_C1 Wn H2 H4). elim H5; intros. elim H6; intros. - exists (x - x0); unfold Un_cv in |- *; unfold Un_cv in p; + exists (x - x0); unfold Un_cv; unfold Un_cv in p; unfold Un_cv in p0; intros; cut (0 < eps / 2). intro; elim (p (eps / 2) H8); clear p; intros. elim (p0 (eps / 2) H8); clear p0; intros. set (N := max x1 x2). exists N; intros; replace (sum_f_R0 An n) with (sum_f_R0 Vn n - sum_f_R0 Wn n). - unfold R_dist in |- *; + unfold R_dist; replace (sum_f_R0 Vn n - sum_f_R0 Wn n - (x - x0)) with (sum_f_R0 Vn n - x + - (sum_f_R0 Wn n - x0)); [ idtac | ring ]; apply Rle_lt_trans with @@ -146,29 +146,29 @@ Proof. apply Rabs_triang. rewrite Rabs_Ropp; apply Rlt_le_trans with (eps / 2 + eps / 2). apply Rplus_lt_compat. - unfold R_dist in H9; apply H9; unfold ge in |- *; apply le_trans with N; - [ unfold N in |- *; apply le_max_l | assumption ]. - unfold R_dist in H10; apply H10; unfold ge in |- *; apply le_trans with N; - [ unfold N in |- *; apply le_max_r | assumption ]. - right; symmetry in |- *; apply double_var. - symmetry in |- *; apply tech11; intro; unfold Vn, Wn in |- *; - unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ 2)); + unfold R_dist in H9; apply H9; unfold ge; apply le_trans with N; + [ unfold N; apply le_max_l | assumption ]. + unfold R_dist in H10; apply H10; unfold ge; apply le_trans with N; + [ unfold N; apply le_max_r | assumption ]. + right; symmetry ; apply double_var. + symmetry ; apply tech11; intro; unfold Vn, Wn; + unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ 2)); apply Rmult_eq_reg_l with 2. rewrite Rmult_minus_distr_l; repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. ring. discrR. discrR. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. cut (forall n:nat, / 2 * Rabs (An n) <= Wn n <= 3 * / 2 * Rabs (An n)). intro; cut (forall n:nat, / Wn n <= 2 * / Rabs (An n)). intro; cut (forall n:nat, Wn (S n) / Wn n <= 3 * Rabs (An (S n) / An n)). - intro; unfold Un_cv in |- *; intros; unfold Un_cv in H0; cut (0 < eps / 3). + intro; unfold Un_cv; intros; unfold Un_cv in H0; cut (0 < eps / 3). intro; elim (H0 (eps / 3) H8); intros. exists x; intros. assert (H11 := H9 n H10). - unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0; + unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold R_dist in H11; unfold Rminus in H11; rewrite Ropp_0 in H11; rewrite Rplus_0_r in H11; rewrite Rabs_Rabsolu in H11; rewrite Rabs_right. @@ -179,13 +179,13 @@ Proof. rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]; rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H11; exact H11. - left; change (0 < Wn (S n) / Wn n) in |- *; unfold Rdiv in |- *; + left; change (0 < Wn (S n) / Wn n); unfold Rdiv; apply Rmult_lt_0_compat. apply H2. apply Rinv_0_lt_compat; apply H2. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. - intro; unfold Rdiv in |- *; rewrite Rabs_mult; rewrite <- Rmult_assoc; + intro; unfold Rdiv; rewrite Rabs_mult; rewrite <- Rmult_assoc; replace 3 with (2 * (3 * / 2)); [ idtac | rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR ]; apply Rle_trans with (Wn (S n) * 2 * / Rabs (An n)). @@ -218,32 +218,32 @@ Proof. rewrite Rmult_1_l; elim (H4 n); intros; assumption. discrR. apply Rabs_no_R0; apply H. - red in |- *; intro; assert (H6 := H2 n); rewrite H5 in H6; + red; intro; assert (H6 := H2 n); rewrite H5 in H6; elim (Rlt_irrefl _ H6). intro; split. - unfold Wn in |- *; unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); + unfold Wn; unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; prove_sup0. - pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r; rewrite double; - unfold Rminus in |- *; rewrite Rplus_assoc; apply Rplus_le_compat_l. + pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r; rewrite double; + unfold Rminus; rewrite Rplus_assoc; apply Rplus_le_compat_l. apply Rplus_le_reg_l with (An n). rewrite Rplus_0_r; rewrite (Rplus_comm (An n)); rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; apply RRle_abs. - unfold Wn in |- *; unfold Rdiv in |- *; repeat rewrite <- (Rmult_comm (/ 2)); + unfold Wn; unfold Rdiv; repeat rewrite <- (Rmult_comm (/ 2)); repeat rewrite Rmult_assoc; apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; prove_sup0. - unfold Rminus in |- *; rewrite double; + unfold Rminus; rewrite double; replace (3 * Rabs (An n)) with (Rabs (An n) + Rabs (An n) + Rabs (An n)); [ idtac | ring ]; repeat rewrite Rplus_assoc; repeat apply Rplus_le_compat_l. rewrite <- Rabs_Ropp; apply RRle_abs. cut (forall n:nat, / 2 * Rabs (An n) <= Vn n <= 3 * / 2 * Rabs (An n)). intro; cut (forall n:nat, / Vn n <= 2 * / Rabs (An n)). intro; cut (forall n:nat, Vn (S n) / Vn n <= 3 * Rabs (An (S n) / An n)). - intro; unfold Un_cv in |- *; intros; unfold Un_cv in H1; cut (0 < eps / 3). + intro; unfold Un_cv; intros; unfold Un_cv in H1; cut (0 < eps / 3). intro; elim (H0 (eps / 3) H7); intros. exists x; intros. assert (H10 := H8 n H9). - unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0; + unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold R_dist in H10; unfold Rminus in H10; rewrite Ropp_0 in H10; rewrite Rplus_0_r in H10; rewrite Rabs_Rabsolu in H10; rewrite Rabs_right. @@ -254,13 +254,13 @@ Proof. rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]; rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H10; exact H10. - left; change (0 < Vn (S n) / Vn n) in |- *; unfold Rdiv in |- *; + left; change (0 < Vn (S n) / Vn n); unfold Rdiv; apply Rmult_lt_0_compat. apply H1. apply Rinv_0_lt_compat; apply H1. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. - intro; unfold Rdiv in |- *; rewrite Rabs_mult; rewrite <- Rmult_assoc; + intro; unfold Rdiv; rewrite Rabs_mult; rewrite <- Rmult_assoc; replace 3 with (2 * (3 * / 2)); [ idtac | rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR ]; apply Rle_trans with (Vn (S n) * 2 * / Rabs (An n)). @@ -293,44 +293,44 @@ Proof. rewrite Rmult_1_l; elim (H3 n); intros; assumption. discrR. apply Rabs_no_R0; apply H. - red in |- *; intro; assert (H5 := H1 n); rewrite H4 in H5; + red; intro; assert (H5 := H1 n); rewrite H4 in H5; elim (Rlt_irrefl _ H5). intro; split. - unfold Vn in |- *; unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); + unfold Vn; unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; prove_sup0. - pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r; rewrite double; + pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r; rewrite double; rewrite Rplus_assoc; apply Rplus_le_compat_l. apply Rplus_le_reg_l with (- An n); rewrite Rplus_0_r; rewrite <- (Rplus_comm (An n)); rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l; rewrite <- Rabs_Ropp; apply RRle_abs. - unfold Vn in |- *; unfold Rdiv in |- *; repeat rewrite <- (Rmult_comm (/ 2)); + unfold Vn; unfold Rdiv; repeat rewrite <- (Rmult_comm (/ 2)); repeat rewrite Rmult_assoc; apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; prove_sup0. - unfold Rminus in |- *; rewrite double; + unfold Rminus; rewrite double; replace (3 * Rabs (An n)) with (Rabs (An n) + Rabs (An n) + Rabs (An n)); [ idtac | ring ]; repeat rewrite Rplus_assoc; repeat apply Rplus_le_compat_l; apply RRle_abs. - intro; unfold Wn in |- *; unfold Rdiv in |- *; rewrite <- (Rmult_0_r (/ 2)); + intro; unfold Wn; unfold Rdiv; rewrite <- (Rmult_0_r (/ 2)); rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l. apply Rinv_0_lt_compat; prove_sup0. - apply Rplus_lt_reg_r with (An n); rewrite Rplus_0_r; unfold Rminus in |- *; + apply Rplus_lt_reg_r with (An n); rewrite Rplus_0_r; unfold Rminus; rewrite (Rplus_comm (An n)); rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; apply Rle_lt_trans with (Rabs (An n)). apply RRle_abs. - rewrite double; pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r; + rewrite double; pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rabs_pos_lt; apply H. - intro; unfold Vn in |- *; unfold Rdiv in |- *; rewrite <- (Rmult_0_r (/ 2)); + intro; unfold Vn; unfold Rdiv; rewrite <- (Rmult_0_r (/ 2)); rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l. apply Rinv_0_lt_compat; prove_sup0. - apply Rplus_lt_reg_r with (- An n); rewrite Rplus_0_r; unfold Rminus in |- *; + apply Rplus_lt_reg_r with (- An n); rewrite Rplus_0_r; unfold Rminus; rewrite (Rplus_comm (- An n)); rewrite Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_r; apply Rle_lt_trans with (Rabs (An n)). rewrite <- Rabs_Ropp; apply RRle_abs. - rewrite double; pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r; + rewrite double; pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rabs_pos_lt; apply H. Defined. @@ -347,11 +347,11 @@ Proof. intro; assert (H4 := Alembert_C2 Bn H2 H3). elim H4; intros. exists x0; unfold Bn in p; apply tech12; assumption. - unfold Un_cv in |- *; intros; unfold Un_cv in H1; cut (0 < eps / Rabs x). + unfold Un_cv; intros; unfold Un_cv in H1; cut (0 < eps / Rabs x). intro; elim (H1 (eps / Rabs x) H4); intros. - exists x0; intros; unfold R_dist in |- *; unfold Rminus in |- *; + exists x0; intros; unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; - unfold Bn in |- *; + unfold Bn; replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x). rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs x). apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption. @@ -360,22 +360,22 @@ Proof. rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H5; replace (Rabs (An (S n) / An n)) with (R_dist (Rabs (An (S n) * / An n)) 0). apply H5; assumption. - unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0; - rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold Rdiv in |- *; + unfold R_dist; unfold Rminus; rewrite Ropp_0; + rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold Rdiv; reflexivity. apply Rabs_no_R0; assumption. replace (S n) with (n + 1)%nat; [ idtac | ring ]; rewrite pow_add; - unfold Rdiv in |- *; rewrite Rinv_mult_distr. + unfold Rdiv; rewrite Rinv_mult_distr. replace (An (n + 1)%nat * (x ^ n * x ^ 1) * (/ An n * / x ^ n)) with (An (n + 1)%nat * x ^ 1 * / An n * (x ^ n * / x ^ n)); [ idtac | ring ]; rewrite <- Rinv_r_sym. - simpl in |- *; ring. + simpl; ring. apply pow_nonzero; assumption. apply H0. apply pow_nonzero; assumption. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ]. - intro; unfold Bn in |- *; apply prod_neq_R0; + intro; unfold Bn; apply prod_neq_R0; [ apply H0 | apply pow_nonzero; assumption ]. Defined. @@ -383,14 +383,14 @@ Lemma AlembertC3_step2 : forall (An:nat -> R) (x:R), x = 0 -> { l:R | Pser An x l }. Proof. intros; exists (An 0%nat). - unfold Pser in |- *; unfold infinite_sum in |- *; intros; exists 0%nat; intros; + unfold Pser; unfold infinite_sum; intros; exists 0%nat; intros; replace (sum_f_R0 (fun n0:nat => An n0 * x ^ n0) n) with (An 0%nat). - unfold R_dist in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r; + unfold R_dist; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. induction n as [| n Hrecn]. - simpl in |- *; ring. + simpl; ring. rewrite tech5; rewrite Hrecn; - [ rewrite H; simpl in |- *; ring | unfold ge in |- *; apply le_O_n ]. + [ rewrite H; simpl; ring | unfold ge; apply le_O_n ]. Qed. (** A useful criterion of convergence for power series *) @@ -404,11 +404,11 @@ Proof. elim s; intro. cut (x <> 0). intro; apply AlembertC3_step1; assumption. - red in |- *; intro; rewrite H1 in a; elim (Rlt_irrefl _ a). + red; intro; rewrite H1 in a; elim (Rlt_irrefl _ a). apply AlembertC3_step2; assumption. cut (x <> 0). intro; apply AlembertC3_step1; assumption. - red in |- *; intro; rewrite H1 in r; elim (Rlt_irrefl _ r). + red; intro; rewrite H1 in r; elim (Rlt_irrefl _ r). Defined. Lemma Alembert_C4 : @@ -428,8 +428,8 @@ Proof. elim H1; intros. elim H2; intros. elim H4; intros. - unfold bound in |- *; exists (sum_f_R0 An x0 + / (1 - x) * An (S x0)). - unfold is_upper_bound in |- *; intros; unfold EUn in H6. + unfold bound; exists (sum_f_R0 An x0 + / (1 - x) * An (S x0)). + unfold is_upper_bound; intros; unfold EUn in H6. elim H6; intros. rewrite H7. assert (H8 := lt_eq_lt_dec x2 x0). @@ -437,7 +437,7 @@ Proof. elim a; intro. replace (sum_f_R0 An x0) with (sum_f_R0 An x2 + sum_f_R0 (fun i:nat => An (S x2 + i)%nat) (x0 - S x2)). - pattern (sum_f_R0 An x2) at 1 in |- *; rewrite <- Rplus_0_r. + pattern (sum_f_R0 An x2) at 1; rewrite <- Rplus_0_r. rewrite Rplus_assoc; apply Rplus_le_compat_l. left; apply Rplus_lt_0_compat. apply tech1. @@ -446,8 +446,8 @@ Proof. apply Rinv_0_lt_compat; apply Rplus_lt_reg_r with x; rewrite Rplus_0_r; replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ]. apply H. - symmetry in |- *; apply tech2; assumption. - rewrite b; pattern (sum_f_R0 An x0) at 1 in |- *; rewrite <- Rplus_0_r; + symmetry ; apply tech2; assumption. + rewrite b; pattern (sum_f_R0 An x0) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l. left; apply Rmult_lt_0_compat. apply Rinv_0_lt_compat; apply Rplus_lt_reg_r with x; rewrite Rplus_0_r; @@ -465,7 +465,7 @@ Proof. rewrite <- (Rmult_comm (An (S x0))); apply Rmult_le_compat_l. left; apply H. rewrite tech3. - unfold Rdiv in |- *; apply Rmult_le_reg_l with (1 - x). + unfold Rdiv; apply Rmult_le_reg_l with (1 - x). apply Rplus_lt_reg_r with x; rewrite Rplus_0_r. replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ]. do 2 rewrite (Rmult_comm (1 - x)). @@ -473,17 +473,17 @@ Proof. rewrite Rmult_1_r; apply Rplus_le_reg_l with (x ^ S (x2 - S x0)). replace (x ^ S (x2 - S x0) + (1 - x ^ S (x2 - S x0))) with 1; [ idtac | ring ]. - rewrite <- (Rplus_comm 1); pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; + rewrite <- (Rplus_comm 1); pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l. left; apply pow_lt. apply Rle_lt_trans with k. elim Hyp; intros; assumption. elim H3; intros; assumption. apply Rminus_eq_contra. - red in |- *; intro. + red; intro. elim H3; intros. rewrite H10 in H12; elim (Rlt_irrefl _ H12). - red in |- *; intro. + red; intro. elim H3; intros. rewrite H10 in H12; elim (Rlt_irrefl _ H12). replace (An (S x0)) with (An (S x0 + 0)%nat). @@ -496,7 +496,7 @@ Proof. intro. replace (S x0 + S i)%nat with (S (S x0 + i)). apply H9. - unfold ge in |- *. + unfold ge. apply tech8. apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR; ring. @@ -510,21 +510,21 @@ Proof. replace (An (S n) * / An n) with (Rabs (An (S n) / An n)). apply H5; assumption. rewrite Rabs_right. - unfold Rdiv in |- *; reflexivity. - left; unfold Rdiv in |- *; change (0 < An (S n) * / An n) in |- *; + unfold Rdiv; reflexivity. + left; unfold Rdiv; change (0 < An (S n) * / An n); apply Rmult_lt_0_compat. apply H. apply Rinv_0_lt_compat; apply H. - red in |- *; intro. + red; intro. assert (H11 := H n). rewrite H10 in H11; elim (Rlt_irrefl _ H11). replace (S x0 + 0)%nat with (S x0); [ reflexivity | ring ]. - symmetry in |- *; apply tech2; assumption. - exists (sum_f_R0 An 0); unfold EUn in |- *; exists 0%nat; reflexivity. + symmetry ; apply tech2; assumption. + exists (sum_f_R0 An 0); unfold EUn; exists 0%nat; reflexivity. intro X; elim X; intros. exists x; apply Un_cv_crit_lub; - [ unfold Un_growing in |- *; intro; rewrite tech5; - pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r; + [ unfold Un_growing; intro; rewrite tech5; + pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; apply H | apply p ]. Qed. @@ -551,9 +551,9 @@ Proof. apply (Alembert_C4 (fun i:nat => Rabs (An i)) k). assumption. intro; apply Rabs_pos_lt; apply H0. - unfold Un_cv in |- *. + unfold Un_cv. unfold Un_cv in H1. - unfold Rdiv in |- *. + unfold Rdiv. intros. elim (H1 eps H2); intros. exists x; intros. @@ -590,22 +590,22 @@ Lemma Alembert_C6 : elim s; intro. eapply Alembert_C5 with (k * Rabs x). split. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Rdiv; apply Rmult_le_pos. left; assumption. left; apply Rabs_pos_lt. - red in |- *; intro; rewrite H3 in a; elim (Rlt_irrefl _ a). + red; intro; rewrite H3 in a; elim (Rlt_irrefl _ a). apply Rmult_lt_reg_l with (/ k). apply Rinv_0_lt_compat; assumption. rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. rewrite Rmult_1_r; assumption. - red in |- *; intro; rewrite H3 in H; elim (Rlt_irrefl _ H). + red; intro; rewrite H3 in H; elim (Rlt_irrefl _ H). intro; apply prod_neq_R0. apply H0. apply pow_nonzero. - red in |- *; intro; rewrite H3 in a; elim (Rlt_irrefl _ a). - unfold Un_cv in |- *; unfold Un_cv in H1. + red; intro; rewrite H3 in a; elim (Rlt_irrefl _ a). + unfold Un_cv; unfold Un_cv in H1. intros. cut (0 < eps / Rabs x). intro. @@ -613,7 +613,7 @@ Lemma Alembert_C6 : exists x0. intros. replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x). - unfold R_dist in |- *. + unfold R_dist. rewrite Rabs_mult. replace (Rabs (An (S n) / An n) * Rabs x - k * Rabs x) with (Rabs x * (Rabs (An (S n) / An n) - k)); [ idtac | ring ]. @@ -621,18 +621,18 @@ Lemma Alembert_C6 : rewrite Rabs_Rabsolu. apply Rmult_lt_reg_l with (/ Rabs x). apply Rinv_0_lt_compat; apply Rabs_pos_lt. - red in |- *; intro; rewrite H7 in a; elim (Rlt_irrefl _ a). + red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a). rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. rewrite <- (Rmult_comm eps). unfold R_dist in H5. - unfold Rdiv in |- *; unfold Rdiv in H5; apply H5; assumption. + unfold Rdiv; unfold Rdiv in H5; apply H5; assumption. apply Rabs_no_R0. - red in |- *; intro; rewrite H7 in a; elim (Rlt_irrefl _ a). - unfold Rdiv in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ]. + red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a). + unfold Rdiv; replace (S n) with (n + 1)%nat; [ idtac | ring ]. rewrite pow_add. - simpl in |- *. + simpl. rewrite Rmult_1_r. rewrite Rinv_mult_distr. replace (An (n + 1)%nat * (x ^ n * x) * (/ An n * / x ^ n)) with @@ -641,46 +641,46 @@ Lemma Alembert_C6 : rewrite <- Rinv_r_sym. rewrite Rmult_1_r; reflexivity. apply pow_nonzero. - red in |- *; intro; rewrite H7 in a; elim (Rlt_irrefl _ a). + red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a). apply H0. apply pow_nonzero. - red in |- *; intro; rewrite H7 in a; elim (Rlt_irrefl _ a). - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a). + unfold Rdiv; apply Rmult_lt_0_compat. assumption. apply Rinv_0_lt_compat; apply Rabs_pos_lt. - red in |- *; intro H7; rewrite H7 in a; elim (Rlt_irrefl _ a). + red; intro H7; rewrite H7 in a; elim (Rlt_irrefl _ a). exists (An 0%nat). - unfold Un_cv in |- *. + unfold Un_cv. intros. exists 0%nat. intros. - unfold R_dist in |- *. + unfold R_dist. replace (sum_f_R0 (fun i:nat => An i * x ^ i) n) with (An 0%nat). - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. + unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. induction n as [| n Hrecn]. - simpl in |- *; ring. + simpl; ring. rewrite tech5. rewrite <- Hrecn. - rewrite b; simpl in |- *; ring. - unfold ge in |- *; apply le_O_n. + rewrite b; simpl; ring. + unfold ge; apply le_O_n. eapply Alembert_C5 with (k * Rabs x). split. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Rdiv; apply Rmult_le_pos. left; assumption. left; apply Rabs_pos_lt. - red in |- *; intro; rewrite H3 in r; elim (Rlt_irrefl _ r). + red; intro; rewrite H3 in r; elim (Rlt_irrefl _ r). apply Rmult_lt_reg_l with (/ k). apply Rinv_0_lt_compat; assumption. rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. rewrite Rmult_1_r; assumption. - red in |- *; intro; rewrite H3 in H; elim (Rlt_irrefl _ H). + red; intro; rewrite H3 in H; elim (Rlt_irrefl _ H). intro; apply prod_neq_R0. apply H0. apply pow_nonzero. - red in |- *; intro; rewrite H3 in r; elim (Rlt_irrefl _ r). - unfold Un_cv in |- *; unfold Un_cv in H1. + red; intro; rewrite H3 in r; elim (Rlt_irrefl _ r). + unfold Un_cv; unfold Un_cv in H1. intros. cut (0 < eps / Rabs x). intro. @@ -688,7 +688,7 @@ Lemma Alembert_C6 : exists x0. intros. replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x). - unfold R_dist in |- *. + unfold R_dist. rewrite Rabs_mult. replace (Rabs (An (S n) / An n) * Rabs x - k * Rabs x) with (Rabs x * (Rabs (An (S n) / An n) - k)); [ idtac | ring ]. @@ -696,18 +696,18 @@ Lemma Alembert_C6 : rewrite Rabs_Rabsolu. apply Rmult_lt_reg_l with (/ Rabs x). apply Rinv_0_lt_compat; apply Rabs_pos_lt. - red in |- *; intro; rewrite H7 in r; elim (Rlt_irrefl _ r). + red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r). rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. rewrite <- (Rmult_comm eps). unfold R_dist in H5. - unfold Rdiv in |- *; unfold Rdiv in H5; apply H5; assumption. + unfold Rdiv; unfold Rdiv in H5; apply H5; assumption. apply Rabs_no_R0. - red in |- *; intro; rewrite H7 in r; elim (Rlt_irrefl _ r). - unfold Rdiv in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ]. + red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r). + unfold Rdiv; replace (S n) with (n + 1)%nat; [ idtac | ring ]. rewrite pow_add. - simpl in |- *. + simpl. rewrite Rmult_1_r. rewrite Rinv_mult_distr. replace (An (n + 1)%nat * (x ^ n * x) * (/ An n * / x ^ n)) with @@ -716,12 +716,12 @@ Lemma Alembert_C6 : rewrite <- Rinv_r_sym. rewrite Rmult_1_r; reflexivity. apply pow_nonzero. - red in |- *; intro; rewrite H7 in r; elim (Rlt_irrefl _ r). + red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r). apply H0. apply pow_nonzero. - red in |- *; intro; rewrite H7 in r; elim (Rlt_irrefl _ r). - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r). + unfold Rdiv; apply Rmult_lt_0_compat. assumption. apply Rinv_0_lt_compat; apply Rabs_pos_lt. - red in |- *; intro H7; rewrite H7 in r; elim (Rlt_irrefl _ r). + red; intro H7; rewrite H7 in r; elim (Rlt_irrefl _ r). Qed. diff --git a/theories/Reals/AltSeries.v b/theories/Reals/AltSeries.v index 07a26929..69f29781 100644 --- a/theories/Reals/AltSeries.v +++ b/theories/Reals/AltSeries.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Un_growing (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))). Proof. - intros; unfold Un_growing in |- *; intro. + intros; unfold Un_growing; intro. cut ((2 * S n)%nat = S (S (2 * n))). intro; rewrite H0. do 4 rewrite tech5; repeat rewrite Rplus_assoc; apply Rplus_le_compat_l. - pattern (tg_alt Un (S (2 * n))) at 1 in |- *; rewrite <- Rplus_0_r. + pattern (tg_alt Un (S (2 * n))) at 1; rewrite <- Rplus_0_r. apply Rplus_le_compat_l. - unfold tg_alt in |- *; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even; + unfold tg_alt; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even; rewrite Rmult_1_l. apply Rplus_le_reg_l with (Un (S (2 * S n))). rewrite Rplus_0_r; @@ -46,12 +46,12 @@ Lemma CV_ALT_step1 : Un_decreasing Un -> Un_decreasing (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N)). Proof. - intros; unfold Un_decreasing in |- *; intro. + intros; unfold Un_decreasing; intro. cut ((2 * S n)%nat = S (S (2 * n))). intro; rewrite H0; do 2 rewrite tech5; repeat rewrite Rplus_assoc. - pattern (sum_f_R0 (tg_alt Un) (2 * n)) at 2 in |- *; rewrite <- Rplus_0_r. + pattern (sum_f_R0 (tg_alt Un) (2 * n)) at 2; rewrite <- Rplus_0_r. apply Rplus_le_compat_l. - unfold tg_alt in |- *; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even; + unfold tg_alt; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even; rewrite Rmult_1_l. apply Rplus_le_reg_l with (Un (S (2 * n))). rewrite Rplus_0_r; @@ -70,7 +70,7 @@ Lemma CV_ALT_step2 : sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N)) <= 0. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; unfold tg_alt in |- *; simpl in |- *; rewrite Rmult_1_r. + simpl; unfold tg_alt; simpl; rewrite Rmult_1_r. replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ]. apply Rplus_le_reg_l with (Un 1%nat); rewrite Rplus_0_r. replace (Un 1%nat + (-1 * Un 1%nat + Un 2%nat)) with (Un 2%nat); @@ -78,10 +78,10 @@ Proof. cut (S (2 * S N) = S (S (S (2 * N)))). intro; rewrite H1; do 2 rewrite tech5. apply Rle_trans with (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N))). - pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N))) at 2 in |- *; + pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N))) at 2; rewrite <- Rplus_0_r. rewrite Rplus_assoc; apply Rplus_le_compat_l. - unfold tg_alt in |- *; rewrite <- H1. + unfold tg_alt; rewrite <- H1. rewrite pow_1_odd. cut (S (S (2 * S N)) = (2 * S (S N))%nat). intro; rewrite H2; rewrite pow_1_even; rewrite Rmult_1_l; rewrite <- H2. @@ -102,7 +102,7 @@ Lemma CV_ALT_step3 : positivity_seq Un -> sum_f_R0 (fun i:nat => tg_alt Un (S i)) N <= 0. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; unfold tg_alt in |- *; simpl in |- *; rewrite Rmult_1_r. + simpl; unfold tg_alt; simpl; rewrite Rmult_1_r. apply Rplus_le_reg_l with (Un 1%nat). rewrite Rplus_0_r; replace (Un 1%nat + -1 * Un 1%nat) with 0; [ apply H0 | ring ]. @@ -112,10 +112,10 @@ Proof. rewrite H3; apply CV_ALT_step2; assumption. rewrite H3; rewrite tech5. apply Rle_trans with (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * x))). - pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * x))) at 2 in |- *; + pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * x))) at 2; rewrite <- Rplus_0_r. apply Rplus_le_compat_l. - unfold tg_alt in |- *; simpl in |- *. + unfold tg_alt; simpl. replace (x + (x + 0))%nat with (2 * x)%nat; [ idtac | ring ]. rewrite pow_1_even. replace (-1 * (-1 * (-1 * 1)) * Un (S (S (S (2 * x))))) with @@ -133,15 +133,15 @@ Lemma CV_ALT_step4 : positivity_seq Un -> has_ub (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))). Proof. - intros; unfold has_ub in |- *; unfold bound in |- *. + intros; unfold has_ub; unfold bound. exists (Un 0%nat). - unfold is_upper_bound in |- *; intros; elim H1; intros. + unfold is_upper_bound; intros; elim H1; intros. rewrite H2; rewrite decomp_sum. replace (tg_alt Un 0) with (Un 0%nat). - pattern (Un 0%nat) at 2 in |- *; rewrite <- Rplus_0_r. + pattern (Un 0%nat) at 2; rewrite <- Rplus_0_r. apply Rplus_le_compat_l. apply CV_ALT_step3; assumption. - unfold tg_alt in |- *; simpl in |- *; ring. + unfold tg_alt; simpl; ring. apply lt_O_Sn. Qed. @@ -159,11 +159,11 @@ Proof. assert (X := growing_cv _ H2 H3). elim X; intros. exists x. - unfold Un_cv in |- *; unfold R_dist in |- *; unfold Un_cv in H1; + unfold Un_cv; unfold R_dist; unfold Un_cv in H1; unfold R_dist in H1; unfold Un_cv in p; unfold R_dist in p. intros; cut (0 < eps / 2); [ intro - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ]. elim (H1 (eps / 2) H5); intros N2 H6. elim (p (eps / 2) H5); intros N1 H7. @@ -180,32 +180,32 @@ Proof. apply Rabs_triang. rewrite (double_var eps); apply Rplus_lt_compat. rewrite H12; apply H7; assumption. - rewrite Rabs_Ropp; unfold tg_alt in |- *; rewrite Rabs_mult; + rewrite Rabs_Ropp; unfold tg_alt; rewrite Rabs_mult; rewrite pow_1_abs; rewrite Rmult_1_l; unfold Rminus in H6; rewrite Ropp_0 in H6; rewrite <- (Rplus_0_r (Un (S n))); apply H6. - unfold ge in |- *; apply le_trans with n. - apply le_trans with N; [ unfold N in |- *; apply le_max_r | assumption ]. + unfold ge; apply le_trans with n. + apply le_trans with N; [ unfold N; apply le_max_r | assumption ]. apply le_n_Sn. rewrite tech5; ring. rewrite H12; apply Rlt_trans with (eps / 2). apply H7; assumption. - unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2. + unfold Rdiv; apply Rmult_lt_reg_l with 2. prove_sup0. rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_r | discrR ]. rewrite double. - pattern eps at 1 in |- *; rewrite <- (Rplus_0_r eps); apply Rplus_lt_compat_l; + pattern eps at 1; rewrite <- (Rplus_0_r eps); apply Rplus_lt_compat_l; assumption. elim H10; intro; apply le_double. rewrite <- H11; apply le_trans with N. - unfold N in |- *; apply le_trans with (S (2 * N1)); + unfold N; apply le_trans with (S (2 * N1)); [ apply le_n_Sn | apply le_max_l ]. assumption. apply lt_n_Sm_le. rewrite <- H11. apply lt_le_trans with N. - unfold N in |- *; apply lt_le_trans with (S (2 * N1)). + unfold N; apply lt_le_trans with (S (2 * N1)). apply lt_n_Sn. apply le_max_l. assumption. @@ -222,7 +222,7 @@ Theorem alternated_series : Proof. intros; apply CV_ALT. assumption. - unfold positivity_seq in |- *; apply decreasing_ineq; assumption. + unfold positivity_seq; apply decreasing_ineq; assumption. assumption. Qed. @@ -243,31 +243,31 @@ Proof. apply (decreasing_ineq (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N))). apply CV_ALT_step1; assumption. assumption. - unfold Un_cv in |- *; unfold R_dist in |- *; unfold Un_cv in H1; + unfold Un_cv; unfold R_dist; unfold Un_cv in H1; unfold R_dist in H1; intros. elim (H1 eps H2); intros. exists x; intros. apply H3. - unfold ge in |- *; apply le_trans with (2 * n)%nat. + unfold ge; apply le_trans with (2 * n)%nat. apply le_trans with n. assumption. assert (H5 := mult_O_le n 2). elim H5; intro. cut (0%nat <> 2%nat); - [ intro; elim H7; symmetry in |- *; assumption | discriminate ]. + [ intro; elim H7; symmetry ; assumption | discriminate ]. assumption. apply le_n_Sn. - unfold Un_cv in |- *; unfold R_dist in |- *; unfold Un_cv in H1; + unfold Un_cv; unfold R_dist; unfold Un_cv in H1; unfold R_dist in H1; intros. elim (H1 eps H2); intros. exists x; intros. apply H3. - unfold ge in |- *; apply le_trans with n. + unfold ge; apply le_trans with n. assumption. assert (H5 := mult_O_le n 2). elim H5; intro. cut (0%nat <> 2%nat); - [ intro; elim H7; symmetry in |- *; assumption | discriminate ]. + [ intro; elim H7; symmetry ; assumption | discriminate ]. assumption. Qed. @@ -279,13 +279,13 @@ Definition PI_tg (n:nat) := / INR (2 * n + 1). Lemma PI_tg_pos : forall n:nat, 0 <= PI_tg n. Proof. - intro; unfold PI_tg in |- *; left; apply Rinv_0_lt_compat; apply lt_INR_0; + intro; unfold PI_tg; left; apply Rinv_0_lt_compat; apply lt_INR_0; replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ]. Qed. Lemma PI_tg_decreasing : Un_decreasing PI_tg. Proof. - unfold PI_tg, Un_decreasing in |- *; intro. + unfold PI_tg, Un_decreasing; intro. apply Rmult_le_reg_l with (INR (2 * n + 1)). apply lt_INR_0. replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ]. @@ -306,7 +306,7 @@ Qed. Lemma PI_tg_cv : Un_cv PI_tg 0. Proof. - unfold Un_cv in |- *; unfold R_dist in |- *; intros. + unfold Un_cv; unfold R_dist; intros. cut (0 < 2 * eps); [ intro | apply Rmult_lt_0_compat; [ prove_sup0 | assumption ] ]. assert (H1 := archimed (/ (2 * eps))). @@ -316,9 +316,9 @@ Proof. cut (0 < N)%nat. intro; exists N; intros. cut (0 < n)%nat. - intro; unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; + intro; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_right. - unfold PI_tg in |- *; apply Rlt_trans with (/ INR (2 * n)). + unfold PI_tg; apply Rlt_trans with (/ INR (2 * n)). apply Rmult_lt_reg_l with (INR (2 * n)). apply lt_INR_0. replace (2 * n)%nat with (n + n)%nat; [ idtac | ring ]. @@ -337,27 +337,27 @@ Proof. [ discriminate | ring ]. replace n with (S (pred n)). apply not_O_INR; discriminate. - symmetry in |- *; apply S_pred with 0%nat. + symmetry ; apply S_pred with 0%nat. assumption. apply Rle_lt_trans with (/ INR (2 * N)). apply Rmult_le_reg_l with (INR (2 * N)). rewrite mult_INR; apply Rmult_lt_0_compat; - [ simpl in |- *; prove_sup0 | apply lt_INR_0; assumption ]. + [ simpl; prove_sup0 | apply lt_INR_0; assumption ]. rewrite <- Rinv_r_sym. apply Rmult_le_reg_l with (INR (2 * n)). rewrite mult_INR; apply Rmult_lt_0_compat; - [ simpl in |- *; prove_sup0 | apply lt_INR_0; assumption ]. + [ simpl; prove_sup0 | apply lt_INR_0; assumption ]. rewrite (Rmult_comm (INR (2 * n))); rewrite Rmult_assoc; rewrite <- Rinv_l_sym. do 2 rewrite Rmult_1_r; apply le_INR. apply (fun m n p:nat => mult_le_compat_l p n m); assumption. replace n with (S (pred n)). apply not_O_INR; discriminate. - symmetry in |- *; apply S_pred with 0%nat. + symmetry ; apply S_pred with 0%nat. assumption. replace N with (S (pred N)). apply not_O_INR; discriminate. - symmetry in |- *; apply S_pred with 0%nat. + symmetry ; apply S_pred with 0%nat. assumption. rewrite mult_INR. rewrite Rinv_mult_distr. @@ -374,17 +374,17 @@ Proof. replace (/ (2 * eps) * (INR N * (2 * eps))) with (INR N * (2 * eps * / (2 * eps))); [ idtac | ring ]. rewrite <- Rinv_r_sym. - rewrite Rmult_1_r; replace (INR N) with (IZR (Z_of_nat N)). + rewrite Rmult_1_r; replace (INR N) with (IZR (Z.of_nat N)). rewrite <- H4. elim H1; intros; assumption. - symmetry in |- *; apply INR_IZR_INZ. + symmetry ; apply INR_IZR_INZ. apply prod_neq_R0; - [ discrR | red in |- *; intro; rewrite H8 in H; elim (Rlt_irrefl _ H) ]. + [ discrR | red; intro; rewrite H8 in H; elim (Rlt_irrefl _ H) ]. apply not_O_INR. - red in |- *; intro; rewrite H8 in H5; elim (lt_irrefl _ H5). + red; intro; rewrite H8 in H5; elim (lt_irrefl _ H5). replace (INR 2) with 2; [ discrR | reflexivity ]. apply not_O_INR. - red in |- *; intro; rewrite H8 in H5; elim (lt_irrefl _ H5). + red; intro; rewrite H8 in H5; elim (lt_irrefl _ H5). apply Rle_ge; apply PI_tg_pos. apply lt_le_trans with N; assumption. elim H1; intros H5 _. @@ -399,7 +399,7 @@ Proof. elim (Rlt_irrefl _ (Rlt_trans _ _ _ H7 H5)). elim (lt_n_O _ b). apply le_IZR. - simpl in |- *. + simpl. left; apply Rlt_trans with (/ (2 * eps)). apply Rinv_0_lt_compat; assumption. elim H1; intros; assumption. @@ -414,41 +414,41 @@ Proof. Qed. (** Now, PI is defined *) -Definition PI : R := 4 * (let (a,_) := exist_PI in a). +Definition Alt_PI : R := 4 * (let (a,_) := exist_PI in a). (** We can get an approximation of PI with the following inequality *) -Lemma PI_ineq : +Lemma Alt_PI_ineq : forall N:nat, - sum_f_R0 (tg_alt PI_tg) (S (2 * N)) <= PI / 4 <= + sum_f_R0 (tg_alt PI_tg) (S (2 * N)) <= Alt_PI / 4 <= sum_f_R0 (tg_alt PI_tg) (2 * N). Proof. intro; apply alternated_series_ineq. apply PI_tg_decreasing. apply PI_tg_cv. - unfold PI in |- *; case exist_PI; intro. + unfold Alt_PI; case exist_PI; intro. replace (4 * x / 4) with x. trivial. - unfold Rdiv in |- *; rewrite (Rmult_comm 4); rewrite Rmult_assoc; + unfold Rdiv; rewrite (Rmult_comm 4); rewrite Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r; reflexivity | discrR ]. Qed. -Lemma PI_RGT_0 : 0 < PI. +Lemma Alt_PI_RGT_0 : 0 < Alt_PI. Proof. - assert (H := PI_ineq 0). + assert (H := Alt_PI_ineq 0). apply Rmult_lt_reg_l with (/ 4). apply Rinv_0_lt_compat; prove_sup0. rewrite Rmult_0_r; rewrite Rmult_comm. elim H; clear H; intros H _. unfold Rdiv in H; apply Rlt_le_trans with (sum_f_R0 (tg_alt PI_tg) (S (2 * 0))). - simpl in |- *; unfold tg_alt in |- *; simpl in |- *; rewrite Rmult_1_l; + simpl; unfold tg_alt; simpl; rewrite Rmult_1_l; rewrite Rmult_1_r; apply Rplus_lt_reg_r with (PI_tg 1). rewrite Rplus_0_r; replace (PI_tg 1 + (PI_tg 0 + -1 * PI_tg 1)) with (PI_tg 0); - [ unfold PI_tg in |- * | ring ]. - simpl in |- *; apply Rinv_lt_contravar. + [ unfold PI_tg | ring ]. + simpl; apply Rinv_lt_contravar. rewrite Rmult_1_l; replace (2 + 1) with 3; [ prove_sup0 | ring ]. - rewrite Rplus_comm; pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; + rewrite Rplus_comm; pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; prove_sup0. assumption. Qed. diff --git a/theories/Reals/ArithProp.v b/theories/Reals/ArithProp.v index 620561dc..c817bdfa 100644 --- a/theories/Reals/ArithProp.v +++ b/theories/Reals/ArithProp.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (n - i)%nat <> 0%nat. Proof. - intros; red in |- *; intro. + intros; red; intro. cut (forall n m:nat, (m <= n)%nat -> (n - m)%nat = 0%nat -> n = m). intro; assert (H2 := H1 _ _ (lt_le_weak _ _ H) H0); rewrite H2 in H; elim (lt_irrefl _ H). @@ -27,11 +27,11 @@ Proof. forall n0 m:nat, (m <= n0)%nat -> (n0 - m)%nat = 0%nat -> n0 = m). intro; apply H1. apply nat_double_ind. - unfold R in |- *; intros; inversion H2; reflexivity. - unfold R in |- *; intros; simpl in H3; assumption. - unfold R in |- *; intros; simpl in H4; assert (H5 := le_S_n _ _ H3); + unfold R; intros; inversion H2; reflexivity. + unfold R; intros; simpl in H3; assumption. + unfold R; intros; simpl in H4; assert (H5 := le_S_n _ _ H3); assert (H6 := H2 H5 H4); rewrite H6; reflexivity. - unfold R in |- *; intros; apply H1; assumption. + unfold R; intros; apply H1; assumption. Qed. Lemma le_minusni_n : forall n i:nat, (i <= n)%nat -> (n - i <= n)%nat. @@ -41,20 +41,20 @@ Proof. ((forall m n:nat, R m n) -> forall n i:nat, (i <= n)%nat -> (n - i <= n)%nat). intro; apply H. apply nat_double_ind. - unfold R in |- *; intros; simpl in |- *; apply le_n. - unfold R in |- *; intros; simpl in |- *; apply le_n. - unfold R in |- *; intros; simpl in |- *; apply le_trans with n. + unfold R; intros; simpl; apply le_n. + unfold R; intros; simpl; apply le_n. + unfold R; intros; simpl; apply le_trans with n. apply H0; apply le_S_n; assumption. apply le_n_Sn. - unfold R in |- *; intros; apply H; assumption. + unfold R; intros; apply H; assumption. Qed. Lemma lt_minus_O_lt : forall m n:nat, (m < n)%nat -> (0 < n - m)%nat. Proof. - intros n m; pattern n, m in |- *; apply nat_double_ind; + intros n m; pattern n, m; apply nat_double_ind; [ intros; rewrite <- minus_n_O; assumption | intros; elim (lt_n_O _ H) - | intros; simpl in |- *; apply H; apply lt_S_n; assumption ]. + | intros; simpl; apply H; apply lt_S_n; assumption ]. Qed. Lemma even_odd_cor : @@ -73,7 +73,7 @@ Proof. apply H3; assumption. right. apply H4; assumption. - unfold double in |- *;ring. + unfold double;ring. Qed. (* 2m <= 2n => m<=n *) @@ -105,9 +105,9 @@ Proof. exists (x - IZR k0 * y). split. ring. - unfold k0 in |- *; case (Rcase_abs y); intro. - assert (H0 := archimed (x / - y)); rewrite <- Z_R_minus; simpl in |- *; - unfold Rminus in |- *. + unfold k0; case (Rcase_abs y); intro. + assert (H0 := archimed (x / - y)); rewrite <- Z_R_minus; simpl; + unfold Rminus. replace (- ((1 + - IZR (up (x / - y))) * y)) with ((IZR (up (x / - y)) - 1) * y); [ idtac | ring ]. split. @@ -118,7 +118,7 @@ Proof. rewrite Rmult_assoc; repeat rewrite Ropp_mult_distr_r_reverse; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r | assumption ]. apply Rplus_le_reg_l with (IZR (up (x / - y)) - x / - y). - rewrite Rplus_0_r; unfold Rdiv in |- *; pattern (/ - y) at 4 in |- *; + rewrite Rplus_0_r; unfold Rdiv; pattern (/ - y) at 4; rewrite <- Ropp_inv_permute; [ idtac | assumption ]. replace (IZR (up (x * / - y)) - x * - / y + @@ -138,11 +138,11 @@ Proof. replace (IZR (up (x / - y)) - 1 + (- (x * / y) + - (IZR (up (x / - y)) - 1))) with (- (x * / y)); [ idtac | ring ]. rewrite <- Ropp_mult_distr_r_reverse; rewrite (Ropp_inv_permute _ H); elim H0; - unfold Rdiv in |- *; intros H1 _; exact H1. + unfold Rdiv; intros H1 _; exact H1. apply Ropp_neq_0_compat; assumption. - assert (H0 := archimed (x / y)); rewrite <- Z_R_minus; simpl in |- *; + assert (H0 := archimed (x / y)); rewrite <- Z_R_minus; simpl; cut (0 < y). - intro; unfold Rminus in |- *; + intro; unfold Rminus; replace (- ((IZR (up (x / y)) + -1) * y)) with ((1 - IZR (up (x / y))) * y); [ idtac | ring ]. split. @@ -152,7 +152,7 @@ Proof. rewrite Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r | assumption ]; apply Rplus_le_reg_l with (IZR (up (x / y)) - x / y); - rewrite Rplus_0_r; unfold Rdiv in |- *; + rewrite Rplus_0_r; unfold Rdiv; replace (IZR (up (x * / y)) - x * / y + (x * / y + (1 - IZR (up (x * / y))))) with 1; [ idtac | ring ]; elim H0; intros _ H2; unfold Rdiv in H2; @@ -166,12 +166,12 @@ Proof. replace (IZR (up (x / y)) - 1 + 1) with (IZR (up (x / y))); [ idtac | ring ]; replace (IZR (up (x / y)) - 1 + (x * / y + (1 - IZR (up (x / y))))) with - (x * / y); [ idtac | ring ]; elim H0; unfold Rdiv in |- *; + (x * / y); [ idtac | ring ]; elim H0; unfold Rdiv; intros H2 _; exact H2. case (total_order_T 0 y); intro. elim s; intro. assumption. - elim H; symmetry in |- *; exact b. + elim H; symmetry ; exact b. assert (H1 := Rge_le _ _ r); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 r0)). Qed. diff --git a/theories/Reals/Binomial.v b/theories/Reals/Binomial.v index 412f6442..ad076c48 100644 --- a/theories/Reals/Binomial.v +++ b/theories/Reals/Binomial.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* C n i = C n (n - i). Proof. - intros; unfold C in |- *; replace (n - (n - i))%nat with i. + intros; unfold C; replace (n - (n - i))%nat with i. rewrite Rmult_comm. reflexivity. apply plus_minus; rewrite plus_comm; apply le_plus_minus; assumption. @@ -26,10 +26,10 @@ Lemma pascal_step2 : forall n i:nat, (i <= n)%nat -> C (S n) i = INR (S n) / INR (S n - i) * C n i. Proof. - intros; unfold C in |- *; replace (S n - i)%nat with (S (n - i)). + intros; unfold C; replace (S n - i)%nat with (S (n - i)). cut (forall n:nat, fact (S n) = (S n * fact n)%nat). intro; repeat rewrite H0. - unfold Rdiv in |- *; repeat rewrite mult_INR; repeat rewrite Rinv_mult_distr. + unfold Rdiv; repeat rewrite mult_INR; repeat rewrite Rinv_mult_distr. ring. apply INR_fact_neq_0. apply INR_fact_neq_0. @@ -46,13 +46,13 @@ Qed. Lemma pascal_step3 : forall n i:nat, (i < n)%nat -> C n (S i) = INR (n - i) / INR (S i) * C n i. Proof. - intros; unfold C in |- *. + intros; unfold C. cut (forall n:nat, fact (S n) = (S n * fact n)%nat). intro. cut ((n - i)%nat = S (n - S i)). intro. - pattern (n - i)%nat at 2 in |- *; rewrite H1. - repeat rewrite H0; unfold Rdiv in |- *; repeat rewrite mult_INR; + pattern (n - i)%nat at 2; rewrite H1. + repeat rewrite H0; unfold Rdiv; repeat rewrite mult_INR; repeat rewrite Rinv_mult_distr. rewrite <- H1; rewrite (Rmult_comm (/ INR (n - i))); repeat rewrite Rmult_assoc; rewrite (Rmult_comm (INR (n - i))); @@ -68,7 +68,7 @@ Proof. apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ]. apply INR_fact_neq_0. rewrite minus_Sn_m. - simpl in |- *; reflexivity. + simpl; reflexivity. apply lt_le_S; assumption. intro; reflexivity. Qed. @@ -95,13 +95,13 @@ Proof. rewrite <- minus_Sn_m. cut ((n - (n - i))%nat = i). intro; rewrite H0; reflexivity. - symmetry in |- *; apply plus_minus. + symmetry ; apply plus_minus. rewrite plus_comm; rewrite le_plus_minus_r. reflexivity. apply lt_le_weak; assumption. apply le_minusni_n; apply lt_le_weak; assumption. apply lt_le_weak; assumption. - unfold Rdiv in |- *. + unfold Rdiv. repeat rewrite S_INR. rewrite minus_INR. cut (INR i + 1 <> 0). @@ -125,18 +125,18 @@ Lemma binomial : (x + y) ^ n = sum_f_R0 (fun i:nat => C n i * x ^ i * y ^ (n - i)) n. Proof. intros; induction n as [| n Hrecn]. - unfold C in |- *; simpl in |- *; unfold Rdiv in |- *; + unfold C; simpl; unfold Rdiv; repeat rewrite Rmult_1_r; rewrite Rinv_1; ring. - pattern (S n) at 1 in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ]. + pattern (S n) at 1; replace (S n) with (n + 1)%nat; [ idtac | ring ]. rewrite pow_add; rewrite Hrecn. - replace ((x + y) ^ 1) with (x + y); [ idtac | simpl in |- *; ring ]. + replace ((x + y) ^ 1) with (x + y); [ idtac | simpl; ring ]. rewrite tech5. cut (forall p:nat, C p p = 1). cut (forall p:nat, C p 0 = 1). intros; rewrite H0; rewrite <- minus_n_n; rewrite Rmult_1_l. - replace (y ^ 0) with 1; [ rewrite Rmult_1_r | simpl in |- *; reflexivity ]. + replace (y ^ 0) with 1; [ rewrite Rmult_1_r | simpl; reflexivity ]. induction n as [| n Hrecn0]. - simpl in |- *; do 2 rewrite H; ring. + simpl; do 2 rewrite H; ring. (* N >= 1 *) set (N := S n). rewrite Rmult_plus_distr_l. @@ -158,7 +158,7 @@ Proof. rewrite (Rplus_comm (sum_f_R0 An n)). repeat rewrite Rplus_assoc. rewrite <- tech5. - fold N in |- *. + fold N. set (Cn := fun i:nat => C N i * x ^ i * y ^ (S N - i)). cut (forall i:nat, (i < N)%nat -> Cn (S i) = Bn i). intro; replace (sum_f_R0 Bn n) with (sum_f_R0 (fun i:nat => Cn (S i)) n). @@ -166,42 +166,42 @@ Proof. rewrite <- Rplus_assoc; rewrite (decomp_sum Cn N). replace (pred N) with n. ring. - unfold N in |- *; simpl in |- *; reflexivity. - unfold N in |- *; apply lt_O_Sn. - unfold Cn in |- *; rewrite H; simpl in |- *; ring. + unfold N; simpl; reflexivity. + unfold N; apply lt_O_Sn. + unfold Cn; rewrite H; simpl; ring. apply sum_eq. intros; apply H1. - unfold N in |- *; apply le_lt_trans with n; [ assumption | apply lt_n_Sn ]. - intros; unfold Bn, Cn in |- *. + unfold N; apply le_lt_trans with n; [ assumption | apply lt_n_Sn ]. + intros; unfold Bn, Cn. replace (S N - S i)%nat with (N - i)%nat; reflexivity. - unfold An in |- *; fold N in |- *; rewrite <- minus_n_n; rewrite H0; - simpl in |- *; ring. + unfold An; fold N; rewrite <- minus_n_n; rewrite H0; + simpl; ring. apply sum_eq. - intros; unfold An, Bn in |- *; replace (S N - S i)%nat with (N - i)%nat; + intros; unfold An, Bn; replace (S N - S i)%nat with (N - i)%nat; [ idtac | reflexivity ]. rewrite <- pascal; [ ring - | apply le_lt_trans with n; [ assumption | unfold N in |- *; apply lt_n_Sn ] ]. - unfold N in |- *; reflexivity. - unfold N in |- *; apply lt_O_Sn. + | apply le_lt_trans with n; [ assumption | unfold N; apply lt_n_Sn ] ]. + unfold N; reflexivity. + unfold N; apply lt_O_Sn. rewrite <- (Rmult_comm y); rewrite scal_sum; apply sum_eq. intros; replace (S N - i)%nat with (S (N - i)). replace (S (N - i)) with (N - i + 1)%nat; [ idtac | ring ]. - rewrite pow_add; replace (y ^ 1) with y; [ idtac | simpl in |- *; ring ]; + rewrite pow_add; replace (y ^ 1) with y; [ idtac | simpl; ring ]; ring. apply minus_Sn_m; assumption. rewrite <- (Rmult_comm x); rewrite scal_sum; apply sum_eq. intros; replace (S i) with (i + 1)%nat; [ idtac | ring ]; rewrite pow_add; - replace (x ^ 1) with x; [ idtac | simpl in |- *; ring ]; + replace (x ^ 1) with x; [ idtac | simpl; ring ]; ring. - intro; unfold C in |- *. + intro; unfold C. replace (INR (fact 0)) with 1; [ idtac | reflexivity ]. replace (p - 0)%nat with p; [ idtac | apply minus_n_O ]. - rewrite Rmult_1_l; unfold Rdiv in |- *; rewrite <- Rinv_r_sym; + rewrite Rmult_1_l; unfold Rdiv; rewrite <- Rinv_r_sym; [ reflexivity | apply INR_fact_neq_0 ]. - intro; unfold C in |- *. + intro; unfold C. replace (p - p)%nat with 0%nat; [ idtac | apply minus_n_n ]. replace (INR (fact 0)) with 1; [ idtac | reflexivity ]. - rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite <- Rinv_r_sym; + rewrite Rmult_1_r; unfold Rdiv; rewrite <- Rinv_r_sym; [ reflexivity | apply INR_fact_neq_0 ]. Qed. diff --git a/theories/Reals/Cauchy_prod.v b/theories/Reals/Cauchy_prod.v index a9d5cde3..f6a48adc 100644 --- a/theories/Reals/Cauchy_prod.v +++ b/theories/Reals/Cauchy_prod.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* @@ -147,7 +147,7 @@ Proof. (pred (pred N))). repeat rewrite Rplus_assoc; apply Rplus_eq_compat_l. replace (pred (N - pred N)) with 0%nat. - simpl in |- *; rewrite <- minus_n_O. + simpl; rewrite <- minus_n_O. replace (S (pred N)) with N. replace (sum_f_R0 (fun k:nat => An (S N) * Bn (S k)) (pred (pred N))) with (sum_f_R0 (fun k:nat => Bn (S k) * An (S N)) (pred (pred N))). @@ -161,11 +161,11 @@ Proof. apply S_pred with 0%nat; assumption. replace (N - pred N)%nat with 1%nat. reflexivity. - pattern N at 1 in |- *; replace N with (S (pred N)). + pattern N at 1; replace N with (S (pred N)). rewrite <- minus_Sn_m. rewrite <- minus_n_n; reflexivity. apply le_n. - symmetry in |- *; apply S_pred with 0%nat; assumption. + symmetry ; apply S_pred with 0%nat; assumption. apply sum_eq; intros; rewrite (sum_N_predN (fun l:nat => An (S (S (l + i))) * Bn (N - l)%nat) @@ -259,7 +259,7 @@ Proof. apply le_n. apply (fun p n m:nat => plus_le_reg_l n m p) with 1%nat. rewrite le_plus_minus_r. - simpl in |- *; assumption. + simpl; assumption. apply le_trans with 2%nat; [ apply le_n_Sn | assumption ]. apply le_trans with 2%nat; [ apply le_n_Sn | assumption ]. simpl; ring. @@ -274,7 +274,7 @@ Proof. apply le_trans with (pred (pred N)). assumption. apply le_pred_n. - symmetry in |- *; apply S_pred with 0%nat; assumption. + symmetry ; apply S_pred with 0%nat; assumption. apply INR_eq; rewrite S_INR; rewrite plus_INR; reflexivity. apply le_trans with (pred (pred N)). assumption. @@ -427,7 +427,7 @@ Proof. apply le_trans with (pred (pred N)). assumption. apply le_pred_n. - symmetry in |- *; apply S_pred with 0%nat; assumption. + symmetry ; apply S_pred with 0%nat; assumption. apply INR_eq; rewrite S_INR; rewrite plus_INR; simpl; ring. apply le_trans with (pred (pred N)). assumption. @@ -441,11 +441,11 @@ Proof. inversion H1. left; reflexivity. right; apply le_n_S; assumption. - simpl in |- *. + simpl. replace (S (pred N)) with N. reflexivity. apply S_pred with 0%nat; assumption. - simpl in |- *. + simpl. cut ((N - pred N)%nat = 1%nat). intro; rewrite H2; reflexivity. rewrite pred_of_minus. @@ -453,7 +453,7 @@ Proof. simpl; ring. apply lt_le_S; assumption. rewrite <- pred_of_minus; apply le_pred_n. - simpl in |- *; symmetry in |- *; apply S_pred with 0%nat; assumption. + simpl; symmetry ; apply S_pred with 0%nat; assumption. inversion H. left; reflexivity. right; apply lt_le_trans with 1%nat; [ apply lt_n_Sn | exact H1 ]. diff --git a/theories/Reals/Cos_plus.v b/theories/Reals/Cos_plus.v index ec1eeddf..c296d427 100644 --- a/theories/Reals/Cos_plus.v +++ b/theories/Reals/Cos_plus.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* @@ -120,7 +120,7 @@ Proof. C ^ (2 * S (N + k))) (pred (N - k))) (pred N)). apply sum_Rle; intros. apply sum_Rle; intros. - unfold Rdiv in |- *; repeat rewrite Rabs_mult. + unfold Rdiv; repeat rewrite Rabs_mult. do 2 rewrite pow_1_abs. do 2 rewrite Rmult_1_l. rewrite (Rabs_right (/ INR (fact (2 * S (n0 + n))))). @@ -142,7 +142,7 @@ Proof. apply pow_incr. split. apply Rabs_pos. - unfold C in |- *. + unfold C. apply Rle_trans with (Rmax (Rabs x) (Rabs y)); apply RmaxLess2. apply Rle_trans with (C ^ (2 * S (n0 + n)) * C ^ (2 * (N - n0))). do 2 rewrite <- (Rmult_comm (C ^ (2 * (N - n0)))). @@ -150,11 +150,11 @@ Proof. apply pow_le. apply Rle_trans with 1. left; apply Rlt_0_1. - unfold C in |- *; apply RmaxLess1. + unfold C; apply RmaxLess1. apply pow_incr. split. apply Rabs_pos. - unfold C in |- *; apply Rle_trans with (Rmax (Rabs x) (Rabs y)). + unfold C; apply Rle_trans with (Rmax (Rabs x) (Rabs y)). apply RmaxLess1. apply RmaxLess2. right. @@ -203,7 +203,7 @@ Proof. left; apply Rinv_0_lt_compat. rewrite mult_INR; apply Rmult_lt_0_compat; apply INR_fact_lt_0. apply Rle_pow. - unfold C in |- *; apply RmaxLess1. + unfold C; apply RmaxLess1. replace (4 * N)%nat with (2 * (2 * N))%nat; [ idtac | ring ]. apply (fun m n p:nat => mult_le_compat_l p n m). replace (2 * N)%nat with (S (N + pred N)). @@ -223,33 +223,33 @@ Proof. apply pow_le. left; apply Rlt_le_trans with 1. apply Rlt_0_1. - unfold C in |- *; apply RmaxLess1. + unfold C; apply RmaxLess1. replace (/ INR (fact (2 * S (n0 + n)) * fact (2 * (N - n0)))) with (Binomial.C (2 * S (N + n)) (2 * S (n0 + n)) / INR (fact (2 * S (N + n)))). apply Rle_trans with (Binomial.C (2 * S (N + n)) (S (N + n)) / INR (fact (2 * S (N + n)))). - unfold Rdiv in |- *; + unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ INR (fact (2 * S (N + n))))). apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; apply INR_fact_lt_0. apply C_maj. omega. right. - unfold Rdiv in |- *; rewrite Rmult_comm. - unfold Binomial.C in |- *. - unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc. + unfold Rdiv; rewrite Rmult_comm. + unfold Binomial.C. + unfold Rdiv; repeat rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. replace (2 * S (N + n) - S (N + n))%nat with (S (N + n)). rewrite Rinv_mult_distr. - unfold Rsqr in |- *; reflexivity. + unfold Rsqr; reflexivity. apply INR_fact_neq_0. apply INR_fact_neq_0. omega. apply INR_fact_neq_0. - unfold Rdiv in |- *; rewrite Rmult_comm. - unfold Binomial.C in |- *. - unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc. + unfold Rdiv; rewrite Rmult_comm. + unfold Binomial.C. + unfold Rdiv; repeat rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. replace (2 * S (N + n) - 2 * S (n0 + n))%nat with (2 * (N - n0))%nat. @@ -271,17 +271,17 @@ Proof. apply pow_le. left; apply Rlt_le_trans with 1. apply Rlt_0_1. - unfold C in |- *; apply RmaxLess1. + unfold C; apply RmaxLess1. apply Rle_trans with (Rsqr (/ INR (fact (S (N + n)))) * INR N). apply Rmult_le_compat_l. apply Rle_0_sqr. apply le_INR. omega. - rewrite Rmult_comm; unfold Rdiv in |- *; apply Rmult_le_compat_l. + rewrite Rmult_comm; unfold Rdiv; apply Rmult_le_compat_l. apply pos_INR. apply Rle_trans with (/ INR (fact (S (N + n)))). - pattern (/ INR (fact (S (N + n)))) at 2 in |- *; rewrite <- Rmult_1_r. - unfold Rsqr in |- *. + pattern (/ INR (fact (S (N + n)))) at 2; rewrite <- Rmult_1_r. + unfold Rsqr. apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; apply INR_fact_lt_0. apply Rmult_le_reg_l with (INR (fact (S (N + n)))). @@ -313,14 +313,14 @@ Proof. rewrite sum_cte. apply Rle_trans with (C ^ (4 * N) / INR (fact (pred N))). rewrite <- (Rmult_comm (C ^ (4 * N))). - unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l. + unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l. apply pow_le. left; apply Rlt_le_trans with 1. apply Rlt_0_1. - unfold C in |- *; apply RmaxLess1. + unfold C; apply RmaxLess1. cut (S (pred N) = N). intro; rewrite H0. - pattern N at 2 in |- *; rewrite <- H0. + pattern N at 2; rewrite <- H0. do 2 rewrite fact_simpl. rewrite H0. repeat rewrite mult_INR. @@ -329,7 +329,7 @@ Proof. repeat rewrite <- Rmult_assoc. rewrite <- Rinv_r_sym. rewrite Rmult_1_l. - pattern (/ INR (fact (pred N))) at 2 in |- *; rewrite <- Rmult_1_r. + pattern (/ INR (fact (pred N))) at 2; rewrite <- Rmult_1_r. rewrite Rmult_assoc. apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; apply INR_fact_lt_0. @@ -340,19 +340,19 @@ Proof. apply le_INR; apply le_n_Sn. apply not_O_INR; discriminate. apply not_O_INR. - red in |- *; intro; rewrite H1 in H; elim (lt_irrefl _ H). + red; intro; rewrite H1 in H; elim (lt_irrefl _ H). apply not_O_INR. - red in |- *; intro; rewrite H1 in H; elim (lt_irrefl _ H). + red; intro; rewrite H1 in H; elim (lt_irrefl _ H). apply INR_fact_neq_0. apply not_O_INR; discriminate. apply prod_neq_R0. apply not_O_INR. - red in |- *; intro; rewrite H1 in H; elim (lt_irrefl _ H). + red; intro; rewrite H1 in H; elim (lt_irrefl _ H). apply INR_fact_neq_0. - symmetry in |- *; apply S_pred with 0%nat; assumption. + symmetry ; apply S_pred with 0%nat; assumption. right. - unfold Majxy in |- *. - unfold C in |- *. + unfold Majxy. + unfold C. replace (S (pred N)) with N. reflexivity. apply S_pred with 0%nat; assumption. @@ -363,7 +363,7 @@ Lemma reste2_maj : Proof. intros. set (C := Rmax 1 (Rmax (Rabs x) (Rabs y))). - unfold Reste2 in |- *. + unfold Reste2. apply Rle_trans with (sum_f_R0 (fun k:nat => @@ -415,7 +415,7 @@ Proof. pred N)). apply sum_Rle; intros. apply sum_Rle; intros. - unfold Rdiv in |- *; repeat rewrite Rabs_mult. + unfold Rdiv; repeat rewrite Rabs_mult. do 2 rewrite pow_1_abs. do 2 rewrite Rmult_1_l. rewrite (Rabs_right (/ INR (fact (2 * S (n0 + n) + 1)))). @@ -437,7 +437,7 @@ Proof. apply pow_incr. split. apply Rabs_pos. - unfold C in |- *. + unfold C. apply Rle_trans with (Rmax (Rabs x) (Rabs y)); apply RmaxLess2. apply Rle_trans with (C ^ (2 * S (n0 + n) + 1) * C ^ (2 * (N - n0) + 1)). do 2 rewrite <- (Rmult_comm (C ^ (2 * (N - n0) + 1))). @@ -445,11 +445,11 @@ Proof. apply pow_le. apply Rle_trans with 1. left; apply Rlt_0_1. - unfold C in |- *; apply RmaxLess1. + unfold C; apply RmaxLess1. apply pow_incr. split. apply Rabs_pos. - unfold C in |- *; apply Rle_trans with (Rmax (Rabs x) (Rabs y)). + unfold C; apply Rle_trans with (Rmax (Rabs x) (Rabs y)). apply RmaxLess1. apply RmaxLess2. right. @@ -477,7 +477,7 @@ Proof. left; apply Rinv_0_lt_compat. rewrite mult_INR; apply Rmult_lt_0_compat; apply INR_fact_lt_0. apply Rle_pow. - unfold C in |- *; apply RmaxLess1. + unfold C; apply RmaxLess1. replace (4 * S N)%nat with (2 * (2 * S N))%nat; [ idtac | ring ]. apply (fun m n p:nat => mult_le_compat_l p n m). replace (2 * S N)%nat with (S (S (N + N))). @@ -500,14 +500,14 @@ Proof. apply pow_le. left; apply Rlt_le_trans with 1. apply Rlt_0_1. - unfold C in |- *; apply RmaxLess1. + unfold C; apply RmaxLess1. replace (/ INR (fact (2 * S (n0 + n) + 1) * fact (2 * (N - n0) + 1))) with (Binomial.C (2 * S (S (N + n))) (2 * S (n0 + n) + 1) / INR (fact (2 * S (S (N + n))))). apply Rle_trans with (Binomial.C (2 * S (S (N + n))) (S (S (N + n))) / INR (fact (2 * S (S (N + n))))). - unfold Rdiv in |- *; + unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ INR (fact (2 * S (S (N + n)))))). apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; apply INR_fact_lt_0. @@ -518,21 +518,21 @@ Proof. ring. omega. right. - unfold Rdiv in |- *; rewrite Rmult_comm. - unfold Binomial.C in |- *. - unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc. + unfold Rdiv; rewrite Rmult_comm. + unfold Binomial.C. + unfold Rdiv; repeat rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. replace (2 * S (S (N + n)) - S (S (N + n)))%nat with (S (S (N + n))). rewrite Rinv_mult_distr. - unfold Rsqr in |- *; reflexivity. + unfold Rsqr; reflexivity. apply INR_fact_neq_0. apply INR_fact_neq_0. omega. apply INR_fact_neq_0. - unfold Rdiv in |- *; rewrite Rmult_comm. - unfold Binomial.C in |- *. - unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc. + unfold Rdiv; rewrite Rmult_comm. + unfold Binomial.C. + unfold Rdiv; repeat rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. replace (2 * S (S (N + n)) - (2 * S (n0 + n) + 1))%nat with @@ -556,7 +556,7 @@ Proof. apply pow_le. left; apply Rlt_le_trans with 1. apply Rlt_0_1. - unfold C in |- *; apply RmaxLess1. + unfold C; apply RmaxLess1. apply Rle_trans with (Rsqr (/ INR (fact (S (S (N + n))))) * INR N). apply Rmult_le_compat_l. apply Rle_0_sqr. @@ -564,11 +564,11 @@ Proof. apply le_INR. omega. omega. - rewrite Rmult_comm; unfold Rdiv in |- *; apply Rmult_le_compat_l. + rewrite Rmult_comm; unfold Rdiv; apply Rmult_le_compat_l. apply pos_INR. apply Rle_trans with (/ INR (fact (S (S (N + n))))). - pattern (/ INR (fact (S (S (N + n))))) at 2 in |- *; rewrite <- Rmult_1_r. - unfold Rsqr in |- *. + pattern (/ INR (fact (S (S (N + n))))) at 2; rewrite <- Rmult_1_r. + unfold Rsqr. apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; apply INR_fact_lt_0. apply Rmult_le_reg_l with (INR (fact (S (S (N + n))))). @@ -599,11 +599,11 @@ Proof. rewrite sum_cte. apply Rle_trans with (C ^ (4 * S N) / INR (fact N)). rewrite <- (Rmult_comm (C ^ (4 * S N))). - unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l. + unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l. apply pow_le. left; apply Rlt_le_trans with 1. apply Rlt_0_1. - unfold C in |- *; apply RmaxLess1. + unfold C; apply RmaxLess1. cut (S (pred N) = N). intro; rewrite H0. do 2 rewrite fact_simpl. @@ -642,10 +642,10 @@ Proof. apply INR_fact_neq_0. apply not_O_INR; discriminate. apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ]. - symmetry in |- *; apply S_pred with 0%nat; assumption. + symmetry ; apply S_pred with 0%nat; assumption. right. - unfold Majxy in |- *. - unfold C in |- *. + unfold Majxy. + unfold C. reflexivity. Qed. @@ -654,10 +654,10 @@ Proof. intros. assert (H := Majxy_cv_R0 x y). unfold Un_cv in H; unfold R_dist in H. - unfold Un_cv in |- *; unfold R_dist in |- *; intros. + unfold Un_cv; unfold R_dist; intros. elim (H eps H0); intros N0 H1. exists (S N0); intros. - unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r. + unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r. apply Rle_lt_trans with (Rabs (Majxy x y (pred n))). rewrite (Rabs_right (Majxy x y (pred n))). apply reste1_maj. @@ -665,8 +665,8 @@ Proof. apply lt_O_Sn. assumption. apply Rle_ge. - unfold Majxy in |- *. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Majxy. + unfold Rdiv; apply Rmult_le_pos. apply pow_le. apply Rle_trans with 1. left; apply Rlt_0_1. @@ -674,7 +674,7 @@ Proof. left; apply Rinv_0_lt_compat; apply INR_fact_lt_0. replace (Majxy x y (pred n)) with (Majxy x y (pred n) - 0); [ idtac | ring ]. apply H1. - unfold ge in |- *; apply le_S_n. + unfold ge; apply le_S_n. replace (S (pred n)) with n. assumption. apply S_pred with 0%nat. @@ -686,10 +686,10 @@ Proof. intros. assert (H := Majxy_cv_R0 x y). unfold Un_cv in H; unfold R_dist in H. - unfold Un_cv in |- *; unfold R_dist in |- *; intros. + unfold Un_cv; unfold R_dist; intros. elim (H eps H0); intros N0 H1. exists (S N0); intros. - unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r. + unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r. apply Rle_lt_trans with (Rabs (Majxy x y n)). rewrite (Rabs_right (Majxy x y n)). apply reste2_maj. @@ -697,8 +697,8 @@ Proof. apply lt_O_Sn. assumption. apply Rle_ge. - unfold Majxy in |- *. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Majxy. + unfold Rdiv; apply Rmult_le_pos. apply pow_le. apply Rle_trans with 1. left; apply Rlt_0_1. @@ -706,7 +706,7 @@ Proof. left; apply Rinv_0_lt_compat; apply INR_fact_lt_0. replace (Majxy x y n) with (Majxy x y n - 0); [ idtac | ring ]. apply H1. - unfold ge in |- *; apply le_trans with (S N0). + unfold ge; apply le_trans with (S N0). apply le_n_Sn. exact H2. Qed. @@ -714,7 +714,7 @@ Qed. Lemma reste_cv_R0 : forall x y:R, Un_cv (Reste x y) 0. Proof. intros. - unfold Reste in |- *. + unfold Reste. set (An := fun n:nat => Reste2 x y n). set (Bn := fun n:nat => Reste1 x y (S n)). cut @@ -723,21 +723,21 @@ Proof. intro. apply H. apply CV_minus. - unfold An in |- *. + unfold An. replace (fun n:nat => Reste2 x y n) with (Reste2 x y). apply reste2_cv_R0. reflexivity. - unfold Bn in |- *. + unfold Bn. assert (H0 := reste1_cv_R0 x y). unfold Un_cv in H0; unfold R_dist in H0. - unfold Un_cv in |- *; unfold R_dist in |- *; intros. + unfold Un_cv; unfold R_dist; intros. elim (H0 eps H1); intros N0 H2. exists N0; intros. apply H2. - unfold ge in |- *; apply le_trans with (S N0). + unfold ge; apply le_trans with (S N0). apply le_n_Sn. apply le_n_S; assumption. - unfold An, Bn in |- *. + unfold An, Bn. intro. replace 0 with (0 - 0); [ idtac | ring ]. exact H. @@ -751,7 +751,7 @@ Proof. intros. apply UL_sequence with (C1 x y); assumption. apply C1_cvg. - unfold Un_cv in |- *; unfold R_dist in |- *. + unfold Un_cv; unfold R_dist. intros. assert (H0 := A1_cvg x). assert (H1 := A1_cvg y). @@ -764,7 +764,7 @@ Proof. unfold R_dist in H4; unfold R_dist in H5; unfold R_dist in H6. cut (0 < eps / 3); [ intro - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ]. elim (H4 (eps / 3) H7); intros N1 H8. elim (H5 (eps / 3) H7); intros N2 H9. @@ -788,8 +788,8 @@ Proof. replace eps with (eps / 3 + (eps / 3 + eps / 3)). apply Rplus_lt_compat. apply H8. - unfold ge in |- *; apply le_trans with N. - unfold N in |- *. + unfold ge; apply le_trans with N. + unfold N. apply le_trans with (max N1 N2). apply le_max_l. apply le_trans with (max (max N1 N2) N3). @@ -804,12 +804,12 @@ Proof. rewrite <- Rabs_Ropp. rewrite Ropp_minus_distr. apply H9. - unfold ge in |- *; apply le_trans with (max N1 N2). + unfold ge; apply le_trans with (max N1 N2). apply le_max_r. apply le_S_n. rewrite <- H12. apply le_trans with N. - unfold N in |- *. + unfold N. apply le_n_S. apply le_trans with (max (max N1 N2) N3). apply le_max_l. @@ -817,35 +817,35 @@ Proof. assumption. replace (Reste x y (pred n)) with (Reste x y (pred n) - 0). apply H10. - unfold ge in |- *. + unfold ge. apply le_S_n. rewrite <- H12. apply le_trans with N. - unfold N in |- *. + unfold N. apply le_n_S. apply le_trans with (max (max N1 N2) N3). apply le_max_r. apply le_n_Sn. assumption. ring. - pattern eps at 4 in |- *; replace eps with (3 * (eps / 3)). + pattern eps at 4; replace eps with (3 * (eps / 3)). ring. - unfold Rdiv in |- *. + unfold Rdiv. rewrite <- Rmult_assoc. apply Rinv_r_simpl_m. discrR. apply lt_le_trans with (pred N). - unfold N in |- *; simpl in |- *; apply lt_O_Sn. + unfold N; simpl; apply lt_O_Sn. apply le_S_n. rewrite <- H12. replace (S (pred N)) with N. assumption. - unfold N in |- *; simpl in |- *; reflexivity. + unfold N; simpl; reflexivity. cut (0 < N)%nat. intro. cut (0 < n)%nat. intro. apply S_pred with 0%nat; assumption. apply lt_le_trans with N; assumption. - unfold N in |- *; apply lt_O_Sn. + unfold N; apply lt_O_Sn. Qed. diff --git a/theories/Reals/Cos_rel.v b/theories/Reals/Cos_rel.v index 73f3c0c6..9c7472fe 100644 --- a/theories/Reals/Cos_rel.v +++ b/theories/Reals/Cos_rel.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (-1) ^ k / INR (fact (2 * k)) * x ^ (2 * k)) N. @@ -50,7 +50,7 @@ Theorem cos_plus_form : (0 < n)%nat -> A1 x (S n) * A1 y (S n) - B1 x n * B1 y n + Reste x y n = C1 x y (S n). intros. -unfold A1, B1 in |- *. +unfold A1, B1. rewrite (cauchy_finite (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * x ^ (2 * k)) (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * y ^ (2 * k)) ( @@ -60,7 +60,7 @@ rewrite (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * x ^ (2 * k + 1)) (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * y ^ (2 * k + 1)) n H) . -unfold Reste in |- *. +unfold Reste. replace (sum_f_R0 (fun k:nat => @@ -119,13 +119,13 @@ replace ((-1) ^ (k - p) / INR (fact (2 * (k - p) + 1)) * y ^ (2 * (k - p) + 1))) k) n) with (sum_f_R0 sin_nnn (S n)). rewrite <- sum_plus. -unfold C1 in |- *. +unfold C1. apply sum_eq; intros. induction i as [| i Hreci]. -simpl in |- *. -unfold C in |- *; simpl in |- *. +simpl. +unfold C; simpl. field; discrR. -unfold sin_nnn in |- *. +unfold sin_nnn. rewrite <- Rmult_plus_distr_l. apply Rmult_eq_compat_l. rewrite binomial. @@ -141,13 +141,13 @@ replace (sum_f_R0 (fun l:nat => Wn (S (2 * l))) i). apply sum_decomposition. apply sum_eq; intros. -unfold Wn in |- *. +unfold Wn. apply Rmult_eq_compat_l. replace (2 * S i - S (2 * i0))%nat with (S (2 * (i - i0))). reflexivity. omega. apply sum_eq; intros. -unfold Wn in |- *. +unfold Wn. apply Rmult_eq_compat_l. replace (2 * S i - 2 * i0)%nat with (2 * (S i - i0))%nat. reflexivity. @@ -177,11 +177,11 @@ change (pred (S n)) with n. (* replace (pred (S n)) with n; [ idtac | reflexivity ]. *) apply sum_eq; intros. rewrite Rmult_comm. -unfold sin_nnn in |- *. +unfold sin_nnn. rewrite scal_sum. rewrite scal_sum. apply sum_eq; intros. -unfold Rdiv in |- *. +unfold Rdiv. (*repeat rewrite Rmult_assoc.*) (* rewrite (Rmult_comm (/ INR (fact (2 * S i)))). *) repeat rewrite <- Rmult_assoc. @@ -193,13 +193,13 @@ replace (S (2 * i0)) with (2 * i0 + 1)%nat; [ idtac | ring ]. replace (S (2 * (i - i0))) with (2 * (i - i0) + 1)%nat; [ idtac | ring ]. replace ((-1) ^ S i) with (-1 * (-1) ^ i0 * (-1) ^ (i - i0)). ring. -simpl in |- *. -pattern i at 2 in |- *; replace i with (i0 + (i - i0))%nat. +simpl. +pattern i at 2; replace i with (i0 + (i - i0))%nat. rewrite pow_add. ring. -symmetry in |- *; apply le_plus_minus; assumption. -unfold C in |- *. -unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc. +symmetry ; apply le_plus_minus; assumption. +unfold C. +unfold Rdiv; repeat rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. rewrite Rinv_mult_distr. @@ -217,7 +217,7 @@ apply lt_O_Sn. apply sum_eq; intros. rewrite scal_sum. apply sum_eq; intros. -unfold Rdiv in |- *. +unfold Rdiv. repeat rewrite <- Rmult_assoc. rewrite <- (Rmult_comm (/ INR (fact (2 * i)))). repeat rewrite <- Rmult_assoc. @@ -225,12 +225,12 @@ replace (/ INR (fact (2 * i)) * C (2 * i) (2 * i0)) with (/ INR (fact (2 * i0)) * / INR (fact (2 * (i - i0)))). replace ((-1) ^ i) with ((-1) ^ i0 * (-1) ^ (i - i0)). ring. -pattern i at 2 in |- *; replace i with (i0 + (i - i0))%nat. +pattern i at 2; replace i with (i0 + (i - i0))%nat. rewrite pow_add. ring. -symmetry in |- *; apply le_plus_minus; assumption. -unfold C in |- *. -unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc. +symmetry ; apply le_plus_minus; assumption. +unfold C. +unfold Rdiv; repeat rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. rewrite Rinv_mult_distr. @@ -240,12 +240,12 @@ omega. apply INR_fact_neq_0. apply INR_fact_neq_0. apply INR_fact_neq_0. -unfold Reste2 in |- *; apply sum_eq; intros. +unfold Reste2; apply sum_eq; intros. apply sum_eq; intros. -unfold Rdiv in |- *; ring. -unfold Reste1 in |- *; apply sum_eq; intros. +unfold Rdiv; ring. +unfold Reste1; apply sum_eq; intros. apply sum_eq; intros. -unfold Rdiv in |- *; ring. +unfold Rdiv; ring. apply lt_O_Sn. Qed. @@ -266,10 +266,10 @@ unfold R_dist in p. cut (cos x = x0). intro. rewrite H0. -unfold Un_cv in |- *; unfold R_dist in |- *; intros. +unfold Un_cv; unfold R_dist; intros. elim (p eps H1); intros. exists x1; intros. -unfold A1 in |- *. +unfold A1. replace (sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * x ^ (2 * k)) n) with (sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i)) * (x * x) ^ i) n). @@ -279,9 +279,9 @@ intros. replace ((x * x) ^ i) with (x ^ (2 * i)). reflexivity. apply pow_sqr. -unfold cos in |- *. +unfold cos. case (exist_cos (Rsqr x)). -unfold Rsqr in |- *; intros. +unfold Rsqr; intros. unfold cos_in in p_i. unfold cos_in in c. apply uniqueness_sum with (fun i:nat => cos_n i * (x * x) ^ i); assumption. @@ -298,10 +298,10 @@ unfold R_dist in p. cut (cos (x + y) = x0). intro. rewrite H0. -unfold Un_cv in |- *; unfold R_dist in |- *; intros. +unfold Un_cv; unfold R_dist; intros. elim (p eps H1); intros. exists x1; intros. -unfold C1 in |- *. +unfold C1. replace (sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * (x + y) ^ (2 * k)) n) with @@ -313,9 +313,9 @@ intros. replace (((x + y) * (x + y)) ^ i) with ((x + y) ^ (2 * i)). reflexivity. apply pow_sqr. -unfold cos in |- *. +unfold cos. case (exist_cos (Rsqr (x + y))). -unfold Rsqr in |- *; intros. +unfold Rsqr; intros. unfold cos_in in p_i. unfold cos_in in c. apply uniqueness_sum with (fun i:nat => cos_n i * ((x + y) * (x + y)) ^ i); @@ -327,17 +327,17 @@ intro. case (Req_dec x 0); intro. rewrite H. rewrite sin_0. -unfold B1 in |- *. -unfold Un_cv in |- *; unfold R_dist in |- *; intros; exists 0%nat; intros. +unfold B1. +unfold Un_cv; unfold R_dist; intros; exists 0%nat; intros. replace (sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k + 1)) n) with 0. -unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. +unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. induction n as [| n Hrecn]. -simpl in |- *; ring. +simpl; ring. rewrite tech5; rewrite <- Hrecn. -simpl in |- *; ring. -unfold ge in |- *; apply le_O_n. +simpl; ring. +unfold ge; apply le_O_n. assert (H0 := exist_sin (x * x)). elim H0; intros. assert (p_i := p). @@ -347,14 +347,14 @@ unfold R_dist in p. cut (sin x = x * x0). intro. rewrite H1. -unfold Un_cv in |- *; unfold R_dist in |- *; intros. +unfold Un_cv; unfold R_dist; intros. cut (0 < eps / Rabs x); [ intro - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ] ]. elim (p (eps / Rabs x) H3); intros. exists x1; intros. -unfold B1 in |- *. +unfold B1. replace (sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * x ^ (2 * k + 1)) n) with @@ -380,11 +380,11 @@ apply sum_eq. intros. rewrite pow_add. rewrite pow_sqr. -simpl in |- *. +simpl. ring. -unfold sin in |- *. +unfold sin. case (exist_sin (Rsqr x)). -unfold Rsqr in |- *; intros. +unfold Rsqr; intros. unfold sin_in in p_i. unfold sin_in in s. assert diff --git a/theories/Reals/DiscrR.v b/theories/Reals/DiscrR.v index 144de09e..1ec399d1 100644 --- a/theories/Reals/DiscrR.v +++ b/theories/Reals/DiscrR.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* z2 -> IZR z1 <> IZR z2. -intros; red in |- *; intro; elim H; apply eq_IZR; assumption. +intros; red; intro; elim H; apply eq_IZR; assumption. Qed. Ltac discrR := @@ -45,7 +45,7 @@ Ltac prove_sup0 := repeat (apply Rmult_lt_0_compat || apply Rplus_lt_pos; try apply Rlt_0_1 || apply Rlt_R0_R2) - | |- (?X1 > 0) => change (0 < X1) in |- *; prove_sup0 + | |- (?X1 > 0) => change (0 < X1); prove_sup0 end. Ltac omega_sup := @@ -59,7 +59,7 @@ Ltac omega_sup := Ltac prove_sup := match goal with - | |- (?X1 > ?X2) => change (X2 < X1) in |- *; prove_sup + | |- (?X1 > ?X2) => change (X2 < X1); prove_sup | |- (0 < ?X1) => prove_sup0 | |- (- ?X1 < 0) => rewrite <- Ropp_0; prove_sup | |- (- ?X1 < - ?X2) => apply Ropp_lt_gt_contravar; prove_sup diff --git a/theories/Reals/Exp_prop.v b/theories/Reals/Exp_prop.v index dd97b865..b65ab045 100644 --- a/theories/Reals/Exp_prop.v +++ b/theories/Reals/Exp_prop.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* / INR (fact k) * x ^ k) N. Lemma E1_cvg : forall x:R, Un_cv (E1 x) (exp x). Proof. - intro; unfold exp in |- *; unfold projT1 in |- *. + intro; unfold exp; unfold projT1. case (exist_exp x); intro. - unfold exp_in, Un_cv in |- *; unfold infinite_sum, E1 in |- *; trivial. + unfold exp_in, Un_cv; unfold infinite_sum, E1; trivial. Qed. Definition Reste_E (x y:R) (N:nat) : R := @@ -41,14 +41,14 @@ Lemma exp_form : forall (x y:R) (n:nat), (0 < n)%nat -> E1 x n * E1 y n - Reste_E x y n = E1 (x + y) n. Proof. - intros; unfold E1 in |- *. + intros; unfold E1. rewrite cauchy_finite. - unfold Reste_E in |- *; unfold Rminus in |- *; rewrite Rplus_assoc; + unfold Reste_E; unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_r; apply sum_eq; intros. rewrite binomial. rewrite scal_sum; apply sum_eq; intros. - unfold C in |- *; unfold Rdiv in |- *; repeat rewrite Rmult_assoc; + unfold C; unfold Rdiv; repeat rewrite Rmult_assoc; rewrite (Rmult_comm (INR (fact i))); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; rewrite Rinv_mult_distr. @@ -64,27 +64,13 @@ Definition maj_Reste_E (x y:R) (N:nat) : R := (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * N) / Rsqr (INR (fact (div2 (pred N))))). -Lemma Rle_Rinv : forall x y:R, 0 < x -> 0 < y -> x <= y -> / y <= / x. -Proof. - intros; apply Rmult_le_reg_l with x. - apply H. - rewrite <- Rinv_r_sym. - apply Rmult_le_reg_l with y. - apply H0. - rewrite Rmult_1_r; rewrite Rmult_comm; rewrite Rmult_assoc; - rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; apply H1. - red in |- *; intro; rewrite H2 in H0; elim (Rlt_irrefl _ H0). - red in |- *; intro; rewrite H2 in H; elim (Rlt_irrefl _ H). -Qed. - (**********) Lemma div2_double : forall N:nat, div2 (2 * N) = N. Proof. intro; induction N as [| N HrecN]. reflexivity. replace (2 * S N)%nat with (S (S (2 * N))). - simpl in |- *; simpl in HrecN; rewrite HrecN; reflexivity. + simpl; simpl in HrecN; rewrite HrecN; reflexivity. ring. Qed. @@ -93,7 +79,7 @@ Proof. intro; induction N as [| N HrecN]. reflexivity. replace (2 * S N)%nat with (S (S (2 * N))). - simpl in |- *; simpl in HrecN; rewrite HrecN; reflexivity. + simpl; simpl in HrecN; rewrite HrecN; reflexivity. ring. Qed. @@ -107,7 +93,7 @@ Proof. elim H2; intro. rewrite <- (even_div2 _ a); apply HrecN; assumption. rewrite <- (odd_div2 _ b); apply lt_O_Sn. - rewrite H1; simpl in |- *; apply lt_O_Sn. + rewrite H1; simpl; apply lt_O_Sn. inversion H. right; reflexivity. left; apply lt_le_trans with 2%nat; [ apply lt_n_Sn | apply H1 ]. @@ -124,7 +110,7 @@ Proof. (fun k:nat => sum_f_R0 (fun l:nat => / Rsqr (INR (fact (div2 (S N))))) (pred (N - k))) (pred N)). - unfold Reste_E in |- *. + unfold Reste_E. apply Rle_trans with (sum_f_R0 (fun k:nat => @@ -203,25 +189,25 @@ Proof. apply Rabs_pos. apply Rle_trans with (Rmax (Rabs x) (Rabs y)). apply RmaxLess1. - unfold M in |- *; apply RmaxLess2. + unfold M; apply RmaxLess2. apply Rle_trans with (M ^ S (n0 + n) * M ^ (N - n0)). apply Rmult_le_compat_l. apply pow_le; apply Rle_trans with 1. left; apply Rlt_0_1. - unfold M in |- *; apply RmaxLess1. + unfold M; apply RmaxLess1. apply pow_incr; split. apply Rabs_pos. apply Rle_trans with (Rmax (Rabs x) (Rabs y)). apply RmaxLess2. - unfold M in |- *; apply RmaxLess2. + unfold M; apply RmaxLess2. rewrite <- pow_add; replace (S (n0 + n) + (N - n0))%nat with (N + S n)%nat. apply Rle_pow. - unfold M in |- *; apply RmaxLess1. + unfold M; apply RmaxLess1. replace (2 * N)%nat with (N + N)%nat; [ idtac | ring ]. apply plus_le_compat_l. replace N with (S (pred N)). apply le_n_S; apply H0. - symmetry in |- *; apply S_pred with 0%nat; apply H. + symmetry ; apply S_pred with 0%nat; apply H. apply INR_eq; do 2 rewrite plus_INR; do 2 rewrite S_INR; rewrite plus_INR; rewrite minus_INR. ring. @@ -260,7 +246,7 @@ Proof. apply pow_le. apply Rle_trans with 1. left; apply Rlt_0_1. - unfold M in |- *; apply RmaxLess1. + unfold M; apply RmaxLess1. assert (H2 := even_odd_cor N). elim H2; intros N0 H3. elim H3; intro. @@ -276,9 +262,9 @@ Proof. apply le_n_Sn. replace (/ INR (fact n0) * / INR (fact (N - n0))) with (C N n0 / INR (fact N)). - pattern N at 1 in |- *; rewrite H4. + pattern N at 1; rewrite H4. apply Rle_trans with (C N N0 / INR (fact N)). - unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ INR (fact N))). + unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ INR (fact N))). apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; apply INR_fact_lt_0. rewrite H4. @@ -308,7 +294,7 @@ Proof. apply le_pred_n. replace (C N N0 / INR (fact N)) with (/ Rsqr (INR (fact N0))). rewrite H4; rewrite div2_S_double; right; reflexivity. - unfold Rsqr, C, Rdiv in |- *. + unfold Rsqr, C, Rdiv. repeat rewrite Rinv_mult_distr. rewrite (Rmult_comm (INR (fact N))). repeat rewrite Rmult_assoc. @@ -316,7 +302,7 @@ Proof. rewrite Rmult_1_r; replace (N - N0)%nat with N0. ring. replace N with (N0 + N0)%nat. - symmetry in |- *; apply minus_plus. + symmetry ; apply minus_plus. rewrite H4. ring. apply INR_fact_neq_0. @@ -324,7 +310,7 @@ Proof. apply INR_fact_neq_0. apply INR_fact_neq_0. apply INR_fact_neq_0. - unfold C, Rdiv in |- *. + unfold C, Rdiv. rewrite (Rmult_comm (INR (fact N))). repeat rewrite Rmult_assoc. rewrite <- Rinv_r_sym. @@ -336,7 +322,7 @@ Proof. replace (/ INR (fact (S n0)) * / INR (fact (N - n0))) with (C (S N) (S n0) / INR (fact (S N))). apply Rle_trans with (C (S N) (S N0) / INR (fact (S N))). - unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ INR (fact (S N)))). + unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ INR (fact (S N)))). apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; apply INR_fact_lt_0. cut (S N = (2 * S N0)%nat). @@ -371,7 +357,7 @@ Proof. replace (C (S N) (S N0) / INR (fact (S N))) with (/ Rsqr (INR (fact (S N0)))). rewrite H5; rewrite div2_double. right; reflexivity. - unfold Rsqr, C, Rdiv in |- *. + unfold Rsqr, C, Rdiv. repeat rewrite Rinv_mult_distr. replace (S N - S N0)%nat with (S N0). rewrite (Rmult_comm (INR (fact (S N)))). @@ -380,14 +366,14 @@ Proof. rewrite Rmult_1_r; reflexivity. apply INR_fact_neq_0. replace (S N) with (S N0 + S N0)%nat. - symmetry in |- *; apply minus_plus. + symmetry ; apply minus_plus. rewrite H5; ring. apply INR_fact_neq_0. apply INR_fact_neq_0. apply INR_fact_neq_0. apply INR_fact_neq_0. rewrite H4; ring. - unfold C, Rdiv in |- *. + unfold C, Rdiv. rewrite (Rmult_comm (INR (fact (S N)))). rewrite Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_r; rewrite Rinv_mult_distr. @@ -395,8 +381,8 @@ Proof. apply INR_fact_neq_0. apply INR_fact_neq_0. apply INR_fact_neq_0. - unfold maj_Reste_E in |- *. - unfold Rdiv in |- *; rewrite (Rmult_comm 4). + unfold maj_Reste_E. + unfold Rdiv; rewrite (Rmult_comm 4). rewrite Rmult_assoc. apply Rmult_le_compat_l. apply pow_le. @@ -447,7 +433,7 @@ Proof. cut (INR N <= INR (2 * div2 (S N))). intro; apply Rmult_le_reg_l with (Rsqr (INR (div2 (S N)))). apply Rsqr_pos_lt. - apply not_O_INR; red in |- *; intro. + apply not_O_INR; red; intro. cut (1 < S N)%nat. intro; assert (H4 := div2_not_R0 _ H3). rewrite H2 in H4; elim (lt_n_O _ H4). @@ -470,17 +456,17 @@ Proof. apply lt_INR_0; apply div2_not_R0. apply lt_n_S; apply H. cut (1 < S N)%nat. - intro; unfold Rsqr in |- *; apply prod_neq_R0; apply not_O_INR; intro; + intro; unfold Rsqr; apply prod_neq_R0; apply not_O_INR; intro; assert (H4 := div2_not_R0 _ H2); rewrite H3 in H4; elim (lt_n_O _ H4). apply lt_n_S; apply H. assert (H1 := even_odd_cor N). elim H1; intros N0 H2. elim H2; intro. - pattern N at 2 in |- *; rewrite H3. + pattern N at 2; rewrite H3. rewrite div2_S_double. right; rewrite H3; reflexivity. - pattern N at 2 in |- *; rewrite H3. + pattern N at 2; rewrite H3. replace (S (S (2 * N0))) with (2 * S N0)%nat. rewrite div2_double. rewrite H3. @@ -489,12 +475,12 @@ Proof. rewrite Rmult_plus_distr_l. apply Rplus_le_compat_l. rewrite Rmult_1_r. - simpl in |- *. - pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; + simpl. + pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; apply Rlt_0_1. ring. - unfold Rsqr in |- *; apply prod_neq_R0; apply INR_fact_neq_0. - unfold Rsqr in |- *; apply prod_neq_R0; apply not_O_INR; discriminate. + unfold Rsqr; apply prod_neq_R0; apply INR_fact_neq_0. + unfold Rsqr; apply prod_neq_R0; apply not_O_INR; discriminate. assert (H0 := even_odd_cor N). elim H0; intros N0 H1. elim H1; intro. @@ -520,15 +506,15 @@ Qed. Lemma maj_Reste_cv_R0 : forall x y:R, Un_cv (maj_Reste_E x y) 0. Proof. intros; assert (H := Majxy_cv_R0 x y). - unfold Un_cv in H; unfold Un_cv in |- *; intros. + unfold Un_cv in H; unfold Un_cv; intros. cut (0 < eps / 4); [ intro - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ]. elim (H _ H1); intros N0 H2. exists (max (2 * S N0) 2); intros. - unfold R_dist in H2; unfold R_dist in |- *; rewrite Rminus_0_r; - unfold Majxy in H2; unfold maj_Reste_E in |- *. + unfold R_dist in H2; unfold R_dist; rewrite Rminus_0_r; + unfold Majxy in H2; unfold maj_Reste_E. rewrite Rabs_right. apply Rle_lt_trans with (4 * @@ -536,7 +522,7 @@ Proof. INR (fact (div2 (pred n))))). apply Rmult_le_compat_l. left; prove_sup0. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr. rewrite (Rmult_comm (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n))); rewrite (Rmult_comm (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (div2 (pred n))))) @@ -544,7 +530,7 @@ Proof. left; apply Rinv_0_lt_compat; apply INR_fact_lt_0. apply Rle_trans with (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)). rewrite Rmult_comm; - pattern (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)) at 2 in |- *; + pattern (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)) at 2; rewrite <- Rmult_1_r; apply Rmult_le_compat_l. apply pow_le; apply Rle_trans with 1. left; apply Rlt_0_1. @@ -598,11 +584,11 @@ Proof. (Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (div2 (pred n))) / INR (fact (div2 (pred n))) - 0)). - apply H2; unfold ge in |- *. + apply H2; unfold ge. cut (2 * S N0 <= n)%nat. intro; apply le_S_n. apply INR_le; apply Rmult_le_reg_l with (INR 2). - simpl in |- *; prove_sup0. + simpl; prove_sup0. do 2 rewrite <- mult_INR; apply le_INR. apply le_trans with n. apply H4. @@ -620,12 +606,12 @@ Proof. apply S_pred with 0%nat; apply H8. replace (2 * N1)%nat with (S (S (2 * pred N1))). reflexivity. - pattern N1 at 2 in |- *; replace N1 with (S (pred N1)). + pattern N1 at 2; replace N1 with (S (pred N1)). ring. - symmetry in |- *; apply S_pred with 0%nat; apply H8. + symmetry ; apply S_pred with 0%nat; apply H8. apply INR_lt. apply Rmult_lt_reg_l with (INR 2). - simpl in |- *; prove_sup0. + simpl; prove_sup0. rewrite Rmult_0_r; rewrite <- mult_INR. apply lt_INR_0. rewrite <- H7. @@ -646,7 +632,7 @@ Proof. apply H3. rewrite Rminus_0_r; apply Rabs_right. apply Rle_ge. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Rdiv; apply Rmult_le_pos. apply pow_le. apply Rle_trans with 1. left; apply Rlt_0_1. @@ -654,7 +640,7 @@ Proof. left; apply Rinv_0_lt_compat; apply INR_fact_lt_0. discrR. apply Rle_ge. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Rdiv; apply Rmult_le_pos. left; prove_sup0. apply Rmult_le_pos. apply pow_le. @@ -668,9 +654,9 @@ Qed. Lemma Reste_E_cv : forall x y:R, Un_cv (Reste_E x y) 0. Proof. intros; assert (H := maj_Reste_cv_R0 x y). - unfold Un_cv in H; unfold Un_cv in |- *; intros; elim (H _ H0); intros. + unfold Un_cv in H; unfold Un_cv; intros; elim (H _ H0); intros. exists (max x0 1); intros. - unfold R_dist in |- *; rewrite Rminus_0_r. + unfold R_dist; rewrite Rminus_0_r. apply Rle_lt_trans with (maj_Reste_E x y n). apply Reste_E_maj. apply lt_le_trans with 1%nat. @@ -680,10 +666,10 @@ Proof. apply H2. replace (maj_Reste_E x y n) with (R_dist (maj_Reste_E x y n) 0). apply H1. - unfold ge in |- *; apply le_trans with (max x0 1). + unfold ge; apply le_trans with (max x0 1). apply le_max_l. apply H2. - unfold R_dist in |- *; rewrite Rminus_0_r; apply Rabs_right. + unfold R_dist; rewrite Rminus_0_r; apply Rabs_right. apply Rle_ge; apply Rle_trans with (Rabs (Reste_E x y n)). apply Rabs_pos. apply Reste_E_maj. @@ -704,13 +690,13 @@ Proof. apply H1. assert (H2 := CV_mult _ _ _ _ H0 H). assert (H3 := CV_minus _ _ _ _ H2 (Reste_E_cv x y)). - unfold Un_cv in |- *; unfold Un_cv in H3; intros. + unfold Un_cv; unfold Un_cv in H3; intros. elim (H3 _ H4); intros. exists (S x0); intros. rewrite <- (exp_form x y n). rewrite Rminus_0_r in H5. apply H5. - unfold ge in |- *; apply le_trans with (S x0). + unfold ge; apply le_trans with (S x0). apply le_n_Sn. apply H6. apply lt_le_trans with (S x0). @@ -724,15 +710,15 @@ Proof. intros; set (An := fun N:nat => / INR (fact N) * x ^ N). cut (Un_cv (fun n:nat => sum_f_R0 An n) (exp x)). intro; apply Rlt_le_trans with (sum_f_R0 An 0). - unfold An in |- *; simpl in |- *; rewrite Rinv_1; rewrite Rmult_1_r; + unfold An; simpl; rewrite Rinv_1; rewrite Rmult_1_r; apply Rlt_0_1. apply sum_incr. assumption. - intro; unfold An in |- *; left; apply Rmult_lt_0_compat. + intro; unfold An; left; apply Rmult_lt_0_compat. apply Rinv_0_lt_compat; apply INR_fact_lt_0. apply (pow_lt _ n H). - unfold exp in |- *; unfold projT1 in |- *; case (exist_exp x); intro. - unfold exp_in in |- *; unfold infinite_sum, Un_cv in |- *; trivial. + unfold exp; unfold projT1; case (exist_exp x); intro. + unfold exp_in; unfold infinite_sum, Un_cv; trivial. Qed. (**********) @@ -743,12 +729,12 @@ Proof. apply (exp_pos_pos _ a). rewrite <- b; rewrite exp_0; apply Rlt_0_1. replace (exp x) with (1 / exp (- x)). - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + unfold Rdiv; apply Rmult_lt_0_compat. apply Rlt_0_1. apply Rinv_0_lt_compat; apply exp_pos_pos. apply (Ropp_0_gt_lt_contravar _ r). cut (exp (- x) <> 0). - intro; unfold Rdiv in |- *; apply Rmult_eq_reg_l with (exp (- x)). + intro; unfold Rdiv; apply Rmult_eq_reg_l with (exp (- x)). rewrite Rmult_1_l; rewrite <- Rinv_r_sym. rewrite <- exp_plus. rewrite Rplus_opp_l; rewrite exp_0; reflexivity. @@ -756,7 +742,7 @@ Proof. apply H. assert (H := exp_plus x (- x)). rewrite Rplus_opp_r in H; rewrite exp_0 in H. - red in |- *; intro; rewrite H0 in H. + red; intro; rewrite H0 in H. rewrite Rmult_0_r in H. elim R1_neq_R0; assumption. Qed. @@ -764,7 +750,7 @@ Qed. (* ((exp h)-1)/h -> 0 quand h->0 *) Lemma derivable_pt_lim_exp_0 : derivable_pt_lim exp 0 1. Proof. - unfold derivable_pt_lim in |- *; intros. + unfold derivable_pt_lim; intros. set (fn := fun (N:nat) (x:R) => x ^ N / INR (fact (S N))). cut (CVN_R fn). intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }). @@ -782,41 +768,41 @@ Proof. replace 1 with (SFL fn cv 0). apply H5. split. - unfold D_x, no_cond in |- *; split. + unfold D_x, no_cond; split. trivial. - apply (sym_not_eq H6). + apply (not_eq_sym H6). rewrite Rminus_0_r; apply H7. - unfold SFL in |- *. + unfold SFL. case (cv 0); intros. eapply UL_sequence. apply u. - unfold Un_cv, SP in |- *. + unfold Un_cv, SP. intros; exists 1%nat; intros. - unfold R_dist in |- *; rewrite decomp_sum. + unfold R_dist; rewrite decomp_sum. rewrite (Rplus_comm (fn 0%nat 0)). replace (fn 0%nat 0) with 1. - unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_r; + unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_r. replace (sum_f_R0 (fun i:nat => fn (S i) 0) (pred n)) with 0. rewrite Rabs_R0; apply H8. - symmetry in |- *; apply sum_eq_R0; intros. - unfold fn in |- *. - simpl in |- *. - unfold Rdiv in |- *; do 2 rewrite Rmult_0_l; reflexivity. - unfold fn in |- *; simpl in |- *. - unfold Rdiv in |- *; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity. + symmetry ; apply sum_eq_R0; intros. + unfold fn. + simpl. + unfold Rdiv; do 2 rewrite Rmult_0_l; reflexivity. + unfold fn; simpl. + unfold Rdiv; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity. apply lt_le_trans with 1%nat; [ apply lt_n_Sn | apply H9 ]. - unfold SFL, exp in |- *. + unfold SFL, exp. case (cv h); case (exist_exp h); simpl; intros. eapply UL_sequence. apply u. - unfold Un_cv in |- *; intros. + unfold Un_cv; intros. unfold exp_in in e. unfold infinite_sum in e. cut (0 < eps0 * Rabs h). intro; elim (e _ H9); intros N0 H10. exists N0; intros. - unfold R_dist in |- *. + unfold R_dist. apply Rmult_lt_reg_l with (Rabs h). apply Rabs_pos_lt; assumption. rewrite <- Rabs_mult. @@ -827,47 +813,47 @@ Proof. (sum_f_R0 (fun i:nat => / INR (fact i) * h ^ i) (S n) - x). rewrite (Rmult_comm (Rabs h)). apply H10. - unfold ge in |- *. + unfold ge. apply le_trans with (S N0). apply le_n_Sn. apply le_n_S; apply H11. rewrite decomp_sum. replace (/ INR (fact 0) * h ^ 0) with 1. - unfold Rminus in |- *. + unfold Rminus. rewrite Ropp_plus_distr. rewrite Ropp_involutive. rewrite <- (Rplus_comm (- x)). rewrite <- (Rplus_comm (- x + 1)). rewrite Rplus_assoc; repeat apply Rplus_eq_compat_l. replace (pred (S n)) with n; [ idtac | reflexivity ]. - unfold SP in |- *. + unfold SP. rewrite scal_sum. apply sum_eq; intros. - unfold fn in |- *. + unfold fn. replace (h ^ S i) with (h * h ^ i). - unfold Rdiv in |- *; ring. - simpl in |- *; ring. - simpl in |- *; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity. + unfold Rdiv; ring. + simpl; ring. + simpl; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity. apply lt_O_Sn. - unfold Rdiv in |- *. + unfold Rdiv. rewrite <- Rmult_assoc. - symmetry in |- *; apply Rinv_r_simpl_m. + symmetry ; apply Rinv_r_simpl_m. assumption. apply Rmult_lt_0_compat. apply H8. apply Rabs_pos_lt; assumption. apply SFL_continuity; assumption. - intro; unfold fn in |- *. + intro; unfold fn. replace (fun x:R => x ^ n / INR (fact (S n))) with (pow_fct n / fct_cte (INR (fact (S n))))%F; [ idtac | reflexivity ]. apply continuity_div. apply derivable_continuous; apply (derivable_pow n). apply derivable_continuous; apply derivable_const. - intro; unfold fct_cte in |- *; apply INR_fact_neq_0. + intro; unfold fct_cte; apply INR_fact_neq_0. apply (CVN_R_CVS _ X). assert (H0 := Alembert_exp). - unfold CVN_R in |- *. - intro; unfold CVN_r in |- *. + unfold CVN_R. + intro; unfold CVN_r. exists (fun N:nat => r ^ N / INR (fact (S N))). cut { l:R | @@ -879,10 +865,10 @@ Proof. exists x; intros. split. apply p. - unfold Boule in |- *; intros. + unfold Boule; intros. rewrite Rminus_0_r in H1. - unfold fn in |- *. - unfold Rdiv in |- *; rewrite Rabs_mult. + unfold fn. + unfold Rdiv; rewrite Rabs_mult. cut (0 < INR (fact (S n))). intro. rewrite (Rabs_right (/ INR (fact (S n)))). @@ -897,14 +883,14 @@ Proof. cut ((r:R) <> 0). intro; apply Alembert_C2. intro; apply Rabs_no_R0. - unfold Rdiv in |- *; apply prod_neq_R0. + unfold Rdiv; apply prod_neq_R0. apply pow_nonzero; assumption. apply Rinv_neq_0_compat; apply INR_fact_neq_0. unfold Un_cv in H0. - unfold Un_cv in |- *; intros. + unfold Un_cv; intros. cut (0 < eps0 / r); [ intro - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; apply (cond_pos r) ] ]. elim (H0 _ H3); intros N0 H4. exists N0; intros. @@ -913,7 +899,7 @@ Proof. assert (H6 := H4 _ hyp_sn). unfold R_dist in H6; rewrite Rminus_0_r in H6. rewrite Rabs_Rabsolu in H6. - unfold R_dist in |- *; rewrite Rminus_0_r. + unfold R_dist; rewrite Rminus_0_r. rewrite Rabs_Rabsolu. replace (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))) @@ -927,7 +913,7 @@ Proof. apply H6. assumption. apply Rle_ge; left; apply (cond_pos r). - unfold Rdiv in |- *. + unfold Rdiv. repeat rewrite Rabs_mult. repeat rewrite Rabs_Rinv. rewrite Rinv_mult_distr. @@ -940,7 +926,7 @@ Proof. rewrite (Rmult_comm r). rewrite <- Rmult_assoc; rewrite <- (Rmult_comm (INR (fact (S n)))). apply Rmult_eq_compat_l. - simpl in |- *. + simpl. rewrite Rmult_assoc; rewrite <- Rinv_r_sym. ring. apply pow_nonzero; assumption. @@ -953,10 +939,10 @@ Proof. apply Rinv_neq_0_compat; apply Rabs_no_R0; apply INR_fact_neq_0. apply INR_fact_neq_0. apply INR_fact_neq_0. - unfold ge in |- *; apply le_trans with n. + unfold ge; apply le_trans with n. apply H5. apply le_n_Sn. - assert (H1 := cond_pos r); red in |- *; intro; rewrite H2 in H1; + assert (H1 := cond_pos r); red; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1). Qed. @@ -964,10 +950,10 @@ Qed. Lemma derivable_pt_lim_exp : forall x:R, derivable_pt_lim exp x (exp x). Proof. intro; assert (H0 := derivable_pt_lim_exp_0). - unfold derivable_pt_lim in H0; unfold derivable_pt_lim in |- *; intros. + unfold derivable_pt_lim in H0; unfold derivable_pt_lim; intros. cut (0 < eps / exp x); [ intro - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ apply H | apply Rinv_0_lt_compat; apply exp_pos ] ]. elim (H0 _ H1); intros del H2. exists del; intros. @@ -981,11 +967,11 @@ Proof. rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_l; rewrite <- (Rmult_comm eps). apply H5. - assert (H6 := exp_pos x); red in |- *; intro; rewrite H7 in H6; + assert (H6 := exp_pos x); red; intro; rewrite H7 in H6; elim (Rlt_irrefl _ H6). apply Rle_ge; left; apply exp_pos. rewrite Rmult_minus_distr_l. - rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite <- Rmult_assoc; + rewrite Rmult_1_r; unfold Rdiv; rewrite <- Rmult_assoc; rewrite Rmult_minus_distr_l. rewrite Rmult_1_r; rewrite exp_plus; reflexivity. Qed. diff --git a/theories/Reals/Integration.v b/theories/Reals/Integration.v index da1742ca..d7b3ab04 100644 --- a/theories/Reals/Integration.v +++ b/theories/Reals/Integration.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* false). split. exact Rplus_comm. - symmetry in |- *; apply Rplus_assoc. + symmetry ; apply Rplus_assoc. exact Rmult_comm. - symmetry in |- *; apply Rmult_assoc. + symmetry ; apply Rmult_assoc. intro; apply Rplus_0_l. intro; apply Rmult_1_l. exact Rplus_opp_r. diff --git a/theories/Reals/MVT.v b/theories/Reals/MVT.v index 29ebd46d..2ee22b6d 100644 --- a/theories/Reals/MVT.v +++ b/theories/Reals/MVT.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (g b - g a) * f y - (f b - f a) * g y) c (X c P)) with @@ -115,11 +115,11 @@ Proof. rewrite derive_pt_minus; do 2 rewrite derive_pt_mult; do 2 rewrite derive_pt_const; do 2 rewrite Rmult_0_l; do 2 rewrite Rplus_0_l; reflexivity. - unfold h in |- *; ring. - intros; unfold h in |- *; + unfold h; ring. + intros; unfold h; change (continuity_pt ((fct_cte (g b - g a) * f)%F - (fct_cte (f b - f a) * g)%F) - c) in |- *. + c). apply continuity_pt_minus; apply continuity_pt_mult. apply derivable_continuous_pt; apply derivable_const. apply H0; apply H3. @@ -128,7 +128,7 @@ Proof. intros; change (derivable_pt ((fct_cte (g b - g a) * f)%F - (fct_cte (f b - f a) * g)%F) - c) in |- *. + c). apply derivable_pt_minus; apply derivable_pt_mult. apply derivable_pt_const. apply (pr1 _ H3). @@ -178,7 +178,7 @@ Proof. cut (derive_pt id x (X2 x x0) = 1). cut (derive_pt f x (X0 x x0) = f' x). intros; rewrite H4 in H3; rewrite H5 in H3; unfold id in H3; - rewrite Rmult_1_r in H3; rewrite Rmult_comm; symmetry in |- *; + rewrite Rmult_1_r in H3; rewrite Rmult_comm; symmetry ; assumption. apply derive_pt_eq_0; apply H0; elim x0; intros; split; left; assumption. apply derive_pt_eq_0; apply derivable_pt_lim_id. @@ -188,7 +188,7 @@ Proof. intros; apply derivable_pt_id. intros; apply derivable_continuous_pt; apply X; assumption. intros; elim H1; intros; apply X; split; left; assumption. - intros; unfold derivable_pt in |- *; exists (f' c); apply H0; + intros; unfold derivable_pt; exists (f' c); apply H0; apply H1. Qed. @@ -221,7 +221,7 @@ Proof. unfold id in H6; unfold Rminus in H6; rewrite Rplus_opp_r in H6; rewrite Rmult_0_l in H6; apply Rmult_eq_reg_l with (b - a); [ rewrite Rmult_0_r; apply H6 - | apply Rminus_eq_contra; red in |- *; intro; rewrite H7 in H0; + | apply Rminus_eq_contra; red; intro; rewrite H7 in H0; elim (Rlt_irrefl _ H0) ]. Qed. @@ -231,7 +231,7 @@ Lemma nonneg_derivative_1 : (forall x:R, 0 <= derive_pt f x (pr x)) -> increasing f. Proof. intros. - unfold increasing in |- *. + unfold increasing. intros. case (total_order_T x y); intro. elim s; intro. @@ -268,12 +268,12 @@ Proof. intro; decompose [and] H8; intros; generalize (H7 (delta / 2) H9 H12); cut ((f (x + delta / 2) - f x) / (delta / 2) <= 0). intro; cut (0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)). - intro; unfold Rabs in |- *; + intro; unfold Rabs; case (Rcase_abs ((f (x + delta / 2) - f x) / (delta / 2) - l)). intros; generalize (Rplus_lt_compat_r (- l) (- ((f (x + delta / 2) - f x) / (delta / 2) - l)) - (l / 2) H14); unfold Rminus in |- *. + (l / 2) H14); unfold Rminus. replace (l / 2 + - l) with (- (l / 2)). replace (- ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l) with (- ((f (x + delta / 2) + - f x) / (delta / 2))). @@ -290,7 +290,7 @@ Proof. (Rlt_irrefl 0 (Rlt_le_trans 0 ((f (x + delta / 2) - f x) / (delta / 2)) 0 H17 H10)). ring. - pattern l at 3 in |- *; rewrite double_var. + pattern l at 3; rewrite double_var. ring. intros. generalize @@ -303,22 +303,22 @@ Proof. H15)). replace (- ((f (x + delta / 2) - f x) / (delta / 2) - l)) with ((f x - f (x + delta / 2)) / (delta / 2) + l). - unfold Rminus in |- *. + unfold Rminus. apply Rplus_le_lt_0_compat. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Rdiv; apply Rmult_le_pos. cut (x <= x + delta * / 2). intro; generalize (H0 x (x + delta * / 2) H13); intro; generalize (Rplus_le_compat_l (- f (x + delta / 2)) (f (x + delta / 2)) (f x) H14); rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption. - pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; + pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; left; assumption. left; apply Rinv_0_lt_compat; assumption. assumption. rewrite Ropp_minus_distr. - unfold Rminus in |- *. + unfold Rminus. rewrite (Rplus_comm l). - unfold Rdiv in |- *. + unfold Rdiv. rewrite <- Ropp_mult_distr_l_reverse. rewrite Ropp_plus_distr. rewrite Ropp_involutive. @@ -329,38 +329,38 @@ Proof. rewrite <- Ropp_0. apply Ropp_ge_le_contravar. apply Rle_ge. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Rdiv; apply Rmult_le_pos. cut (x <= x + delta * / 2). intro; generalize (H0 x (x + delta * / 2) H10); intro. generalize (Rplus_le_compat_l (- f (x + delta / 2)) (f (x + delta / 2)) (f x) H13); rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption. - pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; + pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; left; assumption. left; apply Rinv_0_lt_compat; assumption. - unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse. + unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse. rewrite Ropp_minus_distr. reflexivity. split. - unfold Rdiv in |- *; apply prod_neq_R0. - generalize (cond_pos delta); intro; red in |- *; intro H9; rewrite H9 in H8; + unfold Rdiv; apply prod_neq_R0. + generalize (cond_pos delta); intro; red; intro H9; rewrite H9 in H8; elim (Rlt_irrefl 0 H8). apply Rinv_neq_0_compat; discrR. split. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ]. rewrite Rabs_right. - unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2. + unfold Rdiv; apply Rmult_lt_reg_l with 2. prove_sup0. rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. - rewrite Rmult_1_l; rewrite double; pattern (pos delta) at 1 in |- *; + rewrite Rmult_1_l; rewrite double; pattern (pos delta) at 1; rewrite <- Rplus_0_r. apply Rplus_lt_compat_l; apply (cond_pos delta). discrR. - apply Rle_ge; unfold Rdiv in |- *; left; apply Rmult_lt_0_compat. + apply Rle_ge; unfold Rdiv; left; apply Rmult_lt_0_compat. apply (cond_pos delta). apply Rinv_0_lt_compat; prove_sup0. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply H4 | apply Rinv_0_lt_compat; prove_sup0 ]. Qed. @@ -368,7 +368,7 @@ Qed. Lemma increasing_decreasing_opp : forall f:R -> R, increasing f -> decreasing (- f)%F. Proof. - unfold increasing, decreasing, opp_fct in |- *; intros; generalize (H x y H0); + unfold increasing, decreasing, opp_fct; intros; generalize (H x y H0); intro; apply Ropp_ge_le_contravar; apply Rle_ge; assumption. Qed. @@ -381,8 +381,8 @@ Proof. cut (forall h:R, - - f h = f h). intro. generalize (increasing_decreasing_opp (- f)%F). - unfold decreasing in |- *. - unfold opp_fct in |- *. + unfold decreasing. + unfold opp_fct. intros. rewrite <- (H0 x); rewrite <- (H0 y). apply H1. @@ -410,7 +410,7 @@ Lemma positive_derivative : (forall x:R, 0 < derive_pt f x (pr x)) -> strict_increasing f. Proof. intros. - unfold strict_increasing in |- *. + unfold strict_increasing. intros. apply Rplus_lt_reg_r with (- f x). rewrite Rplus_opp_l; rewrite Rplus_comm. @@ -429,7 +429,7 @@ Qed. Lemma strictincreasing_strictdecreasing_opp : forall f:R -> R, strict_increasing f -> strict_decreasing (- f)%F. Proof. - unfold strict_increasing, strict_decreasing, opp_fct in |- *; intros; + unfold strict_increasing, strict_decreasing, opp_fct; intros; generalize (H x y H0); intro; apply Ropp_lt_gt_contravar; assumption. Qed. @@ -443,7 +443,7 @@ Proof. cut (forall h:R, - - f h = f h). intros. generalize (strictincreasing_strictdecreasing_opp (- f)%F). - unfold strict_decreasing, opp_fct in |- *. + unfold strict_decreasing, opp_fct. intros. rewrite <- (H0 x). rewrite <- (H0 y). @@ -470,8 +470,8 @@ Proof. intros. unfold constant in H. apply derive_pt_eq_0. - intros; exists (mkposreal 1 Rlt_0_1); simpl in |- *; intros. - rewrite (H x (x + h)); unfold Rminus in |- *; unfold Rdiv in |- *; + intros; exists (mkposreal 1 Rlt_0_1); simpl; intros. + rewrite (H x (x + h)); unfold Rminus; unfold Rdiv; rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. Qed. @@ -480,13 +480,13 @@ Qed. Lemma increasing_decreasing : forall f:R -> R, increasing f -> decreasing f -> constant f. Proof. - unfold increasing, decreasing, constant in |- *; intros; + unfold increasing, decreasing, constant; intros; case (Rtotal_order x y); intro. generalize (Rlt_le x y H1); intro; apply (Rle_antisym (f x) (f y) (H x y H2) (H0 x y H2)). elim H1; intro. rewrite H2; reflexivity. - generalize (Rlt_le y x H2); intro; symmetry in |- *; + generalize (Rlt_le y x H2); intro; symmetry ; apply (Rle_antisym (f y) (f x) (H y x H3) (H0 y x H3)). Qed. @@ -502,7 +502,7 @@ Proof. assert (H2 := nonneg_derivative_1 f pr H0). assert (H3 := nonpos_derivative_1 f pr H1). apply increasing_decreasing; assumption. - intro; right; symmetry in |- *; apply (H x). + intro; right; symmetry ; apply (H x). intro; right; apply (H x). Qed. @@ -601,7 +601,7 @@ Proof. elim H4; intros. split; left; assumption. rewrite b0. - unfold Rminus in |- *; do 2 rewrite Rplus_opp_r. + unfold Rminus; do 2 rewrite Rplus_opp_r. rewrite Rmult_0_r; right; reflexivity. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)). Qed. @@ -648,7 +648,7 @@ Lemma null_derivative_loc : (forall (x:R) (P:a < x < b), derive_pt f x (pr x P) = 0) -> constant_D_eq f (fun x:R => a <= x <= b) (f a). Proof. - intros; unfold constant_D_eq in |- *; intros; case (total_order_T a b); intro. + intros; unfold constant_D_eq; intros; case (total_order_T a b); intro. elim s; intro. assert (H2 : forall y:R, a < y < x -> derivable_pt id y). intros; apply derivable_pt_id. @@ -674,7 +674,7 @@ Proof. assert (H12 : derive_pt id x0 (H2 x0 x1) = 1). apply derive_pt_eq_0; apply derivable_pt_lim_id. rewrite H11 in H9; rewrite H12 in H9; rewrite Rmult_0_r in H9; - rewrite Rmult_1_r in H9; apply Rminus_diag_uniq; symmetry in |- *; + rewrite Rmult_1_r in H9; apply Rminus_diag_uniq; symmetry ; assumption. rewrite H1; reflexivity. assert (H2 : x = a). @@ -691,15 +691,15 @@ Lemma antiderivative_Ucte : antiderivative f g2 a b -> exists c : R, (forall x:R, a <= x <= b -> g1 x = g2 x + c). Proof. - unfold antiderivative in |- *; intros; elim H; clear H; intros; elim H0; + unfold antiderivative; intros; elim H; clear H; intros; elim H0; clear H0; intros H0 _; exists (g1 a - g2 a); intros; assert (H3 : forall x:R, a <= x <= b -> derivable_pt g1 x). - intros; unfold derivable_pt in |- *; exists (f x0); elim (H x0 H3); - intros; eapply derive_pt_eq_1; symmetry in |- *; + intros; unfold derivable_pt; exists (f x0); elim (H x0 H3); + intros; eapply derive_pt_eq_1; symmetry ; apply H4. assert (H4 : forall x:R, a <= x <= b -> derivable_pt g2 x). - intros; unfold derivable_pt in |- *; exists (f x0); - elim (H0 x0 H4); intros; eapply derive_pt_eq_1; symmetry in |- *; + intros; unfold derivable_pt; exists (f x0); + elim (H0 x0 H4); intros; eapply derive_pt_eq_1; symmetry ; apply H5. assert (H5 : forall x:R, a < x < b -> derivable_pt (g1 - g2) x). intros; elim H5; intros; apply derivable_pt_minus; @@ -713,7 +713,7 @@ Proof. assert (H9 : a <= x0 <= b). split; left; assumption. apply derivable_pt_lim_minus; [ elim (H _ H9) | elim (H0 _ H9) ]; intros; - eapply derive_pt_eq_1; symmetry in |- *; apply H10. + eapply derive_pt_eq_1; symmetry ; apply H10. assert (H8 := null_derivative_loc (g1 - g2)%F a b H5 H6 H7); unfold constant_D_eq in H8; assert (H9 := H8 _ H2); unfold minus_fct in H9; rewrite <- H9; ring. diff --git a/theories/Reals/Machin.v b/theories/Reals/Machin.v new file mode 100644 index 00000000..6b91719d --- /dev/null +++ b/theories/Reals/Machin.v @@ -0,0 +1,168 @@ +Require Import Fourier. +Require Import Rbase. +Require Import Rtrigo1. +Require Import Ranalysis_reg. +Require Import Rfunctions. +Require Import AltSeries. +Require Import Rseries. +Require Import SeqProp. +Require Import PartSum. +Require Import Ratan. + +Local Open Scope R_scope. + +(* Proving a few formulas in the style of John Machin to compute Pi *) + +Definition atan_sub u v := (u - v)/(1 + u * v). + +Lemma atan_sub_correct : + forall u v, 1 + u * v <> 0 -> -PI/2 < atan u - atan v < PI/2 -> + -PI/2 < atan (atan_sub u v) < PI/2 -> + atan u = atan v + atan (atan_sub u v). +intros u v pn0 uvint aint. +assert (cos (atan u) <> 0). + destruct (atan_bound u); apply Rgt_not_eq, cos_gt_0; auto. + rewrite <- Ropp_div; assumption. +assert (cos (atan v) <> 0). + destruct (atan_bound v); apply Rgt_not_eq, cos_gt_0; auto. + rewrite <- Ropp_div; assumption. +assert (t : forall a b c, a - b = c -> a = b + c) by (intros; subst; field). +apply t, tan_is_inj; clear t; try assumption. +rewrite tan_minus; auto. + rewrite !atan_right_inv; reflexivity. +apply Rgt_not_eq, cos_gt_0; rewrite <- ?Ropp_div; tauto. +rewrite !atan_right_inv; assumption. +Qed. + +Lemma tech : forall x y , -1 <= x <= 1 -> -1 < y < 1 -> + -PI/2 < atan x - atan y < PI/2. +assert (ut := PI_RGT_0). +intros x y [xm1 x1] [ym1 y1]. +assert (-(PI/4) <= atan x). + destruct xm1 as [xm1 | xm1]. + rewrite <- atan_1, <- atan_opp; apply Rlt_le, atan_increasing. + assumption. + solve[rewrite <- xm1, atan_opp, atan_1; apply Rle_refl]. +assert (-(PI/4) < atan y). + rewrite <- atan_1, <- atan_opp; apply atan_increasing. + assumption. +assert (atan x <= PI/4). + destruct x1 as [x1 | x1]. + rewrite <- atan_1; apply Rlt_le, atan_increasing. + assumption. + solve[rewrite x1, atan_1; apply Rle_refl]. +assert (atan y < PI/4). + rewrite <- atan_1; apply atan_increasing. + assumption. +rewrite Ropp_div; split; fourier. +Qed. + +(* A simple formula, reasonably efficient. *) +Lemma Machin_2_3 : PI/4 = atan(/2) + atan(/3). +assert (utility : 0 < PI/2) by (apply PI2_RGT_0). +rewrite <- atan_1. +rewrite (atan_sub_correct 1 (/2)). + apply f_equal, f_equal; unfold atan_sub; field. + apply Rgt_not_eq; fourier. + apply tech; try split; try fourier. +apply atan_bound. +Qed. + +Lemma Machin_4_5_239 : PI/4 = 4 * atan (/5) - atan(/239). +rewrite <- atan_1. +rewrite (atan_sub_correct 1 (/5)); + [ | apply Rgt_not_eq; fourier | apply tech; try split; fourier | + apply atan_bound ]. +replace (4 * atan (/5) - atan (/239)) with + (atan (/5) + (atan (/5) + (atan (/5) + (atan (/5) + - + atan (/239))))) by ring. +apply f_equal. +replace (atan_sub 1 (/5)) with (2/3) by + (unfold atan_sub; field). +rewrite (atan_sub_correct (2/3) (/5)); + [apply f_equal | apply Rgt_not_eq; fourier | apply tech; try split; fourier | + apply atan_bound ]. +replace (atan_sub (2/3) (/5)) with (7/17) by + (unfold atan_sub; field). +rewrite (atan_sub_correct (7/17) (/5)); + [apply f_equal | apply Rgt_not_eq; fourier | apply tech; try split; fourier | + apply atan_bound ]. +replace (atan_sub (7/17) (/5)) with (9/46) by + (unfold atan_sub; field). +rewrite (atan_sub_correct (9/46) (/5)); + [apply f_equal | apply Rgt_not_eq; fourier | apply tech; try split; fourier | + apply atan_bound ]. +rewrite <- atan_opp; apply f_equal. +unfold atan_sub; field. +Qed. + +Lemma Machin_2_3_7 : PI/4 = 2 * atan(/3) + (atan (/7)). +rewrite <- atan_1. +rewrite (atan_sub_correct 1 (/3)); + [ | apply Rgt_not_eq; fourier | apply tech; try split; fourier | + apply atan_bound ]. +replace (2 * atan (/3) + atan (/7)) with + (atan (/3) + (atan (/3) + atan (/7))) by ring. +apply f_equal. +replace (atan_sub 1 (/3)) with (/2) by + (unfold atan_sub; field). +rewrite (atan_sub_correct (/2) (/3)); + [apply f_equal | apply Rgt_not_eq; fourier | apply tech; try split; fourier | + apply atan_bound ]. +apply f_equal; unfold atan_sub; field. +Qed. + +(* More efficient way to compute approximations of PI. *) + +Definition PI_2_3_7_tg n := + 2 * Ratan_seq (/3) n + Ratan_seq (/7) n. + +Lemma PI_2_3_7_ineq : + forall N : nat, + sum_f_R0 (tg_alt PI_2_3_7_tg) (S (2 * N)) <= PI / 4 <= + sum_f_R0 (tg_alt PI_2_3_7_tg) (2 * N). +Proof. +assert (dec3 : 0 <= /3 <= 1) by (split; fourier). +assert (dec7 : 0 <= /7 <= 1) by (split; fourier). +assert (decr : Un_decreasing PI_2_3_7_tg). + apply Ratan_seq_decreasing in dec3. + apply Ratan_seq_decreasing in dec7. + intros n; apply Rplus_le_compat. + apply Rmult_le_compat_l; [ fourier | exact (dec3 n)]. + exact (dec7 n). +assert (cv : Un_cv PI_2_3_7_tg 0). + apply Ratan_seq_converging in dec3. + apply Ratan_seq_converging in dec7. + intros eps ep. + assert (ep' : 0 < eps /3) by fourier. + destruct (dec3 _ ep') as [N1 Pn1]; destruct (dec7 _ ep') as [N2 Pn2]. + exists (N1 + N2)%nat; intros n Nn. + unfold PI_2_3_7_tg. + rewrite <- (Rplus_0_l 0). + apply Rle_lt_trans with + (1 := R_dist_plus (2 * Ratan_seq (/3) n) 0 (Ratan_seq (/7) n) 0). + replace eps with (2 * eps/3 + eps/3) by field. + apply Rplus_lt_compat. + unfold R_dist, Rminus, Rdiv. + rewrite <- (Rmult_0_r 2), <- Ropp_mult_distr_r_reverse. + rewrite <- Rmult_plus_distr_l, Rabs_mult, (Rabs_pos_eq 2);[|fourier]. + rewrite Rmult_assoc; apply Rmult_lt_compat_l;[fourier | ]. + apply (Pn1 n); omega. + apply (Pn2 n); omega. +rewrite Machin_2_3_7. +rewrite !atan_eq_ps_atan; try (split; fourier). +unfold ps_atan; destruct (in_int (/3)); destruct (in_int (/7)); + try match goal with id : ~ _ |- _ => case id; split; fourier end. +destruct (ps_atan_exists_1 (/3)) as [v3 Pv3]. +destruct (ps_atan_exists_1 (/7)) as [v7 Pv7]. +assert (main : Un_cv (sum_f_R0 (tg_alt PI_2_3_7_tg)) (2 * v3 + v7)). + assert (main :Un_cv (fun n => 2 * sum_f_R0 (tg_alt (Ratan_seq (/3))) n + + sum_f_R0 (tg_alt (Ratan_seq (/7))) n) (2 * v3 + v7)). + apply CV_plus;[ | assumption]. + apply CV_mult;[ | assumption]. + exists 0%nat; intros; rewrite R_dist_eq; assumption. + apply Un_cv_ext with (2 := main). + intros n; rewrite scal_sum, <- plus_sum; apply sum_eq; intros. + rewrite Rmult_comm; unfold PI_2_3_7_tg, tg_alt; field. +intros N; apply (alternated_series_ineq _ _ _ decr cv main). +Qed. diff --git a/theories/Reals/NewtonInt.v b/theories/Reals/NewtonInt.v index a4233021..67e353ee 100644 --- a/theories/Reals/NewtonInt.v +++ b/theories/Reals/NewtonInt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* derive_pt f x (cond_diff f x)) a b. Proof. - intros f a b; unfold Newton_integrable in |- *; exists (d1 f); - unfold antiderivative in |- *; intros; case (Rle_dec a b); + intros f a b; unfold Newton_integrable; exists (d1 f); + unfold antiderivative; intros; case (Rle_dec a b); intro; [ left; split; [ intros; exists (cond_diff f x); reflexivity | assumption ] | right; split; @@ -42,26 +42,26 @@ Lemma FTC_Newton : NewtonInt (fun x:R => derive_pt f x (cond_diff f x)) a b (FTCN_step1 f a b) = f b - f a. Proof. - intros; unfold NewtonInt in |- *; reflexivity. + intros; unfold NewtonInt; reflexivity. Qed. (* $\int_a^a f$ exists forall a:R and f:R->R *) Lemma NewtonInt_P1 : forall (f:R -> R) (a:R), Newton_integrable f a a. Proof. - intros f a; unfold Newton_integrable in |- *; + intros f a; unfold Newton_integrable; exists (fct_cte (f a) * id)%F; left; - unfold antiderivative in |- *; split. + unfold antiderivative; split. intros; assert (H1 : derivable_pt (fct_cte (f a) * id) x). apply derivable_pt_mult. apply derivable_pt_const. apply derivable_pt_id. exists H1; assert (H2 : x = a). elim H; intros; apply Rle_antisym; assumption. - symmetry in |- *; apply derive_pt_eq_0; + symmetry ; apply derive_pt_eq_0; replace (f x) with (0 * id x + fct_cte (f a) x * 1); [ apply (derivable_pt_lim_mult (fct_cte (f a)) id x); [ apply derivable_pt_lim_const | apply derivable_pt_lim_id ] - | unfold id, fct_cte in |- *; rewrite H2; ring ]. + | unfold id, fct_cte; rewrite H2; ring ]. right; reflexivity. Defined. @@ -69,8 +69,8 @@ Defined. Lemma NewtonInt_P2 : forall (f:R -> R) (a:R), NewtonInt f a a (NewtonInt_P1 f a) = 0. Proof. - intros; unfold NewtonInt in |- *; simpl in |- *; - unfold mult_fct, fct_cte, id in |- *; ring. + intros; unfold NewtonInt; simpl; + unfold mult_fct, fct_cte, id; ring. Qed. (* If $\int_a^b f$ exists, then $\int_b^a f$ exists too *) @@ -78,7 +78,7 @@ Lemma NewtonInt_P3 : forall (f:R -> R) (a b:R) (X:Newton_integrable f a b), Newton_integrable f b a. Proof. - unfold Newton_integrable in |- *; intros; elim X; intros g H; + unfold Newton_integrable; intros; elim X; intros g H; exists g; tauto. Defined. @@ -88,7 +88,7 @@ Lemma NewtonInt_P4 : NewtonInt f a b pr = - NewtonInt f b a (NewtonInt_P3 f a b pr). Proof. intros; unfold Newton_integrable in pr; elim pr; intros; elim p; intro. - unfold NewtonInt in |- *; + unfold NewtonInt; case (NewtonInt_P3 f a b (exist @@ -106,7 +106,7 @@ Proof. assert (H4 : a <= b <= b). split; [ assumption | right; reflexivity ]. assert (H5 := H2 _ H3); assert (H6 := H2 _ H4); rewrite H5; rewrite H6; ring. - unfold NewtonInt in |- *; + unfold NewtonInt; case (NewtonInt_P3 f a b (exist @@ -132,37 +132,37 @@ Lemma NewtonInt_P5 : Newton_integrable g a b -> Newton_integrable (fun x:R => l * f x + g x) a b. Proof. - unfold Newton_integrable in |- *; intros f g l a b X X0; + unfold Newton_integrable; intros f g l a b X X0; elim X; intros; elim X0; intros; exists (fun y:R => l * x y + x0 y). elim p; intro. elim p0; intro. - left; unfold antiderivative in |- *; unfold antiderivative in H, H0; elim H; + left; unfold antiderivative; unfold antiderivative in H, H0; elim H; clear H; intros; elim H0; clear H0; intros H0 _. split. intros; elim (H _ H2); elim (H0 _ H2); intros. assert (H5 : derivable_pt (fun y:R => l * x y + x0 y) x1). reg. - exists H5; symmetry in |- *; reg; rewrite <- H3; rewrite <- H4; reflexivity. + exists H5; symmetry ; reg; rewrite <- H3; rewrite <- H4; reflexivity. assumption. unfold antiderivative in H, H0; elim H; elim H0; intros; elim H4; intro. elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H5 H2)). - left; rewrite <- H5; unfold antiderivative in |- *; split. + left; rewrite <- H5; unfold antiderivative; split. intros; elim H6; intros; assert (H9 : x1 = a). apply Rle_antisym; assumption. assert (H10 : a <= x1 <= b). - split; right; [ symmetry in |- *; assumption | rewrite <- H5; assumption ]. + split; right; [ symmetry ; assumption | rewrite <- H5; assumption ]. assert (H11 : b <= x1 <= a). - split; right; [ rewrite <- H5; symmetry in |- *; assumption | assumption ]. + split; right; [ rewrite <- H5; symmetry ; assumption | assumption ]. assert (H12 : derivable_pt x x1). - unfold derivable_pt in |- *; exists (f x1); elim (H3 _ H10); intros; - eapply derive_pt_eq_1; symmetry in |- *; apply H12. + unfold derivable_pt; exists (f x1); elim (H3 _ H10); intros; + eapply derive_pt_eq_1; symmetry ; apply H12. assert (H13 : derivable_pt x0 x1). - unfold derivable_pt in |- *; exists (g x1); elim (H1 _ H11); intros; - eapply derive_pt_eq_1; symmetry in |- *; apply H13. + unfold derivable_pt; exists (g x1); elim (H1 _ H11); intros; + eapply derive_pt_eq_1; symmetry ; apply H13. assert (H14 : derivable_pt (fun y:R => l * x y + x0 y) x1). reg. - exists H14; symmetry in |- *; reg. + exists H14; symmetry ; reg. assert (H15 : derive_pt x0 x1 H13 = g x1). elim (H1 _ H11); intros; rewrite H15; apply pr_nu. assert (H16 : derive_pt x x1 H12 = f x1). @@ -172,34 +172,34 @@ Proof. elim p0; intro. unfold antiderivative in H, H0; elim H; elim H0; intros; elim H4; intro. elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H5 H2)). - left; rewrite H5; unfold antiderivative in |- *; split. + left; rewrite H5; unfold antiderivative; split. intros; elim H6; intros; assert (H9 : x1 = a). apply Rle_antisym; assumption. assert (H10 : a <= x1 <= b). - split; right; [ symmetry in |- *; assumption | rewrite H5; assumption ]. + split; right; [ symmetry ; assumption | rewrite H5; assumption ]. assert (H11 : b <= x1 <= a). - split; right; [ rewrite H5; symmetry in |- *; assumption | assumption ]. + split; right; [ rewrite H5; symmetry ; assumption | assumption ]. assert (H12 : derivable_pt x x1). - unfold derivable_pt in |- *; exists (f x1); elim (H3 _ H11); intros; - eapply derive_pt_eq_1; symmetry in |- *; apply H12. + unfold derivable_pt; exists (f x1); elim (H3 _ H11); intros; + eapply derive_pt_eq_1; symmetry ; apply H12. assert (H13 : derivable_pt x0 x1). - unfold derivable_pt in |- *; exists (g x1); elim (H1 _ H10); intros; - eapply derive_pt_eq_1; symmetry in |- *; apply H13. + unfold derivable_pt; exists (g x1); elim (H1 _ H10); intros; + eapply derive_pt_eq_1; symmetry ; apply H13. assert (H14 : derivable_pt (fun y:R => l * x y + x0 y) x1). reg. - exists H14; symmetry in |- *; reg. + exists H14; symmetry ; reg. assert (H15 : derive_pt x0 x1 H13 = g x1). elim (H1 _ H10); intros; rewrite H15; apply pr_nu. assert (H16 : derive_pt x x1 H12 = f x1). elim (H3 _ H11); intros; rewrite H16; apply pr_nu. rewrite H15; rewrite H16; ring. right; reflexivity. - right; unfold antiderivative in |- *; unfold antiderivative in H, H0; elim H; + right; unfold antiderivative; unfold antiderivative in H, H0; elim H; clear H; intros; elim H0; clear H0; intros H0 _; split. intros; elim (H _ H2); elim (H0 _ H2); intros. assert (H5 : derivable_pt (fun y:R => l * x y + x0 y) x1). reg. - exists H5; symmetry in |- *; reg; rewrite <- H3; rewrite <- H4; reflexivity. + exists H5; symmetry ; reg; rewrite <- H3; rewrite <- H4; reflexivity. assumption. Defined. @@ -210,12 +210,12 @@ Lemma antiderivative_P1 : antiderivative g G a b -> antiderivative (fun x:R => l * f x + g x) (fun x:R => l * F x + G x) a b. Proof. - unfold antiderivative in |- *; intros; elim H; elim H0; clear H H0; intros; + unfold antiderivative; intros; elim H; elim H0; clear H H0; intros; split. intros; elim (H _ H3); elim (H1 _ H3); intros. assert (H6 : derivable_pt (fun x:R => l * F x + G x) x). reg. - exists H6; symmetry in |- *; reg; rewrite <- H4; rewrite <- H5; ring. + exists H6; symmetry ; reg; rewrite <- H4; rewrite <- H5; ring. assumption. Qed. @@ -226,7 +226,7 @@ Lemma NewtonInt_P6 : NewtonInt (fun x:R => l * f x + g x) a b (NewtonInt_P5 f g l a b pr1 pr2) = l * NewtonInt f a b pr1 + NewtonInt g a b pr2. Proof. - intros f g l a b pr1 pr2; unfold NewtonInt in |- *; + intros f g l a b pr1 pr2; unfold NewtonInt; case (NewtonInt_P5 f g l a b pr1 pr2); intros; case pr1; intros; case pr2; intros; case (total_order_T a b); intro. @@ -277,7 +277,7 @@ Lemma antiderivative_P2 : | right _ => F1 x + (F0 b - F1 b) end) a c. Proof. - unfold antiderivative in |- *; intros; elim H; clear H; intros; elim H0; + unfold antiderivative; intros; elim H; clear H; intros; elim H0; clear H0; intros; split. 2: apply Rle_trans with b; assumption. intros; elim H3; clear H3; intros; case (total_order_T x b); intro. @@ -293,25 +293,25 @@ Proof. | left _ => F0 x | right _ => F1 x + (F0 b - F1 b) end) x (f x)). - unfold derivable_pt_lim in |- *; assert (H7 : derive_pt F0 x x0 = f x). - symmetry in |- *; assumption. + unfold derivable_pt_lim; assert (H7 : derive_pt F0 x x0 = f x). + symmetry ; assumption. assert (H8 := derive_pt_eq_1 F0 x (f x) x0 H7); unfold derivable_pt_lim in H8; intros; elim (H8 _ H9); intros; set (D := Rmin x1 (b - x)). assert (H11 : 0 < D). - unfold D in |- *; unfold Rmin in |- *; case (Rle_dec x1 (b - x)); intro. + unfold D; unfold Rmin; case (Rle_dec x1 (b - x)); intro. apply (cond_pos x1). apply Rlt_Rminus; assumption. exists (mkposreal _ H11); intros; case (Rle_dec x b); intro. case (Rle_dec (x + h) b); intro. apply H10. assumption. - apply Rlt_le_trans with D; [ assumption | unfold D in |- *; apply Rmin_l ]. + apply Rlt_le_trans with D; [ assumption | unfold D; apply Rmin_l ]. elim n; left; apply Rlt_le_trans with (x + D). apply Rplus_lt_compat_l; apply Rle_lt_trans with (Rabs h). apply RRle_abs. apply H13. apply Rplus_le_reg_l with (- x); rewrite <- Rplus_assoc; rewrite Rplus_opp_l; - rewrite Rplus_0_l; rewrite Rplus_comm; unfold D in |- *; + rewrite Rplus_0_l; rewrite Rplus_comm; unfold D; apply Rmin_r. elim n; left; assumption. assert @@ -322,16 +322,16 @@ Proof. | left _ => F0 x | right _ => F1 x + (F0 b - F1 b) end) x). - unfold derivable_pt in |- *; exists (f x); apply H7. - exists H8; symmetry in |- *; apply derive_pt_eq_0; apply H7. + unfold derivable_pt; exists (f x); apply H7. + exists H8; symmetry ; apply derive_pt_eq_0; apply H7. assert (H5 : a <= x <= b). split; [ assumption | right; assumption ]. assert (H6 : b <= x <= c). - split; [ right; symmetry in |- *; assumption | assumption ]. + split; [ right; symmetry ; assumption | assumption ]. elim (H _ H5); elim (H0 _ H6); intros; assert (H9 : derive_pt F0 x x1 = f x). - symmetry in |- *; assumption. + symmetry ; assumption. assert (H10 : derive_pt F1 x x0 = f x). - symmetry in |- *; assumption. + symmetry ; assumption. assert (H11 := derive_pt_eq_1 F0 x (f x) x1 H9); assert (H12 := derive_pt_eq_1 F1 x (f x) x0 H10); assert @@ -342,21 +342,21 @@ Proof. | left _ => F0 x | right _ => F1 x + (F0 b - F1 b) end) x (f x)). - unfold derivable_pt_lim in |- *; unfold derivable_pt_lim in H11, H12; intros; + unfold derivable_pt_lim; unfold derivable_pt_lim in H11, H12; intros; elim (H11 _ H13); elim (H12 _ H13); intros; set (D := Rmin x2 x3); assert (H16 : 0 < D). - unfold D in |- *; unfold Rmin in |- *; case (Rle_dec x2 x3); intro. + unfold D; unfold Rmin; case (Rle_dec x2 x3); intro. apply (cond_pos x2). apply (cond_pos x3). exists (mkposreal _ H16); intros; case (Rle_dec x b); intro. case (Rle_dec (x + h) b); intro. apply H15. assumption. - apply Rlt_le_trans with D; [ assumption | unfold D in |- *; apply Rmin_r ]. + apply Rlt_le_trans with D; [ assumption | unfold D; apply Rmin_r ]. replace (F1 (x + h) + (F0 b - F1 b) - F0 x) with (F1 (x + h) - F1 x). apply H14. assumption. - apply Rlt_le_trans with D; [ assumption | unfold D in |- *; apply Rmin_l ]. + apply Rlt_le_trans with D; [ assumption | unfold D; apply Rmin_l ]. rewrite b0; ring. elim n; right; assumption. assert @@ -367,8 +367,8 @@ Proof. | left _ => F0 x | right _ => F1 x + (F0 b - F1 b) end) x). - unfold derivable_pt in |- *; exists (f x); apply H13. - exists H14; symmetry in |- *; apply derive_pt_eq_0; apply H13. + unfold derivable_pt; exists (f x); apply H13. + exists H14; symmetry ; apply derive_pt_eq_0; apply H13. assert (H5 : b <= x <= c). split; [ left; assumption | assumption ]. assert (H6 := H0 _ H5); elim H6; clear H6; intros; @@ -380,12 +380,12 @@ Proof. | left _ => F0 x | right _ => F1 x + (F0 b - F1 b) end) x (f x)). - unfold derivable_pt_lim in |- *; assert (H7 : derive_pt F1 x x0 = f x). - symmetry in |- *; assumption. + unfold derivable_pt_lim; assert (H7 : derive_pt F1 x x0 = f x). + symmetry ; assumption. assert (H8 := derive_pt_eq_1 F1 x (f x) x0 H7); unfold derivable_pt_lim in H8; intros; elim (H8 _ H9); intros; set (D := Rmin x1 (x - b)); assert (H11 : 0 < D). - unfold D in |- *; unfold Rmin in |- *; case (Rle_dec x1 (x - b)); intro. + unfold D; unfold Rmin; case (Rle_dec x1 (x - b)); intro. apply (cond_pos x1). apply Rlt_Rminus; assumption. exists (mkposreal _ H11); intros; case (Rle_dec x b); intro. @@ -399,13 +399,13 @@ Proof. rewrite <- Rabs_Ropp; apply RRle_abs. apply Rlt_le_trans with D. apply H13. - unfold D in |- *; apply Rmin_r. + unfold D; apply Rmin_r. replace (F1 (x + h) + (F0 b - F1 b) - (F1 x + (F0 b - F1 b))) with (F1 (x + h) - F1 x); [ idtac | ring ]; apply H10. assumption. apply Rlt_le_trans with D. assumption. - unfold D in |- *; apply Rmin_l. + unfold D; apply Rmin_l. assert (H8 : derivable_pt @@ -414,8 +414,8 @@ Proof. | left _ => F0 x | right _ => F1 x + (F0 b - F1 b) end) x). - unfold derivable_pt in |- *; exists (f x); apply H7. - exists H8; symmetry in |- *; apply derive_pt_eq_0; apply H7. + unfold derivable_pt; exists (f x); apply H7. + exists H8; symmetry ; apply derive_pt_eq_0; apply H7. Qed. Lemma antiderivative_P3 : @@ -427,15 +427,15 @@ Proof. intros; unfold antiderivative in H, H0; elim H; clear H; elim H0; clear H0; intros; case (total_order_T a c); intro. elim s; intro. - right; unfold antiderivative in |- *; split. + right; unfold antiderivative; split. intros; apply H1; elim H3; intros; split; [ assumption | apply Rle_trans with c; assumption ]. left; assumption. - right; unfold antiderivative in |- *; split. + right; unfold antiderivative; split. intros; apply H1; elim H3; intros; split; [ assumption | apply Rle_trans with c; assumption ]. right; assumption. - left; unfold antiderivative in |- *; split. + left; unfold antiderivative; split. intros; apply H; elim H3; intros; split; [ assumption | apply Rle_trans with a; assumption ]. left; assumption. @@ -450,15 +450,15 @@ Proof. intros; unfold antiderivative in H, H0; elim H; clear H; elim H0; clear H0; intros; case (total_order_T c b); intro. elim s; intro. - right; unfold antiderivative in |- *; split. + right; unfold antiderivative; split. intros; apply H1; elim H3; intros; split; [ apply Rle_trans with c; assumption | assumption ]. left; assumption. - right; unfold antiderivative in |- *; split. + right; unfold antiderivative; split. intros; apply H1; elim H3; intros; split; [ apply Rle_trans with c; assumption | assumption ]. right; assumption. - left; unfold antiderivative in |- *; split. + left; unfold antiderivative; split. intros; apply H; elim H3; intros; split; [ apply Rle_trans with b; assumption | assumption ]. left; assumption. @@ -471,7 +471,7 @@ Lemma NewtonInt_P7 : Newton_integrable f a b -> Newton_integrable f b c -> Newton_integrable f a c. Proof. - unfold Newton_integrable in |- *; intros f a b c Hab Hbc X X0; elim X; + unfold Newton_integrable; intros f a b c Hab Hbc X X0; elim X; clear X; intros F0 H0; elim X0; clear X0; intros F1 H1; set (g := @@ -479,7 +479,7 @@ Proof. match Rle_dec x b with | left _ => F0 x | right _ => F1 x + (F0 b - F1 b) - end); exists g; left; unfold g in |- *; + end); exists g; left; unfold g; apply antiderivative_P2. elim H0; intro. assumption. @@ -504,7 +504,7 @@ Proof. case (total_order_T b c); intro. elim s0; intro. (* a match Rle_dec x b with @@ -523,7 +523,7 @@ Proof. (* ac *) case (total_order_T a c); intro. elim s0; intro. - unfold Newton_integrable in |- *; exists F0. + unfold Newton_integrable; exists F0. left. elim H1; intro. unfold antiderivative in H; elim H; clear H; intros _ H. @@ -537,7 +537,7 @@ Proof. unfold antiderivative in H2; elim H2; clear H2; intros _ H2. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 a0)). rewrite b0; apply NewtonInt_P1. - unfold Newton_integrable in |- *; exists F1. + unfold Newton_integrable; exists F1. right. elim H1; intro. unfold antiderivative in H; elim H; clear H; intros _ H. @@ -557,7 +557,7 @@ Proof. (* a>b & bb & b=c *) rewrite <- b0. - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rplus_0_r. + unfold Rminus; rewrite Rplus_opp_r; rewrite Rplus_0_r. rewrite <- b0 in o. elim o0; intro. unfold antiderivative in H; elim H; clear H; intros _ H. diff --git a/theories/Reals/PSeries_reg.v b/theories/Reals/PSeries_reg.v index aa588e38..d4d91137 100644 --- a/theories/Reals/PSeries_reg.v +++ b/theories/Reals/PSeries_reg.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* SP fn N x) l }) (r:posreal), CVN_r fn r -> CVU (fun n:nat => SP fn n) (SFL fn cv) 0 r. Proof. - intros; unfold CVU in |- *; intros. + intros; unfold CVU; intros. unfold CVN_r in X. elim X; intros An X0. elim X0; intros s H0. @@ -58,7 +58,7 @@ Proof. rewrite Ropp_minus_distr'; rewrite (Rabs_right (s - sum_f_R0 (fun k:nat => Rabs (An k)) n)). eapply sum_maj1. - unfold SFL in |- *; case (cv y); intro. + unfold SFL; case (cv y); intro. trivial. apply H1. intro; elim H0; intros. @@ -69,7 +69,7 @@ Proof. apply H8; apply H6. apply Rle_ge; apply Rplus_le_reg_l with (sum_f_R0 (fun k:nat => Rabs (An k)) n). - rewrite Rplus_0_r; unfold Rminus in |- *; rewrite (Rplus_comm s); + rewrite Rplus_0_r; unfold Rminus; rewrite (Rplus_comm s); rewrite <- Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_l; apply sum_incr. apply H1. @@ -77,10 +77,10 @@ Proof. unfold R_dist in H4; unfold Rminus in H4; rewrite Ropp_0 in H4. assert (H7 := H4 n H5). rewrite Rplus_0_r in H7; apply H7. - unfold Un_cv in H1; unfold Un_cv in |- *; intros. + unfold Un_cv in H1; unfold Un_cv; intros. elim (H1 _ H3); intros. exists x; intros. - unfold R_dist in |- *; unfold R_dist in H4. + unfold R_dist; unfold R_dist in H4. rewrite Rminus_0_r; apply H4; assumption. Qed. @@ -91,13 +91,13 @@ Lemma CVU_continuity : (forall (n:nat) (y:R), Boule x r y -> continuity_pt (fn n) y) -> forall y:R, Boule x r y -> continuity_pt f y. Proof. - intros; unfold continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; unfold R_dist in |- *; intros. + intros; unfold continuity_pt; unfold continue_in; + unfold limit1_in; unfold limit_in; + simpl; unfold R_dist; intros. unfold CVU in H. cut (0 < eps / 3); [ intro - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ]. elim (H _ H3); intros N0 H4. assert (H5 := H0 N0 y H1). @@ -110,7 +110,7 @@ Proof. set (del := Rmin del1 del2). exists del; intros. split. - unfold del in |- *; unfold Rmin in |- *; case (Rle_dec del1 del2); intro. + unfold del; unfold Rmin; case (Rle_dec del1 del2); intro. apply (cond_pos del1). elim H8; intros; assumption. intros; @@ -130,27 +130,27 @@ Proof. elim H9; intros. apply Rlt_le_trans with del. assumption. - unfold del in |- *; apply Rmin_l. + unfold del; apply Rmin_l. elim H8; intros. apply H11. split. elim H9; intros; assumption. elim H9; intros; apply Rlt_le_trans with del. assumption. - unfold del in |- *; apply Rmin_r. + unfold del; apply Rmin_r. rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply H4. apply le_n. assumption. apply Rmult_eq_reg_l with 3. - do 2 rewrite Rmult_plus_distr_l; unfold Rdiv in |- *; rewrite <- Rmult_assoc; + do 2 rewrite Rmult_plus_distr_l; unfold Rdiv; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m. ring. discrR. discrR. cut (0 < r - Rabs (x - y)). intro; exists (mkposreal _ H6). - simpl in |- *; intros. - unfold Boule in |- *; replace (y + h - x) with (h + (y - x)); + simpl; intros. + unfold Boule; replace (y + h - x) with (h + (y - x)); [ idtac | ring ]; apply Rle_lt_trans with (Rabs h + Rabs (y - x)). apply Rabs_triang. apply Rplus_lt_reg_r with (- Rabs (x - y)). @@ -173,8 +173,8 @@ Lemma continuity_pt_finite_SF : continuity_pt (fun y:R => sum_f_R0 (fun k:nat => fn k y) N) x. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; apply (H 0%nat); apply le_n. - simpl in |- *; + simpl; apply (H 0%nat); apply le_n. + simpl; replace (fun y:R => sum_f_R0 (fun k:nat => fn k y) N + fn (S N) y) with ((fun y:R => sum_f_R0 (fun k:nat => fn k y) N) + (fun y:R => fn (S N) y))%F; [ idtac | reflexivity ]. @@ -197,7 +197,7 @@ Proof. intros; eapply CVU_continuity. apply CVN_CVU. apply X. - intros; unfold SP in |- *; apply continuity_pt_finite_SF. + intros; unfold SP; apply continuity_pt_finite_SF. intros; apply H. apply H1. apply H0. @@ -208,7 +208,7 @@ Lemma SFL_continuity : (cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }), CVN_R fn -> (forall n:nat, continuity (fn n)) -> continuity (SFL fn cv). Proof. - intros; unfold continuity in |- *; intro. + intros; unfold continuity; intro. cut (0 < Rabs x + 1); [ intro | apply Rplus_le_lt_0_compat; [ apply Rabs_pos | apply Rlt_0_1 ] ]. cut (Boule 0 (mkposreal _ H0) x). @@ -216,8 +216,8 @@ Proof. apply X. intros; apply (H n y). apply H1. - unfold Boule in |- *; simpl in |- *; rewrite Rminus_0_r; - pattern (Rabs x) at 1 in |- *; rewrite <- Rplus_0_r; + unfold Boule; simpl; rewrite Rminus_0_r; + pattern (Rabs x) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1. Qed. @@ -227,10 +227,10 @@ Lemma CVN_R_CVS : CVN_R fn -> forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }. Proof. intros; apply R_complete. - unfold SP in |- *; set (An := fun N:nat => fn N x). - change (Cauchy_crit_series An) in |- *. + unfold SP; set (An := fun N:nat => fn N x). + change (Cauchy_crit_series An). apply cauchy_abs. - unfold Cauchy_crit_series in |- *; apply CV_Cauchy. + unfold Cauchy_crit_series; apply CV_Cauchy. unfold CVN_R in X; cut (0 < Rabs x + 1). intro; assert (H0 := X (mkposreal _ H)). unfold CVN_r in H0; elim H0; intros Bn H1. @@ -239,13 +239,13 @@ Proof. apply Rseries_CV_comp with Bn. intro; split. apply Rabs_pos. - unfold An in |- *; apply H4; unfold Boule in |- *; simpl in |- *; + unfold An; apply H4; unfold Boule; simpl; rewrite Rminus_0_r. - pattern (Rabs x) at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; + pattern (Rabs x) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1. exists l. cut (forall n:nat, 0 <= Bn n). - intro; unfold Un_cv in H3; unfold Un_cv in |- *; intros. + intro; unfold Un_cv in H3; unfold Un_cv; intros. elim (H3 _ H6); intros. exists x0; intros. replace (sum_f_R0 Bn n) with (sum_f_R0 (fun k:nat => Rabs (Bn k)) n). @@ -253,8 +253,8 @@ Proof. apply sum_eq; intros; apply Rabs_right; apply Rle_ge; apply H5. intro; apply Rle_trans with (Rabs (An n)). apply Rabs_pos. - unfold An in |- *; apply H4; unfold Boule in |- *; simpl in |- *; - rewrite Rminus_0_r; pattern (Rabs x) at 1 in |- *; + unfold An; apply H4; unfold Boule; simpl; + rewrite Rminus_0_r; pattern (Rabs x) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1. apply Rplus_le_lt_0_compat; [ apply Rabs_pos | apply Rlt_0_1 ]. Qed. diff --git a/theories/Reals/PartSum.v b/theories/Reals/PartSum.v index 3f90f15a..d765cf78 100644 --- a/theories/Reals/PartSum.v +++ b/theories/Reals/PartSum.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* R) (N:nat), (forall n:nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An N. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; apply H; apply le_n. - simpl in |- *; apply Rplus_lt_0_compat. + simpl; apply H; apply le_n. + simpl; apply Rplus_lt_0_compat. apply HrecN; intros; apply H; apply le_S; assumption. apply H; apply le_n. Qed. @@ -52,7 +52,7 @@ Proof. repeat rewrite S_INR; ring. apply le_n_S; apply lt_le_weak; assumption. apply lt_le_S; assumption. - rewrite H1; rewrite <- minus_n_n; simpl in |- *. + rewrite H1; rewrite <- minus_n_n; simpl. replace (n + 0)%nat with n; [ reflexivity | ring ]. inversion H. right; reflexivity. @@ -66,7 +66,7 @@ Lemma tech3 : Proof. intros; cut (1 - k <> 0). intro; induction N as [| N HrecN]. - simpl in |- *; rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite <- Rinv_r_sym. + simpl; rewrite Rmult_1_r; unfold Rdiv; rewrite <- Rinv_r_sym. reflexivity. apply H0. replace (sum_f_R0 (fun i:nat => k ^ i) (S N)) with @@ -75,15 +75,15 @@ Proof. replace ((1 - k ^ S N) / (1 - k) + k ^ S N) with ((1 - k ^ S N + (1 - k) * k ^ S N) / (1 - k)). apply Rmult_eq_reg_l with (1 - k). - unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ (1 - k))); + unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ (1 - k))); repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; - [ do 2 rewrite Rmult_1_l; simpl in |- *; ring | apply H0 ]. + [ do 2 rewrite Rmult_1_l; simpl; ring | apply H0 ]. apply H0. - unfold Rdiv in |- *; rewrite Rmult_plus_distr_r; rewrite (Rmult_comm (1 - k)); + unfold Rdiv; rewrite Rmult_plus_distr_r; rewrite (Rmult_comm (1 - k)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_r; reflexivity. apply H0. - apply Rminus_eq_contra; red in |- *; intro; elim H; symmetry in |- *; + apply Rminus_eq_contra; red; intro; elim H; symmetry ; assumption. Qed. @@ -92,11 +92,11 @@ Lemma tech4 : 0 <= k -> (forall i:nat, An (S i) < k * An i) -> An N <= An 0%nat * k ^ N. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; right; ring. + simpl; right; ring. apply Rle_trans with (k * An N). left; apply (H0 N). replace (S N) with (N + 1)%nat; [ idtac | ring ]. - rewrite pow_add; simpl in |- *; rewrite Rmult_1_r; + rewrite pow_add; simpl; rewrite Rmult_1_r; replace (An 0%nat * (k ^ N * k)) with (k * (An 0%nat * k ^ N)); [ idtac | ring ]; apply Rmult_le_compat_l. assumption. @@ -116,7 +116,7 @@ Lemma tech6 : sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i:nat => k ^ i) N. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; right; ring. + simpl; right; ring. apply Rle_trans with (An 0%nat * sum_f_R0 (fun i:nat => k ^ i) N + An (S N)). rewrite tech5; do 2 rewrite <- (Rplus_comm (An (S N))); apply Rplus_le_compat_l. @@ -127,13 +127,13 @@ Qed. Lemma tech7 : forall r1 r2:R, r1 <> 0 -> r2 <> 0 -> r1 <> r2 -> / r1 <> / r2. Proof. - intros; red in |- *; intro. + intros; red; intro. assert (H3 := Rmult_eq_compat_l r1 _ _ H2). rewrite <- Rinv_r_sym in H3; [ idtac | assumption ]. assert (H4 := Rmult_eq_compat_l r2 _ _ H3). rewrite Rmult_1_r in H4; rewrite <- Rmult_assoc in H4. rewrite Rinv_r_simpl_m in H4; [ idtac | assumption ]. - elim H1; symmetry in |- *; assumption. + elim H1; symmetry ; assumption. Qed. Lemma tech11 : @@ -142,7 +142,7 @@ Lemma tech11 : sum_f_R0 An N = sum_f_R0 Bn N - sum_f_R0 Cn N. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; apply H. + simpl; apply H. do 3 rewrite tech5; rewrite HrecN; rewrite (H (S N)); ring. Qed. @@ -151,7 +151,7 @@ Lemma tech12 : Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l -> Pser An x l. Proof. - intros; unfold Pser in |- *; unfold infinite_sum in |- *; unfold Un_cv in H; + intros; unfold Pser; unfold infinite_sum; unfold Un_cv in H; assumption. Qed. @@ -160,7 +160,7 @@ Lemma scal_sum : x * sum_f_R0 An N = sum_f_R0 (fun i:nat => An i * x) N. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; ring. + simpl; ring. do 2 rewrite tech5. rewrite Rmult_plus_distr_l; rewrite <- HrecN; ring. Qed. @@ -179,14 +179,14 @@ Proof. do 2 rewrite tech5. replace (S (S (pred N))) with (S N). rewrite (HrecN H1); ring. - rewrite H2; simpl in |- *; reflexivity. + rewrite H2; simpl; reflexivity. assert (H2 := O_or_S N). elim H2; intros. elim a; intros. rewrite <- p. - simpl in |- *; reflexivity. + simpl; reflexivity. rewrite <- b in H1; elim (lt_irrefl _ H1). - rewrite H1; simpl in |- *; reflexivity. + rewrite H1; simpl; reflexivity. inversion H. right; reflexivity. left; apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ]. @@ -197,7 +197,7 @@ Lemma plus_sum : sum_f_R0 (fun i:nat => An i + Bn i) N = sum_f_R0 An N + sum_f_R0 Bn N. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; ring. + simpl; ring. do 3 rewrite tech5; rewrite HrecN; ring. Qed. @@ -207,7 +207,7 @@ Lemma sum_eq : sum_f_R0 An N = sum_f_R0 Bn N. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; apply H; apply le_n. + simpl; apply H; apply le_n. do 2 rewrite tech5; rewrite HrecN. rewrite (H (S N)); [ reflexivity | apply le_n ]. intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ]. @@ -218,7 +218,7 @@ Lemma uniqueness_sum : forall (An:nat -> R) (l1 l2:R), infinite_sum An l1 -> infinite_sum An l2 -> l1 = l2. Proof. - unfold infinite_sum in |- *; intros. + unfold infinite_sum; intros. case (Req_dec l1 l2); intro. assumption. cut (0 < Rabs ((l1 - l2) / 2)); [ intro | apply Rabs_pos_lt ]. @@ -235,19 +235,19 @@ Proof. intro; rewrite H12 in H11; assert (H13 := double_var); unfold Rdiv in H13; rewrite <- H13 in H11. elim (Rlt_irrefl _ H11). - apply Rabs_right; left; change (0 < / 2) in |- *; apply Rinv_0_lt_compat; + apply Rabs_right; left; change (0 < / 2); apply Rinv_0_lt_compat; cut (0%nat <> 2%nat); - [ intro H20; generalize (lt_INR_0 2 (neq_O_lt 2 H20)); unfold INR in |- *; + [ intro H20; generalize (lt_INR_0 2 (neq_O_lt 2 H20)); unfold INR; intro; assumption | discriminate ]. - unfold R_dist in |- *; rewrite <- (Rabs_Ropp (sum_f_R0 An N - l1)); + unfold R_dist; rewrite <- (Rabs_Ropp (sum_f_R0 An N - l1)); rewrite Ropp_minus_distr'. replace (l1 - l2) with (l1 - sum_f_R0 An N + (sum_f_R0 An N - l2)); [ idtac | ring ]. apply Rabs_triang. - unfold ge in |- *; unfold N in |- *; apply le_max_r. - unfold ge in |- *; unfold N in |- *; apply le_max_l. - unfold Rdiv in |- *; apply prod_neq_R0. + unfold ge; unfold N; apply le_max_r. + unfold ge; unfold N; apply le_max_l. + unfold Rdiv; apply prod_neq_R0. apply Rminus_eq_contra; assumption. apply Rinv_neq_0_compat; discrR. Qed. @@ -257,7 +257,7 @@ Lemma minus_sum : sum_f_R0 (fun i:nat => An i - Bn i) N = sum_f_R0 An N - sum_f_R0 Bn N. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; ring. + simpl; ring. do 3 rewrite tech5; rewrite HrecN; ring. Qed. @@ -268,7 +268,7 @@ Lemma sum_decomposition : Proof. intros. induction N as [| N HrecN]. - simpl in |- *; ring. + simpl; ring. rewrite tech5. rewrite (tech5 (fun l:nat => An (S (2 * l))) N). replace (2 * S (S N))%nat with (S (S (2 * S N))). @@ -286,7 +286,7 @@ Lemma sum_Rle : Proof. intros. induction N as [| N HrecN]. - simpl in |- *; apply H. + simpl; apply H. apply le_n. do 2 rewrite tech5. apply Rle_trans with (sum_f_R0 An N + Bn (S N)). @@ -306,7 +306,7 @@ Lemma Rsum_abs : Proof. intros. induction N as [| N HrecN]. - simpl in |- *. + simpl. right; reflexivity. do 2 rewrite tech5. apply Rle_trans with (Rabs (sum_f_R0 An N) + Rabs (An (S N))). @@ -321,7 +321,7 @@ Lemma sum_cte : Proof. intros. induction N as [| N HrecN]. - simpl in |- *; ring. + simpl; ring. rewrite tech5. rewrite HrecN; repeat rewrite S_INR; ring. Qed. @@ -333,7 +333,7 @@ Lemma sum_growing : Proof. intros. induction N as [| N HrecN]. - simpl in |- *; apply H. + simpl; apply H. do 2 rewrite tech5. apply Rle_trans with (sum_f_R0 An N + Bn (S N)). apply Rplus_le_compat_l; apply H. @@ -348,7 +348,7 @@ Lemma Rabs_triang_gen : Proof. intros. induction N as [| N HrecN]. - simpl in |- *. + simpl. right; reflexivity. do 2 rewrite tech5. apply Rle_trans with (Rabs (sum_f_R0 An N) + Rabs (An (S N))). @@ -364,7 +364,7 @@ Lemma cond_pos_sum : Proof. intros. induction N as [| N HrecN]. - simpl in |- *; apply H. + simpl; apply H. rewrite tech5. apply Rplus_le_le_0_compat. apply HrecN. @@ -380,7 +380,7 @@ Lemma cauchy_abs : forall An:nat -> R, Cauchy_crit_series (fun i:nat => Rabs (An i)) -> Cauchy_crit_series An. Proof. - unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *. + unfold Cauchy_crit_series; unfold Cauchy_crit. intros. elim (H eps H0); intros. exists x. @@ -400,8 +400,8 @@ Proof. elim a; intro. rewrite (tech2 An n m); [ idtac | assumption ]. rewrite (tech2 (fun i:nat => Rabs (An i)) n m); [ idtac | assumption ]. - unfold R_dist in |- *. - unfold Rminus in |- *. + unfold R_dist. + unfold Rminus. do 2 rewrite Ropp_plus_distr. do 2 rewrite <- Rplus_assoc. do 2 rewrite Rplus_opp_r. @@ -414,18 +414,18 @@ Proof. replace (fun i:nat => Rabs (An (S n + i)%nat)) with (fun i:nat => Rabs (Bn i)). apply Rabs_triang_gen. - unfold Bn in |- *; reflexivity. + unfold Bn; reflexivity. apply Rle_ge. apply cond_pos_sum. intro; apply Rabs_pos. rewrite b. - unfold R_dist in |- *. - unfold Rminus in |- *; do 2 rewrite Rplus_opp_r. + unfold R_dist. + unfold Rminus; do 2 rewrite Rplus_opp_r. rewrite Rabs_R0; right; reflexivity. rewrite (tech2 An m n); [ idtac | assumption ]. rewrite (tech2 (fun i:nat => Rabs (An i)) m n); [ idtac | assumption ]. - unfold R_dist in |- *. - unfold Rminus in |- *. + unfold R_dist. + unfold Rminus. do 2 rewrite Rplus_assoc. rewrite (Rplus_comm (sum_f_R0 An m)). rewrite (Rplus_comm (sum_f_R0 (fun i:nat => Rabs (An i)) m)). @@ -439,7 +439,7 @@ Proof. replace (fun i:nat => Rabs (An (S m + i)%nat)) with (fun i:nat => Rabs (Bn i)). apply Rabs_triang_gen. - unfold Bn in |- *; reflexivity. + unfold Bn; reflexivity. apply Rle_ge. apply cond_pos_sum. intro; apply Rabs_pos. @@ -454,7 +454,7 @@ Proof. intros An X. elim X; intros. unfold Un_cv in p. - unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *. + unfold Cauchy_crit_series; unfold Cauchy_crit. intros. cut (0 < eps / 2). intro. @@ -462,7 +462,7 @@ Proof. exists x0. intros. apply Rle_lt_trans with (R_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) x). - unfold R_dist in |- *. + unfold R_dist. replace (sum_f_R0 An n - sum_f_R0 An m) with (sum_f_R0 An n - x + - (sum_f_R0 An m - x)); [ idtac | ring ]. rewrite <- (Rabs_Ropp (sum_f_R0 An m - x)). @@ -471,8 +471,8 @@ Proof. apply Rplus_lt_compat. apply H1; assumption. apply H1; assumption. - right; symmetry in |- *; apply double_var. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + right; symmetry ; apply double_var. + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. Qed. @@ -493,7 +493,7 @@ Lemma sum_eq_R0 : (forall n:nat, (n <= N)%nat -> An n = 0) -> sum_f_R0 An N = 0. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; apply H; apply le_n. + simpl; apply H; apply le_n. rewrite tech5; rewrite HrecN; [ rewrite Rplus_0_l; apply H; apply le_n | intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ] ]. @@ -530,15 +530,15 @@ Proof. [ idtac | ring ]; apply Rle_trans with l1. left; apply r. apply H6. - unfold l1 in |- *; apply Rge_le; + unfold l1; apply Rge_le; apply (growing_prop (fun k:nat => sum_f_R0 An k)). apply H1. - unfold ge, N0 in |- *; apply le_max_r. - unfold ge, N0 in |- *; apply le_max_l. + unfold ge, N0; apply le_max_r. + unfold ge, N0; apply le_max_l. apply Rplus_lt_reg_r with l; rewrite Rplus_0_r; replace (l + (l1 - l)) with l1; [ apply r | ring ]. - unfold Un_growing in |- *; intro; simpl in |- *; - pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r; + unfold Un_growing; intro; simpl; + pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; apply H0. Qed. @@ -572,7 +572,7 @@ Proof. apply Rlt_trans with (Rabs l1). apply Rmult_lt_reg_l with 2. prove_sup0. - unfold Rdiv in |- *; rewrite (Rmult_comm 2); rewrite Rmult_assoc; + unfold Rdiv; rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; rewrite double; apply Rplus_lt_compat_l; apply r. discrR. @@ -581,18 +581,18 @@ Proof. apply Rplus_lt_reg_r with ((Rabs l1 - l2) / 2 - Rabs (SP fn N x)). replace ((Rabs l1 - l2) / 2 - Rabs (SP fn N x) + (Rabs l1 + l2) / 2) with (Rabs l1 - Rabs (SP fn N x)). - unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l; + unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; apply H7. - unfold Rdiv in |- *; rewrite Rmult_plus_distr_r; + unfold Rdiv; rewrite Rmult_plus_distr_r; rewrite <- (Rmult_comm (/ 2)); rewrite Rmult_minus_distr_l; - repeat rewrite (Rmult_comm (/ 2)); pattern (Rabs l1) at 1 in |- *; - rewrite double_var; unfold Rdiv in |- *; ring. + repeat rewrite (Rmult_comm (/ 2)); pattern (Rabs l1) at 1; + rewrite double_var; unfold Rdiv; ring. case (Rcase_abs (sum_f_R0 An N - l2)); intro. apply Rlt_trans with l2. apply (Rminus_lt _ _ r0). apply Rmult_lt_reg_l with 2. prove_sup0. - rewrite (double l2); unfold Rdiv in |- *; rewrite (Rmult_comm 2); + rewrite (double l2); unfold Rdiv; rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; rewrite (Rplus_comm (Rabs l1)); apply Rplus_lt_compat_l; apply r. @@ -600,23 +600,23 @@ Proof. rewrite (Rabs_right _ r0) in H6; apply Rplus_lt_reg_r with (- l2). replace (- l2 + (Rabs l1 + l2) / 2) with ((Rabs l1 - l2) / 2). rewrite Rplus_comm; apply H6. - unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); + unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite Rmult_minus_distr_l; rewrite Rmult_plus_distr_r; - pattern l2 at 2 in |- *; rewrite double_var; + pattern l2 at 2; rewrite double_var; repeat rewrite (Rmult_comm (/ 2)); rewrite Ropp_plus_distr; - unfold Rdiv in |- *; ring. + unfold Rdiv; ring. apply Rle_lt_trans with (Rabs (SP fn N x - l1)). rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply Rabs_triang_inv2. - apply H4; unfold ge, N in |- *; apply le_max_l. - apply H5; unfold ge, N in |- *; apply le_max_r. - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + apply H4; unfold ge, N; apply le_max_l. + apply H5; unfold ge, N; apply le_max_r. + unfold Rdiv; apply Rmult_lt_0_compat. apply Rplus_lt_reg_r with l2. rewrite Rplus_0_r; replace (l2 + (Rabs l1 - l2)) with (Rabs l1); [ apply r | ring ]. apply Rinv_0_lt_compat; prove_sup0. intros; induction n0 as [| n0 Hrecn0]. - unfold SP in |- *; simpl in |- *; apply H1. - unfold SP in |- *; simpl in |- *. + unfold SP; simpl; apply H1. + unfold SP; simpl. apply Rle_trans with (Rabs (sum_f_R0 (fun k:nat => fn k x) n0) + Rabs (fn (S n0) x)). apply Rabs_triang. diff --git a/theories/Reals/RIneq.v b/theories/Reals/RIneq.v index 70f4ff0d..5fc7d8fb 100644 --- a/theories/Reals/RIneq.v +++ b/theories/Reals/RIneq.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* r1 <> r2. Proof. - red in |- *; intros r1 r2 H H0; apply (Rlt_irrefl r1). - pattern r1 at 2 in |- *; rewrite H0; trivial. + red; intros r1 r2 H H0; apply (Rlt_irrefl r1). + pattern r1 at 2; rewrite H0; trivial. Qed. Lemma Rgt_not_eq : forall r1 r2, r1 > r2 -> r1 <> r2. Proof. - intros; apply sym_not_eq; apply Rlt_not_eq; auto with real. + intros; apply not_eq_sym; apply Rlt_not_eq; auto with real. Qed. (**********) @@ -102,7 +102,7 @@ Qed. Lemma Rlt_le : forall r1 r2, r1 < r2 -> r1 <= r2. Proof. - intros; red in |- *; tauto. + intros; red; tauto. Qed. Hint Resolve Rlt_le: real. @@ -114,14 +114,14 @@ Qed. (**********) Lemma Rle_ge : forall r1 r2, r1 <= r2 -> r2 >= r1. Proof. - destruct 1; red in |- *; auto with real. + destruct 1; red; auto with real. Qed. Hint Immediate Rle_ge: real. Hint Resolve Rle_ge: rorders. Lemma Rge_le : forall r1 r2, r1 >= r2 -> r2 <= r1. Proof. - destruct 1; red in |- *; auto with real. + destruct 1; red; auto with real. Qed. Hint Resolve Rge_le: real. Hint Immediate Rge_le: rorders. @@ -143,7 +143,7 @@ Hint Immediate Rgt_lt: rorders. Lemma Rnot_le_lt : forall r1 r2, ~ r1 <= r2 -> r2 < r1. Proof. - intros r1 r2; generalize (Rtotal_order r1 r2); unfold Rle in |- *; tauto. + intros r1 r2; generalize (Rtotal_order r1 r2); unfold Rle; tauto. Qed. Hint Immediate Rnot_le_lt: real. @@ -174,7 +174,7 @@ Proof. eauto using Rnot_gt_ge with rorders. Qed. (**********) Lemma Rlt_not_le : forall r1 r2, r2 < r1 -> ~ r1 <= r2. Proof. - generalize Rlt_asym Rlt_dichotomy_converse; unfold Rle in |- *. + generalize Rlt_asym Rlt_dichotomy_converse; unfold Rle. intuition eauto 3. Qed. Hint Immediate Rlt_not_le: real. @@ -192,7 +192,7 @@ Proof. exact Rlt_not_ge. Qed. Lemma Rle_not_lt : forall r1 r2, r2 <= r1 -> ~ r1 < r2. Proof. intros r1 r2. generalize (Rlt_asym r1 r2) (Rlt_dichotomy_converse r1 r2). - unfold Rle in |- *; intuition. + unfold Rle; intuition. Qed. Lemma Rge_not_lt : forall r1 r2, r1 >= r2 -> ~ r1 < r2. @@ -207,25 +207,25 @@ Proof. do 2 intro; apply Rge_not_lt. Qed. (**********) Lemma Req_le : forall r1 r2, r1 = r2 -> r1 <= r2. Proof. - unfold Rle in |- *; tauto. + unfold Rle; tauto. Qed. Hint Immediate Req_le: real. Lemma Req_ge : forall r1 r2, r1 = r2 -> r1 >= r2. Proof. - unfold Rge in |- *; tauto. + unfold Rge; tauto. Qed. Hint Immediate Req_ge: real. Lemma Req_le_sym : forall r1 r2, r2 = r1 -> r1 <= r2. Proof. - unfold Rle in |- *; auto. + unfold Rle; auto. Qed. Hint Immediate Req_le_sym: real. Lemma Req_ge_sym : forall r1 r2, r2 = r1 -> r1 >= r2. Proof. - unfold Rge in |- *; auto. + unfold Rge; auto. Qed. Hint Immediate Req_ge_sym: real. @@ -240,7 +240,7 @@ Proof. do 2 intro; apply Rlt_asym. Qed. Lemma Rle_antisym : forall r1 r2, r1 <= r2 -> r2 <= r1 -> r1 = r2. Proof. - intros r1 r2; generalize (Rlt_asym r1 r2); unfold Rle in |- *; intuition. + intros r1 r2; generalize (Rlt_asym r1 r2); unfold Rle; intuition. Qed. Hint Resolve Rle_antisym: real. @@ -276,8 +276,8 @@ Proof. intros; red; apply Rlt_eq_compat with (r2:=r4) (r4:=r2); auto. Qed. Lemma Rle_trans : forall r1 r2 r3, r1 <= r2 -> r2 <= r3 -> r1 <= r3. Proof. - generalize trans_eq Rlt_trans Rlt_eq_compat. - unfold Rle in |- *. + generalize eq_trans Rlt_trans Rlt_eq_compat. + unfold Rle. intuition eauto 2. Qed. @@ -291,13 +291,13 @@ Proof. eauto using Rlt_trans with rorders. Qed. Lemma Rle_lt_trans : forall r1 r2 r3, r1 <= r2 -> r2 < r3 -> r1 < r3. Proof. generalize Rlt_trans Rlt_eq_compat. - unfold Rle in |- *. + unfold Rle. intuition eauto 2. Qed. Lemma Rlt_le_trans : forall r1 r2 r3, r1 < r2 -> r2 <= r3 -> r1 < r3. Proof. - generalize Rlt_trans Rlt_eq_compat; unfold Rle in |- *; intuition eauto 2. + generalize Rlt_trans Rlt_eq_compat; unfold Rle; intuition eauto 2. Qed. Lemma Rge_gt_trans : forall r1 r2 r3, r1 >= r2 -> r2 > r3 -> r1 > r3. @@ -430,7 +430,7 @@ Hint Resolve Rplus_eq_reg_l: real. (**********) Lemma Rplus_0_r_uniq : forall r r1, r + r1 = r -> r1 = 0. Proof. - intros r b; pattern r at 2 in |- *; replace r with (r + 0); eauto with real. + intros r b; pattern r at 2; replace r with (r + 0); eauto with real. Qed. (***********) @@ -441,7 +441,7 @@ Proof. absurd (0 < a + b). rewrite H1; auto with real. apply Rle_lt_trans with (a + 0). - rewrite Rplus_0_r in |- *; assumption. + rewrite Rplus_0_r; assumption. auto using Rplus_lt_compat_l with real. rewrite <- H0, Rplus_0_r in H1; assumption. Qed. @@ -570,14 +570,14 @@ Qed. (**********) Lemma Rmult_neq_0_reg : forall r1 r2, r1 * r2 <> 0 -> r1 <> 0 /\ r2 <> 0. Proof. - intros r1 r2 H; split; red in |- *; intro; apply H; auto with real. + intros r1 r2 H; split; red; intro; apply H; auto with real. Qed. (**********) Lemma Rmult_integral_contrapositive : forall r1 r2, r1 <> 0 /\ r2 <> 0 -> r1 * r2 <> 0. Proof. - red in |- *; intros r1 r2 [H1 H2] H. + red; intros r1 r2 [H1 H2] H. case (Rmult_integral r1 r2); auto with real. Qed. Hint Resolve Rmult_integral_contrapositive: real. @@ -604,12 +604,12 @@ Notation "r ²" := (Rsqr r) (at level 1, format "r ²") : R_scope. (***********) Lemma Rsqr_0 : Rsqr 0 = 0. - unfold Rsqr in |- *; auto with real. + unfold Rsqr; auto with real. Qed. (***********) Lemma Rsqr_0_uniq : forall r, Rsqr r = 0 -> r = 0. - unfold Rsqr in |- *; intros; elim (Rmult_integral r r H); trivial. + unfold Rsqr; intros; elim (Rmult_integral r r H); trivial. Qed. (*********************************************************) @@ -647,7 +647,7 @@ Hint Resolve Ropp_involutive: real. (*********) Lemma Ropp_neq_0_compat : forall r, r <> 0 -> - r <> 0. Proof. - red in |- *; intros r H H0. + red; intros r H H0. apply H. transitivity (- - r); auto with real. Qed. @@ -720,7 +720,7 @@ Hint Resolve Rminus_diag_eq: real. (**********) Lemma Rminus_diag_uniq : forall r1 r2, r1 - r2 = 0 -> r1 = r2. Proof. - intros r1 r2; unfold Rminus in |- *; rewrite Rplus_comm; intro. + intros r1 r2; unfold Rminus; rewrite Rplus_comm; intro. rewrite <- (Ropp_involutive r2); apply (Rplus_opp_r_uniq (- r2) r1 H). Qed. Hint Immediate Rminus_diag_uniq: real. @@ -741,20 +741,20 @@ Hint Resolve Rplus_minus: real. (**********) Lemma Rminus_eq_contra : forall r1 r2, r1 <> r2 -> r1 - r2 <> 0. Proof. - red in |- *; intros r1 r2 H H0. + red; intros r1 r2 H H0. apply H; auto with real. Qed. Hint Resolve Rminus_eq_contra: real. Lemma Rminus_not_eq : forall r1 r2, r1 - r2 <> 0 -> r1 <> r2. Proof. - red in |- *; intros; elim H; apply Rminus_diag_eq; auto. + red; intros; elim H; apply Rminus_diag_eq; auto. Qed. Hint Resolve Rminus_not_eq: real. Lemma Rminus_not_eq_right : forall r1 r2, r2 - r1 <> 0 -> r1 <> r2. Proof. - red in |- *; intros; elim H; rewrite H0; ring. + red; intros; elim H; rewrite H0; ring. Qed. Hint Resolve Rminus_not_eq_right: real. @@ -778,7 +778,7 @@ Hint Resolve Rinv_1: real. (*********) Lemma Rinv_neq_0_compat : forall r, r <> 0 -> / r <> 0. Proof. - red in |- *; intros; apply R1_neq_R0. + red; intros; apply R1_neq_R0. replace 1 with (/ r * r); auto with real. Qed. Hint Resolve Rinv_neq_0_compat: real. @@ -858,7 +858,7 @@ Proof. do 3 intro; apply Rplus_lt_compat_r. Qed. (**********) Lemma Rplus_le_compat_l : forall r r1 r2, r1 <= r2 -> r + r1 <= r + r2. Proof. - unfold Rle in |- *; intros; elim H; intro. + unfold Rle; intros; elim H; intro. left; apply (Rplus_lt_compat_l r r1 r2 H0). right; rewrite <- H0; auto with zarith real. Qed. @@ -870,7 +870,7 @@ Hint Resolve Rplus_ge_compat_l: real. (**********) Lemma Rplus_le_compat_r : forall r r1 r2, r1 <= r2 -> r1 + r <= r2 + r. Proof. - unfold Rle in |- *; intros; elim H; intro. + unfold Rle; intros; elim H; intro. left; apply (Rplus_lt_compat_r r r1 r2 H0). right; rewrite <- H0; auto with real. Qed. @@ -931,7 +931,7 @@ Lemma Rplus_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 + r2. Proof. intros x y; intros; apply Rlt_trans with x; [ assumption - | pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l; + | pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l; assumption ]. Qed. @@ -939,7 +939,7 @@ Lemma Rplus_le_lt_0_compat : forall r1 r2, 0 <= r1 -> 0 < r2 -> 0 < r1 + r2. Proof. intros x y; intros; apply Rle_lt_trans with x; [ assumption - | pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l; + | pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l; assumption ]. Qed. @@ -953,7 +953,7 @@ Lemma Rplus_le_le_0_compat : forall r1 r2, 0 <= r1 -> 0 <= r2 -> 0 <= r1 + r2. Proof. intros x y; intros; apply Rle_trans with x; [ assumption - | pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; + | pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; assumption ]. Qed. @@ -981,7 +981,7 @@ Qed. Lemma Rplus_le_reg_l : forall r r1 r2, r + r1 <= r + r2 -> r1 <= r2. Proof. - unfold Rle in |- *; intros; elim H; intro. + unfold Rle; intros; elim H; intro. left; apply (Rplus_lt_reg_r r r1 r2 H0). right; apply (Rplus_eq_reg_l r r1 r2 H0). Qed. @@ -995,7 +995,7 @@ Qed. Lemma Rplus_gt_reg_l : forall r r1 r2, r + r1 > r + r2 -> r1 > r2. Proof. - unfold Rgt in |- *; intros; apply (Rplus_lt_reg_r r r2 r1 H). + unfold Rgt; intros; apply (Rplus_lt_reg_r r r2 r1 H). Qed. Lemma Rplus_ge_reg_l : forall r r1 r2, r + r1 >= r + r2 -> r1 >= r2. @@ -1046,7 +1046,7 @@ Qed. Lemma Ropp_gt_lt_contravar : forall r1 r2, r1 > r2 -> - r1 < - r2. Proof. - unfold Rgt in |- *; intros. + unfold Rgt; intros. apply (Rplus_lt_reg_r (r2 + r1)). replace (r2 + r1 + - r1) with r2. replace (r2 + r1 + - r2) with r1. @@ -1058,7 +1058,7 @@ Hint Resolve Ropp_gt_lt_contravar. Lemma Ropp_lt_gt_contravar : forall r1 r2, r1 < r2 -> - r1 > - r2. Proof. - unfold Rgt in |- *; auto with real. + unfold Rgt; auto with real. Qed. Hint Resolve Ropp_lt_gt_contravar: real. @@ -1183,7 +1183,7 @@ Proof. eauto using Rmult_lt_compat_l with rorders. Qed. Lemma Rmult_le_compat_l : forall r r1 r2, 0 <= r -> r1 <= r2 -> r * r1 <= r * r2. Proof. - intros r r1 r2 H H0; destruct H; destruct H0; unfold Rle in |- *; + intros r r1 r2 H H0; destruct H; destruct H0; unfold Rle; auto with real. right; rewrite <- H; do 2 rewrite Rmult_0_l; reflexivity. Qed. @@ -1342,7 +1342,7 @@ Qed. (**********) Lemma Rle_minus : forall r1 r2, r1 <= r2 -> r1 - r2 <= 0. Proof. - destruct 1; unfold Rle in |- *; auto with real. + destruct 1; unfold Rle; auto with real. Qed. Lemma Rge_minus : forall r1 r2, r1 >= r2 -> r1 - r2 >= 0. @@ -1356,7 +1356,7 @@ Qed. Lemma Rminus_lt : forall r1 r2, r1 - r2 < 0 -> r1 < r2. Proof. intros; replace r1 with (r1 - r2 + r2). - pattern r2 at 3 in |- *; replace r2 with (0 + r2); auto with real. + pattern r2 at 3; replace r2 with (0 + r2); auto with real. ring. Qed. @@ -1372,7 +1372,7 @@ Qed. Lemma Rminus_le : forall r1 r2, r1 - r2 <= 0 -> r1 <= r2. Proof. intros; replace r1 with (r1 - r2 + r2). - pattern r2 at 3 in |- *; replace r2 with (0 + r2); auto with real. + pattern r2 at 3; replace r2 with (0 + r2); auto with real. ring. Qed. @@ -1387,7 +1387,7 @@ Qed. (**********) Lemma tech_Rplus : forall r (s:R), 0 <= r -> 0 < s -> r + s <> 0. Proof. - intros; apply sym_not_eq; apply Rlt_not_eq. + intros; apply not_eq_sym; apply Rlt_not_eq. rewrite Rplus_comm; replace 0 with (0 + 0); auto with real. Qed. Hint Immediate tech_Rplus: real. @@ -1398,7 +1398,7 @@ Hint Immediate tech_Rplus: real. Lemma Rle_0_sqr : forall r, 0 <= Rsqr r. Proof. - intro; case (Rlt_le_dec r 0); unfold Rsqr in |- *; intro. + intro; case (Rlt_le_dec r 0); unfold Rsqr; intro. replace (r * r) with (- r * - r); auto with real. replace 0 with (- r * 0); auto with real. replace 0 with (0 * r); auto with real. @@ -1407,7 +1407,7 @@ Qed. (***********) Lemma Rlt_0_sqr : forall r, r <> 0 -> 0 < Rsqr r. Proof. - intros; case (Rdichotomy r 0); trivial; unfold Rsqr in |- *; intro. + intros; case (Rdichotomy r 0); trivial; unfold Rsqr; intro. replace (r * r) with (- r * - r); auto with real. replace 0 with (- r * 0); auto with real. replace 0 with (0 * r); auto with real. @@ -1437,7 +1437,7 @@ Qed. Lemma Rlt_0_1 : 0 < 1. Proof. replace 1 with (Rsqr 1); auto with real. - unfold Rsqr in |- *; auto with real. + unfold Rsqr; auto with real. Qed. Hint Resolve Rlt_0_1: real. @@ -1453,7 +1453,7 @@ Qed. Lemma Rinv_0_lt_compat : forall r, 0 < r -> 0 < / r. Proof. - intros; apply Rnot_le_lt; red in |- *; intros. + intros; apply Rnot_le_lt; red; intros. absurd (1 <= 0); auto with real. replace 1 with (r * / r); auto with real. replace 0 with (r * 0); auto with real. @@ -1463,7 +1463,7 @@ Hint Resolve Rinv_0_lt_compat: real. (*********) Lemma Rinv_lt_0_compat : forall r, r < 0 -> / r < 0. Proof. - intros; apply Rnot_le_lt; red in |- *; intros. + intros; apply Rnot_le_lt; red; intros. absurd (1 <= 0); auto with real. replace 1 with (r * / r); auto with real. replace 0 with (r * 0); auto with real. @@ -1477,8 +1477,8 @@ Proof. case (Rmult_neq_0_reg r1 r2); intros; auto with real. replace (r1 * r2 * / r2) with r1. replace (r1 * r2 * / r1) with r2; trivial. - symmetry in |- *; auto with real. - symmetry in |- *; auto with real. + symmetry ; auto with real. + symmetry ; auto with real. Qed. Lemma Rinv_1_lt_contravar : forall r1 r2, 1 <= r1 -> r1 < r2 -> / r2 < / r1. @@ -1495,7 +1495,7 @@ Proof. rewrite (Rmult_comm x); rewrite <- Rmult_assoc; rewrite (Rmult_comm y (/ y)); rewrite Rinv_l; auto with real. apply Rlt_dichotomy_converse; right. - red in |- *; apply Rlt_trans with (r2 := x); auto with real. + red; apply Rlt_trans with (r2 := x); auto with real. Qed. Hint Resolve Rinv_1_lt_contravar: real. @@ -1508,7 +1508,7 @@ Lemma Rle_lt_0_plus_1 : forall r, 0 <= r -> 0 < r + 1. Proof. intros. apply Rlt_le_trans with 1; auto with real. - pattern 1 at 1 in |- *; replace 1 with (0 + 1); auto with real. + pattern 1 at 1; replace 1 with (0 + 1); auto with real. Qed. Hint Resolve Rle_lt_0_plus_1: real. @@ -1516,15 +1516,15 @@ Hint Resolve Rle_lt_0_plus_1: real. Lemma Rlt_plus_1 : forall r, r < r + 1. Proof. intros. - pattern r at 1 in |- *; replace r with (r + 0); auto with real. + pattern r at 1; replace r with (r + 0); auto with real. Qed. Hint Resolve Rlt_plus_1: real. (**********) Lemma tech_Rgt_minus : forall r1 r2, 0 < r2 -> r1 > r1 - r2. Proof. - red in |- *; unfold Rminus in |- *; intros. - pattern r1 at 2 in |- *; replace r1 with (r1 + 0); auto with real. + red; unfold Rminus; intros. + pattern r1 at 2; replace r1 with (r1 + 0); auto with real. Qed. (*********************************************************) @@ -1540,14 +1540,14 @@ Qed. (**********) Lemma S_O_plus_INR : forall n:nat, INR (1 + n) = INR 1 + INR n. Proof. - intro; simpl in |- *; case n; intros; auto with real. + intro; simpl; case n; intros; auto with real. Qed. (**********) Lemma plus_INR : forall n m:nat, INR (n + m) = INR n + INR m. Proof. intros n m; induction n as [| n Hrecn]. - simpl in |- *; auto with real. + simpl; auto with real. replace (S n + m)%nat with (S (n + m)); auto with arith. repeat rewrite S_INR. rewrite Hrecn; ring. @@ -1557,9 +1557,9 @@ Hint Resolve plus_INR: real. (**********) Lemma minus_INR : forall n m:nat, (m <= n)%nat -> INR (n - m) = INR n - INR m. Proof. - intros n m le; pattern m, n in |- *; apply le_elim_rel; auto with real. + intros n m le; pattern m, n; apply le_elim_rel; auto with real. intros; rewrite <- minus_n_O; auto with real. - intros; repeat rewrite S_INR; simpl in |- *. + intros; repeat rewrite S_INR; simpl. rewrite H0; ring. Qed. Hint Resolve minus_INR: real. @@ -1568,8 +1568,8 @@ Hint Resolve minus_INR: real. Lemma mult_INR : forall n m:nat, INR (n * m) = INR n * INR m. Proof. intros n m; induction n as [| n Hrecn]. - simpl in |- *; auto with real. - intros; repeat rewrite S_INR; simpl in |- *. + simpl; auto with real. + intros; repeat rewrite S_INR; simpl. rewrite plus_INR; rewrite Hrecn; ring. Qed. Hint Resolve mult_INR: real. @@ -1597,11 +1597,11 @@ Qed. Hint Resolve lt_1_INR: real. (**********) -Lemma pos_INR_nat_of_P : forall p:positive, 0 < INR (nat_of_P p). +Lemma pos_INR_nat_of_P : forall p:positive, 0 < INR (Pos.to_nat p). Proof. intro; apply lt_0_INR. - simpl in |- *; auto with real. - apply nat_of_P_pos. + simpl; auto with real. + apply Pos2Nat.is_pos. Qed. Hint Resolve pos_INR_nat_of_P: real. @@ -1609,7 +1609,7 @@ Hint Resolve pos_INR_nat_of_P: real. Lemma pos_INR : forall n:nat, 0 <= INR n. Proof. intro n; case n. - simpl in |- *; auto with real. + simpl; auto with real. auto with arith real. Qed. Hint Resolve pos_INR: real. @@ -1617,10 +1617,10 @@ Hint Resolve pos_INR: real. Lemma INR_lt : forall n m:nat, INR n < INR m -> (n < m)%nat. Proof. double induction n m; intros. - simpl in |- *; exfalso; apply (Rlt_irrefl 0); auto. + simpl; exfalso; apply (Rlt_irrefl 0); auto. auto with arith. generalize (pos_INR (S n0)); intro; cut (INR 0 = 0); - [ intro H2; rewrite H2 in H0; idtac | simpl in |- *; trivial ]. + [ intro H2; rewrite H2 in H0; idtac | simpl; trivial ]. generalize (Rle_lt_trans 0 (INR (S n0)) 0 H1 H0); intro; exfalso; apply (Rlt_irrefl 0); auto. do 2 rewrite S_INR in H1; cut (INR n1 < INR n0). @@ -1642,7 +1642,7 @@ Hint Resolve le_INR: real. (**********) Lemma INR_not_0 : forall n:nat, INR n <> 0 -> n <> 0%nat. Proof. - red in |- *; intros n H H1. + red; intros n H H1. apply H. rewrite H1; trivial. Qed. @@ -1654,7 +1654,7 @@ Proof. intro n; case n. intro; absurd (0%nat = 0%nat); trivial. intros; rewrite S_INR. - apply Rgt_not_eq; red in |- *; auto with real. + apply Rgt_not_eq; red; auto with real. Qed. Hint Resolve not_0_INR: real. @@ -1664,7 +1664,7 @@ Proof. case (le_lt_or_eq _ _ H1); intros H2. apply Rlt_dichotomy_converse; auto with real. exfalso; auto. - apply sym_not_eq; apply Rlt_dichotomy_converse; auto with real. + apply not_eq_sym; apply Rlt_dichotomy_converse; auto with real. Qed. Hint Resolve not_INR: real. @@ -1675,7 +1675,7 @@ Proof. cut (n <> m). intro H3; generalize (not_INR n m H3); intro H4; exfalso; auto. omega. - symmetry in |- *; cut (m <> n). + symmetry ; cut (m <> n). intro H3; generalize (not_INR m n H3); intro H4; exfalso; auto. omega. Qed. @@ -1701,16 +1701,16 @@ Hint Resolve not_1_INR: real. (**********) -Lemma IZN : forall n:Z, (0 <= n)%Z -> exists m : nat, n = Z_of_nat m. +Lemma IZN : forall n:Z, (0 <= n)%Z -> exists m : nat, n = Z.of_nat m. Proof. intros z; idtac; apply Z_of_nat_complete; assumption. Qed. (**********) -Lemma INR_IZR_INZ : forall n:nat, INR n = IZR (Z_of_nat n). +Lemma INR_IZR_INZ : forall n:nat, INR n = IZR (Z.of_nat n). Proof. simple induction n; auto with real. - intros; simpl in |- *; rewrite nat_of_P_of_succ_nat; + intros; simpl; rewrite SuccNat2Pos.id_succ; auto with real. Qed. @@ -1718,13 +1718,13 @@ Lemma plus_IZR_NEG_POS : forall p q:positive, IZR (Zpos p + Zneg q) = IZR (Zpos p) + IZR (Zneg q). Proof. intros p q; simpl. rewrite Z.pos_sub_spec. - case Pcompare_spec; intros H; simpl. + case Pos.compare_spec; intros H; simpl. subst. ring. - rewrite Pminus_minus by trivial. - rewrite minus_INR by (now apply lt_le_weak, Plt_lt). + rewrite Pos2Nat.inj_sub by trivial. + rewrite minus_INR by (now apply lt_le_weak, Pos2Nat.inj_lt). ring. - rewrite Pminus_minus by trivial. - rewrite minus_INR by (now apply lt_le_weak, Plt_lt). + rewrite Pos2Nat.inj_sub by trivial. + rewrite minus_INR by (now apply lt_le_weak, Pos2Nat.inj_lt). ring. Qed. @@ -1732,55 +1732,55 @@ Qed. Lemma plus_IZR : forall n m:Z, IZR (n + m) = IZR n + IZR m. Proof. intro z; destruct z; intro t; destruct t; intros; auto with real. - simpl; intros; rewrite Pplus_plus; auto with real. + simpl; intros; rewrite Pos2Nat.inj_add; auto with real. apply plus_IZR_NEG_POS. - rewrite Zplus_comm; rewrite Rplus_comm; apply plus_IZR_NEG_POS. - simpl; intros; rewrite Pplus_plus; rewrite plus_INR; + rewrite Z.add_comm; rewrite Rplus_comm; apply plus_IZR_NEG_POS. + simpl; intros; rewrite Pos2Nat.inj_add; rewrite plus_INR; auto with real. Qed. (**********) Lemma mult_IZR : forall n m:Z, IZR (n * m) = IZR n * IZR m. Proof. - intros z t; case z; case t; simpl in |- *; auto with real. - intros t1 z1; rewrite Pmult_mult; auto with real. - intros t1 z1; rewrite Pmult_mult; auto with real. + intros z t; case z; case t; simpl; auto with real. + intros t1 z1; rewrite Pos2Nat.inj_mul; auto with real. + intros t1 z1; rewrite Pos2Nat.inj_mul; auto with real. rewrite Rmult_comm. rewrite Ropp_mult_distr_l_reverse; auto with real. apply Ropp_eq_compat; rewrite mult_comm; auto with real. - intros t1 z1; rewrite Pmult_mult; auto with real. + intros t1 z1; rewrite Pos2Nat.inj_mul; auto with real. rewrite Ropp_mult_distr_l_reverse; auto with real. - intros t1 z1; rewrite Pmult_mult; auto with real. + intros t1 z1; rewrite Pos2Nat.inj_mul; auto with real. rewrite Rmult_opp_opp; auto with real. Qed. -Lemma pow_IZR : forall z n, pow (IZR z) n = IZR (Zpower z (Z_of_nat n)). +Lemma pow_IZR : forall z n, pow (IZR z) n = IZR (Z.pow z (Z.of_nat n)). Proof. intros z [|n];simpl;trivial. rewrite Zpower_pos_nat. - rewrite nat_of_P_of_succ_nat. unfold Zpower_nat;simpl. + rewrite SuccNat2Pos.id_succ. unfold Zpower_nat;simpl. rewrite mult_IZR. induction n;simpl;trivial. rewrite mult_IZR;ring[IHn]. Qed. (**********) -Lemma succ_IZR : forall n:Z, IZR (Zsucc n) = IZR n + 1. +Lemma succ_IZR : forall n:Z, IZR (Z.succ n) = IZR n + 1. Proof. - intro; change 1 with (IZR 1); unfold Zsucc; apply plus_IZR. + intro; change 1 with (IZR 1); unfold Z.succ; apply plus_IZR. Qed. (**********) Lemma opp_IZR : forall n:Z, IZR (- n) = - IZR n. Proof. - intro z; case z; simpl in |- *; auto with real. + intro z; case z; simpl; auto with real. Qed. Definition Ropp_Ropp_IZR := opp_IZR. Lemma minus_IZR : forall n m:Z, IZR (n - m) = IZR n - IZR m. Proof. - intros; unfold Zminus, Rminus. + intros; unfold Z.sub, Rminus. rewrite <- opp_IZR. apply plus_IZR. Qed. @@ -1788,16 +1788,16 @@ Qed. (**********) Lemma Z_R_minus : forall n m:Z, IZR n - IZR m = IZR (n - m). Proof. - intros z1 z2; unfold Rminus in |- *; unfold Zminus in |- *. - rewrite <- (Ropp_Ropp_IZR z2); symmetry in |- *; apply plus_IZR. + intros z1 z2; unfold Rminus; unfold Z.sub. + rewrite <- (Ropp_Ropp_IZR z2); symmetry ; apply plus_IZR. Qed. (**********) Lemma lt_0_IZR : forall n:Z, 0 < IZR n -> (0 < n)%Z. Proof. - intro z; case z; simpl in |- *; intros. + intro z; case z; simpl; intros. absurd (0 < 0); auto with real. - unfold Zlt in |- *; simpl in |- *; trivial. + unfold Z.lt; simpl; trivial. case Rlt_not_le with (1 := H). replace 0 with (-0); auto with real. Qed. @@ -1805,7 +1805,7 @@ Qed. (**********) Lemma lt_IZR : forall n m:Z, IZR n < IZR m -> (n < m)%Z. Proof. - intros z1 z2 H; apply Zlt_0_minus_lt. + intros z1 z2 H; apply Z.lt_0_sub. apply lt_0_IZR. rewrite <- Z_R_minus. exact (Rgt_minus (IZR z2) (IZR z1) H). @@ -1814,10 +1814,10 @@ Qed. (**********) Lemma eq_IZR_R0 : forall n:Z, IZR n = 0 -> n = 0%Z. Proof. - intro z; destruct z; simpl in |- *; intros; auto with zarith. - case (Rlt_not_eq 0 (INR (nat_of_P p))); auto with real. - case (Rlt_not_eq (- INR (nat_of_P p)) 0); auto with real. - apply Ropp_lt_gt_0_contravar. unfold Rgt in |- *; apply pos_INR_nat_of_P. + intro z; destruct z; simpl; intros; auto with zarith. + case (Rlt_not_eq 0 (INR (Pos.to_nat p))); auto with real. + case (Rlt_not_eq (- INR (Pos.to_nat p)) 0); auto with real. + apply Ropp_lt_gt_0_contravar. unfold Rgt; apply pos_INR_nat_of_P. Qed. (**********) @@ -1831,23 +1831,23 @@ Qed. (**********) Lemma not_0_IZR : forall n:Z, n <> 0%Z -> IZR n <> 0. Proof. - intros z H; red in |- *; intros H0; case H. + intros z H; red; intros H0; case H. apply eq_IZR; auto. Qed. (*********) Lemma le_0_IZR : forall n:Z, 0 <= IZR n -> (0 <= n)%Z. Proof. - unfold Rle in |- *; intros z [H| H]. - red in |- *; intro; apply (Zlt_le_weak 0 z (lt_0_IZR z H)); assumption. + unfold Rle; intros z [H| H]. + red; intro; apply (Z.lt_le_incl 0 z (lt_0_IZR z H)); assumption. rewrite (eq_IZR_R0 z); auto with zarith real. Qed. (**********) Lemma le_IZR : forall n m:Z, IZR n <= IZR m -> (n <= m)%Z. Proof. - unfold Rle in |- *; intros z1 z2 [H| H]. - apply (Zlt_le_weak z1 z2); auto with real. + unfold Rle; intros z1 z2 [H| H]. + apply (Z.lt_le_incl z1 z2); auto with real. apply lt_IZR; trivial. rewrite (eq_IZR z1 z2); auto with zarith real. Qed. @@ -1855,20 +1855,20 @@ Qed. (**********) Lemma le_IZR_R1 : forall n:Z, IZR n <= 1 -> (n <= 1)%Z. Proof. - pattern 1 at 1 in |- *; replace 1 with (IZR 1); intros; auto. + pattern 1 at 1; replace 1 with (IZR 1); intros; auto. apply le_IZR; trivial. Qed. (**********) Lemma IZR_ge : forall n m:Z, (n >= m)%Z -> IZR n >= IZR m. Proof. - intros m n H; apply Rnot_lt_ge; red in |- *; intro. + intros m n H; apply Rnot_lt_ge; red; intro. generalize (lt_IZR m n H0); intro; omega. Qed. Lemma IZR_le : forall n m:Z, (n <= m)%Z -> IZR n <= IZR m. Proof. - intros m n H; apply Rnot_gt_le; red in |- *; intro. + intros m n H; apply Rnot_gt_le; red; intro. unfold Rgt in H0; generalize (lt_IZR n m H0); intro; omega. Qed. @@ -1883,10 +1883,10 @@ Qed. Lemma one_IZR_lt1 : forall n:Z, -1 < IZR n < 1 -> n = 0%Z. Proof. intros z [H1 H2]. - apply Zle_antisym. - apply Zlt_succ_le; apply lt_IZR; trivial. - replace 0%Z with (Zsucc (-1)); trivial. - apply Zlt_le_succ; apply lt_IZR; trivial. + apply Z.le_antisymm. + apply Z.lt_succ_r; apply lt_IZR; trivial. + replace 0%Z with (Z.succ (-1)); trivial. + apply Z.le_succ_l; apply lt_IZR; trivial. Qed. Lemma one_IZR_r_R1 : @@ -1897,10 +1897,10 @@ Proof. apply one_IZR_lt1. rewrite <- Z_R_minus; split. replace (-1) with (r - (r + 1)). - unfold Rminus in |- *; apply Rplus_lt_le_compat; auto with real. + unfold Rminus; apply Rplus_lt_le_compat; auto with real. ring. replace 1 with (r + 1 - r). - unfold Rminus in |- *; apply Rplus_le_lt_compat; auto with real. + unfold Rminus; apply Rplus_le_lt_compat; auto with real. ring. Qed. @@ -1931,6 +1931,20 @@ Proof. apply (Rmult_le_compat_l x 0 y H H0). Qed. +Lemma Rle_Rinv : forall x y:R, 0 < x -> 0 < y -> x <= y -> / y <= / x. +Proof. + intros; apply Rmult_le_reg_l with x. + apply H. + rewrite <- Rinv_r_sym. + apply Rmult_le_reg_l with y. + apply H0. + rewrite Rmult_1_r; rewrite Rmult_comm; rewrite Rmult_assoc; + rewrite <- Rinv_l_sym. + rewrite Rmult_1_r; apply H1. + red; intro; rewrite H2 in H0; elim (Rlt_irrefl _ H0). + red; intro; rewrite H2 in H; elim (Rlt_irrefl _ H). +Qed. + Lemma double : forall r1, 2 * r1 = r1 + r1. Proof. intro; ring. @@ -1938,10 +1952,10 @@ Qed. Lemma double_var : forall r1, r1 = r1 / 2 + r1 / 2. Proof. - intro; rewrite <- double; unfold Rdiv in |- *; rewrite <- Rmult_assoc; - symmetry in |- *; apply Rinv_r_simpl_m. + intro; rewrite <- double; unfold Rdiv; rewrite <- Rmult_assoc; + symmetry ; apply Rinv_r_simpl_m. replace 2 with (INR 2); - [ apply not_0_INR; discriminate | unfold INR in |- *; ring ]. + [ apply not_0_INR; discriminate | unfold INR; ring ]. Qed. (*********************************************************) @@ -1976,22 +1990,22 @@ Proof. rewrite (Rplus_comm y); intro H5; apply Rplus_le_reg_l with x; assumption. ring. replace 2 with (INR 2); [ apply not_0_INR; discriminate | reflexivity ]. - pattern y at 2 in |- *; replace y with (y / 2 + y / 2). - unfold Rminus, Rdiv in |- *. + pattern y at 2; replace y with (y / 2 + y / 2). + unfold Rminus, Rdiv. repeat rewrite Rmult_plus_distr_r. ring. cut (forall z:R, 2 * z = z + z). intro. rewrite <- (H4 (y / 2)). - unfold Rdiv in |- *. + unfold Rdiv. rewrite <- Rmult_assoc; apply Rinv_r_simpl_m. replace 2 with (INR 2). apply not_0_INR. discriminate. - unfold INR in |- *; reflexivity. + unfold INR; reflexivity. intro; ring. cut (0%nat <> 2%nat); - [ intro H0; generalize (lt_0_INR 2 (neq_O_lt 2 H0)); unfold INR in |- *; + [ intro H0; generalize (lt_0_INR 2 (neq_O_lt 2 H0)); unfold INR; intro; assumption | discriminate ]. Qed. diff --git a/theories/Reals/RList.v b/theories/Reals/RList.v index dbd2e52f..6d42434a 100644 --- a/theories/Reals/RList.v +++ b/theories/Reals/RList.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* exists y : R, P x y). - intros; apply H; simpl in |- *; right; assumption. + intros; apply H; simpl; right; assumption. assert (H3 := Hrecl H2); elim H1; intros; elim H3; intros; exists (cons x x0); intros; elim H5; clear H5; intros; split. - simpl in |- *; rewrite H5; reflexivity. + simpl; rewrite H5; reflexivity. intros; elim (zerop i); intro. - rewrite a; simpl in |- *; assumption. + rewrite a; simpl; assumption. assert (H8 : i = S (pred i)). apply S_pred with 0%nat; assumption. - rewrite H8; simpl in |- *; apply H6; simpl in H7; apply lt_S_n; rewrite <- H8; + rewrite H8; simpl; apply H6; simpl in H7; apply lt_S_n; rewrite <- H8; assumption. Qed. @@ -271,7 +271,7 @@ Lemma RList_P0 : Proof. intros; induction l as [| r l Hrecl]; [ left; reflexivity - | simpl in |- *; case (Rle_dec r a); intro; + | simpl; case (Rle_dec r a); intro; [ right; reflexivity | left; reflexivity ] ]. Qed. @@ -279,41 +279,41 @@ Lemma RList_P1 : forall (l:Rlist) (a:R), ordered_Rlist l -> ordered_Rlist (insert l a). Proof. intros; induction l as [| r l Hrecl]. - simpl in |- *; unfold ordered_Rlist in |- *; intros; simpl in H0; + simpl; unfold ordered_Rlist; intros; simpl in H0; elim (lt_n_O _ H0). - simpl in |- *; case (Rle_dec r a); intro. + simpl; case (Rle_dec r a); intro. assert (H1 : ordered_Rlist l). - unfold ordered_Rlist in |- *; unfold ordered_Rlist in H; intros; + unfold ordered_Rlist; unfold ordered_Rlist in H; intros; assert (H1 : (S i < pred (Rlength (cons r l)))%nat); - [ simpl in |- *; replace (Rlength l) with (S (pred (Rlength l))); + [ simpl; replace (Rlength l) with (S (pred (Rlength l))); [ apply lt_n_S; assumption - | symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *; + | symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H1 in H0; simpl in H0; elim (lt_n_O _ H0) ] | apply (H _ H1) ]. - assert (H2 := Hrecl H1); unfold ordered_Rlist in |- *; intros; + assert (H2 := Hrecl H1); unfold ordered_Rlist; intros; induction i as [| i Hreci]. - simpl in |- *; assert (H3 := RList_P0 l a); elim H3; intro. + simpl; assert (H3 := RList_P0 l a); elim H3; intro. rewrite H4; assumption. induction l as [| r1 l Hrecl0]; - [ simpl in |- *; assumption - | rewrite H4; apply (H 0%nat); simpl in |- *; apply lt_O_Sn ]. - simpl in |- *; apply H2; simpl in H0; apply lt_S_n; + [ simpl; assumption + | rewrite H4; apply (H 0%nat); simpl; apply lt_O_Sn ]. + simpl; apply H2; simpl in H0; apply lt_S_n; replace (S (pred (Rlength (insert l a)))) with (Rlength (insert l a)); [ assumption - | apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro; + | apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H3 in H0; elim (lt_n_O _ H0) ]. - unfold ordered_Rlist in |- *; intros; induction i as [| i Hreci]; - [ simpl in |- *; auto with real - | change (pos_Rl (cons r l) i <= pos_Rl (cons r l) (S i)) in |- *; apply H; - simpl in H0; simpl in |- *; apply (lt_S_n _ _ H0) ]. + unfold ordered_Rlist; intros; induction i as [| i Hreci]; + [ simpl; auto with real + | change (pos_Rl (cons r l) i <= pos_Rl (cons r l) (S i)); apply H; + simpl in H0; simpl; apply (lt_S_n _ _ H0) ]. Qed. Lemma RList_P2 : forall l1 l2:Rlist, ordered_Rlist l2 -> ordered_Rlist (cons_ORlist l1 l2). Proof. simple induction l1; - [ intros; simpl in |- *; apply H - | intros; simpl in |- *; apply H; apply RList_P1; assumption ]. + [ intros; simpl; apply H + | intros; simpl; apply H; apply RList_P1; assumption ]. Qed. Lemma RList_P3 : @@ -324,11 +324,11 @@ Proof. [ induction l as [| r l Hrecl] | induction l as [| r l Hrecl] ]. elim H. elim H; intro; - [ exists 0%nat; split; [ apply H0 | simpl in |- *; apply lt_O_Sn ] + [ exists 0%nat; split; [ apply H0 | simpl; apply lt_O_Sn ] | elim (Hrecl H0); intros; elim H1; clear H1; intros; exists (S x0); split; - [ apply H1 | simpl in |- *; apply lt_n_S; assumption ] ]. + [ apply H1 | simpl; apply lt_n_S; assumption ] ]. elim H; intros; elim H0; intros; elim (lt_n_O _ H2). - simpl in |- *; elim H; intros; elim H0; clear H0; intros; + simpl; elim H; intros; elim H0; clear H0; intros; induction x0 as [| x0 Hrecx0]; [ left; apply H0 | right; apply Hrecl; exists x0; split; @@ -338,10 +338,10 @@ Qed. Lemma RList_P4 : forall (l1:Rlist) (a:R), ordered_Rlist (cons a l1) -> ordered_Rlist l1. Proof. - intros; unfold ordered_Rlist in |- *; intros; apply (H (S i)); simpl in |- *; + intros; unfold ordered_Rlist; intros; apply (H (S i)); simpl; replace (Rlength l1) with (S (pred (Rlength l1))); [ apply lt_n_S; assumption - | symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *; + | symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H1 in H0; elim (lt_n_O _ H0) ]. Qed. @@ -350,11 +350,11 @@ Lemma RList_P5 : Proof. intros; induction l as [| r l Hrecl]; [ elim H0 - | simpl in |- *; elim H0; intro; + | simpl; elim H0; intro; [ rewrite H1; right; reflexivity | apply Rle_trans with (pos_Rl l 0); - [ apply (H 0%nat); simpl in |- *; induction l as [| r0 l Hrecl0]; - [ elim H1 | simpl in |- *; apply lt_O_Sn ] + [ apply (H 0%nat); simpl; induction l as [| r0 l Hrecl0]; + [ elim H1 | simpl; apply lt_O_Sn ] | apply Hrecl; [ eapply RList_P4; apply H | assumption ] ] ] ]. Qed. @@ -366,13 +366,13 @@ Lemma RList_P6 : Proof. simple induction l; split; intro. intros; right; reflexivity. - unfold ordered_Rlist in |- *; intros; simpl in H0; elim (lt_n_O _ H0). + unfold ordered_Rlist; intros; simpl in H0; elim (lt_n_O _ H0). intros; induction i as [| i Hreci]; [ induction j as [| j Hrecj]; [ right; reflexivity - | simpl in |- *; apply Rle_trans with (pos_Rl r0 0); - [ apply (H0 0%nat); simpl in |- *; simpl in H2; apply neq_O_lt; - red in |- *; intro; rewrite <- H3 in H2; + | simpl; apply Rle_trans with (pos_Rl r0 0); + [ apply (H0 0%nat); simpl; simpl in H2; apply neq_O_lt; + red; intro; rewrite <- H3 in H2; assert (H4 := lt_S_n _ _ H2); elim (lt_n_O _ H4) | elim H; intros; apply H3; [ apply RList_P4 with r; assumption @@ -380,12 +380,12 @@ Proof. | simpl in H2; apply lt_S_n; assumption ] ] ] | induction j as [| j Hrecj]; [ elim (le_Sn_O _ H1) - | simpl in |- *; elim H; intros; apply H3; + | simpl; elim H; intros; apply H3; [ apply RList_P4 with r; assumption | apply le_S_n; assumption | simpl in H2; apply lt_S_n; assumption ] ] ]. - unfold ordered_Rlist in |- *; intros; apply H0; - [ apply le_n_Sn | simpl in |- *; simpl in H1; apply lt_n_S; assumption ]. + unfold ordered_Rlist; intros; apply H0; + [ apply le_n_Sn | simpl; simpl in H1; apply lt_n_S; assumption ]. Qed. Lemma RList_P7 : @@ -397,11 +397,11 @@ Proof. clear H1; intros; assert (H4 := H1 H0); elim H4; clear H4; intros; elim H4; clear H4; intros; rewrite H4; assert (H6 : Rlength l = S (pred (Rlength l))). - apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro; + apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H6 in H5; elim (lt_n_O _ H5). apply H3; [ rewrite H6 in H5; apply lt_n_Sm_le; assumption - | apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H7 in H5; + | apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H7 in H5; elim (lt_n_O _ H5) ]. Qed. @@ -420,7 +420,7 @@ Proof. [ left; assumption | right; left; assumption | right; right; assumption ] ] - | simpl in |- *; case (Rle_dec r a); intro; + | simpl; case (Rle_dec r a); intro; [ simpl in H0; decompose [or] H0; [ right; elim (H a x); intros; apply H3; left | left @@ -435,14 +435,14 @@ Proof. simple induction l1. intros; split; intro; [ simpl in H; right; assumption - | simpl in |- *; elim H; intro; [ elim H0 | assumption ] ]. + | simpl; elim H; intro; [ elim H0 | assumption ] ]. intros; split. - simpl in |- *; intros; elim (H (insert l2 r) x); intros; assert (H3 := H1 H0); + simpl; intros; elim (H (insert l2 r) x); intros; assert (H3 := H1 H0); elim H3; intro; [ left; right; assumption | elim (RList_P8 l2 r x); intros H5 _; assert (H6 := H5 H4); elim H6; intro; [ left; left; assumption | right; assumption ] ]. - intro; simpl in |- *; elim (H (insert l2 r) x); intros _ H1; apply H1; + intro; simpl; elim (H (insert l2 r) x); intros _ H1; apply H1; elim H0; intro; [ elim H2; intro; [ right; elim (RList_P8 l2 r x); intros _ H4; apply H4; left; assumption @@ -455,8 +455,8 @@ Lemma RList_P10 : Proof. intros; induction l as [| r l Hrecl]; [ reflexivity - | simpl in |- *; case (Rle_dec r a); intro; - [ simpl in |- *; rewrite Hrecl; reflexivity | reflexivity ] ]. + | simpl; case (Rle_dec r a); intro; + [ simpl; rewrite Hrecl; reflexivity | reflexivity ] ]. Qed. Lemma RList_P11 : @@ -465,7 +465,7 @@ Lemma RList_P11 : Proof. simple induction l1; [ intro; reflexivity - | intros; simpl in |- *; rewrite (H (insert l2 r)); rewrite RList_P10; + | intros; simpl; rewrite (H (insert l2 r)); rewrite RList_P10; apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; rewrite S_INR; ring ]. Qed. @@ -477,7 +477,7 @@ Proof. simple induction l; [ intros; elim (lt_n_O _ H) | intros; induction i as [| i Hreci]; - [ reflexivity | simpl in |- *; apply H; apply lt_S_n; apply H0 ] ]. + [ reflexivity | simpl; apply H; apply lt_S_n; apply H0 ] ]. Qed. Lemma RList_P13 : @@ -494,13 +494,13 @@ Proof. change (pos_Rl (mid_Rlist (cons r1 r2) r) (S i) = (pos_Rl (cons r1 r2) i + pos_Rl (cons r1 r2) (S i)) / 2) - in |- *; apply H0; simpl in |- *; apply lt_S_n; assumption. + ; apply H0; simpl; apply lt_S_n; assumption. Qed. Lemma RList_P14 : forall (l:Rlist) (a:R), Rlength (mid_Rlist l a) = Rlength l. Proof. simple induction l; intros; - [ reflexivity | simpl in |- *; rewrite (H r); reflexivity ]. + [ reflexivity | simpl; rewrite (H r); reflexivity ]. Qed. Lemma RList_P15 : @@ -511,7 +511,7 @@ Lemma RList_P15 : Proof. intros; apply Rle_antisym. induction l1 as [| r l1 Hrecl1]; - [ simpl in |- *; simpl in H1; right; symmetry in |- *; assumption + [ simpl; simpl in H1; right; symmetry ; assumption | elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) 0)); intros; assert (H4 : @@ -520,7 +520,7 @@ Proof. | assert (H5 := H3 H4); apply RList_P5; [ apply RList_P2; assumption | assumption ] ] ]. induction l1 as [| r l1 Hrecl1]; - [ simpl in |- *; simpl in H1; right; assumption + [ simpl; simpl in H1; right; assumption | assert (H2 : In (pos_Rl (cons_ORlist (cons r l1) l2) 0) (cons_ORlist (cons r l1) l2)); @@ -528,7 +528,7 @@ Proof. (RList_P3 (cons_ORlist (cons r l1) l2) (pos_Rl (cons_ORlist (cons r l1) l2) 0)); intros; apply H3; exists 0%nat; split; - [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_O_Sn ] + [ reflexivity | rewrite RList_P11; simpl; apply lt_O_Sn ] | elim (RList_P9 (cons r l1) l2 (pos_Rl (cons_ORlist (cons r l1) l2) 0)); intros; assert (H5 := H3 H2); elim H5; intro; [ apply RList_P5; assumption @@ -545,7 +545,7 @@ Lemma RList_P16 : Proof. intros; apply Rle_antisym. induction l1 as [| r l1 Hrecl1]. - simpl in |- *; simpl in H1; right; symmetry in |- *; assumption. + simpl; simpl in H1; right; symmetry ; assumption. assert (H2 : In @@ -557,7 +557,7 @@ Proof. (pos_Rl (cons_ORlist (cons r l1) l2) (pred (Rlength (cons_ORlist (cons r l1) l2))))); intros; apply H3; exists (pred (Rlength (cons_ORlist (cons r l1) l2))); - split; [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_n_Sn ] + split; [ reflexivity | rewrite RList_P11; simpl; apply lt_n_Sn ] | elim (RList_P9 (cons r l1) l2 (pos_Rl (cons_ORlist (cons r l1) l2) @@ -565,7 +565,7 @@ Proof. intros; assert (H5 := H3 H2); elim H5; intro; [ apply RList_P7; assumption | rewrite H1; apply RList_P7; assumption ] ]. induction l1 as [| r l1 Hrecl1]. - simpl in |- *; simpl in H1; right; assumption. + simpl; simpl in H1; right; assumption. elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (pred (Rlength (cons r l1))))); intros; @@ -573,10 +573,10 @@ Proof. (H4 : In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) (cons r l1) \/ In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) l2); - [ left; change (In (pos_Rl (cons r l1) (Rlength l1)) (cons r l1)) in |- *; + [ left; change (In (pos_Rl (cons r l1) (Rlength l1)) (cons r l1)); elim (RList_P3 (cons r l1) (pos_Rl (cons r l1) (Rlength l1))); intros; apply H5; exists (Rlength l1); split; - [ reflexivity | simpl in |- *; apply lt_n_Sn ] + [ reflexivity | simpl; apply lt_n_Sn ] | assert (H5 := H3 H4); apply RList_P7; [ apply RList_P2; assumption | elim @@ -587,7 +587,7 @@ Proof. (RList_P3 (cons r l1) (pos_Rl (cons r l1) (pred (Rlength (cons r l1))))); intros; apply H9; exists (pred (Rlength (cons r l1))); - split; [ reflexivity | simpl in |- *; apply lt_n_Sn ] ] ]. + split; [ reflexivity | simpl; apply lt_n_Sn ] ] ]. Qed. Lemma RList_P17 : @@ -599,14 +599,14 @@ Proof. simple induction l1. intros; elim H0. intros; induction i as [| i Hreci]. - simpl in |- *; elim H1; intro; + simpl; elim H1; intro; [ simpl in H2; rewrite H4 in H2; elim (Rlt_irrefl _ H2) | apply RList_P5; [ apply RList_P4 with r; assumption | assumption ] ]. - simpl in |- *; simpl in H2; elim H1; intro. + simpl; simpl in H2; elim H1; intro. rewrite H4 in H2; assert (H5 : r <= pos_Rl r0 i); [ apply Rle_trans with (pos_Rl r0 0); - [ apply (H0 0%nat); simpl in |- *; simpl in H3; apply neq_O_lt; - red in |- *; intro; rewrite <- H5 in H3; elim (lt_n_O _ H3) + [ apply (H0 0%nat); simpl; simpl in H3; apply neq_O_lt; + red; intro; rewrite <- H5 in H3; elim (lt_n_O _ H3) | elim (RList_P6 r0); intros; apply H5; [ apply RList_P4 with r; assumption | apply le_O_n @@ -618,7 +618,7 @@ Proof. | simpl in H3; apply lt_S_n; replace (S (pred (Rlength r0))) with (Rlength r0); [ apply H3 - | apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro; + | apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H5 in H3; elim (lt_n_O _ H3) ] ]. Qed. @@ -626,7 +626,7 @@ Lemma RList_P18 : forall (l:Rlist) (f:R -> R), Rlength (app_Rlist l f) = Rlength l. Proof. simple induction l; intros; - [ reflexivity | simpl in |- *; rewrite H; reflexivity ]. + [ reflexivity | simpl; rewrite H; reflexivity ]. Qed. Lemma RList_P19 : @@ -666,7 +666,7 @@ Lemma RList_P23 : Rlength (cons_Rlist l1 l2) = (Rlength l1 + Rlength l2)%nat. Proof. simple induction l1; - [ intro; reflexivity | intros; simpl in |- *; rewrite H; reflexivity ]. + [ intro; reflexivity | intros; simpl; rewrite H; reflexivity ]. Qed. Lemma RList_P24 : @@ -685,9 +685,9 @@ Proof. [ replace (Rlength r0 + Rlength (cons r1 l2))%nat with (S (Rlength r0 + Rlength l2)); [ reflexivity - | simpl in |- *; apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; + | simpl; apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; rewrite S_INR; ring ] - | simpl in |- *; apply INR_eq; do 3 rewrite S_INR; do 2 rewrite plus_INR; + | simpl; apply INR_eq; do 3 rewrite S_INR; do 2 rewrite plus_INR; rewrite S_INR; ring ]. Qed. @@ -699,27 +699,27 @@ Lemma RList_P25 : ordered_Rlist (cons_Rlist l1 l2). Proof. simple induction l1. - intros; simpl in |- *; assumption. + intros; simpl; assumption. simple induction r0. - intros; simpl in |- *; simpl in H2; unfold ordered_Rlist in |- *; intros; + intros; simpl; simpl in H2; unfold ordered_Rlist; intros; simpl in H3. induction i as [| i Hreci]. - simpl in |- *; assumption. - change (pos_Rl l2 i <= pos_Rl l2 (S i)) in |- *; apply (H1 i); apply lt_S_n; + simpl; assumption. + change (pos_Rl l2 i <= pos_Rl l2 (S i)); apply (H1 i); apply lt_S_n; replace (S (pred (Rlength l2))) with (Rlength l2); [ assumption - | apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro; + | apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H4 in H3; elim (lt_n_O _ H3) ]. intros; clear H; assert (H : ordered_Rlist (cons_Rlist (cons r1 r2) l2)). apply H0; try assumption. apply RList_P4 with r; assumption. - unfold ordered_Rlist in |- *; intros; simpl in H4; + unfold ordered_Rlist; intros; simpl in H4; induction i as [| i Hreci]. - simpl in |- *; apply (H1 0%nat); simpl in |- *; apply lt_O_Sn. + simpl; apply (H1 0%nat); simpl; apply lt_O_Sn. change (pos_Rl (cons_Rlist (cons r1 r2) l2) i <= - pos_Rl (cons_Rlist (cons r1 r2) l2) (S i)) in |- *; - apply (H i); simpl in |- *; apply lt_S_n; assumption. + pos_Rl (cons_Rlist (cons r1 r2) l2) (S i)); + apply (H i); simpl; apply lt_S_n; assumption. Qed. Lemma RList_P26 : @@ -738,13 +738,13 @@ Lemma RList_P27 : cons_Rlist l1 (cons_Rlist l2 l3) = cons_Rlist (cons_Rlist l1 l2) l3. Proof. simple induction l1; intros; - [ reflexivity | simpl in |- *; rewrite (H l2 l3); reflexivity ]. + [ reflexivity | simpl; rewrite (H l2 l3); reflexivity ]. Qed. Lemma RList_P28 : forall l:Rlist, cons_Rlist l nil = l. Proof. simple induction l; - [ reflexivity | intros; simpl in |- *; rewrite H; reflexivity ]. + [ reflexivity | intros; simpl; rewrite H; reflexivity ]. Qed. Lemma RList_P29 : @@ -759,23 +759,23 @@ Proof. replace (cons_Rlist l1 (cons r r0)) with (cons_Rlist (cons_Rlist l1 (cons r nil)) r0). inversion H0. - rewrite <- minus_n_n; simpl in |- *; rewrite RList_P26. + rewrite <- minus_n_n; simpl; rewrite RList_P26. clear l2 r0 H i H0 H1 H2; induction l1 as [| r0 l1 Hrecl1]. reflexivity. - simpl in |- *; assumption. - rewrite RList_P23; rewrite plus_comm; simpl in |- *; apply lt_n_Sn. + simpl; assumption. + rewrite RList_P23; rewrite plus_comm; simpl; apply lt_n_Sn. replace (S m - Rlength l1)%nat with (S (S m - S (Rlength l1))). - rewrite H3; simpl in |- *; + rewrite H3; simpl; replace (S (Rlength l1)) with (Rlength (cons_Rlist l1 (cons r nil))). apply (H (cons_Rlist l1 (cons r nil)) i). - rewrite RList_P23; rewrite plus_comm; simpl in |- *; rewrite <- H3; + rewrite RList_P23; rewrite plus_comm; simpl; rewrite <- H3; apply le_n_S; assumption. - repeat rewrite RList_P23; simpl in |- *; rewrite RList_P23 in H1; + repeat rewrite RList_P23; simpl; rewrite RList_P23 in H1; rewrite plus_comm in H1; simpl in H1; rewrite (plus_comm (Rlength l1)); - simpl in |- *; rewrite plus_comm; apply H1. + simpl; rewrite plus_comm; apply H1. rewrite RList_P23; rewrite plus_comm; reflexivity. - change (S (m - Rlength l1) = (S m - Rlength l1)%nat) in |- *; + change (S (m - Rlength l1) = (S m - Rlength l1)%nat); apply minus_Sn_m; assumption. replace (cons r r0) with (cons_Rlist (cons r nil) r0); - [ symmetry in |- *; apply RList_P27 | reflexivity ]. + [ symmetry ; apply RList_P27 | reflexivity ]. Qed. diff --git a/theories/Reals/ROrderedType.v b/theories/Reals/ROrderedType.v index 0a8d89c7..726f1204 100644 --- a/theories/Reals/ROrderedType.v +++ b/theories/Reals/ROrderedType.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* = 0 /\ frac_part r < 1. Proof. - intro; unfold frac_part in |- *; unfold Int_part in |- *; split. + intro; unfold frac_part; unfold Int_part; split. (*sup a O*) cut (r - IZR (up r) >= -1). - rewrite <- Z_R_minus; simpl in |- *; intro; unfold Rminus in |- *; + rewrite <- Z_R_minus; simpl; intro; unfold Rminus; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; - fold (r - IZR (up r)) in |- *; fold (r - IZR (up r) - -1) in |- *; + fold (r - IZR (up r)); fold (r - IZR (up r) - -1); apply Rge_minus; auto with zarith real. rewrite <- Ropp_minus_distr; apply Ropp_le_ge_contravar; elim (for_base_fp r); auto with zarith real. (*inf a 1*) cut (r - IZR (up r) < 0). - rewrite <- Z_R_minus; simpl in |- *; intro; unfold Rminus in |- *; + rewrite <- Z_R_minus; simpl; intro; unfold Rminus; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; - fold (r - IZR (up r)) in |- *; rewrite Ropp_involutive; - elim (Rplus_ne 1); intros a b; pattern 1 at 2 in |- *; + fold (r - IZR (up r)); rewrite Ropp_involutive; + elim (Rplus_ne 1); intros a b; pattern 1 at 2; rewrite <- a; clear a b; rewrite (Rplus_comm (r - IZR (up r)) 1); apply Rplus_lt_compat_l; auto with zarith real. elim (for_base_fp r); intros; rewrite <- Ropp_0; rewrite <- Ropp_minus_distr; @@ -110,8 +110,8 @@ Qed. Lemma base_Int_part : forall r:R, IZR (Int_part r) <= r /\ IZR (Int_part r) - r > -1. Proof. - intro; unfold Int_part in |- *; elim (archimed r); intros. - split; rewrite <- (Z_R_minus (up r) 1); simpl in |- *. + intro; unfold Int_part; elim (archimed r); intros. + split; rewrite <- (Z_R_minus (up r) 1); simpl. generalize (Rle_minus (IZR (up r) - r) 1 H0); intro; unfold Rminus in H1; rewrite (Rplus_assoc (IZR (up r)) (- r) (-1)) in H1; rewrite (Rplus_comm (- r) (-1)) in H1; @@ -130,31 +130,31 @@ Proof. Qed. (**********) -Lemma Int_part_INR : forall n:nat, Int_part (INR n) = Z_of_nat n. +Lemma Int_part_INR : forall n:nat, Int_part (INR n) = Z.of_nat n. Proof. - intros n; unfold Int_part in |- *. - cut (up (INR n) = (Z_of_nat n + Z_of_nat 1)%Z). - intros H'; rewrite H'; simpl in |- *; ring. - apply sym_equal; apply tech_up; auto. - replace (Z_of_nat n + Z_of_nat 1)%Z with (Z_of_nat (S n)). + intros n; unfold Int_part. + cut (up (INR n) = (Z.of_nat n + Z.of_nat 1)%Z). + intros H'; rewrite H'; simpl; ring. + symmetry; apply tech_up; auto. + replace (Z.of_nat n + Z.of_nat 1)%Z with (Z.of_nat (S n)). repeat rewrite <- INR_IZR_INZ. apply lt_INR; auto. - rewrite Zplus_comm; rewrite <- Znat.inj_plus; simpl in |- *; auto. - rewrite plus_IZR; simpl in |- *; auto with real. + rewrite Z.add_comm; rewrite <- Znat.Nat2Z.inj_add; simpl; auto. + rewrite plus_IZR; simpl; auto with real. repeat rewrite <- INR_IZR_INZ; auto with real. Qed. (**********) Lemma fp_nat : forall r:R, frac_part r = 0 -> exists c : Z, r = IZR c. Proof. - unfold frac_part in |- *; intros; split with (Int_part r); + unfold frac_part; intros; split with (Int_part r); apply Rminus_diag_uniq; auto with zarith real. Qed. (**********) Lemma R0_fp_O : forall r:R, 0 <> frac_part r -> 0 <> r. Proof. - red in |- *; intros; rewrite <- H0 in H; generalize fp_R0; intro; + red; intros; rewrite <- H0 in H; generalize fp_R0; intro; auto with zarith real. Qed. @@ -243,7 +243,7 @@ Proof. intro; rewrite H1 in H; clear H1; rewrite <- (plus_IZR (Int_part r1 - Int_part r2) 1) in H; generalize (up_tech (r1 - r2) (Int_part r1 - Int_part r2) H0 H); - intros; clear H H0; unfold Int_part at 1 in |- *; + intros; clear H H0; unfold Int_part at 1; omega. Qed. @@ -336,7 +336,7 @@ Proof. generalize (Rlt_le (IZR (Int_part r1 - Int_part r2 - 1)) (r1 - r2) H); intro; clear H; generalize (up_tech (r1 - r2) (Int_part r1 - Int_part r2 - 1) H1 H0); - intros; clear H0 H1; unfold Int_part at 1 in |- *; + intros; clear H0 H1; unfold Int_part at 1; omega. Qed. @@ -346,9 +346,9 @@ Lemma Rminus_fp1 : frac_part r1 >= frac_part r2 -> frac_part (r1 - r2) = frac_part r1 - frac_part r2. Proof. - intros; unfold frac_part in |- *; generalize (Rminus_Int_part1 r1 r2 H); + intros; unfold frac_part; generalize (Rminus_Int_part1 r1 r2 H); intro; rewrite H0; rewrite <- (Z_R_minus (Int_part r1) (Int_part r2)); - unfold Rminus in |- *; + unfold Rminus; rewrite (Ropp_plus_distr (IZR (Int_part r1)) (- IZR (Int_part r2))); rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2))); rewrite (Ropp_involutive (IZR (Int_part r2))); @@ -366,17 +366,17 @@ Lemma Rminus_fp2 : frac_part r1 < frac_part r2 -> frac_part (r1 - r2) = frac_part r1 - frac_part r2 + 1. Proof. - intros; unfold frac_part in |- *; generalize (Rminus_Int_part2 r1 r2 H); + intros; unfold frac_part; generalize (Rminus_Int_part2 r1 r2 H); intro; rewrite H0; rewrite <- (Z_R_minus (Int_part r1 - Int_part r2) 1); rewrite <- (Z_R_minus (Int_part r1) (Int_part r2)); - unfold Rminus in |- *; + unfold Rminus; rewrite (Ropp_plus_distr (IZR (Int_part r1) + - IZR (Int_part r2)) (- IZR 1)) ; rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2))); rewrite (Ropp_involutive (IZR 1)); rewrite (Ropp_involutive (IZR (Int_part r2))); rewrite (Ropp_plus_distr (IZR (Int_part r1))); - rewrite (Ropp_involutive (IZR (Int_part r2))); simpl in |- *; + rewrite (Ropp_involutive (IZR (Int_part r2))); simpl; rewrite <- (Rplus_assoc (r1 + - r2) (- IZR (Int_part r1) + IZR (Int_part r2)) 1) ; rewrite (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2))); @@ -451,7 +451,7 @@ Proof. rewrite <- (plus_IZR (Int_part r1 + Int_part r2) 1) in H0; rewrite <- (plus_IZR (Int_part r1 + Int_part r2 + 1) 1) in H0; generalize (up_tech (r1 + r2) (Int_part r1 + Int_part r2 + 1) H H0); - intro; clear H H0; unfold Int_part at 1 in |- *; omega. + intro; clear H H0; unfold Int_part at 1; omega. Qed. (**********) @@ -514,7 +514,7 @@ Proof. rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H1; rewrite <- (plus_IZR (Int_part r1 + Int_part r2) 1) in H1; generalize (up_tech (r1 + r2) (Int_part r1 + Int_part r2) H0 H1); - intro; clear H0 H1; unfold Int_part at 1 in |- *; + intro; clear H0 H1; unfold Int_part at 1; omega. Qed. @@ -524,17 +524,17 @@ Lemma plus_frac_part1 : frac_part r1 + frac_part r2 >= 1 -> frac_part (r1 + r2) = frac_part r1 + frac_part r2 - 1. Proof. - intros; unfold frac_part in |- *; generalize (plus_Int_part1 r1 r2 H); intro; + intros; unfold frac_part; generalize (plus_Int_part1 r1 r2 H); intro; rewrite H0; rewrite (plus_IZR (Int_part r1 + Int_part r2) 1); - rewrite (plus_IZR (Int_part r1) (Int_part r2)); simpl in |- *; - unfold Rminus at 3 4 in |- *; + rewrite (plus_IZR (Int_part r1) (Int_part r2)); simpl; + unfold Rminus at 3 4; rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2))); rewrite (Rplus_comm r2 (- IZR (Int_part r2))); rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2); rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2); rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2))); rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2))); - unfold Rminus in |- *; + unfold Rminus; rewrite (Rplus_assoc (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))) (-1)) ; rewrite <- (Ropp_plus_distr (IZR (Int_part r1) + IZR (Int_part r2)) 1); @@ -547,14 +547,14 @@ Lemma plus_frac_part2 : frac_part r1 + frac_part r2 < 1 -> frac_part (r1 + r2) = frac_part r1 + frac_part r2. Proof. - intros; unfold frac_part in |- *; generalize (plus_Int_part2 r1 r2 H); intro; + intros; unfold frac_part; generalize (plus_Int_part2 r1 r2 H); intro; rewrite H0; rewrite (plus_IZR (Int_part r1) (Int_part r2)); - unfold Rminus at 2 3 in |- *; + unfold Rminus at 2 3; rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2))); rewrite (Rplus_comm r2 (- IZR (Int_part r2))); rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2); rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2); rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2))); rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2))); - unfold Rminus in |- *; trivial with zarith real. + unfold Rminus; trivial with zarith real. Qed. diff --git a/theories/Reals/R_sqr.v b/theories/Reals/R_sqr.v index f23b9f17..d6e18d9d 100644 --- a/theories/Reals/R_sqr.v +++ b/theories/Reals/R_sqr.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x <> 0. Proof. - intros; red in |- *; intro; rewrite H0 in H; rewrite Rsqr_0 in H; + intros; red; intro; rewrite H0 in H; rewrite Rsqr_0 in H; elim (Rlt_irrefl 0 H). Qed. Lemma Rsqr_pos_lt : forall x:R, x <> 0 -> 0 < Rsqr x. Proof. intros; case (Rtotal_order 0 x); intro; - [ unfold Rsqr in |- *; apply Rmult_lt_0_compat; assumption + [ unfold Rsqr; apply Rmult_lt_0_compat; assumption | elim H0; intro; - [ elim H; symmetry in |- *; exact H1 + [ elim H; symmetry ; exact H1 | rewrite Rsqr_neg; generalize (Ropp_lt_gt_contravar x 0 H1); - rewrite Ropp_0; intro; unfold Rsqr in |- *; + rewrite Ropp_0; intro; unfold Rsqr; apply Rmult_lt_0_compat; assumption ] ]. Qed. Lemma Rsqr_div : forall x y:R, y <> 0 -> Rsqr (x / y) = Rsqr x / Rsqr y. Proof. - intros; unfold Rsqr in |- *. - unfold Rdiv in |- *. + intros; unfold Rsqr. + unfold Rdiv. rewrite Rinv_mult_distr. repeat rewrite Rmult_assoc. apply Rmult_eq_compat_l. @@ -80,7 +80,7 @@ Qed. Lemma Rsqr_eq_0 : forall x:R, Rsqr x = 0 -> x = 0. Proof. - unfold Rsqr in |- *; intros; generalize (Rmult_integral x x H); intro; + unfold Rsqr; intros; generalize (Rmult_integral x x H); intro; elim H0; intro; assumption. Qed. @@ -122,7 +122,7 @@ Qed. Lemma Rsqr_incr_1 : forall x y:R, x <= y -> 0 <= x -> 0 <= y -> Rsqr x <= Rsqr y. Proof. - intros; unfold Rsqr in |- *; apply Rmult_le_compat; assumption. + intros; unfold Rsqr; apply Rmult_le_compat; assumption. Qed. Lemma Rsqr_incrst_0 : @@ -140,7 +140,7 @@ Qed. Lemma Rsqr_incrst_1 : forall x y:R, x < y -> 0 <= x -> 0 <= y -> Rsqr x < Rsqr y. Proof. - intros; unfold Rsqr in |- *; apply Rmult_le_0_lt_compat; assumption. + intros; unfold Rsqr; apply Rmult_le_0_lt_compat; assumption. Qed. Lemma Rsqr_neg_pos_le_0 : @@ -183,7 +183,7 @@ Qed. Lemma Rsqr_abs : forall x:R, Rsqr x = Rsqr (Rabs x). Proof. - intro; unfold Rabs in |- *; case (Rcase_abs x); intro; + intro; unfold Rabs; case (Rcase_abs x); intro; [ apply Rsqr_neg | reflexivity ]. Qed. @@ -220,7 +220,7 @@ Qed. Lemma Rsqr_eq_abs_0 : forall x y:R, Rsqr x = Rsqr y -> Rabs x = Rabs y. Proof. - intros; unfold Rabs in |- *; case (Rcase_abs x); case (Rcase_abs y); intros. + intros; unfold Rabs; case (Rcase_abs x); case (Rcase_abs y); intros. rewrite (Rsqr_neg x) in H; rewrite (Rsqr_neg y) in H; generalize (Ropp_lt_gt_contravar y 0 r); generalize (Ropp_lt_gt_contravar x 0 r0); rewrite Ropp_0; @@ -288,7 +288,7 @@ Qed. Lemma Rsqr_inv : forall x:R, x <> 0 -> Rsqr (/ x) = / Rsqr x. Proof. - intros; unfold Rsqr in |- *. + intros; unfold Rsqr. rewrite Rinv_mult_distr; try reflexivity || assumption. Qed. @@ -302,7 +302,7 @@ Proof. repeat rewrite Rmult_plus_distr_l. repeat rewrite Rplus_assoc. apply Rplus_eq_compat_l. - unfold Rdiv, Rminus in |- *. + unfold Rdiv, Rminus. replace (2 * 1 + 2 * 1) with 4; [ idtac | ring ]. rewrite (Rmult_plus_distr_r (4 * a * c) (- Rsqr b) (/ (4 * a))). rewrite Rsqr_mult. @@ -332,7 +332,7 @@ Proof. rewrite (Rmult_comm x). apply Rplus_eq_compat_l. rewrite (Rmult_comm (/ a)). - unfold Rsqr in |- *; repeat rewrite Rmult_assoc. + unfold Rsqr; repeat rewrite Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_r. ring. @@ -357,7 +357,7 @@ Proof. rewrite Rplus_opp_l; replace (- (y * y) + x * x) with ((x - y) * (x + y)). intro; generalize (Rmult_integral (x - y) (x + y) H0); intro; elim H1; intros. left; apply Rminus_diag_uniq; assumption. - right; apply Rminus_diag_uniq; unfold Rminus in |- *; rewrite Ropp_involutive; + right; apply Rminus_diag_uniq; unfold Rminus; rewrite Ropp_involutive; assumption. ring. Qed. diff --git a/theories/Reals/R_sqrt.v b/theories/Reals/R_sqrt.v index 2c5ede23..2d9419bd 100644 --- a/theories/Reals/R_sqrt.v +++ b/theories/Reals/R_sqrt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* sqrt x * sqrt x = x. Proof. intros. - unfold sqrt in |- *. + unfold sqrt. case (Rcase_abs x); intro. elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ r H)). rewrite Rsqrt_Rsqrt; reflexivity. @@ -44,7 +44,7 @@ Qed. Lemma sqrt_0 : sqrt 0 = 0. Proof. - apply Rsqr_eq_0; unfold Rsqr in |- *; apply sqrt_sqrt; right; reflexivity. + apply Rsqr_eq_0; unfold Rsqr; apply sqrt_sqrt; right; reflexivity. Qed. Lemma sqrt_1 : sqrt 1 = 1. @@ -52,7 +52,7 @@ Proof. apply (Rsqr_inj (sqrt 1) 1); [ apply sqrt_positivity; left | left - | unfold Rsqr in |- *; rewrite sqrt_sqrt; [ ring | left ] ]; + | unfold Rsqr; rewrite sqrt_sqrt; [ ring | left ] ]; apply Rlt_0_1. Qed. @@ -73,7 +73,7 @@ Proof. intros; apply Rsqr_inj; [ apply (sqrt_positivity x H) | assumption - | unfold Rsqr in |- *; rewrite H1; apply (sqrt_sqrt x H) ]. + | unfold Rsqr; rewrite H1; apply (sqrt_sqrt x H) ]. Qed. Lemma sqrt_def : forall x:R, 0 <= x -> sqrt x * sqrt x = x. @@ -86,12 +86,12 @@ Proof. intros; apply (Rsqr_inj (sqrt (Rsqr x)) x (sqrt_positivity (Rsqr x) (Rle_0_sqr x)) H); - unfold Rsqr in |- *; apply (sqrt_sqrt (Rsqr x) (Rle_0_sqr x)). + unfold Rsqr; apply (sqrt_sqrt (Rsqr x) (Rle_0_sqr x)). Qed. Lemma sqrt_Rsqr : forall x:R, 0 <= x -> sqrt (Rsqr x) = x. Proof. - intros; unfold Rsqr in |- *; apply sqrt_square; assumption. + intros; unfold Rsqr; apply sqrt_square; assumption. Qed. Lemma sqrt_Rsqr_abs : forall x:R, sqrt (Rsqr x) = Rabs x. @@ -101,7 +101,7 @@ Qed. Lemma Rsqr_sqrt : forall x:R, 0 <= x -> Rsqr (sqrt x) = x. Proof. - intros x H1; unfold Rsqr in |- *; apply (sqrt_sqrt x H1). + intros x H1; unfold Rsqr; apply (sqrt_sqrt x H1). Qed. Lemma sqrt_mult_alt : @@ -300,7 +300,7 @@ Proof. intros x H1 H2; generalize (sqrt_lt_1 x 1 (Rlt_le 0 x H1) (Rlt_le 0 1 Rlt_0_1) H2); intro H3; rewrite sqrt_1 in H3; generalize (Rmult_ne (sqrt x)); - intro H4; elim H4; intros H5 H6; rewrite <- H5; pattern x at 1 in |- *; + intro H4; elim H4; intros H5 H6; rewrite <- H5; pattern x at 1; rewrite <- (sqrt_def x (Rlt_le 0 x H1)); apply (Rmult_lt_compat_l (sqrt x) (sqrt x) 1 (sqrt_lt_R0 x H1) H3). Qed. @@ -310,7 +310,7 @@ Lemma sqrt_cauchy : a * c + b * d <= sqrt (Rsqr a + Rsqr b) * sqrt (Rsqr c + Rsqr d). Proof. intros a b c d; apply Rsqr_incr_0_var; - [ rewrite Rsqr_mult; repeat rewrite Rsqr_sqrt; unfold Rsqr in |- *; + [ rewrite Rsqr_mult; repeat rewrite Rsqr_sqrt; unfold Rsqr; [ replace ((a * c + b * d) * (a * c + b * d)) with (a * a * c * c + b * b * d * d + 2 * a * b * c * d); [ replace ((a * a + b * b) * (c * c + d * d)) with @@ -319,11 +319,11 @@ Proof. replace (a * a * d * d + b * b * c * c) with (2 * a * b * c * d + (a * a * d * d + b * b * c * c - 2 * a * b * c * d)); - [ pattern (2 * a * b * c * d) at 1 in |- *; rewrite <- Rplus_0_r; + [ pattern (2 * a * b * c * d) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; replace (a * a * d * d + b * b * c * c - 2 * a * b * c * d) with (Rsqr (a * d - b * c)); - [ apply Rle_0_sqr | unfold Rsqr in |- *; ring ] + [ apply Rle_0_sqr | unfold Rsqr; ring ] | ring ] | ring ] | ring ] @@ -355,16 +355,16 @@ Lemma Rsqr_sol_eq_0_1 : x = sol_x1 a b c \/ x = sol_x2 a b c -> a * Rsqr x + b * x + c = 0. Proof. intros; elim H0; intro. - unfold sol_x1 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv in |- *; + unfold sol_x1 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv; repeat rewrite Rsqr_mult; rewrite Rsqr_plus; rewrite <- Rsqr_neg; rewrite Rsqr_sqrt. rewrite Rsqr_inv. - unfold Rsqr in |- *; repeat rewrite Rinv_mult_distr. + unfold Rsqr; repeat rewrite Rinv_mult_distr. repeat rewrite Rmult_assoc; rewrite (Rmult_comm a). repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; rewrite Rmult_plus_distr_r. repeat rewrite Rmult_assoc. - pattern 2 at 2 in |- *; rewrite (Rmult_comm 2). + pattern 2 at 2; rewrite (Rmult_comm 2). repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r. rewrite @@ -376,7 +376,7 @@ Proof. (b * (- b * (/ 2 * / a)) + (b * (sqrt (b * b - 2 * (2 * (a * c))) * (/ 2 * / a)) + c))) with (b * (- b * (/ 2 * / a)) + c). - unfold Rminus in |- *; repeat rewrite <- Rplus_assoc. + unfold Rminus; repeat rewrite <- Rplus_assoc. replace (b * b + b * b) with (2 * (b * b)). rewrite Rmult_plus_distr_r; repeat rewrite Rmult_assoc. rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc. @@ -407,17 +407,17 @@ Proof. apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ]. apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ]. assumption. - unfold sol_x2 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv in |- *; + unfold sol_x2 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv; repeat rewrite Rsqr_mult; rewrite Rsqr_minus; rewrite <- Rsqr_neg; rewrite Rsqr_sqrt. rewrite Rsqr_inv. - unfold Rsqr in |- *; repeat rewrite Rinv_mult_distr; + unfold Rsqr; repeat rewrite Rinv_mult_distr; repeat rewrite Rmult_assoc. rewrite (Rmult_comm a); repeat rewrite Rmult_assoc. rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; unfold Rminus in |- *; rewrite Rmult_plus_distr_r. + rewrite Rmult_1_r; unfold Rminus; rewrite Rmult_plus_distr_r. rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc; - pattern 2 at 2 in |- *; rewrite (Rmult_comm 2). + pattern 2 at 2; rewrite (Rmult_comm 2). repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; rewrite @@ -480,23 +480,23 @@ Proof. intro; generalize (Rsqr_eq (x + b / (2 * a)) (sqrt (Delta a b c) / (2 * a)) H3); intro; elim H4; intro. - left; unfold sol_x1 in |- *; + left; unfold sol_x1; generalize (Rplus_eq_compat_l (- (b / (2 * a))) (x + b / (2 * a)) (sqrt (Delta a b c) / (2 * a)) H5); replace (- (b / (2 * a)) + (x + b / (2 * a))) with x. - intro; rewrite H6; unfold Rdiv in |- *; ring. + intro; rewrite H6; unfold Rdiv; ring. ring. - right; unfold sol_x2 in |- *; + right; unfold sol_x2; generalize (Rplus_eq_compat_l (- (b / (2 * a))) (x + b / (2 * a)) (- (sqrt (Delta a b c) / (2 * a))) H5); replace (- (b / (2 * a)) + (x + b / (2 * a))) with x. - intro; rewrite H6; unfold Rdiv in |- *; ring. + intro; rewrite H6; unfold Rdiv; ring. ring. rewrite Rsqr_div. rewrite Rsqr_sqrt. - unfold Rdiv in |- *. + unfold Rdiv. repeat rewrite Rmult_assoc. rewrite (Rmult_comm (/ a)). rewrite Rmult_assoc. @@ -510,9 +510,9 @@ Proof. assumption. apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ]. rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. - symmetry in |- *; apply Rmult_1_l. + symmetry ; apply Rmult_1_l. apply (cond_nonzero a). - unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse. + unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse. rewrite Ropp_minus_distr. reflexivity. reflexivity. diff --git a/theories/Reals/Ranalysis.v b/theories/Reals/Ranalysis.v index 01715cf3..ad86a197 100644 --- a/theories/Reals/Ranalysis.v +++ b/theories/Reals/Ranalysis.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* - match goal with - | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 - | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 - | _ => idtac - end - | (?X1 - ?X2)%F => - match goal with - | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 - | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 - | _ => idtac - end - | (?X1 * ?X2)%F => - match goal with - | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 - | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 - | _ => idtac - end - | (?X1 / ?X2)%F => - let aux := constr:X2 in - match goal with - | _:(forall x0:R, aux x0 <> 0) |- (derivable _) => - intro_hyp_glob X1; intro_hyp_glob X2 - | _:(forall x0:R, aux x0 <> 0) |- (continuity _) => - intro_hyp_glob X1; intro_hyp_glob X2 - | |- (derivable _) => - cut (forall x0:R, aux x0 <> 0); - [ intro; intro_hyp_glob X1; intro_hyp_glob X2 | try assumption ] - | |- (continuity _) => - cut (forall x0:R, aux x0 <> 0); - [ intro; intro_hyp_glob X1; intro_hyp_glob X2 | try assumption ] - | _ => idtac - end - | (comp ?X1 ?X2) => - match goal with - | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 - | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 - | _ => idtac - end - | (- ?X1)%F => - match goal with - | |- (derivable _) => intro_hyp_glob X1 - | |- (continuity _) => intro_hyp_glob X1 - | _ => idtac - end - | (/ ?X1)%F => - let aux := constr:X1 in - match goal with - | _:(forall x0:R, aux x0 <> 0) |- (derivable _) => - intro_hyp_glob X1 - | _:(forall x0:R, aux x0 <> 0) |- (continuity _) => - intro_hyp_glob X1 - | |- (derivable _) => - cut (forall x0:R, aux x0 <> 0); - [ intro; intro_hyp_glob X1 | try assumption ] - | |- (continuity _) => - cut (forall x0:R, aux x0 <> 0); - [ intro; intro_hyp_glob X1 | try assumption ] - | _ => idtac - end - | cos => idtac - | sin => idtac - | cosh => idtac - | sinh => idtac - | exp => idtac - | Rsqr => idtac - | sqrt => idtac - | id => idtac - | (fct_cte _) => idtac - | (pow_fct _) => idtac - | Rabs => idtac - | ?X1 => - let p := constr:X1 in - match goal with - | _:(derivable p) |- _ => idtac - | |- (derivable p) => idtac - | |- (derivable _) => - cut (True -> derivable p); - [ intro HYPPD; cut (derivable p); - [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] - | idtac ] - | _:(continuity p) |- _ => idtac - | |- (continuity p) => idtac - | |- (continuity _) => - cut (True -> continuity p); - [ intro HYPPD; cut (continuity p); - [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] - | idtac ] - | _ => idtac - end - end. - -(**********) -Ltac intro_hyp_pt trm pt := - match constr:trm with - | (?X1 + ?X2)%F => - match goal with - | |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (derive_pt _ _ _ = _) => - intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | _ => idtac - end - | (?X1 - ?X2)%F => - match goal with - | |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (derive_pt _ _ _ = _) => - intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | _ => idtac - end - | (?X1 * ?X2)%F => - match goal with - | |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (derive_pt _ _ _ = _) => - intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | _ => idtac - end - | (?X1 / ?X2)%F => - let aux := constr:X2 in - match goal with - | _:(aux pt <> 0) |- (derivable_pt _ _) => - intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | _:(aux pt <> 0) |- (continuity_pt _ _) => - intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | _:(aux pt <> 0) |- (derive_pt _ _ _ = _) => - intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | id:(forall x0:R, aux x0 <> 0) |- (derivable_pt _ _) => - generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | id:(forall x0:R, aux x0 <> 0) |- (continuity_pt _ _) => - generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | id:(forall x0:R, aux x0 <> 0) |- (derive_pt _ _ _ = _) => - generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt - | |- (derivable_pt _ _) => - cut (aux pt <> 0); - [ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ] - | |- (continuity_pt _ _) => - cut (aux pt <> 0); - [ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ] - | |- (derive_pt _ _ _ = _) => - cut (aux pt <> 0); - [ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ] - | _ => idtac - end - | (comp ?X1 ?X2) => - match goal with - | |- (derivable_pt _ _) => - let pt_f1 := eval cbv beta in (X2 pt) in - (intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt) - | |- (continuity_pt _ _) => - let pt_f1 := eval cbv beta in (X2 pt) in - (intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt) - | |- (derive_pt _ _ _ = _) => - let pt_f1 := eval cbv beta in (X2 pt) in - (intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt) - | _ => idtac - end - | (- ?X1)%F => - match goal with - | |- (derivable_pt _ _) => intro_hyp_pt X1 pt - | |- (continuity_pt _ _) => intro_hyp_pt X1 pt - | |- (derive_pt _ _ _ = _) => intro_hyp_pt X1 pt - | _ => idtac - end - | (/ ?X1)%F => - let aux := constr:X1 in - match goal with - | _:(aux pt <> 0) |- (derivable_pt _ _) => - intro_hyp_pt X1 pt - | _:(aux pt <> 0) |- (continuity_pt _ _) => - intro_hyp_pt X1 pt - | _:(aux pt <> 0) |- (derive_pt _ _ _ = _) => - intro_hyp_pt X1 pt - | id:(forall x0:R, aux x0 <> 0) |- (derivable_pt _ _) => - generalize (id pt); intro; intro_hyp_pt X1 pt - | id:(forall x0:R, aux x0 <> 0) |- (continuity_pt _ _) => - generalize (id pt); intro; intro_hyp_pt X1 pt - | id:(forall x0:R, aux x0 <> 0) |- (derive_pt _ _ _ = _) => - generalize (id pt); intro; intro_hyp_pt X1 pt - | |- (derivable_pt _ _) => - cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ] - | |- (continuity_pt _ _) => - cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ] - | |- (derive_pt _ _ _ = _) => - cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ] - | _ => idtac - end - | cos => idtac - | sin => idtac - | cosh => idtac - | sinh => idtac - | exp => idtac - | Rsqr => idtac - | id => idtac - | (fct_cte _) => idtac - | (pow_fct _) => idtac - | sqrt => - match goal with - | |- (derivable_pt _ _) => cut (0 < pt); [ intro | try assumption ] - | |- (continuity_pt _ _) => - cut (0 <= pt); [ intro | try assumption ] - | |- (derive_pt _ _ _ = _) => - cut (0 < pt); [ intro | try assumption ] - | _ => idtac - end - | Rabs => - match goal with - | |- (derivable_pt _ _) => - cut (pt <> 0); [ intro | try assumption ] - | _ => idtac - end - | ?X1 => - let p := constr:X1 in - match goal with - | _:(derivable_pt p pt) |- _ => idtac - | |- (derivable_pt p pt) => idtac - | |- (derivable_pt _ _) => - cut (True -> derivable_pt p pt); - [ intro HYPPD; cut (derivable_pt p pt); - [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] - | idtac ] - | _:(continuity_pt p pt) |- _ => idtac - | |- (continuity_pt p pt) => idtac - | |- (continuity_pt _ _) => - cut (True -> continuity_pt p pt); - [ intro HYPPD; cut (continuity_pt p pt); - [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] - | idtac ] - | |- (derive_pt _ _ _ = _) => - cut (True -> derivable_pt p pt); - [ intro HYPPD; cut (derivable_pt p pt); - [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] - | idtac ] - | _ => idtac - end - end. - -(**********) -Ltac is_diff_pt := - match goal with - | |- (derivable_pt Rsqr _) => - - (* fonctions de base *) - apply derivable_pt_Rsqr - | |- (derivable_pt id ?X1) => apply (derivable_pt_id X1) - | |- (derivable_pt (fct_cte _) _) => apply derivable_pt_const - | |- (derivable_pt sin _) => apply derivable_pt_sin - | |- (derivable_pt cos _) => apply derivable_pt_cos - | |- (derivable_pt sinh _) => apply derivable_pt_sinh - | |- (derivable_pt cosh _) => apply derivable_pt_cosh - | |- (derivable_pt exp _) => apply derivable_pt_exp - | |- (derivable_pt (pow_fct _) _) => - unfold pow_fct in |- *; apply derivable_pt_pow - | |- (derivable_pt sqrt ?X1) => - apply (derivable_pt_sqrt X1); - assumption || - unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct, - comp, id, fct_cte, pow_fct in |- * - | |- (derivable_pt Rabs ?X1) => - apply (Rderivable_pt_abs X1); - assumption || - unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct, - comp, id, fct_cte, pow_fct in |- * - (* regles de differentiabilite *) - (* PLUS *) - | |- (derivable_pt (?X1 + ?X2) ?X3) => - apply (derivable_pt_plus X1 X2 X3); is_diff_pt - (* MOINS *) - | |- (derivable_pt (?X1 - ?X2) ?X3) => - apply (derivable_pt_minus X1 X2 X3); is_diff_pt - (* OPPOSE *) - | |- (derivable_pt (- ?X1) ?X2) => - apply (derivable_pt_opp X1 X2); - is_diff_pt - (* MULTIPLICATION PAR UN SCALAIRE *) - | |- (derivable_pt (mult_real_fct ?X1 ?X2) ?X3) => - apply (derivable_pt_scal X2 X1 X3); is_diff_pt - (* MULTIPLICATION *) - | |- (derivable_pt (?X1 * ?X2) ?X3) => - apply (derivable_pt_mult X1 X2 X3); is_diff_pt - (* DIVISION *) - | |- (derivable_pt (?X1 / ?X2) ?X3) => - apply (derivable_pt_div X1 X2 X3); - [ is_diff_pt - | is_diff_pt - | try - assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - comp, pow_fct, id, fct_cte in |- * ] - | |- (derivable_pt (/ ?X1) ?X2) => - - (* INVERSION *) - apply (derivable_pt_inv X1 X2); - [ assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - comp, pow_fct, id, fct_cte in |- * - | is_diff_pt ] - | |- (derivable_pt (comp ?X1 ?X2) ?X3) => - - (* COMPOSITION *) - apply (derivable_pt_comp X2 X1 X3); is_diff_pt - | _:(derivable_pt ?X1 ?X2) |- (derivable_pt ?X1 ?X2) => - assumption - | _:(derivable ?X1) |- (derivable_pt ?X1 ?X2) => - cut (derivable X1); [ intro HypDDPT; apply HypDDPT | assumption ] - | |- (True -> derivable_pt _ _) => - intro HypTruE; clear HypTruE; is_diff_pt - | _ => - try - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, - fct_cte, comp, pow_fct in |- * - end. - -(**********) -Ltac is_diff_glob := - match goal with - | |- (derivable Rsqr) => - (* fonctions de base *) - apply derivable_Rsqr - | |- (derivable id) => apply derivable_id - | |- (derivable (fct_cte _)) => apply derivable_const - | |- (derivable sin) => apply derivable_sin - | |- (derivable cos) => apply derivable_cos - | |- (derivable cosh) => apply derivable_cosh - | |- (derivable sinh) => apply derivable_sinh - | |- (derivable exp) => apply derivable_exp - | |- (derivable (pow_fct _)) => - unfold pow_fct in |- *; - apply derivable_pow - (* regles de differentiabilite *) - (* PLUS *) - | |- (derivable (?X1 + ?X2)) => - apply (derivable_plus X1 X2); is_diff_glob - (* MOINS *) - | |- (derivable (?X1 - ?X2)) => - apply (derivable_minus X1 X2); is_diff_glob - (* OPPOSE *) - | |- (derivable (- ?X1)) => - apply (derivable_opp X1); - is_diff_glob - (* MULTIPLICATION PAR UN SCALAIRE *) - | |- (derivable (mult_real_fct ?X1 ?X2)) => - apply (derivable_scal X2 X1); is_diff_glob - (* MULTIPLICATION *) - | |- (derivable (?X1 * ?X2)) => - apply (derivable_mult X1 X2); is_diff_glob - (* DIVISION *) - | |- (derivable (?X1 / ?X2)) => - apply (derivable_div X1 X2); - [ is_diff_glob - | is_diff_glob - | try - assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - id, fct_cte, comp, pow_fct in |- * ] - | |- (derivable (/ ?X1)) => - - (* INVERSION *) - apply (derivable_inv X1); - [ try - assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - id, fct_cte, comp, pow_fct in |- * - | is_diff_glob ] - | |- (derivable (comp sqrt _)) => - - (* COMPOSITION *) - unfold derivable in |- *; intro; try is_diff_pt - | |- (derivable (comp Rabs _)) => - unfold derivable in |- *; intro; try is_diff_pt - | |- (derivable (comp ?X1 ?X2)) => - apply (derivable_comp X2 X1); is_diff_glob - | _:(derivable ?X1) |- (derivable ?X1) => assumption - | |- (True -> derivable _) => - intro HypTruE; clear HypTruE; is_diff_glob - | _ => - try - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, - fct_cte, comp, pow_fct in |- * - end. - -(**********) -Ltac is_cont_pt := - match goal with - | |- (continuity_pt Rsqr _) => - - (* fonctions de base *) - apply derivable_continuous_pt; apply derivable_pt_Rsqr - | |- (continuity_pt id ?X1) => - apply derivable_continuous_pt; apply (derivable_pt_id X1) - | |- (continuity_pt (fct_cte _) _) => - apply derivable_continuous_pt; apply derivable_pt_const - | |- (continuity_pt sin _) => - apply derivable_continuous_pt; apply derivable_pt_sin - | |- (continuity_pt cos _) => - apply derivable_continuous_pt; apply derivable_pt_cos - | |- (continuity_pt sinh _) => - apply derivable_continuous_pt; apply derivable_pt_sinh - | |- (continuity_pt cosh _) => - apply derivable_continuous_pt; apply derivable_pt_cosh - | |- (continuity_pt exp _) => - apply derivable_continuous_pt; apply derivable_pt_exp - | |- (continuity_pt (pow_fct _) _) => - unfold pow_fct in |- *; apply derivable_continuous_pt; - apply derivable_pt_pow - | |- (continuity_pt sqrt ?X1) => - apply continuity_pt_sqrt; - assumption || - unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct, - comp, id, fct_cte, pow_fct in |- * - | |- (continuity_pt Rabs ?X1) => - apply (Rcontinuity_abs X1) - (* regles de differentiabilite *) - (* PLUS *) - | |- (continuity_pt (?X1 + ?X2) ?X3) => - apply (continuity_pt_plus X1 X2 X3); is_cont_pt - (* MOINS *) - | |- (continuity_pt (?X1 - ?X2) ?X3) => - apply (continuity_pt_minus X1 X2 X3); is_cont_pt - (* OPPOSE *) - | |- (continuity_pt (- ?X1) ?X2) => - apply (continuity_pt_opp X1 X2); - is_cont_pt - (* MULTIPLICATION PAR UN SCALAIRE *) - | |- (continuity_pt (mult_real_fct ?X1 ?X2) ?X3) => - apply (continuity_pt_scal X2 X1 X3); is_cont_pt - (* MULTIPLICATION *) - | |- (continuity_pt (?X1 * ?X2) ?X3) => - apply (continuity_pt_mult X1 X2 X3); is_cont_pt - (* DIVISION *) - | |- (continuity_pt (?X1 / ?X2) ?X3) => - apply (continuity_pt_div X1 X2 X3); - [ is_cont_pt - | is_cont_pt - | try - assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - comp, id, fct_cte, pow_fct in |- * ] - | |- (continuity_pt (/ ?X1) ?X2) => - - (* INVERSION *) - apply (continuity_pt_inv X1 X2); - [ is_cont_pt - | assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - comp, id, fct_cte, pow_fct in |- * ] - | |- (continuity_pt (comp ?X1 ?X2) ?X3) => - - (* COMPOSITION *) - apply (continuity_pt_comp X2 X1 X3); is_cont_pt - | _:(continuity_pt ?X1 ?X2) |- (continuity_pt ?X1 ?X2) => - assumption - | _:(continuity ?X1) |- (continuity_pt ?X1 ?X2) => - cut (continuity X1); [ intro HypDDPT; apply HypDDPT | assumption ] - | _:(derivable_pt ?X1 ?X2) |- (continuity_pt ?X1 ?X2) => - apply derivable_continuous_pt; assumption - | _:(derivable ?X1) |- (continuity_pt ?X1 ?X2) => - cut (continuity X1); - [ intro HypDDPT; apply HypDDPT - | apply derivable_continuous; assumption ] - | |- (True -> continuity_pt _ _) => - intro HypTruE; clear HypTruE; is_cont_pt - | _ => - try - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, - fct_cte, comp, pow_fct in |- * - end. - -(**********) -Ltac is_cont_glob := - match goal with - | |- (continuity Rsqr) => - - (* fonctions de base *) - apply derivable_continuous; apply derivable_Rsqr - | |- (continuity id) => apply derivable_continuous; apply derivable_id - | |- (continuity (fct_cte _)) => - apply derivable_continuous; apply derivable_const - | |- (continuity sin) => apply derivable_continuous; apply derivable_sin - | |- (continuity cos) => apply derivable_continuous; apply derivable_cos - | |- (continuity exp) => apply derivable_continuous; apply derivable_exp - | |- (continuity (pow_fct _)) => - unfold pow_fct in |- *; apply derivable_continuous; apply derivable_pow - | |- (continuity sinh) => - apply derivable_continuous; apply derivable_sinh - | |- (continuity cosh) => - apply derivable_continuous; apply derivable_cosh - | |- (continuity Rabs) => - apply Rcontinuity_abs - (* regles de continuite *) - (* PLUS *) - | |- (continuity (?X1 + ?X2)) => - apply (continuity_plus X1 X2); - try is_cont_glob || assumption - (* MOINS *) - | |- (continuity (?X1 - ?X2)) => - apply (continuity_minus X1 X2); - try is_cont_glob || assumption - (* OPPOSE *) - | |- (continuity (- ?X1)) => - apply (continuity_opp X1); try is_cont_glob || assumption - (* INVERSE *) - | |- (continuity (/ ?X1)) => - apply (continuity_inv X1); - try is_cont_glob || assumption - (* MULTIPLICATION PAR UN SCALAIRE *) - | |- (continuity (mult_real_fct ?X1 ?X2)) => - apply (continuity_scal X2 X1); - try is_cont_glob || assumption - (* MULTIPLICATION *) - | |- (continuity (?X1 * ?X2)) => - apply (continuity_mult X1 X2); - try is_cont_glob || assumption - (* DIVISION *) - | |- (continuity (?X1 / ?X2)) => - apply (continuity_div X1 X2); - [ try is_cont_glob || assumption - | try is_cont_glob || assumption - | try - assumption || - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, - id, fct_cte, pow_fct in |- * ] - | |- (continuity (comp sqrt _)) => - - (* COMPOSITION *) - unfold continuity_pt in |- *; intro; try is_cont_pt - | |- (continuity (comp ?X1 ?X2)) => - apply (continuity_comp X2 X1); try is_cont_glob || assumption - | _:(continuity ?X1) |- (continuity ?X1) => assumption - | |- (True -> continuity _) => - intro HypTruE; clear HypTruE; is_cont_glob - | _:(derivable ?X1) |- (continuity ?X1) => - apply derivable_continuous; assumption - | _ => - try - unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, - fct_cte, comp, pow_fct in |- * - end. - -(**********) -Ltac rew_term trm := - match constr:trm with - | (?X1 + ?X2) => - let p1 := rew_term X1 with p2 := rew_term X2 in - match constr:p1 with - | (fct_cte ?X3) => - match constr:p2 with - | (fct_cte ?X4) => constr:(fct_cte (X3 + X4)) - | _ => constr:(p1 + p2)%F - end - | _ => constr:(p1 + p2)%F - end - | (?X1 - ?X2) => - let p1 := rew_term X1 with p2 := rew_term X2 in - match constr:p1 with - | (fct_cte ?X3) => - match constr:p2 with - | (fct_cte ?X4) => constr:(fct_cte (X3 - X4)) - | _ => constr:(p1 - p2)%F - end - | _ => constr:(p1 - p2)%F - end - | (?X1 / ?X2) => - let p1 := rew_term X1 with p2 := rew_term X2 in - match constr:p1 with - | (fct_cte ?X3) => - match constr:p2 with - | (fct_cte ?X4) => constr:(fct_cte (X3 / X4)) - | _ => constr:(p1 / p2)%F - end - | _ => - match constr:p2 with - | (fct_cte ?X4) => constr:(p1 * fct_cte (/ X4))%F - | _ => constr:(p1 / p2)%F - end - end - | (?X1 * / ?X2) => - let p1 := rew_term X1 with p2 := rew_term X2 in - match constr:p1 with - | (fct_cte ?X3) => - match constr:p2 with - | (fct_cte ?X4) => constr:(fct_cte (X3 / X4)) - | _ => constr:(p1 / p2)%F - end - | _ => - match constr:p2 with - | (fct_cte ?X4) => constr:(p1 * fct_cte (/ X4))%F - | _ => constr:(p1 / p2)%F - end - end - | (?X1 * ?X2) => - let p1 := rew_term X1 with p2 := rew_term X2 in - match constr:p1 with - | (fct_cte ?X3) => - match constr:p2 with - | (fct_cte ?X4) => constr:(fct_cte (X3 * X4)) - | _ => constr:(p1 * p2)%F - end - | _ => constr:(p1 * p2)%F - end - | (- ?X1) => - let p := rew_term X1 in - match constr:p with - | (fct_cte ?X2) => constr:(fct_cte (- X2)) - | _ => constr:(- p)%F - end - | (/ ?X1) => - let p := rew_term X1 in - match constr:p with - | (fct_cte ?X2) => constr:(fct_cte (/ X2)) - | _ => constr:(/ p)%F - end - | (?X1 AppVar) => constr:X1 - | (?X1 ?X2) => - let p := rew_term X2 in - match constr:p with - | (fct_cte ?X3) => constr:(fct_cte (X1 X3)) - | _ => constr:(comp X1 p) - end - | AppVar => constr:id - | (AppVar ^ ?X1) => constr:(pow_fct X1) - | (?X1 ^ ?X2) => - let p := rew_term X1 in - match constr:p with - | (fct_cte ?X3) => constr:(fct_cte (pow_fct X2 X3)) - | _ => constr:(comp (pow_fct X2) p) - end - | ?X1 => constr:(fct_cte X1) - end. - -(**********) -Ltac deriv_proof trm pt := - match constr:trm with - | (?X1 + ?X2)%F => - let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in - constr:(derivable_pt_plus X1 X2 pt p1 p2) - | (?X1 - ?X2)%F => - let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in - constr:(derivable_pt_minus X1 X2 pt p1 p2) - | (?X1 * ?X2)%F => - let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in - constr:(derivable_pt_mult X1 X2 pt p1 p2) - | (?X1 / ?X2)%F => - match goal with - | id:(?X2 pt <> 0) |- _ => - let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in - constr:(derivable_pt_div X1 X2 pt p1 p2 id) - | _ => constr:False - end - | (/ ?X1)%F => - match goal with - | id:(?X1 pt <> 0) |- _ => - let p1 := deriv_proof X1 pt in - constr:(derivable_pt_inv X1 pt p1 id) - | _ => constr:False - end - | (comp ?X1 ?X2) => - let pt_f1 := eval cbv beta in (X2 pt) in - let p1 := deriv_proof X1 pt_f1 with p2 := deriv_proof X2 pt in - constr:(derivable_pt_comp X2 X1 pt p2 p1) - | (- ?X1)%F => - let p1 := deriv_proof X1 pt in - constr:(derivable_pt_opp X1 pt p1) - | sin => constr:(derivable_pt_sin pt) - | cos => constr:(derivable_pt_cos pt) - | sinh => constr:(derivable_pt_sinh pt) - | cosh => constr:(derivable_pt_cosh pt) - | exp => constr:(derivable_pt_exp pt) - | id => constr:(derivable_pt_id pt) - | Rsqr => constr:(derivable_pt_Rsqr pt) - | sqrt => - match goal with - | id:(0 < pt) |- _ => constr:(derivable_pt_sqrt pt id) - | _ => constr:False - end - | (fct_cte ?X1) => constr:(derivable_pt_const X1 pt) - | ?X1 => - let aux := constr:X1 in - match goal with - | id:(derivable_pt aux pt) |- _ => constr:id - | id:(derivable aux) |- _ => constr:(id pt) - | _ => constr:False - end - end. - -(**********) -Ltac simplify_derive trm pt := - match constr:trm with - | (?X1 + ?X2)%F => - try rewrite derive_pt_plus; simplify_derive X1 pt; - simplify_derive X2 pt - | (?X1 - ?X2)%F => - try rewrite derive_pt_minus; simplify_derive X1 pt; - simplify_derive X2 pt - | (?X1 * ?X2)%F => - try rewrite derive_pt_mult; simplify_derive X1 pt; - simplify_derive X2 pt - | (?X1 / ?X2)%F => - try rewrite derive_pt_div; simplify_derive X1 pt; simplify_derive X2 pt - | (comp ?X1 ?X2) => - let pt_f1 := eval cbv beta in (X2 pt) in - (try rewrite derive_pt_comp; simplify_derive X1 pt_f1; - simplify_derive X2 pt) - | (- ?X1)%F => try rewrite derive_pt_opp; simplify_derive X1 pt - | (/ ?X1)%F => - try rewrite derive_pt_inv; simplify_derive X1 pt - | (fct_cte ?X1) => try rewrite derive_pt_const - | id => try rewrite derive_pt_id - | sin => try rewrite derive_pt_sin - | cos => try rewrite derive_pt_cos - | sinh => try rewrite derive_pt_sinh - | cosh => try rewrite derive_pt_cosh - | exp => try rewrite derive_pt_exp - | Rsqr => try rewrite derive_pt_Rsqr - | sqrt => try rewrite derive_pt_sqrt - | ?X1 => - let aux := constr:X1 in - match goal with - | id:(derive_pt aux pt ?X2 = _),H:(derivable aux) |- _ => - try replace (derive_pt aux pt (H pt)) with (derive_pt aux pt X2); - [ rewrite id | apply pr_nu ] - | id:(derive_pt aux pt ?X2 = _),H:(derivable_pt aux pt) |- _ => - try replace (derive_pt aux pt H) with (derive_pt aux pt X2); - [ rewrite id | apply pr_nu ] - | _ => idtac - end - | _ => idtac - end. - -(**********) -Ltac reg := - match goal with - | |- (derivable_pt ?X1 ?X2) => - let trm := eval cbv beta in (X1 AppVar) in - let aux := rew_term trm in - (intro_hyp_pt aux X2; - try (change (derivable_pt aux X2) in |- *; is_diff_pt) || is_diff_pt) - | |- (derivable ?X1) => - let trm := eval cbv beta in (X1 AppVar) in - let aux := rew_term trm in - (intro_hyp_glob aux; - try (change (derivable aux) in |- *; is_diff_glob) || is_diff_glob) - | |- (continuity ?X1) => - let trm := eval cbv beta in (X1 AppVar) in - let aux := rew_term trm in - (intro_hyp_glob aux; - try (change (continuity aux) in |- *; is_cont_glob) || is_cont_glob) - | |- (continuity_pt ?X1 ?X2) => - let trm := eval cbv beta in (X1 AppVar) in - let aux := rew_term trm in - (intro_hyp_pt aux X2; - try (change (continuity_pt aux X2) in |- *; is_cont_pt) || is_cont_pt) - | |- (derive_pt ?X1 ?X2 ?X3 = ?X4) => - let trm := eval cbv beta in (X1 AppVar) in - let aux := rew_term trm in - intro_hyp_pt aux X2; - (let aux2 := deriv_proof aux X2 in - try - (replace (derive_pt X1 X2 X3) with (derive_pt aux X2 aux2); - [ simplify_derive aux X2; - try unfold plus_fct, minus_fct, mult_fct, div_fct, id, fct_cte, - inv_fct, opp_fct in |- *; ring || ring_simplify - | try apply pr_nu ]) || is_diff_pt) - end. +Require Export Ranalysis_reg. \ No newline at end of file diff --git a/theories/Reals/Ranalysis1.v b/theories/Reals/Ranalysis1.v index 3075bee8..2f54ee94 100644 --- a/theories/Reals/Ranalysis1.v +++ b/theories/Reals/Ranalysis1.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* R. (****************************************************) @@ -43,7 +43,7 @@ Notation "- x" := (opp_fct x) : Rfun_scope. Infix "*" := mult_fct : Rfun_scope. Infix "-" := minus_fct : Rfun_scope. Infix "/" := div_fct : Rfun_scope. -Notation Local "f1 'o' f2" := (comp f1 f2) +Local Notation "f1 'o' f2" := (comp f1 f2) (at level 20, right associativity) : Rfun_scope. Notation "/ x" := (inv_fct x) : Rfun_scope. @@ -82,14 +82,14 @@ Lemma continuity_pt_plus : forall f1 f2 (x0:R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 + f2) x0. Proof. - unfold continuity_pt, plus_fct in |- *; unfold continue_in in |- *; intros; + unfold continuity_pt, plus_fct; unfold continue_in; intros; apply limit_plus; assumption. Qed. Lemma continuity_pt_opp : forall f (x0:R), continuity_pt f x0 -> continuity_pt (- f) x0. Proof. - unfold continuity_pt, opp_fct in |- *; unfold continue_in in |- *; intros; + unfold continuity_pt, opp_fct; unfold continue_in; intros; apply limit_Ropp; assumption. Qed. @@ -97,7 +97,7 @@ Lemma continuity_pt_minus : forall f1 f2 (x0:R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 - f2) x0. Proof. - unfold continuity_pt, minus_fct in |- *; unfold continue_in in |- *; intros; + unfold continuity_pt, minus_fct; unfold continue_in; intros; apply limit_minus; assumption. Qed. @@ -105,17 +105,17 @@ Lemma continuity_pt_mult : forall f1 f2 (x0:R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 * f2) x0. Proof. - unfold continuity_pt, mult_fct in |- *; unfold continue_in in |- *; intros; + unfold continuity_pt, mult_fct; unfold continue_in; intros; apply limit_mul; assumption. Qed. Lemma continuity_pt_const : forall f (x0:R), constant f -> continuity_pt f x0. Proof. - unfold constant, continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; + unfold constant, continuity_pt; unfold continue_in; + unfold limit1_in; unfold limit_in; intros; exists 1; split; [ apply Rlt_0_1 - | intros; generalize (H x x0); intro; rewrite H2; simpl in |- *; + | intros; generalize (H x x0); intro; rewrite H2; simpl; rewrite R_dist_eq; assumption ]. Qed. @@ -123,9 +123,9 @@ Lemma continuity_pt_scal : forall f (a x0:R), continuity_pt f x0 -> continuity_pt (mult_real_fct a f) x0. Proof. - unfold continuity_pt, mult_real_fct in |- *; unfold continue_in in |- *; + unfold continuity_pt, mult_real_fct; unfold continue_in; intros; apply (limit_mul (fun x:R => a) f (D_x no_cond x0) a (f x0) x0). - unfold limit1_in in |- *; unfold limit_in in |- *; intros; exists 1; split. + unfold limit1_in; unfold limit_in; intros; exists 1; split. apply Rlt_0_1. intros; rewrite R_dist_eq; assumption. assumption. @@ -136,9 +136,9 @@ Lemma continuity_pt_inv : Proof. intros. replace (/ f)%F with (fun x:R => / f x). - unfold continuity_pt in |- *; unfold continue_in in |- *; intros; + unfold continuity_pt; unfold continue_in; intros; apply limit_inv; assumption. - unfold inv_fct in |- *; reflexivity. + unfold inv_fct; reflexivity. Qed. Lemma div_eq_inv : forall f1 f2, (f1 / f2)%F = (f1 * / f2)%F. @@ -159,8 +159,8 @@ Lemma continuity_pt_comp : forall f1 f2 (x:R), continuity_pt f1 x -> continuity_pt f2 (f1 x) -> continuity_pt (f2 o f1) x. Proof. - unfold continuity_pt in |- *; unfold continue_in in |- *; intros; - unfold comp in |- *. + unfold continuity_pt; unfold continue_in; intros; + unfold comp. cut (limit1_in (fun x0:R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) ( @@ -170,23 +170,23 @@ Proof. eapply limit_comp. apply H. apply H0. - unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *; - simpl in |- *; unfold R_dist in |- *; intros. + unfold limit1_in; unfold limit_in; unfold dist; + simpl; unfold R_dist; intros. assert (H3 := H1 eps H2). elim H3; intros. exists x0. split. elim H4; intros; assumption. intros; case (Req_dec (f1 x) (f1 x1)); intro. - rewrite H6; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + rewrite H6; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. elim H4; intros; apply H8. split. - unfold Dgf, D_x, no_cond in |- *. + unfold Dgf, D_x, no_cond. split. split. trivial. - elim H5; unfold D_x, no_cond in |- *; intros. + elim H5; unfold D_x, no_cond; intros. elim H9; intros; assumption. split. trivial. @@ -198,44 +198,44 @@ Qed. Lemma continuity_plus : forall f1 f2, continuity f1 -> continuity f2 -> continuity (f1 + f2). Proof. - unfold continuity in |- *; intros; + unfold continuity; intros; apply (continuity_pt_plus f1 f2 x (H x) (H0 x)). Qed. Lemma continuity_opp : forall f, continuity f -> continuity (- f). Proof. - unfold continuity in |- *; intros; apply (continuity_pt_opp f x (H x)). + unfold continuity; intros; apply (continuity_pt_opp f x (H x)). Qed. Lemma continuity_minus : forall f1 f2, continuity f1 -> continuity f2 -> continuity (f1 - f2). Proof. - unfold continuity in |- *; intros; + unfold continuity; intros; apply (continuity_pt_minus f1 f2 x (H x) (H0 x)). Qed. Lemma continuity_mult : forall f1 f2, continuity f1 -> continuity f2 -> continuity (f1 * f2). Proof. - unfold continuity in |- *; intros; + unfold continuity; intros; apply (continuity_pt_mult f1 f2 x (H x) (H0 x)). Qed. Lemma continuity_const : forall f, constant f -> continuity f. Proof. - unfold continuity in |- *; intros; apply (continuity_pt_const f x H). + unfold continuity; intros; apply (continuity_pt_const f x H). Qed. Lemma continuity_scal : forall f (a:R), continuity f -> continuity (mult_real_fct a f). Proof. - unfold continuity in |- *; intros; apply (continuity_pt_scal f a x (H x)). + unfold continuity; intros; apply (continuity_pt_scal f a x (H x)). Qed. Lemma continuity_inv : forall f, continuity f -> (forall x:R, f x <> 0) -> continuity (/ f). Proof. - unfold continuity in |- *; intros; apply (continuity_pt_inv f x (H x) (H0 x)). + unfold continuity; intros; apply (continuity_pt_inv f x (H x) (H0 x)). Qed. Lemma continuity_div : @@ -243,14 +243,14 @@ Lemma continuity_div : continuity f1 -> continuity f2 -> (forall x:R, f2 x <> 0) -> continuity (f1 / f2). Proof. - unfold continuity in |- *; intros; + unfold continuity; intros; apply (continuity_pt_div f1 f2 x (H x) (H0 x) (H1 x)). Qed. Lemma continuity_comp : forall f1 f2, continuity f1 -> continuity f2 -> continuity (f2 o f1). Proof. - unfold continuity in |- *; intros. + unfold continuity; intros. apply (continuity_pt_comp f1 f2 x (H x) (H0 (f1 x))). Qed. @@ -307,23 +307,23 @@ Proof. apply (single_limit (fun h:R => (f (x + h) - f x) / h) ( fun h:R => h <> 0) l1 l2 0); try assumption. - unfold adhDa in |- *; intros; exists (alp / 2). + unfold adhDa; intros; exists (alp / 2). split. - unfold Rdiv in |- *; apply prod_neq_R0. - red in |- *; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1). + unfold Rdiv; apply prod_neq_R0. + red; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1). apply Rinv_neq_0_compat; discrR. - unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0; - rewrite Rplus_0_r; unfold Rdiv in |- *; rewrite Rabs_mult. + unfold R_dist; unfold Rminus; rewrite Ropp_0; + rewrite Rplus_0_r; unfold Rdiv; rewrite Rabs_mult. replace (Rabs (/ 2)) with (/ 2). replace (Rabs alp) with alp. apply Rmult_lt_reg_l with 2. prove_sup0. rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]; rewrite Rmult_1_r; rewrite double; - pattern alp at 1 in |- *; replace alp with (alp + 0); + pattern alp at 1; replace alp with (alp + 0); [ idtac | ring ]; apply Rplus_lt_compat_l; assumption. - symmetry in |- *; apply Rabs_right; left; assumption. - symmetry in |- *; apply Rabs_right; left; change (0 < / 2) in |- *; + symmetry ; apply Rabs_right; left; assumption. + symmetry ; apply Rabs_right; left; change (0 < / 2); apply Rinv_0_lt_compat; prove_sup0. Qed. @@ -332,14 +332,14 @@ Lemma uniqueness_step2 : derivable_pt_lim f x l -> limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) l 0. Proof. - unfold derivable_pt_lim in |- *; intros; unfold limit1_in in |- *; - unfold limit_in in |- *; intros. + unfold derivable_pt_lim; intros; unfold limit1_in; + unfold limit_in; intros. assert (H1 := H eps H0). elim H1; intros. exists (pos x0). split. apply (cond_pos x0). - simpl in |- *; unfold R_dist in |- *; intros. + simpl; unfold R_dist; intros. elim H3; intros. apply H2; [ assumption @@ -352,15 +352,15 @@ Lemma uniqueness_step3 : limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) l 0 -> derivable_pt_lim f x l. Proof. - unfold limit1_in, derivable_pt_lim in |- *; unfold limit_in in |- *; - unfold dist in |- *; simpl in |- *; intros. + unfold limit1_in, derivable_pt_lim; unfold limit_in; + unfold dist; simpl; intros. elim (H eps H0). intros; elim H1; intros. exists (mkposreal x0 H2). - simpl in |- *; intros; unfold R_dist in H3; apply (H3 h). + simpl; intros; unfold R_dist in H3; apply (H3 h). split; [ assumption - | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; assumption ]. + | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; assumption ]. Qed. Lemma uniqueness_limite : @@ -383,8 +383,8 @@ Proof. assumption. intro; assert (H1 := proj2_sig pr); unfold derivable_pt_abs in H1. assert (H2 := uniqueness_limite _ _ _ _ H H1). - unfold derive_pt in |- *; unfold derivable_pt_abs in |- *. - symmetry in |- *; assumption. + unfold derive_pt; unfold derivable_pt_abs. + symmetry ; assumption. Qed. (**********) @@ -414,25 +414,25 @@ Lemma derive_pt_D_in : D_in f df no_cond x <-> derive_pt f x pr = df x. Proof. intros; split. - unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; unfold R_dist in |- *; intros. + unfold D_in; unfold limit1_in; unfold limit_in; + simpl; unfold R_dist; intros. apply derive_pt_eq_0. - unfold derivable_pt_lim in |- *. + unfold derivable_pt_lim. intros; elim (H eps H0); intros alpha H1; elim H1; intros; exists (mkposreal alpha H2); intros; generalize (H3 (x + h)); intro; cut (x + h - x = h); [ intro; cut (D_x no_cond x (x + h) /\ Rabs (x + h - x) < alpha); [ intro; generalize (H6 H8); rewrite H7; intro; assumption | split; - [ unfold D_x in |- *; split; - [ unfold no_cond in |- *; trivial + [ unfold D_x; split; + [ unfold no_cond; trivial | apply Rminus_not_eq_right; rewrite H7; assumption ] | rewrite H7; assumption ] ] | ring ]. intro. assert (H0 := derive_pt_eq_1 f x (df x) pr H). - unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *; - unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; + unfold D_in; unfold limit1_in; unfold limit_in; + unfold dist; simpl; unfold R_dist; intros. elim (H0 eps H1); intros alpha H2; exists (pos alpha); split. apply (cond_pos alpha). @@ -448,24 +448,24 @@ Lemma derivable_pt_lim_D_in : D_in f df no_cond x <-> derivable_pt_lim f x (df x). Proof. intros; split. - unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; unfold R_dist in |- *; intros. - unfold derivable_pt_lim in |- *. + unfold D_in; unfold limit1_in; unfold limit_in; + simpl; unfold R_dist; intros. + unfold derivable_pt_lim. intros; elim (H eps H0); intros alpha H1; elim H1; intros; exists (mkposreal alpha H2); intros; generalize (H3 (x + h)); intro; cut (x + h - x = h); [ intro; cut (D_x no_cond x (x + h) /\ Rabs (x + h - x) < alpha); [ intro; generalize (H6 H8); rewrite H7; intro; assumption | split; - [ unfold D_x in |- *; split; - [ unfold no_cond in |- *; trivial + [ unfold D_x; split; + [ unfold no_cond; trivial | apply Rminus_not_eq_right; rewrite H7; assumption ] | rewrite H7; assumption ] ] | ring ]. intro. unfold derivable_pt_lim in H. - unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *; - unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; + unfold D_in; unfold limit1_in; unfold limit_in; + unfold dist; simpl; unfold R_dist; intros. elim (H eps H0); intros alpha H2; exists (pos alpha); split. apply (cond_pos alpha). @@ -486,7 +486,7 @@ Lemma derivable_derive : forall f (x:R) (pr:derivable_pt f x), exists l : R, derive_pt f x pr = l. Proof. intros; exists (proj1_sig pr). - unfold derive_pt in |- *; reflexivity. + unfold derive_pt; reflexivity. Qed. Theorem derivable_continuous_pt : @@ -501,14 +501,14 @@ Proof. generalize (derive_pt_D_in f (fct_cte l) x); intro. elim (H2 X); intros. generalize (H4 H1); intro. - unfold continuity_pt in |- *. + unfold continuity_pt. apply (cont_deriv f (fct_cte l) no_cond x H5). - unfold fct_cte in |- *; reflexivity. + unfold fct_cte; reflexivity. Qed. Theorem derivable_continuous : forall f, derivable f -> continuity f. Proof. - unfold derivable, continuity in |- *; intros f X x. + unfold derivable, continuity; intros f X x. apply (derivable_continuous_pt f x (X x)). Qed. @@ -524,7 +524,7 @@ Lemma derivable_pt_lim_plus : apply uniqueness_step3. assert (H1 := uniqueness_step2 _ _ _ H). assert (H2 := uniqueness_step2 _ _ _ H0). - unfold plus_fct in |- *. + unfold plus_fct. cut (forall h:R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = @@ -533,15 +533,15 @@ Lemma derivable_pt_lim_plus : generalize (limit_plus (fun h':R => (f1 (x + h') - f1 x) / h') (fun h':R => (f2 (x + h') - f2 x) / h') (fun h:R => h <> 0) l1 l2 0 H1 H2). - unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *; - simpl in |- *; unfold R_dist in |- *; intros. + unfold limit1_in; unfold limit_in; unfold dist; + simpl; unfold R_dist; intros. elim (H4 eps H5); intros. exists x0. elim H6; intros. split. assumption. intros; rewrite H3; apply H8; assumption. - intro; unfold Rdiv in |- *; ring. + intro; unfold Rdiv; ring. Qed. Lemma derivable_pt_lim_opp : @@ -550,20 +550,20 @@ Proof. intros. apply uniqueness_step3. assert (H1 := uniqueness_step2 _ _ _ H). - unfold opp_fct in |- *. + unfold opp_fct. cut (forall h:R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)). intro. generalize (limit_Ropp (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) l 0 H1). - unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *; - simpl in |- *; unfold R_dist in |- *; intros. + unfold limit1_in; unfold limit_in; unfold dist; + simpl; unfold R_dist; intros. elim (H2 eps H3); intros. exists x0. elim H4; intros. split. assumption. intros; rewrite H0; apply H6; assumption. - intro; unfold Rdiv in |- *; ring. + intro; unfold Rdiv; ring. Qed. Lemma derivable_pt_lim_minus : @@ -575,7 +575,7 @@ Proof. apply uniqueness_step3. assert (H1 := uniqueness_step2 _ _ _ H). assert (H2 := uniqueness_step2 _ _ _ H0). - unfold minus_fct in |- *. + unfold minus_fct. cut (forall h:R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = @@ -584,15 +584,15 @@ Proof. generalize (limit_minus (fun h':R => (f1 (x + h') - f1 x) / h') (fun h':R => (f2 (x + h') - f2 x) / h') (fun h:R => h <> 0) l1 l2 0 H1 H2). - unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *; - simpl in |- *; unfold R_dist in |- *; intros. + unfold limit1_in; unfold limit_in; unfold dist; + simpl; unfold R_dist; intros. elim (H4 eps H5); intros. exists x0. elim H6; intros. split. assumption. intros; rewrite <- H3; apply H8; assumption. - intro; unfold Rdiv in |- *; ring. + intro; unfold Rdiv; ring. Qed. Lemma derivable_pt_lim_mult : @@ -615,15 +615,15 @@ Proof. elim H1; intros. clear H1 H3. apply H2. - unfold mult_fct in |- *. + unfold mult_fct. apply (Dmult no_cond (fun y:R => l1) (fun y:R => l2) f1 f2 x); assumption. Qed. Lemma derivable_pt_lim_const : forall a x:R, derivable_pt_lim (fct_cte a) x 0. Proof. - intros; unfold fct_cte, derivable_pt_lim in |- *. - intros; exists (mkposreal 1 Rlt_0_1); intros; unfold Rminus in |- *; - rewrite Rplus_opp_r; unfold Rdiv in |- *; rewrite Rmult_0_l; + intros; unfold fct_cte, derivable_pt_lim. + intros; exists (mkposreal 1 Rlt_0_1); intros; unfold Rminus; + rewrite Rplus_opp_r; unfold Rdiv; rewrite Rmult_0_l; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. Qed. @@ -636,34 +636,34 @@ Proof. replace (mult_real_fct a f) with (fct_cte a * f)%F. replace (a * l) with (0 * f x + a * l); [ idtac | ring ]. apply (derivable_pt_lim_mult (fct_cte a) f x 0 l); assumption. - unfold mult_real_fct, mult_fct, fct_cte in |- *; reflexivity. + unfold mult_real_fct, mult_fct, fct_cte; reflexivity. Qed. Lemma derivable_pt_lim_id : forall x:R, derivable_pt_lim id x 1. Proof. - intro; unfold derivable_pt_lim in |- *. + intro; unfold derivable_pt_lim. intros eps Heps; exists (mkposreal eps Heps); intros h H1 H2; - unfold id in |- *; replace ((x + h - x) / h - 1) with 0. + unfold id; replace ((x + h - x) / h - 1) with 0. rewrite Rabs_R0; apply Rle_lt_trans with (Rabs h). apply Rabs_pos. assumption. - unfold Rminus in |- *; rewrite Rplus_assoc; rewrite (Rplus_comm x); + unfold Rminus; rewrite Rplus_assoc; rewrite (Rplus_comm x); rewrite Rplus_assoc. - rewrite Rplus_opp_l; rewrite Rplus_0_r; unfold Rdiv in |- *; + rewrite Rplus_opp_l; rewrite Rplus_0_r; unfold Rdiv; rewrite <- Rinv_r_sym. - symmetry in |- *; apply Rplus_opp_r. + symmetry ; apply Rplus_opp_r. assumption. Qed. Lemma derivable_pt_lim_Rsqr : forall x:R, derivable_pt_lim Rsqr x (2 * x). Proof. - intro; unfold derivable_pt_lim in |- *. - unfold Rsqr in |- *; intros eps Heps; exists (mkposreal eps Heps); + intro; unfold derivable_pt_lim. + unfold Rsqr; intros eps Heps; exists (mkposreal eps Heps); intros h H1 H2; replace (((x + h) * (x + h) - x * x) / h - 2 * x) with h. assumption. replace ((x + h) * (x + h) - x * x) with (2 * x * h + h * h); [ idtac | ring ]. - unfold Rdiv in |- *; rewrite Rmult_plus_distr_r. + unfold Rdiv; rewrite Rmult_plus_distr_r. repeat rewrite Rmult_assoc. repeat rewrite <- Rinv_r_sym; [ idtac | assumption ]. ring. @@ -684,7 +684,7 @@ Proof. assert (H1 := derivable_pt_lim_D_in (f2 o f1)%F (fun y:R => l2 * l1) x). elim H1; intros. clear H1 H3; apply H2. - unfold comp in |- *; + unfold comp; cut (D_in (fun x0:R => f2 (f1 x0)) (fun y:R => l2 * l1) (Dgf no_cond no_cond f1) x -> @@ -693,14 +693,14 @@ Proof. rewrite Rmult_comm; apply (Dcomp no_cond no_cond (fun y:R => l1) (fun y:R => l2) f1 f2 x); assumption. - unfold Dgf, D_in, no_cond in |- *; unfold limit1_in in |- *; - unfold limit_in in |- *; unfold dist in |- *; simpl in |- *; - unfold R_dist in |- *; intros. + unfold Dgf, D_in, no_cond; unfold limit1_in; + unfold limit_in; unfold dist; simpl; + unfold R_dist; intros. elim (H1 eps H3); intros. exists x0; intros; split. elim H5; intros; assumption. intros; elim H5; intros; apply H9; split. - unfold D_x in |- *; split. + unfold D_x; split. split; trivial. elim H6; intros; unfold D_x in H10; elim H10; intros; assumption. elim H6; intros; assumption. @@ -710,7 +710,7 @@ Lemma derivable_pt_plus : forall f1 f2 (x:R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 + f2) x. Proof. - unfold derivable_pt in |- *; intros f1 f2 x X X0. + unfold derivable_pt; intros f1 f2 x X X0. elim X; intros. elim X0; intros. exists (x0 + x1). @@ -720,7 +720,7 @@ Qed. Lemma derivable_pt_opp : forall f (x:R), derivable_pt f x -> derivable_pt (- f) x. Proof. - unfold derivable_pt in |- *; intros f x X. + unfold derivable_pt; intros f x X. elim X; intros. exists (- x0). apply derivable_pt_lim_opp; assumption. @@ -730,7 +730,7 @@ Lemma derivable_pt_minus : forall f1 f2 (x:R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 - f2) x. Proof. - unfold derivable_pt in |- *; intros f1 f2 x X X0. + unfold derivable_pt; intros f1 f2 x X X0. elim X; intros. elim X0; intros. exists (x0 - x1). @@ -741,7 +741,7 @@ Lemma derivable_pt_mult : forall f1 f2 (x:R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 * f2) x. Proof. - unfold derivable_pt in |- *; intros f1 f2 x X X0. + unfold derivable_pt; intros f1 f2 x X X0. elim X; intros. elim X0; intros. exists (x0 * f2 x + f1 x * x1). @@ -750,7 +750,7 @@ Qed. Lemma derivable_pt_const : forall a x:R, derivable_pt (fct_cte a) x. Proof. - intros; unfold derivable_pt in |- *. + intros; unfold derivable_pt. exists 0. apply derivable_pt_lim_const. Qed. @@ -758,7 +758,7 @@ Qed. Lemma derivable_pt_scal : forall f (a x:R), derivable_pt f x -> derivable_pt (mult_real_fct a f) x. Proof. - unfold derivable_pt in |- *; intros f1 a x X. + unfold derivable_pt; intros f1 a x X. elim X; intros. exists (a * x0). apply derivable_pt_lim_scal; assumption. @@ -766,14 +766,14 @@ Qed. Lemma derivable_pt_id : forall x:R, derivable_pt id x. Proof. - unfold derivable_pt in |- *; intro. + unfold derivable_pt; intro. exists 1. apply derivable_pt_lim_id. Qed. Lemma derivable_pt_Rsqr : forall x:R, derivable_pt Rsqr x. Proof. - unfold derivable_pt in |- *; intro; exists (2 * x). + unfold derivable_pt; intro; exists (2 * x). apply derivable_pt_lim_Rsqr. Qed. @@ -781,7 +781,7 @@ Lemma derivable_pt_comp : forall f1 f2 (x:R), derivable_pt f1 x -> derivable_pt f2 (f1 x) -> derivable_pt (f2 o f1) x. Proof. - unfold derivable_pt in |- *; intros f1 f2 x X X0. + unfold derivable_pt; intros f1 f2 x X X0. elim X; intros. elim X0; intros. exists (x1 * x0). @@ -791,57 +791,57 @@ Qed. Lemma derivable_plus : forall f1 f2, derivable f1 -> derivable f2 -> derivable (f1 + f2). Proof. - unfold derivable in |- *; intros f1 f2 X X0 x. + unfold derivable; intros f1 f2 X X0 x. apply (derivable_pt_plus _ _ x (X _) (X0 _)). Qed. Lemma derivable_opp : forall f, derivable f -> derivable (- f). Proof. - unfold derivable in |- *; intros f X x. + unfold derivable; intros f X x. apply (derivable_pt_opp _ x (X _)). Qed. Lemma derivable_minus : forall f1 f2, derivable f1 -> derivable f2 -> derivable (f1 - f2). Proof. - unfold derivable in |- *; intros f1 f2 X X0 x. + unfold derivable; intros f1 f2 X X0 x. apply (derivable_pt_minus _ _ x (X _) (X0 _)). Qed. Lemma derivable_mult : forall f1 f2, derivable f1 -> derivable f2 -> derivable (f1 * f2). Proof. - unfold derivable in |- *; intros f1 f2 X X0 x. + unfold derivable; intros f1 f2 X X0 x. apply (derivable_pt_mult _ _ x (X _) (X0 _)). Qed. Lemma derivable_const : forall a:R, derivable (fct_cte a). Proof. - unfold derivable in |- *; intros. + unfold derivable; intros. apply derivable_pt_const. Qed. Lemma derivable_scal : forall f (a:R), derivable f -> derivable (mult_real_fct a f). Proof. - unfold derivable in |- *; intros f a X x. + unfold derivable; intros f a X x. apply (derivable_pt_scal _ a x (X _)). Qed. Lemma derivable_id : derivable id. Proof. - unfold derivable in |- *; intro; apply derivable_pt_id. + unfold derivable; intro; apply derivable_pt_id. Qed. Lemma derivable_Rsqr : derivable Rsqr. Proof. - unfold derivable in |- *; intro; apply derivable_pt_Rsqr. + unfold derivable; intro; apply derivable_pt_Rsqr. Qed. Lemma derivable_comp : forall f1 f2, derivable f1 -> derivable f2 -> derivable (f2 o f1). Proof. - unfold derivable in |- *; intros f1 f2 X X0 x. + unfold derivable; intros f1 f2 X X0 x. apply (derivable_pt_comp _ _ x (X _) (X0 _)). Qed. @@ -996,13 +996,13 @@ Proof. elim (lt_irrefl _ H). cut (n = 0%nat \/ (0 < n)%nat). intro; elim H0; intro. - rewrite H1; simpl in |- *. + rewrite H1; simpl. replace (fun y:R => y * 1) with (id * fct_cte 1)%F. replace (1 * 1) with (1 * fct_cte 1 x + id x * 0). apply derivable_pt_lim_mult. apply derivable_pt_lim_id. apply derivable_pt_lim_const. - unfold fct_cte, id in |- *; ring. + unfold fct_cte, id; ring. reflexivity. replace (fun y:R => y ^ S n) with (fun y:R => y * y ^ n). replace (pred (S n)) with n; [ idtac | reflexivity ]. @@ -1011,13 +1011,13 @@ Proof. replace (INR (S n) * x ^ n) with (1 * f x + id x * (INR n * x ^ pred n)). apply derivable_pt_lim_mult. apply derivable_pt_lim_id. - unfold f in |- *; apply Hrecn; assumption. - unfold f in |- *. - pattern n at 1 5 in |- *; replace n with (S (pred n)). - unfold id in |- *; rewrite S_INR; simpl in |- *. + unfold f; apply Hrecn; assumption. + unfold f. + pattern n at 1 5; replace n with (S (pred n)). + unfold id; rewrite S_INR; simpl. ring. - symmetry in |- *; apply S_pred with 0%nat; assumption. - unfold mult_fct, id in |- *; reflexivity. + symmetry ; apply S_pred with 0%nat; assumption. + unfold mult_fct, id; reflexivity. reflexivity. inversion H. left; reflexivity. @@ -1033,7 +1033,7 @@ Lemma derivable_pt_lim_pow : Proof. intros. induction n as [| n Hrecn]. - simpl in |- *. + simpl. rewrite Rmult_0_l. replace (fun _:R => 1) with (fct_cte 1); [ apply derivable_pt_lim_const | reflexivity ]. @@ -1044,14 +1044,14 @@ Qed. Lemma derivable_pt_pow : forall (n:nat) (x:R), derivable_pt (fun y:R => y ^ n) x. Proof. - intros; unfold derivable_pt in |- *. + intros; unfold derivable_pt. exists (INR n * x ^ pred n). apply derivable_pt_lim_pow. Qed. Lemma derivable_pow : forall n:nat, derivable (fun y:R => y ^ n). Proof. - intro; unfold derivable in |- *; intro; apply derivable_pt_pow. + intro; unfold derivable; intro; apply derivable_pt_pow. Qed. Lemma derive_pt_pow : @@ -1073,7 +1073,7 @@ Proof. elim pr2; intros. unfold derivable_pt_abs in p. unfold derivable_pt_abs in p0. - simpl in |- *. + simpl. apply (uniqueness_limite f x x0 x1 p p0). Qed. @@ -1094,7 +1094,7 @@ Proof. assert (H5 := derive_pt_eq_1 f c l pr H4). cut (0 < l / 2); [ intro - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ]. elim (H5 (l / 2) H6); intros delta H7. cut (0 < (b - c) / 2). @@ -1119,7 +1119,7 @@ Proof. (Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2). - unfold Rabs in |- *; + unfold Rabs; case (Rcase_abs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / @@ -1157,7 +1157,7 @@ Proof. (Rlt_le_trans 0 ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) 0 H22 H16)). - pattern l at 2 in |- *; rewrite double_var. + pattern l at 2; rewrite double_var. ring. ring. intro. @@ -1183,7 +1183,7 @@ Proof. l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) - f c) / - Rmin (delta / 2) ((b + - c) / 2))) in |- *; apply Rplus_lt_le_0_compat; + Rmin (delta / 2) ((b + - c) / 2))); apply Rplus_lt_le_0_compat; [ assumption | rewrite <- Ropp_0; apply Ropp_ge_le_contravar; apply Rle_ge; assumption ]. unfold Rminus; ring. @@ -1195,13 +1195,13 @@ Proof. ((f c - f (c + Rmin (delta / 2) ((b - c) / 2))) / Rmin (delta / 2) ((b - c) / 2))). rewrite <- Ropp_0; apply Ropp_ge_le_contravar; apply Rle_ge; - unfold Rdiv in |- *; apply Rmult_le_pos; + unfold Rdiv; apply Rmult_le_pos; [ generalize (Rplus_le_compat_r (- f (c + Rmin (delta * / 2) ((b - c) * / 2))) (f (c + Rmin (delta * / 2) ((b - c) * / 2))) ( f c) H15); rewrite Rplus_opp_r; intro; assumption | left; apply Rinv_0_lt_compat; assumption ]. - unfold Rdiv in |- *. + unfold Rdiv. rewrite <- Ropp_mult_distr_l_reverse. repeat rewrite <- (Rmult_comm (/ Rmin (delta * / 2) ((b - c) * / 2))). apply Rmult_eq_reg_l with (Rmin (delta * / 2) ((b - c) * / 2)). @@ -1209,9 +1209,9 @@ Proof. rewrite <- Rinv_r_sym. repeat rewrite Rmult_1_l. ring. - red in |- *; intro. + red; intro. unfold Rdiv in H12; rewrite H16 in H12; elim (Rlt_irrefl 0 H12). - red in |- *; intro. + red; intro. unfold Rdiv in H12; rewrite H16 in H12; elim (Rlt_irrefl 0 H12). assert (H14 := Rmin_r (delta / 2) ((b - c) / 2)). assert @@ -1225,7 +1225,7 @@ Proof. replace (2 * b) with (b + b). apply Rplus_lt_compat_r; assumption. ring. - unfold Rdiv in |- *; rewrite Rmult_plus_distr_l. + unfold Rdiv; rewrite Rmult_plus_distr_l. repeat rewrite (Rmult_comm 2). rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r. @@ -1233,51 +1233,51 @@ Proof. discrR. apply Rlt_trans with c. assumption. - pattern c at 1 in |- *; rewrite <- (Rplus_0_r c); apply Rplus_lt_compat_l; + pattern c at 1; rewrite <- (Rplus_0_r c); apply Rplus_lt_compat_l; assumption. cut (0 < delta / 2). intro; apply (Rmin_stable_in_posreal (mkposreal (delta / 2) H12) (mkposreal ((b - c) / 2) H8)). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ]. - unfold Rabs in |- *; case (Rcase_abs (Rmin (delta / 2) ((b - c) / 2))). + unfold Rabs; case (Rcase_abs (Rmin (delta / 2) ((b - c) / 2))). intro. cut (0 < delta / 2). intro. generalize (Rmin_stable_in_posreal (mkposreal (delta / 2) H10) - (mkposreal ((b - c) / 2) H8)); simpl in |- *; intro; + (mkposreal ((b - c) / 2) H8)); simpl; intro; elim (Rlt_irrefl 0 (Rlt_trans 0 (Rmin (delta / 2) ((b - c) / 2)) 0 H11 r)). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ]. intro; apply Rle_lt_trans with (delta / 2). apply Rmin_l. - unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2. + unfold Rdiv; apply Rmult_lt_reg_l with 2. prove_sup0. rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_l. replace (2 * delta) with (delta + delta). - pattern delta at 2 in |- *; rewrite <- (Rplus_0_r delta); + pattern delta at 2; rewrite <- (Rplus_0_r delta); apply Rplus_lt_compat_l. rewrite Rplus_0_r; apply (cond_pos delta). - symmetry in |- *; apply double. + symmetry ; apply double. discrR. cut (0 < delta / 2). intro; generalize (Rmin_stable_in_posreal (mkposreal (delta / 2) H9) - (mkposreal ((b - c) / 2) H8)); simpl in |- *; - intro; red in |- *; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + (mkposreal ((b - c) / 2) H8)); simpl; + intro; red; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10). + unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ]. - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + unfold Rdiv; apply Rmult_lt_0_compat. generalize (Rplus_lt_compat_r (- c) c b H0); rewrite Rplus_opp_r; intro; assumption. apply Rinv_0_lt_compat; prove_sup0. elim H2; intro. - symmetry in |- *; assumption. + symmetry ; assumption. generalize (derivable_derive f c pr); intro; elim H4; intros l H5. rewrite H5 in H3; generalize (derive_pt_eq_1 f c l pr H5); intro; cut (0 < - (l / 2)). @@ -1307,7 +1307,7 @@ Proof. ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)). - unfold Rabs in |- *; + unfold Rabs; case (Rcase_abs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / @@ -1339,12 +1339,12 @@ Proof. Rmax (- (delta / 2)) ((a - c) / 2)) 0 H17 H23)). rewrite <- (Ropp_involutive (l / 2)); rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; assumption. - pattern l at 3 in |- *; rewrite double_var. + pattern l at 3; rewrite double_var. ring. assumption. apply Rplus_le_lt_0_compat; assumption. rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; assumption. - unfold Rdiv in |- *; + unfold Rdiv; replace ((f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)) with @@ -1361,7 +1361,7 @@ Proof. ring. left; apply Rinv_0_lt_compat; rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; assumption. - unfold Rdiv in |- *. + unfold Rdiv. rewrite <- Ropp_inv_permute. rewrite Rmult_opp_opp. reflexivity. @@ -1380,7 +1380,7 @@ Proof. apply Rplus_lt_compat_l; assumption. field; discrR. assumption. - unfold Rabs in |- *; case (Rcase_abs (Rmax (- (delta / 2)) ((a - c) / 2))). + unfold Rabs; case (Rcase_abs (Rmax (- (delta / 2)) ((a - c) / 2))). intro; generalize (RmaxLess1 (- (delta / 2)) ((a - c) / 2)); intro; generalize (Ropp_le_ge_contravar (- (delta / 2)) (Rmax (- (delta / 2)) ((a - c) / 2)) @@ -1390,10 +1390,10 @@ Proof. assumption. apply Rmult_lt_reg_l with 2. prove_sup0. - unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_l; rewrite double. - pattern delta at 2 in |- *; rewrite <- (Rplus_0_r delta); + pattern delta at 2; rewrite <- (Rplus_0_r delta); apply Rplus_lt_compat_l; rewrite Rplus_0_r; apply (cond_pos delta). discrR. cut (- (delta / 2) < 0). @@ -1401,7 +1401,7 @@ Proof. intros; generalize (Rmax_stable_in_negreal (mknegreal (- (delta / 2)) H13) - (mknegreal ((a - c) / 2) H12)); simpl in |- *; + (mknegreal ((a - c) / 2) H12)); simpl; intro; generalize (Rge_le (Rmax (- (delta / 2)) ((a - c) / 2)) 0 r); intro; elim @@ -1410,41 +1410,41 @@ Proof. rewrite <- Ropp_0; rewrite <- (Ropp_involutive ((a - c) / 2)); apply Ropp_lt_gt_contravar; replace (- ((a - c) / 2)) with ((c - a) / 2). assumption. - unfold Rdiv in |- *. + unfold Rdiv. rewrite <- Ropp_mult_distr_l_reverse. rewrite (Ropp_minus_distr a c). reflexivity. - rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv in |- *; + rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos delta) | assert (Hyp : 0 < 2); [ prove_sup0 | apply (Rinv_0_lt_compat 2 Hyp) ] ]. - red in |- *; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10). + red; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10). cut ((a - c) / 2 < 0). intro; cut (- (delta / 2) < 0). intro; apply (Rmax_stable_in_negreal (mknegreal (- (delta / 2)) H11) (mknegreal ((a - c) / 2) H10)). - rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv in |- *; + rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos delta) | assert (Hyp : 0 < 2); [ prove_sup0 | apply (Rinv_0_lt_compat 2 Hyp) ] ]. rewrite <- Ropp_0; rewrite <- (Ropp_involutive ((a - c) / 2)); apply Ropp_lt_gt_contravar; replace (- ((a - c) / 2)) with ((c - a) / 2). assumption. - unfold Rdiv in |- *. + unfold Rdiv. rewrite <- Ropp_mult_distr_l_reverse. rewrite (Ropp_minus_distr a c). reflexivity. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ generalize (Rplus_lt_compat_r (- a) a c H); rewrite Rplus_opp_r; intro; assumption | assert (Hyp : 0 < 2); [ prove_sup0 | apply (Rinv_0_lt_compat 2 Hyp) ] ]. replace (- (l / 2)) with (- l / 2). - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + unfold Rdiv; apply Rmult_lt_0_compat. rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; assumption. assert (Hyp : 0 < 2); [ prove_sup0 | apply (Rinv_0_lt_compat 2 Hyp) ]. - unfold Rdiv in |- *; apply Ropp_mult_distr_l_reverse. + unfold Rdiv; apply Ropp_mult_distr_l_reverse. Qed. Theorem deriv_minimum : @@ -1460,7 +1460,7 @@ Proof. cut (forall x:R, a < x -> x < b -> (- f)%F x <= (- f)%F c). intro. apply (deriv_maximum (- f)%F a b c (derivable_pt_opp _ _ pr) H H0 H2). - intros; unfold opp_fct in |- *; apply Ropp_ge_le_contravar; apply Rle_ge. + intros; unfold opp_fct; apply Ropp_ge_le_contravar; apply Rle_ge. apply (H1 x H2 H3). Qed. @@ -1493,7 +1493,7 @@ Proof. intro; decompose [and] H7; intros; generalize (H6 (delta / 2) H8 H11); cut (0 <= (f (x + delta / 2) - f x) / (delta / 2)). intro; cut (0 <= (f (x + delta / 2) - f x) / (delta / 2) - l). - intro; unfold Rabs in |- *; + intro; unfold Rabs; case (Rcase_abs ((f (x + delta / 2) - f x) / (delta / 2) - l)). intro; elim @@ -1502,7 +1502,7 @@ Proof. intros; generalize (Rplus_lt_compat_r l ((f (x + delta / 2) - f x) / (delta / 2) - l) - (- (l / 2)) H13); unfold Rminus in |- *; + (- (l / 2)) H13); unfold Rminus; replace (- (l / 2) + l) with (l / 2). rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; intro; generalize @@ -1512,50 +1512,50 @@ Proof. rewrite <- Ropp_0 in H5; generalize (Ropp_lt_gt_contravar (-0) (- (l / 2)) H5); repeat rewrite Ropp_involutive; intro; assumption. - pattern l at 3 in |- *; rewrite double_var. + pattern l at 3; rewrite double_var. ring. - unfold Rminus in |- *; apply Rplus_le_le_0_compat. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Rminus; apply Rplus_le_le_0_compat. + unfold Rdiv; apply Rmult_le_pos. cut (x <= x + delta * / 2). intro; generalize (H x (x + delta * / 2) H12); intro; generalize (Rplus_le_compat_l (- f x) (f x) (f (x + delta * / 2)) H13); rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption. - pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; + pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; left; assumption. left; apply Rinv_0_lt_compat; assumption. left; rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; assumption. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Rdiv; apply Rmult_le_pos. cut (x <= x + delta * / 2). intro; generalize (H x (x + delta * / 2) H9); intro; generalize (Rplus_le_compat_l (- f x) (f x) (f (x + delta * / 2)) H12); rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption. - pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; + pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; left; assumption. left; apply Rinv_0_lt_compat; assumption. split. - unfold Rdiv in |- *; apply prod_neq_R0. - generalize (cond_pos delta); intro; red in |- *; intro H9; rewrite H9 in H7; + unfold Rdiv; apply prod_neq_R0. + generalize (cond_pos delta); intro; red; intro H9; rewrite H9 in H7; elim (Rlt_irrefl 0 H7). apply Rinv_neq_0_compat; discrR. split. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ]. replace (Rabs (delta / 2)) with (delta / 2). - unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2. + unfold Rdiv; apply Rmult_lt_reg_l with 2. prove_sup0. rewrite (Rmult_comm 2). rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]. rewrite Rmult_1_r. rewrite double. - pattern (pos delta) at 1 in |- *; rewrite <- Rplus_0_r. + pattern (pos delta) at 1; rewrite <- Rplus_0_r. apply Rplus_lt_compat_l; apply (cond_pos delta). - symmetry in |- *; apply Rabs_right. - left; change (0 < delta / 2) in |- *; unfold Rdiv in |- *; + symmetry ; apply Rabs_right. + left; change (0 < delta / 2); unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ]. - unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse; + unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_lt_0_compat. apply Rplus_lt_reg_r with l. - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rplus_0_r; assumption. + unfold Rminus; rewrite Rplus_opp_r; rewrite Rplus_0_r; assumption. apply Rinv_0_lt_compat; prove_sup0. Qed. diff --git a/theories/Reals/Ranalysis2.v b/theories/Reals/Ranalysis2.v index ed80ac43..3c15a305 100644 --- a/theories/Reals/Ranalysis2.v +++ b/theories/Reals/Ranalysis2.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 -> D_x no_cond x (x + a). Proof. intros. - unfold D_x, no_cond in |- *. + unfold D_x, no_cond. split. trivial. apply Rminus_not_eq. - unfold Rminus in |- *. + unfold Rminus. rewrite Ropp_plus_distr. rewrite <- Rplus_assoc. rewrite Rplus_opp_r. @@ -394,7 +394,7 @@ Qed. Lemma quadruple_var : forall x:R, x = x / 4 + x / 4 + x / 4 + x / 4. Proof. intro; rewrite <- quadruple. - unfold Rdiv in |- *; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m; discrR. + unfold Rdiv; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m; discrR. reflexivity. Qed. @@ -413,10 +413,10 @@ Proof. cut (dist R_met (x0 + h) x0 < x -> dist R_met (f (x0 + h)) (f x0) < Rabs (f x0 / 2)). - unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; + unfold dist; simpl; unfold R_dist; replace (x0 + h - x0) with h. intros; assert (H7 := H6 H4). - red in |- *; intro. + red; intro. rewrite H8 in H7; unfold Rminus in H7; rewrite Rplus_0_l in H7; rewrite Rabs_Ropp in H7; unfold Rdiv in H7; rewrite Rabs_mult in H7; pattern (Rabs (f x0)) at 1 in H7; rewrite <- Rmult_1_r in H7. @@ -429,10 +429,10 @@ Proof. rewrite Rmult_1_r in H12; rewrite <- Rinv_r_sym in H12; [ idtac | discrR ]. cut (IZR 1 < IZR 2). - unfold IZR in |- *; unfold INR, nat_of_P in |- *; simpl in |- *; intro; + unfold IZR; unfold INR, Pos.to_nat; simpl; intro; elim (Rlt_irrefl 1 (Rlt_trans _ _ _ H13 H12)). apply IZR_lt; omega. - unfold Rabs in |- *; case (Rcase_abs (/ 2)); intro. + unfold Rabs; case (Rcase_abs (/ 2)); intro. assert (Hyp : 0 < 2). prove_sup0. assert (H11 := Rmult_lt_compat_l 2 _ _ Hyp r); rewrite Rmult_0_r in H11; @@ -442,18 +442,18 @@ Proof. apply (Rabs_pos_lt _ H0). ring. assert (H6 := Req_dec x0 (x0 + h)); elim H6; intro. - intro; rewrite <- H7; unfold dist, R_met in |- *; unfold R_dist in |- *; - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + intro; rewrite <- H7; unfold dist, R_met; unfold R_dist; + unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply Rabs_pos_lt. - unfold Rdiv in |- *; apply prod_neq_R0; + unfold Rdiv; apply prod_neq_R0; [ assumption | apply Rinv_neq_0_compat; discrR ]. intro; apply H5. split. - unfold D_x, no_cond in |- *. + unfold D_x, no_cond. split; trivial || assumption. assumption. - change (0 < Rabs (f x0 / 2)) in |- *. - apply Rabs_pos_lt; unfold Rdiv in |- *; apply prod_neq_R0. + change (0 < Rabs (f x0 / 2)). + apply Rabs_pos_lt; unfold Rdiv; apply prod_neq_R0. assumption. apply Rinv_neq_0_compat; discrR. Qed. diff --git a/theories/Reals/Ranalysis3.v b/theories/Reals/Ranalysis3.v index afd4a4ee..5eaf5a57 100644 --- a/theories/Reals/Ranalysis3.v +++ b/theories/Reals/Ranalysis3.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* / Rabs (f2 (x + a)) < 2 / Rabs (f2 x)). intro Maj. - unfold derivable_pt_lim in |- *; intros. + unfold derivable_pt_lim; intros. elim (H (Rabs (eps * f2 x / 8))); [ idtac - | unfold Rdiv in |- *; change (0 < Rabs (eps * f2 x * / 8)) in |- *; + | unfold Rdiv; change (0 < Rabs (eps * f2 x * / 8)); apply Rabs_pos_lt; repeat apply prod_neq_R0; - [ red in |- *; intro H7; rewrite H7 in H6; elim (Rlt_irrefl _ H6) + [ red; intro H7; rewrite H7 in H6; elim (Rlt_irrefl _ H6) | assumption | apply Rinv_neq_0_compat; discrR ] ]. intros alp_f1d H7. @@ -68,7 +68,7 @@ Proof. | elim H3; intros; assumption | apply (cond_pos alp_f1d) ] ]. exists (mkposreal (Rmin eps_f2 (Rmin alp_f2 alp_f1d)) H10). - simpl in |- *; intros. + simpl; intros. assert (H13 := Rlt_le_trans _ _ _ H12 (Rmin_r _ _)). assert (H14 := Rlt_le_trans _ _ _ H12 (Rmin_l _ _)). assert (H15 := Rlt_le_trans _ _ _ H13 (Rmin_r _ _)). @@ -80,7 +80,7 @@ Proof. Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) + Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) + Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))). - unfold Rminus in |- *. + unfold Rminus. rewrite <- (Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2))) . @@ -98,15 +98,15 @@ Proof. intros. apply Rlt_4; assumption. rewrite H8. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite H8. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite H9. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite <- Rabs_mult. @@ -114,7 +114,7 @@ Proof. try assumption || apply H2. apply H14. apply Rmin_2; assumption. - right; symmetry in |- *; apply quadruple_var. + right; symmetry ; apply quadruple_var. (***********************************) (* Second case *) (* (f1 x)=0 l1<>0 *) @@ -137,7 +137,7 @@ Proof. cut (0 < Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2)). intro. exists (mkposreal (Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2)) H12). - simpl in |- *. + simpl. intros. assert (H15 := Rlt_le_trans _ _ _ H14 (Rmin_r _ _)). assert (H16 := Rlt_le_trans _ _ _ H14 (Rmin_l _ _)). @@ -152,7 +152,7 @@ Proof. Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) + Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) + Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))). - unfold Rminus in |- *. + unfold Rminus. rewrite <- (Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2))) . @@ -170,11 +170,11 @@ Proof. intros. apply Rlt_4; assumption. rewrite H8. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite H8. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite <- Rabs_mult. @@ -185,7 +185,7 @@ Proof. apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption. apply H2; assumption. apply Rmin_2; assumption. - right; symmetry in |- *; apply quadruple_var. + right; symmetry ; apply quadruple_var. apply H2; assumption. repeat apply Rmin_pos. apply (cond_pos eps_f2). @@ -196,21 +196,21 @@ Proof. elim H10; intros. case (Req_dec a 0); intro. rewrite H14; rewrite Rplus_0_r. - unfold Rminus in |- *; rewrite Rplus_opp_r. + unfold Rminus; rewrite Rplus_opp_r. rewrite Rabs_R0. apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; repeat rewrite Rmult_assoc. + unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc. repeat apply prod_neq_R0; try assumption. - red in |- *; intro; rewrite H15 in H6; elim (Rlt_irrefl _ H6). + red; intro; rewrite H15 in H6; elim (Rlt_irrefl _ H6). apply Rinv_neq_0_compat; repeat apply prod_neq_R0; discrR || assumption. apply H13. split. apply D_x_no_cond; assumption. replace (x + a - x) with a; [ assumption | ring ]. - change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))) in |- *. - apply Rabs_pos_lt; unfold Rdiv, Rsqr in |- *; repeat rewrite Rmult_assoc; + change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))). + apply Rabs_pos_lt; unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc; repeat apply prod_neq_R0. - red in |- *; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6). + red; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6). assumption. assumption. apply Rinv_neq_0_compat; repeat apply prod_neq_R0; @@ -223,17 +223,17 @@ Proof. case (Req_dec l2 0); intro. elim (H0 (Rabs (Rsqr (f2 x) * eps / (8 * f1 x)))); [ idtac - | apply Rabs_pos_lt; unfold Rdiv, Rsqr in |- *; repeat rewrite Rmult_assoc; + | apply Rabs_pos_lt; unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc; repeat apply prod_neq_R0; [ assumption | assumption - | red in |- *; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6) + | red; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6) | apply Rinv_neq_0_compat; repeat apply prod_neq_R0; discrR || assumption ] ]. intros alp_f2d H12. cut (0 < Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)). intro. exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) H11). - simpl in |- *. + simpl. intros. assert (H15 := Rlt_le_trans _ _ _ H14 (Rmin_l _ _)). assert (H16 := Rlt_le_trans _ _ _ H14 (Rmin_r _ _)). @@ -248,7 +248,7 @@ Proof. Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) + Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) + Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))). - unfold Rminus in |- *. + unfold Rminus. rewrite <- (Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2))) . @@ -266,7 +266,7 @@ Proof. intros. apply Rlt_4; assumption. rewrite H10. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite <- Rabs_mult. @@ -274,14 +274,14 @@ Proof. apply H2; assumption. apply Rmin_2; assumption. rewrite H9. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite <- Rabs_mult. apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); assumption || idtac. apply H2; assumption. apply Rmin_2; assumption. - right; symmetry in |- *; apply quadruple_var. + right; symmetry ; apply quadruple_var. apply H2; assumption. repeat apply Rmin_pos. apply (cond_pos eps_f2). @@ -294,7 +294,7 @@ Proof. (***********************************) elim (H0 (Rabs (Rsqr (f2 x) * eps / (8 * f1 x)))); [ idtac - | apply Rabs_pos_lt; unfold Rsqr, Rdiv in |- *; + | apply Rabs_pos_lt; unfold Rsqr, Rdiv; repeat rewrite Rinv_mult_distr; repeat apply prod_neq_R0; try assumption || discrR ]. intros alp_f2d H11. @@ -313,7 +313,7 @@ Proof. exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c))) H14). - simpl in |- *; intros. + simpl; intros. assert (H17 := Rlt_le_trans _ _ _ H16 (Rmin_l _ _)). assert (H18 := Rlt_le_trans _ _ _ H16 (Rmin_r _ _)). assert (H19 := Rlt_le_trans _ _ _ H18 (Rmin_r _ _)). @@ -335,7 +335,7 @@ Proof. Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) + Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) + Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))). - unfold Rminus in |- *. + unfold Rminus. rewrite <- (Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2))) . @@ -361,24 +361,24 @@ Proof. apply H2; assumption. apply Rmin_2; assumption. rewrite H9. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite <- Rabs_mult. apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption. apply H2; assumption. apply Rmin_2; assumption. - right; symmetry in |- *; apply quadruple_var. + right; symmetry ; apply quadruple_var. apply H2; assumption. intros. case (Req_dec a 0); intro. rewrite H17; rewrite Rplus_0_r. - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0. + unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0. apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *. + unfold Rdiv, Rsqr. repeat rewrite Rinv_mult_distr; try assumption. repeat apply prod_neq_R0; try assumption. - red in |- *; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6). + red; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6). apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; discrR. @@ -401,19 +401,19 @@ Proof. apply (cond_pos alp_f1d). apply (cond_pos alp_f2d). elim H13; intros; assumption. - change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))) in |- *. + change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))). apply Rabs_pos_lt. - unfold Rsqr, Rdiv in |- *. + unfold Rsqr, Rdiv. repeat rewrite Rinv_mult_distr; try assumption || discrR. repeat apply prod_neq_R0; try assumption. - red in |- *; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6). + red; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6). apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; assumption. apply Rinv_neq_0_compat; assumption. apply prod_neq_R0; [ discrR | assumption ]. - red in |- *; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6). + red; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6). apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; discrR. @@ -440,7 +440,7 @@ Proof. exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2))) H13). - simpl in |- *. + simpl. intros. cut (forall a:R, @@ -462,7 +462,7 @@ Proof. Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) + Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) + Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))). - unfold Rminus in |- *. + unfold Rminus. rewrite <- (Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2))) . @@ -480,7 +480,7 @@ Proof. intros. apply Rlt_4; assumption. rewrite H10. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite <- Rabs_mult. @@ -495,20 +495,20 @@ Proof. apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption. apply H2; assumption. apply Rmin_2; assumption. - right; symmetry in |- *; apply quadruple_var. + right; symmetry ; apply quadruple_var. apply H2; assumption. intros. case (Req_dec a 0); intro. - rewrite H17; rewrite Rplus_0_r; unfold Rminus in |- *; rewrite Rplus_opp_r; + rewrite H17; rewrite Rplus_0_r; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0. apply Rabs_pos_lt. - unfold Rdiv in |- *; rewrite Rinv_mult_distr; try discrR || assumption. - unfold Rsqr in |- *. + unfold Rdiv; rewrite Rinv_mult_distr; try discrR || assumption. + unfold Rsqr. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6)). + (red; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6)). elim H11; intros. apply H19. split. @@ -521,20 +521,20 @@ Proof. apply (cond_pos alp_f2d). elim H11; intros; assumption. apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr; try discrR || assumption. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr; try discrR || assumption. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)). - change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))) in |- *. + (red; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)). + change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))). apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr; try discrR || assumption. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr; try discrR || assumption. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)). + (red; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)). (***********************************) (* Sixth case *) (* (f1 x)<>0 l1<>0 l2<>0 *) @@ -562,7 +562,7 @@ Proof. (mkposreal (Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) (Rmin alp_f2c alp_f2t2)) H15). - simpl in |- *. + simpl. intros. assert (H18 := Rlt_le_trans _ _ _ H17 (Rmin_l _ _)). assert (H19 := Rlt_le_trans _ _ _ H17 (Rmin_r _ _)). @@ -591,7 +591,7 @@ Proof. Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) + Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) + Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))). - unfold Rminus in |- *. + unfold Rminus. rewrite <- (Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2))) . @@ -624,18 +624,18 @@ Proof. apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption. apply H2; assumption. apply Rmin_2; assumption. - right; symmetry in |- *; apply quadruple_var. + right; symmetry ; apply quadruple_var. apply H2; assumption. intros. case (Req_dec a 0); intro. - rewrite H18; rewrite Rplus_0_r; unfold Rminus in |- *; rewrite Rplus_opp_r; + rewrite H18; rewrite Rplus_0_r; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)). + (red; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)). apply prod_neq_R0; [ discrR | assumption ]. apply prod_neq_R0; [ discrR | assumption ]. assumption. @@ -646,20 +646,20 @@ Proof. replace (x + a - x) with a; [ assumption | ring ]. intros. case (Req_dec a 0); intro. - rewrite H18; rewrite Rplus_0_r; unfold Rminus in |- *; rewrite Rplus_opp_r; + rewrite H18; rewrite Rplus_0_r; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)). + (red; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)). discrR. assumption. elim H14; intros. apply H20. split. - unfold D_x, no_cond in |- *; split. + unfold D_x, no_cond; split. trivial. apply Rminus_not_eq_right. replace (x + a - x) with a; [ assumption | ring ]. @@ -671,34 +671,34 @@ Proof. apply (cond_pos alp_f2d). elim H13; intros; assumption. elim H14; intros; assumption. - change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))) in |- *; apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr; try discrR || assumption. + change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))); apply Rabs_pos_lt. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr; try discrR || assumption. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H14; rewrite H14 in H6; elim (Rlt_irrefl _ H6)). - change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))) in |- *; + (red; intro H14; rewrite H14 in H6; elim (Rlt_irrefl _ H6)). + change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))); apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6)). + (red; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6)). apply prod_neq_R0; [ discrR | assumption ]. apply prod_neq_R0; [ discrR | assumption ]. assumption. apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr; + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr; [ idtac | discrR | assumption ]. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6)). + (red; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6)). intros. - unfold Rdiv in |- *. + unfold Rdiv. apply Rmult_lt_reg_l with (Rabs (f2 (x + a))). apply Rabs_pos_lt; apply H2. apply Rlt_le_trans with (Rmin eps_f2 alp_f2). @@ -739,13 +739,13 @@ Proof. unfold Rminus in H7; assumption. intros. case (Req_dec x x0); intro. - rewrite <- H5; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + rewrite <- H5; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply Rabs_pos_lt; assumption | apply Rinv_0_lt_compat; prove_sup0 ]. elim H3; intros. apply H7. split. - unfold D_x, no_cond in |- *; split. + unfold D_x, no_cond; split. trivial. assumption. assumption. @@ -756,7 +756,7 @@ Lemma derivable_pt_div : derivable_pt f1 x -> derivable_pt f2 x -> f2 x <> 0 -> derivable_pt (f1 / f2) x. Proof. - unfold derivable_pt in |- *. + unfold derivable_pt. intros f1 f2 x X X0 H. elim X; intros. elim X0; intros. @@ -769,7 +769,7 @@ Lemma derivable_div : derivable f1 -> derivable f2 -> (forall x:R, f2 x <> 0) -> derivable (f1 / f2). Proof. - unfold derivable in |- *; intros f1 f2 X X0 H x. + unfold derivable; intros f1 f2 X X0 H x. apply (derivable_pt_div _ _ _ (X x) (X0 x) (H x)). Qed. diff --git a/theories/Reals/Ranalysis4.v b/theories/Reals/Ranalysis4.v index cc658fee..00c07592 100644 --- a/theories/Reals/Ranalysis4.v +++ b/theories/Reals/Ranalysis4.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x), f = g -> derive_pt f x pr1 = derive_pt g x pr2. Proof. - unfold derivable_pt, derive_pt in |- *; intros. + unfold derivable_pt, derive_pt; intros. elim pr1; intros. elim pr2; intros. - simpl in |- *. + simpl. rewrite H in p. apply uniqueness_limite with g x; assumption. Qed. @@ -54,17 +54,17 @@ Lemma pr_nu_var2 : forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x), (forall h:R, f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2. Proof. - unfold derivable_pt, derive_pt in |- *; intros. + unfold derivable_pt, derive_pt; intros. elim pr1; intros. elim pr2; intros. - simpl in |- *. + simpl. assert (H0 := uniqueness_step2 _ _ _ p). assert (H1 := uniqueness_step2 _ _ _ p0). cut (limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) x1 0). intro; assert (H3 := uniqueness_step1 _ _ _ _ H0 H2). assumption. - unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *; - simpl in |- *; unfold R_dist in |- *; unfold limit1_in in H1; + unfold limit1_in; unfold limit_in; unfold dist; + simpl; unfold R_dist; unfold limit1_in in H1; unfold limit_in in H1; unfold dist in H1; simpl in H1; unfold R_dist in H1. intros; elim (H1 eps H2); intros. @@ -80,7 +80,7 @@ Lemma derivable_inv : forall f:R -> R, (forall x:R, f x <> 0) -> derivable f -> derivable (/ f). Proof. intros f H X. - unfold derivable in |- *; intro x. + unfold derivable; intro x. apply derivable_pt_inv. apply (H x). apply (X x). @@ -95,25 +95,25 @@ Proof. replace (derive_pt (/ f) x (derivable_pt_inv f x na pr)) with (derive_pt (fct_cte 1 / f) x (derivable_pt_div (fct_cte 1) f x (derivable_pt_const 1 x) pr na)). - rewrite derive_pt_div; rewrite derive_pt_const; unfold fct_cte in |- *; - rewrite Rmult_0_l; rewrite Rmult_1_r; unfold Rminus in |- *; + rewrite derive_pt_div; rewrite derive_pt_const; unfold fct_cte; + rewrite Rmult_0_l; rewrite Rmult_1_r; unfold Rminus; rewrite Rplus_0_l; reflexivity. apply pr_nu_var2. - intro; unfold div_fct, fct_cte, inv_fct in |- *. - unfold Rdiv in |- *; ring. + intro; unfold div_fct, fct_cte, inv_fct. + unfold Rdiv; ring. Qed. (** Rabsolu *) Lemma Rabs_derive_1 : forall x:R, 0 < x -> derivable_pt_lim Rabs x 1. Proof. intros. - unfold derivable_pt_lim in |- *; intros. + unfold derivable_pt_lim; intros. exists (mkposreal x H); intros. rewrite (Rabs_right x). rewrite (Rabs_right (x + h)). rewrite Rplus_comm. - unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_r. - rewrite Rplus_0_r; unfold Rdiv in |- *; rewrite <- Rinv_r_sym. + unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_r. + rewrite Rplus_0_r; unfold Rdiv; rewrite <- Rinv_r_sym. rewrite Rplus_opp_r; rewrite Rabs_R0; apply H0. apply H1. apply Rle_ge. @@ -131,16 +131,16 @@ Qed. Lemma Rabs_derive_2 : forall x:R, x < 0 -> derivable_pt_lim Rabs x (-1). Proof. intros. - unfold derivable_pt_lim in |- *; intros. + unfold derivable_pt_lim; intros. cut (0 < - x). intro; exists (mkposreal (- x) H1); intros. rewrite (Rabs_left x). rewrite (Rabs_left (x + h)). rewrite Rplus_comm. rewrite Ropp_plus_distr. - unfold Rminus in |- *; rewrite Ropp_involutive; rewrite Rplus_assoc; + unfold Rminus; rewrite Ropp_involutive; rewrite Rplus_assoc; rewrite Rplus_opp_l. - rewrite Rplus_0_r; unfold Rdiv in |- *. + rewrite Rplus_0_r; unfold Rdiv. rewrite Ropp_mult_distr_l_reverse. rewrite <- Rinv_r_sym. rewrite Ropp_involutive; rewrite Rplus_opp_l; rewrite Rabs_R0; apply H0. @@ -163,24 +163,24 @@ Proof. intros. case (total_order_T x 0); intro. elim s; intro. - unfold derivable_pt in |- *; exists (-1). + unfold derivable_pt; exists (-1). apply (Rabs_derive_2 x a). elim H; exact b. - unfold derivable_pt in |- *; exists 1. + unfold derivable_pt; exists 1. apply (Rabs_derive_1 x r). Qed. (** Rabsolu is continuous for all x *) Lemma Rcontinuity_abs : continuity Rabs. Proof. - unfold continuity in |- *; intro. + unfold continuity; intro. case (Req_dec x 0); intro. - unfold continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; unfold R_dist in |- *; intros; exists eps; + unfold continuity_pt; unfold continue_in; + unfold limit1_in; unfold limit_in; + simpl; unfold R_dist; intros; exists eps; split. apply H0. - intros; rewrite H; rewrite Rabs_R0; unfold Rminus in |- *; rewrite Ropp_0; + intros; rewrite H; rewrite Rabs_R0; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; elim H1; intros; rewrite H in H3; unfold Rminus in H3; rewrite Ropp_0 in H3; rewrite Rplus_0_r in H3; apply H3. @@ -192,11 +192,11 @@ Lemma continuity_finite_sum : forall (An:nat -> R) (N:nat), continuity (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N). Proof. - intros; unfold continuity in |- *; intro. + intros; unfold continuity; intro. induction N as [| N HrecN]. - simpl in |- *. + simpl. apply continuity_pt_const. - unfold constant in |- *; intros; reflexivity. + unfold constant; intros; reflexivity. replace (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) (S N)) with ((fun y:R => sum_f_R0 (fun k:nat => (An k * y ^ k)%R) N) + (fun y:R => (An (S N) * y ^ S N)%R))%F. @@ -222,7 +222,7 @@ Proof. cut (N = 0%nat \/ (0 < N)%nat). intro; elim H0; intro. rewrite H1. - simpl in |- *. + simpl. replace (fun y:R => An 0%nat * 1 + An 1%nat * (y * 1)) with (fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F. replace (1 * An 1%nat * 1) with (0 + An 1%nat * (1 * fct_cte 1 x + id x * 0)). @@ -232,7 +232,7 @@ Proof. apply derivable_pt_lim_mult. apply derivable_pt_lim_id. apply derivable_pt_lim_const. - unfold fct_cte, id in |- *; ring. + unfold fct_cte, id; ring. reflexivity. replace (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) (S N)) with ((fun y:R => sum_f_R0 (fun k:nat => (An k * y ^ k)%R) N) + @@ -248,7 +248,7 @@ Proof. (mult_real_fct (An (S N)) (fun y:R => y ^ S N)). apply derivable_pt_lim_scal. replace (pred (S N)) with N; [ idtac | reflexivity ]. - pattern N at 3 in |- *; replace N with (pred (S N)). + pattern N at 3; replace N with (pred (S N)). apply derivable_pt_lim_pow. reflexivity. reflexivity. @@ -259,10 +259,10 @@ Proof. rewrite <- H2. replace (pred (S N)) with N; [ idtac | reflexivity ]. ring. - simpl in |- *. + simpl. apply S_pred with 0%nat; assumption. - unfold plus_fct in |- *. - simpl in |- *; reflexivity. + unfold plus_fct. + simpl; reflexivity. inversion H. left; reflexivity. right; apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ]. @@ -278,7 +278,7 @@ Lemma derivable_pt_lim_finite_sum : Proof. intros. induction N as [| N HrecN]. - simpl in |- *. + simpl. rewrite Rmult_1_r. replace (fun _:R => An 0%nat) with (fct_cte (An 0%nat)); [ apply derivable_pt_lim_const | reflexivity ]. @@ -290,7 +290,7 @@ Lemma derivable_pt_finite_sum : derivable_pt (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x. Proof. intros. - unfold derivable_pt in |- *. + unfold derivable_pt. assert (H := derivable_pt_lim_finite_sum An x N). induction N as [| N HrecN]. exists 0; apply H. @@ -303,14 +303,14 @@ Lemma derivable_finite_sum : forall (An:nat -> R) (N:nat), derivable (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N). Proof. - intros; unfold derivable in |- *; intro; apply derivable_pt_finite_sum. + intros; unfold derivable; intro; apply derivable_pt_finite_sum. Qed. (** Regularity of hyperbolic functions *) Lemma derivable_pt_lim_cosh : forall x:R, derivable_pt_lim cosh x (sinh x). Proof. intro. - unfold cosh, sinh in |- *; unfold Rdiv in |- *. + unfold cosh, sinh; unfold Rdiv. replace (fun x0:R => (exp x0 + exp (- x0)) * / 2) with ((exp + comp exp (- id)) * fct_cte (/ 2))%F; [ idtac | reflexivity ]. replace ((exp x - exp (- x)) * / 2) with @@ -324,13 +324,13 @@ Proof. apply derivable_pt_lim_id. apply derivable_pt_lim_exp. apply derivable_pt_lim_const. - unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte in |- *; ring. + unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte; ring. Qed. Lemma derivable_pt_lim_sinh : forall x:R, derivable_pt_lim sinh x (cosh x). Proof. intro. - unfold cosh, sinh in |- *; unfold Rdiv in |- *. + unfold cosh, sinh; unfold Rdiv. replace (fun x0:R => (exp x0 - exp (- x0)) * / 2) with ((exp - comp exp (- id)) * fct_cte (/ 2))%F; [ idtac | reflexivity ]. replace ((exp x + exp (- x)) * / 2) with @@ -344,13 +344,13 @@ Proof. apply derivable_pt_lim_id. apply derivable_pt_lim_exp. apply derivable_pt_lim_const. - unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte in |- *; ring. + unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte; ring. Qed. Lemma derivable_pt_exp : forall x:R, derivable_pt exp x. Proof. intro. - unfold derivable_pt in |- *. + unfold derivable_pt. exists (exp x). apply derivable_pt_lim_exp. Qed. @@ -358,7 +358,7 @@ Qed. Lemma derivable_pt_cosh : forall x:R, derivable_pt cosh x. Proof. intro. - unfold derivable_pt in |- *. + unfold derivable_pt. exists (sinh x). apply derivable_pt_lim_cosh. Qed. @@ -366,24 +366,24 @@ Qed. Lemma derivable_pt_sinh : forall x:R, derivable_pt sinh x. Proof. intro. - unfold derivable_pt in |- *. + unfold derivable_pt. exists (cosh x). apply derivable_pt_lim_sinh. Qed. Lemma derivable_exp : derivable exp. Proof. - unfold derivable in |- *; apply derivable_pt_exp. + unfold derivable; apply derivable_pt_exp. Qed. Lemma derivable_cosh : derivable cosh. Proof. - unfold derivable in |- *; apply derivable_pt_cosh. + unfold derivable; apply derivable_pt_cosh. Qed. Lemma derivable_sinh : derivable sinh. Proof. - unfold derivable in |- *; apply derivable_pt_sinh. + unfold derivable; apply derivable_pt_sinh. Qed. Lemma derive_pt_exp : diff --git a/theories/Reals/Ranalysis5.v b/theories/Reals/Ranalysis5.v new file mode 100644 index 00000000..c8a2e1a8 --- /dev/null +++ b/theories/Reals/Ranalysis5.v @@ -0,0 +1,1348 @@ +Require Import Rbase. +Require Import Ranalysis_reg. +Require Import Rfunctions. +Require Import Rseries. +Require Import Fourier. +Require Import RiemannInt. +Require Import SeqProp. +Require Import Max. +Local Open Scope R_scope. + +(** * Preliminaries lemmas *) + +Lemma f_incr_implies_g_incr_interv : forall f g:R->R, forall lb ub, + lb < ub -> + (forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) -> + (forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) -> + (forall x , f lb <= x -> x <= f ub -> lb <= g x <= ub) -> + (forall x y, f lb <= x -> x < y -> y <= f ub -> g x < g y). +Proof. +intros f g lb ub lb_lt_ub f_incr f_eq_g g_ok x y lb_le_x x_lt_y y_le_ub. + assert (x_encad : f lb <= x <= f ub). + split ; [assumption | apply Rle_trans with (r2:=y) ; [apply Rlt_le|] ; assumption]. + assert (y_encad : f lb <= y <= f ub). + split ; [apply Rle_trans with (r2:=x) ; [|apply Rlt_le] ; assumption | assumption]. + assert (Temp1 : lb <= lb) by intuition ; assert (Temp2 : ub <= ub) by intuition. + assert (gx_encad := g_ok _ (proj1 x_encad) (proj2 x_encad)). + assert (gy_encad := g_ok _ (proj1 y_encad) (proj2 y_encad)). + clear Temp1 Temp2. + case (Rlt_dec (g x) (g y)). + intuition. + intros Hfalse. + assert (Temp := Rnot_lt_le _ _ Hfalse). + assert (Hcontradiction : y <= x). + replace y with (id y) by intuition ; replace x with (id x) by intuition ; + rewrite <- f_eq_g. rewrite <- f_eq_g. + assert (f_incr2 : forall x y, lb <= x -> x <= y -> y < ub -> f x <= f y). + intros m n lb_le_m m_le_n n_lt_ub. + case (m_le_n). + intros ; apply Rlt_le ; apply f_incr ; [| | apply Rlt_le] ; assumption. + intros Hyp ; rewrite Hyp ; apply Req_le ; reflexivity. + apply f_incr2. + intuition. intuition. + Focus 3. intuition. + Focus 2. intuition. + Focus 2. intuition. Focus 2. intuition. + assert (Temp2 : g x <> ub). + intro Hf. + assert (Htemp : (comp f g) x = f ub). + unfold comp ; rewrite Hf ; reflexivity. + rewrite f_eq_g in Htemp ; unfold id in Htemp. + assert (Htemp2 : x < f ub). + apply Rlt_le_trans with (r2:=y) ; intuition. + clear -Htemp Htemp2. fourier. + intuition. intuition. + clear -Temp2 gx_encad. + case (proj2 gx_encad). + intuition. + intro Hfalse ; apply False_ind ; apply Temp2 ; assumption. + apply False_ind. clear - Hcontradiction x_lt_y. fourier. +Qed. + +Lemma derivable_pt_id_interv : forall (lb ub x:R), + lb <= x <= ub -> + derivable_pt id x. +Proof. +intros. + reg. +Qed. + +Lemma pr_nu_var2_interv : forall (f g : R -> R) (lb ub x : R) (pr1 : derivable_pt f x) + (pr2 : derivable_pt g x), + lb < ub -> + lb < x < ub -> + (forall h : R, lb < h < ub -> f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2. +Proof. +intros f g lb ub x Prf Prg lb_lt_ub x_encad local_eq. +assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs g x l)). + intros a l a_encad. + unfold derivable_pt_abs, derivable_pt_lim. + split. + intros Hyp eps eps_pos. + elim (Hyp eps eps_pos) ; intros delta Hyp2. + assert (Pos_cond : Rmin delta (Rmin (ub - a) (a - lb)) > 0). + clear-a lb ub a_encad delta. + apply Rmin_pos ; [exact (delta.(cond_pos)) | apply Rmin_pos ] ; apply Rlt_Rminus ; intuition. + exists (mkposreal (Rmin delta (Rmin (ub - a) (a - lb))) Pos_cond). + intros h h_neq h_encad. + replace (g (a + h) - g a) with (f (a + h) - f a). + apply Hyp2 ; intuition. + apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))). + assumption. apply Rmin_l. + assert (local_eq2 : forall h : R, lb < h < ub -> - f h = - g h). + intros ; apply Ropp_eq_compat ; intuition. + rewrite local_eq ; unfold Rminus. rewrite local_eq2. reflexivity. + assumption. + assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y). + intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n). + apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs. + apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption. + split. + assert (Sublemma : forall x y z, -z < y - x -> x < y + z). + intros ; fourier. + apply Sublemma. + apply Sublemma2. rewrite Rabs_Ropp. + apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ; + apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ; + apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. + apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ; + apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. + assert (Sublemma : forall x y z, y < z - x -> x + y < z). + intros ; fourier. + apply Sublemma. + apply Sublemma2. + apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ; + apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ; + apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. + apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ; + apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. + intros Hyp eps eps_pos. + elim (Hyp eps eps_pos) ; intros delta Hyp2. + assert (Pos_cond : Rmin delta (Rmin (ub - a) (a - lb)) > 0). + clear-a lb ub a_encad delta. + apply Rmin_pos ; [exact (delta.(cond_pos)) | apply Rmin_pos ] ; apply Rlt_Rminus ; intuition. + exists (mkposreal (Rmin delta (Rmin (ub - a) (a - lb))) Pos_cond). + intros h h_neq h_encad. + replace (f (a + h) - f a) with (g (a + h) - g a). + apply Hyp2 ; intuition. + apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))). + assumption. apply Rmin_l. + assert (local_eq2 : forall h : R, lb < h < ub -> - f h = - g h). + intros ; apply Ropp_eq_compat ; intuition. + rewrite local_eq ; unfold Rminus. rewrite local_eq2. reflexivity. + assumption. + assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y). + intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n). + apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs. + apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption. + split. + assert (Sublemma : forall x y z, -z < y - x -> x < y + z). + intros ; fourier. + apply Sublemma. + apply Sublemma2. rewrite Rabs_Ropp. + apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ; + apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ; + apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. + apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ; + apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. + assert (Sublemma : forall x y z, y < z - x -> x + y < z). + intros ; fourier. + apply Sublemma. + apply Sublemma2. + apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ; + apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ; + apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. + apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ; + apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. + unfold derivable_pt in Prf. + unfold derivable_pt in Prg. + elim Prf; intros. + elim Prg; intros. + assert (Temp := p); rewrite H in Temp. + unfold derivable_pt_abs in p. + unfold derivable_pt_abs in p0. + simpl in |- *. + apply (uniqueness_limite g x x0 x1 Temp p0). + assumption. +Qed. + + +(* begin hide *) +Lemma leftinv_is_rightinv : forall (f g:R->R), + (forall x y, x < y -> f x < f y) -> + (forall x, (comp f g) x = id x) -> + (forall x, (comp g f) x = id x). +Proof. +intros f g f_incr Hyp x. + assert (forall x, f (g (f x)) = f x). + intros ; apply Hyp. + assert(f_inj : forall x y, f x = f y -> x = y). + intros a b fa_eq_fb. + case(total_order_T a b). + intro s ; case s ; clear s. + intro Hf. + assert (Hfalse := f_incr a b Hf). + apply False_ind. apply (Rlt_not_eq (f a) (f b)) ; assumption. + intuition. + intro Hf. assert (Hfalse := f_incr b a Hf). + apply False_ind. apply (Rlt_not_eq (f b) (f a)) ; [|symmetry] ; assumption. + apply f_inj. unfold comp. + unfold comp in Hyp. + rewrite Hyp. + unfold id. + reflexivity. +Qed. +(* end hide *) + +Lemma leftinv_is_rightinv_interv : forall (f g:R->R) (lb ub:R), + (forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) -> + (forall y, f lb <= y -> y <= f ub -> (comp f g) y = id y) -> + (forall x, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> + forall x, + lb <= x <= ub -> + (comp g f) x = id x. +Proof. +intros f g lb ub f_incr_interv Hyp g_wf x x_encad. + assert(f_inj : forall x y, lb <= x <= ub -> lb <= y <= ub -> f x = f y -> x = y). + intros a b a_encad b_encad fa_eq_fb. + case(total_order_T a b). + intro s ; case s ; clear s. + intro Hf. + assert (Hfalse := f_incr_interv a b (proj1 a_encad) Hf (proj2 b_encad)). + apply False_ind. apply (Rlt_not_eq (f a) (f b)) ; assumption. + intuition. + intro Hf. assert (Hfalse := f_incr_interv b a (proj1 b_encad) Hf (proj2 a_encad)). + apply False_ind. apply (Rlt_not_eq (f b) (f a)) ; [|symmetry] ; assumption. + assert (f_incr_interv2 : forall x y, lb <= x -> x <= y -> y <= ub -> f x <= f y). + intros m n cond1 cond2 cond3. + case cond2. + intro cond. apply Rlt_le ; apply f_incr_interv ; assumption. + intro cond ; right ; rewrite cond ; reflexivity. + assert (Hyp2:forall x, lb <= x <= ub -> f (g (f x)) = f x). + intros ; apply Hyp. apply f_incr_interv2 ; intuition. + apply f_incr_interv2 ; intuition. + unfold comp ; unfold comp in Hyp. + apply f_inj. + apply g_wf ; apply f_incr_interv2 ; intuition. + unfold id ; assumption. + apply Hyp2 ; unfold id ; assumption. +Qed. + + +(** Intermediate Value Theorem on an Interval (Proof mainly taken from Reals.Rsqrt_def) and its corollary *) + +Lemma IVT_interv_prelim0 : forall (x y:R) (P:R->bool) (N:nat), + x < y -> + x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y. +Proof. +assert (Sublemma : forall x y lb ub, lb <= x <= ub /\ lb <= y <= ub -> lb <= (x+y) / 2 <= ub). + intros x y lb ub Hyp. + split. + replace lb with ((lb + lb) * /2) by field. + unfold Rdiv ; apply Rmult_le_compat_r ; intuition. + replace ub with ((ub + ub) * /2) by field. + unfold Rdiv ; apply Rmult_le_compat_r ; intuition. +intros x y P N x_lt_y. +induction N. + simpl ; intuition. + simpl. + case (P ((Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2)). + split. apply Sublemma ; intuition. + intuition. + split. intuition. + apply Sublemma ; intuition. +Qed. + +Lemma IVT_interv_prelim1 : forall (x y x0:R) (D : R -> bool), + x < y -> + Un_cv (dicho_up x y D) x0 -> + x <= x0 <= y. +Proof. +intros x y x0 D x_lt_y bnd. + assert (Main : forall n, x <= dicho_up x y D n <= y). + intro n. unfold dicho_up. + apply (proj1 (IVT_interv_prelim0 x y D n x_lt_y)). + split. + apply Rle_cv_lim with (Vn:=dicho_up x y D) (Un:=fun n => x). + intro n ; exact (proj1 (Main n)). + unfold Un_cv ; intros ; exists 0%nat ; intros ; unfold R_dist ; replace (x -x) with 0 by field ; rewrite Rabs_R0 ; assumption. + assumption. + apply Rle_cv_lim with (Un:=dicho_up x y D) (Vn:=fun n => y). + intro n ; exact (proj2 (Main n)). + assumption. + unfold Un_cv ; intros ; exists 0%nat ; intros ; unfold R_dist ; replace (y -y) with 0 by field ; rewrite Rabs_R0 ; assumption. +Qed. + +Lemma IVT_interv : forall (f : R -> R) (x y : R), + (forall a, x <= a <= y -> continuity_pt f a) -> + x < y -> + f x < 0 -> + 0 < f y -> + {z : R | x <= z <= y /\ f z = 0}. +Proof. +intros. (* f x y f_cont_interv x_lt_y fx_neg fy_pos.*) + cut (x <= y). + intro. + generalize (dicho_lb_cv x y (fun z:R => cond_positivity (f z)) H3). + generalize (dicho_up_cv x y (fun z:R => cond_positivity (f z)) H3). + intros X X0. + elim X; intros. + elim X0; intros. + assert (H4 := cv_dicho _ _ _ _ _ H3 p0 p). + rewrite H4 in p0. + exists x0. + split. + split. + apply Rle_trans with (dicho_lb x y (fun z:R => cond_positivity (f z)) 0). + simpl in |- *. + right; reflexivity. + apply growing_ineq. + apply dicho_lb_growing; assumption. + assumption. + apply Rle_trans with (dicho_up x y (fun z:R => cond_positivity (f z)) 0). + apply decreasing_ineq. + apply dicho_up_decreasing; assumption. + assumption. + right; reflexivity. + 2: left; assumption. + set (Vn := fun n:nat => dicho_lb x y (fun z:R => cond_positivity (f z)) n). + set (Wn := fun n:nat => dicho_up x y (fun z:R => cond_positivity (f z)) n). + cut ((forall n:nat, f (Vn n) <= 0) -> f x0 <= 0). + cut ((forall n:nat, 0 <= f (Wn n)) -> 0 <= f x0). + intros. + cut (forall n:nat, f (Vn n) <= 0). + cut (forall n:nat, 0 <= f (Wn n)). + intros. + assert (H9 := H6 H8). + assert (H10 := H5 H7). + apply Rle_antisym; assumption. + intro. + unfold Wn in |- *. + cut (forall z:R, cond_positivity z = true <-> 0 <= z). + intro. + assert (H8 := dicho_up_car x y (fun z:R => cond_positivity (f z)) n). + elim (H7 (f (dicho_up x y (fun z:R => cond_positivity (f z)) n))); intros. + apply H9. + apply H8. + elim (H7 (f y)); intros. + apply H12. + left; assumption. + intro. + unfold cond_positivity in |- *. + case (Rle_dec 0 z); intro. + split. + intro; assumption. + intro; reflexivity. + split. + intro feqt;discriminate feqt. + intro. + elim n0; assumption. + unfold Vn in |- *. + cut (forall z:R, cond_positivity z = false <-> z < 0). + intros. + assert (H8 := dicho_lb_car x y (fun z:R => cond_positivity (f z)) n). + left. + elim (H7 (f (dicho_lb x y (fun z:R => cond_positivity (f z)) n))); intros. + apply H9. + apply H8. + elim (H7 (f x)); intros. + apply H12. + assumption. + intro. + unfold cond_positivity in |- *. + case (Rle_dec 0 z); intro. + split. + intro feqt; discriminate feqt. + intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H7)). + split. + intro; auto with real. + intro; reflexivity. + cut (Un_cv Wn x0). + intros. + assert (Temp : x <= x0 <= y). + apply IVT_interv_prelim1 with (D:=(fun z : R => cond_positivity (f z))) ; assumption. + assert (H7 := continuity_seq f Wn x0 (H x0 Temp) H5). + case (total_order_T 0 (f x0)); intro. + elim s; intro. + left; assumption. + rewrite <- b; right; reflexivity. + unfold Un_cv in H7; unfold R_dist in H7. + cut (0 < - f x0). + intro. + elim (H7 (- f x0) H8); intros. + cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ]. + assert (H11 := H9 x2 H10). + rewrite Rabs_right in H11. + pattern (- f x0) at 1 in H11; rewrite <- Rplus_0_r in H11. + unfold Rminus in H11; rewrite (Rplus_comm (f (Wn x2))) in H11. + assert (H12 := Rplus_lt_reg_r _ _ _ H11). + assert (H13 := H6 x2). + elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H12)). + apply Rle_ge; left; unfold Rminus in |- *; apply Rplus_le_lt_0_compat. + apply H6. + exact H8. + apply Ropp_0_gt_lt_contravar; assumption. + unfold Wn in |- *; assumption. + cut (Un_cv Vn x0). + intros. + assert (Temp : x <= x0 <= y). + apply IVT_interv_prelim1 with (D:=(fun z : R => cond_positivity (f z))) ; assumption. + assert (H7 := continuity_seq f Vn x0 (H x0 Temp) H5). + case (total_order_T 0 (f x0)); intro. + elim s; intro. + unfold Un_cv in H7; unfold R_dist in H7. + elim (H7 (f x0) a); intros. + cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ]. + assert (H10 := H8 x2 H9). + rewrite Rabs_left in H10. + pattern (f x0) at 2 in H10; rewrite <- Rplus_0_r in H10. + rewrite Ropp_minus_distr' in H10. + unfold Rminus in H10. + assert (H11 := Rplus_lt_reg_r _ _ _ H10). + assert (H12 := H6 x2). + cut (0 < f (Vn x2)). + intro. + elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H13 H12)). + rewrite <- (Ropp_involutive (f (Vn x2))). + apply Ropp_0_gt_lt_contravar; assumption. + apply Rplus_lt_reg_r with (f x0 - f (Vn x2)). + rewrite Rplus_0_r; replace (f x0 - f (Vn x2) + (f (Vn x2) - f x0)) with 0; + [ unfold Rminus in |- *; apply Rplus_lt_le_0_compat | ring ]. + assumption. + apply Ropp_0_ge_le_contravar; apply Rle_ge; apply H6. + right; rewrite <- b; reflexivity. + left; assumption. + unfold Vn in |- *; assumption. +Qed. + +(* begin hide *) +Ltac case_le H := + let t := type of H in + let h' := fresh in + match t with ?x <= ?y => case (total_order_T x y); + [intros h'; case h'; clear h' | + intros h'; clear -H h'; elimtype False; fourier ] end. +(* end hide *) + + +Lemma f_interv_is_interv : forall (f:R->R) (lb ub y:R), + lb < ub -> + f lb <= y <= f ub -> + (forall x, lb <= x <= ub -> continuity_pt f x) -> + {x | lb <= x <= ub /\ f x = y}. +Proof. +intros f lb ub y lb_lt_ub y_encad f_cont_interv. + case y_encad ; intro y_encad1. + case_le y_encad1 ; intros y_encad2 y_encad3 ; case_le y_encad3. + intro y_encad4. + clear y_encad y_encad1 y_encad3. + assert (Cont : forall a : R, lb <= a <= ub -> continuity_pt (fun x => f x - y) a). + intros a a_encad. unfold continuity_pt, continue_in, limit1_in, limit_in ; simpl ; unfold R_dist. + intros eps eps_pos. elim (f_cont_interv a a_encad eps eps_pos). + intros alpha alpha_pos. destruct alpha_pos as (alpha_pos,Temp). + exists alpha. split. + assumption. intros x x_cond. + replace (f x - y - (f a - y)) with (f x - f a) by field. + exact (Temp x x_cond). + assert (H1 : (fun x : R => f x - y) lb < 0). + apply Rlt_minus. assumption. + assert (H2 : 0 < (fun x : R => f x - y) ub). + apply Rgt_minus ; assumption. + destruct (IVT_interv (fun x => f x - y) lb ub Cont lb_lt_ub H1 H2) as (x,Hx). + exists x. + destruct Hx as (Hyp,Result). + intuition. + intro H ; exists ub ; intuition. + intro H ; exists lb ; intuition. + intro H ; exists ub ; intuition. +Qed. + +(** ** The derivative of a reciprocal function *) + + +(** * Continuity of the reciprocal function *) + +Lemma continuity_pt_recip_prelim : forall (f g:R->R) (lb ub : R) (Pr1:lb < ub), + (forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) -> + (forall x, lb <= x <= ub -> (comp g f) x = id x) -> + (forall a, lb <= a <= ub -> continuity_pt f a) -> + forall b, + f lb < b < f ub -> + continuity_pt g b. +Proof. +assert (Sublemma : forall x y z, Rmax x y < z <-> x < z /\ y < z). + intros x y z. split. + unfold Rmax. case (Rle_dec x y) ; intros Hyp Hyp2. + split. apply Rle_lt_trans with (r2:=y) ; assumption. assumption. + split. assumption. apply Rlt_trans with (r2:=x). + assert (Temp : forall x y, ~ x <= y -> x > y). + intros m n Hypmn. intuition. + apply Temp ; clear Temp ; assumption. + assumption. + intros Hyp. + unfold Rmax. case (Rle_dec x y). + intro ; exact (proj2 Hyp). + intro ; exact (proj1 Hyp). +assert (Sublemma2 : forall x y z, Rmin x y > z <-> x > z /\ y > z). + intros x y z. split. + unfold Rmin. case (Rle_dec x y) ; intros Hyp Hyp2. + split. assumption. + apply Rlt_le_trans with (r2:=x) ; intuition. + split. + apply Rlt_trans with (r2:=y). intuition. + assert (Temp : forall x y, ~ x <= y -> x > y). + intros m n Hypmn. intuition. + apply Temp ; clear Temp ; assumption. + assumption. + intros Hyp. + unfold Rmin. case (Rle_dec x y). + intro ; exact (proj1 Hyp). + intro ; exact (proj2 Hyp). +assert (Sublemma3 : forall x y, x <= y /\ x <> y -> x < y). + intros m n Hyp. unfold Rle in Hyp. + destruct Hyp as (Hyp1,Hyp2). + case Hyp1. + intuition. + intro Hfalse ; apply False_ind ; apply Hyp2 ; exact Hfalse. +intros f g lb ub lb_lt_ub f_incr_interv f_eq_g f_cont_interv b b_encad. + assert (f_incr_interv2 : forall x y, lb <= x -> x <= y -> y <= ub -> f x <= f y). + intros m n cond1 cond2 cond3. + case cond2. + intro cond. apply Rlt_le ; apply f_incr_interv ; assumption. + intro cond ; right ; rewrite cond ; reflexivity. + unfold continuity_pt, continue_in, limit1_in, limit_in ; intros eps eps_pos. + unfold dist ; simpl ; unfold R_dist. + assert (b_encad_e : f lb <= b <= f ub) by intuition. + elim (f_interv_is_interv f lb ub b lb_lt_ub b_encad_e f_cont_interv) ; intros x Temp. + destruct Temp as (x_encad,f_x_b). + assert (lb_lt_x : lb < x). + assert (Temp : x <> lb). + intro Hfalse. + assert (Temp' : b = f lb). + rewrite <- f_x_b ; rewrite Hfalse ; reflexivity. + assert (Temp'' : b <> f lb). + apply Rgt_not_eq ; exact (proj1 b_encad). + apply Temp'' ; exact Temp'. + apply Sublemma3. + split. exact (proj1 x_encad). + assert (Temp2 : forall x y:R, x <> y <-> y <> x). + intros m n. split ; intuition. + rewrite Temp2 ; assumption. + assert (x_lt_ub : x < ub). + assert (Temp : x <> ub). + intro Hfalse. + assert (Temp' : b = f ub). + rewrite <- f_x_b ; rewrite Hfalse ; reflexivity. + assert (Temp'' : b <> f ub). + apply Rlt_not_eq ; exact (proj2 b_encad). + apply Temp'' ; exact Temp'. + apply Sublemma3. + split ; [exact (proj2 x_encad) | assumption]. + pose (x1 := Rmax (x - eps) lb). + pose (x2 := Rmin (x + eps) ub). + assert (Hx1 : x1 = Rmax (x - eps) lb) by intuition. + assert (Hx2 : x2 = Rmin (x + eps) ub) by intuition. + assert (x1_encad : lb <= x1 <= ub). + split. apply RmaxLess2. + apply Rlt_le. rewrite Hx1. rewrite Sublemma. + split. apply Rlt_trans with (r2:=x) ; fourier. + assumption. + assert (x2_encad : lb <= x2 <= ub). + split. apply Rlt_le ; rewrite Hx2 ; apply Rgt_lt ; rewrite Sublemma2. + split. apply Rgt_trans with (r2:=x) ; fourier. + assumption. + apply Rmin_r. + assert (x_lt_x2 : x < x2). + rewrite Hx2. + apply Rgt_lt. rewrite Sublemma2. + split ; fourier. + assert (x1_lt_x : x1 < x). + rewrite Hx1. + rewrite Sublemma. + split ; fourier. + exists (Rmin (f x - f x1) (f x2 - f x)). + split. apply Rmin_pos ; apply Rgt_minus. apply f_incr_interv ; [apply RmaxLess2 | | ] ; fourier. + apply f_incr_interv ; intuition. + intros y Temp. + destruct Temp as (_,y_cond). + rewrite <- f_x_b in y_cond. + assert (Temp : forall x y d1 d2, d1 > 0 -> d2 > 0 -> Rabs (y - x) < Rmin d1 d2 -> x - d1 <= y <= x + d2). + intros. + split. assert (H10 : forall x y z, x - y <= z -> x - z <= y). intuition. fourier. + apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)). + replace (Rabs (y0 - x0)) with (Rabs (x0 - y0)). apply RRle_abs. + rewrite <- Rabs_Ropp. unfold Rminus ; rewrite Ropp_plus_distr. rewrite Ropp_involutive. + intuition. + apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption. + apply Rmin_l. + assert (H10 : forall x y z, x - y <= z -> x <= y + z). intuition. fourier. + apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)). apply RRle_abs. + apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption. + apply Rmin_r. + assert (Temp' := Temp (f x) y (f x - f x1) (f x2 - f x)). + replace (f x - (f x - f x1)) with (f x1) in Temp' by field. + replace (f x + (f x2 - f x)) with (f x2) in Temp' by field. + assert (T : f x - f x1 > 0). + apply Rgt_minus. apply f_incr_interv ; intuition. + assert (T' : f x2 - f x > 0). + apply Rgt_minus. apply f_incr_interv ; intuition. + assert (Main := Temp' T T' y_cond). + clear Temp Temp' T T'. + assert (x1_lt_x2 : x1 < x2). + apply Rlt_trans with (r2:=x) ; assumption. + assert (f_cont_myinterv : forall a : R, x1 <= a <= x2 -> continuity_pt f a). + intros ; apply f_cont_interv ; split. + apply Rle_trans with (r2 := x1) ; intuition. + apply Rle_trans with (r2 := x2) ; intuition. + elim (f_interv_is_interv f x1 x2 y x1_lt_x2 Main f_cont_myinterv) ; intros x' Temp. + destruct Temp as (x'_encad,f_x'_y). + rewrite <- f_x_b ; rewrite <- f_x'_y. + unfold comp in f_eq_g. rewrite f_eq_g. rewrite f_eq_g. + unfold id. + assert (x'_encad2 : x - eps <= x' <= x + eps). + split. + apply Rle_trans with (r2:=x1) ; [ apply RmaxLess1|] ; intuition. + apply Rle_trans with (r2:=x2) ; [ | apply Rmin_l] ; intuition. + assert (x1_lt_x' : x1 < x'). + apply Sublemma3. + assert (x1_neq_x' : x1 <> x'). + intro Hfalse. rewrite Hfalse, f_x'_y in y_cond. + assert (Hf : Rabs (y - f x) < f x - y). + apply Rlt_le_trans with (r2:=Rmin (f x - y) (f x2 - f x)). fourier. + apply Rmin_l. + assert(Hfin : f x - y < f x - y). + apply Rle_lt_trans with (r2:=Rabs (y - f x)). + replace (Rabs (y - f x)) with (Rabs (f x - y)). apply RRle_abs. + rewrite <- Rabs_Ropp. replace (- (f x - y)) with (y - f x) by field ; reflexivity. fourier. + apply (Rlt_irrefl (f x - y)) ; assumption. + split ; intuition. + assert (x'_lb : x - eps < x'). + apply Sublemma3. + split. intuition. apply Rlt_not_eq. + apply Rle_lt_trans with (r2:=x1) ; [ apply RmaxLess1|] ; intuition. + assert (x'_lt_x2 : x' < x2). + apply Sublemma3. + assert (x1_neq_x' : x' <> x2). + intro Hfalse. rewrite <- Hfalse, f_x'_y in y_cond. + assert (Hf : Rabs (y - f x) < y - f x). + apply Rlt_le_trans with (r2:=Rmin (f x - f x1) (y - f x)). fourier. + apply Rmin_r. + assert(Hfin : y - f x < y - f x). + apply Rle_lt_trans with (r2:=Rabs (y - f x)). apply RRle_abs. fourier. + apply (Rlt_irrefl (y - f x)) ; assumption. + split ; intuition. + assert (x'_ub : x' < x + eps). + apply Sublemma3. + split. intuition. apply Rlt_not_eq. + apply Rlt_le_trans with (r2:=x2) ; [ |rewrite Hx2 ; apply Rmin_l] ; intuition. + apply Rabs_def1 ; fourier. + assumption. + split. apply Rle_trans with (r2:=x1) ; intuition. + apply Rle_trans with (r2:=x2) ; intuition. +Qed. + +Lemma continuity_pt_recip_interv : forall (f g:R->R) (lb ub : R) (Pr1:lb < ub), + (forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) -> + (forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) -> + (forall x, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> + (forall a, lb <= a <= ub -> continuity_pt f a) -> + forall b, + f lb < b < f ub -> + continuity_pt g b. +Proof. +intros f g lb ub lb_lt_ub f_incr_interv f_eq_g g_wf. +assert (g_eq_f_prelim := leftinv_is_rightinv_interv f g lb ub f_incr_interv f_eq_g). +assert (g_eq_f : forall x, lb <= x <= ub -> (comp g f) x = id x). +intro x ; apply g_eq_f_prelim ; assumption. +apply (continuity_pt_recip_prelim f g lb ub lb_lt_ub f_incr_interv g_eq_f). +Qed. + +(** * Derivability of the reciprocal function *) + +Lemma derivable_pt_lim_recip_interv : forall (f g:R->R) (lb ub x:R) + (Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a) (Prg : continuity_pt g x), + lb < ub -> + lb < x < ub -> + forall (Prg_incr:g lb <= g x <= g ub), + (forall x, lb <= x <= ub -> (comp f g) x = id x) -> + derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 -> + derivable_pt_lim g x (1 / derive_pt f (g x) (Prf (g x) Prg_incr)). +Proof. +intros f g lb ub x Prf g_cont_pur lb_lt_ub x_encad Prg_incr f_eq_g df_neq. + assert (x_encad2 : lb <= x <= ub). + split ; apply Rlt_le ; intuition. + elim (Prf (g x)); simpl; intros l Hl. + unfold derivable_pt_lim. + intros eps eps_pos. + pose (y := g x). + assert (Hlinv := limit_inv). + assert (Hf_deriv : forall eps:R, + 0 < eps -> + exists delta : posreal, + (forall h:R, + h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps)). + intros eps0 eps0_pos. + red in Hl ; red in Hl. elim (Hl eps0 eps0_pos). + intros deltatemp Htemp. + exists deltatemp ; exact Htemp. + elim (Hf_deriv eps eps_pos). + intros deltatemp Htemp. + red in Hlinv ; red in Hlinv ; simpl dist in Hlinv ; unfold R_dist in Hlinv. + assert (Hlinv' := Hlinv (fun h => (f (y+h) - f y)/h) (fun h => h <>0) l 0). + unfold limit1_in, limit_in, dist in Hlinv' ; simpl in Hlinv'. unfold R_dist in Hlinv'. + assert (Premisse : (forall eps : R, + eps > 0 -> + exists alp : R, + alp > 0 /\ + (forall x : R, + (fun h => h <>0) x /\ Rabs (x - 0) < alp -> + Rabs ((f (y + x) - f y) / x - l) < eps))). + intros eps0 eps0_pos. + elim (Hf_deriv eps0 eps0_pos). + intros deltatemp' Htemp'. + exists deltatemp'. + split. + exact deltatemp'.(cond_pos). + intros htemp cond. + apply (Htemp' htemp). + exact (proj1 cond). + replace (htemp) with (htemp - 0). + exact (proj2 cond). + intuition. + assert (Premisse2 : l <> 0). + intro l_null. + rewrite l_null in Hl. + apply df_neq. + rewrite derive_pt_eq. + exact Hl. + elim (Hlinv' Premisse Premisse2 eps eps_pos). + intros alpha cond. + assert (alpha_pos := proj1 cond) ; assert (inv_cont := proj2 cond) ; clear cond. + unfold derivable, derivable_pt, derivable_pt_abs, derivable_pt_lim in Prf. + elim (Hl eps eps_pos). + intros delta f_deriv. + assert (g_cont := g_cont_pur). + unfold continuity_pt, continue_in, limit1_in, limit_in in g_cont. + pose (mydelta := Rmin delta alpha). + assert (mydelta_pos : mydelta > 0). + unfold mydelta, Rmin. + case (Rle_dec delta alpha). + intro ; exact (delta.(cond_pos)). + intro ; exact alpha_pos. + elim (g_cont mydelta mydelta_pos). + intros delta' new_g_cont. + assert(delta'_pos := proj1 (new_g_cont)). + clear g_cont ; assert (g_cont := proj2 (new_g_cont)) ; clear new_g_cont. + pose (mydelta'' := Rmin delta' (Rmin (x - lb) (ub - x))). + assert(mydelta''_pos : mydelta'' > 0). + unfold mydelta''. + apply Rmin_pos ; [intuition | apply Rmin_pos] ; apply Rgt_minus ; intuition. + pose (delta'' := mkposreal mydelta'' mydelta''_pos: posreal). + exists delta''. + intros h h_neq h_le_delta'. + assert (lb <= x +h <= ub). + assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y). + intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n). + apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs. + apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption. + assert (lb <= x + h <= ub). + split. + assert (Sublemma : forall x y z, -z <= y - x -> x <= y + z). + intros ; fourier. + apply Sublemma. + apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp. + apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ; + apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_l] ; + apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))). + apply Rlt_le_trans with (r2:=delta''). assumption. intuition. apply Rmin_r. + apply Rgt_minus. intuition. + assert (Sublemma : forall x y z, y <= z - x -> x + y <= z). + intros ; fourier. + apply Sublemma. + apply Rlt_le ; apply Sublemma2. + apply Rlt_le_trans with (r2:=ub-x) ; [| apply RRle_abs] ; + apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_r] ; + apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))) ; [| apply Rmin_r] ; assumption. + apply Rlt_le_trans with (r2:=delta''). assumption. + apply Rle_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))). intuition. + apply Rle_trans with (r2:=Rmin (x - lb) (ub - x)). apply Rmin_r. apply Rmin_r. + replace ((g (x + h) - g x) / h) with (1/ (h / (g (x + h) - g x))). + assert (Hrewr : h = (comp f g ) (x+h) - (comp f g) x). + rewrite f_eq_g. rewrite f_eq_g ; unfold id. rewrite Rplus_comm ; + unfold Rminus ; rewrite Rplus_assoc ; rewrite Rplus_opp_r. intuition. intuition. + assumption. + split ; [|intuition]. + assert (Sublemma : forall x y z, - z <= y - x -> x <= y + z). + intros ; fourier. + apply Sublemma ; apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp. + apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ; + apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_l] ; + apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))) ; [| apply Rmin_r] ; assumption. + apply Rgt_minus. intuition. + field. + split. assumption. + intro Hfalse. assert (Hf : g (x+h) = g x) by intuition. + assert ((comp f g) (x+h) = (comp f g) x). + unfold comp ; rewrite Hf ; intuition. + assert (Main : x+h = x). + replace (x +h) with (id (x+h)) by intuition. + assert (Temp : x = id x) by intuition ; rewrite Temp at 2 ; clear Temp. + rewrite <- f_eq_g. rewrite <- f_eq_g. assumption. + intuition. assumption. + assert (h = 0). + apply Rplus_0_r_uniq with (r:=x) ; assumption. + apply h_neq ; assumption. + replace ((g (x + h) - g x) / h) with (1/ (h / (g (x + h) - g x))). + assert (Hrewr : h = (comp f g ) (x+h) - (comp f g) x). + rewrite f_eq_g. rewrite f_eq_g. unfold id ; rewrite Rplus_comm ; + unfold Rminus ; rewrite Rplus_assoc ; rewrite Rplus_opp_r ; intuition. + assumption. assumption. + rewrite Hrewr at 1. + unfold comp. + replace (g(x+h)) with (g x + (g (x+h) - g(x))) by field. + pose (h':=g (x+h) - g x). + replace (g (x+h) - g x) with h' by intuition. + replace (g x + h' - g x) with h' by field. + assert (h'_neq : h' <> 0). + unfold h'. + intro Hfalse. + unfold Rminus in Hfalse ; apply Rminus_diag_uniq in Hfalse. + assert (Hfalse' : (comp f g) (x+h) = (comp f g) x). + intros ; unfold comp ; rewrite Hfalse ; trivial. + rewrite f_eq_g in Hfalse' ; rewrite f_eq_g in Hfalse'. + unfold id in Hfalse'. + apply Rplus_0_r_uniq in Hfalse'. + apply h_neq ; exact Hfalse'. assumption. assumption. assumption. + unfold Rdiv at 1 3; rewrite Rmult_1_l ; rewrite Rmult_1_l. + apply inv_cont. + split. + exact h'_neq. + rewrite Rminus_0_r. + unfold continuity_pt, continue_in, limit1_in, limit_in in g_cont_pur. + elim (g_cont_pur mydelta mydelta_pos). + intros delta3 cond3. + unfold dist in cond3 ; simpl in cond3 ; unfold R_dist in cond3. + unfold h'. + assert (mydelta_le_alpha : mydelta <= alpha). + unfold mydelta, Rmin ; case (Rle_dec delta alpha). + trivial. + intro ; intuition. + apply Rlt_le_trans with (r2:=mydelta). + unfold dist in g_cont ; simpl in g_cont ; unfold R_dist in g_cont ; apply g_cont. + split. + unfold D_x ; simpl. + split. + unfold no_cond ; trivial. + intro Hfalse ; apply h_neq. + apply (Rplus_0_r_uniq x). + symmetry ; assumption. + replace (x + h - x) with h by field. + apply Rlt_le_trans with (r2:=delta''). + assumption ; unfold delta''. intuition. + apply Rle_trans with (r2:=mydelta''). apply Req_le. unfold delta''. intuition. + apply Rmin_l. assumption. + field ; split. + assumption. + intro Hfalse ; apply h_neq. + apply (Rplus_0_r_uniq x). + assert (Hfin : (comp f g) (x+h) = (comp f g) x). + apply Rminus_diag_uniq in Hfalse. + unfold comp. + rewrite Hfalse ; reflexivity. + rewrite f_eq_g in Hfin. rewrite f_eq_g in Hfin. unfold id in Hfin. exact Hfin. + assumption. assumption. +Qed. + +Lemma derivable_pt_recip_interv_prelim0 : forall (f g : R -> R) (lb ub x : R) + (Prf : forall a : R, g lb <= a <= g ub -> derivable_pt f a), + continuity_pt g x -> + lb < ub -> + lb < x < ub -> + forall Prg_incr : g lb <= g x <= g ub, + (forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0) -> + derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 -> + derivable_pt g x. +Proof. +intros f g lb ub x Prf g_cont_pt lb_lt_ub x_encad Prg_incr f_eq_g Df_neq. +unfold derivable_pt, derivable_pt_abs. +exists (1 / derive_pt f (g x) (Prf (g x) Prg_incr)). +apply derivable_pt_lim_recip_interv ; assumption. +Qed. + +Lemma derivable_pt_recip_interv_prelim1 :forall (f g:R->R) (lb ub x : R), + lb < ub -> + f lb < x < f ub -> + (forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x) -> + (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> + (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> + (forall a : R, lb <= a <= ub -> derivable_pt f a) -> + derivable_pt f (g x). +Proof. +intros f g lb ub x lb_lt_ub x_encad f_eq_g g_ok f_incr f_derivable. + apply f_derivable. + assert (Left_inv := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_ok). + replace lb with ((comp g f) lb). + replace ub with ((comp g f) ub). + unfold comp. + assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_ok). + split ; apply Rlt_le ; apply Temp ; intuition. + apply Left_inv ; intuition. + apply Left_inv ; intuition. +Qed. + +Lemma derivable_pt_recip_interv : forall (f g:R->R) (lb ub x : R) + (lb_lt_ub:lb < ub) (x_encad:f lb < x < f ub) + (f_eq_g:forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x) + (g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) + (f_incr:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) + (f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a), + derive_pt f (g x) + (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub + x_encad f_eq_g g_wf f_incr f_derivable) + <> 0 -> + derivable_pt g x. +Proof. +intros f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable Df_neq. + assert(g_incr : g (f lb) < g x < g (f ub)). + assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_wf). + split ; apply Temp ; intuition. + exact (proj1 x_encad). apply Rlt_le ; exact (proj2 x_encad). + apply Rlt_le ; exact (proj1 x_encad). exact (proj2 x_encad). + assert(g_incr2 : g (f lb) <= g x <= g (f ub)). + split ; apply Rlt_le ; intuition. + assert (g_eq_f := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_wf). + unfold comp, id in g_eq_f. + assert (f_derivable2 : forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a). + intros a a_encad ; apply f_derivable. + rewrite g_eq_f in a_encad ; rewrite g_eq_f in a_encad ; intuition. + apply derivable_pt_recip_interv_prelim0 with (f:=f) (lb:=f lb) (ub:=f ub) + (Prf:=f_derivable2) (Prg_incr:=g_incr2). + apply continuity_pt_recip_interv with (f:=f) (lb:=lb) (ub:=ub) ; intuition. + apply derivable_continuous_pt ; apply f_derivable ; intuition. + exact (proj1 x_encad). exact (proj2 x_encad). apply f_incr ; intuition. + assumption. + intros x0 x0_encad ; apply f_eq_g ; intuition. + rewrite pr_nu_var2_interv with (g:=f) (lb:=lb) (ub:=ub) (pr2:=derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad + f_eq_g g_wf f_incr f_derivable) ; [| |rewrite g_eq_f in g_incr ; rewrite g_eq_f in g_incr| ] ; intuition. +Qed. + +(****************************************************) +(** * Value of the derivative of the reciprocal function *) +(****************************************************) + +Lemma derive_pt_recip_interv_prelim0 : forall (f g:R->R) (lb ub x:R) + (Prf:derivable_pt f (g x)) (Prg:derivable_pt g x), + lb < ub -> + lb < x < ub -> + (forall x, lb < x < ub -> (comp f g) x = id x) -> + derive_pt f (g x) Prf <> 0 -> + derive_pt g x Prg = 1 / (derive_pt f (g x) Prf). +Proof. +intros f g lb ub x Prf Prg lb_lt_ub x_encad local_recip Df_neq. + replace (derive_pt g x Prg) with + ((derive_pt g x Prg) * (derive_pt f (g x) Prf) * / (derive_pt f (g x) Prf)). + unfold Rdiv. + rewrite (Rmult_comm _ (/ derive_pt f (g x) Prf)). + rewrite (Rmult_comm _ (/ derive_pt f (g x) Prf)). + apply Rmult_eq_compat_l. + rewrite Rmult_comm. + rewrite <- derive_pt_comp. + assert (x_encad2 : lb <= x <= ub) by intuition. + rewrite pr_nu_var2_interv with (g:=id) (pr2:= derivable_pt_id_interv lb ub x x_encad2) (lb:=lb) (ub:=ub) ; [reg| | |] ; assumption. + rewrite Rmult_assoc, Rinv_r. + intuition. + assumption. +Qed. + +Lemma derive_pt_recip_interv_prelim1_0 : forall (f g:R->R) (lb ub x:R), + lb < ub -> + f lb < x < f ub -> + (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> + (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> + (forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) -> + lb < g x < ub. +Proof. +intros f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g. + assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_wf). + assert (Left_inv := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_wf). + unfold comp, id in Left_inv. + split ; [rewrite <- Left_inv with (x:=lb) | rewrite <- Left_inv ]. + apply Temp ; intuition. + intuition. + apply Temp ; intuition. + intuition. +Qed. + +Lemma derive_pt_recip_interv_prelim1_1 : forall (f g:R->R) (lb ub x:R), + lb < ub -> + f lb < x < f ub -> + (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> + (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> + (forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) -> + lb <= g x <= ub. +Proof. +intros f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g. + assert (Temp := derive_pt_recip_interv_prelim1_0 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g). + split ; apply Rlt_le ; intuition. +Qed. + +Lemma derive_pt_recip_interv : forall (f g:R->R) (lb ub x:R) + (lb_lt_ub:lb < ub) (x_encad:f lb < x < f ub) + (f_incr:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) + (g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) + (Prf:forall a : R, lb <= a <= ub -> derivable_pt f a) + (f_eq_g:forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) + (Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x + lb_lt_ub x_encad f_eq_g g_wf f_incr Prf) <> 0), + derive_pt g x (derivable_pt_recip_interv f g lb ub x lb_lt_ub x_encad f_eq_g + g_wf f_incr Prf Df_neq) + = + 1 / (derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x + lb_lt_ub x_encad f_incr g_wf f_eq_g))). +Proof. +intros. + assert(g_incr := (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub + x_encad f_incr g_wf f_eq_g)). + apply derive_pt_recip_interv_prelim0 with (lb:=f lb) (ub:=f ub) ; + [intuition |assumption | intuition |]. + intro Hfalse ; apply Df_neq. rewrite pr_nu_var2_interv with (g:=f) (lb:=lb) (ub:=ub) + (pr2:= (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad + f_incr g_wf f_eq_g))) ; + [intuition | intuition | | intuition]. + exact (derive_pt_recip_interv_prelim1_0 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g). +Qed. + +(****************************************************) +(** * Existence of the derivative of a function which is the limit of a sequence of functions *) +(****************************************************) + +(* begin hide *) +Lemma ub_lt_2_pos : forall x ub lb, lb < x -> x < ub -> 0 < (ub-lb)/2. +Proof. +intros x ub lb lb_lt_x x_lt_ub. + assert (T : 0 < ub - lb). + fourier. + unfold Rdiv ; apply Rlt_mult_inv_pos ; intuition. +Qed. + +Definition mkposreal_lb_ub (x lb ub:R) (lb_lt_x:lb Boule c2 r2 x -> + {r3 : posreal | forall y, Boule x r3 y -> Boule c1 r1 y /\ Boule c2 r2 y}. +intros c1 c2 [r1 r1p] [r2 r2p] x; unfold Boule; simpl; intros in1 in2. +assert (Rmax (c1 - r1)(c2 - r2) < x). + apply Rmax_lub_lt;[revert in1 | revert in2]; intros h; + apply Rabs_def2 in h; destruct h; fourier. +assert (x < Rmin (c1 + r1) (c2 + r2)). + apply Rmin_glb_lt;[revert in1 | revert in2]; intros h; + apply Rabs_def2 in h; destruct h; fourier. +assert (t: 0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) + (Rmin (c1 + r1) (c2 + r2) - x)). + apply Rmin_glb_lt; fourier. +exists (mkposreal _ t). +apply Rabs_def2 in in1; destruct in1. +apply Rabs_def2 in in2; destruct in2. +assert (c1 - r1 <= Rmax (c1 - r1) (c2 - r2)) by apply Rmax_l. +assert (c2 - r2 <= Rmax (c1 - r1) (c2 - r2)) by apply Rmax_r. +assert (Rmin (c1 + r1) (c2 + r2) <= c1 + r1) by apply Rmin_l. +assert (Rmin (c1 + r1) (c2 + r2) <= c2 + r2) by apply Rmin_r. +assert (Rmin (x - Rmax (c1 - r1) (c2 - r2)) + (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)) + by apply Rmin_l. +assert (Rmin (x - Rmax (c1 - r1) (c2 - r2)) + (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x) + by apply Rmin_r. +simpl. +intros y h; apply Rabs_def2 in h; destruct h;split; apply Rabs_def1; fourier. +Qed. + +Lemma Boule_center : forall x r, Boule x r x. +Proof. +intros x [r rpos]; unfold Boule, Rminus; simpl; rewrite Rplus_opp_r. +rewrite Rabs_pos_eq;[assumption | apply Rle_refl]. +Qed. + +Lemma derivable_pt_lim_CVU : forall (fn fn':nat -> R -> R) (f g:R->R) + (x:R) c r, Boule c r x -> + (forall y n, Boule c r y -> derivable_pt_lim (fn n) y (fn' n y)) -> + (forall y, Boule c r y -> Un_cv (fun n => fn n y) (f y)) -> + (CVU fn' g c r) -> + (forall y, Boule c r y -> continuity_pt g y) -> + derivable_pt_lim f x (g x). +Proof. +intros fn fn' f g x c' r xinb Dfn_eq_fn' fn_CV_f fn'_CVU_g g_cont eps eps_pos. +assert (eps_8_pos : 0 < eps / 8) by fourier. +elim (g_cont x xinb _ eps_8_pos) ; clear g_cont ; +intros delta1 (delta1_pos, g_cont). +destruct (Ball_in_inter _ _ _ _ _ xinb + (Boule_center x (mkposreal _ delta1_pos))) + as [delta Pdelta]. +exists delta; intros h hpos hinbdelta. +assert (eps'_pos : 0 < (Rabs h) * eps / 4). + unfold Rdiv ; rewrite Rmult_assoc ; apply Rmult_lt_0_compat. + apply Rabs_pos_lt ; assumption. +fourier. +destruct (fn_CV_f x xinb ((Rabs h) * eps / 4) eps'_pos) as [N2 fnx_CV_fx]. +assert (xhinbxdelta : Boule x delta (x + h)). + clear -hinbdelta; apply Rabs_def2 in hinbdelta; unfold Boule; simpl. + destruct hinbdelta; apply Rabs_def1; fourier. +assert (t : Boule c' r (x + h)). + apply Pdelta in xhinbxdelta; tauto. +destruct (fn_CV_f (x+h) t ((Rabs h) * eps / 4) eps'_pos) as [N1 fnxh_CV_fxh]. +clear fn_CV_f t. +destruct (fn'_CVU_g (eps/8) eps_8_pos) as [N3 fn'c_CVU_gc]. +pose (N := ((N1 + N2) + N3)%nat). +assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn N x - h * (g x))) < (Rabs h)*eps). + apply Rle_lt_trans with (Rabs (f (x + h) - fn N (x + h) - (f x - fn N x)) + Rabs ((fn N (x + h) - fn N x - h * g x))). + solve[apply Rabs_triang]. + apply Rle_lt_trans with (Rabs (f (x + h) - fn N (x + h)) + Rabs (- (f x - fn N x)) + Rabs (fn N (x + h) - fn N x - h * g x)). + solve[apply Rplus_le_compat_r ; apply Rabs_triang]. + rewrite Rabs_Ropp. + case (Rlt_le_dec h 0) ; intro sgn_h. + assert (pr1 : forall c : R, x + h < c < x -> derivable_pt (fn N) c). + intros c c_encad ; unfold derivable_pt. + exists (fn' N c) ; apply Dfn_eq_fn'. + assert (t : Boule x delta c). + apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad. + apply Rabs_def2 in xinb; apply Rabs_def1; fourier. + apply Pdelta in t; tauto. + assert (pr2 : forall c : R, x + h < c < x -> derivable_pt id c). + solve[intros; apply derivable_id]. + assert (xh_x : x+h < x) by fourier. + assert (pr3 : forall c : R, x + h <= c <= x -> continuity_pt (fn N) c). + intros c c_encad ; apply derivable_continuous_pt. + exists (fn' N c) ; apply Dfn_eq_fn' ; intuition. + assert (t : Boule x delta c). + apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. + apply Rabs_def2 in xinb; apply Rabs_def1; fourier. + apply Pdelta in t; tauto. + assert (pr4 : forall c : R, x + h <= c <= x -> continuity_pt id c). + solve[intros; apply derivable_continuous ; apply derivable_id]. + destruct (MVT (fn N) id (x+h) x pr1 pr2 xh_x pr3 pr4) as [c [P Hc]]. + assert (Hc' : h * derive_pt (fn N) c (pr1 c P) = (fn N (x+h) - fn N x)). + apply Rmult_eq_reg_l with (-1). + replace (-1 * (h * derive_pt (fn N) c (pr1 c P))) with (-h * derive_pt (fn N) c (pr1 c P)) by field. + replace (-1 * (fn N (x + h) - fn N x)) with (- (fn N (x + h) - fn N x)) by field. + replace (-h) with (id x - id (x + h)) by (unfold id; field). + rewrite <- Rmult_1_r ; replace 1 with (derive_pt id c (pr2 c P)) by reg. + replace (- (fn N (x + h) - fn N x)) with (fn N x - fn N (x + h)) by field. + assumption. + solve[apply Rlt_not_eq ; intuition]. + rewrite <- Hc'; clear Hc Hc'. + replace (derive_pt (fn N) c (pr1 c P)) with (fn' N c). + replace (h * fn' N c - h * g x) with (h * (fn' N c - g x)) by field. + rewrite Rabs_mult. + apply Rlt_trans with (Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x)). + apply Rplus_lt_compat_r ; apply Rplus_lt_compat_r ; unfold R_dist in fnxh_CV_fxh ; + rewrite Rabs_minus_sym ; apply fnxh_CV_fxh. + unfold N; omega. + apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x)). + apply Rplus_lt_compat_r ; apply Rplus_lt_compat_l. + unfold R_dist in fnx_CV_fx ; rewrite Rabs_minus_sym ; apply fnx_CV_fx. + unfold N ; omega. + replace (fn' N c - g x) with ((fn' N c - g c) + (g c - g x)) by field. + apply Rle_lt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x)). + rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; + apply Rplus_le_compat_l ; apply Rplus_le_compat_l ; + rewrite <- Rmult_plus_distr_l ; apply Rmult_le_compat_l. + solve[apply Rabs_pos]. + solve[apply Rabs_triang]. + apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x)). + apply Rplus_lt_compat_r; apply Rplus_lt_compat_l; apply Rmult_lt_compat_l. + apply Rabs_pos_lt ; assumption. + rewrite Rabs_minus_sym ; apply fn'c_CVU_gc. + unfold N ; omega. + assert (t : Boule x delta c). + destruct P. + apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. + apply Rabs_def2 in xinb; apply Rabs_def1; fourier. + apply Pdelta in t; tauto. + apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + + Rabs h * (eps / 8)). + rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; + apply Rplus_lt_compat_l ; apply Rplus_lt_compat_l ; rewrite <- Rmult_plus_distr_l ; + rewrite <- Rmult_plus_distr_l ; apply Rmult_lt_compat_l. + apply Rabs_pos_lt ; assumption. + apply Rplus_lt_compat_l ; simpl in g_cont ; apply g_cont ; split ; [unfold D_x ; split |]. + solve[unfold no_cond ; intuition]. + apply Rgt_not_eq ; exact (proj2 P). + apply Rlt_trans with (Rabs h). + apply Rabs_def1. + apply Rlt_trans with 0. + destruct P; fourier. + apply Rabs_pos_lt ; assumption. + rewrite <- Rabs_Ropp, Rabs_pos_eq, Ropp_involutive;[ | fourier]. + destruct P; fourier. + clear -Pdelta xhinbxdelta. + apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P']. + apply Rabs_def2 in P'; simpl in P'; destruct P'; + apply Rabs_def1; fourier. + rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l. + replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with + (Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field. + apply Rmult_lt_compat_l. + apply Rabs_pos_lt ; assumption. + fourier. + assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl. + assert (Temp : l = fn' N c). + assert (bc'rc : Boule c' r c). + assert (t : Boule x delta c). + clear - xhinbxdelta P. + destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. + apply Rabs_def1; fourier. + apply Pdelta in t; tauto. + assert (Hl' := Dfn_eq_fn' c N bc'rc). + unfold derivable_pt_abs in Hl; clear -Hl Hl'. + apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption. + rewrite <- Temp. + assert (Hl' : derivable_pt (fn N) c). + exists l ; apply Hl. + rewrite pr_nu_var with (g:= fn N) (pr2:=Hl'). + elim Hl' ; clear Hl' ; intros l' Hl'. + assert (Main : l = l'). + apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption. + rewrite Main ; reflexivity. + reflexivity. + assert (h_pos : h > 0). + case sgn_h ; intro Hyp. + assumption. + apply False_ind ; apply hpos ; symmetry ; assumption. + clear sgn_h. + assert (pr1 : forall c : R, x < c < x + h -> derivable_pt (fn N) c). + intros c c_encad ; unfold derivable_pt. + exists (fn' N c) ; apply Dfn_eq_fn'. + assert (t : Boule x delta c). + apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad. + apply Rabs_def2 in xinb; apply Rabs_def1; fourier. + apply Pdelta in t; tauto. + assert (pr2 : forall c : R, x < c < x + h -> derivable_pt id c). + solve[intros; apply derivable_id]. + assert (xh_x : x < x + h) by fourier. + assert (pr3 : forall c : R, x <= c <= x + h -> continuity_pt (fn N) c). + intros c c_encad ; apply derivable_continuous_pt. + exists (fn' N c) ; apply Dfn_eq_fn' ; intuition. + assert (t : Boule x delta c). + apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. + apply Rabs_def2 in xinb; apply Rabs_def1; fourier. + apply Pdelta in t; tauto. + assert (pr4 : forall c : R, x <= c <= x + h -> continuity_pt id c). + solve[intros; apply derivable_continuous ; apply derivable_id]. + destruct (MVT (fn N) id x (x+h) pr1 pr2 xh_x pr3 pr4) as [c [P Hc]]. + assert (Hc' : h * derive_pt (fn N) c (pr1 c P) = fn N (x+h) - fn N x). + pattern h at 1; replace h with (id (x + h) - id x) by (unfold id; field). + rewrite <- Rmult_1_r ; replace 1 with (derive_pt id c (pr2 c P)) by reg. + assumption. + rewrite <- Hc'; clear Hc Hc'. + replace (derive_pt (fn N) c (pr1 c P)) with (fn' N c). + replace (h * fn' N c - h * g x) with (h * (fn' N c - g x)) by field. + rewrite Rabs_mult. + apply Rlt_trans with (Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x)). + apply Rplus_lt_compat_r ; apply Rplus_lt_compat_r ; unfold R_dist in fnxh_CV_fxh ; + rewrite Rabs_minus_sym ; apply fnxh_CV_fxh. + unfold N; omega. + apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x)). + apply Rplus_lt_compat_r ; apply Rplus_lt_compat_l. + unfold R_dist in fnx_CV_fx ; rewrite Rabs_minus_sym ; apply fnx_CV_fx. + unfold N ; omega. + replace (fn' N c - g x) with ((fn' N c - g c) + (g c - g x)) by field. + apply Rle_lt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x)). + rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; + apply Rplus_le_compat_l ; apply Rplus_le_compat_l ; + rewrite <- Rmult_plus_distr_l ; apply Rmult_le_compat_l. + solve[apply Rabs_pos]. + solve[apply Rabs_triang]. + apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x)). + apply Rplus_lt_compat_r; apply Rplus_lt_compat_l; apply Rmult_lt_compat_l. + apply Rabs_pos_lt ; assumption. + rewrite Rabs_minus_sym ; apply fn'c_CVU_gc. + unfold N ; omega. + assert (t : Boule x delta c). + destruct P. + apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. + apply Rabs_def2 in xinb; apply Rabs_def1; fourier. + apply Pdelta in t; tauto. + apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + + Rabs h * (eps / 8)). + rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; + apply Rplus_lt_compat_l ; apply Rplus_lt_compat_l ; rewrite <- Rmult_plus_distr_l ; + rewrite <- Rmult_plus_distr_l ; apply Rmult_lt_compat_l. + apply Rabs_pos_lt ; assumption. + apply Rplus_lt_compat_l ; simpl in g_cont ; apply g_cont ; split ; [unfold D_x ; split |]. + solve[unfold no_cond ; intuition]. + apply Rlt_not_eq ; exact (proj1 P). + apply Rlt_trans with (Rabs h). + apply Rabs_def1. + destruct P; rewrite Rabs_pos_eq;fourier. + apply Rle_lt_trans with 0. + assert (t := Rabs_pos h); clear -t; fourier. + clear -P; destruct P; fourier. + clear -Pdelta xhinbxdelta. + apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P']. + apply Rabs_def2 in P'; simpl in P'; destruct P'; + apply Rabs_def1; fourier. + rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l. + replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with + (Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field. + apply Rmult_lt_compat_l. + apply Rabs_pos_lt ; assumption. + fourier. + assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl. + assert (Temp : l = fn' N c). + assert (bc'rc : Boule c' r c). + assert (t : Boule x delta c). + clear - xhinbxdelta P. + destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. + apply Rabs_def1; fourier. + apply Pdelta in t; tauto. + assert (Hl' := Dfn_eq_fn' c N bc'rc). + unfold derivable_pt_abs in Hl; clear -Hl Hl'. + apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption. + rewrite <- Temp. + assert (Hl' : derivable_pt (fn N) c). + exists l ; apply Hl. + rewrite pr_nu_var with (g:= fn N) (pr2:=Hl'). + elim Hl' ; clear Hl' ; intros l' Hl'. + assert (Main : l = l'). + apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption. + rewrite Main ; reflexivity. + reflexivity. + replace ((f (x + h) - f x) / h - g x) with ((/h) * ((f (x + h) - f x) - h * g x)). + rewrite Rabs_mult ; rewrite Rabs_Rinv. + replace eps with (/ Rabs h * (Rabs h * eps)). + apply Rmult_lt_compat_l. + apply Rinv_0_lt_compat ; apply Rabs_pos_lt ; assumption. + replace (f (x + h) - f x - h * g x) with (f (x + h) - fn N (x + h) - (f x - fn N x) + + (fn N (x + h) - fn N x - h * g x)) by field. + assumption. + field ; apply Rgt_not_eq ; apply Rabs_pos_lt ; assumption. + assumption. + field. assumption. +Qed. \ No newline at end of file diff --git a/theories/Reals/Ranalysis_reg.v b/theories/Reals/Ranalysis_reg.v new file mode 100644 index 00000000..a4b18288 --- /dev/null +++ b/theories/Reals/Ranalysis_reg.v @@ -0,0 +1,800 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* + match goal with + | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 + | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 + | _ => idtac + end + | (?X1 - ?X2)%F => + match goal with + | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 + | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 + | _ => idtac + end + | (?X1 * ?X2)%F => + match goal with + | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 + | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 + | _ => idtac + end + | (?X1 / ?X2)%F => + let aux := constr:X2 in + match goal with + | _:(forall x0:R, aux x0 <> 0) |- (derivable _) => + intro_hyp_glob X1; intro_hyp_glob X2 + | _:(forall x0:R, aux x0 <> 0) |- (continuity _) => + intro_hyp_glob X1; intro_hyp_glob X2 + | |- (derivable _) => + cut (forall x0:R, aux x0 <> 0); + [ intro; intro_hyp_glob X1; intro_hyp_glob X2 | try assumption ] + | |- (continuity _) => + cut (forall x0:R, aux x0 <> 0); + [ intro; intro_hyp_glob X1; intro_hyp_glob X2 | try assumption ] + | _ => idtac + end + | (comp ?X1 ?X2) => + match goal with + | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 + | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 + | _ => idtac + end + | (- ?X1)%F => + match goal with + | |- (derivable _) => intro_hyp_glob X1 + | |- (continuity _) => intro_hyp_glob X1 + | _ => idtac + end + | (/ ?X1)%F => + let aux := constr:X1 in + match goal with + | _:(forall x0:R, aux x0 <> 0) |- (derivable _) => + intro_hyp_glob X1 + | _:(forall x0:R, aux x0 <> 0) |- (continuity _) => + intro_hyp_glob X1 + | |- (derivable _) => + cut (forall x0:R, aux x0 <> 0); + [ intro; intro_hyp_glob X1 | try assumption ] + | |- (continuity _) => + cut (forall x0:R, aux x0 <> 0); + [ intro; intro_hyp_glob X1 | try assumption ] + | _ => idtac + end + | cos => idtac + | sin => idtac + | cosh => idtac + | sinh => idtac + | exp => idtac + | Rsqr => idtac + | sqrt => idtac + | id => idtac + | (fct_cte _) => idtac + | (pow_fct _) => idtac + | Rabs => idtac + | ?X1 => + let p := constr:X1 in + match goal with + | _:(derivable p) |- _ => idtac + | |- (derivable p) => idtac + | |- (derivable _) => + cut (True -> derivable p); + [ intro HYPPD; cut (derivable p); + [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] + | idtac ] + | _:(continuity p) |- _ => idtac + | |- (continuity p) => idtac + | |- (continuity _) => + cut (True -> continuity p); + [ intro HYPPD; cut (continuity p); + [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] + | idtac ] + | _ => idtac + end + end. + +(**********) +Ltac intro_hyp_pt trm pt := + match constr:trm with + | (?X1 + ?X2)%F => + match goal with + | |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | |- (derive_pt _ _ _ = _) => + intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | _ => idtac + end + | (?X1 - ?X2)%F => + match goal with + | |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | |- (derive_pt _ _ _ = _) => + intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | _ => idtac + end + | (?X1 * ?X2)%F => + match goal with + | |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | |- (derive_pt _ _ _ = _) => + intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | _ => idtac + end + | (?X1 / ?X2)%F => + let aux := constr:X2 in + match goal with + | _:(aux pt <> 0) |- (derivable_pt _ _) => + intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | _:(aux pt <> 0) |- (continuity_pt _ _) => + intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | _:(aux pt <> 0) |- (derive_pt _ _ _ = _) => + intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | id:(forall x0:R, aux x0 <> 0) |- (derivable_pt _ _) => + generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | id:(forall x0:R, aux x0 <> 0) |- (continuity_pt _ _) => + generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | id:(forall x0:R, aux x0 <> 0) |- (derive_pt _ _ _ = _) => + generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt + | |- (derivable_pt _ _) => + cut (aux pt <> 0); + [ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ] + | |- (continuity_pt _ _) => + cut (aux pt <> 0); + [ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ] + | |- (derive_pt _ _ _ = _) => + cut (aux pt <> 0); + [ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ] + | _ => idtac + end + | (comp ?X1 ?X2) => + match goal with + | |- (derivable_pt _ _) => + let pt_f1 := eval cbv beta in (X2 pt) in + (intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt) + | |- (continuity_pt _ _) => + let pt_f1 := eval cbv beta in (X2 pt) in + (intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt) + | |- (derive_pt _ _ _ = _) => + let pt_f1 := eval cbv beta in (X2 pt) in + (intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt) + | _ => idtac + end + | (- ?X1)%F => + match goal with + | |- (derivable_pt _ _) => intro_hyp_pt X1 pt + | |- (continuity_pt _ _) => intro_hyp_pt X1 pt + | |- (derive_pt _ _ _ = _) => intro_hyp_pt X1 pt + | _ => idtac + end + | (/ ?X1)%F => + let aux := constr:X1 in + match goal with + | _:(aux pt <> 0) |- (derivable_pt _ _) => + intro_hyp_pt X1 pt + | _:(aux pt <> 0) |- (continuity_pt _ _) => + intro_hyp_pt X1 pt + | _:(aux pt <> 0) |- (derive_pt _ _ _ = _) => + intro_hyp_pt X1 pt + | id:(forall x0:R, aux x0 <> 0) |- (derivable_pt _ _) => + generalize (id pt); intro; intro_hyp_pt X1 pt + | id:(forall x0:R, aux x0 <> 0) |- (continuity_pt _ _) => + generalize (id pt); intro; intro_hyp_pt X1 pt + | id:(forall x0:R, aux x0 <> 0) |- (derive_pt _ _ _ = _) => + generalize (id pt); intro; intro_hyp_pt X1 pt + | |- (derivable_pt _ _) => + cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ] + | |- (continuity_pt _ _) => + cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ] + | |- (derive_pt _ _ _ = _) => + cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ] + | _ => idtac + end + | cos => idtac + | sin => idtac + | cosh => idtac + | sinh => idtac + | exp => idtac + | Rsqr => idtac + | id => idtac + | (fct_cte _) => idtac + | (pow_fct _) => idtac + | sqrt => + match goal with + | |- (derivable_pt _ _) => cut (0 < pt); [ intro | try assumption ] + | |- (continuity_pt _ _) => + cut (0 <= pt); [ intro | try assumption ] + | |- (derive_pt _ _ _ = _) => + cut (0 < pt); [ intro | try assumption ] + | _ => idtac + end + | Rabs => + match goal with + | |- (derivable_pt _ _) => + cut (pt <> 0); [ intro | try assumption ] + | _ => idtac + end + | ?X1 => + let p := constr:X1 in + match goal with + | _:(derivable_pt p pt) |- _ => idtac + | |- (derivable_pt p pt) => idtac + | |- (derivable_pt _ _) => + cut (True -> derivable_pt p pt); + [ intro HYPPD; cut (derivable_pt p pt); + [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] + | idtac ] + | _:(continuity_pt p pt) |- _ => idtac + | |- (continuity_pt p pt) => idtac + | |- (continuity_pt _ _) => + cut (True -> continuity_pt p pt); + [ intro HYPPD; cut (continuity_pt p pt); + [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] + | idtac ] + | |- (derive_pt _ _ _ = _) => + cut (True -> derivable_pt p pt); + [ intro HYPPD; cut (derivable_pt p pt); + [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] + | idtac ] + | _ => idtac + end + end. + +(**********) +Ltac is_diff_pt := + match goal with + | |- (derivable_pt Rsqr _) => + + (* fonctions de base *) + apply derivable_pt_Rsqr + | |- (derivable_pt id ?X1) => apply (derivable_pt_id X1) + | |- (derivable_pt (fct_cte _) _) => apply derivable_pt_const + | |- (derivable_pt sin _) => apply derivable_pt_sin + | |- (derivable_pt cos _) => apply derivable_pt_cos + | |- (derivable_pt sinh _) => apply derivable_pt_sinh + | |- (derivable_pt cosh _) => apply derivable_pt_cosh + | |- (derivable_pt exp _) => apply derivable_pt_exp + | |- (derivable_pt (pow_fct _) _) => + unfold pow_fct in |- *; apply derivable_pt_pow + | |- (derivable_pt sqrt ?X1) => + apply (derivable_pt_sqrt X1); + assumption || + unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct, + comp, id, fct_cte, pow_fct in |- * + | |- (derivable_pt Rabs ?X1) => + apply (Rderivable_pt_abs X1); + assumption || + unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct, + comp, id, fct_cte, pow_fct in |- * + (* regles de differentiabilite *) + (* PLUS *) + | |- (derivable_pt (?X1 + ?X2) ?X3) => + apply (derivable_pt_plus X1 X2 X3); is_diff_pt + (* MOINS *) + | |- (derivable_pt (?X1 - ?X2) ?X3) => + apply (derivable_pt_minus X1 X2 X3); is_diff_pt + (* OPPOSE *) + | |- (derivable_pt (- ?X1) ?X2) => + apply (derivable_pt_opp X1 X2); + is_diff_pt + (* MULTIPLICATION PAR UN SCALAIRE *) + | |- (derivable_pt (mult_real_fct ?X1 ?X2) ?X3) => + apply (derivable_pt_scal X2 X1 X3); is_diff_pt + (* MULTIPLICATION *) + | |- (derivable_pt (?X1 * ?X2) ?X3) => + apply (derivable_pt_mult X1 X2 X3); is_diff_pt + (* DIVISION *) + | |- (derivable_pt (?X1 / ?X2) ?X3) => + apply (derivable_pt_div X1 X2 X3); + [ is_diff_pt + | is_diff_pt + | try + assumption || + unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, + comp, pow_fct, id, fct_cte in |- * ] + | |- (derivable_pt (/ ?X1) ?X2) => + + (* INVERSION *) + apply (derivable_pt_inv X1 X2); + [ assumption || + unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, + comp, pow_fct, id, fct_cte in |- * + | is_diff_pt ] + | |- (derivable_pt (comp ?X1 ?X2) ?X3) => + + (* COMPOSITION *) + apply (derivable_pt_comp X2 X1 X3); is_diff_pt + | _:(derivable_pt ?X1 ?X2) |- (derivable_pt ?X1 ?X2) => + assumption + | _:(derivable ?X1) |- (derivable_pt ?X1 ?X2) => + cut (derivable X1); [ intro HypDDPT; apply HypDDPT | assumption ] + | |- (True -> derivable_pt _ _) => + intro HypTruE; clear HypTruE; is_diff_pt + | _ => + try + unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, + fct_cte, comp, pow_fct in |- * + end. + +(**********) +Ltac is_diff_glob := + match goal with + | |- (derivable Rsqr) => + (* fonctions de base *) + apply derivable_Rsqr + | |- (derivable id) => apply derivable_id + | |- (derivable (fct_cte _)) => apply derivable_const + | |- (derivable sin) => apply derivable_sin + | |- (derivable cos) => apply derivable_cos + | |- (derivable cosh) => apply derivable_cosh + | |- (derivable sinh) => apply derivable_sinh + | |- (derivable exp) => apply derivable_exp + | |- (derivable (pow_fct _)) => + unfold pow_fct in |- *; + apply derivable_pow + (* regles de differentiabilite *) + (* PLUS *) + | |- (derivable (?X1 + ?X2)) => + apply (derivable_plus X1 X2); is_diff_glob + (* MOINS *) + | |- (derivable (?X1 - ?X2)) => + apply (derivable_minus X1 X2); is_diff_glob + (* OPPOSE *) + | |- (derivable (- ?X1)) => + apply (derivable_opp X1); + is_diff_glob + (* MULTIPLICATION PAR UN SCALAIRE *) + | |- (derivable (mult_real_fct ?X1 ?X2)) => + apply (derivable_scal X2 X1); is_diff_glob + (* MULTIPLICATION *) + | |- (derivable (?X1 * ?X2)) => + apply (derivable_mult X1 X2); is_diff_glob + (* DIVISION *) + | |- (derivable (?X1 / ?X2)) => + apply (derivable_div X1 X2); + [ is_diff_glob + | is_diff_glob + | try + assumption || + unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, + id, fct_cte, comp, pow_fct in |- * ] + | |- (derivable (/ ?X1)) => + + (* INVERSION *) + apply (derivable_inv X1); + [ try + assumption || + unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, + id, fct_cte, comp, pow_fct in |- * + | is_diff_glob ] + | |- (derivable (comp sqrt _)) => + + (* COMPOSITION *) + unfold derivable in |- *; intro; try is_diff_pt + | |- (derivable (comp Rabs _)) => + unfold derivable in |- *; intro; try is_diff_pt + | |- (derivable (comp ?X1 ?X2)) => + apply (derivable_comp X2 X1); is_diff_glob + | _:(derivable ?X1) |- (derivable ?X1) => assumption + | |- (True -> derivable _) => + intro HypTruE; clear HypTruE; is_diff_glob + | _ => + try + unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, + fct_cte, comp, pow_fct in |- * + end. + +(**********) +Ltac is_cont_pt := + match goal with + | |- (continuity_pt Rsqr _) => + + (* fonctions de base *) + apply derivable_continuous_pt; apply derivable_pt_Rsqr + | |- (continuity_pt id ?X1) => + apply derivable_continuous_pt; apply (derivable_pt_id X1) + | |- (continuity_pt (fct_cte _) _) => + apply derivable_continuous_pt; apply derivable_pt_const + | |- (continuity_pt sin _) => + apply derivable_continuous_pt; apply derivable_pt_sin + | |- (continuity_pt cos _) => + apply derivable_continuous_pt; apply derivable_pt_cos + | |- (continuity_pt sinh _) => + apply derivable_continuous_pt; apply derivable_pt_sinh + | |- (continuity_pt cosh _) => + apply derivable_continuous_pt; apply derivable_pt_cosh + | |- (continuity_pt exp _) => + apply derivable_continuous_pt; apply derivable_pt_exp + | |- (continuity_pt (pow_fct _) _) => + unfold pow_fct in |- *; apply derivable_continuous_pt; + apply derivable_pt_pow + | |- (continuity_pt sqrt ?X1) => + apply continuity_pt_sqrt; + assumption || + unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct, + comp, id, fct_cte, pow_fct in |- * + | |- (continuity_pt Rabs ?X1) => + apply (Rcontinuity_abs X1) + (* regles de differentiabilite *) + (* PLUS *) + | |- (continuity_pt (?X1 + ?X2) ?X3) => + apply (continuity_pt_plus X1 X2 X3); is_cont_pt + (* MOINS *) + | |- (continuity_pt (?X1 - ?X2) ?X3) => + apply (continuity_pt_minus X1 X2 X3); is_cont_pt + (* OPPOSE *) + | |- (continuity_pt (- ?X1) ?X2) => + apply (continuity_pt_opp X1 X2); + is_cont_pt + (* MULTIPLICATION PAR UN SCALAIRE *) + | |- (continuity_pt (mult_real_fct ?X1 ?X2) ?X3) => + apply (continuity_pt_scal X2 X1 X3); is_cont_pt + (* MULTIPLICATION *) + | |- (continuity_pt (?X1 * ?X2) ?X3) => + apply (continuity_pt_mult X1 X2 X3); is_cont_pt + (* DIVISION *) + | |- (continuity_pt (?X1 / ?X2) ?X3) => + apply (continuity_pt_div X1 X2 X3); + [ is_cont_pt + | is_cont_pt + | try + assumption || + unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, + comp, id, fct_cte, pow_fct in |- * ] + | |- (continuity_pt (/ ?X1) ?X2) => + + (* INVERSION *) + apply (continuity_pt_inv X1 X2); + [ is_cont_pt + | assumption || + unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, + comp, id, fct_cte, pow_fct in |- * ] + | |- (continuity_pt (comp ?X1 ?X2) ?X3) => + + (* COMPOSITION *) + apply (continuity_pt_comp X2 X1 X3); is_cont_pt + | _:(continuity_pt ?X1 ?X2) |- (continuity_pt ?X1 ?X2) => + assumption + | _:(continuity ?X1) |- (continuity_pt ?X1 ?X2) => + cut (continuity X1); [ intro HypDDPT; apply HypDDPT | assumption ] + | _:(derivable_pt ?X1 ?X2) |- (continuity_pt ?X1 ?X2) => + apply derivable_continuous_pt; assumption + | _:(derivable ?X1) |- (continuity_pt ?X1 ?X2) => + cut (continuity X1); + [ intro HypDDPT; apply HypDDPT + | apply derivable_continuous; assumption ] + | |- (True -> continuity_pt _ _) => + intro HypTruE; clear HypTruE; is_cont_pt + | _ => + try + unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, + fct_cte, comp, pow_fct in |- * + end. + +(**********) +Ltac is_cont_glob := + match goal with + | |- (continuity Rsqr) => + + (* fonctions de base *) + apply derivable_continuous; apply derivable_Rsqr + | |- (continuity id) => apply derivable_continuous; apply derivable_id + | |- (continuity (fct_cte _)) => + apply derivable_continuous; apply derivable_const + | |- (continuity sin) => apply derivable_continuous; apply derivable_sin + | |- (continuity cos) => apply derivable_continuous; apply derivable_cos + | |- (continuity exp) => apply derivable_continuous; apply derivable_exp + | |- (continuity (pow_fct _)) => + unfold pow_fct in |- *; apply derivable_continuous; apply derivable_pow + | |- (continuity sinh) => + apply derivable_continuous; apply derivable_sinh + | |- (continuity cosh) => + apply derivable_continuous; apply derivable_cosh + | |- (continuity Rabs) => + apply Rcontinuity_abs + (* regles de continuite *) + (* PLUS *) + | |- (continuity (?X1 + ?X2)) => + apply (continuity_plus X1 X2); + try is_cont_glob || assumption + (* MOINS *) + | |- (continuity (?X1 - ?X2)) => + apply (continuity_minus X1 X2); + try is_cont_glob || assumption + (* OPPOSE *) + | |- (continuity (- ?X1)) => + apply (continuity_opp X1); try is_cont_glob || assumption + (* INVERSE *) + | |- (continuity (/ ?X1)) => + apply (continuity_inv X1); + try is_cont_glob || assumption + (* MULTIPLICATION PAR UN SCALAIRE *) + | |- (continuity (mult_real_fct ?X1 ?X2)) => + apply (continuity_scal X2 X1); + try is_cont_glob || assumption + (* MULTIPLICATION *) + | |- (continuity (?X1 * ?X2)) => + apply (continuity_mult X1 X2); + try is_cont_glob || assumption + (* DIVISION *) + | |- (continuity (?X1 / ?X2)) => + apply (continuity_div X1 X2); + [ try is_cont_glob || assumption + | try is_cont_glob || assumption + | try + assumption || + unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, + id, fct_cte, pow_fct in |- * ] + | |- (continuity (comp sqrt _)) => + + (* COMPOSITION *) + unfold continuity_pt in |- *; intro; try is_cont_pt + | |- (continuity (comp ?X1 ?X2)) => + apply (continuity_comp X2 X1); try is_cont_glob || assumption + | _:(continuity ?X1) |- (continuity ?X1) => assumption + | |- (True -> continuity _) => + intro HypTruE; clear HypTruE; is_cont_glob + | _:(derivable ?X1) |- (continuity ?X1) => + apply derivable_continuous; assumption + | _ => + try + unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, + fct_cte, comp, pow_fct in |- * + end. + +(**********) +Ltac rew_term trm := + match constr:trm with + | (?X1 + ?X2) => + let p1 := rew_term X1 with p2 := rew_term X2 in + match constr:p1 with + | (fct_cte ?X3) => + match constr:p2 with + | (fct_cte ?X4) => constr:(fct_cte (X3 + X4)) + | _ => constr:(p1 + p2)%F + end + | _ => constr:(p1 + p2)%F + end + | (?X1 - ?X2) => + let p1 := rew_term X1 with p2 := rew_term X2 in + match constr:p1 with + | (fct_cte ?X3) => + match constr:p2 with + | (fct_cte ?X4) => constr:(fct_cte (X3 - X4)) + | _ => constr:(p1 - p2)%F + end + | _ => constr:(p1 - p2)%F + end + | (?X1 / ?X2) => + let p1 := rew_term X1 with p2 := rew_term X2 in + match constr:p1 with + | (fct_cte ?X3) => + match constr:p2 with + | (fct_cte ?X4) => constr:(fct_cte (X3 / X4)) + | _ => constr:(p1 / p2)%F + end + | _ => + match constr:p2 with + | (fct_cte ?X4) => constr:(p1 * fct_cte (/ X4))%F + | _ => constr:(p1 / p2)%F + end + end + | (?X1 * / ?X2) => + let p1 := rew_term X1 with p2 := rew_term X2 in + match constr:p1 with + | (fct_cte ?X3) => + match constr:p2 with + | (fct_cte ?X4) => constr:(fct_cte (X3 / X4)) + | _ => constr:(p1 / p2)%F + end + | _ => + match constr:p2 with + | (fct_cte ?X4) => constr:(p1 * fct_cte (/ X4))%F + | _ => constr:(p1 / p2)%F + end + end + | (?X1 * ?X2) => + let p1 := rew_term X1 with p2 := rew_term X2 in + match constr:p1 with + | (fct_cte ?X3) => + match constr:p2 with + | (fct_cte ?X4) => constr:(fct_cte (X3 * X4)) + | _ => constr:(p1 * p2)%F + end + | _ => constr:(p1 * p2)%F + end + | (- ?X1) => + let p := rew_term X1 in + match constr:p with + | (fct_cte ?X2) => constr:(fct_cte (- X2)) + | _ => constr:(- p)%F + end + | (/ ?X1) => + let p := rew_term X1 in + match constr:p with + | (fct_cte ?X2) => constr:(fct_cte (/ X2)) + | _ => constr:(/ p)%F + end + | (?X1 AppVar) => constr:X1 + | (?X1 ?X2) => + let p := rew_term X2 in + match constr:p with + | (fct_cte ?X3) => constr:(fct_cte (X1 X3)) + | _ => constr:(comp X1 p) + end + | AppVar => constr:id + | (AppVar ^ ?X1) => constr:(pow_fct X1) + | (?X1 ^ ?X2) => + let p := rew_term X1 in + match constr:p with + | (fct_cte ?X3) => constr:(fct_cte (pow_fct X2 X3)) + | _ => constr:(comp (pow_fct X2) p) + end + | ?X1 => constr:(fct_cte X1) + end. + +(**********) +Ltac deriv_proof trm pt := + match constr:trm with + | (?X1 + ?X2)%F => + let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in + constr:(derivable_pt_plus X1 X2 pt p1 p2) + | (?X1 - ?X2)%F => + let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in + constr:(derivable_pt_minus X1 X2 pt p1 p2) + | (?X1 * ?X2)%F => + let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in + constr:(derivable_pt_mult X1 X2 pt p1 p2) + | (?X1 / ?X2)%F => + match goal with + | id:(?X2 pt <> 0) |- _ => + let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in + constr:(derivable_pt_div X1 X2 pt p1 p2 id) + | _ => constr:False + end + | (/ ?X1)%F => + match goal with + | id:(?X1 pt <> 0) |- _ => + let p1 := deriv_proof X1 pt in + constr:(derivable_pt_inv X1 pt p1 id) + | _ => constr:False + end + | (comp ?X1 ?X2) => + let pt_f1 := eval cbv beta in (X2 pt) in + let p1 := deriv_proof X1 pt_f1 with p2 := deriv_proof X2 pt in + constr:(derivable_pt_comp X2 X1 pt p2 p1) + | (- ?X1)%F => + let p1 := deriv_proof X1 pt in + constr:(derivable_pt_opp X1 pt p1) + | sin => constr:(derivable_pt_sin pt) + | cos => constr:(derivable_pt_cos pt) + | sinh => constr:(derivable_pt_sinh pt) + | cosh => constr:(derivable_pt_cosh pt) + | exp => constr:(derivable_pt_exp pt) + | id => constr:(derivable_pt_id pt) + | Rsqr => constr:(derivable_pt_Rsqr pt) + | sqrt => + match goal with + | id:(0 < pt) |- _ => constr:(derivable_pt_sqrt pt id) + | _ => constr:False + end + | (fct_cte ?X1) => constr:(derivable_pt_const X1 pt) + | ?X1 => + let aux := constr:X1 in + match goal with + | id:(derivable_pt aux pt) |- _ => constr:id + | id:(derivable aux) |- _ => constr:(id pt) + | _ => constr:False + end + end. + +(**********) +Ltac simplify_derive trm pt := + match constr:trm with + | (?X1 + ?X2)%F => + try rewrite derive_pt_plus; simplify_derive X1 pt; + simplify_derive X2 pt + | (?X1 - ?X2)%F => + try rewrite derive_pt_minus; simplify_derive X1 pt; + simplify_derive X2 pt + | (?X1 * ?X2)%F => + try rewrite derive_pt_mult; simplify_derive X1 pt; + simplify_derive X2 pt + | (?X1 / ?X2)%F => + try rewrite derive_pt_div; simplify_derive X1 pt; simplify_derive X2 pt + | (comp ?X1 ?X2) => + let pt_f1 := eval cbv beta in (X2 pt) in + (try rewrite derive_pt_comp; simplify_derive X1 pt_f1; + simplify_derive X2 pt) + | (- ?X1)%F => try rewrite derive_pt_opp; simplify_derive X1 pt + | (/ ?X1)%F => + try rewrite derive_pt_inv; simplify_derive X1 pt + | (fct_cte ?X1) => try rewrite derive_pt_const + | id => try rewrite derive_pt_id + | sin => try rewrite derive_pt_sin + | cos => try rewrite derive_pt_cos + | sinh => try rewrite derive_pt_sinh + | cosh => try rewrite derive_pt_cosh + | exp => try rewrite derive_pt_exp + | Rsqr => try rewrite derive_pt_Rsqr + | sqrt => try rewrite derive_pt_sqrt + | ?X1 => + let aux := constr:X1 in + match goal with + | id:(derive_pt aux pt ?X2 = _),H:(derivable aux) |- _ => + try replace (derive_pt aux pt (H pt)) with (derive_pt aux pt X2); + [ rewrite id | apply pr_nu ] + | id:(derive_pt aux pt ?X2 = _),H:(derivable_pt aux pt) |- _ => + try replace (derive_pt aux pt H) with (derive_pt aux pt X2); + [ rewrite id | apply pr_nu ] + | _ => idtac + end + | _ => idtac + end. + +(**********) +Ltac reg := + match goal with + | |- (derivable_pt ?X1 ?X2) => + let trm := eval cbv beta in (X1 AppVar) in + let aux := rew_term trm in + (intro_hyp_pt aux X2; + try (change (derivable_pt aux X2) in |- *; is_diff_pt) || is_diff_pt) + | |- (derivable ?X1) => + let trm := eval cbv beta in (X1 AppVar) in + let aux := rew_term trm in + (intro_hyp_glob aux; + try (change (derivable aux) in |- *; is_diff_glob) || is_diff_glob) + | |- (continuity ?X1) => + let trm := eval cbv beta in (X1 AppVar) in + let aux := rew_term trm in + (intro_hyp_glob aux; + try (change (continuity aux) in |- *; is_cont_glob) || is_cont_glob) + | |- (continuity_pt ?X1 ?X2) => + let trm := eval cbv beta in (X1 AppVar) in + let aux := rew_term trm in + (intro_hyp_pt aux X2; + try (change (continuity_pt aux X2) in |- *; is_cont_pt) || is_cont_pt) + | |- (derive_pt ?X1 ?X2 ?X3 = ?X4) => + let trm := eval cbv beta in (X1 AppVar) in + let aux := rew_term trm in + intro_hyp_pt aux X2; + (let aux2 := deriv_proof aux X2 in + try + (replace (derive_pt X1 X2 X3) with (derive_pt aux X2 aux2); + [ simplify_derive aux X2; + try unfold plus_fct, minus_fct, mult_fct, div_fct, id, fct_cte, + inv_fct, opp_fct in |- *; ring || ring_simplify + | try apply pr_nu ]) || is_diff_pt) + end. diff --git a/theories/Reals/Ratan.v b/theories/Reals/Ratan.v new file mode 100644 index 00000000..1a0ea969 --- /dev/null +++ b/theories/Reals/Ratan.v @@ -0,0 +1,1602 @@ +Require Import Fourier. +Require Import Rbase. +Require Import PSeries_reg. +Require Import Rtrigo1. +Require Import Ranalysis_reg. +Require Import Rfunctions. +Require Import AltSeries. +Require Import Rseries. +Require Import SeqProp. +Require Import Ranalysis5. +Require Import SeqSeries. +Require Import PartSum. + +Local Open Scope R_scope. + +(** Tools *) + +Lemma Ropp_div : forall x y, -x/y = -(x/y). +Proof. +intros x y; unfold Rdiv; rewrite <-Ropp_mult_distr_l_reverse; reflexivity. +Qed. + +Definition pos_half_prf : 0 < /2. +Proof. fourier. Qed. + +Definition pos_half := mkposreal (/2) pos_half_prf. + +Lemma Boule_half_to_interval : + forall x , Boule (/2) pos_half x -> 0 <= x <= 1. +Proof. +unfold Boule, pos_half; simpl. +intros x b; apply Rabs_def2 in b; destruct b; split; fourier. +Qed. + +Lemma Boule_lt : forall c r x, Boule c r x -> Rabs x < Rabs c + r. +Proof. +unfold Boule; intros c r x h. +apply Rabs_def2 in h; destruct h; apply Rabs_def1; + (destruct (Rle_lt_dec 0 c);[rewrite Rabs_pos_eq; fourier | + rewrite <- Rabs_Ropp, Rabs_pos_eq; fourier]). +Qed. + +(* The following lemma does not belong here. *) +Lemma Un_cv_ext : + forall un vn, (forall n, un n = vn n) -> + forall l, Un_cv un l -> Un_cv vn l. +Proof. +intros un vn quv l P eps ep; destruct (P eps ep) as [N Pn]; exists N. +intro n; rewrite <- quv; apply Pn. +Qed. + +(* The following two lemmas are general purposes about alternated series. + They do not belong here. *) +Lemma Alt_first_term_bound :forall f l N n, + Un_decreasing f -> Un_cv f 0 -> + Un_cv (sum_f_R0 (tg_alt f)) l -> + (N <= n)%nat -> + R_dist (sum_f_R0 (tg_alt f) n) l <= f N. +Proof. +intros f l. +assert (WLOG : + forall n P, (forall k, (0 < k)%nat -> P k) -> + ((forall k, (0 < k)%nat -> P k) -> P 0%nat) -> P n). +clear. +intros [ | n] P Hs Ho;[solve[apply Ho, Hs] | apply Hs; auto with arith]. +intros N; pattern N; apply WLOG; clear N. +intros [ | N] Npos n decr to0 cv nN. + clear -Npos; elimtype False; omega. + assert (decr' : Un_decreasing (fun i => f (S N + i)%nat)). + intros k; replace (S N+S k)%nat with (S (S N+k)) by ring. + apply (decr (S N + k)%nat). + assert (to' : Un_cv (fun i => f (S N + i)%nat) 0). + intros eps ep; destruct (to0 eps ep) as [M PM]. + exists M; intros k kM; apply PM; omega. + assert (cv' : Un_cv + (sum_f_R0 (tg_alt (fun i => ((-1) ^ S N * f(S N + i)%nat)))) + (l - sum_f_R0 (tg_alt f) N)). + intros eps ep; destruct (cv eps ep) as [M PM]; exists M. + intros n' nM. + match goal with |- ?C => set (U := C) end. + assert (nM' : (n' + S N >= M)%nat) by omega. + generalize (PM _ nM'); unfold R_dist. + rewrite (tech2 (tg_alt f) N (n' + S N)). + assert (t : forall a b c, (a + b) - c = b - (c - a)) by (intros; ring). + rewrite t; clear t; unfold U, R_dist; clear U. + replace (n' + S N - S N)%nat with n' by omega. + rewrite <- (sum_eq (tg_alt (fun i => (-1) ^ S N * f(S N + i)%nat))). + tauto. + intros i _; unfold tg_alt. + rewrite <- Rmult_assoc, <- pow_add, !(plus_comm i); reflexivity. + omega. + assert (cv'' : Un_cv (sum_f_R0 (tg_alt (fun i => f (S N + i)%nat))) + ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))). + apply (Un_cv_ext (fun n => (-1) ^ S N * + sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n)). + intros n0; rewrite scal_sum; apply sum_eq; intros i _. + unfold tg_alt; ring_simplify; replace (((-1) ^ S N) ^ 2) with 1. + ring. + rewrite <- pow_mult, mult_comm, pow_mult; replace ((-1) ^2) with 1 by ring. + rewrite pow1; reflexivity. + apply CV_mult. + solve[intros eps ep; exists 0%nat; intros; rewrite R_dist_eq; auto]. + assumption. + destruct (even_odd_cor N) as [p [Neven | Nodd]]. + rewrite Neven; destruct (alternated_series_ineq _ _ p decr to0 cv) as [B C]. + case (even_odd_cor n) as [p' [neven | nodd]]. + rewrite neven. + destruct (alternated_series_ineq _ _ p' decr to0 cv) as [D E]. + unfold R_dist; rewrite Rabs_pos_eq;[ | fourier]. + assert (dist : (p <= p')%nat) by omega. + assert (t := decreasing_prop _ _ _ (CV_ALT_step1 f decr) dist). + apply Rle_trans with (sum_f_R0 (tg_alt f) (2 * p) - l). + unfold Rminus; apply Rplus_le_compat_r; exact t. + match goal with _ : ?a <= l, _ : l <= ?b |- _ => + replace (f (S (2 * p))) with (b - a) by + (rewrite tech5; unfold tg_alt; rewrite pow_1_odd; ring); fourier + end. + rewrite nodd; destruct (alternated_series_ineq _ _ p' decr to0 cv) as [D E]. + unfold R_dist; rewrite <- Rabs_Ropp, Rabs_pos_eq, Ropp_minus_distr; + [ | fourier]. + assert (dist : (p <= p')%nat) by omega. + apply Rle_trans with (l - sum_f_R0 (tg_alt f) (S (2 * p))). + unfold Rminus; apply Rplus_le_compat_l, Ropp_le_contravar. + solve[apply Rge_le, (growing_prop _ _ _ (CV_ALT_step0 f decr) dist)]. + unfold Rminus; rewrite tech5, Ropp_plus_distr, <- Rplus_assoc. + unfold tg_alt at 2; rewrite pow_1_odd, Ropp_mult_distr_l_reverse; fourier. + rewrite Nodd; destruct (alternated_series_ineq _ _ p decr to0 cv) as [B _]. + destruct (alternated_series_ineq _ _ (S p) decr to0 cv) as [_ C]. + assert (keep : (2 * S p = S (S ( 2 * p)))%nat) by ring. + case (even_odd_cor n) as [p' [neven | nodd]]. + rewrite neven; + destruct (alternated_series_ineq _ _ p' decr to0 cv) as [D E]. + unfold R_dist; rewrite Rabs_pos_eq;[ | fourier]. + assert (dist : (S p < S p')%nat) by omega. + apply Rle_trans with (sum_f_R0 (tg_alt f) (2 * S p) - l). + unfold Rminus; apply Rplus_le_compat_r, + (decreasing_prop _ _ _ (CV_ALT_step1 f decr)). + omega. + rewrite keep, tech5; unfold tg_alt at 2; rewrite <- keep, pow_1_even. + fourier. + rewrite nodd; destruct (alternated_series_ineq _ _ p' decr to0 cv) as [D E]. + unfold R_dist; rewrite <- Rabs_Ropp, Rabs_pos_eq;[ | fourier]. + rewrite Ropp_minus_distr. + apply Rle_trans with (l - sum_f_R0 (tg_alt f) (S (2 * p))). + unfold Rminus; apply Rplus_le_compat_l, Ropp_le_contravar, Rge_le, + (growing_prop _ _ _ (CV_ALT_step0 f decr)); omega. + generalize C; rewrite keep, tech5; unfold tg_alt. + rewrite <- keep, pow_1_even. + assert (t : forall a b c, a <= b + 1 * c -> a - b <= c) by (intros; fourier). + solve[apply t]. +clear WLOG; intros Hyp [ | n] decr to0 cv _. + generalize (alternated_series_ineq f l 0 decr to0 cv). + unfold R_dist, tg_alt; simpl; rewrite !Rmult_1_l, !Rmult_1_r. + assert (f 1%nat <= f 0%nat) by apply decr. + rewrite Ropp_mult_distr_l_reverse. + intros [A B]; rewrite Rabs_pos_eq; fourier. +apply Rle_trans with (f 1%nat). + apply (Hyp 1%nat (le_n 1) (S n) decr to0 cv). + omega. +solve[apply decr]. +Qed. + +Lemma Alt_CVU : forall (f : nat -> R -> R) g h c r, + (forall x, Boule c r x ->Un_decreasing (fun n => f n x)) -> + (forall x, Boule c r x -> Un_cv (fun n => f n x) 0) -> + (forall x, Boule c r x -> + Un_cv (sum_f_R0 (tg_alt (fun i => f i x))) (g x)) -> + (forall x n, Boule c r x -> f n x <= h n) -> + (Un_cv h 0) -> + CVU (fun N x => sum_f_R0 (tg_alt (fun i => f i x)) N) g c r. +Proof. +intros f g h c r decr to0 to_g bound bound0 eps ep. +assert (ep' : 0 f i y) (g y) n n); auto]. +apply Rle_lt_trans with (h n). + apply bound; assumption. +clear - nN Pn. +generalize (Pn _ nN); unfold R_dist; rewrite Rminus_0_r; intros t. +apply Rabs_def2 in t; tauto. +Qed. + +(* The following lemmas are general purpose lemmas about squares. + They do not belong here *) + +Lemma pow2_ge_0 : forall x, 0 <= x ^ 2. +Proof. +intros x; destruct (Rle_lt_dec 0 x). + replace (x ^ 2) with (x * x) by field. + apply Rmult_le_pos; assumption. + replace (x ^ 2) with ((-x) * (-x)) by field. +apply Rmult_le_pos; fourier. +Qed. + +Lemma pow2_abs : forall x, Rabs x ^ 2 = x ^ 2. +Proof. +intros x; destruct (Rle_lt_dec 0 x). + rewrite Rabs_pos_eq;[field | assumption]. +rewrite <- Rabs_Ropp, Rabs_pos_eq;[field | fourier]. +Qed. + +(** * Properties of tangent *) + +Lemma derivable_pt_tan : forall x, -PI/2 < x < PI/2 -> derivable_pt tan x. +Proof. +intros x xint. + unfold derivable_pt, tan. + apply derivable_pt_div ; [reg | reg | ]. + apply Rgt_not_eq. + unfold Rgt ; apply cos_gt_0; + [unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse; fold (-PI/2) |];tauto. +Qed. + +Lemma derive_pt_tan : forall (x:R), + forall (Pr1: -PI/2 < x < PI/2), + derive_pt tan x (derivable_pt_tan x Pr1) = 1 + (tan x)^2. +Proof. +intros x pr. +assert (cos x <> 0). + apply Rgt_not_eq, cos_gt_0; rewrite <- ?Ropp_div; tauto. +unfold tan; reg; unfold pow, Rsqr; field; assumption. +Qed. + +(** Proof that tangent is a bijection *) +(* to be removed? *) + +Lemma derive_increasing_interv : + forall (a b:R) (f:R -> R), + a < b -> + forall (pr:forall x, a < x < b -> derivable_pt f x), + (forall t:R, forall (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)) -> + forall x y:R, a < x < b -> a < y < b -> x < y -> f x < f y. +Proof. +intros a b f a_lt_b pr Df_gt_0 x y x_encad y_encad x_lt_y. + assert (derivable_id_interv : forall c : R, x < c < y -> derivable_pt id c). + intros ; apply derivable_pt_id. + assert (derivable_f_interv : forall c : R, x < c < y -> derivable_pt f c). + intros c c_encad. apply pr. split. + apply Rlt_trans with (r2:=x) ; [exact (proj1 x_encad) | exact (proj1 c_encad)]. + apply Rlt_trans with (r2:=y) ; [exact (proj2 c_encad) | exact (proj2 y_encad)]. + assert (f_cont_interv : forall c : R, x <= c <= y -> continuity_pt f c). + intros c c_encad; apply derivable_continuous_pt ; apply pr. split. + apply Rlt_le_trans with (r2:=x) ; [exact (proj1 x_encad) | exact (proj1 c_encad)]. + apply Rle_lt_trans with (r2:=y) ; [ exact (proj2 c_encad) | exact (proj2 y_encad)]. + assert (id_cont_interv : forall c : R, x <= c <= y -> continuity_pt id c). + intros ; apply derivable_continuous_pt ; apply derivable_pt_id. + elim (MVT f id x y derivable_f_interv derivable_id_interv x_lt_y f_cont_interv id_cont_interv). + intros c Temp ; elim Temp ; clear Temp ; intros Pr eq. + replace (id y - id x) with (y - x) in eq by intuition. + replace (derive_pt id c (derivable_id_interv c Pr)) with 1 in eq. + assert (Hyp : f y - f x > 0). + rewrite Rmult_1_r in eq. rewrite <- eq. + apply Rmult_gt_0_compat. + apply Rgt_minus ; assumption. + assert (c_encad2 : a <= c < b). + split. + apply Rlt_le ; apply Rlt_trans with (r2:=x) ; [exact (proj1 x_encad) | exact (proj1 Pr)]. + apply Rle_lt_trans with (r2:=y) ; [apply Rlt_le ; exact (proj2 Pr) | exact (proj2 y_encad)]. + assert (c_encad : a < c < b). + split. + apply Rlt_trans with (r2:=x) ; [exact (proj1 x_encad) | exact (proj1 Pr)]. + apply Rle_lt_trans with (r2:=y) ; [apply Rlt_le ; exact (proj2 Pr) | exact (proj2 y_encad)]. + assert (Temp := Df_gt_0 c c_encad). + assert (Temp2 := pr_nu f c (derivable_f_interv c Pr) (pr c c_encad)). + rewrite Temp2 ; apply Temp. + apply Rminus_gt ; exact Hyp. + symmetry ; rewrite derive_pt_eq ; apply derivable_pt_lim_id. +Qed. + +(* begin hide *) +Lemma plus_Rsqr_gt_0 : forall x, 1 + x ^ 2 > 0. +Proof. +intro m. replace 0 with (0+0) by intuition. + apply Rplus_gt_ge_compat. intuition. + elim (total_order_T m 0) ; intro s'. case s'. + intros m_cond. replace 0 with (0*0) by intuition. + replace (m ^ 2) with ((-m)^2). + apply Rle_ge ; apply Rmult_le_compat ; intuition ; apply Rlt_le ; rewrite Rmult_1_r ; intuition. + field. + intro H' ; rewrite H' ; right ; field. + left. intuition. +Qed. +(* end hide *) + +(* The following lemmas about PI should probably be in Rtrigo. *) + +Lemma PI2_lower_bound : + forall x, 0 < x < 2 -> 0 < cos x -> x < PI/2. +Proof. +intros x [xp xlt2] cx. +destruct (Rtotal_order x (PI/2)) as [xltpi2 | [xeqpi2 | xgtpi2]]. + assumption. + now case (Rgt_not_eq _ _ cx); rewrite xeqpi2, cos_PI2. +destruct (MVT_cor1 cos (PI/2) x derivable_cos xgtpi2) as + [c [Pc [cint1 cint2]]]. +revert Pc; rewrite cos_PI2, Rminus_0_r. +rewrite <- (pr_nu cos c (derivable_pt_cos c)), derive_pt_cos. +assert (0 < c < 2) by (split; assert (t := PI2_RGT_0); fourier). +assert (0 < sin c) by now apply sin_pos_tech. +intros Pc. +case (Rlt_not_le _ _ cx). +rewrite <- (Rplus_0_l (cos x)), Pc, Ropp_mult_distr_l_reverse. +apply Rle_minus, Rmult_le_pos;[apply Rlt_le; assumption | fourier ]. +Qed. + +Lemma PI2_3_2 : 3/2 < PI/2. +Proof. +apply PI2_lower_bound;[split; fourier | ]. +destruct (pre_cos_bound (3/2) 1) as [t _]; [fourier | fourier | ]. +apply Rlt_le_trans with (2 := t); clear t. +unfold cos_approx; simpl; unfold cos_term. +simpl mult; replace ((-1)^ 0) with 1 by ring; replace ((-1)^2) with 1 by ring; + replace ((-1)^4) with 1 by ring; replace ((-1)^1) with (-1) by ring; + replace ((-1)^3) with (-1) by ring; replace 3 with (IZR 3) by (simpl; ring); + replace 2 with (IZR 2) by (simpl; ring); simpl Z.of_nat; + rewrite !INR_IZR_INZ, Ropp_mult_distr_l_reverse, Rmult_1_l. +match goal with |- _ < ?a => +replace a with ((- IZR 3 ^ 6 * IZR (Z.of_nat (fact 0)) * IZR (Z.of_nat (fact 2)) * + IZR (Z.of_nat (fact 4)) + + IZR 3 ^ 4 * IZR 2 ^ 2 * IZR (Z.of_nat (fact 0)) * IZR (Z.of_nat (fact 2)) * + IZR (Z.of_nat (fact 6)) - + IZR 3 ^ 2 * IZR 2 ^ 4 * IZR (Z.of_nat (fact 0)) * IZR (Z.of_nat (fact 4)) * + IZR (Z.of_nat (fact 6)) + + IZR 2 ^ 6 * IZR (Z.of_nat (fact 2)) * IZR (Z.of_nat (fact 4)) * + IZR (Z.of_nat (fact 6))) / + (IZR 2 ^ 6 * IZR (Z.of_nat (fact 0)) * IZR (Z.of_nat (fact 2)) * + IZR (Z.of_nat (fact 4)) * IZR (Z.of_nat (fact 6))));[ | field; + repeat apply conj;((rewrite <- INR_IZR_INZ; apply INR_fact_neq_0) || + (apply Rgt_not_eq; apply (IZR_lt 0); reflexivity)) ] +end. +rewrite !fact_simpl, !Nat2Z.inj_mul; simpl Z.of_nat. +unfold Rdiv; apply Rmult_lt_0_compat. +unfold Rminus; rewrite !pow_IZR, <- !opp_IZR, <- !mult_IZR, <- !opp_IZR, + <- !plus_IZR; apply (IZR_lt 0); reflexivity. +apply Rinv_0_lt_compat; rewrite !pow_IZR, <- !mult_IZR; apply (IZR_lt 0). +reflexivity. +Qed. + +Lemma PI2_1 : 1 < PI/2. +Proof. assert (t := PI2_3_2); fourier. Qed. + +Lemma tan_increasing : + forall x y:R, + -PI/2 < x -> + x < y -> + y < PI/2 -> tan x < tan y. +Proof. +intros x y Z_le_x x_lt_y y_le_1. + assert (x_encad : -PI/2 < x < PI/2). + split ; [assumption | apply Rlt_trans with (r2:=y) ; assumption]. + assert (y_encad : -PI/2 < y < PI/2). + split ; [apply Rlt_trans with (r2:=x) ; intuition | intuition ]. + assert (local_derivable_pt_tan : forall x : R, -PI/2 < x < PI/2 -> + derivable_pt tan x). + intros ; apply derivable_pt_tan ; intuition. + apply derive_increasing_interv with (a:=-PI/2) (b:=PI/2) (pr:=local_derivable_pt_tan) ; intuition. + fourier. + assert (Temp := pr_nu tan t (derivable_pt_tan t t_encad) (local_derivable_pt_tan t t_encad)) ; + rewrite <- Temp ; clear Temp. + assert (Temp := derive_pt_tan t t_encad) ; rewrite Temp ; clear Temp. + apply plus_Rsqr_gt_0. +Qed. + +Lemma tan_is_inj : forall x y, -PI/2 < x < PI/2 -> -PI/2 < y < PI/2 -> + tan x = tan y -> x = y. +Proof. + intros a b a_encad b_encad fa_eq_fb. + case(total_order_T a b). + intro s ; case s ; clear s. + intro Hf. + assert (Hfalse := tan_increasing a b (proj1 a_encad) Hf (proj2 b_encad)). + case (Rlt_not_eq (tan a) (tan b)) ; assumption. + intuition. + intro Hf. assert (Hfalse := tan_increasing b a (proj1 b_encad) Hf (proj2 a_encad)). + case (Rlt_not_eq (tan b) (tan a)) ; [|symmetry] ; assumption. +Qed. + +Lemma exists_atan_in_frame : + forall lb ub y, lb < ub -> -PI/2 < lb -> ub < PI/2 -> + tan lb < y < tan ub -> {x | lb < x < ub /\ tan x = y}. +Proof. +intros lb ub y lb_lt_ub lb_cond ub_cond y_encad. + case y_encad ; intros y_encad1 y_encad2. + assert (f_cont : forall a : R, lb <= a <= ub -> continuity_pt tan a). + intros a a_encad. apply derivable_continuous_pt ; apply derivable_pt_tan. + split. apply Rlt_le_trans with (r2:=lb) ; intuition. + apply Rle_lt_trans with (r2:=ub) ; intuition. + assert (Cont : forall a : R, lb <= a <= ub -> continuity_pt (fun x => tan x - y) a). + intros a a_encad. unfold continuity_pt, continue_in, limit1_in, limit_in ; simpl ; unfold R_dist. + intros eps eps_pos. elim (f_cont a a_encad eps eps_pos). + intros alpha alpha_pos. destruct alpha_pos as (alpha_pos,Temp). + exists alpha. split. + assumption. intros x x_cond. + replace (tan x - y - (tan a - y)) with (tan x - tan a) by field. + exact (Temp x x_cond). + assert (H1 : (fun x : R => tan x - y) lb < 0). + apply Rlt_minus. assumption. + assert (H2 : 0 < (fun x : R => tan x - y) ub). + apply Rgt_minus. assumption. + destruct (IVT_interv (fun x => tan x - y) lb ub Cont lb_lt_ub H1 H2) as (x,Hx). + exists x. + destruct Hx as (Hyp,Result). + intuition. + assert (Temp2 : x <> lb). + intro Hfalse. rewrite Hfalse in Result. + assert (Temp2 : y <> tan lb). + apply Rgt_not_eq ; assumption. + clear - Temp2 Result. apply Temp2. + intuition. + clear -Temp2 H3. + case H3 ; intuition. apply False_ind ; apply Temp2 ; symmetry ; assumption. + assert (Temp : x <> ub). + intro Hfalse. rewrite Hfalse in Result. + assert (Temp2 : y <> tan ub). + apply Rlt_not_eq ; assumption. + clear - Temp2 Result. apply Temp2. + intuition. + case H4 ; intuition. +Qed. + +(** * Definition of arctangent as the reciprocal function of tangent and proof of this status *) +Lemma tan_1_gt_1 : tan 1 > 1. +Proof. +assert (0 < cos 1) by (apply cos_gt_0; assert (t:=PI2_1); fourier). +assert (t1 : cos 1 <= 1 - 1/2 + 1/24). + destruct (pre_cos_bound 1 0) as [_ t]; try fourier; revert t. + unfold cos_approx, cos_term; simpl; intros t; apply Rle_trans with (1:=t). + clear t; apply Req_le; field. +assert (t2 : 1 - 1/6 <= sin 1). + destruct (pre_sin_bound 1 0) as [t _]; try fourier; revert t. + unfold sin_approx, sin_term; simpl; intros t; apply Rle_trans with (2:=t). + clear t; apply Req_le; field. +pattern 1 at 2; replace 1 with + (cos 1 / cos 1) by (field; apply Rgt_not_eq; fourier). +apply Rlt_gt; apply (Rmult_lt_compat_r (/ cos 1) (cos 1) (sin 1)). + apply Rinv_0_lt_compat; assumption. +apply Rle_lt_trans with (1 := t1); apply Rlt_le_trans with (2 := t2). +fourier. +Qed. + +Definition frame_tan y : {x | 0 < x < PI/2 /\ Rabs y < tan x}. +destruct (total_order_T (Rabs y) 1). + assert (yle1 : Rabs y <= 1) by (destruct s; fourier). + clear s; exists 1; split;[split; [exact Rlt_0_1 | exact PI2_1] | ]. + apply Rle_lt_trans with (1 := yle1); exact tan_1_gt_1. +assert (0 < / (Rabs y + 1)). + apply Rinv_0_lt_compat; fourier. +set (u := /2 * / (Rabs y + 1)). +assert (0 < u). + apply Rmult_lt_0_compat; [fourier | assumption]. +assert (vlt1 : / (Rabs y + 1) < 1). + apply Rmult_lt_reg_r with (Rabs y + 1). + assert (t := Rabs_pos y); fourier. + rewrite Rinv_l; [rewrite Rmult_1_l | apply Rgt_not_eq]; fourier. +assert (vlt2 : u < 1). + apply Rlt_trans with (/ (Rabs y + 1)). + rewrite double_var. + assert (t : forall x, 0 < x -> x < x + x) by (clear; intros; fourier). + unfold u; rewrite Rmult_comm; apply t. + unfold Rdiv; rewrite Rmult_comm; assumption. + assumption. +assert(int : 0 < PI / 2 - u < PI / 2). + split. + assert (t := PI2_1); apply Rlt_Rminus, Rlt_trans with (2 := t); assumption. + assert (dumb : forall x y, 0 < y -> x - y < x) by (clear; intros; fourier). + apply dumb; clear dumb; assumption. +exists (PI/2 - u). +assert (tmp : forall x y, 0 < x -> y < 1 -> x * y < x). + clear; intros x y x0 y1; pattern x at 2; rewrite <- (Rmult_1_r x). + apply Rmult_lt_compat_l; assumption. +assert (0 < sin u). + apply sin_gt_0;[ assumption | ]. + assert (t := PI2_Rlt_PI); assert (t' := PI2_1). + apply Rlt_trans with (2 := Rlt_trans _ _ _ t' t); assumption. +split. + assumption. + apply Rlt_trans with (/2 * / cos(PI / 2 - u)). + rewrite cos_shift. + assert (sin u < u). + assert (t1 : 0 <= u) by (apply Rlt_le; assumption). + assert (t2 : u <= 4) by + (apply Rle_trans with 1;[apply Rlt_le | fourier]; assumption). + destruct (pre_sin_bound u 0 t1 t2) as [_ t]. + apply Rle_lt_trans with (1 := t); clear t1 t2 t. + unfold sin_approx; simpl; unfold sin_term; simpl ((-1) ^ 0); + replace ((-1) ^ 2) with 1 by ring; simpl ((-1) ^ 1); + rewrite !Rmult_1_r, !Rmult_1_l; simpl plus; simpl (INR (fact 1)). + rewrite <- (fun x => tech_pow_Rmult x 0), <- (fun x => tech_pow_Rmult x 2), + <- (fun x => tech_pow_Rmult x 4). + rewrite (Rmult_comm (-1)); simpl ((/(Rabs y + 1)) ^ 0). + unfold Rdiv; rewrite Rinv_1, !Rmult_assoc, <- !Rmult_plus_distr_l. + apply tmp;[assumption | ]. + rewrite Rplus_assoc, Rmult_1_l; pattern 1 at 3; rewrite <- Rplus_0_r. + apply Rplus_lt_compat_l. + rewrite <- Rmult_assoc. + match goal with |- (?a * (-1)) + _ < 0 => + rewrite <- (Rplus_opp_l a), Ropp_mult_distr_r_reverse, Rmult_1_r + end. + apply Rplus_lt_compat_l. + assert (0 < u ^ 2) by (apply pow_lt; assumption). + replace (u ^ 4) with (u ^ 2 * u ^ 2) by ring. + rewrite Rmult_assoc; apply Rmult_lt_compat_l; auto. + apply Rlt_trans with (u ^ 2 * /INR (fact 3)). + apply Rmult_lt_compat_l; auto. + apply Rinv_lt_contravar. + solve[apply Rmult_lt_0_compat; apply INR_fact_lt_0]. + rewrite !INR_IZR_INZ; apply IZR_lt; reflexivity. + rewrite Rmult_comm; apply tmp. + solve[apply Rinv_0_lt_compat, INR_fact_lt_0]. + apply Rlt_trans with (2 := vlt2). + simpl; unfold u; apply tmp; auto; rewrite Rmult_1_r; assumption. + apply Rlt_trans with (Rabs y + 1);[fourier | ]. + pattern (Rabs y + 1) at 1; rewrite <- (Rinv_involutive (Rabs y + 1)); + [ | apply Rgt_not_eq; fourier]. + rewrite <- Rinv_mult_distr. + apply Rinv_lt_contravar. + apply Rmult_lt_0_compat. + apply Rmult_lt_0_compat;[fourier | assumption]. + assumption. + replace (/(Rabs y + 1)) with (2 * u). + fourier. + unfold u; field; apply Rgt_not_eq; clear -r; fourier. + solve[discrR]. + apply Rgt_not_eq; assumption. +unfold tan. +set (u' := PI / 2); unfold Rdiv; apply Rmult_lt_compat_r; unfold u'. + apply Rinv_0_lt_compat. + rewrite cos_shift; assumption. +assert (vlt3 : u < /4). + replace (/4) with (/2 * /2) by field. + unfold u; apply Rmult_lt_compat_l;[fourier | ]. + apply Rinv_lt_contravar. + apply Rmult_lt_0_compat; fourier. + fourier. +assert (1 < PI / 2 - u) by (assert (t := PI2_3_2); fourier). +apply Rlt_trans with (sin 1). + assert (t' : 1 <= 4) by fourier. + destruct (pre_sin_bound 1 0 (Rlt_le _ _ Rlt_0_1) t') as [t _]. + apply Rlt_le_trans with (2 := t); clear t. + simpl plus; replace (sin_approx 1 1) with (5/6);[fourier | ]. + unfold sin_approx, sin_term; simpl; field. +apply sin_increasing_1. + assert (t := PI2_1); fourier. + apply Rlt_le, PI2_1. + assert (t := PI2_1); fourier. + fourier. +assumption. +Qed. + +Lemma ub_opp : forall x, x < PI/2 -> -PI/2 < -x. +Proof. +intros x h; rewrite Ropp_div; apply Ropp_lt_contravar; assumption. +Qed. + +Lemma pos_opp_lt : forall x, 0 < x -> -x < x. +Proof. intros; fourier. Qed. + +Lemma tech_opp_tan : forall x y, -tan x < y -> tan (-x) < y. +intros; rewrite tan_neg; assumption. +Qed. + +Definition pre_atan (y : R) : {x : R | -PI/2 < x < PI/2 /\ tan x = y}. +destruct (frame_tan y) as [ub [[ub0 ubpi2] Ptan_ub]]. +set (pr := (conj (tech_opp_tan _ _ (proj2 (Rabs_def2 _ _ Ptan_ub))) + (proj1 (Rabs_def2 _ _ Ptan_ub)))). +destruct (exists_atan_in_frame (-ub) ub y (pos_opp_lt _ ub0) (ub_opp _ ubpi2) + ubpi2 pr) as [v [[vl vu] vq]]. +exists v; clear pr. +split;[rewrite Ropp_div; split; fourier | assumption]. +Qed. + +Definition atan x := let (v, _) := pre_atan x in v. + +Lemma atan_bound : forall x, -PI/2 < atan x < PI/2. +Proof. +intros x; unfold atan; destruct (pre_atan x) as [v [int _]]; exact int. +Qed. + +Lemma atan_right_inv : forall x, tan (atan x) = x. +Proof. +intros x; unfold atan; destruct (pre_atan x) as [v [_ q]]; exact q. +Qed. + +Lemma atan_opp : forall x, atan (- x) = - atan x. +Proof. +intros x; generalize (atan_bound (-x)); rewrite Ropp_div;intros [a b]. +generalize (atan_bound x); rewrite Ropp_div; intros [c d]. +apply tan_is_inj; try rewrite Ropp_div; try split; try fourier. +rewrite tan_neg, !atan_right_inv; reflexivity. +Qed. + +Lemma derivable_pt_atan : forall x, derivable_pt atan x. +Proof. +intros x. +destruct (frame_tan x) as [ub [[ub0 ubpi] P]]. +assert (lb_lt_ub : -ub < ub) by apply pos_opp_lt, ub0. +assert (xint : tan(-ub) < x < tan ub). + assert (xint' : x < tan ub /\ -(tan ub) < x) by apply Rabs_def2, P. + rewrite tan_neg; tauto. +assert (inv_p : forall x, tan(-ub) <= x -> x <= tan ub -> + comp tan atan x = id x). + intros; apply atan_right_inv. +assert (int_tan : forall y, tan (- ub) <= y -> y <= tan ub -> + -ub <= atan y <= ub). + clear -ub0 ubpi; intros y lo up; split. + destruct (Rle_lt_dec (-ub) (atan y)) as [h | abs]; auto. + assert (y < tan (-ub)). + rewrite <- (atan_right_inv y); apply tan_increasing. + destruct (atan_bound y); assumption. + assumption. + fourier. + fourier. + destruct (Rle_lt_dec (atan y) ub) as [h | abs]; auto. + assert (tan ub < y). + rewrite <- (atan_right_inv y); apply tan_increasing. + rewrite Ropp_div; fourier. + assumption. + destruct (atan_bound y); assumption. + fourier. +assert (incr : forall x y, -ub <= x -> x < y -> y <= ub -> tan x < tan y). + intros y z l yz u; apply tan_increasing. + rewrite Ropp_div; fourier. + assumption. + fourier. +assert (der : forall a, -ub <= a <= ub -> derivable_pt tan a). + intros a [la ua]; apply derivable_pt_tan. + rewrite Ropp_div; split; fourier. +assert (df_neq : derive_pt tan (atan x) + (derivable_pt_recip_interv_prelim1 tan atan + (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0). + rewrite <- (pr_nu tan (atan x) + (derivable_pt_tan (atan x) (atan_bound x))). + rewrite derive_pt_tan. + solve[apply Rgt_not_eq, plus_Rsqr_gt_0]. +apply (derivable_pt_recip_interv tan atan (-ub) ub x + lb_lt_ub xint inv_p int_tan incr der). +exact df_neq. +Qed. + +Lemma atan_increasing : forall x y, x < y -> atan x < atan y. +intros x y d. +assert (t1 := atan_bound x). +assert (t2 := atan_bound y). +destruct (Rlt_le_dec (atan x) (atan y)) as [lt | bad]. + assumption. +apply Rlt_not_le in d. +case d. +rewrite <- (atan_right_inv y), <- (atan_right_inv x). +destruct bad as [ylt | yx]. + apply Rlt_le, tan_increasing; try tauto. +solve[rewrite yx; apply Rle_refl]. +Qed. + +Lemma atan_0 : atan 0 = 0. +apply tan_is_inj; try (apply atan_bound). + assert (t := PI_RGT_0); rewrite Ropp_div; split; fourier. +rewrite atan_right_inv, tan_0. +reflexivity. +Qed. + +Lemma atan_1 : atan 1 = PI/4. +assert (ut := PI_RGT_0). +assert (-PI/2 < PI/4 < PI/2) by (rewrite Ropp_div; split; fourier). +assert (t := atan_bound 1). +apply tan_is_inj; auto. +rewrite tan_PI4, atan_right_inv; reflexivity. +Qed. + +(** atan's derivative value is the function 1 / (1+x²) *) + +Lemma derive_pt_atan : forall x, + derive_pt atan x (derivable_pt_atan x) = + 1 / (1 + x²). +Proof. +intros x. +destruct (frame_tan x) as [ub [[ub0 ubpi] Pub]]. +assert (lb_lt_ub : -ub < ub) by apply pos_opp_lt, ub0. +assert (xint : tan(-ub) < x < tan ub). + assert (xint' : x < tan ub /\ -(tan ub) < x) by apply Rabs_def2, Pub. + rewrite tan_neg; tauto. +assert (inv_p : forall x, tan(-ub) <= x -> x <= tan ub -> + comp tan atan x = id x). + intros; apply atan_right_inv. +assert (int_tan : forall y, tan (- ub) <= y -> y <= tan ub -> + -ub <= atan y <= ub). + clear -ub0 ubpi; intros y lo up; split. + destruct (Rle_lt_dec (-ub) (atan y)) as [h | abs]; auto. + assert (y < tan (-ub)). + rewrite <- (atan_right_inv y); apply tan_increasing. + destruct (atan_bound y); assumption. + assumption. + fourier. + fourier. + destruct (Rle_lt_dec (atan y) ub) as [h | abs]; auto. + assert (tan ub < y). + rewrite <- (atan_right_inv y); apply tan_increasing. + rewrite Ropp_div; fourier. + assumption. + destruct (atan_bound y); assumption. + fourier. +assert (incr : forall x y, -ub <= x -> x < y -> y <= ub -> tan x < tan y). + intros y z l yz u; apply tan_increasing. + rewrite Ropp_div; fourier. + assumption. + fourier. +assert (der : forall a, -ub <= a <= ub -> derivable_pt tan a). + intros a [la ua]; apply derivable_pt_tan. + rewrite Ropp_div; split; fourier. +assert (df_neq : derive_pt tan (atan x) + (derivable_pt_recip_interv_prelim1 tan atan + (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0). + rewrite <- (pr_nu tan (atan x) + (derivable_pt_tan (atan x) (atan_bound x))). + rewrite derive_pt_tan. + solve[apply Rgt_not_eq, plus_Rsqr_gt_0]. +assert (t := derive_pt_recip_interv tan atan (-ub) ub x lb_lt_ub + xint incr int_tan der inv_p df_neq). +rewrite <- (pr_nu atan x (derivable_pt_recip_interv tan atan (- ub) ub + x lb_lt_ub xint inv_p int_tan incr der df_neq)). +rewrite t. +assert (t' := atan_bound x). +rewrite <- (pr_nu tan (atan x) (derivable_pt_tan _ t')). +rewrite derive_pt_tan, atan_right_inv. +replace (Rsqr x) with (x ^ 2) by (unfold Rsqr; ring). +reflexivity. +Qed. + +(** * Definition of the arctangent function as the sum of the arctan power series *) +(* Proof taken from Guillaume Melquiond's interval package for Coq *) + +Definition Ratan_seq x := fun n => (x ^ (2 * n + 1) / INR (2 * n + 1))%R. + +Lemma Ratan_seq_decreasing : forall x, (0 <= x <= 1)%R -> Un_decreasing (Ratan_seq x). +Proof. +intros x Hx n. + unfold Ratan_seq, Rdiv. + apply Rmult_le_compat. apply pow_le. + exact (proj1 Hx). + apply Rlt_le. + apply Rinv_0_lt_compat. + apply lt_INR_0. + omega. + destruct (proj1 Hx) as [Hx1|Hx1]. + destruct (proj2 Hx) as [Hx2|Hx2]. + (* . 0 < x < 1 *) + rewrite <- (Rinv_involutive x). + assert (/ x <> 0)%R by auto with real. + repeat rewrite <- Rinv_pow with (1 := H). + apply Rlt_le. + apply Rinv_lt_contravar. + apply Rmult_lt_0_compat ; apply pow_lt ; auto with real. + apply Rlt_pow. + rewrite <- Rinv_1. + apply Rinv_lt_contravar. + rewrite Rmult_1_r. + exact Hx1. + exact Hx2. + omega. + apply Rgt_not_eq. + exact Hx1. + (* . x = 1 *) + rewrite Hx2. + do 2 rewrite pow1. + apply Rle_refl. + (* . x = 0 *) + rewrite <- Hx1. + do 2 (rewrite pow_i ; [ idtac | omega ]). + apply Rle_refl. + apply Rlt_le. + apply Rinv_lt_contravar. + apply Rmult_lt_0_compat ; apply lt_INR_0 ; omega. + apply lt_INR. + omega. +Qed. + +Lemma Ratan_seq_converging : forall x, (0 <= x <= 1)%R -> Un_cv (Ratan_seq x) 0. +Proof. +intros x Hx eps Heps. + destruct (archimed (/ eps)) as (HN,_). + assert (0 < up (/ eps))%Z. + apply lt_IZR. + apply Rlt_trans with (2 := HN). + apply Rinv_0_lt_compat. + exact Heps. + case_eq (up (/ eps)) ; + intros ; rewrite H0 in H ; try discriminate H. + rewrite H0 in HN. + simpl in HN. + pose (N := Pos.to_nat p). + fold N in HN. + clear H H0. + exists N. + intros n Hn. + unfold R_dist. + rewrite Rminus_0_r. + unfold Ratan_seq. + rewrite Rabs_right. + apply Rle_lt_trans with (1 ^ (2 * n + 1) / INR (2 * n + 1))%R. + unfold Rdiv. + apply Rmult_le_compat_r. + apply Rlt_le. + apply Rinv_0_lt_compat. + apply lt_INR_0. + omega. + apply pow_incr. + exact Hx. + rewrite pow1. + apply Rle_lt_trans with (/ INR (2 * N + 1))%R. + unfold Rdiv. + rewrite Rmult_1_l. + apply Rle_Rinv. + apply lt_INR_0. + omega. + replace 0 with (INR 0) by intuition. + apply lt_INR. + omega. + intuition. + rewrite <- (Rinv_involutive eps). + apply Rinv_lt_contravar. + apply Rmult_lt_0_compat. + auto with real. + apply lt_INR_0. + omega. + apply Rlt_trans with (INR N). + destruct (archimed (/ eps)) as (H,_). + assert (0 < up (/ eps))%Z. + apply lt_IZR. + apply Rlt_trans with (2 := H). + apply Rinv_0_lt_compat. + exact Heps. + exact HN. + apply lt_INR. + omega. + apply Rgt_not_eq. + exact Heps. + apply Rle_ge. + unfold Rdiv. + apply Rmult_le_pos. + apply pow_le. + exact (proj1 Hx). + apply Rlt_le. + apply Rinv_0_lt_compat. + apply lt_INR_0. + omega. +Qed. + +Definition ps_atan_exists_01 (x : R) (Hx:0 <= x <= 1) : + {l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}. +exact (alternated_series (Ratan_seq x) + (Ratan_seq_decreasing _ Hx) (Ratan_seq_converging _ Hx)). +Defined. + +Lemma Ratan_seq_opp : forall x n, Ratan_seq (-x) n = -Ratan_seq x n. +Proof. +intros x n; unfold Ratan_seq. +rewrite !pow_add, !pow_mult, !pow_1. +unfold Rdiv; replace ((-x) ^ 2) with (x ^ 2) by ring; ring. +Qed. + +Lemma sum_Ratan_seq_opp : + forall x n, sum_f_R0 (tg_alt (Ratan_seq (- x))) n = + - sum_f_R0 (tg_alt (Ratan_seq x)) n. +Proof. +intros x n; replace (-sum_f_R0 (tg_alt (Ratan_seq x)) n) with + (-1 * sum_f_R0 (tg_alt (Ratan_seq x)) n) by ring. +rewrite scal_sum; apply sum_eq; intros i _; unfold tg_alt. +rewrite Ratan_seq_opp; ring. +Qed. + +Definition ps_atan_exists_1 (x : R) (Hx : -1 <= x <= 1) : + {l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}. +destruct (Rle_lt_dec 0 x). + assert (pr : 0 <= x <= 1) by tauto. + exact (ps_atan_exists_01 x pr). +assert (pr : 0 <= -x <= 1) by (destruct Hx; split; fourier). +destruct (ps_atan_exists_01 _ pr) as [v Pv]. +exists (-v). + apply (Un_cv_ext (fun n => (- 1) * sum_f_R0 (tg_alt (Ratan_seq (- x))) n)). + intros n; rewrite sum_Ratan_seq_opp; ring. +replace (-v) with (-1 * v) by ring. +apply CV_mult;[ | assumption]. +solve[intros; exists 0%nat; intros; rewrite R_dist_eq; auto]. +Qed. + +Definition in_int (x : R) : {-1 <= x <= 1}+{~ -1 <= x <= 1}. +destruct (Rle_lt_dec x 1). + destruct (Rle_lt_dec (-1) x). + left;split; auto. + right;intros [a1 a2]; fourier. +right;intros [a1 a2]; fourier. +Qed. + +Definition ps_atan (x : R) : R := + match in_int x with + left h => let (v, _) := ps_atan_exists_1 x h in v + | right h => atan x + end. + +(** * Proof of the equivalence of the two definitions between -1 and 1 *) + +Lemma ps_atan0_0 : ps_atan 0 = 0. +Proof. +unfold ps_atan. + destruct (in_int 0) as [h1 | h2]. + destruct (ps_atan_exists_1 0 h1) as [v P]. + apply (UL_sequence _ _ _ P). + apply (Un_cv_ext (fun n => 0)). + symmetry;apply sum_eq_R0. + intros i _; unfold tg_alt, Ratan_seq; rewrite plus_comm; simpl. + unfold Rdiv; rewrite !Rmult_0_l, Rmult_0_r; reflexivity. + intros eps ep; exists 0%nat; intros n _; unfold R_dist. + rewrite Rminus_0_r, Rabs_pos_eq; auto with real. +case h2; split; fourier. +Qed. + +Lemma ps_atan_exists_1_opp : + forall x h h', proj1_sig (ps_atan_exists_1 (-x) h) = + -(proj1_sig (ps_atan_exists_1 x h')). +Proof. +intros x h h'; destruct (ps_atan_exists_1 (-x) h) as [v Pv]. +destruct (ps_atan_exists_1 x h') as [u Pu]; simpl. +assert (Pu' : Un_cv (fun N => (-1) * sum_f_R0 (tg_alt (Ratan_seq x)) N) (-1 * u)). + apply CV_mult;[ | assumption]. + intros eps ep; exists 0%nat; intros; rewrite R_dist_eq; assumption. +assert (Pv' : Un_cv + (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) v). + apply Un_cv_ext with (2 := Pv); intros n; rewrite sum_Ratan_seq_opp; ring. +replace (-u) with (-1 * u) by ring. +apply UL_sequence with (1:=Pv') (2:= Pu'). +Qed. + +Lemma ps_atan_opp : forall x, ps_atan (-x) = -ps_atan x. +Proof. +intros x; unfold ps_atan. +destruct (in_int (- x)) as [inside | outside]. + destruct (in_int x) as [ins' | outs']. + generalize (ps_atan_exists_1_opp x inside ins'). + intros h; exact h. + destruct inside; case outs'; split; fourier. +destruct (in_int x) as [ins' | outs']. + destruct outside; case ins'; split; fourier. +apply atan_opp. +Qed. + +(** atan = ps_atan *) + +Lemma ps_atanSeq_continuity_pt_1 : forall (N:nat) (x:R), + 0 <= x -> + x <= 1 -> + continuity_pt (fun x => sum_f_R0 (tg_alt (Ratan_seq x)) N) x. +Proof. +assert (Sublemma : forall (x:R) (N:nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * (comp (fun x => sum_f_R0 (fun n => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x ^ n) N) (fun x => x ^ 2) x)). + intros x N. + induction N. + unfold tg_alt, Ratan_seq, comp ; simpl ; field. + simpl sum_f_R0 at 1. + rewrite IHN. + replace (comp (fun x => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x ^ n) (S N)) (fun x => x ^ 2)) + with (comp (fun x => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x ^ n) N + (-1) ^ (S N) / INR (2 * (S N) + 1) * x ^ (S N)) (fun x => x ^ 2)). + unfold comp. + rewrite Rmult_plus_distr_l. + apply Rplus_eq_compat_l. + unfold tg_alt, Ratan_seq. + rewrite <- Rmult_assoc. + case (Req_dec x 0) ; intro Hyp. + rewrite Hyp ; rewrite pow_i. rewrite Rmult_0_l ; rewrite Rmult_0_l. + unfold Rdiv ; rewrite Rmult_0_l ; rewrite Rmult_0_r ; reflexivity. + intuition. + replace (x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S N) with (x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1))). + rewrite Rmult_comm ; unfold Rdiv at 1. + rewrite Rmult_assoc ; apply Rmult_eq_compat_l. + field. apply Rgt_not_eq ; intuition. + rewrite Rmult_assoc. + replace (x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)) with (((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N) * x). + rewrite Rmult_assoc. + replace ((x ^ 2) ^ S N * x) with (x ^ (2 * S N + 1)). + rewrite Rmult_comm at 1 ; reflexivity. + rewrite <- pow_mult. + assert (Temp : forall x n, x ^ n * x = x ^ (n+1)). + intros a n ; induction n. rewrite pow_O. simpl ; intuition. + simpl ; rewrite Rmult_assoc ; rewrite IHn ; intuition. + rewrite Temp ; reflexivity. + rewrite Rmult_comm ; reflexivity. + intuition. +intros N x x_lb x_ub. + intros eps eps_pos. + assert (continuity_id : continuity id). + apply derivable_continuous ; exact derivable_id. +assert (Temp := continuity_mult id (comp + (fun x1 : R => + sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) + (fun x1 : R => x1 ^ 2)) + continuity_id). +assert (Temp2 : continuity + (comp + (fun x1 : R => + sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) + (fun x1 : R => x1 ^ 2))). + apply continuity_comp. + reg. + apply continuity_finite_sum. + elim (Temp Temp2 x eps eps_pos) ; clear Temp Temp2 ; intros alpha T ; destruct T as (alpha_pos, T). + exists alpha ; split. + intuition. +intros x0 x0_cond. + rewrite Sublemma ; rewrite Sublemma. +apply T. +intuition. +Qed. + +(** Definition of ps_atan's derivative *) + +Definition Datan_seq := fun (x:R) (n:nat) => x ^ (2*n). + +Lemma pow_lt_1_compat : forall x n, 0 <= x < 1 -> (0 < n)%nat -> + 0 <= x ^ n < 1. +Proof. +intros x n hx; induction 1; simpl. + rewrite Rmult_1_r; tauto. +split. + apply Rmult_le_pos; tauto. +rewrite <- (Rmult_1_r 1); apply Rmult_le_0_lt_compat; intuition. +Qed. + +Lemma Datan_seq_Rabs : forall x n, Datan_seq (Rabs x) n = Datan_seq x n. +Proof. +intros x n; unfold Datan_seq; rewrite !pow_mult, pow2_abs; reflexivity. +Qed. + +Lemma Datan_seq_pos : forall x n, 0 < x -> 0 < Datan_seq x n. +Proof. +intros x n x_lb ; unfold Datan_seq ; induction n. + simpl ; intuition. + replace (x ^ (2 * S n)) with ((x ^ 2) * (x ^ (2 * n))). + apply Rmult_gt_0_compat. + replace (x^2) with (x*x) by field ; apply Rmult_gt_0_compat ; assumption. + assumption. + replace (2 * S n)%nat with (S (S (2 * n))) by intuition. + simpl ; field. +Qed. + +Lemma Datan_sum_eq :forall x n, + sum_f_R0 (tg_alt (Datan_seq x)) n = (1 - (- x ^ 2) ^ S n)/(1 + x ^ 2). +Proof. +intros x n. +assert (dif : - x ^ 2 <> 1). +apply Rlt_not_eq; apply Rle_lt_trans with 0;[ | apply Rlt_0_1]. +assert (t := pow2_ge_0 x); fourier. +replace (1 + x ^ 2) with (1 - - (x ^ 2)) by ring; rewrite <- (tech3 _ n dif). +apply sum_eq; unfold tg_alt, Datan_seq; intros i _. +rewrite pow_mult, <- Rpow_mult_distr, Ropp_mult_distr_l_reverse, Rmult_1_l. +reflexivity. +Qed. + +Lemma Datan_seq_increasing : forall x y n, (n > 0)%nat -> 0 <= x < y -> Datan_seq x n < Datan_seq y n. +Proof. +intros x y n n_lb x_encad ; assert (x_pos : x >= 0) by intuition. + assert (y_pos : y > 0). apply Rle_lt_trans with (r2:=x) ; intuition. + induction n. + apply False_ind ; intuition. + clear -x_encad x_pos y_pos ; induction n ; unfold Datan_seq. + case x_pos ; clear x_pos ; intro x_pos. + simpl ; apply Rmult_gt_0_lt_compat ; intuition. fourier. + rewrite x_pos ; rewrite pow_i. replace (y ^ (2*1)) with (y*y). + apply Rmult_gt_0_compat ; assumption. + simpl ; field. + intuition. + assert (Hrew : forall a, a^(2 * S (S n)) = (a ^ 2) * (a ^ (2 * S n))). + clear ; intro a ; replace (2 * S (S n))%nat with (S (S (2 * S n)))%nat by intuition. + simpl ; field. + case x_pos ; clear x_pos ; intro x_pos. + rewrite Hrew ; rewrite Hrew. + apply Rmult_gt_0_lt_compat ; intuition. + apply Rmult_gt_0_lt_compat ; intuition ; fourier. + rewrite x_pos. + rewrite pow_i ; intuition. +Qed. + +Lemma Datan_seq_decreasing : forall x, -1 < x -> x < 1 -> Un_decreasing (Datan_seq x). +Proof. +intros x x_lb x_ub n. +unfold Datan_seq. +replace (2 * S n)%nat with (2 + 2 * n)%nat by ring. +rewrite <- (Rmult_1_l (x ^ (2 * n))). +rewrite pow_add. +apply Rmult_le_compat_r. +rewrite pow_mult; apply pow_le, pow2_ge_0. +apply Rlt_le; rewrite <- pow2_abs. +assert (intabs : 0 <= Rabs x < 1). + split;[apply Rabs_pos | apply Rabs_def1]; tauto. +apply (pow_lt_1_compat (Rabs x) 2) in intabs. + tauto. +omega. +Qed. + +Lemma Datan_seq_CV_0 : forall x, -1 < x -> x < 1 -> Un_cv (Datan_seq x) 0. +Proof. +intros x x_lb x_ub eps eps_pos. +assert (x_ub2 : Rabs (x^2) < 1). + rewrite Rabs_pos_eq;[ | apply pow2_ge_0]. + rewrite <- pow2_abs. + assert (H: 0 <= Rabs x < 1) + by (split;[apply Rabs_pos | apply Rabs_def1; auto]). + apply (pow_lt_1_compat _ 2) in H;[tauto | omega]. +elim (pow_lt_1_zero (x^2) x_ub2 eps eps_pos) ; intros N HN ; exists N ; intros n Hn. +unfold R_dist, Datan_seq. +replace (x ^ (2 * n) - 0) with ((x ^ 2) ^ n). apply HN ; assumption. +rewrite pow_mult ; field. +Qed. + +Lemma Datan_lim : forall x, -1 < x -> x < 1 -> + Un_cv (fun N : nat => sum_f_R0 (tg_alt (Datan_seq x)) N) (/ (1 + x ^ 2)). +Proof. +intros x x_lb x_ub eps eps_pos. +assert (Tool0 : 0 <= x ^ 2) by apply pow2_ge_0. +assert (Tool1 : 0 < (1 + x ^ 2)). + solve[apply Rplus_lt_le_0_compat ; intuition]. +assert (Tool2 : / (1 + x ^ 2) > 0). + apply Rinv_0_lt_compat ; tauto. +assert (x_ub2' : 0<= Rabs (x^2) < 1). + rewrite Rabs_pos_eq, <- pow2_abs;[ | apply pow2_ge_0]. + apply pow_lt_1_compat;[split;[apply Rabs_pos | ] | omega]. + apply Rabs_def1; assumption. +assert (x_ub2 : Rabs (x^2) < 1) by tauto. +assert (eps'_pos : ((1+x^2)*eps) > 0). + apply Rmult_gt_0_compat ; assumption. +elim (pow_lt_1_zero _ x_ub2 _ eps'_pos) ; intros N HN ; exists N. +intros n Hn. +assert (H1 : - x^2 <> 1). + apply Rlt_not_eq; apply Rle_lt_trans with (2 := Rlt_0_1). +assert (t := pow2_ge_0 x); fourier. +rewrite Datan_sum_eq. +unfold R_dist. +assert (tool : forall a b, a / b - /b = (-1 + a) /b). + intros a b; rewrite <- (Rmult_1_l (/b)); unfold Rdiv, Rminus. + rewrite <- Ropp_mult_distr_l_reverse, Rmult_plus_distr_r, Rplus_comm. + reflexivity. +set (u := 1 + x ^ 2); rewrite tool; unfold Rminus; rewrite <- Rplus_assoc. +unfold Rdiv, u. +rewrite Rplus_opp_l, Rplus_0_l, Ropp_mult_distr_l_reverse, Rabs_Ropp. +rewrite Rabs_mult; clear tool u. +assert (tool : forall k, Rabs ((-x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)). + clear -Tool0; induction k;[simpl; rewrite Rabs_R1;tauto | ]. + rewrite <- !(tech_pow_Rmult _ k), !Rabs_mult, Rabs_Ropp, IHk, Rabs_pos_eq. + reflexivity. + exact Tool0. +rewrite tool, (Rabs_pos_eq (/ _)); clear tool;[ | apply Rlt_le; assumption]. +assert (tool : forall a b c, 0 < b -> a < b * c -> a * / b < c). + intros a b c bp h; replace c with (b * c * /b). + apply Rmult_lt_compat_r. + apply Rinv_0_lt_compat; assumption. + assumption. + field; apply Rgt_not_eq; exact bp. +apply tool;[exact Tool1 | ]. +apply HN; omega. +Qed. + +Lemma Datan_CVU_prelim : forall c (r : posreal), Rabs c + r < 1 -> + CVU (fun N x => sum_f_R0 (tg_alt (Datan_seq x)) N) + (fun y : R => / (1 + y ^ 2)) c r. +Proof. +intros c r ub_ub eps eps_pos. +apply (Alt_CVU (fun x n => Datan_seq n x) + (fun x => /(1 + x ^ 2)) + (Datan_seq (Rabs c + r)) c r). + intros x inb; apply Datan_seq_decreasing; + try (apply Boule_lt in inb; apply Rabs_def2 in inb; + destruct inb; fourier). + intros x inb; apply Datan_seq_CV_0; + try (apply Boule_lt in inb; apply Rabs_def2 in inb; + destruct inb; fourier). + intros x inb; apply (Datan_lim x); + try (apply Boule_lt in inb; apply Rabs_def2 in inb; + destruct inb; fourier). + intros x [ | n] inb. + solve[unfold Datan_seq; apply Rle_refl]. + rewrite <- (Datan_seq_Rabs x); apply Rlt_le, Datan_seq_increasing. + omega. + apply Boule_lt in inb; intuition. + solve[apply Rabs_pos]. + apply Datan_seq_CV_0. + apply Rlt_trans with 0;[fourier | ]. + apply Rplus_le_lt_0_compat. + solve[apply Rabs_pos]. + destruct r; assumption. + assumption. +assumption. +Qed. + +Lemma Datan_is_datan : forall (N:nat) (x:R), + -1 <= x -> + x < 1 -> +derivable_pt_lim (fun x => sum_f_R0 (tg_alt (Ratan_seq x)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N). +Proof. +assert (Tool : forall N, (-1) ^ (S (2 * N)) = - 1). + intro n ; induction n. + simpl ; field. + replace ((-1) ^ S (2 * S n)) with ((-1) ^ 2 * (-1) ^ S (2*n)). + rewrite IHn ; field. + rewrite <- pow_add. + replace (2 + S (2 * n))%nat with (S (2 * S n))%nat. + reflexivity. + intuition. +intros N x x_lb x_ub. + induction N. + unfold Datan_seq, Ratan_seq, tg_alt ; simpl. + intros eps eps_pos. + elim (derivable_pt_lim_id x eps eps_pos) ; intros delta Hdelta ; exists delta. + intros h hneq h_b. + replace (1 * ((x + h) * 1 / 1) - 1 * (x * 1 / 1)) with (id (x + h) - id x). + rewrite Rmult_1_r. + apply Hdelta ; assumption. + unfold id ; field ; assumption. + intros eps eps_pos. + assert (eps_3_pos : (eps/3) > 0) by fourier. + elim (IHN (eps/3) eps_3_pos) ; intros delta1 Hdelta1. + assert (Main : derivable_pt_lim (fun x : R =>tg_alt (Ratan_seq x) (S N)) x ((tg_alt (Datan_seq x)) (S N))). + clear -Tool ; intros eps' eps'_pos. + elim (derivable_pt_lim_pow x (2 * (S N) + 1) eps' eps'_pos) ; intros delta Hdelta ; exists delta. + intros h h_neq h_b ; unfold tg_alt, Ratan_seq, Datan_seq. + replace (((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - + (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - + (-1) ^ S N * x ^ (2 * S N)) + with (((-1)^(S N)) * ((((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - + (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - x ^ (2 * S N))). + rewrite Rabs_mult ; rewrite pow_1_abs ; rewrite Rmult_1_l. + replace (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - + x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) + with ((/INR (2* S N + 1)) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - + INR (2 * S N + 1) * x ^ pred (2 * S N + 1))). + rewrite Rabs_mult. + case (Req_dec (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - + INR (2 * S N + 1) * x ^ pred (2 * S N + 1)) 0) ; intro Heq. + rewrite Heq ; rewrite Rabs_R0 ; rewrite Rmult_0_r ; assumption. + apply Rlt_trans with (r2:=Rabs + (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - + INR (2 * S N + 1) * x ^ pred (2 * S N + 1))). + rewrite <- Rmult_1_l ; apply Rmult_lt_compat_r. + apply Rabs_pos_lt ; assumption. + rewrite Rabs_right. + replace 1 with (/1) by field. + apply Rinv_1_lt_contravar ; intuition. + apply Rgt_ge ; replace (INR (2 * S N + 1)) with (INR (2*S N) + 1) ; + [apply RiemannInt.RinvN_pos | ]. + replace (2 * S N + 1)%nat with (S (2 * S N))%nat by intuition ; + rewrite S_INR ; reflexivity. + apply Hdelta ; assumption. + rewrite Rmult_minus_distr_l. + replace (/ INR (2 * S N + 1) * (INR (2 * S N + 1) * x ^ pred (2 * S N + 1))) with (x ^ (2 * S N)). + unfold Rminus ; rewrite Rplus_comm. + replace (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) + + - (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h + - x ^ (2 * S N)) + with (- x ^ (2 * S N) + (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) + + - (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h)) by intuition. + apply Rplus_eq_compat_l. field. + split ; [apply Rgt_not_eq|] ; intuition. + clear ; replace (pred (2 * S N + 1)) with (2 * S N)%nat by intuition. + field ; apply Rgt_not_eq ; intuition. + field ; split ; [apply Rgt_not_eq |] ; intuition. + elim (Main (eps/3) eps_3_pos) ; intros delta2 Hdelta2. + destruct delta1 as (delta1, delta1_pos) ; destruct delta2 as (delta2, delta2_pos). + pose (mydelta := Rmin delta1 delta2). + assert (mydelta_pos : mydelta > 0). + unfold mydelta ; rewrite Rmin_Rgt ; split ; assumption. + pose (delta := mkposreal mydelta mydelta_pos) ; exists delta ; intros h h_neq h_b. + clear Main IHN. + unfold Rminus at 1. + apply Rle_lt_trans with (r2:=eps/3 + eps / 3). + assert (Temp : (sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - + sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + + - sum_f_R0 (tg_alt (Datan_seq x)) (S N) = ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - + sum_f_R0 (tg_alt (Ratan_seq x)) N) / h) + (- + sum_f_R0 (tg_alt (Datan_seq x)) N) + ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / + h - tg_alt (Datan_seq x) (S N))). + simpl ; field ; intuition. + apply Rle_trans with (r2:= Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - + sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + + - sum_f_R0 (tg_alt (Datan_seq x)) N) + + Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - + tg_alt (Datan_seq x) (S N))). + rewrite Temp ; clear Temp ; apply Rabs_triang. + apply Rplus_le_compat ; apply Rlt_le ; [apply Hdelta1 | apply Hdelta2] ; + intuition ; apply Rlt_le_trans with (r2:=delta) ; intuition unfold delta, mydelta. + apply Rmin_l. + apply Rmin_r. + fourier. +Qed. + +Lemma Ratan_CVU' : + CVU (fun N x => sum_f_R0 (tg_alt (Ratan_seq x)) N) + ps_atan (/2) (mkposreal (/2) pos_half_prf). +Proof. +apply (Alt_CVU (fun i r => Ratan_seq r i) ps_atan PI_tg (/2) pos_half); + lazy beta. + now intros; apply Ratan_seq_decreasing, Boule_half_to_interval. + now intros; apply Ratan_seq_converging, Boule_half_to_interval. + intros x b; apply Boule_half_to_interval in b. + unfold ps_atan; destruct (in_int x) as [inside | outside]; + [ | destruct b; case outside; split; fourier]. + destruct (ps_atan_exists_1 x inside) as [v Pv]. + apply Un_cv_ext with (2 := Pv);[reflexivity]. + intros x n b; apply Boule_half_to_interval in b. + rewrite <- (Rmult_1_l (PI_tg n)); unfold Ratan_seq, PI_tg. + apply Rmult_le_compat_r. + apply Rlt_le, Rinv_0_lt_compat, (lt_INR 0); omega. + rewrite <- (pow1 (2 * n + 1)); apply pow_incr; assumption. +exact PI_tg_cv. +Qed. + +Lemma Ratan_CVU : + CVU (fun N x => sum_f_R0 (tg_alt (Ratan_seq x)) N) + ps_atan 0 (mkposreal 1 Rlt_0_1). +Proof. +intros eps ep; destruct (Ratan_CVU' eps ep) as [N Pn]. +exists N; intros n x nN b_y. +case (Rtotal_order 0 x) as [xgt0 | [x0 | x0]]. + assert (Boule (/2) {| pos := / 2; cond_pos := pos_half_prf|} x). + revert b_y; unfold Boule; simpl; intros b_y; apply Rabs_def2 in b_y. + destruct b_y; unfold Boule; simpl; apply Rabs_def1; fourier. + apply Pn; assumption. + rewrite <- x0, ps_atan0_0. + rewrite <- (sum_eq (fun _ => 0)), sum_cte, Rmult_0_l, Rminus_0_r, Rabs_pos_eq. + assumption. + apply Rle_refl. + intros i _; unfold tg_alt, Ratan_seq, Rdiv; rewrite plus_comm; simpl. + solve[rewrite !Rmult_0_l, Rmult_0_r; auto]. +replace (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) with + (-(ps_atan (-x) - sum_f_R0 (tg_alt (Ratan_seq (-x))) n)). + rewrite Rabs_Ropp. + assert (Boule (/2) {| pos := / 2; cond_pos := pos_half_prf|} (-x)). + revert b_y; unfold Boule; simpl; intros b_y; apply Rabs_def2 in b_y. + destruct b_y; unfold Boule; simpl; apply Rabs_def1; fourier. + apply Pn; assumption. +unfold Rminus; rewrite ps_atan_opp, Ropp_plus_distr, sum_Ratan_seq_opp. +rewrite !Ropp_involutive; reflexivity. +Qed. + +Lemma Alt_PI_tg : forall n, PI_tg n = Ratan_seq 1 n. +Proof. +intros n; unfold PI_tg, Ratan_seq, Rdiv; rewrite pow1, Rmult_1_l. +reflexivity. +Qed. + +Lemma Ratan_is_ps_atan : forall eps, eps > 0 -> + exists N, forall n, (n >= N)%nat -> forall x, -1 < x -> x < 1 -> + Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps. +Proof. +intros eps ep. +destruct (Ratan_CVU _ ep) as [N1 PN1]. +exists N1; intros n nN x xm1 x1; rewrite <- Rabs_Ropp, Ropp_minus_distr. +apply PN1; [assumption | ]. +unfold Boule; simpl; rewrite Rminus_0_r; apply Rabs_def1; assumption. +Qed. + +Lemma Datan_continuity : continuity (fun x => /(1+x ^ 2)). +Proof. +apply continuity_inv. +apply continuity_plus. +apply continuity_const ; unfold constant ; intuition. +apply derivable_continuous ; apply derivable_pow. +intro x ; apply Rgt_not_eq ; apply Rge_gt_trans with (1+0) ; [|fourier] ; + apply Rplus_ge_compat_l. + replace (x^2) with (x²). + apply Rle_ge ; apply Rle_0_sqr. + unfold Rsqr ; field. +Qed. + +Lemma derivable_pt_lim_ps_atan : forall x, -1 < x < 1 -> + derivable_pt_lim ps_atan x ((fun y => /(1 + y ^ 2)) x). +Proof. +intros x x_encad. +destruct (boule_in_interval (-1) 1 x x_encad) as [c [r [Pcr1 [P1 P2]]]]. +change (/ (1 + x ^ 2)) with ((fun u => /(1 + u ^ 2)) x). +assert (t := derivable_pt_lim_CVU). +apply derivable_pt_lim_CVU with + (fn := (fun N x => sum_f_R0 (tg_alt (Ratan_seq x)) N)) + (fn' := (fun N x => sum_f_R0 (tg_alt (Datan_seq x)) N)) + (c := c) (r := r). + assumption. + intros y N inb; apply Rabs_def2 in inb; destruct inb. + apply Datan_is_datan. + fourier. + fourier. + intros y inb; apply Rabs_def2 in inb; destruct inb. + assert (y_gt_0 : -1 < y) by fourier. + assert (y_lt_1 : y < 1) by fourier. + intros eps eps_pos ; elim (Ratan_is_ps_atan eps eps_pos). + intros N HN ; exists N; intros n n_lb ; apply HN ; tauto. + apply Datan_CVU_prelim. + replace ((c - r + (c + r)) / 2) with c by field. + unfold mkposreal_lb_ub; simpl. + replace ((c + r - (c - r)) / 2) with (r :R) by field. + assert (Rabs c < 1 - r). + unfold Boule in Pcr1; destruct r; simpl in *; apply Rabs_def1; + apply Rabs_def2 in Pcr1; destruct Pcr1; fourier. + fourier. +intros; apply Datan_continuity. +Qed. + +Lemma derivable_pt_ps_atan : + forall x, -1 < x < 1 -> derivable_pt ps_atan x. +Proof. +intros x x_encad. +exists (/(1+x^2)) ; apply derivable_pt_lim_ps_atan; assumption. +Qed. + +Lemma ps_atan_continuity_pt_1 : forall eps : R, + eps > 0 -> + exists alp : R, + alp > 0 /\ + (forall x, x < 1 -> 0 < x -> R_dist x 1 < alp -> + dist R_met (ps_atan x) (Alt_PI/4) < eps). +Proof. +intros eps eps_pos. +assert (eps_3_pos : eps / 3 > 0) by fourier. +elim (Ratan_is_ps_atan (eps / 3) eps_3_pos) ; intros N1 HN1. +unfold Alt_PI. +destruct exist_PI as [v Pv]; replace ((4 * v)/4) with v by field. +assert (Pv' : Un_cv (sum_f_R0 (tg_alt (Ratan_seq 1))) v). + apply Un_cv_ext with (2:= Pv). + intros; apply sum_eq; intros; unfold tg_alt; rewrite Alt_PI_tg; tauto. +destruct (Pv' (eps / 3) eps_3_pos) as [N2 HN2]. +set (N := (N1 + N2)%nat). +assert (O_lb : 0 <= 1) by intuition ; assert (O_ub : 1 <= 1) by intuition ; + elim (ps_atanSeq_continuity_pt_1 N 1 O_lb O_ub (eps / 3) eps_3_pos) ; intros alpha Halpha ; + clear -HN1 HN2 Halpha eps_3_pos; destruct Halpha as (alpha_pos, Halpha). +exists alpha ; split;[assumption | ]. +intros x x_ub x_lb x_bounds. +simpl ; unfold R_dist. +replace (ps_atan x - v) with ((ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) + + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)). +apply Rle_lt_trans with (r2:=Rabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) + + Rabs ((sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v))). +rewrite Rplus_assoc ; apply Rabs_triang. + replace eps with (2 / 3 * eps + eps / 3). + rewrite Rplus_comm. + apply Rplus_lt_compat. + apply Rle_lt_trans with (r2 := Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + + Rabs (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)). + apply Rabs_triang. + apply Rlt_le_trans with (r2:= eps / 3 + eps / 3). + apply Rplus_lt_compat. + simpl in Halpha ; unfold R_dist in Halpha. + apply Halpha ; split. + unfold D_x, no_cond ; split ; [ | apply Rgt_not_eq ] ; intuition. + intuition. + apply HN2; unfold N; omega. + fourier. + rewrite <- Rabs_Ropp, Ropp_minus_distr; apply HN1. + unfold N; omega. + fourier. + assumption. + field. +ring. +Qed. + +Lemma Datan_eq_DatanSeq_interv : forall x, -1 < x < 1 -> + forall (Pratan:derivable_pt ps_atan x) (Prmymeta:derivable_pt atan x), + derive_pt ps_atan x Pratan = derive_pt atan x Prmymeta. +Proof. +assert (freq : 0 < tan 1) by apply (Rlt_trans _ _ _ Rlt_0_1 tan_1_gt_1). +intros x x_encad Pratan Prmymeta. + rewrite pr_nu_var2_interv with (g:=ps_atan) (lb:=-1) (ub:=tan 1) + (pr2 := derivable_pt_ps_atan x x_encad). + rewrite pr_nu_var2_interv with (f:=atan) (g:=atan) (lb:=-1) (ub:= 1) (pr2:=derivable_pt_atan x). + assert (Temp := derivable_pt_lim_ps_atan x x_encad). + assert (Hrew1 : derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = (/(1+x^2))). + apply derive_pt_eq_0 ; assumption. + rewrite derive_pt_atan. + rewrite Hrew1. + replace (Rsqr x) with (x ^ 2) by (unfold Rsqr; ring). + unfold Rdiv; rewrite Rmult_1_l; reflexivity. + fourier. + assumption. + intros; reflexivity. + fourier. + assert (t := tan_1_gt_1); split;destruct x_encad; fourier. +intros; reflexivity. +Qed. + +Lemma atan_eq_ps_atan : + forall x, 0 < x < 1 -> atan x = ps_atan x. +Proof. +intros x x_encad. +assert (pr1 : forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) c). + intros c c_encad. + apply derivable_pt_minus. + exact (derivable_pt_atan c). + apply derivable_pt_ps_atan. + destruct x_encad; destruct c_encad; split; fourier. +assert (pr2 : forall c : R, 0 < c < x -> derivable_pt id c). + intros ; apply derivable_pt_id; fourier. +assert (delta_cont : forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) c). + intros c [[c_encad1 | c_encad1 ] [c_encad2 | c_encad2]]; + apply continuity_pt_minus. + apply derivable_continuous_pt ; apply derivable_pt_atan. + apply derivable_continuous_pt ; apply derivable_pt_ps_atan. + split; destruct x_encad; fourier. + apply derivable_continuous_pt, derivable_pt_atan. + apply derivable_continuous_pt, derivable_pt_ps_atan. + subst c; destruct x_encad; split; fourier. + apply derivable_continuous_pt, derivable_pt_atan. + apply derivable_continuous_pt, derivable_pt_ps_atan. + subst c; split; fourier. + apply derivable_continuous_pt, derivable_pt_atan. + apply derivable_continuous_pt, derivable_pt_ps_atan. + subst c; destruct x_encad; split; fourier. +assert (id_cont : forall c : R, 0 <= c <= x -> continuity_pt id c). + intros ; apply derivable_continuous ; apply derivable_id. +assert (x_lb : 0 < x) by (destruct x_encad; fourier). +elim (MVT (atan - ps_atan)%F id 0 x pr1 pr2 x_lb delta_cont id_cont) ; intros d Temp ; elim Temp ; intros d_encad Main. +clear - Main x_encad. +assert (Temp : forall (pr: derivable_pt (atan - ps_atan) d), derive_pt (atan - ps_atan) d pr = 0). + intro pr. + assert (d_encad3 : -1 < d < 1). + destruct d_encad; destruct x_encad; split; fourier. + pose (pr3 := derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3)). + rewrite <- pr_nu_var2_interv with (f:=(atan - ps_atan)%F) (g:=(atan - ps_atan)%F) (lb:=0) (ub:=x) (pr1:=pr3) (pr2:=pr). + unfold pr3. rewrite derive_pt_minus. + rewrite Datan_eq_DatanSeq_interv with (Prmymeta := derivable_pt_atan d). + intuition. + assumption. + destruct d_encad; fourier. + assumption. + reflexivity. +assert (iatan0 : atan 0 = 0). + apply tan_is_inj. + apply atan_bound. + rewrite Ropp_div; assert (t := PI2_RGT_0); split; fourier. + rewrite tan_0, atan_right_inv; reflexivity. +generalize Main; rewrite Temp, Rmult_0_r. +replace ((atan - ps_atan)%F x) with (atan x - ps_atan x) by intuition. +replace ((atan - ps_atan)%F 0) with (atan 0 - ps_atan 0) by intuition. +rewrite iatan0, ps_atan0_0, !Rminus_0_r. +replace (derive_pt id d (pr2 d d_encad)) with 1. + rewrite Rmult_1_r. + solve[intros M; apply Rminus_diag_uniq; auto]. +rewrite pr_nu_var with (g:=id) (pr2:=derivable_pt_id d). + symmetry ; apply derive_pt_id. +tauto. +Qed. + + +Theorem Alt_PI_eq : Alt_PI = PI. +apply Rmult_eq_reg_r with (/4); fold (Alt_PI/4); fold (PI/4); + [ | apply Rgt_not_eq; fourier]. +assert (0 < PI/6) by (apply PI6_RGT_0). +assert (t1:= PI2_1). +assert (t2 := PI_4). +assert (m := Alt_PI_RGT_0). +assert (-PI/2 < 1 < PI/2) by (rewrite Ropp_div; split; fourier). +apply cond_eq; intros eps ep. +change (R_dist (Alt_PI/4) (PI/4) < eps). +assert (ca : continuity_pt atan 1). + apply derivable_continuous_pt, derivable_pt_atan. +assert (Xe : exists eps', exists eps'', + eps' + eps'' <= eps /\ 0 < eps' /\ 0 < eps''). + exists (eps/2); exists (eps/2); repeat apply conj; fourier. +destruct Xe as [eps' [eps'' [eps_ineq [ep' ep'']]]]. +destruct (ps_atan_continuity_pt_1 _ ep') as [alpha [a0 Palpha]]. +destruct (ca _ ep'') as [beta [b0 Pbeta]]. +assert (Xa : exists a, 0 < a < 1 /\ R_dist a 1 < alpha /\ + R_dist a 1 < beta). + exists (Rmax (/2) (Rmax (1 - alpha /2) (1 - beta /2))). + assert (/2 <= Rmax (/2) (Rmax (1 - alpha /2) (1 - beta /2))) by apply Rmax_l. + assert (Rmax (1 - alpha /2) (1 - beta /2) <= + Rmax (/2) (Rmax (1 - alpha /2) (1 - beta /2))) by apply Rmax_r. + assert ((1 - alpha /2) <= Rmax (1 - alpha /2) (1 - beta /2)) by apply Rmax_l. + assert ((1 - beta /2) <= Rmax (1 - alpha /2) (1 - beta /2)) by apply Rmax_r. + assert (Rmax (1 - alpha /2) (1 - beta /2) < 1) + by (apply Rmax_lub_lt; fourier). + split;[split;[ | apply Rmax_lub_lt]; fourier | ]. + assert (0 <= 1 - Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))). + assert (Rmax (/2) (Rmax (1 - alpha / 2) + (1 - beta /2)) <= 1) by (apply Rmax_lub; fourier). + fourier. + split; unfold R_dist; rewrite <-Rabs_Ropp, Ropp_minus_distr, + Rabs_pos_eq;fourier. +destruct Xa as [a [[Pa0 Pa1] [P1 P2]]]. +apply Rle_lt_trans with (1 := R_dist_tri _ _ (ps_atan a)). +apply Rlt_le_trans with (2 := eps_ineq). +apply Rplus_lt_compat. +rewrite R_dist_sym; apply Palpha; assumption. +rewrite <- atan_eq_ps_atan. + rewrite <- atan_1; apply (Pbeta a); auto. + split; [ | exact P2]. +split;[exact I | apply Rgt_not_eq; assumption]. +split; assumption. +Qed. + +Lemma PI_ineq : + forall N : nat, + sum_f_R0 (tg_alt PI_tg) (S (2 * N)) <= PI / 4 <= + sum_f_R0 (tg_alt PI_tg) (2 * N). +Proof. +intros; rewrite <- Alt_PI_eq; apply Alt_PI_ineq. +Qed. + diff --git a/theories/Reals/Raxioms.v b/theories/Reals/Raxioms.v index 8f01d7d0..200019a8 100644 --- a/theories/Reals/Raxioms.v +++ b/theories/Reals/Raxioms.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 - | Zpos n => INR (nat_of_P n) - | Zneg n => - INR (nat_of_P n) + | Zpos n => INR (Pos.to_nat n) + | Zneg n => - INR (Pos.to_nat n) end. Arguments IZR z%Z. diff --git a/theories/Reals/Rbase.v b/theories/Reals/Rbase.v index dbf9ad71..29715ed9 100644 --- a/theories/Reals/Rbase.v +++ b/theories/Reals/Rbase.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* r -> r1 > r /\ r2 > r. Proof. - intros r1 r2 r; unfold Rmin in |- *; case (Rle_dec r1 r2); intros. + intros r1 r2 r; unfold Rmin; case (Rle_dec r1 r2); intros. split. assumption. - unfold Rgt in |- *; unfold Rgt in H; exact (Rlt_le_trans r r1 r2 H r0). + unfold Rgt; unfold Rgt in H; exact (Rlt_le_trans r r1 r2 H r0). split. generalize (Rnot_le_lt r1 r2 n); intro; exact (Rgt_trans r1 r2 r H0 H). assumption. @@ -57,7 +57,7 @@ Qed. (*********) Lemma Rmin_Rgt_r : forall r1 r2 r, r1 > r /\ r2 > r -> Rmin r1 r2 > r. Proof. - intros; unfold Rmin in |- *; case (Rle_dec r1 r2); elim H; clear H; intros; + intros; unfold Rmin; case (Rle_dec r1 r2); elim H; clear H; intros; assumption. Qed. @@ -72,14 +72,14 @@ Qed. (*********) Lemma Rmin_l : forall x y:R, Rmin x y <= x. Proof. - intros; unfold Rmin in |- *; case (Rle_dec x y); intro H1; + intros; unfold Rmin; case (Rle_dec x y); intro H1; [ right; reflexivity | auto with real ]. Qed. (*********) Lemma Rmin_r : forall x y:R, Rmin x y <= y. Proof. - intros; unfold Rmin in |- *; case (Rle_dec x y); intro H1; + intros; unfold Rmin; case (Rle_dec x y); intro H1; [ assumption | auto with real ]. Qed. @@ -123,20 +123,20 @@ Qed. (*********) Lemma Rmin_pos : forall x y:R, 0 < x -> 0 < y -> 0 < Rmin x y. Proof. - intros; unfold Rmin in |- *. + intros; unfold Rmin. case (Rle_dec x y); intro; assumption. Qed. (*********) Lemma Rmin_glb : forall x y z:R, z <= x -> z <= y -> z <= Rmin x y. Proof. - intros; unfold Rmin in |- *; case (Rle_dec x y); intro; assumption. + intros; unfold Rmin; case (Rle_dec x y); intro; assumption. Qed. (*********) Lemma Rmin_glb_lt : forall x y z:R, z < x -> z < y -> z < Rmin x y. Proof. - intros; unfold Rmin in |- *; case (Rle_dec x y); intro; assumption. + intros; unfold Rmin; case (Rle_dec x y); intro; assumption. Qed. (*******************************) @@ -167,8 +167,8 @@ Qed. Lemma Rmax_Rle : forall r1 r2 r, r <= Rmax r1 r2 <-> r <= r1 \/ r <= r2. Proof. intros; split. - unfold Rmax in |- *; case (Rle_dec r1 r2); intros; auto. - intro; unfold Rmax in |- *; case (Rle_dec r1 r2); elim H; clear H; intros; + unfold Rmax; case (Rle_dec r1 r2); intros; auto. + intro; unfold Rmax; case (Rle_dec r1 r2); elim H; clear H; intros; auto. apply (Rle_trans r r1 r2); auto. generalize (Rnot_le_lt r1 r2 n); clear n; intro; unfold Rgt in H0; @@ -177,7 +177,7 @@ Qed. Lemma Rmax_comm : forall x y:R, Rmax x y = Rmax y x. Proof. - intros p q; unfold Rmax in |- *; case (Rle_dec p q); case (Rle_dec q p); auto; + intros p q; unfold Rmax; case (Rle_dec p q); case (Rle_dec q p); auto; intros H1 H2; apply Rle_antisym; auto with real. Qed. @@ -188,14 +188,14 @@ Notation RmaxSym := Rmax_comm (only parsing). (*********) Lemma Rmax_l : forall x y:R, x <= Rmax x y. Proof. - intros; unfold Rmax in |- *; case (Rle_dec x y); intro H1; + intros; unfold Rmax; case (Rle_dec x y); intro H1; [ assumption | auto with real ]. Qed. (*********) Lemma Rmax_r : forall x y:R, y <= Rmax x y. Proof. - intros; unfold Rmax in |- *; case (Rle_dec x y); intro H1; + intros; unfold Rmax; case (Rle_dec x y); intro H1; [ right; reflexivity | auto with real ]. Qed. @@ -232,7 +232,7 @@ Qed. Lemma RmaxRmult : forall (p q:R) r, 0 <= r -> Rmax (r * p) (r * q) = r * Rmax p q. Proof. - intros p q r H; unfold Rmax in |- *. + intros p q r H; unfold Rmax. case (Rle_dec p q); case (Rle_dec (r * p) (r * q)); auto; intros H1 H2; auto. case H; intros E1. case H1; auto with real. @@ -246,7 +246,7 @@ Qed. (*********) Lemma Rmax_stable_in_negreal : forall x y:negreal, Rmax x y < 0. Proof. - intros; unfold Rmax in |- *; case (Rle_dec x y); intro; + intros; unfold Rmax; case (Rle_dec x y); intro; [ apply (cond_neg y) | apply (cond_neg x) ]. Qed. @@ -265,7 +265,7 @@ Qed. (*********) Lemma Rmax_neg : forall x y:R, x < 0 -> y < 0 -> Rmax x y < 0. Proof. - intros; unfold Rmax in |- *. + intros; unfold Rmax. case (Rle_dec x y); intro; assumption. Qed. @@ -278,7 +278,7 @@ Lemma Rcase_abs : forall r, {r < 0} + {r >= 0}. Proof. intro; generalize (Rle_dec 0 r); intro X; elim X; intro; clear X. right; apply (Rle_ge 0 r a). - left; fold (0 > r) in |- *; apply (Rnot_le_lt 0 r b). + left; fold (0 > r); apply (Rnot_le_lt 0 r b). Qed. (*********) @@ -291,27 +291,27 @@ Definition Rabs r : R := (*********) Lemma Rabs_R0 : Rabs 0 = 0. Proof. - unfold Rabs in |- *; case (Rcase_abs 0); auto; intro. + unfold Rabs; case (Rcase_abs 0); auto; intro. generalize (Rlt_irrefl 0); intro; exfalso; auto. Qed. Lemma Rabs_R1 : Rabs 1 = 1. Proof. -unfold Rabs in |- *; case (Rcase_abs 1); auto with real. +unfold Rabs; case (Rcase_abs 1); auto with real. intros H; absurd (1 < 0); auto with real. Qed. (*********) Lemma Rabs_no_R0 : forall r, r <> 0 -> Rabs r <> 0. Proof. - intros; unfold Rabs in |- *; case (Rcase_abs r); intro; auto. + intros; unfold Rabs; case (Rcase_abs r); intro; auto. apply Ropp_neq_0_compat; auto. Qed. (*********) Lemma Rabs_left : forall r, r < 0 -> Rabs r = - r. Proof. - intros; unfold Rabs in |- *; case (Rcase_abs r); trivial; intro; + intros; unfold Rabs; case (Rcase_abs r); trivial; intro; absurd (r >= 0). exact (Rlt_not_ge r 0 H). assumption. @@ -320,7 +320,7 @@ Qed. (*********) Lemma Rabs_right : forall r, r >= 0 -> Rabs r = r. Proof. - intros; unfold Rabs in |- *; case (Rcase_abs r); intro. + intros; unfold Rabs; case (Rcase_abs r); intro. absurd (r >= 0). exact (Rlt_not_ge r 0 r0). assumption. @@ -331,21 +331,21 @@ Lemma Rabs_left1 : forall a:R, a <= 0 -> Rabs a = - a. Proof. intros a H; case H; intros H1. apply Rabs_left; auto. - rewrite H1; simpl in |- *; rewrite Rabs_right; auto with real. + rewrite H1; simpl; rewrite Rabs_right; auto with real. Qed. (*********) Lemma Rabs_pos : forall x:R, 0 <= Rabs x. Proof. - intros; unfold Rabs in |- *; case (Rcase_abs x); intro. + intros; unfold Rabs; case (Rcase_abs x); intro. generalize (Ropp_lt_gt_contravar x 0 r); intro; unfold Rgt in H; - rewrite Ropp_0 in H; unfold Rle in |- *; left; assumption. + rewrite Ropp_0 in H; unfold Rle; left; assumption. apply Rge_le; assumption. Qed. Lemma Rle_abs : forall x:R, x <= Rabs x. Proof. - intro; unfold Rabs in |- *; case (Rcase_abs x); intros; fourier. + intro; unfold Rabs; case (Rcase_abs x); intros; fourier. Qed. Definition RRle_abs := Rle_abs. @@ -353,7 +353,7 @@ Definition RRle_abs := Rle_abs. (*********) Lemma Rabs_pos_eq : forall x:R, 0 <= x -> Rabs x = x. Proof. - intros; unfold Rabs in |- *; case (Rcase_abs x); intro; + intros; unfold Rabs; case (Rcase_abs x); intro; [ generalize (Rgt_not_le 0 x r); intro; exfalso; auto | trivial ]. Qed. @@ -368,7 +368,7 @@ Lemma Rabs_pos_lt : forall x:R, x <> 0 -> 0 < Rabs x. Proof. intros; generalize (Rabs_pos x); intro; unfold Rle in H0; elim H0; intro; auto. - exfalso; clear H0; elim H; clear H; generalize H1; unfold Rabs in |- *; + exfalso; clear H0; elim H; clear H; generalize H1; unfold Rabs; case (Rcase_abs x); intros; auto. clear r H1; generalize (Rplus_eq_compat_l x 0 (- x) H0); rewrite (let (H1, H2) := Rplus_ne x in H1); rewrite (Rplus_opp_r x); @@ -378,7 +378,7 @@ Qed. (*********) Lemma Rabs_minus_sym : forall x y:R, Rabs (x - y) = Rabs (y - x). Proof. - intros; unfold Rabs in |- *; case (Rcase_abs (x - y)); + intros; unfold Rabs; case (Rcase_abs (x - y)); case (Rcase_abs (y - x)); intros. generalize (Rminus_lt y x r); generalize (Rminus_lt x y r0); intros; generalize (Rlt_asym x y H); intro; exfalso; @@ -397,7 +397,7 @@ Qed. (*********) Lemma Rabs_mult : forall x y:R, Rabs (x * y) = Rabs x * Rabs y. Proof. - intros; unfold Rabs in |- *; case (Rcase_abs (x * y)); case (Rcase_abs x); + intros; unfold Rabs; case (Rcase_abs (x * y)); case (Rcase_abs x); case (Rcase_abs y); intros; auto. generalize (Rmult_lt_gt_compat_neg_l y x 0 r r0); intro; rewrite (Rmult_0_r y) in H; generalize (Rlt_asym (x * y) 0 r1); @@ -448,7 +448,7 @@ Qed. (*********) Lemma Rabs_Rinv : forall r, r <> 0 -> Rabs (/ r) = / Rabs r. Proof. - intro; unfold Rabs in |- *; case (Rcase_abs r); case (Rcase_abs (/ r)); auto; + intro; unfold Rabs; case (Rcase_abs r); case (Rcase_abs (/ r)); auto; intros. apply Ropp_inv_permute; auto. generalize (Rinv_lt_0_compat r r1); intro; unfold Rge in r0; elim r0; intros. @@ -470,7 +470,7 @@ Proof. cut (Rabs (-1) = 1). intros; rewrite H0. ring. - unfold Rabs in |- *; case (Rcase_abs (-1)). + unfold Rabs; case (Rcase_abs (-1)). intro; ring. intro H0; generalize (Rge_le (-1) 0 H0); intros. generalize (Ropp_le_ge_contravar 0 (-1) H1). @@ -483,13 +483,13 @@ Qed. (*********) Lemma Rabs_triang : forall a b:R, Rabs (a + b) <= Rabs a + Rabs b. Proof. - intros a b; unfold Rabs in |- *; case (Rcase_abs (a + b)); case (Rcase_abs a); + intros a b; unfold Rabs; case (Rcase_abs (a + b)); case (Rcase_abs a); case (Rcase_abs b); intros. apply (Req_le (- (a + b)) (- a + - b)); rewrite (Ropp_plus_distr a b); reflexivity. (**) rewrite (Ropp_plus_distr a b); apply (Rplus_le_compat_l (- a) (- b) b); - unfold Rle in |- *; unfold Rge in r; elim r; intro. + unfold Rle; unfold Rge in r; elim r; intro. left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- b) 0 b H); intro; elim (Rplus_ne (- b)); intros v w; rewrite v in H0; clear v w; rewrite (Rplus_opp_l b) in H0; apply (Rlt_trans (- b) 0 b H0 H). @@ -497,7 +497,7 @@ Proof. (**) rewrite (Ropp_plus_distr a b); rewrite (Rplus_comm (- a) (- b)); rewrite (Rplus_comm a (- b)); apply (Rplus_le_compat_l (- b) (- a) a); - unfold Rle in |- *; unfold Rge in r0; elim r0; intro. + unfold Rle; unfold Rge in r0; elim r0; intro. left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- a) 0 a H); intro; elim (Rplus_ne (- a)); intros v w; rewrite v in H0; clear v w; rewrite (Rplus_opp_l a) in H0; apply (Rlt_trans (- a) 0 a H0 H). @@ -521,27 +521,27 @@ Proof. (**) rewrite (Rplus_comm a b); rewrite (Rplus_comm (- a) b); apply (Rplus_le_compat_l b a (- a)); apply (Rminus_le a (- a)); - unfold Rminus in |- *; rewrite (Ropp_involutive a); + unfold Rminus; rewrite (Ropp_involutive a); generalize (Rplus_lt_compat_l a a 0 r0); clear r r1; intro; elim (Rplus_ne a); intros v w; rewrite v in H; clear v w; generalize (Rlt_trans (a + a) a 0 H r0); intro; apply (Rlt_le (a + a) 0 H0). (**) apply (Rplus_le_compat_l a b (- b)); apply (Rminus_le b (- b)); - unfold Rminus in |- *; rewrite (Ropp_involutive b); + unfold Rminus; rewrite (Ropp_involutive b); generalize (Rplus_lt_compat_l b b 0 r); clear r0 r1; intro; elim (Rplus_ne b); intros v w; rewrite v in H; clear v w; generalize (Rlt_trans (b + b) b 0 H r); intro; apply (Rlt_le (b + b) 0 H0). (**) - unfold Rle in |- *; right; reflexivity. + unfold Rle; right; reflexivity. Qed. (*********) Lemma Rabs_triang_inv : forall a b:R, Rabs a - Rabs b <= Rabs (a - b). Proof. intros; apply (Rplus_le_reg_l (Rabs b) (Rabs a - Rabs b) (Rabs (a - b))); - unfold Rminus in |- *; rewrite <- (Rplus_assoc (Rabs b) (Rabs a) (- Rabs b)); + unfold Rminus; rewrite <- (Rplus_assoc (Rabs b) (Rabs a) (- Rabs b)); rewrite (Rplus_comm (Rabs b) (Rabs a)); rewrite (Rplus_assoc (Rabs a) (Rabs b) (- Rabs b)); rewrite (Rplus_opp_r (Rabs b)); rewrite (proj1 (Rplus_ne (Rabs a))); @@ -561,7 +561,7 @@ Proof. rewrite <- (Rabs_Ropp (Rabs a - Rabs b)); rewrite <- (Rabs_Ropp (a - b)); do 2 rewrite Ropp_minus_distr. apply H; left; assumption. - rewrite Heq; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + rewrite Heq; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply Rabs_pos. apply H; left; assumption. intros; replace (Rabs (Rabs a - Rabs b)) with (Rabs a - Rabs b). @@ -576,8 +576,8 @@ Qed. (*********) Lemma Rabs_def1 : forall x a:R, x < a -> - a < x -> Rabs x < a. Proof. - unfold Rabs in |- *; intros; case (Rcase_abs x); intro. - generalize (Ropp_lt_gt_contravar (- a) x H0); unfold Rgt in |- *; + unfold Rabs; intros; case (Rcase_abs x); intro. + generalize (Ropp_lt_gt_contravar (- a) x H0); unfold Rgt; rewrite Ropp_involutive; intro; assumption. assumption. Qed. @@ -585,15 +585,15 @@ Qed. (*********) Lemma Rabs_def2 : forall x a:R, Rabs x < a -> x < a /\ - a < x. Proof. - unfold Rabs in |- *; intro x; case (Rcase_abs x); intros. - generalize (Ropp_gt_lt_0_contravar x r); unfold Rgt in |- *; intro; + unfold Rabs; intro x; case (Rcase_abs x); intros. + generalize (Ropp_gt_lt_0_contravar x r); unfold Rgt; intro; generalize (Rlt_trans 0 (- x) a H0 H); intro; split. apply (Rlt_trans x 0 a r H1). generalize (Ropp_lt_gt_contravar (- x) a H); rewrite (Ropp_involutive x); - unfold Rgt in |- *; trivial. + unfold Rgt; trivial. fold (a > x) in H; generalize (Rgt_ge_trans a x 0 H r); intro; - generalize (Ropp_lt_gt_0_contravar a H0); intro; fold (0 > - a) in |- *; - generalize (Rge_gt_trans x 0 (- a) r H1); unfold Rgt in |- *; + generalize (Ropp_lt_gt_0_contravar a H0); intro; fold (0 > - a); + generalize (Rge_gt_trans x 0 (- a) r H1); unfold Rgt; intro; split; assumption. Qed. @@ -623,16 +623,16 @@ Proof. apply RmaxLess1; auto. Qed. -Lemma Rabs_Zabs : forall z:Z, Rabs (IZR z) = IZR (Zabs z). +Lemma Rabs_Zabs : forall z:Z, Rabs (IZR z) = IZR (Z.abs z). Proof. - intros z; case z; simpl in |- *; auto with real. + intros z; case z; simpl; auto with real. apply Rabs_right; auto with real. intros p0; apply Rabs_right; auto with real zarith. intros p0; rewrite Rabs_Ropp. apply Rabs_right; auto with real zarith. Qed. -Lemma abs_IZR : forall z, IZR (Zabs z) = Rabs (IZR z). +Lemma abs_IZR : forall z, IZR (Z.abs z) = Rabs (IZR z). Proof. intros. now rewrite Rabs_Zabs. diff --git a/theories/Reals/Rcomplete.v b/theories/Reals/Rcomplete.v index 77cb560c..8e0e0692 100644 --- a/theories/Reals/Rcomplete.v +++ b/theories/Reals/Rcomplete.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Un (N + k)%nat) (maj_ss Un N (cauchy_maj Un H))). @@ -169,13 +169,13 @@ Proof. [ repeat apply Rplus_lt_compat | ring ]. assumption. apply H6. - unfold ge in |- *. + unfold ge. apply le_trans with N. - unfold N in |- *; apply le_max_r. + unfold N; apply le_max_r. apply le_plus_l. - unfold ge in |- *. + unfold ge. apply le_trans with N. - unfold N in |- *; apply le_max_r. + unfold N; apply le_max_r. apply le_plus_l. rewrite <- Rabs_Ropp. replace (- (Un (N + k1)%nat - Vn N)) with (Vn N - Un (N + k1)%nat); @@ -183,14 +183,14 @@ Proof. reflexivity. reflexivity. apply H5. - unfold ge in |- *; apply le_trans with (max N1 N2). + unfold ge; apply le_trans with (max N1 N2). apply le_max_r. - unfold N in |- *; apply le_max_l. - pattern eps at 4 in |- *; replace eps with (5 * (eps / 5)). + unfold N; apply le_max_l. + pattern eps at 4; replace eps with (5 * (eps / 5)). ring. - unfold Rdiv in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m. + unfold Rdiv; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m. discrR. - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + unfold Rdiv; apply Rmult_lt_0_compat. assumption. apply Rinv_0_lt_compat. prove_sup0; try apply lt_O_Sn. diff --git a/theories/Reals/Rdefinitions.v b/theories/Reals/Rdefinitions.v index 83c6b82d..f7d03ed8 100644 --- a/theories/Reals/Rdefinitions.v +++ b/theories/Reals/Rdefinitions.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Prop) (y x:R) : Prop := D x /\ y <> x. @@ -34,18 +34,18 @@ Lemma cont_deriv : forall (f d:R -> R) (D:R -> Prop) (x0:R), D_in f d D x0 -> continue_in f D x0. Proof. - unfold continue_in in |- *; unfold D_in in |- *; unfold limit1_in in |- *; - unfold limit_in in |- *; unfold Rdiv in |- *; simpl in |- *; + unfold continue_in; unfold D_in; unfold limit1_in; + unfold limit_in; unfold Rdiv; simpl; intros; elim (H eps H0); clear H; intros; elim H; clear H; intros; elim (Req_dec (d x0) 0); intro. split with (Rmin 1 x); split. elim (Rmin_Rgt 1 x 0); intros a b; apply (b (conj Rlt_0_1 H)). intros; elim H3; clear H3; intros; generalize (let (H1, H2) := Rmin_Rgt 1 x (R_dist x1 x0) in H1); - unfold Rgt in |- *; intro; elim (H5 H4); clear H5; + unfold Rgt; intro; elim (H5 H4); clear H5; intros; generalize (H1 x1 (conj H3 H6)); clear H1; intro; unfold D_x in H3; elim H3; intros. - rewrite H2 in H1; unfold R_dist in |- *; unfold R_dist in H1; + rewrite H2 in H1; unfold R_dist; unfold R_dist in H1; cut (Rabs (f x1 - f x0) < eps * Rabs (x1 - x0)). intro; unfold R_dist in H5; generalize (Rmult_lt_compat_l eps (Rabs (x1 - x0)) 1 H0 H5); @@ -68,7 +68,7 @@ Proof. intros; elim (Rmin_Rgt (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) 0); intros a b; apply (b (conj H4 H3)). apply Rmult_gt_0_compat; auto. - unfold Rgt in |- *; apply Rinv_0_lt_compat; apply Rabs_pos_lt; + unfold Rgt; apply Rinv_0_lt_compat; apply Rabs_pos_lt; apply Rmult_integral_contrapositive; split. discrR. assumption. @@ -80,17 +80,17 @@ Proof. generalize (let (H1, H2) := Rmin_Rgt (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) (R_dist x1 x0) in - H1); unfold Rgt in |- *; intro; elim (H5 H4); clear H5; + H1); unfold Rgt; intro; elim (H5 H4); clear H5; intros; generalize (let (H1, H2) := Rmin_Rgt (/ 2) x (R_dist x1 x0) in H1); - unfold Rgt in |- *; intro; elim (H7 H5); clear H7; + unfold Rgt; intro; elim (H7 H5); clear H7; intros; clear H4 H5; generalize (H1 x1 (conj H3 H8)); clear H1; intro; unfold D_x in H3; elim H3; intros; - generalize (sym_not_eq H5); clear H5; intro H5; + generalize (not_eq_sym H5); clear H5; intro H5; generalize (Rminus_eq_contra x1 x0 H5); intro; generalize H1; - pattern (d x0) at 1 in |- *; + pattern (d x0) at 1; rewrite <- (let (H1, H2) := Rmult_ne (d x0) in H2); - rewrite <- (Rinv_l (x1 - x0) H9); unfold R_dist in |- *; - unfold Rminus at 1 in |- *; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))); + rewrite <- (Rinv_l (x1 - x0) H9); unfold R_dist; + unfold Rminus at 1; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))); rewrite (Rmult_comm (/ (x1 - x0) * (x1 - x0)) (d x0)); rewrite <- (Ropp_mult_distr_l_reverse (d x0) (/ (x1 - x0) * (x1 - x0))); rewrite (Rmult_comm (- d x0) (/ (x1 - x0) * (x1 - x0))); @@ -113,7 +113,7 @@ Proof. ; generalize (Rabs_triang_inv (f x1 - f x0) ((x1 - x0) * d x0)); intro; rewrite (Rmult_comm (x1 - x0) (- d x0)); rewrite (Ropp_mult_distr_l_reverse (d x0) (x1 - x0)); - fold (f x1 - f x0 - d x0 * (x1 - x0)) in |- *; + fold (f x1 - f x0 - d x0 * (x1 - x0)); rewrite (Rmult_comm (x1 - x0) (d x0)) in H10; clear H1; intro; generalize @@ -123,7 +123,7 @@ Proof. generalize (Rplus_lt_compat_l (Rabs (d x0 * (x1 - x0))) (Rabs (f x1 - f x0) - Rabs (d x0 * (x1 - x0))) ( - Rabs (x1 - x0) * eps) H1); unfold Rminus at 2 in |- *; + Rabs (x1 - x0) * eps) H1); unfold Rminus at 2; rewrite (Rplus_comm (Rabs (f x1 - f x0)) (- Rabs (d x0 * (x1 - x0)))); rewrite <- (Rplus_assoc (Rabs (d x0 * (x1 - x0))) (- Rabs (d x0 * (x1 - x0))) @@ -162,7 +162,7 @@ Proof. (Rplus_lt_compat (Rabs (d x0 * (x1 - x0))) (eps * / 2) (Rabs (x1 - x0) * eps) (eps * / 2) H5 H3); intro; rewrite eps2 in H10; assumption. - unfold Rabs in |- *; case (Rcase_abs 2); auto. + unfold Rabs; case (Rcase_abs 2); auto. intro; cut (0 < 2). intro ; elim (Rlt_asym 0 2 H7 r). fourier. @@ -174,14 +174,14 @@ Qed. Lemma Dconst : forall (D:R -> Prop) (y x0:R), D_in (fun x:R => y) (fun x:R => 0) D x0. Proof. - unfold D_in in |- *; intros; unfold limit1_in in |- *; - unfold limit_in in |- *; unfold Rdiv in |- *; intros; - simpl in |- *; split with eps; split; auto. - intros; rewrite (Rminus_diag_eq y y (refl_equal y)); rewrite Rmult_0_l; - unfold R_dist in |- *; rewrite (Rminus_diag_eq 0 0 (refl_equal 0)); - unfold Rabs in |- *; case (Rcase_abs 0); intro. + unfold D_in; intros; unfold limit1_in; + unfold limit_in; unfold Rdiv; intros; + simpl; split with eps; split; auto. + intros; rewrite (Rminus_diag_eq y y (eq_refl y)); rewrite Rmult_0_l; + unfold R_dist; rewrite (Rminus_diag_eq 0 0 (eq_refl 0)); + unfold Rabs; case (Rcase_abs 0); intro. absurd (0 < 0); auto. - red in |- *; intro; apply (Rlt_irrefl 0 H1). + red; intro; apply (Rlt_irrefl 0 H1). unfold Rgt in H0; assumption. Qed. @@ -189,15 +189,15 @@ Qed. Lemma Dx : forall (D:R -> Prop) (x0:R), D_in (fun x:R => x) (fun x:R => 1) D x0. Proof. - unfold D_in in |- *; unfold Rdiv in |- *; intros; unfold limit1_in in |- *; - unfold limit_in in |- *; intros; simpl in |- *; split with eps; + unfold D_in; unfold Rdiv; intros; unfold limit1_in; + unfold limit_in; intros; simpl; split with eps; split; auto. intros; elim H0; clear H0; intros; unfold D_x in H0; elim H0; intros; - rewrite (Rinv_r (x - x0) (Rminus_eq_contra x x0 (sym_not_eq H3))); - unfold R_dist in |- *; rewrite (Rminus_diag_eq 1 1 (refl_equal 1)); - unfold Rabs in |- *; case (Rcase_abs 0); intro. + rewrite (Rinv_r (x - x0) (Rminus_eq_contra x x0 (not_eq_sym H3))); + unfold R_dist; rewrite (Rminus_diag_eq 1 1 (eq_refl 1)); + unfold Rabs; case (Rcase_abs 0); intro. absurd (0 < 0); auto. - red in |- *; intro; apply (Rlt_irrefl 0 r). + red; intro; apply (Rlt_irrefl 0 r). unfold Rgt in H; assumption. Qed. @@ -208,12 +208,12 @@ Lemma Dadd : D_in g dg D x0 -> D_in (fun x:R => f x + g x) (fun x:R => df x + dg x) D x0. Proof. - unfold D_in in |- *; intros; + unfold D_in; intros; generalize (limit_plus (fun x:R => (f x - f x0) * / (x - x0)) (fun x:R => (g x - g x0) * / (x - x0)) (D_x D x0) ( - df x0) (dg x0) x0 H H0); clear H H0; unfold limit1_in in |- *; - unfold limit_in in |- *; simpl in |- *; intros; elim (H eps H0); + df x0) (dg x0) x0 H H0); clear H H0; unfold limit1_in; + unfold limit_in; simpl; intros; elim (H eps H0); clear H; intros; elim H; clear H; intros; split with x; split; auto; intros; generalize (H1 x1 H2); clear H1; intro; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))) in H1; @@ -233,8 +233,8 @@ Lemma Dmult : D_in g dg D x0 -> D_in (fun x:R => f x * g x) (fun x:R => df x * g x + f x * dg x) D x0. Proof. - intros; unfold D_in in |- *; generalize H H0; intros; unfold D_in in H, H0; - generalize (cont_deriv f df D x0 H1); unfold continue_in in |- *; + intros; unfold D_in; generalize H H0; intros; unfold D_in in H, H0; + generalize (cont_deriv f df D x0 H1); unfold continue_in; intro; generalize (limit_mul (fun x:R => (g x - g x0) * / (x - x0)) ( @@ -250,8 +250,8 @@ Proof. (fun x:R => (g x - g x0) * / (x - x0) * f x) ( D_x D x0) (df x0 * g x0) (dg x0 * f x0) x0 H H4); clear H4 H; intro; unfold limit1_in in H; unfold limit_in in H; - simpl in H; unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; intros; elim (H eps H0); clear H; intros; + simpl in H; unfold limit1_in; unfold limit_in; + simpl; intros; elim (H eps H0); clear H; intros; elim H; clear H; intros; split with x; split; auto; intros; generalize (H1 x1 H2); clear H1; intro; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))) in H1; @@ -268,9 +268,9 @@ Proof. ((f x1 - f x0) * g x0 + (g x1 - g x0) * f x1 = f x1 * g x1 - f x0 * g x0). intro; rewrite H3 in H1; assumption. ring. - unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros; + unfold limit1_in; unfold limit_in; simpl; intros; split with eps; split; auto; intros; elim (R_dist_refl (g x0) (g x0)); - intros a b; rewrite (b (refl_equal (g x0))); unfold Rgt in H; + intros a b; rewrite (b (eq_refl (g x0))); unfold Rgt in H; assumption. Qed. @@ -281,7 +281,7 @@ Lemma Dmult_const : Proof. intros; generalize (Dmult D (fun _:R => 0) df (fun _:R => a) f x0 (Dconst D a x0) H); - unfold D_in in |- *; intros; rewrite (Rmult_0_l (f x0)) in H0; + unfold D_in; intros; rewrite (Rmult_0_l (f x0)) in H0; rewrite (let (H1, H2) := Rplus_ne (a * df x0) in H2) in H0; assumption. Qed. @@ -291,10 +291,10 @@ Lemma Dopp : forall (D:R -> Prop) (f df:R -> R) (x0:R), D_in f df D x0 -> D_in (fun x:R => - f x) (fun x:R => - df x) D x0. Proof. - intros; generalize (Dmult_const D f df x0 (-1) H); unfold D_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; + intros; generalize (Dmult_const D f df x0 (-1) H); unfold D_in; + unfold limit1_in; unfold limit_in; intros; generalize (H0 eps H1); clear H0; intro; elim H0; - clear H0; intros; elim H0; clear H0; simpl in |- *; + clear H0; intros; elim H0; clear H0; simpl; intros; split with x; split; auto. intros; generalize (H2 x1 H3); clear H2; intro; rewrite Ropp_mult_distr_l_reverse in H2; @@ -313,7 +313,7 @@ Lemma Dminus : D_in g dg D x0 -> D_in (fun x:R => f x - g x) (fun x:R => df x - dg x) D x0. Proof. - unfold Rminus in |- *; intros; generalize (Dopp D g dg x0 H0); intro; + unfold Rminus; intros; generalize (Dopp D g dg x0 H0); intro; apply (Dadd D df (fun x:R => - dg x) f (fun x:R => - g x) x0); assumption. Qed. @@ -324,14 +324,14 @@ Lemma Dx_pow_n : D_in (fun x:R => x ^ n) (fun x:R => INR n * x ^ (n - 1)) D x0. Proof. simple induction n; intros. - simpl in |- *; rewrite Rmult_0_l; apply Dconst. + simpl; rewrite Rmult_0_l; apply Dconst. intros; cut (n0 = (S n0 - 1)%nat); - [ intro a; rewrite <- a; clear a | simpl in |- *; apply minus_n_O ]. + [ intro a; rewrite <- a; clear a | simpl; apply minus_n_O ]. generalize (Dmult D (fun _:R => 1) (fun x:R => INR n0 * x ^ (n0 - 1)) ( fun x:R => x) (fun x:R => x ^ n0) x0 (Dx D x0) ( - H D x0)); unfold D_in in |- *; unfold limit1_in in |- *; - unfold limit_in in |- *; simpl in |- *; intros; elim (H0 eps H1); + H D x0)); unfold D_in; unfold limit1_in; + unfold limit_in; simpl; intros; elim (H0 eps H1); clear H0; intros; elim H0; clear H0; intros; split with x; split; auto. intros; generalize (H2 x1 H3); clear H2 H3; intro; @@ -340,7 +340,7 @@ Proof. rewrite (Rmult_comm (INR n0) (x0 ^ (n0 - 1))) in H2; rewrite <- (Rmult_assoc x0 (x0 ^ (n0 - 1)) (INR n0)) in H2; rewrite (tech_pow_Rmult x0 (n0 - 1)) in H2; elim (Peano_dec.eq_nat_dec n0 0) ; intros cond. - rewrite cond in H2; rewrite cond; simpl in H2; simpl in |- *; + rewrite cond in H2; rewrite cond; simpl in H2; simpl; cut (1 + x0 * 1 * 0 = 1 * 1); [ intro A; rewrite A in H2; assumption | ring ]. cut (n0 <> 0%nat -> S (n0 - 1) = n0); [ intro | omega ]; @@ -355,8 +355,8 @@ Lemma Dcomp : D_in g dg Dg (f x0) -> D_in (fun x:R => g (f x)) (fun x:R => df x * dg (f x)) (Dgf Df Dg f) x0. Proof. - intros Df Dg df dg f g x0 H H0; generalize H H0; unfold D_in in |- *; - unfold Rdiv in |- *; intros; + intros Df Dg df dg f g x0 H H0; generalize H H0; unfold D_in; + unfold Rdiv; intros; generalize (limit_comp f (fun x:R => (g x - g (f x0)) * / (x - f x0)) ( D_x Df x0) (D_x Dg (f x0)) (f x0) (dg (f x0)) x0); @@ -376,8 +376,8 @@ Proof. (limit_mul (fun x:R => (f x - f x0) * / (x - x0)) ( fun x:R => dg (f x0)) (D_x Df x0) (df x0) (dg (f x0)) x0 H1 (limit_free (fun x:R => dg (f x0)) (D_x Df x0) x0 x0)); - intro; unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; unfold limit1_in in H5, H7; unfold limit_in in H5, H7; + intro; unfold limit1_in; unfold limit_in; + simpl; unfold limit1_in in H5, H7; unfold limit_in in H5, H7; simpl in H5, H7; intros; elim (H5 eps H8); elim (H7 eps H8); clear H5 H7; intros; elim H5; elim H7; clear H5 H7; intros; split with (Rmin x x1); split. @@ -391,7 +391,7 @@ Proof. rewrite (Rminus_diag_eq (f x2) (f x0) H12) in H16; rewrite (Rmult_0_l (/ (x2 - x0))) in H16; rewrite (Rmult_0_l (dg (f x0))) in H16; rewrite H12; - rewrite (Rminus_diag_eq (g (f x0)) (g (f x0)) (refl_equal (g (f x0)))); + rewrite (Rminus_diag_eq (g (f x0)) (g (f x0)) (eq_refl (g (f x0)))); rewrite (Rmult_0_l (/ (x2 - x0))); assumption. clear H10 H5; elim H11; clear H11; intros; elim H5; clear H5; intros; cut @@ -405,8 +405,8 @@ Proof. in H15; rewrite (Rinv_l (f x2 - f x0) H16) in H15; rewrite (let (H1, H2) := Rmult_ne (/ (x2 - x0)) in H2) in H15; rewrite (Rmult_comm (df x0) (dg (f x0))); assumption. - clear H5 H3 H4 H2; unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; unfold limit1_in in H1; unfold limit_in in H1; + clear H5 H3 H4 H2; unfold limit1_in; unfold limit_in; + simpl; unfold limit1_in in H1; unfold limit_in in H1; simpl in H1; intros; elim (H1 eps H2); clear H1; intros; elim H1; clear H1; intros; split with x; split; auto; intros; unfold D_x, Dgf in H4, H3; elim H4; clear H4; @@ -425,8 +425,8 @@ Proof. generalize (Dcomp D D dexpr (fun x:R => INR n * x ^ (n - 1)) expr ( fun x:R => x ^ n) x0 H (Dx_pow_n n D (expr x0))); - intro; unfold D_in in |- *; unfold limit1_in in |- *; - unfold limit_in in |- *; simpl in |- *; intros; unfold D_in in H0; + intro; unfold D_in; unfold limit1_in; + unfold limit_in; simpl; intros; unfold D_in in H0; unfold limit1_in in H0; unfold limit_in in H0; simpl in H0; elim (H0 eps H1); clear H0; intros; elim H0; clear H0; intros; split with x; split; intros; auto. diff --git a/theories/Reals/Reals.v b/theories/Reals/Reals.v index a15e9949..03bf534d 100644 --- a/theories/Reals/Reals.v +++ b/theories/Reals/Reals.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 -> x ^ n <> 0. Proof. intro; simple induction n; simpl. @@ -212,8 +221,8 @@ Qed. Lemma RPow_abs : forall (x:R) (n:nat), Rabs x ^ n = Rabs (x ^ n). Proof. intro; simple induction n; simpl. - apply sym_eq; apply Rabs_pos_eq; apply Rlt_le; apply Rlt_0_1. - intros; rewrite H; apply sym_eq; apply Rabs_mult. + symmetry; apply Rabs_pos_eq; apply Rlt_le; apply Rlt_0_1. + intros; rewrite H; symmetry; apply Rabs_mult. Qed. @@ -517,16 +526,16 @@ Qed. (*i Due to L.Thery i*) Ltac case_eq name := - generalize (refl_equal name); pattern name at -1; case name. + generalize (eq_refl name); pattern name at -1; case name. Definition powerRZ (x:R) (n:Z) := match n with | Z0 => 1 - | Zpos p => x ^ nat_of_P p - | Zneg p => / x ^ nat_of_P p + | Zpos p => x ^ Pos.to_nat p + | Zneg p => / x ^ Pos.to_nat p end. -Infix Local "^Z" := powerRZ (at level 30, right associativity) : R_scope. +Local Infix "^Z" := powerRZ (at level 30, right associativity) : R_scope. Lemma Zpower_NR0 : forall (x:Z) (n:nat), (0 <= x)%Z -> (0 <= Zpower_nat x n)%Z. @@ -539,7 +548,7 @@ Proof. reflexivity. Qed. -Lemma powerRZ_1 : forall x:R, x ^Z Zsucc 0 = x. +Lemma powerRZ_1 : forall x:R, x ^Z Z.succ 0 = x. Proof. simpl; auto with real. Qed. @@ -549,67 +558,63 @@ Proof. destruct z; simpl; auto with real. Qed. +Lemma powerRZ_pos_sub (x:R) (n m:positive) : x <> 0 -> + x ^Z (Z.pos_sub n m) = x ^ Pos.to_nat n * / x ^ Pos.to_nat m. +Proof. + intro Hx. + rewrite Z.pos_sub_spec. + case Pos.compare_spec; intro H; simpl. + - subst; auto with real. + - rewrite Pos2Nat.inj_sub by trivial. + rewrite Pos2Nat.inj_lt in H. + rewrite (pow_RN_plus x _ (Pos.to_nat n)) by auto with real. + rewrite plus_comm, le_plus_minus_r by auto with real. + rewrite Rinv_mult_distr, Rinv_involutive; auto with real. + - rewrite Pos2Nat.inj_sub by trivial. + rewrite Pos2Nat.inj_lt in H. + rewrite (pow_RN_plus x _ (Pos.to_nat m)) by auto with real. + rewrite plus_comm, le_plus_minus_r by auto with real. + reflexivity. +Qed. + Lemma powerRZ_add : forall (x:R) (n m:Z), x <> 0 -> x ^Z (n + m) = x ^Z n * x ^Z m. Proof. - intro x; destruct n as [| n1| n1]; destruct m as [| m1| m1]; simpl; - auto with real. -(* POS/POS *) - rewrite Pplus_plus; auto with real. -(* POS/NEG *) - rewrite Z.pos_sub_spec. - case Pcompare_spec; intros; simpl. - subst; auto with real. - rewrite Pminus_minus by trivial. - rewrite (pow_RN_plus x _ (nat_of_P n1)) by auto with real. - rewrite plus_comm, le_plus_minus_r by (now apply lt_le_weak, Plt_lt). - rewrite Rinv_mult_distr, Rinv_involutive; auto with real. - rewrite Pminus_minus by trivial. - rewrite (pow_RN_plus x _ (nat_of_P m1)) by auto with real. - rewrite plus_comm, le_plus_minus_r by (now apply lt_le_weak, Plt_lt). - reflexivity. -(* NEG/POS *) - rewrite Z.pos_sub_spec. - case Pcompare_spec; intros; simpl. - subst; auto with real. - rewrite Pminus_minus by trivial. - rewrite (pow_RN_plus x _ (nat_of_P m1)) by auto with real. - rewrite plus_comm, le_plus_minus_r by (now apply lt_le_weak, Plt_lt). - rewrite Rinv_mult_distr, Rinv_involutive; auto with real. - rewrite Pminus_minus by trivial. - rewrite (pow_RN_plus x _ (nat_of_P n1)) by auto with real. - rewrite plus_comm, le_plus_minus_r by (now apply lt_le_weak, Plt_lt). - auto with real. -(* NEG/NEG *) - rewrite Pplus_plus; auto with real. - intros H'; rewrite pow_add; auto with real. - apply Rinv_mult_distr; auto. - apply pow_nonzero; auto. - apply pow_nonzero; auto. + intros x [|n|n] [|m|m]; simpl; intros; auto with real. + - (* + + *) + rewrite Pos2Nat.inj_add; auto with real. + - (* + - *) + now apply powerRZ_pos_sub. + - (* - + *) + rewrite Rmult_comm. now apply powerRZ_pos_sub. + - (* - - *) + rewrite Pos2Nat.inj_add; auto with real. + rewrite pow_add; auto with real. + apply Rinv_mult_distr; apply pow_nonzero; auto. Qed. Hint Resolve powerRZ_O powerRZ_1 powerRZ_NOR powerRZ_add: real. Lemma Zpower_nat_powerRZ : - forall n m:nat, IZR (Zpower_nat (Z_of_nat n) m) = INR n ^Z Z_of_nat m. + forall n m:nat, IZR (Zpower_nat (Z.of_nat n) m) = INR n ^Z Z.of_nat m. Proof. intros n m; elim m; simpl; auto with real. - intros m1 H'; rewrite nat_of_P_of_succ_nat; simpl. - replace (Zpower_nat (Z_of_nat n) (S m1)) with - (Z_of_nat n * Zpower_nat (Z_of_nat n) m1)%Z. + intros m1 H'; rewrite SuccNat2Pos.id_succ; simpl. + replace (Zpower_nat (Z.of_nat n) (S m1)) with + (Z.of_nat n * Zpower_nat (Z.of_nat n) m1)%Z. rewrite mult_IZR; auto with real. repeat rewrite <- INR_IZR_INZ; simpl. rewrite H'; simpl. case m1; simpl; auto with real. - intros m2; rewrite nat_of_P_of_succ_nat; auto. + intros m2; rewrite SuccNat2Pos.id_succ; auto. unfold Zpower_nat; auto. Qed. Lemma Zpower_pos_powerRZ : - forall n m, IZR (Zpower_pos n m) = IZR n ^Z Zpos m. + forall n m, IZR (Z.pow_pos n m) = IZR n ^Z Zpos m. Proof. intros. rewrite Zpower_pos_nat; simpl. - induction (nat_of_P m). + induction (Pos.to_nat m). easy. unfold Zpower_nat; simpl. rewrite mult_IZR. @@ -629,10 +634,10 @@ Qed. Hint Resolve powerRZ_le: real. Lemma Zpower_nat_powerRZ_absolu : - forall n m:Z, (0 <= m)%Z -> IZR (Zpower_nat n (Zabs_nat m)) = IZR n ^Z m. + forall n m:Z, (0 <= m)%Z -> IZR (Zpower_nat n (Z.abs_nat m)) = IZR n ^Z m. Proof. intros n m; case m; simpl; auto with zarith. - intros p H'; elim (nat_of_P p); simpl; auto with zarith. + intros p H'; elim (Pos.to_nat p); simpl; auto with zarith. intros n0 H'0; rewrite <- H'0; simpl; auto with zarith. rewrite <- mult_IZR; auto. intros p H'; absurd (0 <= Zneg p)%Z; auto with zarith. @@ -641,9 +646,9 @@ Qed. Lemma powerRZ_R1 : forall n:Z, 1 ^Z n = 1. Proof. intros n; case n; simpl; auto. - intros p; elim (nat_of_P p); simpl; auto; intros n0 H'; rewrite H'; + intros p; elim (Pos.to_nat p); simpl; auto; intros n0 H'; rewrite H'; ring. - intros p; elim (nat_of_P p); simpl. + intros p; elim (Pos.to_nat p); simpl. exact Rinv_1. intros n1 H'; rewrite Rinv_mult_distr; try rewrite Rinv_1; try rewrite H'; auto with real. @@ -751,9 +756,9 @@ Qed. Lemma R_dist_refl : forall x y:R, R_dist x y = 0 <-> x = y. Proof. unfold R_dist; intros; split_Rabs; split; intros. - rewrite (Ropp_minus_distr x y) in H; apply sym_eq; + rewrite (Ropp_minus_distr x y) in H; symmetry; apply (Rminus_diag_uniq y x H). - rewrite (Ropp_minus_distr x y); generalize (sym_eq H); intro; + rewrite (Ropp_minus_distr x y); generalize (eq_sym H); intro; apply (Rminus_diag_eq y x H0). apply (Rminus_diag_uniq x y H). apply (Rminus_diag_eq x y H). diff --git a/theories/Reals/Rgeom.v b/theories/Reals/Rgeom.v index bda64e77..ffa11608 100644 --- a/theories/Reals/Rgeom.v +++ b/theories/Reals/Rgeom.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Rsqr b = Rsqr c + Rsqr a - 2 * (a * c * cos ac). Proof. - unfold dist_euc in |- *; intros; repeat rewrite Rsqr_sqrt; - [ rewrite H; unfold Rsqr in |- *; ring + unfold dist_euc; intros; repeat rewrite Rsqr_sqrt; + [ rewrite H; unfold Rsqr; ring | apply Rplus_le_le_0_compat | apply Rplus_le_le_0_compat | apply Rplus_le_le_0_compat ]; apply Rle_0_sqr. @@ -60,7 +60,7 @@ Lemma triangle : forall x0 y0 x1 y1 x2 y2:R, dist_euc x0 y0 x1 y1 <= dist_euc x0 y0 x2 y2 + dist_euc x2 y2 x1 y1. Proof. - intros; unfold dist_euc in |- *; apply Rsqr_incr_0; + intros; unfold dist_euc; apply Rsqr_incr_0; [ rewrite Rsqr_plus; repeat rewrite Rsqr_sqrt; [ replace (Rsqr (x0 - x1)) with (Rsqr (x0 - x2) + Rsqr (x2 - x1) + 2 * (x0 - x2) * (x2 - x1)); @@ -112,7 +112,7 @@ Definition yt (y ty:R) : R := y + ty. Lemma translation_0 : forall x y:R, xt x 0 = x /\ yt y 0 = y. Proof. - intros x y; split; [ unfold xt in |- * | unfold yt in |- * ]; ring. + intros x y; split; [ unfold xt | unfold yt ]; ring. Qed. Lemma isometric_translation : @@ -120,7 +120,7 @@ Lemma isometric_translation : Rsqr (x1 - x2) + Rsqr (y1 - y2) = Rsqr (xt x1 tx - xt x2 tx) + Rsqr (yt y1 ty - yt y2 ty). Proof. - intros; unfold Rsqr, xt, yt in |- *; ring. + intros; unfold Rsqr, xt, yt; ring. Qed. (******************************************************************) @@ -132,13 +132,13 @@ Definition yr (x y theta:R) : R := - x * sin theta + y * cos theta. Lemma rotation_0 : forall x y:R, xr x y 0 = x /\ yr x y 0 = y. Proof. - intros x y; unfold xr, yr in |- *; split; rewrite cos_0; rewrite sin_0; ring. + intros x y; unfold xr, yr; split; rewrite cos_0; rewrite sin_0; ring. Qed. Lemma rotation_PI2 : forall x y:R, xr x y (PI / 2) = y /\ yr x y (PI / 2) = - x. Proof. - intros x y; unfold xr, yr in |- *; split; rewrite cos_PI2; rewrite sin_PI2; + intros x y; unfold xr, yr; split; rewrite cos_PI2; rewrite sin_PI2; ring. Qed. @@ -148,7 +148,7 @@ Lemma isometric_rotation_0 : Rsqr (xr x1 y1 theta - xr x2 y2 theta) + Rsqr (yr x1 y1 theta - yr x2 y2 theta). Proof. - intros; unfold xr, yr in |- *; + intros; unfold xr, yr; replace (x1 * cos theta + y1 * sin theta - (x2 * cos theta + y2 * sin theta)) with (cos theta * (x1 - x2) + sin theta * (y1 - y2)); @@ -168,7 +168,7 @@ Lemma isometric_rotation : dist_euc (xr x1 y1 theta) (yr x1 y1 theta) (xr x2 y2 theta) (yr x2 y2 theta). Proof. - unfold dist_euc in |- *; intros; apply Rsqr_inj; + unfold dist_euc; intros; apply Rsqr_inj; [ apply sqrt_positivity; apply Rplus_le_le_0_compat | apply sqrt_positivity; apply Rplus_le_le_0_compat | repeat rewrite Rsqr_sqrt; diff --git a/theories/Reals/RiemannInt.v b/theories/Reals/RiemannInt.v index 8acfd75b..0a00ca22 100644 --- a/theories/Reals/RiemannInt.v +++ b/theories/Reals/RiemannInt.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* R) (a b:R), Riemann_integrable f a b -> Riemann_integrable f b a. Proof. - unfold Riemann_integrable in |- *; intros; elim (X eps); clear X; intros; + unfold Riemann_integrable; intros; elim (X eps); clear X; intros; elim p; clear p; intros; exists (mkStepFun (StepFun_P6 (pre x))); exists (mkStepFun (StepFun_P6 (pre x0))); elim p; clear p; intros; split. intros; apply (H t); elim H1; clear H1; intros; split; [ apply Rle_trans with (Rmin b a); try assumption; right; - unfold Rmin in |- * + unfold Rmin | apply Rle_trans with (Rmax b a); try assumption; right; - unfold Rmax in |- * ]; + unfold Rmax ]; (case (Rle_dec a b); case (Rle_dec b a); intros; try reflexivity || apply Rle_antisym; [ assumption | assumption | auto with real | auto with real ]). - generalize H0; unfold RiemannInt_SF in |- *; case (Rle_dec a b); + generalize H0; unfold RiemannInt_SF; case (Rle_dec a b); case (Rle_dec b a); intros; (replace (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre x0)))) @@ -89,11 +89,11 @@ Lemma RiemannInt_P2 : Rabs (RiemannInt_SF (wn n)) < un n) -> { l:R | Un_cv (fun N:nat => RiemannInt_SF (vn N)) l }. Proof. - intros; apply R_complete; unfold Un_cv in H; unfold Cauchy_crit in |- *; + intros; apply R_complete; unfold Un_cv in H; unfold Cauchy_crit; intros; assert (H3 : 0 < eps / 2). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. - elim (H _ H3); intros N0 H4; exists N0; intros; unfold R_dist in |- *; + elim (H _ H3); intros N0 H4; exists N0; intros; unfold R_dist; unfold R_dist in H4; elim (H1 n); elim (H1 m); intros; replace (RiemannInt_SF (vn n) - RiemannInt_SF (vn m)) with (RiemannInt_SF (vn n) + -1 * RiemannInt_SF (vn m)); @@ -105,15 +105,15 @@ Proof. apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P28 1 (wn n) (wn m)))). apply StepFun_P37; try assumption. - intros; simpl in |- *; + intros; simpl; apply Rle_trans with (Rabs (vn n x - f x) + Rabs (f x - vn m x)). replace (vn n x + -1 * vn m x) with (vn n x - f x + (f x - vn m x)); [ apply Rabs_triang | ring ]. assert (H12 : Rmin a b = a). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. assert (H13 : Rmax a b = b). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. rewrite <- H12 in H11; pattern b at 2 in H11; rewrite <- H13 in H11; rewrite Rmult_1_l; apply Rplus_le_compat. @@ -156,14 +156,14 @@ Proof. intro; elim (H0 n0); intros; split. intros; apply (H2 t); elim H4; clear H4; intros; split; [ apply Rle_trans with (Rmin b a); try assumption; right; - unfold Rmin in |- * + unfold Rmin | apply Rle_trans with (Rmax b a); try assumption; right; - unfold Rmax in |- * ]; + unfold Rmax ]; (case (Rle_dec a b); case (Rle_dec b a); intros; try reflexivity || apply Rle_antisym; [ assumption | assumption | auto with real | auto with real ]). - generalize H3; unfold RiemannInt_SF in |- *; case (Rle_dec a b); - case (Rle_dec b a); unfold wn' in |- *; intros; + generalize H3; unfold RiemannInt_SF; case (Rle_dec a b); + case (Rle_dec b a); unfold wn'; intros; (replace (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (wn n0))))) (subdivision (mkStepFun (StepFun_P6 (pre (wn n0)))))) with @@ -178,19 +178,19 @@ Proof. rewrite Rabs_Ropp in H4; apply H4. apply H4. assert (H3 := RiemannInt_P2 _ _ _ _ H H1 H2); elim H3; intros; - exists (- x); unfold Un_cv in |- *; unfold Un_cv in p; + exists (- x); unfold Un_cv; unfold Un_cv in p; intros; elim (p _ H4); intros; exists x0; intros; - generalize (H5 _ H6); unfold R_dist, RiemannInt_SF in |- *; + generalize (H5 _ H6); unfold R_dist, RiemannInt_SF; case (Rle_dec b a); case (Rle_dec a b); intros. elim n; assumption. unfold vn' in H7; replace (Int_SF (subdivision_val (vn n0)) (subdivision (vn n0))) with (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (vn n0))))) (subdivision (mkStepFun (StepFun_P6 (pre (vn n0)))))); - [ unfold Rminus in |- *; rewrite Ropp_involutive; rewrite <- Rabs_Ropp; + [ unfold Rminus; rewrite Ropp_involutive; rewrite <- Rabs_Ropp; rewrite Ropp_plus_distr; rewrite Ropp_involutive; apply H7 - | symmetry in |- *; apply StepFun_P17 with (fe (vn n0)) a b; + | symmetry ; apply StepFun_P17 with (fe (vn n0)) a b; [ apply StepFun_P1 | apply StepFun_P2; apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (vn n0))))) ] ]. @@ -218,9 +218,9 @@ Lemma RiemannInt_P4 : Un_cv (fun N:nat => RiemannInt_SF (phi_sequence un pr1 N)) l -> Un_cv (fun N:nat => RiemannInt_SF (phi_sequence vn pr2 N)) l. Proof. - unfold Un_cv in |- *; unfold R_dist in |- *; intros f; intros; + unfold Un_cv; unfold R_dist; intros f; intros; assert (H3 : 0 < eps / 3). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. elim (H _ H3); clear H; intros N0 H; elim (H0 _ H3); clear H0; intros N1 H0; elim (H1 _ H3); clear H1; intros N2 H1; set (N := max (max N0 N1) N2); @@ -255,7 +255,7 @@ Proof. apply StepFun_P34; assumption. apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P28 1 psi_un psi_vn))). - apply StepFun_P37; try assumption; intros; simpl in |- *; rewrite Rmult_1_l; + apply StepFun_P37; try assumption; intros; simpl; rewrite Rmult_1_l; apply Rle_trans with (Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x)). @@ -263,10 +263,10 @@ Proof. (phi_sequence vn pr2 n x - f x + (f x - phi_sequence un pr1 n x)); [ apply Rabs_triang | ring ]. assert (H10 : Rmin a b = a). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. assert (H11 : Rmax a b = b). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. rewrite (Rplus_comm (psi_un x)); apply Rplus_le_compat. rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim H5; intros; apply H8. @@ -279,20 +279,20 @@ Proof. apply RRle_abs. assumption. replace (pos (un n)) with (Rabs (un n - 0)); - [ apply H; unfold ge in |- *; apply le_trans with N; try assumption; - unfold N in |- *; apply le_trans with (max N0 N1); + [ apply H; unfold ge; apply le_trans with N; try assumption; + unfold N; apply le_trans with (max N0 N1); apply le_max_l - | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; + | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge; left; apply (cond_pos (un n)) ]. apply Rlt_trans with (pos (vn n)). elim H5; intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF psi_vn)). apply RRle_abs; assumption. assumption. replace (pos (vn n)) with (Rabs (vn n - 0)); - [ apply H0; unfold ge in |- *; apply le_trans with N; try assumption; - unfold N in |- *; apply le_trans with (max N0 N1); + [ apply H0; unfold ge; apply le_trans with N; try assumption; + unfold N; apply le_trans with (max N0 N1); [ apply le_max_r | apply le_max_l ] - | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; + | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge; left; apply (cond_pos (vn n)) ]. rewrite StepFun_P39; rewrite Rabs_Ropp; apply Rle_lt_trans with @@ -311,7 +311,7 @@ Proof. (mkStepFun (StepFun_P6 (pre (mkStepFun (StepFun_P28 1 psi_vn psi_un)))))). apply StepFun_P37. auto with real. - intros; simpl in |- *; rewrite Rmult_1_l; + intros; simpl; rewrite Rmult_1_l; apply Rle_trans with (Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x)). @@ -319,10 +319,10 @@ Proof. (phi_sequence vn pr2 n x - f x + (f x - phi_sequence un pr1 n x)); [ apply Rabs_triang | ring ]. assert (H10 : Rmin a b = b). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ elim n0; assumption | reflexivity ]. assert (H11 : Rmax a b = a). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ elim n0; assumption | reflexivity ]. apply Rplus_le_compat. rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim H5; intros; apply H8. @@ -341,10 +341,10 @@ Proof. rewrite <- Rabs_Ropp; apply RRle_abs. assumption. replace (pos (vn n)) with (Rabs (vn n - 0)); - [ apply H0; unfold ge in |- *; apply le_trans with N; try assumption; - unfold N in |- *; apply le_trans with (max N0 N1); + [ apply H0; unfold ge; apply le_trans with N; try assumption; + unfold N; apply le_trans with (max N0 N1); [ apply le_max_r | apply le_max_l ] - | unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0; + | unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge; left; apply (cond_pos (vn n)) ]. apply Rlt_trans with (pos (un n)). @@ -352,15 +352,15 @@ Proof. rewrite <- Rabs_Ropp; apply RRle_abs; assumption. assumption. replace (pos (un n)) with (Rabs (un n - 0)); - [ apply H; unfold ge in |- *; apply le_trans with N; try assumption; - unfold N in |- *; apply le_trans with (max N0 N1); + [ apply H; unfold ge; apply le_trans with N; try assumption; + unfold N; apply le_trans with (max N0 N1); apply le_max_l - | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; + | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge; left; apply (cond_pos (un n)) ]. - apply H1; unfold ge in |- *; apply le_trans with N; try assumption; - unfold N in |- *; apply le_max_r. + apply H1; unfold ge; apply le_trans with N; try assumption; + unfold N; apply le_max_r. apply Rmult_eq_reg_l with 3; - [ unfold Rdiv in |- *; rewrite Rmult_plus_distr_l; + [ unfold Rdiv; rewrite Rmult_plus_distr_l; do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] | discrR ]. @@ -376,17 +376,17 @@ Definition RinvN (N:nat) : posreal := mkposreal _ (RinvN_pos N). Lemma RinvN_cv : Un_cv RinvN 0. Proof. - unfold Un_cv in |- *; intros; assert (H0 := archimed (/ eps)); elim H0; + unfold Un_cv; intros; assert (H0 := archimed (/ eps)); elim H0; clear H0; intros; assert (H2 : (0 <= up (/ eps))%Z). apply le_IZR; left; apply Rlt_trans with (/ eps); [ apply Rinv_0_lt_compat; assumption | assumption ]. - elim (IZN _ H2); intros; exists x; intros; unfold R_dist in |- *; - simpl in |- *; unfold Rminus in |- *; rewrite Ropp_0; + elim (IZN _ H2); intros; exists x; intros; unfold R_dist; + simpl; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; assert (H5 : 0 < INR n + 1). apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ]. rewrite Rabs_right; [ idtac - | left; change (0 < / (INR n + 1)) in |- *; apply Rinv_0_lt_compat; + | left; change (0 < / (INR n + 1)); apply Rinv_0_lt_compat; assumption ]; apply Rle_lt_trans with (/ (INR x + 1)). apply Rle_Rinv. apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ]. @@ -400,9 +400,9 @@ Proof. apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ]. apply Rlt_trans with (INR x); [ rewrite INR_IZR_INZ; rewrite <- H3; apply H0 - | pattern (INR x) at 1 in |- *; rewrite <- Rplus_0_r; + | pattern (INR x) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1 ]. - red in |- *; intro; rewrite H6 in H; elim (Rlt_irrefl _ H). + red; intro; rewrite H6 in H; elim (Rlt_irrefl _ H). Qed. (**********) @@ -413,7 +413,7 @@ Lemma RiemannInt_P5 : forall (f:R -> R) (a b:R) (pr1 pr2:Riemann_integrable f a b), RiemannInt pr1 = RiemannInt pr2. Proof. - intros; unfold RiemannInt in |- *; + intros; unfold RiemannInt; case (RiemannInt_exists pr1 RinvN RinvN_cv); case (RiemannInt_exists pr2 RinvN RinvN_cv); intros; eapply UL_sequence; @@ -431,7 +431,7 @@ Lemma maxN : Proof. intros; set (I := fun n:nat => a + INR n * del < b); assert (H0 : exists n : nat, I n). - exists 0%nat; unfold I in |- *; rewrite Rmult_0_l; rewrite Rplus_0_r; + exists 0%nat; unfold I; rewrite Rmult_0_l; rewrite Rplus_0_r; assumption. cut (Nbound I). intro; assert (H2 := Nzorn H0 H1); elim H2; intros; exists x; elim p; intros; @@ -440,27 +440,27 @@ Proof. case (total_order_T (a + INR (S x) * del) b); intro. elim s; intro. assert (H5 := H4 (S x) a0); elim (le_Sn_n _ H5). - right; symmetry in |- *; assumption. + right; symmetry ; assumption. left; apply r. assert (H1 : 0 <= (b - a) / del). - unfold Rdiv in |- *; apply Rmult_le_pos; + unfold Rdiv; apply Rmult_le_pos; [ apply Rge_le; apply Rge_minus; apply Rle_ge; left; apply H | left; apply Rinv_0_lt_compat; apply (cond_pos del) ]. elim (archimed ((b - a) / del)); intros; assert (H4 : (0 <= up ((b - a) / del))%Z). - apply le_IZR; simpl in |- *; left; apply Rle_lt_trans with ((b - a) / del); + apply le_IZR; simpl; left; apply Rle_lt_trans with ((b - a) / del); assumption. assert (H5 := IZN _ H4); elim H5; clear H5; intros N H5; - unfold Nbound in |- *; exists N; intros; unfold I in H6; + unfold Nbound; exists N; intros; unfold I in H6; apply INR_le; rewrite H5 in H2; rewrite <- INR_IZR_INZ in H2; left; apply Rle_lt_trans with ((b - a) / del); try assumption; apply Rmult_le_reg_l with (pos del); [ apply (cond_pos del) - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ del)); + | unfold Rdiv; rewrite <- (Rmult_comm (/ del)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite Rmult_comm; apply Rplus_le_reg_l with a; replace (a + (b - a)) with b; [ left; assumption | ring ] - | assert (H7 := cond_pos del); red in |- *; intro; rewrite H8 in H7; + | assert (H7 := cond_pos del); red; intro; rewrite H8 in H7; elim (Rlt_irrefl _ H7) ] ]. Qed. @@ -496,15 +496,15 @@ Proof. a <= x <= b -> a <= y <= b -> Rabs (x - y) < l -> Rabs (f x - f y) < eps)); assert (H1 : bound E). - unfold bound in |- *; exists (b - a); unfold is_upper_bound in |- *; intros; + unfold bound; exists (b - a); unfold is_upper_bound; intros; unfold E in H1; elim H1; clear H1; intros H1 _; elim H1; intros; assumption. assert (H2 : exists x : R, E x). assert (H2 := Heine f (fun x:R => a <= x <= b) (compact_P3 a b) H0 eps); - elim H2; intros; exists (Rmin x (b - a)); unfold E in |- *; + elim H2; intros; exists (Rmin x (b - a)); unfold E; split; [ split; - [ unfold Rmin in |- *; case (Rle_dec x (b - a)); intro; + [ unfold Rmin; case (Rle_dec x (b - a)); intro; [ apply (cond_pos x) | apply Rlt_Rminus; assumption ] | apply Rmin_r ] | intros; apply H3; try assumption; apply Rlt_le_trans with (Rmin x (b - a)); @@ -519,7 +519,7 @@ Proof. intros; apply H15; assumption. assert (H12 := not_ex_all_not _ (fun y:R => D < y /\ E y) H11); assert (H13 : is_upper_bound E D). - unfold is_upper_bound in |- *; intros; assert (H14 := H12 x1); + unfold is_upper_bound; intros; assert (H14 := H12 x1); elim (not_and_or (D < x1) (E x1) H14); intro. case (Rle_dec x1 D); intro. assumption. @@ -551,7 +551,7 @@ Proof. exists (mkposreal _ Rlt_0_1); intros; assert (H3 : x = y); [ elim H0; elim H1; intros; rewrite b0 in H3; rewrite b0 in H5; apply Rle_antisym; apply Rle_trans with b; assumption - | rewrite H3; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + | rewrite H3; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos eps) ]. exists (mkposreal _ Rlt_0_1); intros; elim H0; intros; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H3 H4) r)). @@ -560,14 +560,14 @@ Qed. Lemma SubEqui_P1 : forall (a b:R) (del:posreal) (h:a < b), pos_Rl (SubEqui del h) 0 = a. Proof. - intros; unfold SubEqui in |- *; case (maxN del h); intros; reflexivity. + intros; unfold SubEqui; case (maxN del h); intros; reflexivity. Qed. Lemma SubEqui_P2 : forall (a b:R) (del:posreal) (h:a < b), pos_Rl (SubEqui del h) (pred (Rlength (SubEqui del h))) = b. Proof. - intros; unfold SubEqui in |- *; case (maxN del h); intros; clear a0; + intros; unfold SubEqui; case (maxN del h); intros; clear a0; cut (forall (x:nat) (a:R) (del:posreal), pos_Rl (SubEquiN (S x) a b del) @@ -579,14 +579,14 @@ Proof. change (pos_Rl (SubEquiN (S n) (a0 + del0) b del0) (pred (Rlength (SubEquiN (S n) (a0 + del0) b del0))) = b) - in |- *; apply H ] ]. + ; apply H ] ]. Qed. Lemma SubEqui_P3 : forall (N:nat) (a b:R) (del:posreal), Rlength (SubEquiN N a b del) = S N. Proof. simple induction N; intros; - [ reflexivity | simpl in |- *; rewrite H; reflexivity ]. + [ reflexivity | simpl; rewrite H; reflexivity ]. Qed. Lemma SubEqui_P4 : @@ -594,36 +594,36 @@ Lemma SubEqui_P4 : (i < S N)%nat -> pos_Rl (SubEquiN (S N) a b del) i = a + INR i * del. Proof. simple induction N; - [ intros; inversion H; [ simpl in |- *; ring | elim (le_Sn_O _ H1) ] + [ intros; inversion H; [ simpl; ring | elim (le_Sn_O _ H1) ] | intros; induction i as [| i Hreci]; - [ simpl in |- *; ring + [ simpl; ring | change (pos_Rl (SubEquiN (S n) (a + del) b del) i = a + INR (S i) * del) - in |- *; rewrite H; [ rewrite S_INR; ring | apply lt_S_n; apply H0 ] ] ]. + ; rewrite H; [ rewrite S_INR; ring | apply lt_S_n; apply H0 ] ] ]. Qed. Lemma SubEqui_P5 : forall (a b:R) (del:posreal) (h:a < b), Rlength (SubEqui del h) = S (S (max_N del h)). Proof. - intros; unfold SubEqui in |- *; apply SubEqui_P3. + intros; unfold SubEqui; apply SubEqui_P3. Qed. Lemma SubEqui_P6 : forall (a b:R) (del:posreal) (h:a < b) (i:nat), (i < S (max_N del h))%nat -> pos_Rl (SubEqui del h) i = a + INR i * del. Proof. - intros; unfold SubEqui in |- *; apply SubEqui_P4; assumption. + intros; unfold SubEqui; apply SubEqui_P4; assumption. Qed. Lemma SubEqui_P7 : forall (a b:R) (del:posreal) (h:a < b), ordered_Rlist (SubEqui del h). Proof. - intros; unfold ordered_Rlist in |- *; intros; rewrite SubEqui_P5 in H; + intros; unfold ordered_Rlist; intros; rewrite SubEqui_P5 in H; simpl in H; inversion H. rewrite (SubEqui_P6 del h (i:=(max_N del h))). replace (S (max_N del h)) with (pred (Rlength (SubEqui del h))). - rewrite SubEqui_P2; unfold max_N in |- *; case (maxN del h); intros; left; + rewrite SubEqui_P2; unfold max_N; case (maxN del h); intros; left; elim a0; intros; assumption. rewrite SubEqui_P5; reflexivity. apply lt_n_Sn. @@ -631,7 +631,7 @@ Proof. 3: assumption. 2: apply le_lt_n_Sm; assumption. apply Rplus_le_compat_l; rewrite S_INR; rewrite Rmult_plus_distr_r; - pattern (INR i * del) at 1 in |- *; rewrite <- Rplus_0_r; + pattern (INR i * del) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; rewrite Rmult_1_l; left; apply (cond_pos del). Qed. @@ -641,11 +641,11 @@ Lemma SubEqui_P8 : (i < Rlength (SubEqui del h))%nat -> a <= pos_Rl (SubEqui del h) i <= b. Proof. intros; split. - pattern a at 1 in |- *; rewrite <- (SubEqui_P1 del h); apply RList_P5. + pattern a at 1; rewrite <- (SubEqui_P1 del h); apply RList_P5. apply SubEqui_P7. elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); intros; apply H1; exists i; split; [ reflexivity | assumption ]. - pattern b at 2 in |- *; rewrite <- (SubEqui_P2 del h); apply RList_P7; + pattern b at 2; rewrite <- (SubEqui_P2 del h); apply RList_P7; [ apply SubEqui_P7 | elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); intros; apply H1; exists i; split; [ reflexivity | assumption ] ]. @@ -671,42 +671,42 @@ Lemma RiemannInt_P6 : a < b -> (forall x:R, a <= x <= b -> continuity_pt f x) -> Riemann_integrable f a b. Proof. - intros; unfold Riemann_integrable in |- *; intro; + intros; unfold Riemann_integrable; intro; assert (H1 : 0 < eps / (2 * (b - a))). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos eps) | apply Rinv_0_lt_compat; apply Rmult_lt_0_compat; [ prove_sup0 | apply Rlt_Rminus; assumption ] ]. assert (H2 : Rmin a b = a). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; left; assumption ]. assert (H3 : Rmax a b = b). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; left; assumption ]. elim (Heine_cor2 H0 (mkposreal _ H1)); intros del H4; elim (SubEqui_P9 del f H); intros phi [H5 H6]; split with phi; split with (mkStepFun (StepFun_P4 a b (eps / (2 * (b - a))))); split. - 2: rewrite StepFun_P18; unfold Rdiv in |- *; rewrite Rinv_mult_distr. + 2: rewrite StepFun_P18; unfold Rdiv; rewrite Rinv_mult_distr. 2: do 2 rewrite Rmult_assoc; rewrite <- Rinv_l_sym. 2: rewrite Rmult_1_r; rewrite Rabs_right. 2: apply Rmult_lt_reg_l with 2. 2: prove_sup0. 2: rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. - 2: rewrite Rmult_1_l; pattern (pos eps) at 1 in |- *; rewrite <- Rplus_0_r; + 2: rewrite Rmult_1_l; pattern (pos eps) at 1; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; apply (cond_pos eps). 2: discrR. 2: apply Rle_ge; left; apply Rmult_lt_0_compat. 2: apply (cond_pos eps). 2: apply Rinv_0_lt_compat; prove_sup0. - 2: apply Rminus_eq_contra; red in |- *; intro; clear H6; rewrite H7 in H; + 2: apply Rminus_eq_contra; red; intro; clear H6; rewrite H7 in H; elim (Rlt_irrefl _ H). 2: discrR. - 2: apply Rminus_eq_contra; red in |- *; intro; clear H6; rewrite H7 in H; + 2: apply Rminus_eq_contra; red; intro; clear H6; rewrite H7 in H; elim (Rlt_irrefl _ H). - intros; rewrite H2 in H7; rewrite H3 in H7; simpl in |- *; - unfold fct_cte in |- *; + intros; rewrite H2 in H7; rewrite H3 in H7; simpl; + unfold fct_cte; cut (forall t:R, a <= t <= b -> @@ -716,14 +716,14 @@ Proof. co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t)). intro; elim (H8 _ H7); intro. - rewrite H9; rewrite H5; unfold Rminus in |- *; rewrite Rplus_opp_r; + rewrite H9; rewrite H5; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; left; assumption. elim H9; clear H9; intros I [H9 H10]; assert (H11 := H6 I H9 t H10); rewrite H11; left; apply H4. assumption. apply SubEqui_P8; apply lt_trans with (pred (Rlength (SubEqui del H))). assumption. - apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H9; + apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H12 in H9; elim (lt_n_O _ H9). unfold co_interval in H10; elim H10; clear H10; intros; rewrite Rabs_right. rewrite SubEqui_P5 in H9; simpl in H9; inversion H9. @@ -738,7 +738,7 @@ Proof. rewrite H13 in H12; rewrite SubEqui_P2 in H12; apply H12. rewrite SubEqui_P6. 2: apply lt_n_Sn. - unfold max_N in |- *; case (maxN del H); intros; elim a0; clear a0; + unfold max_N; case (maxN del H); intros; elim a0; clear a0; intros _ H13; replace (a + INR x * del + del) with (a + INR (S x) * del); [ assumption | rewrite S_INR; ring ]. apply Rplus_lt_reg_r with (pos_Rl (SubEqui del H) I); @@ -755,10 +755,10 @@ Proof. left; assumption. right; set (I := fun j:nat => a + INR j * del <= t0); assert (H1 : exists n : nat, I n). - exists 0%nat; unfold I in |- *; rewrite Rmult_0_l; rewrite Rplus_0_r; elim H8; + exists 0%nat; unfold I; rewrite Rmult_0_l; rewrite Rplus_0_r; elim H8; intros; assumption. assert (H4 : Nbound I). - unfold Nbound in |- *; exists (S (max_N del H)); intros; unfold max_N in |- *; + unfold Nbound; exists (S (max_N del H)); intros; unfold max_N; case (maxN del H); intros; elim a0; clear a0; intros _ H5; apply INR_le; apply Rmult_le_reg_l with (pos del). apply (cond_pos del). @@ -767,7 +767,7 @@ Proof. apply Rle_trans with b; try assumption; elim H8; intros; assumption. elim (Nzorn H1 H4); intros N [H5 H6]; assert (H7 : (N < S (max_N del H))%nat). - unfold max_N in |- *; case (maxN del H); intros; apply INR_lt; + unfold max_N; case (maxN del H); intros; apply INR_lt; apply Rmult_lt_reg_l with (pos del). apply (cond_pos del). apply Rplus_lt_reg_r with a; do 2 rewrite (Rmult_comm del); @@ -778,8 +778,8 @@ Proof. assumption. elim H0; assumption. exists N; split. - rewrite SubEqui_P5; simpl in |- *; assumption. - unfold co_interval in |- *; split. + rewrite SubEqui_P5; simpl; assumption. + unfold co_interval; split. rewrite SubEqui_P6. apply H5. assumption. @@ -799,13 +799,13 @@ Qed. Lemma RiemannInt_P7 : forall (f:R -> R) (a:R), Riemann_integrable f a a. Proof. - unfold Riemann_integrable in |- *; intro f; intros; + unfold Riemann_integrable; intro f; intros; split with (mkStepFun (StepFun_P4 a a (f a))); split with (mkStepFun (StepFun_P4 a a 0)); split. - intros; simpl in |- *; unfold fct_cte in |- *; replace t with a. - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; right; + intros; simpl; unfold fct_cte; replace t with a. + unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; right; reflexivity. - generalize H; unfold Rmin, Rmax in |- *; case (Rle_dec a a); intros; elim H0; + generalize H; unfold Rmin, Rmax; case (Rle_dec a a); intros; elim H0; intros; apply Rle_antisym; assumption. rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0; apply (cond_pos eps). Qed. @@ -826,9 +826,9 @@ Lemma RiemannInt_P8 : (pr2:Riemann_integrable f b a), RiemannInt pr1 = - RiemannInt pr2. Proof. intro f; intros; eapply UL_sequence. - unfold RiemannInt in |- *; case (RiemannInt_exists pr1 RinvN RinvN_cv); + unfold RiemannInt; case (RiemannInt_exists pr1 RinvN RinvN_cv); intros; apply u. - unfold RiemannInt in |- *; case (RiemannInt_exists pr2 RinvN RinvN_cv); + unfold RiemannInt; case (RiemannInt_exists pr2 RinvN RinvN_cv); intros; cut (exists psi1 : nat -> StepFun a b, @@ -845,9 +845,9 @@ Proof. Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n)). intros; elim H; clear H; intros psi2 H; elim H0; clear H0; intros psi1 H0; - assert (H1 := RinvN_cv); unfold Un_cv in |- *; intros; + assert (H1 := RinvN_cv); unfold Un_cv; intros; assert (H3 : 0 < eps / 3). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. unfold Un_cv in H1; elim (H1 _ H3); clear H1; intros N0 H1; unfold R_dist in H1; simpl in H1; @@ -855,10 +855,10 @@ Proof. intros; assert (H5 := H1 _ H4); replace (pos (RinvN n)) with (Rabs (/ (INR n + 1) - 0)); [ assumption - | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; + | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; left; apply (cond_pos (RinvN n)) ]. clear H1; unfold Un_cv in u; elim (u _ H3); clear u; intros N1 H1; - exists (max N0 N1); intros; unfold R_dist in |- *; + exists (max N0 N1); intros; unfold R_dist; apply Rle_lt_trans with (Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + @@ -895,7 +895,7 @@ Proof. (mkStepFun (StepFun_P28 1 (psi1 n) (mkStepFun (StepFun_P6 (pre (psi2 n))))))). apply StepFun_P37; try assumption. - intros; simpl in |- *; rewrite Rmult_1_l; + intros; simpl; rewrite Rmult_1_l; apply Rle_trans with (Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0)). @@ -903,10 +903,10 @@ Proof. (phi_sequence RinvN pr1 n x0 - f x0 + (f x0 - phi_sequence RinvN pr2 n x0)); [ apply Rabs_triang | ring ]. assert (H7 : Rmin a b = a). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. assert (H8 : Rmax a b = b). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. apply Rplus_le_compat. elim (H0 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9; @@ -919,7 +919,7 @@ Proof. [ apply RRle_abs | apply Rlt_trans with (pos (RinvN n)); [ assumption - | apply H4; unfold ge in |- *; apply le_trans with (max N0 N1); + | apply H4; unfold ge; apply le_trans with (max N0 N1); [ apply le_max_l | assumption ] ] ]. elim (H n); intros; rewrite <- @@ -929,7 +929,7 @@ Proof. [ rewrite <- Rabs_Ropp; apply RRle_abs | apply Rlt_trans with (pos (RinvN n)); [ assumption - | apply H4; unfold ge in |- *; apply le_trans with (max N0 N1); + | apply H4; unfold ge; apply le_trans with (max N0 N1); [ apply le_max_l | assumption ] ] ]. assert (Hyp : b <= a). auto with real. @@ -948,7 +948,7 @@ Proof. (mkStepFun (StepFun_P28 1 (mkStepFun (StepFun_P6 (pre (psi1 n)))) (psi2 n)))). apply StepFun_P37; try assumption. - intros; simpl in |- *; rewrite Rmult_1_l; + intros; simpl; rewrite Rmult_1_l; apply Rle_trans with (Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0)). @@ -956,10 +956,10 @@ Proof. (phi_sequence RinvN pr1 n x0 - f x0 + (f x0 - phi_sequence RinvN pr2 n x0)); [ apply Rabs_triang | ring ]. assert (H7 : Rmin a b = b). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ elim n0; assumption | reflexivity ]. assert (H8 : Rmax a b = a). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ elim n0; assumption | reflexivity ]. apply Rplus_le_compat. elim (H0 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9; @@ -976,18 +976,18 @@ Proof. [ rewrite <- Rabs_Ropp; apply RRle_abs | apply Rlt_trans with (pos (RinvN n)); [ assumption - | apply H4; unfold ge in |- *; apply le_trans with (max N0 N1); + | apply H4; unfold ge; apply le_trans with (max N0 N1); [ apply le_max_l | assumption ] ] ]. elim (H n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n))); [ apply RRle_abs | apply Rlt_trans with (pos (RinvN n)); [ assumption - | apply H4; unfold ge in |- *; apply le_trans with (max N0 N1); + | apply H4; unfold ge; apply le_trans with (max N0 N1); [ apply le_max_l | assumption ] ] ]. - unfold R_dist in H1; apply H1; unfold ge in |- *; + unfold R_dist in H1; apply H1; unfold ge; apply le_trans with (max N0 N1); [ apply le_max_r | assumption ]. apply Rmult_eq_reg_l with 3; - [ unfold Rdiv in |- *; rewrite Rmult_plus_distr_l; + [ unfold Rdiv; rewrite Rmult_plus_distr_l; do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] | discrR ]. @@ -1002,7 +1002,7 @@ Lemma RiemannInt_P9 : forall (f:R -> R) (a:R) (pr:Riemann_integrable f a a), RiemannInt pr = 0. Proof. intros; assert (H := RiemannInt_P8 pr pr); apply Rmult_eq_reg_l with 2; - [ rewrite Rmult_0_r; rewrite double; pattern (RiemannInt pr) at 2 in |- *; + [ rewrite Rmult_0_r; rewrite double; pattern (RiemannInt pr) at 2; rewrite H; apply Rplus_opp_r | discrR ]. Qed. @@ -1011,9 +1011,9 @@ Lemma Req_EM_T : forall r1 r2:R, {r1 = r2} + {r1 <> r2}. Proof. intros; elim (total_order_T r1 r2); intros; [ elim a; intro; - [ right; red in |- *; intro; rewrite H in a0; elim (Rlt_irrefl r2 a0) + [ right; red; intro; rewrite H in a0; elim (Rlt_irrefl r2 a0) | left; assumption ] - | right; red in |- *; intro; rewrite H in b; elim (Rlt_irrefl r2 b) ]. + | right; red; intro; rewrite H in b; elim (Rlt_irrefl r2 b) ]. Qed. (* L1([a,b]) is a vectorial space *) @@ -1023,16 +1023,16 @@ Lemma RiemannInt_P10 : Riemann_integrable g a b -> Riemann_integrable (fun x:R => f x + l * g x) a b. Proof. - unfold Riemann_integrable in |- *; intros f g; intros; case (Req_EM_T l 0); + unfold Riemann_integrable; intros f g; intros; case (Req_EM_T l 0); intro. elim (X eps); intros; split with x; elim p; intros; split with x0; elim p0; intros; split; try assumption; rewrite e; intros; rewrite Rmult_0_l; rewrite Rplus_0_r; apply H; assumption. assert (H : 0 < eps / 2). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ]. assert (H0 : 0 < eps / (2 * Rabs l)). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos eps) | apply Rinv_0_lt_compat; apply Rmult_lt_0_compat; [ prove_sup0 | apply Rabs_pos_lt; assumption ] ]. @@ -1040,7 +1040,7 @@ Proof. split with (mkStepFun (StepFun_P28 l x x0)); elim p0; elim p; intros; split with (mkStepFun (StepFun_P28 (Rabs l) x1 x2)); elim p1; elim p2; clear p1 p2 p0 p X X0; intros; split. - intros; simpl in |- *; + intros; simpl; apply Rle_trans with (Rabs (f t - x t) + Rabs (l * (g t - x0 t))). replace (f t + l * g t - (x t + l * x0 t)) with (f t - x t + l * (g t - x0 t)); [ apply Rabs_triang | ring ]. @@ -1060,7 +1060,7 @@ Proof. [ rewrite Rmult_1_l; replace (/ Rabs l * (eps / 2)) with (eps / (2 * Rabs l)); [ apply H2 - | unfold Rdiv in |- *; rewrite Rinv_mult_distr; + | unfold Rdiv; rewrite Rinv_mult_distr; [ ring | discrR | apply Rabs_no_R0; assumption ] ] | apply Rabs_no_R0; assumption ]. Qed. @@ -1080,14 +1080,14 @@ Lemma RiemannInt_P11 : Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) l -> Un_cv (fun N:nat => RiemannInt_SF (phi2 N)) l. Proof. - unfold Un_cv in |- *; intro f; intros; intros. + unfold Un_cv; intro f; intros; intros. case (Rle_dec a b); intro Hyp. assert (H4 : 0 < eps / 3). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. elim (H _ H4); clear H; intros N0 H. elim (H2 _ H4); clear H2; intros N1 H2. - set (N := max N0 N1); exists N; intros; unfold R_dist in |- *. + set (N := max N0 N1); exists N; intros; unfold R_dist. apply Rle_lt_trans with (Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) + Rabs (RiemannInt_SF (phi1 n) - l)). @@ -1106,24 +1106,24 @@ Proof. apply StepFun_P34; assumption. apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P28 1 (psi1 n) (psi2 n)))). - apply StepFun_P37; try assumption; intros; simpl in |- *; rewrite Rmult_1_l. + apply StepFun_P37; try assumption; intros; simpl; rewrite Rmult_1_l. apply Rle_trans with (Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x)). replace (phi2 n x + -1 * phi1 n x) with (phi2 n x - f x + (f x - phi1 n x)); [ apply Rabs_triang | ring ]. rewrite (Rplus_comm (psi1 n x)); apply Rplus_le_compat. rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim (H1 n); intros; apply H7. assert (H10 : Rmin a b = a). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. assert (H11 : Rmax a b = b). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. rewrite H10; rewrite H11; elim H6; intros; split; left; assumption. elim (H0 n); intros; apply H7; assert (H10 : Rmin a b = a). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. assert (H11 : Rmax a b = b). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. rewrite H10; rewrite H11; elim H6; intros; split; left; assumption. rewrite StepFun_P30; rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat. @@ -1132,9 +1132,9 @@ Proof. apply RRle_abs. assumption. replace (pos (un n)) with (R_dist (un n) 0). - apply H; unfold ge in |- *; apply le_trans with N; try assumption. - unfold N in |- *; apply le_max_l. - unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0; + apply H; unfold ge; apply le_trans with N; try assumption. + unfold N; apply le_max_l. + unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right. apply Rle_ge; left; apply (cond_pos (un n)). apply Rlt_trans with (pos (un n)). @@ -1142,24 +1142,24 @@ Proof. apply RRle_abs; assumption. assumption. replace (pos (un n)) with (R_dist (un n) 0). - apply H; unfold ge in |- *; apply le_trans with N; try assumption; - unfold N in |- *; apply le_max_l. - unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0; + apply H; unfold ge; apply le_trans with N; try assumption; + unfold N; apply le_max_l. + unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge; left; apply (cond_pos (un n)). - unfold R_dist in H2; apply H2; unfold ge in |- *; apply le_trans with N; - try assumption; unfold N in |- *; apply le_max_r. + unfold R_dist in H2; apply H2; unfold ge; apply le_trans with N; + try assumption; unfold N; apply le_max_r. apply Rmult_eq_reg_l with 3; - [ unfold Rdiv in |- *; rewrite Rmult_plus_distr_l; + [ unfold Rdiv; rewrite Rmult_plus_distr_l; do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] | discrR ]. assert (H4 : 0 < eps / 3). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. elim (H _ H4); clear H; intros N0 H. elim (H2 _ H4); clear H2; intros N1 H2. - set (N := max N0 N1); exists N; intros; unfold R_dist in |- *. + set (N := max N0 N1); exists N; intros; unfold R_dist. apply Rle_lt_trans with (Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) + Rabs (RiemannInt_SF (phi1 n) - l)). @@ -1189,24 +1189,24 @@ Proof. (mkStepFun (StepFun_P6 (pre (mkStepFun (StepFun_P28 1 (psi1 n) (psi2 n))))))). apply StepFun_P37; try assumption. - intros; simpl in |- *; rewrite Rmult_1_l. + intros; simpl; rewrite Rmult_1_l. apply Rle_trans with (Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x)). replace (phi2 n x + -1 * phi1 n x) with (phi2 n x - f x + (f x - phi1 n x)); [ apply Rabs_triang | ring ]. rewrite (Rplus_comm (psi1 n x)); apply Rplus_le_compat. rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim (H1 n); intros; apply H7. assert (H10 : Rmin a b = b). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ elim Hyp; assumption | reflexivity ]. assert (H11 : Rmax a b = a). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ elim Hyp; assumption | reflexivity ]. rewrite H10; rewrite H11; elim H6; intros; split; left; assumption. elim (H0 n); intros; apply H7; assert (H10 : Rmin a b = b). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ elim Hyp; assumption | reflexivity ]. assert (H11 : Rmax a b = a). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ elim Hyp; assumption | reflexivity ]. rewrite H10; rewrite H11; elim H6; intros; split; left; assumption. rewrite <- @@ -1224,9 +1224,9 @@ Proof. rewrite <- Rabs_Ropp; apply RRle_abs. assumption. replace (pos (un n)) with (R_dist (un n) 0). - apply H; unfold ge in |- *; apply le_trans with N; try assumption. - unfold N in |- *; apply le_max_l. - unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0; + apply H; unfold ge; apply le_trans with N; try assumption. + unfold N; apply le_max_l. + unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right. apply Rle_ge; left; apply (cond_pos (un n)). apply Rlt_trans with (pos (un n)). @@ -1234,15 +1234,15 @@ Proof. rewrite <- Rabs_Ropp; apply RRle_abs; assumption. assumption. replace (pos (un n)) with (R_dist (un n) 0). - apply H; unfold ge in |- *; apply le_trans with N; try assumption; - unfold N in |- *; apply le_max_l. - unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0; + apply H; unfold ge; apply le_trans with N; try assumption; + unfold N; apply le_max_l. + unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge; left; apply (cond_pos (un n)). - unfold R_dist in H2; apply H2; unfold ge in |- *; apply le_trans with N; - try assumption; unfold N in |- *; apply le_max_r. + unfold R_dist in H2; apply H2; unfold ge; apply le_trans with N; + try assumption; unfold N; apply le_max_r. apply Rmult_eq_reg_l with 3; - [ unfold Rdiv in |- *; rewrite Rmult_plus_distr_l; + [ unfold Rdiv; rewrite Rmult_plus_distr_l; do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] | discrR ]. @@ -1255,8 +1255,8 @@ Lemma RiemannInt_P12 : a <= b -> RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2. Proof. intro f; intros; case (Req_dec l 0); intro. - pattern l at 2 in |- *; rewrite H0; rewrite Rmult_0_l; rewrite Rplus_0_r; - unfold RiemannInt in |- *; case (RiemannInt_exists pr3 RinvN RinvN_cv); + pattern l at 2; rewrite H0; rewrite Rmult_0_l; rewrite Rplus_0_r; + unfold RiemannInt; case (RiemannInt_exists pr3 RinvN RinvN_cv); case (RiemannInt_exists pr1 RinvN RinvN_cv); intros; eapply UL_sequence; [ apply u0 @@ -1278,18 +1278,18 @@ Proof. [ apply H2; assumption | rewrite H0; ring ] ] | assumption ] ]. eapply UL_sequence. - unfold RiemannInt in |- *; case (RiemannInt_exists pr3 RinvN RinvN_cv); + unfold RiemannInt; case (RiemannInt_exists pr3 RinvN RinvN_cv); intros; apply u. - unfold Un_cv in |- *; intros; unfold RiemannInt in |- *; + unfold Un_cv; intros; unfold RiemannInt; case (RiemannInt_exists pr1 RinvN RinvN_cv); - case (RiemannInt_exists pr2 RinvN RinvN_cv); unfold Un_cv in |- *; + case (RiemannInt_exists pr2 RinvN RinvN_cv); unfold Un_cv; intros; assert (H2 : 0 < eps / 5). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. elim (u0 _ H2); clear u0; intros N0 H3; assert (H4 := RinvN_cv); unfold Un_cv in H4; elim (H4 _ H2); clear H4 H2; intros N1 H4; assert (H5 : 0 < eps / (5 * Rabs l)). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; apply Rmult_lt_0_compat; [ prove_sup0 | apply Rabs_pos_lt; assumption ] ]. @@ -1298,17 +1298,17 @@ Proof. unfold R_dist in H3, H4, H5, H6; set (N := max (max N0 N1) (max N2 N3)). assert (H7 : forall n:nat, (n >= N1)%nat -> RinvN n < eps / 5). intros; replace (pos (RinvN n)) with (Rabs (RinvN n - 0)); - [ unfold RinvN in |- *; apply H4; assumption - | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; + [ unfold RinvN; apply H4; assumption + | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; left; apply (cond_pos (RinvN n)) ]. clear H4; assert (H4 := H7); clear H7; assert (H7 : forall n:nat, (n >= N3)%nat -> RinvN n < eps / (5 * Rabs l)). intros; replace (pos (RinvN n)) with (Rabs (RinvN n - 0)); - [ unfold RinvN in |- *; apply H5; assumption - | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; + [ unfold RinvN; apply H5; assumption + | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; left; apply (cond_pos (RinvN n)) ]. clear H5; assert (H5 := H7); clear H7; exists N; intros; - unfold R_dist in |- *. + unfold R_dist. apply Rle_lt_trans with (Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - @@ -1381,10 +1381,10 @@ Proof. (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))); [ idtac | ring ]; do 2 rewrite <- StepFun_P30; assert (H10 : Rmin a b = a). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. assert (H11 : Rmax a b = b). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. rewrite H10 in H7; rewrite H10 in H8; rewrite H10 in H9; rewrite H11 in H7; rewrite H11 in H8; rewrite H11 in H9; @@ -1404,7 +1404,7 @@ Proof. (StepFun_P28 1 (psi3 n) (mkStepFun (StepFun_P28 (Rabs l) (psi1 n) (psi2 n)))))). apply StepFun_P37; try assumption. - intros; simpl in |- *; rewrite Rmult_1_l. + intros; simpl; rewrite Rmult_1_l. apply Rle_trans with (Rabs (phi_sequence RinvN pr3 n x1 - (f x1 + l * g x1)) + Rabs @@ -1444,16 +1444,16 @@ Proof. apply Rlt_trans with (pos (RinvN n)); [ apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi3 n))); [ apply RRle_abs | elim (H9 n); intros; assumption ] - | apply H4; unfold ge in |- *; apply le_trans with N; + | apply H4; unfold ge; apply le_trans with N; [ apply le_trans with (max N0 N1); - [ apply le_max_r | unfold N in |- *; apply le_max_l ] + [ apply le_max_r | unfold N; apply le_max_l ] | assumption ] ]. apply Rlt_trans with (pos (RinvN n)); [ apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n))); [ apply RRle_abs | elim (H7 n); intros; assumption ] - | apply H4; unfold ge in |- *; apply le_trans with N; + | apply H4; unfold ge; apply le_trans with N; [ apply le_trans with (max N0 N1); - [ apply le_max_r | unfold N in |- *; apply le_max_l ] + [ apply le_max_r | unfold N; apply le_max_l ] | assumption ] ]. apply Rmult_lt_reg_l with (/ Rabs l). apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption. @@ -1462,28 +1462,28 @@ Proof. apply Rlt_trans with (pos (RinvN n)); [ apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n))); [ apply RRle_abs | elim (H8 n); intros; assumption ] - | apply H5; unfold ge in |- *; apply le_trans with N; + | apply H5; unfold ge; apply le_trans with N; [ apply le_trans with (max N2 N3); - [ apply le_max_r | unfold N in |- *; apply le_max_r ] + [ apply le_max_r | unfold N; apply le_max_r ] | assumption ] ]. - unfold Rdiv in |- *; rewrite Rinv_mult_distr; + unfold Rdiv; rewrite Rinv_mult_distr; [ ring | discrR | apply Rabs_no_R0; assumption ]. apply Rabs_no_R0; assumption. - apply H3; unfold ge in |- *; apply le_trans with (max N0 N1); + apply H3; unfold ge; apply le_trans with (max N0 N1); [ apply le_max_l - | apply le_trans with N; [ unfold N in |- *; apply le_max_l | assumption ] ]. + | apply le_trans with N; [ unfold N; apply le_max_l | assumption ] ]. apply Rmult_lt_reg_l with (/ Rabs l). apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption. rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_l; replace (/ Rabs l * (eps / 5)) with (eps / (5 * Rabs l)). - apply H6; unfold ge in |- *; apply le_trans with (max N2 N3); + apply H6; unfold ge; apply le_trans with (max N2 N3); [ apply le_max_l - | apply le_trans with N; [ unfold N in |- *; apply le_max_r | assumption ] ]. - unfold Rdiv in |- *; rewrite Rinv_mult_distr; + | apply le_trans with N; [ unfold N; apply le_max_r | assumption ] ]. + unfold Rdiv; rewrite Rinv_mult_distr; [ ring | discrR | apply Rabs_no_R0; assumption ]. apply Rabs_no_R0; assumption. apply Rmult_eq_reg_l with 5; - [ unfold Rdiv in |- *; do 2 rewrite Rmult_plus_distr_l; + [ unfold Rdiv; do 2 rewrite Rmult_plus_distr_l; do 3 rewrite (Rmult_comm 5); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] | discrR ]. @@ -1500,11 +1500,11 @@ Proof. | assert (H : b <= a); [ auto with real | replace (RiemannInt pr3) with (- RiemannInt (RiemannInt_P1 pr3)); - [ idtac | symmetry in |- *; apply RiemannInt_P8 ]; + [ idtac | symmetry ; apply RiemannInt_P8 ]; replace (RiemannInt pr2) with (- RiemannInt (RiemannInt_P1 pr2)); - [ idtac | symmetry in |- *; apply RiemannInt_P8 ]; + [ idtac | symmetry ; apply RiemannInt_P8 ]; replace (RiemannInt pr1) with (- RiemannInt (RiemannInt_P1 pr1)); - [ idtac | symmetry in |- *; apply RiemannInt_P8 ]; + [ idtac | symmetry ; apply RiemannInt_P8 ]; rewrite (RiemannInt_P12 (RiemannInt_P1 pr1) (RiemannInt_P1 pr2) (RiemannInt_P1 pr3) H); ring ] ]. @@ -1512,11 +1512,11 @@ Qed. Lemma RiemannInt_P14 : forall a b c:R, Riemann_integrable (fct_cte c) a b. Proof. - unfold Riemann_integrable in |- *; intros; + unfold Riemann_integrable; intros; split with (mkStepFun (StepFun_P4 a b c)); split with (mkStepFun (StepFun_P4 a b 0)); split; - [ intros; simpl in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r; - rewrite Rabs_R0; unfold fct_cte in |- *; right; + [ intros; simpl; unfold Rminus; rewrite Rplus_opp_r; + rewrite Rabs_R0; unfold fct_cte; right; reflexivity | rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0; apply (cond_pos eps) ]. @@ -1526,11 +1526,11 @@ Lemma RiemannInt_P15 : forall (a b c:R) (pr:Riemann_integrable (fct_cte c) a b), RiemannInt pr = c * (b - a). Proof. - intros; unfold RiemannInt in |- *; case (RiemannInt_exists pr RinvN RinvN_cv); + intros; unfold RiemannInt; case (RiemannInt_exists pr RinvN RinvN_cv); intros; eapply UL_sequence. apply u. set (phi1 := fun N:nat => phi_sequence RinvN pr N); - change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) (c * (b - a))) in |- *; + change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) (c * (b - a))); set (f := fct_cte c); assert (H1 : @@ -1549,13 +1549,13 @@ Proof. try assumption. apply RinvN_cv. intro; split. - intros; unfold f in |- *; simpl in |- *; unfold Rminus in |- *; - rewrite Rplus_opp_r; rewrite Rabs_R0; unfold fct_cte in |- *; + intros; unfold f; simpl; unfold Rminus; + rewrite Rplus_opp_r; rewrite Rabs_R0; unfold fct_cte; right; reflexivity. - unfold psi2 in |- *; rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0; + unfold psi2; rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0; apply (cond_pos (RinvN n)). - unfold Un_cv in |- *; intros; split with 0%nat; intros; unfold R_dist in |- *; - unfold phi2 in |- *; rewrite StepFun_P18; unfold Rminus in |- *; + unfold Un_cv; intros; split with 0%nat; intros; unfold R_dist; + unfold phi2; rewrite StepFun_P18; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply H. Qed. @@ -1563,9 +1563,9 @@ Lemma RiemannInt_P16 : forall (f:R -> R) (a b:R), Riemann_integrable f a b -> Riemann_integrable (fun x:R => Rabs (f x)) a b. Proof. - unfold Riemann_integrable in |- *; intro f; intros; elim (X eps); clear X; + unfold Riemann_integrable; intro f; intros; elim (X eps); clear X; intros phi [psi [H H0]]; split with (mkStepFun (StepFun_P32 phi)); - split with psi; split; try assumption; intros; simpl in |- *; + split with psi; split; try assumption; intros; simpl; apply Rle_trans with (Rabs (f t - phi t)); [ apply Rabs_triang_inv2 | apply H; assumption ]. Qed. @@ -1579,9 +1579,9 @@ Proof. assert (H2 : l2 < l1). auto with real. clear n; assert (H3 : 0 < (l1 - l2) / 2). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply Rlt_Rminus; assumption | apply Rinv_0_lt_compat; prove_sup0 ]. - elim (H1 _ H3); elim (H0 _ H3); clear H0 H1; unfold R_dist in |- *; intros; + elim (H1 _ H3); elim (H0 _ H3); clear H0 H1; unfold R_dist; intros; set (N := max x x0); cut (Vn N < Un N). intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (H N) H4)). apply Rlt_trans with ((l1 + l2) / 2). @@ -1589,9 +1589,9 @@ Proof. replace (- l2 + (l1 + l2) / 2) with ((l1 - l2) / 2). rewrite Rplus_comm; apply Rle_lt_trans with (Rabs (Vn N - l2)). apply RRle_abs. - apply H1; unfold ge in |- *; unfold N in |- *; apply le_max_r. + apply H1; unfold ge; unfold N; apply le_max_r. apply Rmult_eq_reg_l with 2; - [ unfold Rdiv in |- *; do 2 rewrite (Rmult_comm 2); + [ unfold Rdiv; do 2 rewrite (Rmult_comm 2); rewrite (Rmult_plus_distr_r (- l2) ((l1 + l2) * / 2) 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] @@ -1600,9 +1600,9 @@ Proof. replace (l1 + - ((l1 + l2) / 2)) with ((l1 - l2) / 2). apply Rle_lt_trans with (Rabs (Un N - l1)). rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs. - apply H0; unfold ge in |- *; unfold N in |- *; apply le_max_l. + apply H0; unfold ge; unfold N; apply le_max_l. apply Rmult_eq_reg_l with 2; - [ unfold Rdiv in |- *; do 2 rewrite (Rmult_comm 2); + [ unfold Rdiv; do 2 rewrite (Rmult_comm 2); rewrite (Rmult_plus_distr_r l1 (- ((l1 + l2) * / 2)) 2); rewrite <- Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] @@ -1614,7 +1614,7 @@ Lemma RiemannInt_P17 : (pr2:Riemann_integrable (fun x:R => Rabs (f x)) a b), a <= b -> Rabs (RiemannInt pr1) <= RiemannInt pr2. Proof. - intro f; intros; unfold RiemannInt in |- *; + intro f; intros; unfold RiemannInt; case (RiemannInt_exists pr1 RinvN RinvN_cv); case (RiemannInt_exists pr2 RinvN RinvN_cv); intros; set (phi1 := phi_sequence RinvN pr1) in u0; @@ -1622,7 +1622,7 @@ Proof. apply Rle_cv_lim with (fun N:nat => Rabs (RiemannInt_SF (phi1 N))) (fun N:nat => RiemannInt_SF (phi2 N)). - intro; unfold phi2 in |- *; apply StepFun_P34; assumption. + intro; unfold phi2; apply StepFun_P34; assumption. apply (continuity_seq Rabs (fun N:nat => RiemannInt_SF (phi1 N)) x0); try assumption. apply Rcontinuity_abs. @@ -1656,7 +1656,7 @@ Proof. apply (proj2_sig (phi_sequence_prop RinvN pr1 n)). elim H1; clear H1; intros psi2 H1; split with psi2; intros; elim (H1 n); clear H1; intros; split; try assumption. - intros; unfold phi2 in |- *; simpl in |- *; + intros; unfold phi2; simpl; apply Rle_trans with (Rabs (f t - phi1 n t)). apply Rabs_triang_inv2. apply H1; assumption. @@ -1671,13 +1671,13 @@ Lemma RiemannInt_P18 : a <= b -> (forall x:R, a < x < b -> f x = g x) -> RiemannInt pr1 = RiemannInt pr2. Proof. - intro f; intros; unfold RiemannInt in |- *; + intro f; intros; unfold RiemannInt; case (RiemannInt_exists pr1 RinvN RinvN_cv); case (RiemannInt_exists pr2 RinvN RinvN_cv); intros; eapply UL_sequence. apply u0. set (phi1 := fun N:nat => phi_sequence RinvN pr1 N); - change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) x) in |- *; + change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) x); assert (H1 : exists psi1 : nat -> StepFun a b, @@ -1717,45 +1717,45 @@ Proof. try assumption. apply RinvN_cv. intro; elim (H2 n); intros; split; try assumption. - intros; unfold phi2_m in |- *; simpl in |- *; unfold phi2_aux in |- *; + intros; unfold phi2_m; simpl; unfold phi2_aux; case (Req_EM_T t a); case (Req_EM_T t b); intros. - rewrite e0; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + rewrite e0; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply Rle_trans with (Rabs (g t - phi2 n t)). apply Rabs_pos. - pattern a at 3 in |- *; rewrite <- e0; apply H3; assumption. - rewrite e; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + pattern a at 3; rewrite <- e0; apply H3; assumption. + rewrite e; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply Rle_trans with (Rabs (g t - phi2 n t)). apply Rabs_pos. - pattern a at 3 in |- *; rewrite <- e; apply H3; assumption. - rewrite e; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + pattern a at 3; rewrite <- e; apply H3; assumption. + rewrite e; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply Rle_trans with (Rabs (g t - phi2 n t)). apply Rabs_pos. - pattern b at 3 in |- *; rewrite <- e; apply H3; assumption. + pattern b at 3; rewrite <- e; apply H3; assumption. replace (f t) with (g t). apply H3; assumption. - symmetry in |- *; apply H0; elim H5; clear H5; intros. + symmetry ; apply H0; elim H5; clear H5; intros. assert (H7 : Rmin a b = a). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n2; assumption ]. assert (H8 : Rmax a b = b). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n2; assumption ]. rewrite H7 in H5; rewrite H8 in H6; split. - elim H5; intro; [ assumption | elim n1; symmetry in |- *; assumption ]. + elim H5; intro; [ assumption | elim n1; symmetry ; assumption ]. elim H6; intro; [ assumption | elim n0; assumption ]. cut (forall N:nat, RiemannInt_SF (phi2_m N) = RiemannInt_SF (phi2 N)). - intro; unfold Un_cv in |- *; intros; elim (u _ H4); intros; exists x1; intros; + intro; unfold Un_cv; intros; elim (u _ H4); intros; exists x1; intros; rewrite (H3 n); apply H5; assumption. intro; apply Rle_antisym. apply StepFun_P37; try assumption. - intros; unfold phi2_m in |- *; simpl in |- *; unfold phi2_aux in |- *; + intros; unfold phi2_m; simpl; unfold phi2_aux; case (Req_EM_T x1 a); case (Req_EM_T x1 b); intros. elim H3; intros; rewrite e0 in H4; elim (Rlt_irrefl _ H4). elim H3; intros; rewrite e in H4; elim (Rlt_irrefl _ H4). elim H3; intros; rewrite e in H5; elim (Rlt_irrefl _ H5). right; reflexivity. apply StepFun_P37; try assumption. - intros; unfold phi2_m in |- *; simpl in |- *; unfold phi2_aux in |- *; + intros; unfold phi2_m; simpl; unfold phi2_aux; case (Req_EM_T x1 a); case (Req_EM_T x1 b); intros. elim H3; intros; rewrite e0 in H4; elim (Rlt_irrefl _ H4). elim H3; intros; rewrite e in H4; elim (Rlt_irrefl _ H4). @@ -1764,10 +1764,10 @@ Proof. intro; assert (H2 := pre (phi2 N)); unfold IsStepFun in H2; unfold is_subdivision in H2; elim H2; clear H2; intros l [lf H2]; split with l; split with lf; unfold adapted_couple in H2; - decompose [and] H2; clear H2; unfold adapted_couple in |- *; + decompose [and] H2; clear H2; unfold adapted_couple; repeat split; try assumption. intros; assert (H9 := H8 i H2); unfold constant_D_eq, open_interval in H9; - unfold constant_D_eq, open_interval in |- *; intros; + unfold constant_D_eq, open_interval; intros; rewrite <- (H9 x1 H7); assert (H10 : a <= pos_Rl l i). replace a with (Rmin a b). rewrite <- H5; elim (RList_P6 l); intros; apply H10. @@ -1775,7 +1775,7 @@ Proof. apply le_O_n. apply lt_trans with (pred (Rlength l)); [ assumption | apply lt_pred_n_n ]. apply neq_O_lt; intro; rewrite <- H12 in H6; discriminate. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. assert (H11 : pos_Rl l (S i) <= b). replace b with (Rmax a b). @@ -1783,9 +1783,9 @@ Proof. assumption. apply lt_le_S; assumption. apply lt_pred_n_n; apply neq_O_lt; intro; rewrite <- H13 in H6; discriminate. - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. - elim H7; clear H7; intros; unfold phi2_aux in |- *; case (Req_EM_T x1 a); + elim H7; clear H7; intros; unfold phi2_aux; case (Req_EM_T x1 a); case (Req_EM_T x1 b); intros. rewrite e in H12; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H12)). rewrite e in H7; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H10 H7)). @@ -1852,12 +1852,12 @@ Proof. intros; replace (primitive h pr a) with 0. replace (RiemannInt pr0) with (primitive h pr b). ring. - unfold primitive in |- *; case (Rle_dec a b); case (Rle_dec b b); intros; + unfold primitive; case (Rle_dec a b); case (Rle_dec b b); intros; [ apply RiemannInt_P5 | elim n; right; reflexivity | elim n; assumption | elim n0; assumption ]. - symmetry in |- *; unfold primitive in |- *; case (Rle_dec a a); + symmetry ; unfold primitive; case (Rle_dec a a); case (Rle_dec a b); intros; [ apply RiemannInt_P9 | elim n; assumption @@ -1872,9 +1872,9 @@ Lemma RiemannInt_P21 : Riemann_integrable f a b -> Riemann_integrable f b c -> Riemann_integrable f a c. Proof. - unfold Riemann_integrable in |- *; intros f a b c Hyp1 Hyp2 X X0 eps. + unfold Riemann_integrable; intros f a b c Hyp1 Hyp2 X X0 eps. assert (H : 0 < eps / 2). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ]. elim (X (mkposreal _ H)); clear X; intros phi1 [psi1 H1]; elim (X0 (mkposreal _ H)); clear X0; intros phi2 [psi2 H2]. @@ -1904,35 +1904,35 @@ Proof. intro; cut (IsStepFun psi3 a b). intro; cut (IsStepFun psi3 b c). intro; cut (IsStepFun psi3 a c). - intro; split with (mkStepFun X); split with (mkStepFun X2); simpl in |- *; + intro; split with (mkStepFun X); split with (mkStepFun X2); simpl; split. - intros; unfold phi3, psi3 in |- *; case (Rle_dec t b); case (Rle_dec a t); + intros; unfold phi3, psi3; case (Rle_dec t b); case (Rle_dec a t); intros. elim H1; intros; apply H3. replace (Rmin a b) with a. replace (Rmax a b) with b. split; assumption. - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. elim n; replace a with (Rmin a c). elim H0; intros; assumption. - unfold Rmin in |- *; case (Rle_dec a c); intro; + unfold Rmin; case (Rle_dec a c); intro; [ reflexivity | elim n0; apply Rle_trans with b; assumption ]. elim H2; intros; apply H3. replace (Rmax b c) with (Rmax a c). elim H0; intros; split; try assumption. replace (Rmin b c) with b. auto with real. - unfold Rmin in |- *; case (Rle_dec b c); intro; + unfold Rmin; case (Rle_dec b c); intro; [ reflexivity | elim n0; assumption ]. - unfold Rmax in |- *; case (Rle_dec a c); case (Rle_dec b c); intros; + unfold Rmax; case (Rle_dec a c); case (Rle_dec b c); intros; try (elim n0; assumption || elim n0; apply Rle_trans with b; assumption). reflexivity. elim n; replace a with (Rmin a c). elim H0; intros; assumption. - unfold Rmin in |- *; case (Rle_dec a c); intro; + unfold Rmin; case (Rle_dec a c); intro; [ reflexivity | elim n1; apply Rle_trans with b; assumption ]. rewrite <- (StepFun_P43 X0 X1 X2). apply Rle_lt_trans with @@ -1946,14 +1946,14 @@ Proof. elim H2; intros; assumption. apply Rle_antisym. apply StepFun_P37; try assumption. - simpl in |- *; intros; unfold psi3 in |- *; elim H0; clear H0; intros; + simpl; intros; unfold psi3; elim H0; clear H0; intros; case (Rle_dec a x); case (Rle_dec x b); intros; [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H0)) | right; reflexivity | elim n; apply Rle_trans with b; [ assumption | left; assumption ] | elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ]. apply StepFun_P37; try assumption. - simpl in |- *; intros; unfold psi3 in |- *; elim H0; clear H0; intros; + simpl; intros; unfold psi3; elim H0; clear H0; intros; case (Rle_dec a x); case (Rle_dec x b); intros; [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H0)) | right; reflexivity @@ -1961,14 +1961,14 @@ Proof. | elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ]. apply Rle_antisym. apply StepFun_P37; try assumption. - simpl in |- *; intros; unfold psi3 in |- *; elim H0; clear H0; intros; + simpl; intros; unfold psi3; elim H0; clear H0; intros; case (Rle_dec a x); case (Rle_dec x b); intros; [ right; reflexivity | elim n; left; assumption | elim n; left; assumption | elim n0; left; assumption ]. apply StepFun_P37; try assumption. - simpl in |- *; intros; unfold psi3 in |- *; elim H0; clear H0; intros; + simpl; intros; unfold psi3; elim H0; clear H0; intros; case (Rle_dec a x); case (Rle_dec x b); intros; [ right; reflexivity | elim n; left; assumption @@ -1978,19 +1978,19 @@ Proof. assert (H3 := pre psi2); unfold IsStepFun in H3; unfold is_subdivision in H3; elim H3; clear H3; intros l1 [lf1 H3]; split with l1; split with lf1; unfold adapted_couple in H3; decompose [and] H3; - clear H3; unfold adapted_couple in |- *; repeat split; + clear H3; unfold adapted_couple; repeat split; try assumption. - intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval in |- *; + intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval; unfold constant_D_eq, open_interval in H9; intros; - rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : b < x). + rewrite <- (H9 x H7); unfold psi3; assert (H10 : b < x). apply Rle_lt_trans with (pos_Rl l1 i). replace b with (Rmin b c). rewrite <- H5; elim (RList_P6 l1); intros; apply H10; try assumption. apply le_O_n. apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n; - apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6; + apply neq_O_lt; red; intro; rewrite <- H12 in H6; discriminate. - unfold Rmin in |- *; case (Rle_dec b c); intro; + unfold Rmin; case (Rle_dec b c); intro; [ reflexivity | elim n; assumption ]. elim H7; intros; assumption. case (Rle_dec a x); case (Rle_dec x b); intros; @@ -2001,18 +2001,18 @@ Proof. assert (H3 := pre psi1); unfold IsStepFun in H3; unfold is_subdivision in H3; elim H3; clear H3; intros l1 [lf1 H3]; split with l1; split with lf1; unfold adapted_couple in H3; decompose [and] H3; - clear H3; unfold adapted_couple in |- *; repeat split; + clear H3; unfold adapted_couple; repeat split; try assumption. - intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval in |- *; + intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval; unfold constant_D_eq, open_interval in H9; intros; - rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : x <= b). + rewrite <- (H9 x H7); unfold psi3; assert (H10 : x <= b). apply Rle_trans with (pos_Rl l1 (S i)). elim H7; intros; left; assumption. replace b with (Rmax a b). rewrite <- H4; elim (RList_P6 l1); intros; apply H10; try assumption. - apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6; + apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H12 in H6; discriminate. - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. assert (H11 : a <= x). apply Rle_trans with (pos_Rl l1 i). @@ -2020,9 +2020,9 @@ Proof. rewrite <- H5; elim (RList_P6 l1); intros; apply H11; try assumption. apply le_O_n. apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n; - apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H6; + apply neq_O_lt; red; intro; rewrite <- H13 in H6; discriminate. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. left; elim H7; intros; assumption. case (Rle_dec a x); case (Rle_dec x b); intros; reflexivity || elim n; @@ -2031,18 +2031,18 @@ Proof. assert (H3 := pre phi1); unfold IsStepFun in H3; unfold is_subdivision in H3; elim H3; clear H3; intros l1 [lf1 H3]; split with l1; split with lf1; unfold adapted_couple in H3; decompose [and] H3; - clear H3; unfold adapted_couple in |- *; repeat split; + clear H3; unfold adapted_couple; repeat split; try assumption. - intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval in |- *; + intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval; unfold constant_D_eq, open_interval in H9; intros; - rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : x <= b). + rewrite <- (H9 x H7); unfold psi3; assert (H10 : x <= b). apply Rle_trans with (pos_Rl l1 (S i)). elim H7; intros; left; assumption. replace b with (Rmax a b). rewrite <- H4; elim (RList_P6 l1); intros; apply H10; try assumption. - apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6; + apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H12 in H6; discriminate. - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. assert (H11 : a <= x). apply Rle_trans with (pos_Rl l1 i). @@ -2050,32 +2050,32 @@ Proof. rewrite <- H5; elim (RList_P6 l1); intros; apply H11; try assumption. apply le_O_n. apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n; - apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H6; + apply neq_O_lt; red; intro; rewrite <- H13 in H6; discriminate. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. left; elim H7; intros; assumption. - unfold phi3 in |- *; case (Rle_dec a x); case (Rle_dec x b); intros; + unfold phi3; case (Rle_dec a x); case (Rle_dec x b); intros; reflexivity || elim n; assumption. assert (H3 := pre phi2); unfold IsStepFun in H3; unfold is_subdivision in H3; elim H3; clear H3; intros l1 [lf1 H3]; split with l1; split with lf1; unfold adapted_couple in H3; decompose [and] H3; - clear H3; unfold adapted_couple in |- *; repeat split; + clear H3; unfold adapted_couple; repeat split; try assumption. - intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval in |- *; + intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval; unfold constant_D_eq, open_interval in H9; intros; - rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : b < x). + rewrite <- (H9 x H7); unfold psi3; assert (H10 : b < x). apply Rle_lt_trans with (pos_Rl l1 i). replace b with (Rmin b c). rewrite <- H5; elim (RList_P6 l1); intros; apply H10; try assumption. apply le_O_n. apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n; - apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6; + apply neq_O_lt; red; intro; rewrite <- H12 in H6; discriminate. - unfold Rmin in |- *; case (Rle_dec b c); intro; + unfold Rmin; case (Rle_dec b c); intro; [ reflexivity | elim n; assumption ]. elim H7; intros; assumption. - unfold phi3 in |- *; case (Rle_dec a x); case (Rle_dec x b); intros; + unfold phi3; case (Rle_dec a x); case (Rle_dec x b); intros; [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H10)) | reflexivity | elim n; apply Rle_trans with b; [ assumption | left; assumption ] @@ -2086,7 +2086,7 @@ Lemma RiemannInt_P22 : forall (f:R -> R) (a b c:R), Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f a c. Proof. - unfold Riemann_integrable in |- *; intros; elim (X eps); clear X; + unfold Riemann_integrable; intros; elim (X eps); clear X; intros phi [psi H0]; elim H; elim H0; clear H H0; intros; assert (H3 : IsStepFun phi a c). apply StepFun_P44 with b. @@ -2097,18 +2097,18 @@ Proof. apply (pre psi). split; assumption. split with (mkStepFun H3); split with (mkStepFun H4); split. - simpl in |- *; intros; apply H. + simpl; intros; apply H. replace (Rmin a b) with (Rmin a c). elim H5; intros; split; try assumption. apply Rle_trans with (Rmax a c); try assumption. replace (Rmax a b) with b. replace (Rmax a c) with c. assumption. - unfold Rmax in |- *; case (Rle_dec a c); intro; + unfold Rmax; case (Rle_dec a c); intro; [ reflexivity | elim n; assumption ]. - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; apply Rle_trans with c; assumption ]. - unfold Rmin in |- *; case (Rle_dec a c); case (Rle_dec a b); intros; + unfold Rmin; case (Rle_dec a c); case (Rle_dec a b); intros; [ reflexivity | elim n; apply Rle_trans with c; assumption | elim n; assumption @@ -2121,12 +2121,12 @@ Proof. replace (RiemannInt_SF (mkStepFun H4)) with (RiemannInt_SF psi - RiemannInt_SF (mkStepFun H5)). apply Rle_lt_trans with (RiemannInt_SF psi). - unfold Rminus in |- *; pattern (RiemannInt_SF psi) at 2 in |- *; + unfold Rminus; pattern (RiemannInt_SF psi) at 2; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; rewrite <- Ropp_0; apply Ropp_ge_le_contravar; apply Rle_ge; replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 c b 0))). apply StepFun_P37; try assumption. - intros; simpl in |- *; unfold fct_cte in |- *; + intros; simpl; unfold fct_cte; apply Rle_trans with (Rabs (f x - phi x)). apply Rabs_pos. apply H. @@ -2135,9 +2135,9 @@ Proof. elim H6; intros; split; left. apply Rle_lt_trans with c; assumption. assumption. - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; apply Rle_trans with c; assumption ]. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; apply Rle_trans with c; assumption ]. rewrite StepFun_P18; ring. apply Rle_lt_trans with (Rabs (RiemannInt_SF psi)). @@ -2147,16 +2147,16 @@ Proof. apply (pre psi). replace (RiemannInt_SF psi) with (RiemannInt_SF (mkStepFun H6)). rewrite <- (StepFun_P43 H4 H5 H6); ring. - unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro. + unfold RiemannInt_SF; case (Rle_dec a b); intro. eapply StepFun_P17. apply StepFun_P1. - simpl in |- *; apply StepFun_P1. + simpl; apply StepFun_P1. apply Ropp_eq_compat; eapply StepFun_P17. apply StepFun_P1. - simpl in |- *; apply StepFun_P1. + simpl; apply StepFun_P1. apply Rle_ge; replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 a c 0))). apply StepFun_P37; try assumption. - intros; simpl in |- *; unfold fct_cte in |- *; + intros; simpl; unfold fct_cte; apply Rle_trans with (Rabs (f x - phi x)). apply Rabs_pos. apply H. @@ -2165,9 +2165,9 @@ Proof. elim H5; intros; split; left. assumption. apply Rlt_le_trans with c; assumption. - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; apply Rle_trans with c; assumption ]. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; apply Rle_trans with c; assumption ]. rewrite StepFun_P18; ring. Qed. @@ -2176,7 +2176,7 @@ Lemma RiemannInt_P23 : forall (f:R -> R) (a b c:R), Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f c b. Proof. - unfold Riemann_integrable in |- *; intros; elim (X eps); clear X; + unfold Riemann_integrable; intros; elim (X eps); clear X; intros phi [psi H0]; elim H; elim H0; clear H H0; intros; assert (H3 : IsStepFun phi c b). apply StepFun_P45 with a. @@ -2187,18 +2187,18 @@ Proof. apply (pre psi). split; assumption. split with (mkStepFun H3); split with (mkStepFun H4); split. - simpl in |- *; intros; apply H. + simpl; intros; apply H. replace (Rmax a b) with (Rmax c b). elim H5; intros; split; try assumption. apply Rle_trans with (Rmin c b); try assumption. replace (Rmin a b) with a. replace (Rmin c b) with c. assumption. - unfold Rmin in |- *; case (Rle_dec c b); intro; + unfold Rmin; case (Rle_dec c b); intro; [ reflexivity | elim n; assumption ]. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; apply Rle_trans with c; assumption ]. - unfold Rmax in |- *; case (Rle_dec c b); case (Rle_dec a b); intros; + unfold Rmax; case (Rle_dec c b); case (Rle_dec a b); intros; [ reflexivity | elim n; apply Rle_trans with c; assumption | elim n; assumption @@ -2211,12 +2211,12 @@ Proof. replace (RiemannInt_SF (mkStepFun H4)) with (RiemannInt_SF psi - RiemannInt_SF (mkStepFun H5)). apply Rle_lt_trans with (RiemannInt_SF psi). - unfold Rminus in |- *; pattern (RiemannInt_SF psi) at 2 in |- *; + unfold Rminus; pattern (RiemannInt_SF psi) at 2; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; rewrite <- Ropp_0; apply Ropp_ge_le_contravar; apply Rle_ge; replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 a c 0))). apply StepFun_P37; try assumption. - intros; simpl in |- *; unfold fct_cte in |- *; + intros; simpl; unfold fct_cte; apply Rle_trans with (Rabs (f x - phi x)). apply Rabs_pos. apply H. @@ -2225,9 +2225,9 @@ Proof. elim H6; intros; split; left. assumption. apply Rlt_le_trans with c; assumption. - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; apply Rle_trans with c; assumption ]. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; apply Rle_trans with c; assumption ]. rewrite StepFun_P18; ring. apply Rle_lt_trans with (Rabs (RiemannInt_SF psi)). @@ -2237,16 +2237,16 @@ Proof. apply (pre psi). replace (RiemannInt_SF psi) with (RiemannInt_SF (mkStepFun H6)). rewrite <- (StepFun_P43 H5 H4 H6); ring. - unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro. + unfold RiemannInt_SF; case (Rle_dec a b); intro. eapply StepFun_P17. apply StepFun_P1. - simpl in |- *; apply StepFun_P1. + simpl; apply StepFun_P1. apply Ropp_eq_compat; eapply StepFun_P17. apply StepFun_P1. - simpl in |- *; apply StepFun_P1. + simpl; apply StepFun_P1. apply Rle_ge; replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 c b 0))). apply StepFun_P37; try assumption. - intros; simpl in |- *; unfold fct_cte in |- *; + intros; simpl; unfold fct_cte; apply Rle_trans with (Rabs (f x - phi x)). apply Rabs_pos. apply H. @@ -2255,9 +2255,9 @@ Proof. elim H5; intros; split; left. apply Rle_lt_trans with c; assumption. assumption. - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; apply Rle_trans with c; assumption ]. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; apply Rle_trans with c; assumption ]. rewrite StepFun_P18; ring. Qed. @@ -2290,14 +2290,14 @@ Lemma RiemannInt_P25 : (pr2:Riemann_integrable f b c) (pr3:Riemann_integrable f a c), a <= b -> b <= c -> RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3. Proof. - intros f a b c pr1 pr2 pr3 Hyp1 Hyp2; unfold RiemannInt in |- *; + intros f a b c pr1 pr2 pr3 Hyp1 Hyp2; unfold RiemannInt; case (RiemannInt_exists pr1 RinvN RinvN_cv); case (RiemannInt_exists pr2 RinvN RinvN_cv); case (RiemannInt_exists pr3 RinvN RinvN_cv); intros; - symmetry in |- *; eapply UL_sequence. + symmetry ; eapply UL_sequence. apply u. - unfold Un_cv in |- *; intros; assert (H0 : 0 < eps / 3). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Un_cv; intros; assert (H0 : 0 < eps / 3). + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. elim (u1 _ H0); clear u1; intros N1 H1; elim (u0 _ H0); clear u0; intros N2 H2; @@ -2309,7 +2309,7 @@ Proof. RiemannInt_SF (phi_sequence RinvN pr2 n))) 0). intro; elim (H3 _ H0); clear H3; intros N3 H3; set (N0 := max (max N1 N2) N3); exists N0; intros; - unfold R_dist in |- *; + unfold R_dist; apply Rle_lt_trans with (Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - @@ -2330,8 +2330,8 @@ Proof. unfold R_dist in H3; cut (n >= N3)%nat. intro; assert (H6 := H3 _ H5); unfold Rminus in H6; rewrite Ropp_0 in H6; rewrite Rplus_0_r in H6; apply H6. - unfold ge in |- *; apply le_trans with N0; - [ unfold N0 in |- *; apply le_max_r | assumption ]. + unfold ge; apply le_trans with N0; + [ unfold N0; apply le_max_r | assumption ]. apply Rle_lt_trans with (Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x1) + Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x0)). @@ -2343,17 +2343,17 @@ Proof. [ apply Rabs_triang | ring ]. apply Rplus_lt_compat. unfold R_dist in H1; apply H1. - unfold ge in |- *; apply le_trans with N0; + unfold ge; apply le_trans with N0; [ apply le_trans with (max N1 N2); - [ apply le_max_l | unfold N0 in |- *; apply le_max_l ] + [ apply le_max_l | unfold N0; apply le_max_l ] | assumption ]. unfold R_dist in H2; apply H2. - unfold ge in |- *; apply le_trans with N0; + unfold ge; apply le_trans with N0; [ apply le_trans with (max N1 N2); - [ apply le_max_r | unfold N0 in |- *; apply le_max_l ] + [ apply le_max_r | unfold N0; apply le_max_l ] | assumption ]. apply Rmult_eq_reg_l with 3; - [ unfold Rdiv in |- *; repeat rewrite Rmult_plus_distr_l; + [ unfold Rdiv; repeat rewrite Rmult_plus_distr_l; do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] | discrR ]. @@ -2390,8 +2390,8 @@ Proof. apply (proj2_sig (phi_sequence_prop RinvN pr3 n)). elim H1; clear H1; intros psi1 H1; elim H2; clear H2; intros psi2 H2; elim H3; clear H3; intros psi3 H3; assert (H := RinvN_cv); - unfold Un_cv in |- *; intros; assert (H4 : 0 < eps / 3). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Un_cv; intros; assert (H4 : 0 < eps / 3). + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. elim (H _ H4); clear H; intros N0 H; assert (H5 : forall n:nat, (n >= N0)%nat -> RinvN n < eps / 3). @@ -2399,11 +2399,11 @@ Proof. replace (pos (RinvN n)) with (R_dist (mkposreal (/ (INR n + 1)) (RinvN_pos n)) 0). apply H; assumption. - unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0; + unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge; left; apply (cond_pos (RinvN n)). exists N0; intros; elim (H1 n); elim (H2 n); elim (H3 n); clear H1 H2 H3; - intros; unfold R_dist in |- *; unfold Rminus in |- *; + intros; unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; set (phi1 := phi_sequence RinvN pr1 n) in H8 |- *; set (phi2 := phi_sequence RinvN pr2 n) in H3 |- *; @@ -2469,7 +2469,7 @@ Proof. (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1)))) + RiemannInt_SF (mkStepFun (StepFun_P28 1 (mkStepFun H13) (psi2 n)))). apply Rplus_le_compat_l; apply StepFun_P37; try assumption. - intros; simpl in |- *; rewrite Rmult_1_l; + intros; simpl; rewrite Rmult_1_l; apply Rle_trans with (Rabs (f x - phi3 x) + Rabs (f x - phi2 x)). rewrite <- (Rabs_Ropp (f x - phi3 x)); rewrite Ropp_minus_distr; replace (phi3 x + -1 * phi2 x) with (phi3 x - f x + (f x - phi2 x)); @@ -2480,28 +2480,28 @@ Proof. replace (Rmin a c) with a. apply Rle_trans with b; try assumption. left; assumption. - unfold Rmin in |- *; case (Rle_dec a c); intro; + unfold Rmin; case (Rle_dec a c); intro; [ reflexivity | elim n0; apply Rle_trans with b; assumption ]. replace (Rmax a c) with c. left; assumption. - unfold Rmax in |- *; case (Rle_dec a c); intro; + unfold Rmax; case (Rle_dec a c); intro; [ reflexivity | elim n0; apply Rle_trans with b; assumption ]. apply H3. elim H14; intros; split. replace (Rmin b c) with b. left; assumption. - unfold Rmin in |- *; case (Rle_dec b c); intro; + unfold Rmin; case (Rle_dec b c); intro; [ reflexivity | elim n0; assumption ]. replace (Rmax b c) with c. left; assumption. - unfold Rmax in |- *; case (Rle_dec b c); intro; + unfold Rmax; case (Rle_dec b c); intro; [ reflexivity | elim n0; assumption ]. do 2 rewrite <- (Rplus_comm (RiemannInt_SF (mkStepFun (StepFun_P28 1 (mkStepFun H13) (psi2 n))))) ; apply Rplus_le_compat_l; apply StepFun_P37; try assumption. - intros; simpl in |- *; rewrite Rmult_1_l; + intros; simpl; rewrite Rmult_1_l; apply Rle_trans with (Rabs (f x - phi3 x) + Rabs (f x - phi1 x)). rewrite <- (Rabs_Ropp (f x - phi3 x)); rewrite Ropp_minus_distr; replace (phi3 x + -1 * phi1 x) with (phi3 x - f x + (f x - phi1 x)); @@ -2511,23 +2511,23 @@ Proof. elim H14; intros; split. replace (Rmin a c) with a. left; assumption. - unfold Rmin in |- *; case (Rle_dec a c); intro; + unfold Rmin; case (Rle_dec a c); intro; [ reflexivity | elim n0; apply Rle_trans with b; assumption ]. replace (Rmax a c) with c. apply Rle_trans with b. left; assumption. assumption. - unfold Rmax in |- *; case (Rle_dec a c); intro; + unfold Rmax; case (Rle_dec a c); intro; [ reflexivity | elim n0; apply Rle_trans with b; assumption ]. apply H8. elim H14; intros; split. replace (Rmin a b) with a. left; assumption. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. replace (Rmax a b) with b. left; assumption. - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n0; assumption ]. do 2 rewrite StepFun_P30. do 2 rewrite Rmult_1_l; @@ -2553,7 +2553,7 @@ Proof. assumption. apply H5; assumption. apply Rmult_eq_reg_l with 3; - [ unfold Rdiv in |- *; repeat rewrite Rmult_plus_distr_l; + [ unfold Rdiv; repeat rewrite Rmult_plus_distr_l; do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] | discrR ]. @@ -2608,13 +2608,13 @@ Lemma RiemannInt_P27 : Proof. intro f; intros; elim H; clear H; intros; assert (H1 : continuity_pt f x). apply C0; split; left; assumption. - unfold derivable_pt_lim in |- *; intros; assert (Hyp : 0 < eps / 2). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold derivable_pt_lim; intros; assert (Hyp : 0 < eps / 2). + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. - elim (H1 _ Hyp); unfold dist, D_x, no_cond in |- *; simpl in |- *; - unfold R_dist in |- *; intros; set (del := Rmin x0 (Rmin (b - x) (x - a))); + elim (H1 _ Hyp); unfold dist, D_x, no_cond; simpl; + unfold R_dist; intros; set (del := Rmin x0 (Rmin (b - x) (x - a))); assert (H4 : 0 < del). - unfold del in |- *; unfold Rmin in |- *; case (Rle_dec (b - x) (x - a)); + unfold del; unfold Rmin; case (Rle_dec (b - x) (x - a)); intro. case (Rle_dec x0 (b - x)); intro; [ elim H3; intros; assumption | apply Rlt_Rminus; assumption ]. @@ -2631,22 +2631,22 @@ Proof. left; apply Rlt_le_trans with (x + del). apply Rplus_lt_compat_l; apply Rle_lt_trans with (Rabs h0); [ apply RRle_abs | apply H6 ]. - unfold del in |- *; apply Rle_trans with (x + Rmin (b - x) (x - a)). + unfold del; apply Rle_trans with (x + Rmin (b - x) (x - a)). apply Rplus_le_compat_l; apply Rmin_r. - pattern b at 2 in |- *; replace b with (x + (b - x)); + pattern b at 2; replace b with (x + (b - x)); [ apply Rplus_le_compat_l; apply Rmin_l | ring ]. apply RiemannInt_P1; apply continuity_implies_RiemannInt; auto with real. intros; apply C0; elim H7; intros; split. apply Rle_trans with (x + h0). left; apply Rle_lt_trans with (x - del). - unfold del in |- *; apply Rle_trans with (x - Rmin (b - x) (x - a)). - pattern a at 1 in |- *; replace a with (x + (a - x)); [ idtac | ring ]. - unfold Rminus in |- *; apply Rplus_le_compat_l; apply Ropp_le_cancel. + unfold del; apply Rle_trans with (x - Rmin (b - x) (x - a)). + pattern a at 1; replace a with (x + (a - x)); [ idtac | ring ]. + unfold Rminus; apply Rplus_le_compat_l; apply Ropp_le_cancel. rewrite Ropp_involutive; rewrite Ropp_plus_distr; rewrite Ropp_involutive; rewrite (Rplus_comm x); apply Rmin_r. - unfold Rminus in |- *; apply Rplus_le_compat_l; apply Ropp_le_cancel. + unfold Rminus; apply Rplus_le_compat_l; apply Ropp_le_cancel. do 2 rewrite Ropp_involutive; apply Rmin_r. - unfold Rminus in |- *; apply Rplus_lt_compat_l; apply Ropp_lt_cancel. + unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_cancel. rewrite Ropp_involutive; apply Rle_lt_trans with (Rabs h0); [ rewrite <- Rabs_Ropp; apply RRle_abs | apply H6 ]. assumption. @@ -2659,7 +2659,7 @@ Proof. with ((RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0). replace (RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) with (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))). - unfold Rdiv in |- *; rewrite Rabs_mult; case (Rle_dec x (x + h0)); intro. + unfold Rdiv; rewrite Rabs_mult; case (Rle_dec x (x + h0)); intro. apply Rle_lt_trans with (RiemannInt (RiemannInt_P16 @@ -2678,8 +2678,8 @@ Proof. apply Rabs_pos. apply RiemannInt_P19; try assumption. intros; replace (f x1 + -1 * fct_cte (f x) x1) with (f x1 - f x). - unfold fct_cte in |- *; case (Req_dec x x1); intro. - rewrite H9; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; left; + unfold fct_cte; case (Req_dec x x1); intro. + rewrite H9; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; left; assumption. elim H3; intros; left; apply H11. repeat split. @@ -2690,16 +2690,16 @@ Proof. elim H8; intros; assumption. apply Rplus_le_compat_l; apply Rle_trans with del. left; apply Rle_lt_trans with (Rabs h0); [ apply RRle_abs | assumption ]. - unfold del in |- *; apply Rmin_l. + unfold del; apply Rmin_l. apply Rge_minus; apply Rle_ge; left; elim H8; intros; assumption. - unfold fct_cte in |- *; ring. + unfold fct_cte; ring. rewrite RiemannInt_P15. rewrite Rmult_assoc; replace ((x + h0 - x) * Rabs (/ h0)) with 1. - rewrite Rmult_1_r; unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2; + rewrite Rmult_1_r; unfold Rdiv; apply Rmult_lt_reg_l with 2; [ prove_sup0 | rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; - [ rewrite Rmult_1_l; pattern eps at 1 in |- *; rewrite <- Rplus_0_r; + [ rewrite Rmult_1_l; pattern eps at 1; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ]. rewrite Rabs_right. @@ -2709,7 +2709,7 @@ Proof. apply Rle_ge; left; apply Rinv_0_lt_compat. elim r; intro. apply Rplus_lt_reg_r with x; rewrite Rplus_0_r; assumption. - elim H5; symmetry in |- *; apply Rplus_eq_reg_l with x; rewrite Rplus_0_r; + elim H5; symmetry ; apply Rplus_eq_reg_l with x; rewrite Rplus_0_r; assumption. apply Rle_lt_trans with (RiemannInt @@ -2733,7 +2733,7 @@ Proof. (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))))); auto with real. - symmetry in |- *; apply RiemannInt_P8. + symmetry ; apply RiemannInt_P8. apply Rle_lt_trans with (RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0)). do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l. @@ -2741,8 +2741,8 @@ Proof. apply RiemannInt_P19. auto with real. intros; replace (f x1 + -1 * fct_cte (f x) x1) with (f x1 - f x). - unfold fct_cte in |- *; case (Req_dec x x1); intro. - rewrite H9; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; left; + unfold fct_cte; case (Req_dec x x1); intro. + rewrite H9; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; left; assumption. elim H3; intros; left; apply H11. repeat split. @@ -2752,22 +2752,22 @@ Proof. [ idtac | ring ]. replace (x1 - x0 + - (x1 - x)) with (x - x0); [ idtac | ring ]. apply Rle_lt_trans with (x + h0). - unfold Rminus in |- *; apply Rplus_le_compat_l; apply Ropp_le_cancel. + unfold Rminus; apply Rplus_le_compat_l; apply Ropp_le_cancel. rewrite Ropp_involutive; apply Rle_trans with (Rabs h0). rewrite <- Rabs_Ropp; apply RRle_abs. apply Rle_trans with del; - [ left; assumption | unfold del in |- *; apply Rmin_l ]. + [ left; assumption | unfold del; apply Rmin_l ]. elim H8; intros; assumption. apply Rplus_lt_reg_r with x; rewrite Rplus_0_r; replace (x + (x1 - x)) with x1; [ elim H8; intros; assumption | ring ]. - unfold fct_cte in |- *; ring. + unfold fct_cte; ring. rewrite RiemannInt_P15. rewrite Rmult_assoc; replace ((x - (x + h0)) * Rabs (/ h0)) with 1. - rewrite Rmult_1_r; unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2; + rewrite Rmult_1_r; unfold Rdiv; apply Rmult_lt_reg_l with 2; [ prove_sup0 | rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; - [ rewrite Rmult_1_l; pattern eps at 1 in |- *; rewrite <- Rplus_0_r; + [ rewrite Rmult_1_l; pattern eps at 1; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ]. rewrite Rabs_left. @@ -2784,14 +2784,14 @@ Proof. (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) . ring. - unfold Rdiv, Rminus in |- *; rewrite Rmult_plus_distr_r; ring. + unfold Rdiv, Rminus; rewrite Rmult_plus_distr_r; ring. rewrite RiemannInt_P15; apply Rmult_eq_reg_l with h0; - [ unfold Rdiv in |- *; rewrite (Rmult_comm h0); repeat rewrite Rmult_assoc; + [ unfold Rdiv; rewrite (Rmult_comm h0); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | assumption ] | assumption ]. cut (a <= x + h0). cut (x + h0 <= b). - intros; unfold primitive in |- *. + intros; unfold primitive. case (Rle_dec a (x + h0)); case (Rle_dec (x + h0) b); case (Rle_dec a x); case (Rle_dec x b); intros; try (elim n; assumption || left; assumption). rewrite <- (RiemannInt_P26 (FTC_P1 h C0 r0 r) H7 (FTC_P1 h C0 r2 r1)); ring. @@ -2801,7 +2801,7 @@ Proof. apply RRle_abs. apply Rle_trans with del; [ left; assumption - | unfold del in |- *; apply Rle_trans with (Rmin (b - x) (x - a)); + | unfold del; apply Rle_trans with (Rmin (b - x) (x - a)); [ apply Rmin_r | apply Rmin_l ] ]. apply Ropp_le_cancel; apply Rplus_le_reg_l with x; replace (x + - (x + h0)) with (- h0); [ idtac | ring ]. @@ -2809,7 +2809,7 @@ Proof. [ rewrite <- Rabs_Ropp; apply RRle_abs | apply Rle_trans with del; [ left; assumption - | unfold del in |- *; apply Rle_trans with (Rmin (b - x) (x - a)); + | unfold del; apply Rle_trans with (Rmin (b - x) (x - a)); apply Rmin_r ] ]. Qed. @@ -2826,14 +2826,14 @@ Proof. (f_b := fun x:R => f b * (x - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b))); rewrite H3. assert (H4 : derivable_pt_lim f_b b (f b)). - unfold f_b in |- *; pattern (f b) at 2 in |- *; replace (f b) with (f b + 0). + unfold f_b; pattern (f b) at 2; replace (f b) with (f b + 0). change (derivable_pt_lim ((fct_cte (f b) * (id - fct_cte b))%F + fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b ( - f b + 0)) in |- *. + f b + 0)). apply derivable_pt_lim_plus. - pattern (f b) at 2 in |- *; + pattern (f b) at 2; replace (f b) with (0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1). apply derivable_pt_lim_mult. apply derivable_pt_lim_const. @@ -2841,26 +2841,26 @@ Proof. apply derivable_pt_lim_minus. apply derivable_pt_lim_id. apply derivable_pt_lim_const. - unfold fct_cte in |- *; ring. + unfold fct_cte; ring. apply derivable_pt_lim_const. ring. - unfold derivable_pt_lim in |- *; intros; elim (H4 _ H5); intros; + unfold derivable_pt_lim; intros; elim (H4 _ H5); intros; assert (H7 : continuity_pt f b). apply C0; split; [ left; assumption | right; reflexivity ]. assert (H8 : 0 < eps / 2). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. - elim (H7 _ H8); unfold D_x, no_cond, dist in |- *; simpl in |- *; - unfold R_dist in |- *; intros; set (del := Rmin x0 (Rmin x1 (b - a))); + elim (H7 _ H8); unfold D_x, no_cond, dist; simpl; + unfold R_dist; intros; set (del := Rmin x0 (Rmin x1 (b - a))); assert (H10 : 0 < del). - unfold del in |- *; unfold Rmin in |- *; case (Rle_dec x1 (b - a)); intros. + unfold del; unfold Rmin; case (Rle_dec x1 (b - a)); intros. case (Rle_dec x0 x1); intro; [ apply (cond_pos x0) | elim H9; intros; assumption ]. case (Rle_dec x0 (b - a)); intro; [ apply (cond_pos x0) | apply Rlt_Rminus; assumption ]. split with (mkposreal _ H10); intros; case (Rcase_abs h0); intro. assert (H14 : b + h0 < b). - pattern b at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; + pattern b at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; assumption. assert (H13 : Riemann_integrable f (b + h0) b). apply continuity_implies_RiemannInt. @@ -2874,11 +2874,11 @@ Proof. apply Rle_trans with (Rabs h0). rewrite <- Rabs_Ropp; apply RRle_abs. left; assumption. - unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r. + unfold del; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r. replace (primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) with (- RiemannInt H13). replace (f b) with (- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0). - rewrite <- Rabs_Ropp; unfold Rminus in |- *; unfold Rdiv in |- *; + rewrite <- Rabs_Ropp; unfold Rminus; unfold Rdiv; rewrite Ropp_mult_distr_l_reverse; rewrite Ropp_plus_distr; repeat rewrite Ropp_involutive; replace @@ -2887,7 +2887,7 @@ Proof. ((RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0). replace (RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) with (RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))). - unfold Rdiv in |- *; rewrite Rabs_mult; + unfold Rdiv; rewrite Rabs_mult; apply Rle_lt_trans with (RiemannInt (RiemannInt_P16 @@ -2907,8 +2907,8 @@ Proof. apply RiemannInt_P19. left; assumption. intros; replace (f x2 + -1 * fct_cte (f b) x2) with (f x2 - f b). - unfold fct_cte in |- *; case (Req_dec b x2); intro. - rewrite H16; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + unfold fct_cte; case (Req_dec b x2); intro. + rewrite H16; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; left; assumption. elim H9; intros; left; apply H18. repeat split. @@ -2919,22 +2919,22 @@ Proof. replace (x2 - x1 + x1) with x2; [ idtac | ring ]. apply Rlt_le_trans with (b + h0). 2: elim H15; intros; left; assumption. - unfold Rminus in |- *; apply Rplus_lt_compat_l; apply Ropp_lt_cancel; + unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_cancel; rewrite Ropp_involutive; apply Rle_lt_trans with (Rabs h0). rewrite <- Rabs_Ropp; apply RRle_abs. apply Rlt_le_trans with del; [ assumption - | unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); + | unfold del; apply Rle_trans with (Rmin x1 (b - a)); [ apply Rmin_r | apply Rmin_l ] ]. apply Rle_ge; left; apply Rlt_Rminus; elim H15; intros; assumption. - unfold fct_cte in |- *; ring. + unfold fct_cte; ring. rewrite RiemannInt_P15. rewrite Rmult_assoc; replace ((b - (b + h0)) * Rabs (/ h0)) with 1. - rewrite Rmult_1_r; unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2; + rewrite Rmult_1_r; unfold Rdiv; apply Rmult_lt_reg_l with 2; [ prove_sup0 | rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; - [ rewrite Rmult_1_l; pattern eps at 1 in |- *; rewrite <- Rplus_0_r; + [ rewrite Rmult_1_l; pattern eps at 1; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ]. rewrite Rabs_left. @@ -2948,16 +2948,16 @@ Proof. (RiemannInt_P13 H13 (RiemannInt_P14 (b + h0) b (f b)) (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) ; ring. - unfold Rdiv, Rminus in |- *; rewrite Rmult_plus_distr_r; ring. + unfold Rdiv, Rminus; rewrite Rmult_plus_distr_r; ring. rewrite RiemannInt_P15. rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_eq_reg_l with h0; - [ repeat rewrite (Rmult_comm h0); unfold Rdiv in |- *; + [ repeat rewrite (Rmult_comm h0); unfold Rdiv; repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | assumption ] | assumption ]. cut (a <= b + h0). cut (b + h0 <= b). - intros; unfold primitive in |- *; case (Rle_dec a (b + h0)); + intros; unfold primitive; case (Rle_dec a (b + h0)); case (Rle_dec (b + h0) b); case (Rle_dec a b); case (Rle_dec b b); intros; try (elim n; right; reflexivity) || (elim n; left; assumption). rewrite <- (RiemannInt_P26 (FTC_P1 h C0 r3 r2) H13 (FTC_P1 h C0 r1 r0)); ring. @@ -2970,26 +2970,26 @@ Proof. apply Rle_trans with (Rabs h0). rewrite <- Rabs_Ropp; apply RRle_abs. left; assumption. - unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r. + unfold del; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r. cut (primitive h (FTC_P1 h C0) b = f_b b). intro; cut (primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)). intro; rewrite H13; rewrite H14; apply H6. assumption. apply Rlt_le_trans with del; - [ assumption | unfold del in |- *; apply Rmin_l ]. + [ assumption | unfold del; apply Rmin_l ]. assert (H14 : b < b + h0). - pattern b at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l. + pattern b at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l. assert (H14 := Rge_le _ _ r); elim H14; intro. assumption. - elim H11; symmetry in |- *; assumption. - unfold primitive in |- *; case (Rle_dec a (b + h0)); + elim H11; symmetry ; assumption. + unfold primitive; case (Rle_dec a (b + h0)); case (Rle_dec (b + h0) b); intros; [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r0 H14)) - | unfold f_b in |- *; reflexivity + | unfold f_b; reflexivity | elim n; left; apply Rlt_trans with b; assumption | elim n0; left; apply Rlt_trans with b; assumption ]. - unfold f_b in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r; - rewrite Rmult_0_r; rewrite Rplus_0_l; unfold primitive in |- *; + unfold f_b; unfold Rminus; rewrite Rplus_opp_r; + rewrite Rmult_0_r; rewrite Rplus_0_l; unfold primitive; case (Rle_dec a b); case (Rle_dec b b); intros; [ apply RiemannInt_P5 | elim n; right; reflexivity @@ -2998,9 +2998,9 @@ Proof. (*****) set (f_a := fun x:R => f a * (x - a)); rewrite <- H2; assert (H3 : derivable_pt_lim f_a a (f a)). - unfold f_a in |- *; + unfold f_a; change (derivable_pt_lim (fct_cte (f a) * (id - fct_cte a)%F) a (f a)) - in |- *; pattern (f a) at 2 in |- *; + ; pattern (f a) at 2; replace (f a) with (0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1). apply derivable_pt_lim_mult. apply derivable_pt_lim_const. @@ -3008,18 +3008,18 @@ Proof. apply derivable_pt_lim_minus. apply derivable_pt_lim_id. apply derivable_pt_lim_const. - unfold fct_cte in |- *; ring. - unfold derivable_pt_lim in |- *; intros; elim (H3 _ H4); intros. + unfold fct_cte; ring. + unfold derivable_pt_lim; intros; elim (H3 _ H4); intros. assert (H6 : continuity_pt f a). apply C0; split; [ right; reflexivity | left; assumption ]. assert (H7 : 0 < eps / 2). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. - elim (H6 _ H7); unfold D_x, no_cond, dist in |- *; simpl in |- *; - unfold R_dist in |- *; intros. + elim (H6 _ H7); unfold D_x, no_cond, dist; simpl; + unfold R_dist; intros. set (del := Rmin x0 (Rmin x1 (b - a))). assert (H9 : 0 < del). - unfold del in |- *; unfold Rmin in |- *. + unfold del; unfold Rmin. case (Rle_dec x1 (b - a)); intros. case (Rle_dec x0 x1); intro. apply (cond_pos x0). @@ -3030,9 +3030,9 @@ Proof. split with (mkposreal _ H9). intros; case (Rcase_abs h0); intro. assert (H12 : a + h0 < a). - pattern a at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; + pattern a at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; assumption. - unfold primitive in |- *. + unfold primitive. case (Rle_dec a (a + h0)); case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b); intros; try (elim n; left; assumption) || (elim n; right; reflexivity). @@ -3042,15 +3042,15 @@ Proof. replace (f a * (a + h0 - a)) with (f_a (a + h0)). apply H5; try assumption. apply Rlt_le_trans with del; - [ assumption | unfold del in |- *; apply Rmin_l ]. - unfold f_a in |- *; ring. - unfold f_a in |- *; ring. + [ assumption | unfold del; apply Rmin_l ]. + unfold f_a; ring. + unfold f_a; ring. elim n; left; apply Rlt_trans with a; assumption. assert (H12 : a < a + h0). - pattern a at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l. + pattern a at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l. assert (H12 := Rge_le _ _ r); elim H12; intro. assumption. - elim H10; symmetry in |- *; assumption. + elim H10; symmetry ; assumption. assert (H13 : Riemann_integrable f a (a + h0)). apply continuity_implies_RiemannInt. left; assumption. @@ -3062,7 +3062,7 @@ Proof. apply Ropp_le_cancel; rewrite Ropp_involutive; rewrite Ropp_minus_distr; apply Rle_trans with del. apply Rle_trans with (Rabs h0); [ apply RRle_abs | left; assumption ]. - unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r. + unfold del; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r. replace (primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) with (RiemannInt H13). replace (f a) with (RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0). @@ -3071,7 +3071,7 @@ Proof. with ((RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0). replace (RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) with (RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))). - unfold Rdiv in |- *; rewrite Rabs_mult; + unfold Rdiv; rewrite Rabs_mult; apply Rle_lt_trans with (RiemannInt (RiemannInt_P16 @@ -3091,8 +3091,8 @@ Proof. apply RiemannInt_P19. left; assumption. intros; replace (f x2 + -1 * fct_cte (f a) x2) with (f x2 - f a). - unfold fct_cte in |- *; case (Req_dec a x2); intro. - rewrite H15; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + unfold fct_cte; case (Req_dec a x2); intro. + rewrite H15; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; left; assumption. elim H8; intros; left; apply H17; repeat split. assumption. @@ -3104,42 +3104,42 @@ Proof. apply RRle_abs. apply Rlt_le_trans with del; [ assumption - | unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); + | unfold del; apply Rle_trans with (Rmin x1 (b - a)); [ apply Rmin_r | apply Rmin_l ] ]. apply Rle_ge; left; apply Rlt_Rminus; elim H14; intros; assumption. - unfold fct_cte in |- *; ring. + unfold fct_cte; ring. rewrite RiemannInt_P15. rewrite Rmult_assoc; replace ((a + h0 - a) * Rabs (/ h0)) with 1. - rewrite Rmult_1_r; unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2; + rewrite Rmult_1_r; unfold Rdiv; apply Rmult_lt_reg_l with 2; [ prove_sup0 | rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; - [ rewrite Rmult_1_l; pattern eps at 1 in |- *; rewrite <- Rplus_0_r; + [ rewrite Rmult_1_l; pattern eps at 1; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ]. rewrite Rabs_right. - rewrite Rplus_comm; unfold Rminus in |- *; rewrite Rplus_assoc; + rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_r; rewrite <- Rinv_r_sym; [ reflexivity | assumption ]. apply Rle_ge; left; apply Rinv_0_lt_compat; assert (H14 := Rge_le _ _ r); elim H14; intro. assumption. - elim H10; symmetry in |- *; assumption. + elim H10; symmetry ; assumption. rewrite (RiemannInt_P13 H13 (RiemannInt_P14 a (a + h0) (f a)) (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) ; ring. - unfold Rdiv, Rminus in |- *; rewrite Rmult_plus_distr_r; ring. + unfold Rdiv, Rminus; rewrite Rmult_plus_distr_r; ring. rewrite RiemannInt_P15. - rewrite Rplus_comm; unfold Rminus in |- *; rewrite Rplus_assoc; - rewrite Rplus_opp_r; rewrite Rplus_0_r; unfold Rdiv in |- *; + rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc; + rewrite Rplus_opp_r; rewrite Rplus_0_r; unfold Rdiv; rewrite Rmult_assoc; rewrite <- Rinv_r_sym; [ ring | assumption ]. cut (a <= a + h0). cut (a + h0 <= b). - intros; unfold primitive in |- *; case (Rle_dec a (a + h0)); + intros; unfold primitive; case (Rle_dec a (a + h0)); case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b); intros; try (elim n; right; reflexivity) || (elim n; left; assumption). - rewrite RiemannInt_P9; unfold Rminus in |- *; rewrite Ropp_0; + rewrite RiemannInt_P9; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply RiemannInt_P5. elim n; assumption. elim n; assumption. @@ -3148,15 +3148,15 @@ Proof. [ idtac | ring ]. rewrite Rplus_comm; apply Rle_trans with del; [ apply Rle_trans with (Rabs h0); [ apply RRle_abs | left; assumption ] - | unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r ]. + | unfold del; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r ]. (*****) assert (H1 : x = a). rewrite <- H0 in H; elim H; intros; apply Rle_antisym; assumption. set (f_a := fun x:R => f a * (x - a)). assert (H2 : derivable_pt_lim f_a a (f a)). - unfold f_a in |- *; + unfold f_a; change (derivable_pt_lim (fct_cte (f a) * (id - fct_cte a)%F) a (f a)) - in |- *; pattern (f a) at 2 in |- *; + ; pattern (f a) at 2; replace (f a) with (0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1). apply derivable_pt_lim_mult. apply derivable_pt_lim_const. @@ -3164,18 +3164,18 @@ Proof. apply derivable_pt_lim_minus. apply derivable_pt_lim_id. apply derivable_pt_lim_const. - unfold fct_cte in |- *; ring. + unfold fct_cte; ring. set (f_b := fun x:R => f b * (x - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b))). assert (H3 : derivable_pt_lim f_b b (f b)). - unfold f_b in |- *; pattern (f b) at 2 in |- *; replace (f b) with (f b + 0). + unfold f_b; pattern (f b) at 2; replace (f b) with (f b + 0). change (derivable_pt_lim ((fct_cte (f b) * (id - fct_cte b))%F + fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b ( - f b + 0)) in |- *. + f b + 0)). apply derivable_pt_lim_plus. - pattern (f b) at 2 in |- *; + pattern (f b) at 2; replace (f b) with (0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1). apply derivable_pt_lim_mult. apply derivable_pt_lim_const. @@ -3183,20 +3183,20 @@ Proof. apply derivable_pt_lim_minus. apply derivable_pt_lim_id. apply derivable_pt_lim_const. - unfold fct_cte in |- *; ring. + unfold fct_cte; ring. apply derivable_pt_lim_const. ring. - unfold derivable_pt_lim in |- *; intros; elim (H2 _ H4); intros; + unfold derivable_pt_lim; intros; elim (H2 _ H4); intros; elim (H3 _ H4); intros; set (del := Rmin x0 x1). assert (H7 : 0 < del). - unfold del in |- *; unfold Rmin in |- *; case (Rle_dec x0 x1); intro. + unfold del; unfold Rmin; case (Rle_dec x0 x1); intro. apply (cond_pos x0). apply (cond_pos x1). split with (mkposreal _ H7); intros; case (Rcase_abs h0); intro. assert (H10 : a + h0 < a). - pattern a at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; + pattern a at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; assumption. - rewrite H1; unfold primitive in |- *; case (Rle_dec a (a + h0)); + rewrite H1; unfold primitive; case (Rle_dec a (a + h0)); case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b); intros; try (elim n; right; assumption || reflexivity). elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H10)). @@ -3205,27 +3205,27 @@ Proof. replace (f a * (a + h0 - a)) with (f_a (a + h0)). apply H5; try assumption. apply Rlt_le_trans with del; try assumption. - unfold del in |- *; apply Rmin_l. - unfold f_a in |- *; ring. - unfold f_a in |- *; ring. + unfold del; apply Rmin_l. + unfold f_a; ring. + unfold f_a; ring. elim n; rewrite <- H0; left; assumption. assert (H10 : a < a + h0). - pattern a at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l. + pattern a at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l. assert (H10 := Rge_le _ _ r); elim H10; intro. assumption. - elim H8; symmetry in |- *; assumption. - rewrite H0 in H1; rewrite H1; unfold primitive in |- *; + elim H8; symmetry ; assumption. + rewrite H0 in H1; rewrite H1; unfold primitive; case (Rle_dec a (b + h0)); case (Rle_dec (b + h0) b); case (Rle_dec a b); case (Rle_dec b b); intros; try (elim n; right; assumption || reflexivity). rewrite H0 in H10; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r2 H10)). repeat rewrite RiemannInt_P9. replace (RiemannInt (FTC_P1 h C0 r1 r0)) with (f_b b). - fold (f_b (b + h0)) in |- *. + fold (f_b (b + h0)). apply H6; try assumption. apply Rlt_le_trans with del; try assumption. - unfold del in |- *; apply Rmin_r. - unfold f_b in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r; + unfold del; apply Rmin_r. + unfold f_b; unfold Rminus; rewrite Rplus_opp_r; rewrite Rmult_0_r; rewrite Rplus_0_l; apply RiemannInt_P5. elim n; rewrite <- H0; left; assumption. elim n0; rewrite <- H0; left; assumption. @@ -3236,11 +3236,11 @@ Lemma RiemannInt_P29 : (C0:forall x:R, a <= x <= b -> continuity_pt f x), antiderivative f (primitive h (FTC_P1 h C0)) a b. Proof. - intro f; intros; unfold antiderivative in |- *; split; try assumption; intros; + intro f; intros; unfold antiderivative; split; try assumption; intros; assert (H0 := RiemannInt_P28 h C0 H); assert (H1 : derivable_pt (primitive h (FTC_P1 h C0)) x); - [ unfold derivable_pt in |- *; split with (f x); apply H0 - | split with H1; symmetry in |- *; apply derive_pt_eq_0; apply H0 ]. + [ unfold derivable_pt; split with (f x); apply H0 + | split with H1; symmetry ; apply derive_pt_eq_0; apply H0 ]. Qed. Lemma RiemannInt_P30 : @@ -3259,7 +3259,7 @@ Lemma RiemannInt_P31 : forall (f:C1_fun) (a b:R), a <= b -> antiderivative (derive f (diff0 f)) f a b. Proof. - intro f; intros; unfold antiderivative in |- *; split; try assumption; intros; + intro f; intros; unfold antiderivative; split; try assumption; intros; split with (diff0 f x); reflexivity. Qed. diff --git a/theories/Reals/RiemannInt_SF.v b/theories/Reals/RiemannInt_SF.v index d16e7f2c..d523a1f4 100644 --- a/theories/Reals/RiemannInt_SF.v +++ b/theories/Reals/RiemannInt_SF.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Prop) : Prop := exists n : nat, (forall i:nat, I i -> (i <= n)%nat). -Lemma IZN_var : forall z:Z, (0 <= z)%Z -> {n : nat | z = Z_of_nat n}. +Lemma IZN_var : forall z:Z, (0 <= z)%Z -> {n : nat | z = Z.of_nat n}. Proof. intros; apply Z_of_nat_complete_inf; assumption. Qed. @@ -33,19 +33,19 @@ Lemma Nzorn : Proof. intros I H H0; set (E := fun x:R => exists i : nat, I i /\ INR i = x); assert (H1 : bound E). - unfold Nbound in H0; elim H0; intros N H1; unfold bound in |- *; - exists (INR N); unfold is_upper_bound in |- *; intros; + unfold Nbound in H0; elim H0; intros N H1; unfold bound; + exists (INR N); unfold is_upper_bound; intros; unfold E in H2; elim H2; intros; elim H3; intros; rewrite <- H5; apply le_INR; apply H1; assumption. assert (H2 : exists x : R, E x). - elim H; intros; exists (INR x); unfold E in |- *; exists x; split; + elim H; intros; exists (INR x); unfold E; exists x; split; [ assumption | reflexivity ]. assert (H3 := completeness E H1 H2); elim H3; intros; unfold is_lub in p; elim p; clear p; intros; unfold is_upper_bound in H4, H5; assert (H6 : 0 <= x). elim H2; intros; unfold E in H6; elim H6; intros; elim H7; intros; apply Rle_trans with x0; - [ rewrite <- H9; change (INR 0 <= INR x1) in |- *; apply le_INR; + [ rewrite <- H9; change (INR 0 <= INR x1); apply le_INR; apply le_O_n | apply H4; assumption ]. assert (H7 := archimed x); elim H7; clear H7; intros; @@ -88,7 +88,7 @@ Proof. [ idtac | reflexivity ]; rewrite <- minus_INR. replace (x0 - 1)%nat with (pred x0); [ reflexivity - | case x0; [ reflexivity | intro; simpl in |- *; apply minus_n_O ] ]. + | case x0; [ reflexivity | intro; simpl; apply minus_n_O ] ]. induction x0 as [| x0 Hrecx0]; [ rewrite p in H7; rewrite <- INR_IZR_INZ in H7; simpl in H7; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H6 H7)) @@ -99,10 +99,10 @@ Proof. assert (H16 : INR x0 = INR x1 + 1). rewrite H15; ring. rewrite <- S_INR in H16; assert (H17 := INR_eq _ _ H16); rewrite H17; - simpl in |- *; split. + simpl; split. assumption. intros; apply INR_le; rewrite H15; rewrite <- H15; elim H12; intros; - rewrite H20; apply H4; unfold E in |- *; exists i; + rewrite H20; apply H4; unfold E; exists i; split; [ assumption | reflexivity ]. Qed. @@ -173,7 +173,7 @@ Lemma StepFun_P1 : forall (a b:R) (f:StepFun a b), adapted_couple f a b (subdivision f) (subdivision_val f). Proof. - intros a b f; unfold subdivision_val in |- *; case (projT2 (pre f)); intros; + intros a b f; unfold subdivision_val; case (projT2 (pre f)); intros; apply a0. Qed. @@ -181,13 +181,13 @@ Lemma StepFun_P2 : forall (a b:R) (f:R -> R) (l lf:Rlist), adapted_couple f a b l lf -> adapted_couple f b a l lf. Proof. - unfold adapted_couple in |- *; intros; decompose [and] H; clear H; + unfold adapted_couple; intros; decompose [and] H; clear H; repeat split; try assumption. - rewrite H2; unfold Rmin in |- *; case (Rle_dec a b); intro; + rewrite H2; unfold Rmin; case (Rle_dec a b); intro; case (Rle_dec b a); intro; try reflexivity. apply Rle_antisym; assumption. apply Rle_antisym; auto with real. - rewrite H1; unfold Rmax in |- *; case (Rle_dec a b); intro; + rewrite H1; unfold Rmax; case (Rle_dec a b); intro; case (Rle_dec b a); intro; try reflexivity. apply Rle_antisym; assumption. apply Rle_antisym; auto with real. @@ -198,23 +198,23 @@ Lemma StepFun_P3 : a <= b -> adapted_couple (fct_cte c) a b (cons a (cons b nil)) (cons c nil). Proof. - intros; unfold adapted_couple in |- *; repeat split. - unfold ordered_Rlist in |- *; intros; simpl in H0; inversion H0; - [ simpl in |- *; assumption | elim (le_Sn_O _ H2) ]. - simpl in |- *; unfold Rmin in |- *; case (Rle_dec a b); intro; + intros; unfold adapted_couple; repeat split. + unfold ordered_Rlist; intros; simpl in H0; inversion H0; + [ simpl; assumption | elim (le_Sn_O _ H2) ]. + simpl; unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. - simpl in |- *; unfold Rmax in |- *; case (Rle_dec a b); intro; + simpl; unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. - unfold constant_D_eq, open_interval in |- *; intros; simpl in H0; + unfold constant_D_eq, open_interval; intros; simpl in H0; inversion H0; [ reflexivity | elim (le_Sn_O _ H3) ]. Qed. Lemma StepFun_P4 : forall a b c:R, IsStepFun (fct_cte c) a b. Proof. - intros; unfold IsStepFun in |- *; case (Rle_dec a b); intro. - apply existT with (cons a (cons b nil)); unfold is_subdivision in |- *; + intros; unfold IsStepFun; case (Rle_dec a b); intro. + apply existT with (cons a (cons b nil)); unfold is_subdivision; apply existT with (cons c nil); apply (StepFun_P3 c r). - apply existT with (cons b (cons a nil)); unfold is_subdivision in |- *; + apply existT with (cons b (cons a nil)); unfold is_subdivision; apply existT with (cons c nil); apply StepFun_P2; apply StepFun_P3; auto with real. Qed. @@ -232,7 +232,7 @@ Qed. Lemma StepFun_P6 : forall (f:R -> R) (a b:R), IsStepFun f a b -> IsStepFun f b a. Proof. - unfold IsStepFun in |- *; intros; elim X; intros; apply existT with x; + unfold IsStepFun; intros; elim X; intros; apply existT with x; apply StepFun_P5; assumption. Qed. @@ -242,26 +242,26 @@ Lemma StepFun_P7 : adapted_couple f a b (cons r1 (cons r2 l)) (cons r3 lf) -> adapted_couple f r2 b (cons r2 l) lf. Proof. - unfold adapted_couple in |- *; intros; decompose [and] H0; clear H0; + unfold adapted_couple; intros; decompose [and] H0; clear H0; assert (H5 : Rmax a b = b). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. assert (H7 : r2 <= b). rewrite H5 in H2; rewrite <- H2; apply RList_P7; - [ assumption | simpl in |- *; right; left; reflexivity ]. + [ assumption | simpl; right; left; reflexivity ]. repeat split. apply RList_P4 with r1; assumption. - rewrite H5 in H2; unfold Rmin in |- *; case (Rle_dec r2 b); intro; + rewrite H5 in H2; unfold Rmin; case (Rle_dec r2 b); intro; [ reflexivity | elim n; assumption ]. - unfold Rmax in |- *; case (Rle_dec r2 b); intro; + unfold Rmax; case (Rle_dec r2 b); intro; [ rewrite H5 in H2; rewrite <- H2; reflexivity | elim n; assumption ]. - simpl in H4; simpl in |- *; apply INR_eq; apply Rplus_eq_reg_l with 1; + simpl in H4; simpl; apply INR_eq; apply Rplus_eq_reg_l with 1; do 2 rewrite (Rplus_comm 1); do 2 rewrite <- S_INR; rewrite H4; reflexivity. - intros; unfold constant_D_eq, open_interval in |- *; intros; + intros; unfold constant_D_eq, open_interval; intros; unfold constant_D_eq, open_interval in H6; assert (H9 : (S i < pred (Rlength (cons r1 (cons r2 l))))%nat). - simpl in |- *; simpl in H0; apply lt_n_S; assumption. + simpl; simpl in H0; apply lt_n_S; assumption. assert (H10 := H6 _ H9); apply H10; assumption. Qed. @@ -278,19 +278,19 @@ Proof. discriminate. intros; induction lf1 as [| r3 lf1 Hreclf1]. reflexivity. - simpl in |- *; cut (r = r1). + simpl; cut (r = r1). intro; rewrite H3; rewrite (H0 lf1 r b). ring. rewrite H3; apply StepFun_P7 with a r r3; [ right; assumption | assumption ]. clear H H0 Hreclf1 r0; unfold adapted_couple in H1; decompose [and] H1; - intros; simpl in H4; rewrite H4; unfold Rmin in |- *; + intros; simpl in H4; rewrite H4; unfold Rmin; case (Rle_dec a b); intro; [ assumption | reflexivity ]. unfold adapted_couple in H1; decompose [and] H1; intros; apply Rle_antisym. - apply (H3 0%nat); simpl in |- *; apply lt_O_Sn. + apply (H3 0%nat); simpl; apply lt_O_Sn. simpl in H5; rewrite H2 in H5; rewrite H5; replace (Rmin b b) with (Rmax a b); [ rewrite <- H4; apply RList_P7; - [ assumption | simpl in |- *; right; left; reflexivity ] - | unfold Rmin, Rmax in |- *; case (Rle_dec b b); case (Rle_dec a b); intros; + [ assumption | simpl; right; left; reflexivity ] + | unfold Rmin, Rmax; case (Rle_dec b b); case (Rle_dec a b); intros; try assumption || reflexivity ]. Qed. @@ -303,10 +303,10 @@ Proof. [ simpl in H4; discriminate | induction l as [| r0 l Hrecl0]; [ simpl in H3; simpl in H2; generalize H3; generalize H2; - unfold Rmin, Rmax in |- *; case (Rle_dec a b); + unfold Rmin, Rmax; case (Rle_dec a b); intros; elim H0; rewrite <- H5; rewrite <- H7; reflexivity - | simpl in |- *; do 2 apply le_n_S; apply le_O_n ] ]. + | simpl; do 2 apply le_n_S; apply le_O_n ] ]. Qed. Lemma StepFun_P10 : @@ -320,12 +320,12 @@ Proof. intros; unfold adapted_couple in H0; decompose [and] H0; simpl in H4; discriminate. intros; case (Req_dec a b); intro. - exists (cons a nil); exists nil; unfold adapted_couple_opt in |- *; - unfold adapted_couple in |- *; unfold ordered_Rlist in |- *; + exists (cons a nil); exists nil; unfold adapted_couple_opt; + unfold adapted_couple; unfold ordered_Rlist; repeat split; try (intros; simpl in H3; elim (lt_n_O _ H3)). - simpl in |- *; rewrite <- H2; unfold Rmin in |- *; case (Rle_dec a a); intro; + simpl; rewrite <- H2; unfold Rmin; case (Rle_dec a a); intro; reflexivity. - simpl in |- *; rewrite <- H2; unfold Rmax in |- *; case (Rle_dec a a); intro; + simpl; rewrite <- H2; unfold Rmax; case (Rle_dec a a); intro; reflexivity. elim (RList_P20 _ (StepFun_P9 H1 H2)); intros t1 [t2 [t3 H3]]; induction lf as [| r1 lf Hreclf]. @@ -340,32 +340,32 @@ Proof. apply H6. rewrite <- Hyp_eq; rewrite H3 in H1; unfold adapted_couple in H1; decompose [and] H1; clear H1; simpl in H9; rewrite H9; - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. elim H6; clear H6; intros l' [lf' H6]; case (Req_dec t2 b); intro. exists (cons a (cons b nil)); exists (cons r1 nil); - unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *; + unfold adapted_couple_opt; unfold adapted_couple; repeat split. - unfold ordered_Rlist in |- *; intros; simpl in H8; inversion H8; - [ simpl in |- *; assumption | elim (le_Sn_O _ H10) ]. - simpl in |- *; unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold ordered_Rlist; intros; simpl in H8; inversion H8; + [ simpl; assumption | elim (le_Sn_O _ H10) ]. + simpl; unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. - simpl in |- *; unfold Rmax in |- *; case (Rle_dec a b); intro; + simpl; unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. intros; simpl in H8; inversion H8. - unfold constant_D_eq, open_interval in |- *; intros; simpl in |- *; + unfold constant_D_eq, open_interval; intros; simpl; simpl in H9; rewrite H3 in H1; unfold adapted_couple in H1; decompose [and] H1; apply (H16 0%nat). - simpl in |- *; apply lt_O_Sn. - unfold open_interval in |- *; simpl in |- *; rewrite H7; simpl in H13; - rewrite H13; unfold Rmin in |- *; case (Rle_dec a b); + simpl; apply lt_O_Sn. + unfold open_interval; simpl; rewrite H7; simpl in H13; + rewrite H13; unfold Rmin; case (Rle_dec a b); intro; [ assumption | elim n; assumption ]. elim (le_Sn_O _ H10). intros; simpl in H8; elim (lt_n_O _ H8). intros; simpl in H8; inversion H8; - [ simpl in |- *; assumption | elim (le_Sn_O _ H10) ]. + [ simpl; assumption | elim (le_Sn_O _ H10) ]. assert (Hyp_min : Rmin t2 b = t2). - unfold Rmin in |- *; case (Rle_dec t2 b); intro; + unfold Rmin; case (Rle_dec t2 b); intro; [ reflexivity | elim n; assumption ]. unfold adapted_couple in H6; elim H6; clear H6; intros; elim (RList_P20 _ (StepFun_P9 H6 H7)); intros s1 [s2 [s3 H9]]; @@ -377,141 +377,141 @@ Proof. exists (cons t1 (cons s2 s3)); exists (cons r1 lf'); rewrite H3 in H1; rewrite H9 in H6; unfold adapted_couple in H6, H1; decompose [and] H1; decompose [and] H6; clear H1 H6; - unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *; + unfold adapted_couple_opt; unfold adapted_couple; repeat split. - unfold ordered_Rlist in |- *; intros; simpl in H1; + unfold ordered_Rlist; intros; simpl in H1; induction i as [| i Hreci]. - simpl in |- *; apply Rle_trans with s1. + simpl; apply Rle_trans with s1. replace s1 with t2. apply (H12 0%nat). - simpl in |- *; apply lt_O_Sn. - simpl in H19; rewrite H19; symmetry in |- *; apply Hyp_min. - apply (H16 0%nat); simpl in |- *; apply lt_O_Sn. - change (pos_Rl (cons s2 s3) i <= pos_Rl (cons s2 s3) (S i)) in |- *; - apply (H16 (S i)); simpl in |- *; assumption. - simpl in |- *; simpl in H14; rewrite H14; reflexivity. - simpl in |- *; simpl in H18; rewrite H18; unfold Rmax in |- *; + simpl; apply lt_O_Sn. + simpl in H19; rewrite H19; symmetry ; apply Hyp_min. + apply (H16 0%nat); simpl; apply lt_O_Sn. + change (pos_Rl (cons s2 s3) i <= pos_Rl (cons s2 s3) (S i)); + apply (H16 (S i)); simpl; assumption. + simpl; simpl in H14; rewrite H14; reflexivity. + simpl; simpl in H18; rewrite H18; unfold Rmax; case (Rle_dec a b); case (Rle_dec t2 b); intros; reflexivity || elim n; assumption. - simpl in |- *; simpl in H20; apply H20. - intros; simpl in H1; unfold constant_D_eq, open_interval in |- *; intros; + simpl; simpl in H20; apply H20. + intros; simpl in H1; unfold constant_D_eq, open_interval; intros; induction i as [| i Hreci]. - simpl in |- *; simpl in H6; case (total_order_T x t2); intro. + simpl; simpl in H6; case (total_order_T x t2); intro. elim s; intro. apply (H17 0%nat); - [ simpl in |- *; apply lt_O_Sn - | unfold open_interval in |- *; simpl in |- *; elim H6; intros; split; + [ simpl; apply lt_O_Sn + | unfold open_interval; simpl; elim H6; intros; split; assumption ]. rewrite b0; assumption. rewrite H10; apply (H22 0%nat); - [ simpl in |- *; apply lt_O_Sn - | unfold open_interval in |- *; simpl in |- *; replace s1 with t2; + [ simpl; apply lt_O_Sn + | unfold open_interval; simpl; replace s1 with t2; [ elim H6; intros; split; assumption | simpl in H19; rewrite H19; rewrite Hyp_min; reflexivity ] ]. - simpl in |- *; simpl in H6; apply (H22 (S i)); - [ simpl in |- *; assumption - | unfold open_interval in |- *; simpl in |- *; apply H6 ]. + simpl; simpl in H6; apply (H22 (S i)); + [ simpl; assumption + | unfold open_interval; simpl; apply H6 ]. intros; simpl in H1; rewrite H10; change (pos_Rl (cons r2 lf') i <> pos_Rl (cons r2 lf') (S i) \/ f (pos_Rl (cons s1 (cons s2 s3)) (S i)) <> pos_Rl (cons r2 lf') i) - in |- *; rewrite <- H9; elim H8; intros; apply H6; - simpl in |- *; apply H1. + ; rewrite <- H9; elim H8; intros; apply H6; + simpl; apply H1. intros; induction i as [| i Hreci]. - simpl in |- *; red in |- *; intro; elim Hyp_eq; apply Rle_antisym. - apply (H12 0%nat); simpl in |- *; apply lt_O_Sn. + simpl; red; intro; elim Hyp_eq; apply Rle_antisym. + apply (H12 0%nat); simpl; apply lt_O_Sn. rewrite <- Hyp_min; rewrite H6; simpl in H19; rewrite <- H19; - apply (H16 0%nat); simpl in |- *; apply lt_O_Sn. - elim H8; intros; rewrite H9 in H21; apply (H21 (S i)); simpl in |- *; + apply (H16 0%nat); simpl; apply lt_O_Sn. + elim H8; intros; rewrite H9 in H21; apply (H21 (S i)); simpl; simpl in H1; apply H1. exists (cons t1 l'); exists (cons r1 (cons r2 lf')); rewrite H9 in H6; rewrite H3 in H1; unfold adapted_couple in H1, H6; decompose [and] H6; decompose [and] H1; clear H6 H1; - unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *; + unfold adapted_couple_opt; unfold adapted_couple; repeat split. - rewrite H9; unfold ordered_Rlist in |- *; intros; simpl in H1; + rewrite H9; unfold ordered_Rlist; intros; simpl in H1; induction i as [| i Hreci]. - simpl in |- *; replace s1 with t2. - apply (H16 0%nat); simpl in |- *; apply lt_O_Sn. + simpl; replace s1 with t2. + apply (H16 0%nat); simpl; apply lt_O_Sn. simpl in H14; rewrite H14; rewrite Hyp_min; reflexivity. change (pos_Rl (cons s1 (cons s2 s3)) i <= pos_Rl (cons s1 (cons s2 s3)) (S i)) - in |- *; apply (H12 i); simpl in |- *; apply lt_S_n; + ; apply (H12 i); simpl; apply lt_S_n; assumption. - simpl in |- *; simpl in H19; apply H19. - rewrite H9; simpl in |- *; simpl in H13; rewrite H13; unfold Rmax in |- *; + simpl; simpl in H19; apply H19. + rewrite H9; simpl; simpl in H13; rewrite H13; unfold Rmax; case (Rle_dec t2 b); case (Rle_dec a b); intros; reflexivity || elim n; assumption. - rewrite H9; simpl in |- *; simpl in H15; rewrite H15; reflexivity. - intros; simpl in H1; unfold constant_D_eq, open_interval in |- *; intros; + rewrite H9; simpl; simpl in H15; rewrite H15; reflexivity. + intros; simpl in H1; unfold constant_D_eq, open_interval; intros; induction i as [| i Hreci]. - simpl in |- *; rewrite H9 in H6; simpl in H6; apply (H22 0%nat). - simpl in |- *; apply lt_O_Sn. - unfold open_interval in |- *; simpl in |- *. + simpl; rewrite H9 in H6; simpl in H6; apply (H22 0%nat). + simpl; apply lt_O_Sn. + unfold open_interval; simpl. replace t2 with s1. assumption. simpl in H14; rewrite H14; rewrite Hyp_min; reflexivity. - change (f x = pos_Rl (cons r2 lf') i) in |- *; clear Hreci; apply (H17 i). - simpl in |- *; rewrite H9 in H1; simpl in H1; apply lt_S_n; apply H1. - rewrite H9 in H6; unfold open_interval in |- *; apply H6. + change (f x = pos_Rl (cons r2 lf') i); clear Hreci; apply (H17 i). + simpl; rewrite H9 in H1; simpl in H1; apply lt_S_n; apply H1. + rewrite H9 in H6; unfold open_interval; apply H6. intros; simpl in H1; induction i as [| i Hreci]. - simpl in |- *; rewrite H9; right; simpl in |- *; replace s1 with t2. + simpl; rewrite H9; right; simpl; replace s1 with t2. assumption. simpl in H14; rewrite H14; rewrite Hyp_min; reflexivity. elim H8; intros; apply (H6 i). - simpl in |- *; apply lt_S_n; apply H1. + simpl; apply lt_S_n; apply H1. intros; rewrite H9; induction i as [| i Hreci]. - simpl in |- *; red in |- *; intro; elim Hyp_eq; apply Rle_antisym. - apply (H16 0%nat); simpl in |- *; apply lt_O_Sn. + simpl; red; intro; elim Hyp_eq; apply Rle_antisym. + apply (H16 0%nat); simpl; apply lt_O_Sn. rewrite <- Hyp_min; rewrite H6; simpl in H14; rewrite <- H14; right; reflexivity. elim H8; intros; rewrite <- H9; apply (H21 i); rewrite H9; rewrite H9 in H1; - simpl in |- *; simpl in H1; apply lt_S_n; apply H1. + simpl; simpl in H1; apply lt_S_n; apply H1. exists (cons t1 l'); exists (cons r1 (cons r2 lf')); rewrite H9 in H6; rewrite H3 in H1; unfold adapted_couple in H1, H6; decompose [and] H6; decompose [and] H1; clear H6 H1; - unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *; + unfold adapted_couple_opt; unfold adapted_couple; repeat split. - rewrite H9; unfold ordered_Rlist in |- *; intros; simpl in H1; + rewrite H9; unfold ordered_Rlist; intros; simpl in H1; induction i as [| i Hreci]. - simpl in |- *; replace s1 with t2. - apply (H15 0%nat); simpl in |- *; apply lt_O_Sn. + simpl; replace s1 with t2. + apply (H15 0%nat); simpl; apply lt_O_Sn. simpl in H13; rewrite H13; rewrite Hyp_min; reflexivity. change (pos_Rl (cons s1 (cons s2 s3)) i <= pos_Rl (cons s1 (cons s2 s3)) (S i)) - in |- *; apply (H11 i); simpl in |- *; apply lt_S_n; + ; apply (H11 i); simpl; apply lt_S_n; assumption. - simpl in |- *; simpl in H18; apply H18. - rewrite H9; simpl in |- *; simpl in H12; rewrite H12; unfold Rmax in |- *; + simpl; simpl in H18; apply H18. + rewrite H9; simpl; simpl in H12; rewrite H12; unfold Rmax; case (Rle_dec t2 b); case (Rle_dec a b); intros; reflexivity || elim n; assumption. - rewrite H9; simpl in |- *; simpl in H14; rewrite H14; reflexivity. - intros; simpl in H1; unfold constant_D_eq, open_interval in |- *; intros; + rewrite H9; simpl; simpl in H14; rewrite H14; reflexivity. + intros; simpl in H1; unfold constant_D_eq, open_interval; intros; induction i as [| i Hreci]. - simpl in |- *; rewrite H9 in H6; simpl in H6; apply (H21 0%nat). - simpl in |- *; apply lt_O_Sn. - unfold open_interval in |- *; simpl in |- *; replace t2 with s1. + simpl; rewrite H9 in H6; simpl in H6; apply (H21 0%nat). + simpl; apply lt_O_Sn. + unfold open_interval; simpl; replace t2 with s1. assumption. simpl in H13; rewrite H13; rewrite Hyp_min; reflexivity. - change (f x = pos_Rl (cons r2 lf') i) in |- *; clear Hreci; apply (H16 i). - simpl in |- *; rewrite H9 in H1; simpl in H1; apply lt_S_n; apply H1. - rewrite H9 in H6; unfold open_interval in |- *; apply H6. + change (f x = pos_Rl (cons r2 lf') i); clear Hreci; apply (H16 i). + simpl; rewrite H9 in H1; simpl in H1; apply lt_S_n; apply H1. + rewrite H9 in H6; unfold open_interval; apply H6. intros; simpl in H1; induction i as [| i Hreci]. - simpl in |- *; left; assumption. + simpl; left; assumption. elim H8; intros; apply (H6 i). - simpl in |- *; apply lt_S_n; apply H1. + simpl; apply lt_S_n; apply H1. intros; rewrite H9; induction i as [| i Hreci]. - simpl in |- *; red in |- *; intro; elim Hyp_eq; apply Rle_antisym. - apply (H15 0%nat); simpl in |- *; apply lt_O_Sn. + simpl; red; intro; elim Hyp_eq; apply Rle_antisym. + apply (H15 0%nat); simpl; apply lt_O_Sn. rewrite <- Hyp_min; rewrite H6; simpl in H13; rewrite <- H13; right; reflexivity. elim H8; intros; rewrite <- H9; apply (H20 i); rewrite H9; rewrite H9 in H1; - simpl in |- *; simpl in H1; apply lt_S_n; apply H1. + simpl; simpl in H1; apply lt_S_n; apply H1. rewrite H3 in H1; clear H4; unfold adapted_couple in H1; decompose [and] H1; clear H1; clear H H7 H9; cut (Rmax a b = b); [ intro; rewrite H in H5; rewrite <- H5; apply RList_P7; - [ assumption | simpl in |- *; right; left; reflexivity ] - | unfold Rmax in |- *; case (Rle_dec a b); intro; + [ assumption | simpl; right; left; reflexivity ] + | unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ] ]. Qed. @@ -534,7 +534,7 @@ Proof. simpl in H9; rewrite H9 in H16; cut (r1 <= Rmax a b). intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H17 H16)). rewrite <- H4; apply RList_P7; - [ assumption | simpl in |- *; right; left; reflexivity ]. + [ assumption | simpl; right; left; reflexivity ]. clear Hrecs3; induction lf2 as [| r5 lf2 Hreclf2]. simpl in H11; discriminate. clear Hreclf2; assert (H17 : r3 = r4). @@ -544,31 +544,31 @@ Proof. simpl in H18; rewrite <- (H17 x). rewrite <- (H18 x). reflexivity. - rewrite <- H12; unfold x in |- *; split. + rewrite <- H12; unfold x; split. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ]. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite (Rplus_comm r); rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ]. - unfold x in |- *; split. + unfold x; split. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ]. apply Rlt_trans with s2; [ apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite (Rplus_comm r); rewrite double; apply Rplus_lt_compat_l; assumption @@ -576,8 +576,8 @@ Proof. | assumption ]. assert (H18 : f s2 = r3). apply (H8 0%nat); - [ simpl in |- *; apply lt_O_Sn - | unfold open_interval in |- *; simpl in |- *; split; assumption ]. + [ simpl; apply lt_O_Sn + | unfold open_interval; simpl; split; assumption ]. assert (H19 : r3 = r5). assert (H19 := H7 1%nat); simpl in H19; assert (H20 := H19 (lt_n_S _ _ (lt_O_Sn _))); elim H20; @@ -587,18 +587,18 @@ Proof. rewrite <- (H22 (lt_O_Sn _) x). rewrite <- (H23 (lt_n_S _ _ (lt_O_Sn _)) x). reflexivity. - unfold open_interval in |- *; simpl in |- *; unfold x in |- *; split. + unfold open_interval; simpl; unfold x; split. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; - unfold Rmin in |- *; case (Rle_dec r1 r0); intro; + unfold Rmin; case (Rle_dec r1 r0); intro; assumption | discrR ] ]. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rlt_le_trans with (r0 + Rmin r1 r0); @@ -606,20 +606,20 @@ Proof. assumption | apply Rplus_le_compat_l; apply Rmin_r ] | discrR ] ]. - unfold open_interval in |- *; simpl in |- *; unfold x in |- *; split. + unfold open_interval; simpl; unfold x; split. apply Rlt_trans with s2; [ assumption | apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; - unfold Rmin in |- *; case (Rle_dec r1 r0); + unfold Rmin; case (Rle_dec r1 r0); intro; assumption | discrR ] ] ]. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rlt_le_trans with (r1 + Rmin r1 r0); @@ -636,20 +636,20 @@ Proof. | elim H24; rewrite <- H17; assumption ]. elim H2; clear H2; intros; assert (H17 := H16 0%nat); simpl in H17; elim (H17 (lt_O_Sn _)); assumption. - rewrite <- H0; rewrite H12; apply (H7 0%nat); simpl in |- *; apply lt_O_Sn. + rewrite <- H0; rewrite H12; apply (H7 0%nat); simpl; apply lt_O_Sn. Qed. Lemma StepFun_P12 : forall (a b:R) (f:R -> R) (l lf:Rlist), adapted_couple_opt f a b l lf -> adapted_couple_opt f b a l lf. Proof. - unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *; intros; + unfold adapted_couple_opt; unfold adapted_couple; intros; decompose [and] H; clear H; repeat split; try assumption. - rewrite H0; unfold Rmin in |- *; case (Rle_dec a b); intro; + rewrite H0; unfold Rmin; case (Rle_dec a b); intro; case (Rle_dec b a); intro; try reflexivity. apply Rle_antisym; assumption. apply Rle_antisym; auto with real. - rewrite H3; unfold Rmax in |- *; case (Rle_dec a b); intro; + rewrite H3; unfold Rmax; case (Rle_dec a b); intro; case (Rle_dec b a); intro; try reflexivity. apply Rle_antisym; assumption. apply Rle_antisym; auto with real. @@ -689,10 +689,10 @@ Proof. case (Req_dec a b); intro. rewrite (StepFun_P8 H2 H4); rewrite (StepFun_P8 H H4); reflexivity. assert (Hyp_min : Rmin a b = a). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. assert (Hyp_max : Rmax a b = b). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. elim (RList_P20 _ (StepFun_P9 H H4)); intros s1 [s2 [s3 H5]]; rewrite H5 in H; rewrite H5; induction lf1 as [| r3 lf1 Hreclf1]. @@ -716,34 +716,34 @@ Proof. rewrite <- (H20 (lt_O_Sn _) x). reflexivity. assert (H21 := H13 0%nat (lt_O_Sn _)); simpl in H21; elim H21; intro; - [ idtac | elim H7; assumption ]; unfold x in |- *; + [ idtac | elim H7; assumption ]; unfold x; split. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; apply H | discrR ] ]. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite <- (Rplus_comm r1); rewrite double; apply Rplus_lt_compat_l; apply H | discrR ] ]. rewrite <- H6; assert (H21 := H13 0%nat (lt_O_Sn _)); simpl in H21; elim H21; - intro; [ idtac | elim H7; assumption ]; unfold x in |- *; + intro; [ idtac | elim H7; assumption ]; unfold x; split. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; apply H | discrR ] ]. apply Rlt_le_trans with r1; [ apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite <- (Rplus_comm r1); rewrite double; apply Rplus_lt_compat_l; apply H @@ -752,64 +752,64 @@ Proof. eapply StepFun_P13. apply H4. apply H2. - unfold adapted_couple_opt in |- *; split. + unfold adapted_couple_opt; split. apply H. rewrite H5 in H3; apply H3. assert (H8 : r1 <= s2). eapply StepFun_P13. apply H4. apply H2. - unfold adapted_couple_opt in |- *; split. + unfold adapted_couple_opt; split. apply H. rewrite H5 in H3; apply H3. elim H7; intro. - simpl in |- *; elim H8; intro. + simpl; elim H8; intro. replace (r4 * (s2 - s1)) with (r3 * (r1 - r) + r3 * (s2 - r1)); [ idtac | rewrite H9; rewrite H6; ring ]. rewrite Rplus_assoc; apply Rplus_eq_compat_l; change (Int_SF lf1 (cons r1 r2) = Int_SF (cons r3 lf2) (cons r1 (cons s2 s3))) - in |- *; apply H0 with r1 b. + ; apply H0 with r1 b. unfold adapted_couple in H2; decompose [and] H2; clear H2; replace b with (Rmax a b). rewrite <- H12; apply RList_P7; - [ assumption | simpl in |- *; right; left; reflexivity ]. + [ assumption | simpl; right; left; reflexivity ]. eapply StepFun_P7. apply H1. apply H2. - unfold adapted_couple_opt in |- *; split. + unfold adapted_couple_opt; split. apply StepFun_P7 with a a r3. apply H1. unfold adapted_couple in H2, H; decompose [and] H2; decompose [and] H; clear H H2; assert (H20 : r = a). simpl in H13; rewrite H13; apply Hyp_min. - unfold adapted_couple in |- *; repeat split. - unfold ordered_Rlist in |- *; intros; simpl in H; induction i as [| i Hreci]. - simpl in |- *; rewrite <- H20; apply (H11 0%nat). - simpl in |- *; apply lt_O_Sn. + unfold adapted_couple; repeat split. + unfold ordered_Rlist; intros; simpl in H; induction i as [| i Hreci]. + simpl; rewrite <- H20; apply (H11 0%nat). + simpl; apply lt_O_Sn. induction i as [| i Hreci0]. - simpl in |- *; assumption. - change (pos_Rl (cons s2 s3) i <= pos_Rl (cons s2 s3) (S i)) in |- *; - apply (H15 (S i)); simpl in |- *; apply lt_S_n; assumption. - simpl in |- *; symmetry in |- *; apply Hyp_min. + simpl; assumption. + change (pos_Rl (cons s2 s3) i <= pos_Rl (cons s2 s3) (S i)); + apply (H15 (S i)); simpl; apply lt_S_n; assumption. + simpl; symmetry ; apply Hyp_min. rewrite <- H17; reflexivity. - simpl in H19; simpl in |- *; rewrite H19; reflexivity. - intros; simpl in H; unfold constant_D_eq, open_interval in |- *; intros; + simpl in H19; simpl; rewrite H19; reflexivity. + intros; simpl in H; unfold constant_D_eq, open_interval; intros; induction i as [| i Hreci]. - simpl in |- *; apply (H16 0%nat). - simpl in |- *; apply lt_O_Sn. - simpl in H2; rewrite <- H20 in H2; unfold open_interval in |- *; - simpl in |- *; apply H2. + simpl; apply (H16 0%nat). + simpl; apply lt_O_Sn. + simpl in H2; rewrite <- H20 in H2; unfold open_interval; + simpl; apply H2. clear Hreci; induction i as [| i Hreci]. - simpl in |- *; simpl in H2; rewrite H9; apply (H21 0%nat). - simpl in |- *; apply lt_O_Sn. - unfold open_interval in |- *; simpl in |- *; elim H2; intros; split. + simpl; simpl in H2; rewrite H9; apply (H21 0%nat). + simpl; apply lt_O_Sn. + unfold open_interval; simpl; elim H2; intros; split. apply Rle_lt_trans with r1; try assumption; rewrite <- H6; apply (H11 0%nat); - simpl in |- *; apply lt_O_Sn. + simpl; apply lt_O_Sn. assumption. - clear Hreci; simpl in |- *; apply (H21 (S i)). - simpl in |- *; apply lt_S_n; assumption. - unfold open_interval in |- *; apply H2. + clear Hreci; simpl; apply (H21 (S i)). + simpl; apply lt_S_n; assumption. + unfold open_interval; apply H2. elim H3; clear H3; intros; split. rewrite H9; change @@ -817,64 +817,64 @@ Proof. (i < pred (Rlength (cons r4 lf2)))%nat -> pos_Rl (cons r4 lf2) i <> pos_Rl (cons r4 lf2) (S i) \/ f (pos_Rl (cons s1 (cons s2 s3)) (S i)) <> pos_Rl (cons r4 lf2) i) - in |- *; rewrite <- H5; apply H3. + ; rewrite <- H5; apply H3. rewrite H5 in H11; intros; simpl in H12; induction i as [| i Hreci]. - simpl in |- *; red in |- *; intro; rewrite H13 in H10; + simpl; red; intro; rewrite H13 in H10; elim (Rlt_irrefl _ H10). - clear Hreci; apply (H11 (S i)); simpl in |- *; apply H12. + clear Hreci; apply (H11 (S i)); simpl; apply H12. rewrite H9; rewrite H10; rewrite H6; apply Rplus_eq_compat_l; rewrite <- H10; apply H0 with r1 b. unfold adapted_couple in H2; decompose [and] H2; clear H2; replace b with (Rmax a b). rewrite <- H12; apply RList_P7; - [ assumption | simpl in |- *; right; left; reflexivity ]. + [ assumption | simpl; right; left; reflexivity ]. eapply StepFun_P7. apply H1. apply H2. - unfold adapted_couple_opt in |- *; split. + unfold adapted_couple_opt; split. apply StepFun_P7 with a a r3. apply H1. unfold adapted_couple in H2, H; decompose [and] H2; decompose [and] H; clear H H2; assert (H20 : r = a). simpl in H13; rewrite H13; apply Hyp_min. - unfold adapted_couple in |- *; repeat split. - unfold ordered_Rlist in |- *; intros; simpl in H; induction i as [| i Hreci]. - simpl in |- *; rewrite <- H20; apply (H11 0%nat); simpl in |- *; + unfold adapted_couple; repeat split. + unfold ordered_Rlist; intros; simpl in H; induction i as [| i Hreci]. + simpl; rewrite <- H20; apply (H11 0%nat); simpl; apply lt_O_Sn. - rewrite H10; apply (H15 (S i)); simpl in |- *; assumption. - simpl in |- *; symmetry in |- *; apply Hyp_min. + rewrite H10; apply (H15 (S i)); simpl; assumption. + simpl; symmetry ; apply Hyp_min. rewrite <- H17; rewrite H10; reflexivity. - simpl in H19; simpl in |- *; apply H19. - intros; simpl in H; unfold constant_D_eq, open_interval in |- *; intros; + simpl in H19; simpl; apply H19. + intros; simpl in H; unfold constant_D_eq, open_interval; intros; induction i as [| i Hreci]. - simpl in |- *; apply (H16 0%nat). - simpl in |- *; apply lt_O_Sn. - simpl in H2; rewrite <- H20 in H2; unfold open_interval in |- *; - simpl in |- *; apply H2. - clear Hreci; simpl in |- *; apply (H21 (S i)). - simpl in |- *; assumption. - rewrite <- H10; unfold open_interval in |- *; apply H2. + simpl; apply (H16 0%nat). + simpl; apply lt_O_Sn. + simpl in H2; rewrite <- H20 in H2; unfold open_interval; + simpl; apply H2. + clear Hreci; simpl; apply (H21 (S i)). + simpl; assumption. + rewrite <- H10; unfold open_interval; apply H2. elim H3; clear H3; intros; split. rewrite H5 in H3; intros; apply (H3 (S i)). - simpl in |- *; replace (Rlength lf2) with (S (pred (Rlength lf2))). + simpl; replace (Rlength lf2) with (S (pred (Rlength lf2))). apply lt_n_S; apply H12. - symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *; + symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H13 in H12; elim (lt_n_O _ H12). intros; simpl in H12; rewrite H10; rewrite H5 in H11; apply (H11 (S i)); - simpl in |- *; apply lt_n_S; apply H12. - simpl in |- *; rewrite H9; unfold Rminus in |- *; rewrite Rplus_opp_r; + simpl; apply lt_n_S; apply H12. + simpl; rewrite H9; unfold Rminus; rewrite Rplus_opp_r; rewrite Rmult_0_r; rewrite Rplus_0_l; change (Int_SF lf1 (cons r1 r2) = Int_SF (cons r4 lf2) (cons s1 (cons s2 s3))) - in |- *; eapply H0. + ; eapply H0. apply H1. - 2: rewrite H5 in H3; unfold adapted_couple_opt in |- *; split; assumption. + 2: rewrite H5 in H3; unfold adapted_couple_opt; split; assumption. assert (H10 : r = a). unfold adapted_couple in H2; decompose [and] H2; clear H2; simpl in H12; rewrite H12; apply Hyp_min. rewrite <- H9; rewrite H10; apply StepFun_P7 with a r r3; [ apply H1 - | pattern a at 2 in |- *; rewrite <- H10; pattern r at 2 in |- *; rewrite H9; + | pattern a at 2; rewrite <- H10; pattern r at 2; rewrite H9; apply H2 ]. Qed. @@ -918,12 +918,12 @@ Qed. Lemma StepFun_P18 : forall a b c:R, RiemannInt_SF (mkStepFun (StepFun_P4 a b c)) = c * (b - a). Proof. - intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro. + intros; unfold RiemannInt_SF; case (Rle_dec a b); intro. replace (Int_SF (subdivision_val (mkStepFun (StepFun_P4 a b c))) (subdivision (mkStepFun (StepFun_P4 a b c)))) with (Int_SF (cons c nil) (cons a (cons b nil))); - [ simpl in |- *; ring + [ simpl; ring | apply StepFun_P17 with (fct_cte c) a b; [ apply StepFun_P3; assumption | apply (StepFun_P1 (mkStepFun (StepFun_P4 a b c))) ] ]. @@ -931,7 +931,7 @@ Proof. (Int_SF (subdivision_val (mkStepFun (StepFun_P4 a b c))) (subdivision (mkStepFun (StepFun_P4 a b c)))) with (Int_SF (cons c nil) (cons b (cons a nil))); - [ simpl in |- *; ring + [ simpl; ring | apply StepFun_P17 with (fct_cte c) a b; [ apply StepFun_P2; apply StepFun_P3; auto with real | apply (StepFun_P1 (mkStepFun (StepFun_P4 a b c))) ] ]. @@ -943,8 +943,8 @@ Lemma StepFun_P19 : Int_SF (FF l1 f) l1 + l * Int_SF (FF l1 g) l1. Proof. intros; induction l1 as [| r l1 Hrecl1]; - [ simpl in |- *; ring - | induction l1 as [| r0 l1 Hrecl0]; simpl in |- *; + [ simpl; ring + | induction l1 as [| r0 l1 Hrecl0]; simpl; [ ring | simpl in Hrecl1; rewrite Hrecl1; ring ] ]. Qed. @@ -954,38 +954,38 @@ Lemma StepFun_P20 : Proof. intros l f H; induction l; [ elim (lt_irrefl _ H) - | simpl in |- *; rewrite RList_P18; rewrite RList_P14; reflexivity ]. + | simpl; rewrite RList_P18; rewrite RList_P14; reflexivity ]. Qed. Lemma StepFun_P21 : forall (a b:R) (f:R -> R) (l:Rlist), is_subdivision f a b l -> adapted_couple f a b l (FF l f). Proof. - intros; unfold adapted_couple in |- *; unfold is_subdivision in X; + intros; unfold adapted_couple; unfold is_subdivision in X; unfold adapted_couple in X; elim X; clear X; intros; decompose [and] p; clear p; repeat split; try assumption. apply StepFun_P20; rewrite H2; apply lt_O_Sn. intros; assert (H5 := H4 _ H3); unfold constant_D_eq, open_interval in H5; - unfold constant_D_eq, open_interval in |- *; intros; + unfold constant_D_eq, open_interval; intros; induction l as [| r l Hrecl]. discriminate. - unfold FF in |- *; rewrite RList_P12. - simpl in |- *; - change (f x0 = f (pos_Rl (mid_Rlist (cons r l) r) (S i))) in |- *; + unfold FF; rewrite RList_P12. + simpl; + change (f x0 = f (pos_Rl (mid_Rlist (cons r l) r) (S i))); rewrite RList_P13; try assumption; rewrite (H5 x0 H6); rewrite H5. reflexivity. split. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; elim H6; intros; apply Rlt_trans with x0; assumption | discrR ] ]. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; rewrite (Rplus_comm (pos_Rl (cons r l) i)); @@ -1001,22 +1001,22 @@ Lemma StepFun_P22 : is_subdivision f a b lf -> is_subdivision g a b lg -> is_subdivision f a b (cons_ORlist lf lg). Proof. - unfold is_subdivision in |- *; intros a b f g lf lg Hyp X X0; elim X; elim X0; + unfold is_subdivision; intros a b f g lf lg Hyp X X0; elim X; elim X0; clear X X0; intros lg0 p lf0 p0; assert (Hyp_min : Rmin a b = a). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. assert (Hyp_max : Rmax a b = b). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. apply existT with (FF (cons_ORlist lf lg) f); unfold adapted_couple in p, p0; decompose [and] p; decompose [and] p0; clear p p0; rewrite Hyp_min in H6; rewrite Hyp_min in H1; rewrite Hyp_max in H0; - rewrite Hyp_max in H5; unfold adapted_couple in |- *; + rewrite Hyp_max in H5; unfold adapted_couple; repeat split. apply RList_P2; assumption. - rewrite Hyp_min; symmetry in |- *; apply Rle_antisym. + rewrite Hyp_min; symmetry ; apply Rle_antisym. induction lf as [| r lf Hreclf]. - simpl in |- *; right; symmetry in |- *; assumption. + simpl; right; symmetry ; assumption. assert (H10 : In (pos_Rl (cons_ORlist (cons r lf) lg) 0) (cons_ORlist (cons r lf) lg)). @@ -1024,7 +1024,7 @@ Proof. (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros _ H10; apply H10; exists 0%nat; split; - [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_O_Sn ]. + [ reflexivity | rewrite RList_P11; simpl; apply lt_O_Sn ]. elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros H12 _; assert (H13 := H12 H10); elim H13; intro. elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) 0)); @@ -1037,16 +1037,16 @@ Proof. clear H15; intros; rewrite H15; rewrite <- H1; elim (RList_P6 lg); intros; apply H17; [ assumption | apply le_O_n | assumption ]. induction lf as [| r lf Hreclf]. - simpl in |- *; right; assumption. + simpl; right; assumption. assert (H8 : In a (cons_ORlist (cons r lf) lg)). elim (RList_P9 (cons r lf) lg a); intros; apply H10; left; elim (RList_P3 (cons r lf) a); intros; apply H12; exists 0%nat; split; - [ symmetry in |- *; assumption | simpl in |- *; apply lt_O_Sn ]. + [ symmetry ; assumption | simpl; apply lt_O_Sn ]. apply RList_P5; [ apply RList_P2; assumption | assumption ]. rewrite Hyp_max; apply Rle_antisym. induction lf as [| r lf Hreclf]. - simpl in |- *; right; assumption. + simpl; right; assumption. assert (H8 : In @@ -1059,7 +1059,7 @@ Proof. (pred (Rlength (cons_ORlist (cons r lf) lg))))); intros _ H10; apply H10; exists (pred (Rlength (cons_ORlist (cons r lf) lg))); - split; [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_n_Sn ]. + split; [ reflexivity | rewrite RList_P11; simpl; apply lt_n_Sn ]. elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) @@ -1074,8 +1074,8 @@ Proof. elim H15; clear H15; intros; rewrite H15; rewrite <- H5; elim (RList_P6 (cons r lf)); intros; apply H17; [ assumption - | simpl in |- *; simpl in H14; apply lt_n_Sm_le; assumption - | simpl in |- *; apply lt_n_Sn ]. + | simpl; simpl in H14; apply lt_n_Sm_le; assumption + | simpl; apply lt_n_Sn ]. elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) @@ -1083,23 +1083,23 @@ Proof. intros H13 _; assert (H14 := H13 H12); elim H14; intros; elim H15; clear H15; intros. rewrite H15; assert (H17 : Rlength lg = S (pred (Rlength lg))). - apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro; + apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H17 in H16; elim (lt_n_O _ H16). rewrite <- H0; elim (RList_P6 lg); intros; apply H18; [ assumption | rewrite H17 in H16; apply lt_n_Sm_le; assumption | apply lt_pred_n_n; rewrite H17; apply lt_O_Sn ]. induction lf as [| r lf Hreclf]. - simpl in |- *; right; symmetry in |- *; assumption. + simpl; right; symmetry ; assumption. assert (H8 : In b (cons_ORlist (cons r lf) lg)). elim (RList_P9 (cons r lf) lg b); intros; apply H10; left; elim (RList_P3 (cons r lf) b); intros; apply H12; exists (pred (Rlength (cons r lf))); split; - [ symmetry in |- *; assumption | simpl in |- *; apply lt_n_Sn ]. + [ symmetry ; assumption | simpl; apply lt_n_Sn ]. apply RList_P7; [ apply RList_P2; assumption | assumption ]. - apply StepFun_P20; rewrite RList_P11; rewrite H2; rewrite H7; simpl in |- *; + apply StepFun_P20; rewrite RList_P11; rewrite H2; rewrite H7; simpl; apply lt_O_Sn. - intros; unfold constant_D_eq, open_interval in |- *; intros; + intros; unfold constant_D_eq, open_interval; intros; cut (exists l : R, constant_D_eq f @@ -1109,10 +1109,10 @@ Proof. assert (Hyp_cons : exists r : R, (exists r0 : Rlist, cons_ORlist lf lg = cons r r0)). - apply RList_P19; red in |- *; intro; rewrite H13 in H8; elim (lt_n_O _ H8). + apply RList_P19; red; intro; rewrite H13 in H8; elim (lt_n_O _ H8). elim Hyp_cons; clear Hyp_cons; intros r [r0 Hyp_cons]; rewrite Hyp_cons; - unfold FF in |- *; rewrite RList_P12. - change (f x = f (pos_Rl (mid_Rlist (cons r r0) r) (S i))) in |- *; + unfold FF; rewrite RList_P12. + change (f x = f (pos_Rl (mid_Rlist (cons r r0) r) (S i))); rewrite <- Hyp_cons; rewrite RList_P13. assert (H13 := RList_P2 _ _ H _ H8); elim H13; intro. unfold constant_D_eq, open_interval in H11, H12; rewrite (H11 x H10); @@ -1124,13 +1124,13 @@ Proof. split. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ]. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; rewrite (Rplus_comm (pos_Rl (cons_ORlist lf lg) i)); @@ -1149,7 +1149,7 @@ Proof. apply le_O_n. apply lt_trans with (pred (Rlength (cons_ORlist lf lg))); [ assumption - | apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; + | apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H13 in H8; elim (lt_n_O _ H8) ]. assumption. assumption. @@ -1160,7 +1160,7 @@ Proof. elim (RList_P6 (cons_ORlist lf lg)); intros; apply H11. apply RList_P2; assumption. apply lt_n_Sm_le; apply lt_n_S; assumption. - apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H8; + apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H13 in H8; elim (lt_n_O _ H8). rewrite H0; assumption. set @@ -1168,24 +1168,24 @@ Proof. fun j:nat => pos_Rl lf j <= pos_Rl (cons_ORlist lf lg) i /\ (j < Rlength lf)%nat); assert (H12 : Nbound I). - unfold Nbound in |- *; exists (Rlength lf); intros; unfold I in H12; elim H12; + unfold Nbound; exists (Rlength lf); intros; unfold I in H12; elim H12; intros; apply lt_le_weak; assumption. assert (H13 : exists n : nat, I n). - exists 0%nat; unfold I in |- *; split. + exists 0%nat; unfold I; split. apply Rle_trans with (pos_Rl (cons_ORlist lf lg) 0). - right; symmetry in |- *. + right; symmetry . apply RList_P15; try assumption; rewrite H1; assumption. elim (RList_P6 (cons_ORlist lf lg)); intros; apply H13. apply RList_P2; assumption. apply le_O_n. apply lt_trans with (pred (Rlength (cons_ORlist lf lg))). assumption. - apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H15 in H8; + apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H15 in H8; elim (lt_n_O _ H8). - apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H5; + apply neq_O_lt; red; intro; rewrite <- H13 in H5; rewrite <- H6 in H11; rewrite <- H5 in H11; elim (Rlt_irrefl _ H11). assert (H14 := Nzorn H13 H12); elim H14; clear H14; intros x0 H14; - exists (pos_Rl lf0 x0); unfold constant_D_eq, open_interval in |- *; + exists (pos_Rl lf0 x0); unfold constant_D_eq, open_interval; intros; assert (H16 := H9 x0); assert (H17 : (x0 < pred (Rlength lf))%nat). elim H14; clear H14; intros; unfold I in H14; elim H14; clear H14; intros; apply lt_S_n; replace (S (pred (Rlength lf))) with (Rlength lf). @@ -1203,11 +1203,11 @@ Proof. elim (RList_P6 (cons_ORlist lf lg)); intros; apply H21. apply RList_P2; assumption. apply lt_n_Sm_le; apply lt_n_S; assumption. - apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H23 in H8; + apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H23 in H8; elim (lt_n_O _ H8). right; apply RList_P16; try assumption; rewrite H0; assumption. rewrite <- H20; reflexivity. - apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro; + apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H19 in H18; elim (lt_n_O _ H18). assert (H18 := H16 H17); unfold constant_D_eq, open_interval in H18; rewrite (H18 x1). @@ -1219,11 +1219,11 @@ Proof. assert (H22 : (S x0 < Rlength lf)%nat). replace (Rlength lf) with (S (pred (Rlength lf))); [ apply lt_n_S; assumption - | symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *; + | symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H22 in H21; elim (lt_n_O _ H21) ]. elim (Rle_dec (pos_Rl lf (S x0)) (pos_Rl (cons_ORlist lf lg) i)); intro. assert (H23 : (S x0 <= x0)%nat). - apply H20; unfold I in |- *; split; assumption. + apply H20; unfold I; split; assumption. elim (le_Sn_n _ H23). assert (H23 : pos_Rl (cons_ORlist lf lg) i < pos_Rl lf (S x0)). auto with real. @@ -1253,22 +1253,22 @@ Lemma StepFun_P24 : is_subdivision f a b lf -> is_subdivision g a b lg -> is_subdivision g a b (cons_ORlist lf lg). Proof. - unfold is_subdivision in |- *; intros a b f g lf lg Hyp X X0; elim X; elim X0; + unfold is_subdivision; intros a b f g lf lg Hyp X X0; elim X; elim X0; clear X X0; intros lg0 p lf0 p0; assert (Hyp_min : Rmin a b = a). - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. assert (Hyp_max : Rmax a b = b). - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. apply existT with (FF (cons_ORlist lf lg) g); unfold adapted_couple in p, p0; decompose [and] p; decompose [and] p0; clear p p0; rewrite Hyp_min in H1; rewrite Hyp_min in H6; rewrite Hyp_max in H0; - rewrite Hyp_max in H5; unfold adapted_couple in |- *; + rewrite Hyp_max in H5; unfold adapted_couple; repeat split. apply RList_P2; assumption. - rewrite Hyp_min; symmetry in |- *; apply Rle_antisym. + rewrite Hyp_min; symmetry ; apply Rle_antisym. induction lf as [| r lf Hreclf]. - simpl in |- *; right; symmetry in |- *; assumption. + simpl; right; symmetry ; assumption. assert (H10 : In (pos_Rl (cons_ORlist (cons r lf) lg) 0) (cons_ORlist (cons r lf) lg)). @@ -1276,7 +1276,7 @@ Proof. (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros _ H10; apply H10; exists 0%nat; split; - [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_O_Sn ]. + [ reflexivity | rewrite RList_P11; simpl; apply lt_O_Sn ]. elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros H12 _; assert (H13 := H12 H10); elim H13; intro. elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) 0)); @@ -1289,16 +1289,16 @@ Proof. clear H15; intros; rewrite H15; rewrite <- H1; elim (RList_P6 lg); intros; apply H17; [ assumption | apply le_O_n | assumption ]. induction lf as [| r lf Hreclf]. - simpl in |- *; right; assumption. + simpl; right; assumption. assert (H8 : In a (cons_ORlist (cons r lf) lg)). elim (RList_P9 (cons r lf) lg a); intros; apply H10; left; elim (RList_P3 (cons r lf) a); intros; apply H12; exists 0%nat; split; - [ symmetry in |- *; assumption | simpl in |- *; apply lt_O_Sn ]. + [ symmetry ; assumption | simpl; apply lt_O_Sn ]. apply RList_P5; [ apply RList_P2; assumption | assumption ]. rewrite Hyp_max; apply Rle_antisym. induction lf as [| r lf Hreclf]. - simpl in |- *; right; assumption. + simpl; right; assumption. assert (H8 : In @@ -1311,7 +1311,7 @@ Proof. (pred (Rlength (cons_ORlist (cons r lf) lg))))); intros _ H10; apply H10; exists (pred (Rlength (cons_ORlist (cons r lf) lg))); - split; [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_n_Sn ]. + split; [ reflexivity | rewrite RList_P11; simpl; apply lt_n_Sn ]. elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) @@ -1325,8 +1325,8 @@ Proof. elim H15; clear H15; intros; rewrite H15; rewrite <- H5; elim (RList_P6 (cons r lf)); intros; apply H17; [ assumption - | simpl in |- *; simpl in H14; apply lt_n_Sm_le; assumption - | simpl in |- *; apply lt_n_Sn ]. + | simpl; simpl in H14; apply lt_n_Sm_le; assumption + | simpl; apply lt_n_Sn ]. elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) @@ -1334,23 +1334,23 @@ Proof. intros H13 _; assert (H14 := H13 H12); elim H14; intros; elim H15; clear H15; intros; rewrite H15; assert (H17 : Rlength lg = S (pred (Rlength lg))). - apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro; + apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H17 in H16; elim (lt_n_O _ H16). rewrite <- H0; elim (RList_P6 lg); intros; apply H18; [ assumption | rewrite H17 in H16; apply lt_n_Sm_le; assumption | apply lt_pred_n_n; rewrite H17; apply lt_O_Sn ]. induction lf as [| r lf Hreclf]. - simpl in |- *; right; symmetry in |- *; assumption. + simpl; right; symmetry ; assumption. assert (H8 : In b (cons_ORlist (cons r lf) lg)). elim (RList_P9 (cons r lf) lg b); intros; apply H10; left; elim (RList_P3 (cons r lf) b); intros; apply H12; exists (pred (Rlength (cons r lf))); split; - [ symmetry in |- *; assumption | simpl in |- *; apply lt_n_Sn ]. + [ symmetry ; assumption | simpl; apply lt_n_Sn ]. apply RList_P7; [ apply RList_P2; assumption | assumption ]. - apply StepFun_P20; rewrite RList_P11; rewrite H7; rewrite H2; simpl in |- *; + apply StepFun_P20; rewrite RList_P11; rewrite H7; rewrite H2; simpl; apply lt_O_Sn. - unfold constant_D_eq, open_interval in |- *; intros; + unfold constant_D_eq, open_interval; intros; cut (exists l : R, constant_D_eq g @@ -1360,10 +1360,10 @@ Proof. assert (Hyp_cons : exists r : R, (exists r0 : Rlist, cons_ORlist lf lg = cons r r0)). - apply RList_P19; red in |- *; intro; rewrite H13 in H8; elim (lt_n_O _ H8). + apply RList_P19; red; intro; rewrite H13 in H8; elim (lt_n_O _ H8). elim Hyp_cons; clear Hyp_cons; intros r [r0 Hyp_cons]; rewrite Hyp_cons; - unfold FF in |- *; rewrite RList_P12. - change (g x = g (pos_Rl (mid_Rlist (cons r r0) r) (S i))) in |- *; + unfold FF; rewrite RList_P12. + change (g x = g (pos_Rl (mid_Rlist (cons r r0) r) (S i))); rewrite <- Hyp_cons; rewrite RList_P13. assert (H13 := RList_P2 _ _ H _ H8); elim H13; intro. unfold constant_D_eq, open_interval in H11, H12; rewrite (H11 x H10); @@ -1375,13 +1375,13 @@ Proof. split. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ]. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; rewrite (Rplus_comm (pos_Rl (cons_ORlist lf lg) i)); @@ -1400,7 +1400,7 @@ Proof. apply le_O_n. apply lt_trans with (pred (Rlength (cons_ORlist lf lg))); [ assumption - | apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; + | apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H13 in H8; elim (lt_n_O _ H8) ]. rewrite H1; assumption. apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)). @@ -1409,7 +1409,7 @@ Proof. elim (RList_P6 (cons_ORlist lf lg)); intros; apply H11. apply RList_P2; assumption. apply lt_n_Sm_le; apply lt_n_S; assumption. - apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H8; + apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H13 in H8; elim (lt_n_O _ H8). rewrite H0; assumption. set @@ -1417,24 +1417,24 @@ Proof. fun j:nat => pos_Rl lg j <= pos_Rl (cons_ORlist lf lg) i /\ (j < Rlength lg)%nat); assert (H12 : Nbound I). - unfold Nbound in |- *; exists (Rlength lg); intros; unfold I in H12; elim H12; + unfold Nbound; exists (Rlength lg); intros; unfold I in H12; elim H12; intros; apply lt_le_weak; assumption. assert (H13 : exists n : nat, I n). - exists 0%nat; unfold I in |- *; split. + exists 0%nat; unfold I; split. apply Rle_trans with (pos_Rl (cons_ORlist lf lg) 0). - right; symmetry in |- *; rewrite H1; rewrite <- H6; apply RList_P15; + right; symmetry ; rewrite H1; rewrite <- H6; apply RList_P15; try assumption; rewrite H1; assumption. elim (RList_P6 (cons_ORlist lf lg)); intros; apply H13; [ apply RList_P2; assumption | apply le_O_n | apply lt_trans with (pred (Rlength (cons_ORlist lf lg))); [ assumption - | apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; + | apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H15 in H8; elim (lt_n_O _ H8) ] ]. - apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H0; + apply neq_O_lt; red; intro; rewrite <- H13 in H0; rewrite <- H1 in H11; rewrite <- H0 in H11; elim (Rlt_irrefl _ H11). assert (H14 := Nzorn H13 H12); elim H14; clear H14; intros x0 H14; - exists (pos_Rl lg0 x0); unfold constant_D_eq, open_interval in |- *; + exists (pos_Rl lg0 x0); unfold constant_D_eq, open_interval; intros; assert (H16 := H4 x0); assert (H17 : (x0 < pred (Rlength lg))%nat). elim H14; clear H14; intros; unfold I in H14; elim H14; clear H14; intros; apply lt_S_n; replace (S (pred (Rlength lg))) with (Rlength lg). @@ -1452,12 +1452,12 @@ Proof. elim (RList_P6 (cons_ORlist lf lg)); intros; apply H21. apply RList_P2; assumption. apply lt_n_Sm_le; apply lt_n_S; assumption. - apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H23 in H8; + apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H23 in H8; elim (lt_n_O _ H8). right; rewrite H0; rewrite <- H5; apply RList_P16; try assumption. rewrite H0; assumption. rewrite <- H20; reflexivity. - apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro; + apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H19 in H18; elim (lt_n_O _ H18). assert (H18 := H16 H17); unfold constant_D_eq, open_interval in H18; rewrite (H18 x1). @@ -1469,11 +1469,11 @@ Proof. assert (H22 : (S x0 < Rlength lg)%nat). replace (Rlength lg) with (S (pred (Rlength lg))). apply lt_n_S; assumption. - symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *; + symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H22 in H21; elim (lt_n_O _ H21). elim (Rle_dec (pos_Rl lg (S x0)) (pos_Rl (cons_ORlist lf lg) i)); intro. assert (H23 : (S x0 <= x0)%nat); - [ apply H20; unfold I in |- *; split; assumption | elim (le_Sn_n _ H23) ]. + [ apply H20; unfold I; split; assumption | elim (le_Sn_n _ H23) ]. assert (H23 : pos_Rl (cons_ORlist lf lg) i < pos_Rl lg (S x0)). auto with real. clear b0; apply RList_P17; try assumption; @@ -1509,35 +1509,35 @@ Proof. intros i H8 x1 H10; unfold open_interval in H10, H9, H4; rewrite (H9 _ H8 _ H10); rewrite (H4 _ H8 _ H10); assert (H11 : l1 <> nil). - red in |- *; intro H11; rewrite H11 in H8; elim (lt_n_O _ H8). + red; intro H11; rewrite H11 in H8; elim (lt_n_O _ H8). destruct (RList_P19 _ H11) as (r,(r0,H12)); - rewrite H12; unfold FF in |- *; + rewrite H12; unfold FF; change (pos_Rl x0 i + l * pos_Rl x i = pos_Rl (app_Rlist (mid_Rlist (cons r r0) r) (fun x2:R => f x2 + l * g x2)) - (S i)) in |- *; rewrite RList_P12. + (S i)); rewrite RList_P12. rewrite RList_P13. rewrite <- H12; rewrite (H9 _ H8); try rewrite (H4 _ H8); reflexivity || (elim H10; clear H10; intros; split; [ apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; apply Rlt_trans with x1; assumption | discrR ] ] | apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; rewrite (Rplus_comm (pos_Rl l1 i)); apply Rplus_lt_compat_l; apply Rlt_trans with x1; assumption | discrR ] ] ]). rewrite <- H12; assumption. - rewrite RList_P14; simpl in |- *; rewrite H12 in H8; simpl in H8; + rewrite RList_P14; simpl; rewrite H12 in H8; simpl in H8; apply lt_n_S; apply H8. Qed. @@ -1556,7 +1556,7 @@ Qed. Lemma StepFun_P28 : forall (a b l:R) (f g:StepFun a b), IsStepFun (fun x:R => f x + l * g x) a b. Proof. - intros a b l f g; unfold IsStepFun in |- *; assert (H := pre f); + intros a b l f g; unfold IsStepFun; assert (H := pre f); assert (H0 := pre g); unfold IsStepFun in H, H0; elim H; elim H0; intros; apply existT with (cons_ORlist x0 x); apply StepFun_P27; assumption. @@ -1565,7 +1565,7 @@ Qed. Lemma StepFun_P29 : forall (a b:R) (f:StepFun a b), is_subdivision f a b (subdivision f). Proof. - intros a b f; unfold is_subdivision in |- *; + intros a b f; unfold is_subdivision; apply existT with (subdivision_val f); apply StepFun_P1. Qed. @@ -1574,7 +1574,7 @@ Lemma StepFun_P30 : RiemannInt_SF (mkStepFun (StepFun_P28 l f g)) = RiemannInt_SF f + l * RiemannInt_SF g. Proof. - intros a b l f g; unfold RiemannInt_SF in |- *; case (Rle_dec a b); + intros a b l f g; unfold RiemannInt_SF; case (Rle_dec a b); (intro; replace (Int_SF (subdivision_val (mkStepFun (StepFun_P28 l f g))) @@ -1611,10 +1611,10 @@ Lemma StepFun_P31 : adapted_couple f a b l lf -> adapted_couple (fun x:R => Rabs (f x)) a b l (app_Rlist lf Rabs). Proof. - unfold adapted_couple in |- *; intros; decompose [and] H; clear H; + unfold adapted_couple; intros; decompose [and] H; clear H; repeat split; try assumption. - symmetry in |- *; rewrite H3; rewrite RList_P18; reflexivity. - intros; unfold constant_D_eq, open_interval in |- *; + symmetry ; rewrite H3; rewrite RList_P18; reflexivity. + intros; unfold constant_D_eq, open_interval; unfold constant_D_eq, open_interval in H5; intros; rewrite (H5 _ H _ H4); rewrite RList_P12; [ reflexivity | rewrite H3 in H; simpl in H; apply H ]. @@ -1623,8 +1623,8 @@ Qed. Lemma StepFun_P32 : forall (a b:R) (f:StepFun a b), IsStepFun (fun x:R => Rabs (f x)) a b. Proof. - intros a b f; unfold IsStepFun in |- *; apply existT with (subdivision f); - unfold is_subdivision in |- *; + intros a b f; unfold IsStepFun; apply existT with (subdivision f); + unfold is_subdivision; apply existT with (app_Rlist (subdivision_val f) Rabs); apply StepFun_P31; apply StepFun_P1. Qed. @@ -1634,8 +1634,8 @@ Lemma StepFun_P33 : ordered_Rlist l1 -> Rabs (Int_SF l2 l1) <= Int_SF (app_Rlist l2 Rabs) l1. Proof. simple induction l2; intros. - simpl in |- *; rewrite Rabs_R0; right; reflexivity. - simpl in |- *; induction l1 as [| r1 l1 Hrecl1]. + simpl; rewrite Rabs_R0; right; reflexivity. + simpl; induction l1 as [| r1 l1 Hrecl1]. rewrite Rabs_R0; right; reflexivity. induction l1 as [| r2 l1 Hrecl0]. rewrite Rabs_R0; right; reflexivity. @@ -1643,7 +1643,7 @@ Proof. apply Rabs_triang. rewrite Rabs_mult; rewrite (Rabs_right (r2 - r1)); [ apply Rplus_le_compat_l; apply H; apply RList_P4 with r1; assumption - | apply Rge_minus; apply Rle_ge; apply (H0 0%nat); simpl in |- *; + | apply Rge_minus; apply Rle_ge; apply (H0 0%nat); simpl; apply lt_O_Sn ]. Qed. @@ -1652,7 +1652,7 @@ Lemma StepFun_P34 : a <= b -> Rabs (RiemannInt_SF f) <= RiemannInt_SF (mkStepFun (StepFun_P32 f)). Proof. - intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro. + intros; unfold RiemannInt_SF; case (Rle_dec a b); intro. replace (Int_SF (subdivision_val (mkStepFun (StepFun_P32 f))) (subdivision (mkStepFun (StepFun_P32 f)))) with @@ -1676,18 +1676,18 @@ Lemma StepFun_P35 : Proof. simple induction l; intros. right; reflexivity. - simpl in |- *; induction r0 as [| r0 r1 Hrecr0]. + simpl; induction r0 as [| r0 r1 Hrecr0]. right; reflexivity. - simpl in |- *; apply Rplus_le_compat. + simpl; apply Rplus_le_compat. case (Req_dec r r0); intro. rewrite H4; right; ring. do 2 rewrite <- (Rmult_comm (r0 - r)); apply Rmult_le_compat_l. - apply Rge_le; apply Rge_minus; apply Rle_ge; apply (H0 0%nat); simpl in |- *; + apply Rge_le; apply Rge_minus; apply Rle_ge; apply (H0 0%nat); simpl; apply lt_O_Sn. apply H3; split. apply Rmult_lt_reg_l with 2. prove_sup0. - unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. assert (H5 : r = a). apply H1. @@ -1700,7 +1700,7 @@ Proof. discrR. apply Rmult_lt_reg_l with 2. prove_sup0. - unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_l; rewrite double; assert (H5 : r0 <= b). replace b with @@ -1708,9 +1708,9 @@ Proof. replace r0 with (pos_Rl (cons r (cons r0 r1)) 1). elim (RList_P6 (cons r (cons r0 r1))); intros; apply H5. assumption. - simpl in |- *; apply le_n_S. + simpl; apply le_n_S. apply le_O_n. - simpl in |- *; apply lt_n_Sn. + simpl; apply lt_n_Sn. reflexivity. apply Rle_lt_trans with (r + b). apply Rplus_le_compat_l; assumption. @@ -1730,7 +1730,7 @@ Proof. intros; apply H3; elim H4; intros; split; try assumption. apply Rle_lt_trans with r0; try assumption. rewrite <- H1. - simpl in |- *; apply (H0 0%nat); simpl in |- *; apply lt_O_Sn. + simpl; apply (H0 0%nat); simpl; apply lt_O_Sn. Qed. Lemma StepFun_P36 : @@ -1741,16 +1741,16 @@ Lemma StepFun_P36 : (forall x:R, a < x < b -> f x <= g x) -> RiemannInt_SF f <= RiemannInt_SF g. Proof. - intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro. + intros; unfold RiemannInt_SF; case (Rle_dec a b); intro. replace (Int_SF (subdivision_val f) (subdivision f)) with (Int_SF (FF l f) l). replace (Int_SF (subdivision_val g) (subdivision g)) with (Int_SF (FF l g) l). unfold is_subdivision in X; elim X; clear X; intros; unfold adapted_couple in p; decompose [and] p; clear p; assert (H5 : Rmin a b = a); - [ unfold Rmin in |- *; case (Rle_dec a b); intro; + [ unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ] | assert (H7 : Rmax a b = b); - [ unfold Rmax in |- *; case (Rle_dec a b); intro; + [ unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ] | rewrite H5 in H3; rewrite H7 in H2; eapply StepFun_P35 with a b; assumption ] ]. @@ -1809,27 +1809,27 @@ Proof. assert (H7 : r1 <= b). rewrite <- H4; apply RList_P7; [ assumption | left; reflexivity ]. assert (H8 : IsStepFun g' a b). - unfold IsStepFun in |- *; assert (H8 := pre g); unfold IsStepFun in H8; + unfold IsStepFun; assert (H8 := pre g); unfold IsStepFun in H8; elim H8; intros lg H9; unfold is_subdivision in H9; elim H9; clear H9; intros lg2 H9; split with (cons a lg); - unfold is_subdivision in |- *; split with (cons (f a) lg2); + unfold is_subdivision; split with (cons (f a) lg2); unfold adapted_couple in H9; decompose [and] H9; clear H9; - unfold adapted_couple in |- *; repeat split. - unfold ordered_Rlist in |- *; intros; simpl in H9; + unfold adapted_couple; repeat split. + unfold ordered_Rlist; intros; simpl in H9; induction i as [| i Hreci]. - simpl in |- *; rewrite H12; replace (Rmin r1 b) with r1. - simpl in H0; rewrite <- H0; apply (H 0%nat); simpl in |- *; apply lt_O_Sn. - unfold Rmin in |- *; case (Rle_dec r1 b); intro; + simpl; rewrite H12; replace (Rmin r1 b) with r1. + simpl in H0; rewrite <- H0; apply (H 0%nat); simpl; apply lt_O_Sn. + unfold Rmin; case (Rle_dec r1 b); intro; [ reflexivity | elim n; assumption ]. apply (H10 i); apply lt_S_n. replace (S (pred (Rlength lg))) with (Rlength lg). apply H9. apply S_pred with 0%nat; apply neq_O_lt; intro; rewrite <- H14 in H9; elim (lt_n_O _ H9). - simpl in |- *; assert (H14 : a <= b). + simpl; assert (H14 : a <= b). rewrite <- H1; simpl in H0; rewrite <- H0; apply RList_P7; [ assumption | left; reflexivity ]. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. assert (H14 : a <= b). rewrite <- H1; simpl in H0; rewrite <- H0; apply RList_P7; @@ -1838,30 +1838,30 @@ Proof. rewrite <- H11; induction lg as [| r0 lg Hreclg]. simpl in H13; discriminate. reflexivity. - unfold Rmax in |- *; case (Rle_dec a b); case (Rle_dec r1 b); intros; + unfold Rmax; case (Rle_dec a b); case (Rle_dec r1 b); intros; reflexivity || elim n; assumption. - simpl in |- *; rewrite H13; reflexivity. + simpl; rewrite H13; reflexivity. intros; simpl in H9; induction i as [| i Hreci]. - unfold constant_D_eq, open_interval in |- *; simpl in |- *; intros; + unfold constant_D_eq, open_interval; simpl; intros; assert (H16 : Rmin r1 b = r1). - unfold Rmin in |- *; case (Rle_dec r1 b); intro; + unfold Rmin; case (Rle_dec r1 b); intro; [ reflexivity | elim n; assumption ]. rewrite H16 in H12; rewrite H12 in H14; elim H14; clear H14; intros _ H14; - unfold g' in |- *; case (Rle_dec r1 x); intro r3. + unfold g'; case (Rle_dec r1 x); intro r3. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H14)). reflexivity. change (constant_D_eq g' (open_interval (pos_Rl lg i) (pos_Rl lg (S i))) - (pos_Rl lg2 i)) in |- *; clear Hreci; assert (H16 := H15 i); + (pos_Rl lg2 i)); clear Hreci; assert (H16 := H15 i); assert (H17 : (i < pred (Rlength lg))%nat). apply lt_S_n. replace (S (pred (Rlength lg))) with (Rlength lg). assumption. - apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro; + apply S_pred with 0%nat; apply neq_O_lt; red; intro; rewrite <- H14 in H9; elim (lt_n_O _ H9). assert (H18 := H16 H17); unfold constant_D_eq, open_interval in H18; - unfold constant_D_eq, open_interval in |- *; intros; - assert (H19 := H18 _ H14); rewrite <- H19; unfold g' in |- *; + unfold constant_D_eq, open_interval; intros; + assert (H19 := H18 _ H14); rewrite <- H19; unfold g'; case (Rle_dec r1 x); intro. reflexivity. elim n; replace r1 with (Rmin r1 b). @@ -1872,17 +1872,17 @@ Proof. elim (RList_P3 lg (pos_Rl lg i)); intros; apply H21; exists i; split. reflexivity. apply lt_trans with (pred (Rlength lg)); try assumption. - apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H22 in H17; + apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H22 in H17; elim (lt_n_O _ H17). - unfold Rmin in |- *; case (Rle_dec r1 b); intro; + unfold Rmin; case (Rle_dec r1 b); intro; [ reflexivity | elim n0; assumption ]. exists (mkStepFun H8); split. - simpl in |- *; unfold g' in |- *; case (Rle_dec r1 b); intro. + simpl; unfold g'; case (Rle_dec r1 b); intro. assumption. elim n; assumption. intros; simpl in H9; induction i as [| i Hreci]. - unfold constant_D_eq, co_interval in |- *; simpl in |- *; intros; simpl in H0; - rewrite H0; elim H10; clear H10; intros; unfold g' in |- *; + unfold constant_D_eq, co_interval; simpl; intros; simpl in H0; + rewrite H0; elim H10; clear H10; intros; unfold g'; case (Rle_dec r1 x); intro r3. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H11)). reflexivity. @@ -1890,21 +1890,21 @@ Proof. change (constant_D_eq (mkStepFun H8) (co_interval (pos_Rl (cons r1 l) i) (pos_Rl (cons r1 l) (S i))) - (f (pos_Rl (cons r1 l) i))) in |- *; assert (H10 := H6 i); + (f (pos_Rl (cons r1 l) i))); assert (H10 := H6 i); assert (H11 : (i < pred (Rlength (cons r1 l)))%nat). - simpl in |- *; apply lt_S_n; assumption. + simpl; apply lt_S_n; assumption. assert (H12 := H10 H11); unfold constant_D_eq, co_interval in H12; - unfold constant_D_eq, co_interval in |- *; intros; - rewrite <- (H12 _ H13); simpl in |- *; unfold g' in |- *; + unfold constant_D_eq, co_interval; intros; + rewrite <- (H12 _ H13); simpl; unfold g'; case (Rle_dec r1 x); intro. reflexivity. elim n; elim H13; clear H13; intros; apply Rle_trans with (pos_Rl (cons r1 l) i); try assumption; - change (pos_Rl (cons r1 l) 0 <= pos_Rl (cons r1 l) i) in |- *; + change (pos_Rl (cons r1 l) 0 <= pos_Rl (cons r1 l) i); elim (RList_P6 (cons r1 l)); intros; apply H15; [ assumption | apply le_O_n - | simpl in |- *; apply lt_trans with (Rlength l); + | simpl; apply lt_trans with (Rlength l); [ apply lt_S_n; assumption | apply lt_n_Sn ] ]. Qed. @@ -1912,7 +1912,7 @@ Lemma StepFun_P39 : forall (a b:R) (f:StepFun a b), RiemannInt_SF f = - RiemannInt_SF (mkStepFun (StepFun_P6 (pre f))). Proof. - intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); case (Rle_dec b a); + intros; unfold RiemannInt_SF; case (Rle_dec a b); case (Rle_dec b a); intros. assert (H : adapted_couple f a b (subdivision f) (subdivision_val f)); [ apply StepFun_P1 @@ -1925,16 +1925,16 @@ Proof. | assert (H1 : a = b); [ apply Rle_antisym; assumption | rewrite (StepFun_P8 H H1); assert (H2 : b = a); - [ symmetry in |- *; apply H1 | rewrite (StepFun_P8 H0 H2); ring ] ] ] ]. + [ symmetry ; apply H1 | rewrite (StepFun_P8 H0 H2); ring ] ] ] ]. rewrite Ropp_involutive; eapply StepFun_P17; [ apply StepFun_P1 | apply StepFun_P2; set (H := StepFun_P6 (pre f)); unfold IsStepFun in H; - elim H; intros; unfold is_subdivision in |- *; + elim H; intros; unfold is_subdivision; elim p; intros; apply p0 ]. apply Ropp_eq_compat; eapply StepFun_P17; [ apply StepFun_P1 | apply StepFun_P2; set (H := StepFun_P6 (pre f)); unfold IsStepFun in H; - elim H; intros; unfold is_subdivision in |- *; + elim H; intros; unfold is_subdivision; elim p; intros; apply p0 ]. assert (H : a < b); [ auto with real @@ -1951,34 +1951,34 @@ Lemma StepFun_P40 : adapted_couple f a c (cons_Rlist l1 l2) (FF (cons_Rlist l1 l2) f). Proof. intros f a b c l1 l2 lf1 lf2 H H0 H1 H2; unfold adapted_couple in H1, H2; - unfold adapted_couple in |- *; decompose [and] H1; + unfold adapted_couple; decompose [and] H1; decompose [and] H2; clear H1 H2; repeat split. apply RList_P25; try assumption. - rewrite H10; rewrite H4; unfold Rmin, Rmax in |- *; case (Rle_dec a b); + rewrite H10; rewrite H4; unfold Rmin, Rmax; case (Rle_dec a b); case (Rle_dec b c); intros; (right; reflexivity) || (elim n; left; assumption). rewrite RList_P22. - rewrite H5; unfold Rmin, Rmax in |- *; case (Rle_dec a b); case (Rle_dec a c); + rewrite H5; unfold Rmin, Rmax; case (Rle_dec a b); case (Rle_dec a c); intros; [ reflexivity | elim n; apply Rle_trans with b; left; assumption | elim n; left; assumption | elim n0; left; assumption ]. - red in |- *; intro; rewrite H1 in H6; discriminate. + red; intro; rewrite H1 in H6; discriminate. rewrite RList_P24. - rewrite H9; unfold Rmin, Rmax in |- *; case (Rle_dec b c); case (Rle_dec a c); + rewrite H9; unfold Rmin, Rmax; case (Rle_dec b c); case (Rle_dec a c); intros; [ reflexivity | elim n; apply Rle_trans with b; left; assumption | elim n; left; assumption | elim n0; left; assumption ]. - red in |- *; intro; rewrite H1 in H11; discriminate. + red; intro; rewrite H1 in H11; discriminate. apply StepFun_P20. - rewrite RList_P23; apply neq_O_lt; red in |- *; intro. + rewrite RList_P23; apply neq_O_lt; red; intro. assert (H2 : (Rlength l1 + Rlength l2)%nat = 0%nat). - symmetry in |- *; apply H1. + symmetry ; apply H1. elim (plus_is_O _ _ H2); intros; rewrite H12 in H6; discriminate. - unfold constant_D_eq, open_interval in |- *; intros; + unfold constant_D_eq, open_interval; intros; elim (le_or_lt (S (S i)) (Rlength l1)); intro. assert (H14 : pos_Rl (cons_Rlist l1 l2) i = pos_Rl l1 i). apply RList_P26; apply lt_S_n; apply le_lt_n_Sm; apply le_S_n; @@ -1991,28 +1991,28 @@ Proof. elim (RList_P20 _ H16); intros r1 [r2 [r3 H17]]; rewrite H17; change (f x = pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i) - in |- *; rewrite RList_P12. + ; rewrite RList_P12. induction i as [| i Hreci]. - simpl in |- *; assert (H18 := H8 0%nat); + simpl; assert (H18 := H8 0%nat); unfold constant_D_eq, open_interval in H18; assert (H19 : (0 < pred (Rlength l1))%nat). - rewrite H17; simpl in |- *; apply lt_O_Sn. + rewrite H17; simpl; apply lt_O_Sn. assert (H20 := H18 H19); repeat rewrite H20. reflexivity. assert (H21 : r1 <= r2). rewrite H17 in H3; apply (H3 0%nat). - simpl in |- *; apply lt_O_Sn. + simpl; apply lt_O_Sn. elim H21; intro. split. - rewrite H17; simpl in |- *; apply Rmult_lt_reg_l with 2; + rewrite H17; simpl; apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ]. - rewrite H17; simpl in |- *; apply Rmult_lt_reg_l with 2; + rewrite H17; simpl; apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite (Rplus_comm r1); rewrite double; apply Rplus_lt_compat_l; assumption @@ -2041,13 +2041,13 @@ Proof. split. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ]. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite (Rplus_comm (pos_Rl l1 (S i))); rewrite double; apply Rplus_lt_compat_l; assumption @@ -2055,21 +2055,21 @@ Proof. elim H2; intros; rewrite H22 in H23; elim (Rlt_irrefl _ (Rlt_trans _ _ _ H23 H24)). assumption. - simpl in |- *; rewrite H17 in H1; simpl in H1; apply lt_S_n; assumption. + simpl; rewrite H17 in H1; simpl in H1; apply lt_S_n; assumption. rewrite RList_P14; rewrite H17 in H1; simpl in H1; apply H1. inversion H12. assert (H16 : pos_Rl (cons_Rlist l1 l2) (S i) = b). rewrite RList_P29. - rewrite H15; rewrite <- minus_n_n; rewrite H10; unfold Rmin in |- *; + rewrite H15; rewrite <- minus_n_n; rewrite H10; unfold Rmin; case (Rle_dec b c); intro; [ reflexivity | elim n; left; assumption ]. rewrite H15; apply le_n. induction l1 as [| r l1 Hrecl1]. simpl in H15; discriminate. - clear Hrecl1; simpl in H1; simpl in |- *; apply lt_n_S; assumption. + clear Hrecl1; simpl in H1; simpl; apply lt_n_S; assumption. assert (H17 : pos_Rl (cons_Rlist l1 l2) i = b). rewrite RList_P26. replace i with (pred (Rlength l1)); - [ rewrite H4; unfold Rmax in |- *; case (Rle_dec a b); intro; + [ rewrite H4; unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; left; assumption ] | rewrite H15; reflexivity ]. rewrite H15; apply lt_n_Sn. @@ -2087,22 +2087,22 @@ Proof. apply le_S_n; apply le_trans with (S i); [ assumption | apply le_n_Sn ]. induction l1 as [| r l1 Hrecl1]. simpl in H6; discriminate. - clear Hrecl1; simpl in H1; simpl in |- *; apply lt_n_S; assumption. - symmetry in |- *; apply minus_Sn_m; apply le_S_n; assumption. + clear Hrecl1; simpl in H1; simpl; apply lt_n_S; assumption. + symmetry ; apply minus_Sn_m; apply le_S_n; assumption. assert (H18 : (2 <= Rlength l1)%nat). clear f c l2 lf2 H0 H3 H8 H7 H10 H9 H11 H13 i H1 x H2 H12 m H14 H15 H16 H17; induction l1 as [| r l1 Hrecl1]. discriminate. clear Hrecl1; induction l1 as [| r0 l1 Hrecl1]. simpl in H5; simpl in H4; assert (H0 : Rmin a b < Rmax a b). - unfold Rmin, Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmin, Rmax; case (Rle_dec a b); intro; [ assumption | elim n; left; assumption ]. rewrite <- H5 in H0; rewrite <- H4 in H0; elim (Rlt_irrefl _ H0). - clear Hrecl1; simpl in |- *; repeat apply le_n_S; apply le_O_n. + clear Hrecl1; simpl; repeat apply le_n_S; apply le_O_n. elim (RList_P20 _ H18); intros r1 [r2 [r3 H19]]; rewrite H19; change (f x = pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i) - in |- *; rewrite RList_P12. + ; rewrite RList_P12. induction i as [| i Hreci]. assert (H20 := le_S_n _ _ H15); assert (H21 := le_trans _ _ _ H18 H20); elim (le_Sn_O _ H21). @@ -2120,7 +2120,7 @@ Proof. assert (H21 : (S i - Rlength l1 < pred (Rlength l2))%nat). apply lt_pred; rewrite minus_Sn_m. apply plus_lt_reg_l with (Rlength l1); rewrite <- le_plus_minus. - rewrite H19 in H1; simpl in H1; rewrite H19; simpl in |- *; + rewrite H19 in H1; simpl in H1; rewrite H19; simpl; rewrite RList_P23 in H1; apply lt_n_S; assumption. apply le_trans with (S i); [ apply le_S_n; assumption | apply le_n_Sn ]. apply le_S_n; assumption. @@ -2132,7 +2132,7 @@ Proof. apply H7; apply lt_pred. rewrite minus_Sn_m. apply plus_lt_reg_l with (Rlength l1); rewrite <- le_plus_minus. - rewrite H19 in H1; simpl in H1; rewrite H19; simpl in |- *; + rewrite H19 in H1; simpl in H1; rewrite H19; simpl; rewrite RList_P23 in H1; apply lt_n_S; assumption. apply le_trans with (S i); [ apply le_S_n; assumption | apply le_n_Sn ]. apply le_S_n; assumption. @@ -2140,13 +2140,13 @@ Proof. split. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption | discrR ] ]. apply Rmult_lt_reg_l with 2; [ prove_sup0 - | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite (Rplus_comm (pos_Rl l2 (S i - Rlength l1))); rewrite double; apply Rplus_lt_compat_l; assumption @@ -2157,14 +2157,14 @@ Proof. rewrite H17 in H26; simpl in H24; rewrite H24 in H25; elim (Rlt_irrefl _ (Rlt_trans _ _ _ H25 H26)). assert (H23 : pos_Rl (cons_Rlist l1 l2) (S i) = pos_Rl l2 (S i - Rlength l1)). - rewrite H19; simpl in |- *; simpl in H16; apply H16. + rewrite H19; simpl; simpl in H16; apply H16. assert (H24 : pos_Rl (cons_Rlist l1 l2) (S (S i)) = pos_Rl l2 (S (S i - Rlength l1))). - rewrite H19; simpl in |- *; simpl in H17; apply H17. + rewrite H19; simpl; simpl in H17; apply H17. rewrite <- H23; rewrite <- H24; assumption. - simpl in |- *; rewrite H19 in H1; simpl in H1; apply lt_S_n; assumption. - rewrite RList_P14; rewrite H19 in H1; simpl in H1; simpl in |- *; apply H1. + simpl; rewrite H19 in H1; simpl in H1; apply lt_S_n; assumption. + rewrite RList_P14; rewrite H19 in H1; simpl in H1; simpl; apply H1. Qed. Lemma StepFun_P41 : @@ -2189,11 +2189,11 @@ Lemma StepFun_P42 : Int_SF (FF l1 f) l1 + Int_SF (FF l2 f) l2. Proof. intros l1 l2 f; induction l1 as [| r l1 IHl1]; intros H; - [ simpl in |- *; ring + [ simpl; ring | destruct l1 as [| r0 r1]; - [ simpl in H; simpl in |- *; destruct l2 as [| r0 r1]; - [ simpl in |- *; ring | simpl in |- *; simpl in H; rewrite H; ring ] - | simpl in |- *; rewrite Rplus_assoc; apply Rplus_eq_compat_l; apply IHl1; + [ simpl in H; simpl; destruct l2 as [| r0 r1]; + [ simpl; ring | simpl; simpl in H; rewrite H; ring ] + | simpl; rewrite Rplus_assoc; apply Rplus_eq_compat_l; apply IHl1; rewrite <- H; reflexivity ] ]. Qed. @@ -2229,27 +2229,27 @@ Proof. (Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2)). replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1). replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2). - symmetry in |- *; apply StepFun_P42. + symmetry ; apply StepFun_P42. unfold adapted_couple in H1, H2; decompose [and] H1; decompose [and] H2; - clear H1 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin in |- *; + clear H1 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin; case (Rle_dec a b); case (Rle_dec b c); intros; reflexivity || elim n; assumption. eapply StepFun_P17; - [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf2; apply H2; + [ apply StepFun_P21; unfold is_subdivision; split with lf2; apply H2; assumption | assumption ]. eapply StepFun_P17; - [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf1; apply H1 + [ apply StepFun_P21; unfold is_subdivision; split with lf1; apply H1 | assumption ]. eapply StepFun_P17; [ apply (StepFun_P40 H H0 H1 H2) | apply H3 ]. replace (Int_SF lf2 l2) with 0. rewrite Rplus_0_r; eapply StepFun_P17; [ apply H1 | rewrite <- H0 in H3; apply H3 ]. - symmetry in |- *; eapply StepFun_P8; [ apply H2 | assumption ]. + symmetry ; eapply StepFun_P8; [ apply H2 | assumption ]. replace (Int_SF lf1 l1) with 0. rewrite Rplus_0_l; eapply StepFun_P17; [ apply H2 | rewrite H in H3; apply H3 ]. - symmetry in |- *; eapply StepFun_P8; [ apply H1 | assumption ]. + symmetry ; eapply StepFun_P8; [ apply H1 | assumption ]. elim n; apply Rle_trans with b; assumption. apply Rplus_eq_reg_l with (Int_SF lf2 l2); replace (Int_SF lf2 l2 + (Int_SF lf1 l1 + - Int_SF lf2 l2)) with @@ -2264,24 +2264,24 @@ Proof. replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2). apply StepFun_P42. unfold adapted_couple in H2, H3; decompose [and] H2; decompose [and] H3; - clear H3 H2; rewrite H10; rewrite H6; unfold Rmax, Rmin in |- *; + clear H3 H2; rewrite H10; rewrite H6; unfold Rmax, Rmin; case (Rle_dec a c); case (Rle_dec b c); intros; [ elim n; assumption | reflexivity | elim n0; assumption | elim n1; assumption ]. eapply StepFun_P17; - [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf2; apply H2 + [ apply StepFun_P21; unfold is_subdivision; split with lf2; apply H2 | assumption ]. eapply StepFun_P17; - [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf3; apply H3 + [ apply StepFun_P21; unfold is_subdivision; split with lf3; apply H3 | assumption ]. eapply StepFun_P17; [ apply (StepFun_P40 H0 H H3 (StepFun_P2 H2)) | apply H1 ]. replace (Int_SF lf3 l3) with 0. rewrite Rplus_0_r; eapply StepFun_P17; [ apply H1 | apply StepFun_P2; rewrite <- H0 in H2; apply H2 ]. - symmetry in |- *; eapply StepFun_P8; [ apply H3 | assumption ]. + symmetry ; eapply StepFun_P8; [ apply H3 | assumption ]. replace (Int_SF lf2 l2) with (Int_SF lf3 l3 + Int_SF lf1 l1). ring. elim r; intro. @@ -2289,19 +2289,19 @@ Proof. (Int_SF (FF (cons_Rlist l3 l1) f) (cons_Rlist l3 l1)). replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3). replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1). - symmetry in |- *; apply StepFun_P42. + symmetry ; apply StepFun_P42. unfold adapted_couple in H1, H3; decompose [and] H1; decompose [and] H3; - clear H3 H1; rewrite H9; rewrite H5; unfold Rmax, Rmin in |- *; + clear H3 H1; rewrite H9; rewrite H5; unfold Rmax, Rmin; case (Rle_dec a c); case (Rle_dec a b); intros; [ elim n; assumption | elim n1; assumption | reflexivity | elim n1; assumption ]. eapply StepFun_P17; - [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf1; apply H1 + [ apply StepFun_P21; unfold is_subdivision; split with lf1; apply H1 | assumption ]. eapply StepFun_P17; - [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf3; apply H3 + [ apply StepFun_P21; unfold is_subdivision; split with lf3; apply H3 | assumption ]. eapply StepFun_P17. assert (H0 : c < a). @@ -2311,7 +2311,7 @@ Proof. replace (Int_SF lf1 l1) with 0. rewrite Rplus_0_r; eapply StepFun_P17; [ apply H3 | rewrite <- H in H2; apply H2 ]. - symmetry in |- *; eapply StepFun_P8; [ apply H1 | assumption ]. + symmetry ; eapply StepFun_P8; [ apply H1 | assumption ]. assert (H : b < a). auto with real. replace (Int_SF lf2 l2) with (Int_SF lf3 l3 + Int_SF lf1 l1). @@ -2321,19 +2321,19 @@ Proof. (Int_SF (FF (cons_Rlist l1 l3) f) (cons_Rlist l1 l3)). replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3). replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1). - symmetry in |- *; apply StepFun_P42. + symmetry ; apply StepFun_P42. unfold adapted_couple in H1, H3; decompose [and] H1; decompose [and] H3; - clear H3 H1; rewrite H11; rewrite H5; unfold Rmax, Rmin in |- *; + clear H3 H1; rewrite H11; rewrite H5; unfold Rmax, Rmin; case (Rle_dec a c); case (Rle_dec a b); intros; [ elim n; assumption | reflexivity | elim n0; assumption | elim n1; assumption ]. eapply StepFun_P17; - [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf1; apply H1 + [ apply StepFun_P21; unfold is_subdivision; split with lf1; apply H1 | assumption ]. eapply StepFun_P17; - [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf3; apply H3 + [ apply StepFun_P21; unfold is_subdivision; split with lf3; apply H3 | assumption ]. eapply StepFun_P17. apply (StepFun_P40 H H0 (StepFun_P2 H1) H3). @@ -2341,7 +2341,7 @@ Proof. replace (Int_SF lf3 l3) with 0. rewrite Rplus_0_r; eapply StepFun_P17; [ apply H1 | rewrite <- H0 in H2; apply StepFun_P2; apply H2 ]. - symmetry in |- *; eapply StepFun_P8; [ apply H3 | assumption ]. + symmetry ; eapply StepFun_P8; [ apply H3 | assumption ]. assert (H : c < a). auto with real. replace (Int_SF lf1 l1) with (Int_SF lf2 l2 + Int_SF lf3 l3). @@ -2351,19 +2351,19 @@ Proof. (Int_SF (FF (cons_Rlist l2 l3) f) (cons_Rlist l2 l3)). replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3). replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2). - symmetry in |- *; apply StepFun_P42. + symmetry ; apply StepFun_P42. unfold adapted_couple in H2, H3; decompose [and] H2; decompose [and] H3; - clear H3 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin in |- *; + clear H3 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin; case (Rle_dec a c); case (Rle_dec b c); intros; [ elim n; assumption | elim n1; assumption | reflexivity | elim n1; assumption ]. eapply StepFun_P17; - [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf2; apply H2 + [ apply StepFun_P21; unfold is_subdivision; split with lf2; apply H2 | assumption ]. eapply StepFun_P17; - [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf3; apply H3 + [ apply StepFun_P21; unfold is_subdivision; split with lf3; apply H3 | assumption ]. eapply StepFun_P17. apply (StepFun_P40 H0 H H2 (StepFun_P2 H3)). @@ -2371,7 +2371,7 @@ Proof. replace (Int_SF lf2 l2) with 0. rewrite Rplus_0_l; eapply StepFun_P17; [ apply H3 | rewrite H0 in H1; apply H1 ]. - symmetry in |- *; eapply StepFun_P8; [ apply H2 | assumption ]. + symmetry ; eapply StepFun_P8; [ apply H2 | assumption ]. elim n; apply Rle_trans with a; try assumption. auto with real. assert (H : c < b). @@ -2384,56 +2384,56 @@ Proof. (Int_SF (FF (cons_Rlist l2 l1) f) (cons_Rlist l2 l1)). replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1). replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2). - symmetry in |- *; apply StepFun_P42. + symmetry ; apply StepFun_P42. unfold adapted_couple in H2, H1; decompose [and] H2; decompose [and] H1; - clear H1 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin in |- *; + clear H1 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin; case (Rle_dec a b); case (Rle_dec b c); intros; [ elim n1; assumption | elim n1; assumption | elim n0; assumption | reflexivity ]. eapply StepFun_P17; - [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf2; apply H2 + [ apply StepFun_P21; unfold is_subdivision; split with lf2; apply H2 | assumption ]. eapply StepFun_P17; - [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf1; apply H1 + [ apply StepFun_P21; unfold is_subdivision; split with lf1; apply H1 | assumption ]. eapply StepFun_P17. apply (StepFun_P40 H H0 (StepFun_P2 H2) (StepFun_P2 H1)). apply StepFun_P2; apply H3. - unfold RiemannInt_SF in |- *; case (Rle_dec a c); intro. + unfold RiemannInt_SF; case (Rle_dec a c); intro. eapply StepFun_P17. apply H3. change (adapted_couple (mkStepFun pr3) a c (subdivision (mkStepFun pr3)) - (subdivision_val (mkStepFun pr3))) in |- *; apply StepFun_P1. + (subdivision_val (mkStepFun pr3))); apply StepFun_P1. apply Ropp_eq_compat; eapply StepFun_P17. apply H3. change (adapted_couple (mkStepFun pr3) a c (subdivision (mkStepFun pr3)) - (subdivision_val (mkStepFun pr3))) in |- *; apply StepFun_P1. - unfold RiemannInt_SF in |- *; case (Rle_dec b c); intro. + (subdivision_val (mkStepFun pr3))); apply StepFun_P1. + unfold RiemannInt_SF; case (Rle_dec b c); intro. eapply StepFun_P17. apply H2. change (adapted_couple (mkStepFun pr2) b c (subdivision (mkStepFun pr2)) - (subdivision_val (mkStepFun pr2))) in |- *; apply StepFun_P1. + (subdivision_val (mkStepFun pr2))); apply StepFun_P1. apply Ropp_eq_compat; eapply StepFun_P17. apply H2. change (adapted_couple (mkStepFun pr2) b c (subdivision (mkStepFun pr2)) - (subdivision_val (mkStepFun pr2))) in |- *; apply StepFun_P1. - unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro. + (subdivision_val (mkStepFun pr2))); apply StepFun_P1. + unfold RiemannInt_SF; case (Rle_dec a b); intro. eapply StepFun_P17. apply H1. change (adapted_couple (mkStepFun pr1) a b (subdivision (mkStepFun pr1)) - (subdivision_val (mkStepFun pr1))) in |- *; apply StepFun_P1. + (subdivision_val (mkStepFun pr1))); apply StepFun_P1. apply Ropp_eq_compat; eapply StepFun_P17. apply H1. change (adapted_couple (mkStepFun pr1) a b (subdivision (mkStepFun pr1)) - (subdivision_val (mkStepFun pr1))) in |- *; apply StepFun_P1. + (subdivision_val (mkStepFun pr1))); apply StepFun_P1. Qed. Lemma StepFun_P44 : @@ -2449,7 +2449,7 @@ Proof. adapted_couple f a b l1 lf1 -> a <= c <= b -> { l:Rlist & { l0:Rlist & adapted_couple f a c l l0 } }). - intro X; unfold IsStepFun in |- *; unfold is_subdivision in |- *; eapply X. + intro X; unfold IsStepFun; unfold is_subdivision; eapply X. apply H2. split; assumption. clear f a b c H0 H H1 H2 l1 lf1; simple induction l1. @@ -2461,11 +2461,11 @@ Proof. simpl in H2; assert (H7 : a <= b). elim H0; intros; apply Rle_trans with c; assumption. replace a with (Rmin a b). - pattern b at 2 in |- *; replace b with (Rmax a b). + pattern b at 2; replace b with (Rmax a b). rewrite <- H2; rewrite H3; reflexivity. - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. split with (cons r nil); split with lf1; assert (H2 : c = b). rewrite H1 in H0; elim H0; intros; apply Rle_antisym; assumption. @@ -2479,22 +2479,22 @@ Proof. split with (cons r (cons c nil)); split with (cons r3 nil); unfold adapted_couple in H; decompose [and] H; clear H; assert (H6 : r = a). - simpl in H4; rewrite H4; unfold Rmin in |- *; case (Rle_dec a b); intro; + simpl in H4; rewrite H4; unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; elim H0; intros; apply Rle_trans with c; assumption ]. - elim H0; clear H0; intros; unfold adapted_couple in |- *; repeat split. - rewrite H6; unfold ordered_Rlist in |- *; intros; simpl in H8; inversion H8; - [ simpl in |- *; assumption | elim (le_Sn_O _ H10) ]. - simpl in |- *; unfold Rmin in |- *; case (Rle_dec a c); intro; + elim H0; clear H0; intros; unfold adapted_couple; repeat split. + rewrite H6; unfold ordered_Rlist; intros; simpl in H8; inversion H8; + [ simpl; assumption | elim (le_Sn_O _ H10) ]. + simpl; unfold Rmin; case (Rle_dec a c); intro; [ assumption | elim n; assumption ]. - simpl in |- *; unfold Rmax in |- *; case (Rle_dec a c); intro; + simpl; unfold Rmax; case (Rle_dec a c); intro; [ reflexivity | elim n; assumption ]. - unfold constant_D_eq, open_interval in |- *; intros; simpl in H8; + unfold constant_D_eq, open_interval; intros; simpl in H8; inversion H8. - simpl in |- *; assert (H10 := H7 0%nat); + simpl; assert (H10 := H7 0%nat); assert (H12 : (0 < pred (Rlength (cons r (cons r1 r2))))%nat). - simpl in |- *; apply lt_O_Sn. - apply (H10 H12); unfold open_interval in |- *; simpl in |- *; + simpl; apply lt_O_Sn. + apply (H10 H12); unfold open_interval; simpl; rewrite H11 in H9; simpl in H9; elim H9; clear H9; intros; split; try assumption. apply Rlt_le_trans with c; assumption. @@ -2508,42 +2508,42 @@ Proof. assert (H14 : a <= b). elim H0; intros; apply Rle_trans with c; assumption. assert (H16 : r = a). - simpl in H7; rewrite H7; unfold Rmin in |- *; case (Rle_dec a b); intro; + simpl in H7; rewrite H7; unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. induction l1' as [| r4 l1' Hrecl1']. simpl in H13; discriminate. - clear Hrecl1'; unfold adapted_couple in |- *; repeat split. - unfold ordered_Rlist in |- *; intros; simpl in H; induction i as [| i Hreci]. - simpl in |- *; replace r4 with r1. + clear Hrecl1'; unfold adapted_couple; repeat split. + unfold ordered_Rlist; intros; simpl in H; induction i as [| i Hreci]. + simpl; replace r4 with r1. apply (H5 0%nat). - simpl in |- *; apply lt_O_Sn. - simpl in H12; rewrite H12; unfold Rmin in |- *; case (Rle_dec r1 c); intro; + simpl; apply lt_O_Sn. + simpl in H12; rewrite H12; unfold Rmin; case (Rle_dec r1 c); intro; [ reflexivity | elim n; left; assumption ]. - apply (H9 i); simpl in |- *; apply lt_S_n; assumption. - simpl in |- *; unfold Rmin in |- *; case (Rle_dec a c); intro; + apply (H9 i); simpl; apply lt_S_n; assumption. + simpl; unfold Rmin; case (Rle_dec a c); intro; [ assumption | elim n; elim H0; intros; assumption ]. replace (Rmax a c) with (Rmax r1 c). rewrite <- H11; reflexivity. - unfold Rmax in |- *; case (Rle_dec r1 c); case (Rle_dec a c); intros; + unfold Rmax; case (Rle_dec r1 c); case (Rle_dec a c); intros; [ reflexivity | elim n; elim H0; intros; assumption | elim n; left; assumption | elim n0; left; assumption ]. - simpl in |- *; simpl in H13; rewrite H13; reflexivity. - intros; simpl in H; unfold constant_D_eq, open_interval in |- *; intros; + simpl; simpl in H13; rewrite H13; reflexivity. + intros; simpl in H; unfold constant_D_eq, open_interval; intros; induction i as [| i Hreci]. - simpl in |- *; assert (H17 := H10 0%nat); + simpl; assert (H17 := H10 0%nat); assert (H18 : (0 < pred (Rlength (cons r (cons r1 r2))))%nat). - simpl in |- *; apply lt_O_Sn. - apply (H17 H18); unfold open_interval in |- *; simpl in |- *; simpl in H4; + simpl; apply lt_O_Sn. + apply (H17 H18); unfold open_interval; simpl; simpl in H4; elim H4; clear H4; intros; split; try assumption; replace r1 with r4. assumption. - simpl in H12; rewrite H12; unfold Rmin in |- *; case (Rle_dec r1 c); intro; + simpl in H12; rewrite H12; unfold Rmin; case (Rle_dec r1 c); intro; [ reflexivity | elim n; left; assumption ]. - clear Hreci; simpl in |- *; apply H15. - simpl in |- *; apply lt_S_n; assumption. - unfold open_interval in |- *; apply H4. + clear Hreci; simpl; apply H15. + simpl; apply lt_S_n; assumption. + unfold open_interval; apply H4. split. left; assumption. elim H0; intros; assumption. @@ -2565,7 +2565,7 @@ Proof. adapted_couple f a b l1 lf1 -> a <= c <= b -> { l:Rlist & { l0:Rlist & adapted_couple f c b l l0 } }). - intro X; unfold IsStepFun in |- *; unfold is_subdivision in |- *; eapply X; + intro X; unfold IsStepFun; unfold is_subdivision; eapply X; [ apply H2 | split; assumption ]. clear f a b c H0 H H1 H2 l1 lf1; simple induction l1. intros; unfold adapted_couple in H; decompose [and] H; clear H; simpl in H4; @@ -2576,11 +2576,11 @@ Proof. simpl in H2; assert (H7 : a <= b). elim H0; intros; apply Rle_trans with c; assumption. replace a with (Rmin a b). - pattern b at 2 in |- *; replace b with (Rmax a b). + pattern b at 2; replace b with (Rmax a b). rewrite <- H2; rewrite H3; reflexivity. - unfold Rmax in |- *; case (Rle_dec a b); intro; + unfold Rmax; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. - unfold Rmin in |- *; case (Rle_dec a b); intro; + unfold Rmin; case (Rle_dec a b); intro; [ reflexivity | elim n; assumption ]. split with (cons r nil); split with lf1; assert (H2 : c = b). rewrite H1 in H0; elim H0; intros; apply Rle_antisym; assumption. @@ -2593,32 +2593,32 @@ Proof. elim H1; intro. split with (cons c (cons r1 r2)); split with (cons r3 lf1); unfold adapted_couple in H; decompose [and] H; clear H; - unfold adapted_couple in |- *; repeat split. - unfold ordered_Rlist in |- *; intros; simpl in H; induction i as [| i Hreci]. - simpl in |- *; assumption. - clear Hreci; apply (H2 (S i)); simpl in |- *; assumption. - simpl in |- *; unfold Rmin in |- *; case (Rle_dec c b); intro; + unfold adapted_couple; repeat split. + unfold ordered_Rlist; intros; simpl in H; induction i as [| i Hreci]. + simpl; assumption. + clear Hreci; apply (H2 (S i)); simpl; assumption. + simpl; unfold Rmin; case (Rle_dec c b); intro; [ reflexivity | elim n; elim H0; intros; assumption ]. replace (Rmax c b) with (Rmax a b). rewrite <- H3; reflexivity. - unfold Rmax in |- *; case (Rle_dec a b); case (Rle_dec c b); intros; + unfold Rmax; case (Rle_dec a b); case (Rle_dec c b); intros; [ reflexivity | elim n; elim H0; intros; assumption | elim n; elim H0; intros; apply Rle_trans with c; assumption | elim n0; elim H0; intros; apply Rle_trans with c; assumption ]. - simpl in |- *; simpl in H5; apply H5. + simpl; simpl in H5; apply H5. intros; simpl in H; induction i as [| i Hreci]. - unfold constant_D_eq, open_interval in |- *; intros; simpl in |- *; + unfold constant_D_eq, open_interval; intros; simpl; apply (H7 0%nat). - simpl in |- *; apply lt_O_Sn. - unfold open_interval in |- *; simpl in |- *; simpl in H6; elim H6; clear H6; + simpl; apply lt_O_Sn. + unfold open_interval; simpl; simpl in H6; elim H6; clear H6; intros; split; try assumption; apply Rle_lt_trans with c; try assumption; replace r with a. elim H0; intros; assumption. - simpl in H4; rewrite H4; unfold Rmin in |- *; case (Rle_dec a b); intros; + simpl in H4; rewrite H4; unfold Rmin; case (Rle_dec a b); intros; [ reflexivity | elim n; elim H0; intros; apply Rle_trans with c; assumption ]. - clear Hreci; apply (H7 (S i)); simpl in |- *; assumption. + clear Hreci; apply (H7 (S i)); simpl; assumption. cut (adapted_couple f r1 b (cons r1 r2) lf1). cut (r1 <= c <= b). intros; elim (X0 _ _ _ _ _ H3 H2); intros l1' [lf1' H4]; split with l1'; diff --git a/theories/Reals/Rlimit.v b/theories/Reals/Rlimit.v index 5c864de3..c5ee828a 100644 --- a/theories/Reals/Rlimit.v +++ b/theories/Reals/Rlimit.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 -> eps * / 2 < eps. Proof. intros. - pattern eps at 2 in |- *; rewrite <- Rmult_1_r. + pattern eps at 2; rewrite <- Rmult_1_r. repeat rewrite (Rmult_comm eps). apply Rmult_lt_compat_r. exact H. @@ -70,7 +70,7 @@ Lemma Rlt_eps4_eps : forall eps:R, eps > 0 -> eps * / (2 + 2) < eps. Proof. intros. replace (2 + 2) with 4. - pattern eps at 2 in |- *; rewrite <- Rmult_1_r. + pattern eps at 2; rewrite <- Rmult_1_r. repeat rewrite (Rmult_comm eps). apply Rmult_lt_compat_r. exact H. @@ -113,10 +113,10 @@ Qed. (*********) Lemma mul_factor_gt : forall eps l l':R, eps > 0 -> eps * mul_factor l l' > 0. Proof. - intros; unfold Rgt in |- *; rewrite <- (Rmult_0_r eps); + intros; unfold Rgt; rewrite <- (Rmult_0_r eps); apply Rmult_lt_compat_l. assumption. - unfold mul_factor in |- *; apply Rinv_0_lt_compat; + unfold mul_factor; apply Rinv_0_lt_compat; cut (1 <= 1 + (Rabs l + Rabs l')). cut (0 < 1). exact (Rlt_le_trans _ _ _). @@ -196,7 +196,7 @@ Proof. case (H0 (dist R_met (f x0) l)); auto. intros alpha1 [H2 H3]; apply H3; auto; split; auto. case (dist_refl R_met x0 x0); intros Hr1 Hr2; rewrite Hr2; auto. - case (dist_refl R_met (f x0) l); intros Hr1 Hr2; apply sym_eq; auto. + case (dist_refl R_met (f x0) l); intros Hr1 Hr2; symmetry; auto. Qed. (*********) @@ -210,7 +210,7 @@ Qed. (*********) Lemma lim_x : forall (D:R -> Prop) (x0:R), limit1_in (fun x:R => x) D x0 x0. Proof. - unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros; + unfold limit1_in; unfold limit_in; simpl; intros; split with eps; split; auto; intros; elim H0; intros; auto. Qed. @@ -221,9 +221,9 @@ Lemma limit_plus : limit1_in f D l x0 -> limit1_in g D l' x0 -> limit1_in (fun x:R => f x + g x) D (l + l') x0. Proof. - intros; unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; + intros; unfold limit1_in; unfold limit_in; simpl; intros; elim (H (eps * / 2) (eps2_Rgt_R0 eps H1)); - elim (H0 (eps * / 2) (eps2_Rgt_R0 eps H1)); simpl in |- *; + elim (H0 (eps * / 2) (eps2_Rgt_R0 eps H1)); simpl; clear H H0; intros; elim H; elim H0; clear H H0; intros; split with (Rmin x1 x); split. exact (Rmin_Rgt_r x1 x 0 (conj H H2)). @@ -244,12 +244,12 @@ Lemma limit_Ropp : forall (f:R -> R) (D:R -> Prop) (l x0:R), limit1_in f D l x0 -> limit1_in (fun x:R => - f x) D (- l) x0. Proof. - unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros; + unfold limit1_in; unfold limit_in; simpl; intros; elim (H eps H0); clear H; intros; elim H; clear H; intros; split with x; split; auto; intros; generalize (H1 x1 H2); - clear H1; intro; unfold R_dist in |- *; unfold Rminus in |- *; + clear H1; intro; unfold R_dist; unfold Rminus; rewrite (Ropp_involutive l); rewrite (Rplus_comm (- f x1) l); - fold (l - f x1) in |- *; fold (R_dist l (f x1)) in |- *; + fold (l - f x1); fold (R_dist l (f x1)); rewrite R_dist_sym; assumption. Qed. @@ -259,7 +259,7 @@ Lemma limit_minus : limit1_in f D l x0 -> limit1_in g D l' x0 -> limit1_in (fun x:R => f x - g x) D (l - l') x0. Proof. - intros; unfold Rminus in |- *; generalize (limit_Ropp g D l' x0 H0); intro; + intros; unfold Rminus; generalize (limit_Ropp g D l' x0 H0); intro; exact (limit_plus f (fun x:R => - g x) D l (- l') x0 H H1). Qed. @@ -268,9 +268,9 @@ Lemma limit_free : forall (f:R -> R) (D:R -> Prop) (x x0:R), limit1_in (fun h:R => f x) D (f x) x0. Proof. - unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros; + unfold limit1_in; unfold limit_in; simpl; intros; split with eps; split; auto; intros; elim (R_dist_refl (f x) (f x)); - intros a b; rewrite (b (refl_equal (f x))); unfold Rgt in H; + intros a b; rewrite (b (eq_refl (f x))); unfold Rgt in H; assumption. Qed. @@ -280,14 +280,14 @@ Lemma limit_mul : limit1_in f D l x0 -> limit1_in g D l' x0 -> limit1_in (fun x:R => f x * g x) D (l * l') x0. Proof. - intros; unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; + intros; unfold limit1_in; unfold limit_in; simpl; intros; elim (H (Rmin 1 (eps * mul_factor l l')) (mul_factor_gt_f eps l l' H1)); elim (H0 (eps * mul_factor l l') (mul_factor_gt eps l l' H1)); - clear H H0; simpl in |- *; intros; elim H; elim H0; + clear H H0; simpl; intros; elim H; elim H0; clear H H0; intros; split with (Rmin x1 x); split. exact (Rmin_Rgt_r x1 x 0 (conj H H2)). - intros; elim H4; clear H4; intros; unfold R_dist in |- *; + intros; elim H4; clear H4; intros; unfold R_dist; replace (f x2 * g x2 - l * l') with (f x2 * (g x2 - l') + l' * (f x2 - l)). cut (Rabs (f x2 * (g x2 - l')) + Rabs (l' * (f x2 - l)) < eps). cut @@ -309,7 +309,7 @@ Proof. apply Rmult_ge_0_gt_0_lt_compat. apply Rle_ge. exact (Rabs_pos (g x2 - l')). - rewrite (Rplus_comm 1 (Rabs l)); unfold Rgt in |- *; apply Rle_lt_0_plus_1; + rewrite (Rplus_comm 1 (Rabs l)); unfold Rgt; apply Rle_lt_0_plus_1; exact (Rabs_pos l). unfold R_dist in H9; apply (Rplus_lt_reg_r (- Rabs l) (Rabs (f x2)) (1 + Rabs l)). @@ -323,13 +323,13 @@ Proof. generalize (H3 x2 (conj H4 H6)); trivial. apply Rmult_le_compat_l. exact (Rabs_pos l'). - unfold Rle in |- *; left; assumption. + unfold Rle; left; assumption. rewrite (Rmult_comm (1 + Rabs l) (eps * mul_factor l l')); rewrite (Rmult_comm (Rabs l') (eps * mul_factor l l')); rewrite <- (Rmult_plus_distr_l (eps * mul_factor l l') (1 + Rabs l) (Rabs l')) ; rewrite (Rmult_assoc eps (mul_factor l l') (1 + Rabs l + Rabs l')); - rewrite (Rplus_assoc 1 (Rabs l) (Rabs l')); unfold mul_factor in |- *; + rewrite (Rplus_assoc 1 (Rabs l) (Rabs l')); unfold mul_factor; rewrite (Rinv_l (1 + (Rabs l + Rabs l')) (mul_factor_wd l l')); rewrite (proj1 (Rmult_ne eps)); apply Req_le; trivial. ring. @@ -344,10 +344,10 @@ Lemma single_limit : forall (f:R -> R) (D:R -> Prop) (l l' x0:R), adhDa D x0 -> limit1_in f D l x0 -> limit1_in f D l' x0 -> l = l'. Proof. - unfold limit1_in in |- *; unfold limit_in in |- *; intros. + unfold limit1_in; unfold limit_in; intros. cut (forall eps:R, eps > 0 -> dist R_met l l' < 2 * eps). - clear H0 H1; unfold dist in |- *; unfold R_met in |- *; unfold R_dist in |- *; - unfold Rabs in |- *; case (Rcase_abs (l - l')); intros. + clear H0 H1; unfold dist; unfold R_met; unfold R_dist; + unfold Rabs; case (Rcase_abs (l - l')); intros. cut (forall eps:R, eps > 0 -> - (l - l') < eps). intro; generalize (prop_eps (- (l - l')) H1); intro; generalize (Ropp_gt_lt_0_contravar (l - l') r); intro; @@ -358,10 +358,10 @@ Proof. rewrite <- (Rmult_assoc 2 (/ 2) eps); rewrite (Rinv_r 2). elim (Rmult_ne eps); intros a b; rewrite b; clear a b; trivial. apply (Rlt_dichotomy_converse 2 0); right; generalize Rlt_0_1; intro; - unfold Rgt in |- *; generalize (Rplus_lt_compat_l 1 0 1 H3); + unfold Rgt; generalize (Rplus_lt_compat_l 1 0 1 H3); intro; elim (Rplus_ne 1); intros a b; rewrite a in H4; clear a b; apply (Rlt_trans 0 1 2 H3 H4). - unfold Rgt in |- *; unfold Rgt in H1; rewrite (Rmult_comm eps (/ 2)); + unfold Rgt; unfold Rgt in H1; rewrite (Rmult_comm eps (/ 2)); rewrite <- (Rmult_0_r (/ 2)); apply (Rmult_lt_compat_l (/ 2) 0 eps); auto. apply (Rinv_0_lt_compat 2); cut (1 < 2). @@ -380,10 +380,10 @@ Proof. rewrite <- (Rmult_assoc 2 (/ 2) eps); rewrite (Rinv_r 2). elim (Rmult_ne eps); intros a b; rewrite b; clear a b; trivial. apply (Rlt_dichotomy_converse 2 0); right; generalize Rlt_0_1; intro; - unfold Rgt in |- *; generalize (Rplus_lt_compat_l 1 0 1 H3); + unfold Rgt; generalize (Rplus_lt_compat_l 1 0 1 H3); intro; elim (Rplus_ne 1); intros a b; rewrite a in H4; clear a b; apply (Rlt_trans 0 1 2 H3 H4). - unfold Rgt in |- *; unfold Rgt in H1; rewrite (Rmult_comm eps (/ 2)); + unfold Rgt; unfold Rgt in H1; rewrite (Rmult_comm eps (/ 2)); rewrite <- (Rmult_0_r (/ 2)); apply (Rmult_lt_compat_l (/ 2) 0 eps); auto. apply (Rinv_0_lt_compat 2); cut (1 < 2). @@ -393,7 +393,7 @@ Proof. (**) intros; unfold adhDa in H; elim (H0 eps H2); intros; elim (H1 eps H2); intros; clear H0 H1; elim H3; elim H4; clear H3 H4; intros; - simpl in |- *; simpl in H1, H4; generalize (Rmin_Rgt x x1 0); + simpl; simpl in H1, H4; generalize (Rmin_Rgt x x1 0); intro; elim H5; intros; clear H5; elim (H (Rmin x x1) (H7 (conj H3 H0))); intros; elim H5; intros; clear H5 H H6 H7; generalize (Rmin_Rgt x x1 (R_dist x2 x0)); intro; @@ -403,10 +403,10 @@ Proof. intros; generalize (Rplus_lt_compat (R_dist (f x2) l) eps (R_dist (f x2) l') eps H H0); - unfold R_dist in |- *; intros; rewrite (Rabs_minus_sym (f x2) l) in H1; + unfold R_dist; intros; rewrite (Rabs_minus_sym (f x2) l) in H1; rewrite (Rmult_comm 2 eps); rewrite (Rmult_plus_distr_l eps 1 1); elim (Rmult_ne eps); intros a b; rewrite a; clear a b; - generalize (R_dist_tri l l' (f x2)); unfold R_dist in |- *; + generalize (R_dist_tri l l' (f x2)); unfold R_dist; intros; apply (Rle_lt_trans (Rabs (l - l')) (Rabs (l - f x2) + Rabs (f x2 - l')) @@ -419,7 +419,7 @@ Lemma limit_comp : limit1_in f Df l x0 -> limit1_in g Dg l' l -> limit1_in (fun x:R => g (f x)) (Dgf Df Dg f) l' x0. Proof. - unfold limit1_in, limit_in, Dgf in |- *; simpl in |- *. + unfold limit1_in, limit_in, Dgf; simpl. intros f g Df Dg l l' x0 Hf Hg eps eps_pos. elim (Hg eps eps_pos). intros alpg lg. @@ -436,12 +436,12 @@ Lemma limit_inv : forall (f:R -> R) (D:R -> Prop) (l x0:R), limit1_in f D l x0 -> l <> 0 -> limit1_in (fun x:R => / f x) D (/ l) x0. Proof. - unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; - unfold R_dist in |- *; intros; elim (H (Rabs l / 2)). + unfold limit1_in; unfold limit_in; simpl; + unfold R_dist; intros; elim (H (Rabs l / 2)). intros delta1 H2; elim (H (eps * (Rsqr l / 2))). intros delta2 H3; elim H2; elim H3; intros; exists (Rmin delta1 delta2); split. - unfold Rmin in |- *; case (Rle_dec delta1 delta2); intro; assumption. + unfold Rmin; case (Rle_dec delta1 delta2); intro; assumption. intro; generalize (H5 x); clear H5; intro H5; generalize (H7 x); clear H7; intro H7; intro H10; elim H10; intros; cut (D x /\ Rabs (x - x0) < delta1). cut (D x /\ Rabs (x - x0) < delta2). @@ -455,7 +455,7 @@ Proof. (Rplus_lt_compat_l (Rabs (f x) - Rabs l / 2) (Rabs l - Rabs (f x)) (Rabs l / 2) H14); replace (Rabs (f x) - Rabs l / 2 + (Rabs l - Rabs (f x))) with (Rabs l / 2). - unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l; + unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; intro; cut (f x <> 0). intro; replace (/ f x + - / l) with ((l - f x) * / (l * f x)). rewrite Rabs_mult; rewrite Rabs_Rinv. @@ -467,7 +467,7 @@ Proof. (/ Rabs (l * f x)) (2 / Rsqr l) (Rabs_pos (l - f x)) H18 H5 H17); replace (eps * (Rsqr l / 2) * (2 / Rsqr l)) with eps. intro; assumption. - unfold Rdiv in |- *; unfold Rsqr in |- *; rewrite Rinv_mult_distr. + unfold Rdiv; unfold Rsqr; rewrite Rinv_mult_distr. repeat rewrite Rmult_assoc. rewrite (Rmult_comm l). repeat rewrite Rmult_assoc. @@ -487,7 +487,7 @@ Proof. left; apply Rinv_0_lt_compat; apply Rabs_pos_lt; apply prod_neq_R0; assumption. rewrite Rmult_comm; rewrite Rabs_mult; rewrite Rinv_mult_distr. - rewrite (Rsqr_abs l); unfold Rsqr in |- *; unfold Rdiv in |- *; + rewrite (Rsqr_abs l); unfold Rsqr; unfold Rdiv; rewrite Rinv_mult_distr. repeat rewrite <- Rmult_assoc; apply Rmult_lt_compat_r. apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption. @@ -496,7 +496,7 @@ Proof. apply Rabs_pos_lt; assumption. apply Rabs_pos_lt; assumption. apply Rinv_0_lt_compat; cut (0%nat <> 2%nat); - [ intro H17; generalize (lt_INR_0 2 (neq_O_lt 2 H17)); unfold INR in |- *; + [ intro H17; generalize (lt_INR_0 2 (neq_O_lt 2 H17)); unfold INR; intro H18; assumption | discriminate ]. replace (Rabs (f x) * Rabs l * / 2 * / Rabs (f x)) with (Rabs l / 2). @@ -512,7 +512,7 @@ Proof. discrR. apply Rabs_no_R0. assumption. - unfold Rdiv in |- *. + unfold Rdiv. repeat rewrite Rmult_assoc. rewrite (Rmult_comm (Rabs (f x))). repeat rewrite Rmult_assoc. @@ -526,7 +526,7 @@ Proof. apply Rabs_no_R0; assumption. apply prod_neq_R0; assumption. rewrite (Rinv_mult_distr _ _ H0 H16). - unfold Rminus in |- *; rewrite Rmult_plus_distr_r. + unfold Rminus; rewrite Rmult_plus_distr_r. rewrite <- Rmult_assoc. rewrite <- Rinv_r_sym. rewrite Rmult_1_l. @@ -538,16 +538,16 @@ Proof. reflexivity. assumption. assumption. - red in |- *; intro; rewrite H16 in H15; rewrite Rabs_R0 in H15; + red; intro; rewrite H16 in H15; rewrite Rabs_R0 in H15; cut (0 < Rabs l / 2). intro; elim (Rlt_irrefl 0 (Rlt_trans 0 (Rabs l / 2) 0 H17 H15)). - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + unfold Rdiv; apply Rmult_lt_0_compat. apply Rabs_pos_lt; assumption. apply Rinv_0_lt_compat; cut (0%nat <> 2%nat); - [ intro H17; generalize (lt_INR_0 2 (neq_O_lt 2 H17)); unfold INR in |- *; + [ intro H17; generalize (lt_INR_0 2 (neq_O_lt 2 H17)); unfold INR; intro; assumption | discriminate ]. - pattern (Rabs l) at 3 in |- *; rewrite double_var. + pattern (Rabs l) at 3; rewrite double_var. ring. split; [ assumption @@ -557,18 +557,18 @@ Proof. [ assumption | apply Rlt_le_trans with (Rmin delta1 delta2); [ assumption | apply Rmin_l ] ]. - change (0 < eps * (Rsqr l / 2)) in |- *; unfold Rdiv in |- *; + change (0 < eps * (Rsqr l / 2)); unfold Rdiv; repeat rewrite Rmult_assoc; apply Rmult_lt_0_compat. assumption. apply Rmult_lt_0_compat. apply Rsqr_pos_lt; assumption. apply Rinv_0_lt_compat; cut (0%nat <> 2%nat); - [ intro H3; generalize (lt_INR_0 2 (neq_O_lt 2 H3)); unfold INR in |- *; + [ intro H3; generalize (lt_INR_0 2 (neq_O_lt 2 H3)); unfold INR; intro; assumption | discriminate ]. - change (0 < Rabs l / 2) in |- *; unfold Rdiv in |- *; apply Rmult_lt_0_compat; + change (0 < Rabs l / 2); unfold Rdiv; apply Rmult_lt_0_compat; [ apply Rabs_pos_lt; assumption | apply Rinv_0_lt_compat; cut (0%nat <> 2%nat); - [ intro H3; generalize (lt_INR_0 2 (neq_O_lt 2 H3)); unfold INR in |- *; + [ intro H3; generalize (lt_INR_0 2 (neq_O_lt 2 H3)); unfold INR; intro; assumption | discriminate ] ]. Qed. diff --git a/theories/Reals/Rlogic.v b/theories/Reals/Rlogic.v index 2237ea6e..0b892a76 100644 --- a/theories/Reals/Rlogic.v +++ b/theories/Reals/Rlogic.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Prop) (x y:R), P x -> P y -> P (Rmin x y). Proof. - intros P x y H1 H2; unfold Rmin in |- *; case (Rle_dec x y); intro; + intros P x y H1 H2; unfold Rmin; case (Rle_dec x y); intro; assumption. Qed. Lemma exp_le_3 : exp 1 <= 3. Proof. assert (exp_1 : exp 1 <> 0). - assert (H0 := exp_pos 1); red in |- *; intro; rewrite H in H0; + assert (H0 := exp_pos 1); red; intro; rewrite H in H0; elim (Rlt_irrefl _ H0). apply Rmult_le_reg_l with (/ exp 1). apply Rinv_0_lt_compat; apply exp_pos. @@ -43,7 +43,7 @@ Proof. rewrite Rmult_1_r; rewrite <- (Rmult_comm 3); rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_l; replace (/ exp 1) with (exp (-1)). - unfold exp in |- *; case (exist_exp (-1)); intros; simpl in |- *; + unfold exp; case (exist_exp (-1)); intros; simpl; unfold exp_in in e; assert (H := alternated_series_ineq (fun i:nat => / INR (fact i)) x 1). cut @@ -73,7 +73,7 @@ Proof. ring. discrR. apply H. - unfold Un_decreasing in |- *; intros; + unfold Un_decreasing; intros; apply Rmult_le_reg_l with (INR (fact n)). apply INR_fact_lt_0. apply Rmult_le_reg_l with (INR (fact (S n))). @@ -84,13 +84,13 @@ Proof. rewrite Rmult_1_r; apply le_INR; apply fact_le; apply le_n_Sn. apply INR_fact_neq_0. apply INR_fact_neq_0. - assert (H0 := cv_speed_pow_fact 1); unfold Un_cv in |- *; unfold Un_cv in H0; + assert (H0 := cv_speed_pow_fact 1); unfold Un_cv; unfold Un_cv in H0; intros; elim (H0 _ H1); intros; exists x0; intros; - unfold R_dist in H2; unfold R_dist in |- *; + unfold R_dist in H2; unfold R_dist; replace (/ INR (fact n)) with (1 ^ n / INR (fact n)). apply (H2 _ H3). - unfold Rdiv in |- *; rewrite pow1; rewrite Rmult_1_l; reflexivity. - unfold infinite_sum in e; unfold Un_cv, tg_alt in |- *; intros; elim (e _ H0); + unfold Rdiv; rewrite pow1; rewrite Rmult_1_l; reflexivity. + unfold infinite_sum in e; unfold Un_cv, tg_alt; intros; elim (e _ H0); intros; exists x0; intros; replace (sum_f_R0 (fun i:nat => (-1) ^ i * / INR (fact i)) n) with (sum_f_R0 (fun i:nat => / INR (fact i) * (-1) ^ i) n). @@ -121,7 +121,7 @@ Proof. intro. replace (derive_pt exp x0 (H0 x0)) with (exp x0). apply exp_pos. - symmetry in |- *; apply derive_pt_eq_0. + symmetry ; apply derive_pt_eq_0. apply (derivable_pt_lim_exp x0). apply H. Qed. @@ -143,11 +143,11 @@ Proof. rewrite Ropp_0; rewrite Rplus_0_r; replace (derive_pt exp x0 (derivable_exp x0)) with (exp x0). rewrite exp_0; rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l; - pattern x at 1 in |- *; rewrite <- Rmult_1_r; rewrite (Rmult_comm (exp x0)); + pattern x at 1; rewrite <- Rmult_1_r; rewrite (Rmult_comm (exp x0)); apply Rmult_lt_compat_l. apply H. rewrite <- exp_0; apply exp_increasing; elim H3; intros; assumption. - symmetry in |- *; apply derive_pt_eq_0; apply derivable_pt_lim_exp. + symmetry ; apply derive_pt_eq_0; apply derivable_pt_lim_exp. Qed. Lemma ln_exists1 : forall y:R, 1 <= y -> { z:R | y = exp z }. @@ -160,18 +160,18 @@ Proof. cut (f 0 * f y <= 0); [intro H4|]. pose proof (IVT_cor f 0 y H2 (Rlt_le _ _ H0) H4) as (t,(_,H7)); exists t; unfold f in H7; apply Rminus_diag_uniq_sym; exact H7. - pattern 0 at 2 in |- *; rewrite <- (Rmult_0_r (f y)); + pattern 0 at 2; rewrite <- (Rmult_0_r (f y)); rewrite (Rmult_comm (f 0)); apply Rmult_le_compat_l; assumption. - unfold f in |- *; apply Rplus_le_reg_l with y; left; + unfold f; apply Rplus_le_reg_l with y; left; apply Rlt_trans with (1 + y). rewrite <- (Rplus_comm y); apply Rplus_lt_compat_l; apply Rlt_0_1. replace (y + (exp y - y)) with (exp y); [ apply (exp_ineq1 y H0) | ring ]. - unfold f in |- *; change (continuity (exp - fct_cte y)) in |- *; + unfold f; change (continuity (exp - fct_cte y)); apply continuity_minus; [ apply derivable_continuous; apply derivable_exp | apply derivable_continuous; apply derivable_const ]. - unfold f in |- *; rewrite exp_0; apply Rplus_le_reg_l with y; + unfold f; rewrite exp_0; apply Rplus_le_reg_l with y; rewrite Rplus_0_r; replace (y + (1 - y)) with 1; [ apply H | ring ]. Qed. @@ -185,18 +185,18 @@ Proof. apply H. rewrite <- Rinv_r_sym. rewrite Rmult_1_r; left; apply (Rnot_le_lt _ _ n). - red in |- *; intro; rewrite H0 in H; elim (Rlt_irrefl _ H). + red; intro; rewrite H0 in H; elim (Rlt_irrefl _ H). destruct (ln_exists1 _ H0) as (x,p); exists (- x); apply Rmult_eq_reg_l with (exp x / y). - unfold Rdiv in |- *; rewrite Rmult_assoc; rewrite <- Rinv_l_sym. + unfold Rdiv; rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; rewrite <- (Rmult_comm (/ y)); rewrite Rmult_assoc; rewrite <- exp_plus; rewrite Rplus_opp_r; rewrite exp_0; - rewrite Rmult_1_r; symmetry in |- *; apply p. - red in |- *; intro H3; rewrite H3 in H; elim (Rlt_irrefl _ H). - unfold Rdiv in |- *; apply prod_neq_R0. - assert (H3 := exp_pos x); red in |- *; intro H4; rewrite H4 in H3; + rewrite Rmult_1_r; symmetry ; apply p. + red; intro H3; rewrite H3 in H; elim (Rlt_irrefl _ H). + unfold Rdiv; apply prod_neq_R0. + assert (H3 := exp_pos x); red; intro H4; rewrite H4 in H3; elim (Rlt_irrefl _ H3). - apply Rinv_neq_0_compat; red in |- *; intro H3; rewrite H3 in H; + apply Rinv_neq_0_compat; red; intro H3; rewrite H3 in H; elim (Rlt_irrefl _ H). Qed. @@ -213,11 +213,11 @@ Definition ln (x:R) : R := Lemma exp_ln : forall x:R, 0 < x -> exp (ln x) = x. Proof. - intros; unfold ln in |- *; case (Rlt_dec 0 x); intro. - unfold Rln in |- *; + intros; unfold ln; case (Rlt_dec 0 x); intro. + unfold Rln; case (ln_exists (mkposreal x r) (cond_pos (mkposreal x r))); intros. - simpl in e; symmetry in |- *; apply e. + simpl in e; symmetry ; apply e. elim n; apply H. Qed. @@ -231,7 +231,7 @@ Qed. Theorem exp_Ropp : forall x:R, exp (- x) = / exp x. Proof. intros x; assert (H : exp x <> 0). - assert (H := exp_pos x); red in |- *; intro; rewrite H0 in H; + assert (H := exp_pos x); red; intro; rewrite H0 in H; elim (Rlt_irrefl _ H). apply Rmult_eq_reg_l with (r := exp x). rewrite <- exp_plus; rewrite Rplus_opp_r; rewrite exp_0. @@ -306,11 +306,11 @@ Theorem ln_continue : forall y:R, 0 < y -> continue_in ln (fun x:R => 0 < x) y. Proof. intros y H. - unfold continue_in, limit1_in, limit_in in |- *; intros eps Heps. + unfold continue_in, limit1_in, limit_in; intros eps Heps. cut (1 < exp eps); [ intros H1 | idtac ]. cut (exp (- eps) < 1); [ intros H2 | idtac ]. exists (Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))); split. - red in |- *; apply P_Rmin. + red; apply P_Rmin. apply Rmult_lt_0_compat. assumption. apply Rplus_lt_reg_r with 1. @@ -321,7 +321,7 @@ Proof. apply Rplus_lt_reg_r with (exp (- eps)). rewrite Rplus_0_r; replace (exp (- eps) + (1 - exp (- eps))) with 1; [ apply H2 | ring ]. - unfold dist, R_met, R_dist in |- *; simpl in |- *. + unfold dist, R_met, R_dist; simpl. intros x [[H3 H4] H5]. cut (y * (x * / y) = x). intro Hxyy. @@ -351,7 +351,7 @@ Proof. rewrite Hxyy; rewrite Rmult_1_r; apply Hxy. rewrite Hxy; rewrite Rinv_r. rewrite ln_1; rewrite Rabs_R0; apply Heps. - red in |- *; intro; rewrite H0 in H; elim (Rlt_irrefl _ H). + red; intro; rewrite H0 in H; elim (Rlt_irrefl _ H). rewrite Rabs_right. apply exp_lt_inv. rewrite exp_ln. @@ -366,7 +366,7 @@ Proof. left; apply (Rgt_minus _ _ Hxy). apply Rmult_lt_0_compat; [ apply H3 | apply (Rinv_0_lt_compat _ H) ]. rewrite <- ln_1. - apply Rgt_ge; red in |- *; apply ln_increasing. + apply Rgt_ge; red; apply ln_increasing. apply Rlt_0_1. apply Rmult_lt_reg_l with (r := y). apply H. @@ -379,7 +379,7 @@ Proof. apply Rinv_0_lt_compat; assumption. rewrite (Rmult_comm x); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. ring. - red in |- *; intro; rewrite H0 in H; elim (Rlt_irrefl _ H). + red; intro; rewrite H0 in H; elim (Rlt_irrefl _ H). apply Rmult_lt_reg_l with (exp eps). apply exp_pos. rewrite <- exp_plus; rewrite Rmult_1_r; rewrite Rplus_opp_r; rewrite exp_0; @@ -394,7 +394,7 @@ Qed. Definition Rpower (x y:R) := exp (y * ln x). -Infix Local "^R" := Rpower (at level 30, right associativity) : R_scope. +Local Infix "^R" := Rpower (at level 30, right associativity) : R_scope. (******************************************************************) (** * Properties of Rpower *) @@ -412,13 +412,13 @@ Infix Local "^R" := Rpower (at level 30, right associativity) : R_scope. Theorem Rpower_plus : forall x y z:R, z ^R (x + y) = z ^R x * z ^R y. Proof. - intros x y z; unfold Rpower in |- *. + intros x y z; unfold Rpower. rewrite Rmult_plus_distr_r; rewrite exp_plus; auto. Qed. Theorem Rpower_mult : forall x y z:R, (x ^R y) ^R z = x ^R (y * z). Proof. - intros x y z; unfold Rpower in |- *. + intros x y z; unfold Rpower. rewrite ln_exp. replace (z * (y * ln x)) with (y * z * ln x). reflexivity. @@ -427,22 +427,22 @@ Qed. Theorem Rpower_O : forall x:R, 0 < x -> x ^R 0 = 1. Proof. - intros x _; unfold Rpower in |- *. + intros x _; unfold Rpower. rewrite Rmult_0_l; apply exp_0. Qed. Theorem Rpower_1 : forall x:R, 0 < x -> x ^R 1 = x. Proof. - intros x H; unfold Rpower in |- *. + intros x H; unfold Rpower. rewrite Rmult_1_l; apply exp_ln; apply H. Qed. Theorem Rpower_pow : forall (n:nat) (x:R), 0 < x -> x ^R INR n = x ^ n. Proof. - intros n; elim n; simpl in |- *; auto; fold INR in |- *. + intros n; elim n; simpl; auto; fold INR. intros x H; apply Rpower_O; auto. intros n1; case n1. - intros H x H0; simpl in |- *; rewrite Rmult_1_r; apply Rpower_1; auto. + intros H x H0; simpl; rewrite Rmult_1_r; apply Rpower_1; auto. intros n0 H x H0; rewrite Rpower_plus; rewrite H; try rewrite Rpower_1; try apply Rmult_comm || assumption. Qed. @@ -451,7 +451,7 @@ Theorem Rpower_lt : forall x y z:R, 1 < x -> 0 <= y -> y < z -> x ^R y < x ^R z. Proof. intros x y z H H0 H1. - unfold Rpower in |- *. + unfold Rpower. apply exp_increasing. apply Rmult_lt_compat_r. rewrite <- ln_1; apply ln_increasing. @@ -464,18 +464,18 @@ Theorem Rpower_sqrt : forall x:R, 0 < x -> x ^R (/ 2) = sqrt x. Proof. intros x H. apply ln_inv. - unfold Rpower in |- *; apply exp_pos. + unfold Rpower; apply exp_pos. apply sqrt_lt_R0; apply H. apply Rmult_eq_reg_l with (INR 2). apply exp_inv. - fold Rpower in |- *. + fold Rpower. cut ((x ^R (/ INR 2)) ^R INR 2 = sqrt x ^R INR 2). - unfold Rpower in |- *; auto. + unfold Rpower; auto. rewrite Rpower_mult. rewrite Rinv_l. replace 1 with (INR 1); auto. - repeat rewrite Rpower_pow; simpl in |- *. - pattern x at 1 in |- *; rewrite <- (sqrt_sqrt x (Rlt_le _ _ H)). + repeat rewrite Rpower_pow; simpl. + pattern x at 1; rewrite <- (sqrt_sqrt x (Rlt_le _ _ H)). ring. apply sqrt_lt_R0; apply H. apply H. @@ -485,7 +485,7 @@ Qed. Theorem Rpower_Ropp : forall x y:R, x ^R (- y) = / x ^R y. Proof. - unfold Rpower in |- *. + unfold Rpower. intros x y; rewrite Ropp_mult_distr_l_reverse. apply exp_Ropp. Qed. @@ -505,11 +505,11 @@ Proof. rewrite Rinv_r. apply exp_lt_inv. apply Rle_lt_trans with (1 := exp_le_3). - change (3 < 2 ^R 2) in |- *. + change (3 < 2 ^R 2). repeat rewrite Rpower_plus; repeat rewrite Rpower_1. repeat rewrite Rmult_plus_distr_r; repeat rewrite Rmult_plus_distr_l; repeat rewrite Rmult_1_l. - pattern 3 at 1 in |- *; rewrite <- Rplus_0_r; replace (2 + 2) with (3 + 1); + pattern 3 at 1; rewrite <- Rplus_0_r; replace (2 + 2) with (3 + 1); [ apply Rplus_lt_compat_l; apply Rlt_0_1 | ring ]. prove_sup0. discrR. @@ -523,7 +523,7 @@ Theorem limit1_ext : forall (f g:R -> R) (D:R -> Prop) (l x:R), (forall x:R, D x -> f x = g x) -> limit1_in f D l x -> limit1_in g D l x. Proof. - intros f g D l x H; unfold limit1_in, limit_in in |- *. + intros f g D l x H; unfold limit1_in, limit_in. intros H0 eps H1; case (H0 eps); auto. intros x0 [H2 H3]; exists x0; split; auto. intros x1 [H4 H5]; rewrite <- H; auto. @@ -533,7 +533,7 @@ Theorem limit1_imp : forall (f:R -> R) (D D1:R -> Prop) (l x:R), (forall x:R, D1 x -> D x) -> limit1_in f D l x -> limit1_in f D1 l x. Proof. - intros f D D1 l x H; unfold limit1_in, limit_in in |- *. + intros f D D1 l x H; unfold limit1_in, limit_in. intros H0 eps H1; case (H0 eps H1); auto. intros alpha [H2 H3]; exists alpha; split; auto. intros d [H4 H5]; apply H3; split; auto. @@ -541,7 +541,7 @@ Qed. Theorem Rinv_Rdiv : forall x y:R, x <> 0 -> y <> 0 -> / (x / y) = y / x. Proof. - intros x y H1 H2; unfold Rdiv in |- *; rewrite Rinv_mult_distr. + intros x y H1 H2; unfold Rdiv; rewrite Rinv_mult_distr. rewrite Rinv_involutive. apply Rmult_comm. assumption. @@ -551,18 +551,18 @@ Qed. Theorem Dln : forall y:R, 0 < y -> D_in ln Rinv (fun x:R => 0 < x) y. Proof. - intros y Hy; unfold D_in in |- *. + intros y Hy; unfold D_in. apply limit1_ext with (f := fun x:R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))). intros x [HD1 HD2]; repeat rewrite exp_ln. - unfold Rdiv in |- *; rewrite Rinv_mult_distr. + unfold Rdiv; rewrite Rinv_mult_distr. rewrite Rinv_involutive. apply Rmult_comm. apply Rminus_eq_contra. - red in |- *; intros H2; case HD2. - symmetry in |- *; apply (ln_inv _ _ HD1 Hy H2). - apply Rminus_eq_contra; apply (sym_not_eq HD2). - apply Rinv_neq_0_compat; apply Rminus_eq_contra; red in |- *; intros H2; + red; intros H2; case HD2. + symmetry ; apply (ln_inv _ _ HD1 Hy H2). + apply Rminus_eq_contra; apply (not_eq_sym HD2). + apply Rinv_neq_0_compat; apply Rminus_eq_contra; red; intros H2; case HD2; apply ln_inv; auto. assumption. assumption. @@ -574,62 +574,62 @@ Proof. intros x [H1 H2]; split. split; auto. split; auto. - red in |- *; intros H3; case H2; apply ln_inv; auto. + red; intros H3; case H2; apply ln_inv; auto. apply limit_comp with (l := ln y) (g := fun x:R => (exp x - exp (ln y)) / (x - ln y)) (f := ln). apply ln_continue; auto. assert (H0 := derivable_pt_lim_exp (ln y)); unfold derivable_pt_lim in H0; - unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; unfold R_dist in |- *; intros; elim (H0 _ H); + unfold limit1_in; unfold limit_in; + simpl; unfold R_dist; intros; elim (H0 _ H); intros; exists (pos x); split. apply (cond_pos x). - intros; pattern y at 3 in |- *; rewrite <- exp_ln. - pattern x0 at 1 in |- *; replace x0 with (ln y + (x0 - ln y)); + intros; pattern y at 3; rewrite <- exp_ln. + pattern x0 at 1; replace x0 with (ln y + (x0 - ln y)); [ idtac | ring ]. apply H1. elim H2; intros H3 _; unfold D_x in H3; elim H3; clear H3; intros _ H3; - apply Rminus_eq_contra; apply (sym_not_eq (A:=R)); + apply Rminus_eq_contra; apply (not_eq_sym (A:=R)); apply H3. elim H2; clear H2; intros _ H2; apply H2. assumption. - red in |- *; intro; rewrite H in Hy; elim (Rlt_irrefl _ Hy). + red; intro; rewrite H in Hy; elim (Rlt_irrefl _ Hy). Qed. Lemma derivable_pt_lim_ln : forall x:R, 0 < x -> derivable_pt_lim ln x (/ x). Proof. intros; assert (H0 := Dln x H); unfold D_in in H0; unfold limit1_in in H0; unfold limit_in in H0; simpl in H0; unfold R_dist in H0; - unfold derivable_pt_lim in |- *; intros; elim (H0 _ H1); + unfold derivable_pt_lim; intros; elim (H0 _ H1); intros; elim H2; clear H2; intros; set (alp := Rmin x0 (x / 2)); assert (H4 : 0 < alp). - unfold alp in |- *; unfold Rmin in |- *; case (Rle_dec x0 (x / 2)); intro. + unfold alp; unfold Rmin; case (Rle_dec x0 (x / 2)); intro. apply H2. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. - exists (mkposreal _ H4); intros; pattern h at 2 in |- *; + exists (mkposreal _ H4); intros; pattern h at 2; replace h with (x + h - x); [ idtac | ring ]. apply H3; split. - unfold D_x in |- *; split. + unfold D_x; split. case (Rcase_abs h); intro. assert (H7 : Rabs h < x / 2). apply Rlt_le_trans with alp. apply H6. - unfold alp in |- *; apply Rmin_r. + unfold alp; apply Rmin_r. apply Rlt_trans with (x / 2). - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. rewrite Rabs_left in H7. apply Rplus_lt_reg_r with (- h - x / 2). replace (- h - x / 2 + x / 2) with (- h); [ idtac | ring ]. - pattern x at 2 in |- *; rewrite double_var. + pattern x at 2; rewrite double_var. replace (- h - x / 2 + (x / 2 + x / 2 + h)) with (x / 2); [ apply H7 | ring ]. apply r. apply Rplus_lt_le_0_compat; [ assumption | apply Rge_le; apply r ]. - apply (sym_not_eq (A:=R)); apply Rminus_not_eq; replace (x + h - x) with h; + apply (not_eq_sym (A:=R)); apply Rminus_not_eq; replace (x + h - x) with h; [ apply H5 | ring ]. replace (x + h - x) with h; [ apply Rlt_le_trans with alp; - [ apply H6 | unfold alp in |- *; apply Rmin_l ] + [ apply H6 | unfold alp; apply Rmin_l ] | ring ]. Qed. @@ -637,7 +637,7 @@ Theorem D_in_imp : forall (f g:R -> R) (D D1:R -> Prop) (x:R), (forall x:R, D1 x -> D x) -> D_in f g D x -> D_in f g D1 x. Proof. - intros f g D D1 x H; unfold D_in in |- *. + intros f g D D1 x H; unfold D_in. intros H0; apply limit1_imp with (D := D_x D x); auto. intros x1 [H1 H2]; split; auto. Qed. @@ -646,7 +646,7 @@ Theorem D_in_ext : forall (f g h:R -> R) (D:R -> Prop) (x:R), f x = g x -> D_in h f D x -> D_in h g D x. Proof. - intros f g h D x H; unfold D_in in |- *. + intros f g h D x H; unfold D_in. rewrite H; auto. Qed. @@ -661,7 +661,7 @@ Proof. intros x H0; repeat split. assumption. apply D_in_ext with (f := fun x:R => / x * (z * exp (z * ln x))). - unfold Rminus in |- *; rewrite Rpower_plus; rewrite Rpower_Ropp; + unfold Rminus; rewrite Rpower_plus; rewrite Rpower_Ropp; rewrite (Rpower_1 _ H); unfold Rpower; ring. apply Dcomp with (f := ln) @@ -674,7 +674,7 @@ Proof. intros x H1; repeat split; auto. apply (Dcomp (fun _:R => True) (fun _:R => True) (fun x => z) exp - (fun x:R => z * x) exp); simpl in |- *. + (fun x:R => z * x) exp); simpl. apply D_in_ext with (f := fun x:R => z * 1). apply Rmult_1_r. apply (Dmult_const (fun x => True) (fun x => x) (fun x => 1)); apply Dx. @@ -687,16 +687,16 @@ Theorem derivable_pt_lim_power : 0 < x -> derivable_pt_lim (fun x => x ^R y) x (y * x ^R (y - 1)). Proof. intros x y H. - unfold Rminus in |- *; rewrite Rpower_plus. + unfold Rminus; rewrite Rpower_plus. rewrite Rpower_Ropp. rewrite Rpower_1; auto. rewrite <- Rmult_assoc. - unfold Rpower in |- *. + unfold Rpower. apply derivable_pt_lim_comp with (f1 := ln) (f2 := fun x => exp (y * x)). apply derivable_pt_lim_ln; assumption. rewrite (Rmult_comm y). apply derivable_pt_lim_comp with (f1 := fun x => y * x) (f2 := exp). - pattern y at 2 in |- *; replace y with (0 * ln x + y * 1). + pattern y at 2; replace y with (0 * ln x + y * 1). apply derivable_pt_lim_mult with (f1 := fun x:R => y) (f2 := fun x:R => x). apply derivable_pt_lim_const with (a := y). apply derivable_pt_lim_id. diff --git a/theories/Reals/Rprod.v b/theories/Reals/Rprod.v index 12258d6b..88c4de23 100644 --- a/theories/Reals/Rprod.v +++ b/theories/Reals/Rprod.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* R) (N:nat) : R := @@ -36,7 +36,7 @@ Proof. replace (S n - k - 1)%nat with O; [rewrite H1; simpl|omega]. replace (n+1+0)%nat with (S n); ring. replace (S n - k-1)%nat with (S (n - k-1));[idtac|omega]. - simpl in |- *; replace (k + S (n - k))%nat with (S n). + simpl; replace (k + S (n - k))%nat with (S n). replace (k + 1 + S (n - k - 1))%nat with (S n). rewrite Hrecn; [ ring | assumption ]. omega. @@ -49,8 +49,8 @@ Lemma prod_SO_pos : (forall n:nat, (n <= N)%nat -> 0 <= An n) -> 0 <= prod_f_R0 An N. Proof. intros; induction N as [| N HrecN]. - simpl in |- *; apply H; trivial. - simpl in |- *; apply Rmult_le_pos. + simpl; apply H; trivial. + simpl; apply Rmult_le_pos. apply HrecN; intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ]. apply H; apply le_n. @@ -64,7 +64,7 @@ Lemma prod_SO_Rle : Proof. intros; induction N as [| N HrecN]. elim H with O; trivial. - simpl in |- *; apply Rle_trans with (prod_f_R0 An N * Bn (S N)). + simpl; apply Rle_trans with (prod_f_R0 An N * Bn (S N)). apply Rmult_le_compat_l. apply prod_SO_pos; intros; elim (H n (le_trans _ _ _ H0 (le_n_Sn N))); intros; assumption. @@ -114,7 +114,7 @@ Proof. (if eq_nat_dec n 0 then 1 else INR n) = INR n). intros n; case (eq_nat_dec n 0); auto with real. intros; absurd (0 < n)%nat; omega. - intros; unfold Rsqr in |- *; repeat rewrite fact_prodSO. + intros; unfold Rsqr; repeat rewrite fact_prodSO. cut ((k=N)%nat \/ (k < N)%nat \/ (N < k)%nat). intro H2; elim H2; intro H3. rewrite H3; replace (2*N-N)%nat with N;[right; ring|omega]. @@ -164,14 +164,14 @@ Qed. (**********) Lemma INR_fact_lt_0 : forall n:nat, 0 < INR (fact n). Proof. - intro; apply lt_INR_0; apply neq_O_lt; red in |- *; intro; - elim (fact_neq_0 n); symmetry in |- *; assumption. + intro; apply lt_INR_0; apply neq_O_lt; red; intro; + elim (fact_neq_0 n); symmetry ; assumption. Qed. (** We have the following inequality : (C 2N k) <= (C 2N N) forall k in [|O;2N|] *) Lemma C_maj : forall N k:nat, (k <= 2 * N)%nat -> C (2 * N) k <= C (2 * N) N. Proof. - intros; unfold C in |- *; unfold Rdiv in |- *; apply Rmult_le_compat_l. + intros; unfold C; unfold Rdiv; apply Rmult_le_compat_l. apply pos_INR. replace (2 * N - N)%nat with N. apply Rmult_le_reg_l with (INR (fact N) * INR (fact N)). diff --git a/theories/Reals/Rseries.v b/theories/Reals/Rseries.v index 479d381d..3c10725b 100644 --- a/theories/Reals/Rseries.v +++ b/theories/Reals/Rseries.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* is_upper_bound EUn x. Proof. - intros; unfold is_upper_bound in |- *; intros; unfold EUn in H0; elim H0; + intros; unfold is_upper_bound; intros; unfold EUn in H0; elim H0; clear H0; intros; generalize (H x1); intro; rewrite <- H0 in H1; trivial. Qed. @@ -77,7 +77,7 @@ Section sequence. forall n m:nat, Un_growing -> (n >= m)%nat -> Un n >= Un m. Proof. double induction n m; intros. - unfold Rge in |- *; right; trivial. + unfold Rge; right; trivial. exfalso; unfold ge in H1; generalize (le_Sn_O n0); intro; auto. cut (n0 >= 0)%nat. generalize H0; intros; unfold Un_growing in H0; @@ -89,7 +89,7 @@ Section sequence. elim y; clear y; intro y. unfold ge in H2; generalize (le_not_lt n0 n1 (le_S_n n0 n1 H2)); intro; exfalso; auto. - rewrite y; unfold Rge in |- *; right; trivial. + rewrite y; unfold Rge; right; trivial. unfold ge in H0; generalize (H0 (S n0) H1 (lt_le_S n0 n1 y)); intro; unfold Un_growing in H1; apply @@ -182,13 +182,13 @@ Section sequence. assert (Hs0: forall n, sum n = 0). intros n. - specialize (Hm1 (sum n) (ex_intro _ _ (refl_equal _))). + specialize (Hm1 (sum n) (ex_intro _ _ (eq_refl _))). apply Rle_antisym with (2 := proj1 (Hsum n)). now rewrite <- Hm. assert (Hub: forall n, Un n <= l - eps). intros n. - generalize (refl_equal (sum (S n))). + generalize (eq_refl (sum (S n))). simpl sum at 1. rewrite 2!Hs0, Rplus_0_l. unfold test. @@ -238,7 +238,7 @@ Section sequence. rewrite (IHN H6), Rplus_0_l. unfold test. destruct Rle_lt_dec. - apply refl_equal. + apply eq_refl. now elim Rlt_not_le with (1 := r). destruct (le_or_lt N n) as [Hn|Hn]. @@ -272,20 +272,20 @@ Section sequence. Proof. intro; induction N as [| N HrecN]. split with (Un 0); intros; rewrite (le_n_O_eq n H); - apply (Req_le (Un n) (Un n) (refl_equal (Un n))). + apply (Req_le (Un n) (Un n) (eq_refl (Un n))). elim HrecN; clear HrecN; intros; split with (Rmax (Un (S N)) x); intros; elim (Rmax_Rle (Un (S N)) x (Un n)); intros; clear H1; inversion H0. rewrite <- H1; rewrite <- H1 in H2; apply - (H2 (or_introl (Un n <= x) (Req_le (Un n) (Un n) (refl_equal (Un n))))). + (H2 (or_introl (Un n <= x) (Req_le (Un n) (Un n) (eq_refl (Un n))))). apply (H2 (or_intror (Un n <= Un (S N)) (H n H3))). Qed. (*********) Lemma cauchy_bound : Cauchy_crit -> bound EUn. Proof. - unfold Cauchy_crit, bound in |- *; intros; unfold is_upper_bound in |- *; + unfold Cauchy_crit, bound; intros; unfold is_upper_bound; unfold Rgt in H; elim (H 1 Rlt_0_1); clear H; intros; generalize (H x); intro; generalize (le_dec x); intro; elim (finite_greater x); intros; split with (Rmax x0 (Un x + 1)); @@ -324,12 +324,12 @@ End Isequence. Lemma GP_infinite : forall x:R, Rabs x < 1 -> Pser (fun n:nat => 1) x (/ (1 - x)). Proof. - intros; unfold Pser in |- *; unfold infinite_sum in |- *; intros; + intros; unfold Pser; unfold infinite_sum; intros; elim (Req_dec x 0). intros; exists 0%nat; intros; rewrite H1; rewrite Rminus_0_r; rewrite Rinv_1; cut (sum_f_R0 (fun n0:nat => 1 * 0 ^ n0) n = 1). intros; rewrite H3; rewrite R_dist_eq; auto. - elim n; simpl in |- *. + elim n; simpl. ring. intros; rewrite H3; ring. intro; cut (0 < eps * (Rabs (1 - x) * Rabs (/ x))). @@ -344,11 +344,11 @@ Proof. apply Rabs_pos_lt. apply Rminus_eq_contra. apply Rlt_dichotomy_converse. - right; unfold Rgt in |- *. + right; unfold Rgt. apply (Rle_lt_trans x (Rabs x) 1). apply RRle_abs. assumption. - unfold R_dist in |- *; rewrite <- Rabs_mult. + unfold R_dist; rewrite <- Rabs_mult. rewrite Rmult_minus_distr_l. cut ((1 - x) * sum_f_R0 (fun n0:nat => x ^ n0) n = @@ -359,7 +359,7 @@ Proof. cut (- (x ^ (n + 1) - 1) - 1 = - x ^ (n + 1)). intro; rewrite H7. rewrite Rabs_Ropp; cut ((n + 1)%nat = S n); auto. - intro H8; rewrite H8; simpl in |- *; rewrite Rabs_mult; + intro H8; rewrite H8; simpl; rewrite Rabs_mult; apply (Rlt_le_trans (Rabs x * Rabs (x ^ n)) (Rabs x * (eps * (Rabs (1 - x) * Rabs (/ x)))) ( @@ -373,7 +373,7 @@ Proof. Rabs x * Rabs (/ x) * (eps * Rabs (1 - x))). clear H8; intros; rewrite H8; rewrite <- Rabs_mult; rewrite Rinv_r. rewrite Rabs_R1; cut (1 * (eps * Rabs (1 - x)) = Rabs (1 - x) * eps). - intros; rewrite H9; unfold Rle in |- *; right; reflexivity. + intros; rewrite H9; unfold Rle; right; reflexivity. ring. assumption. ring. @@ -381,12 +381,12 @@ Proof. ring. apply Rminus_eq_contra. apply Rlt_dichotomy_converse. - right; unfold Rgt in |- *. + right; unfold Rgt. apply (Rle_lt_trans x (Rabs x) 1). apply RRle_abs. assumption. ring; ring. - elim n; simpl in |- *. + elim n; simpl. ring. intros; rewrite H5. ring. @@ -396,7 +396,7 @@ Proof. apply Rabs_pos_lt. apply Rminus_eq_contra. apply Rlt_dichotomy_converse. - right; unfold Rgt in |- *. + right; unfold Rgt. apply (Rle_lt_trans x (Rabs x) 1). apply RRle_abs. assumption. diff --git a/theories/Reals/Rsigma.v b/theories/Reals/Rsigma.v index 0027c274..76b44d96 100644 --- a/theories/Reals/Rsigma.v +++ b/theories/Reals/Rsigma.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* f k)). assumption. apply pred_of_minus. @@ -42,8 +42,8 @@ Section Sigma. apply Hreck. assumption. apply lt_trans with (S k); [ apply lt_n_Sn | assumption ]. - unfold sigma in |- *; replace (high - S (S k))%nat with (pred (high - S k)). - pattern (S k) at 3 in |- *; replace (S k) with (S k + 0)%nat; + unfold sigma; replace (high - S (S k))%nat with (pred (high - S k)). + pattern (S k) at 3; replace (S k) with (S k + 0)%nat; [ idtac | ring ]. replace (sum_f_R0 (fun k0:nat => f (S (S k) + k0)) (pred (high - S k))) with (sum_f_R0 (fun k0:nat => f (S k + S k0)) (pred (high - S k))). @@ -55,12 +55,12 @@ Section Sigma. replace (high - S (S k))%nat with (high - S k - 1)%nat. apply pred_of_minus. omega. - unfold sigma in |- *; replace (S k - low)%nat with (S (k - low)). - pattern (S k) at 1 in |- *; replace (S k) with (low + S (k - low))%nat. - symmetry in |- *; apply (tech5 (fun i:nat => f (low + i))). + unfold sigma; replace (S k - low)%nat with (S (k - low)). + pattern (S k) at 1; replace (S k) with (low + S (k - low))%nat. + symmetry ; apply (tech5 (fun i:nat => f (low + i))). omega. omega. - rewrite <- H2; unfold sigma in |- *; rewrite <- minus_n_n; simpl in |- *; + rewrite <- H2; unfold sigma; rewrite <- minus_n_n; simpl; replace (high - S low)%nat with (pred (high - low)). replace (sum_f_R0 (fun k0:nat => f (S (low + k0))) (pred (high - low))) with (sum_f_R0 (fun k0:nat => f (low + S k0)) (pred (high - low))). @@ -79,7 +79,7 @@ Section Sigma. (low <= k)%nat -> (k < high)%nat -> sigma low high - sigma low k = sigma (S k) high. Proof. - intros low high k H1 H2; symmetry in |- *; rewrite (sigma_split H1 H2); ring. + intros low high k H1 H2; symmetry ; rewrite (sigma_split H1 H2); ring. Qed. Theorem sigma_diff_neg : @@ -100,8 +100,8 @@ Section Sigma. apply sigma_split. apply le_n. assumption. - unfold sigma in |- *; rewrite <- minus_n_n. - simpl in |- *. + unfold sigma; rewrite <- minus_n_n. + simpl. replace (low + 0)%nat with low; [ reflexivity | ring ]. Qed. @@ -113,20 +113,20 @@ Section Sigma. generalize (lt_le_weak low high H1); intro H3; replace (f high) with (sigma high high). rewrite Rplus_comm; cut (high = S (pred high)). - intro; pattern high at 3 in |- *; rewrite H. + intro; pattern high at 3; rewrite H. apply sigma_split. apply le_S_n; rewrite <- H; apply lt_le_S; assumption. apply lt_pred_n_n; apply le_lt_trans with low; [ apply le_O_n | assumption ]. apply S_pred with 0%nat; apply le_lt_trans with low; [ apply le_O_n | assumption ]. - unfold sigma in |- *; rewrite <- minus_n_n; simpl in |- *; + unfold sigma; rewrite <- minus_n_n; simpl; replace (high + 0)%nat with high; [ reflexivity | ring ]. Qed. Theorem sigma_eq_arg : forall low:nat, sigma low low = f low. Proof. - intro; unfold sigma in |- *; rewrite <- minus_n_n. - simpl in |- *; replace (low + 0)%nat with low; [ reflexivity | ring ]. + intro; unfold sigma; rewrite <- minus_n_n. + simpl; replace (low + 0)%nat with low; [ reflexivity | ring ]. Qed. End Sigma. diff --git a/theories/Reals/Rsqrt_def.v b/theories/Reals/Rsqrt_def.v index 7c3b4699..a6e48f83 100644 --- a/theories/Reals/Rsqrt_def.v +++ b/theories/Reals/Rsqrt_def.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* bool) (N:nat) {struct N} : R := match N with @@ -41,18 +41,18 @@ Lemma dicho_comp : Proof. intros. induction n as [| n Hrecn]. - simpl in |- *; assumption. - simpl in |- *. + simpl; assumption. + simpl. case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)). - unfold Rdiv in |- *; apply Rmult_le_reg_l with 2. + unfold Rdiv; apply Rmult_le_reg_l with 2. prove_sup0. - pattern 2 at 1 in |- *; rewrite Rmult_comm. + pattern 2 at 1; rewrite Rmult_comm. rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]. rewrite Rmult_1_r. rewrite double. apply Rplus_le_compat_l. assumption. - unfold Rdiv in |- *; apply Rmult_le_reg_l with 2. + unfold Rdiv; apply Rmult_le_reg_l with 2. prove_sup0. rewrite Rmult_comm. rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]. @@ -67,14 +67,14 @@ Lemma dicho_lb_growing : forall (x y:R) (P:R -> bool), x <= y -> Un_growing (dicho_lb x y P). Proof. intros. - unfold Un_growing in |- *. + unfold Un_growing. intro. - simpl in |- *. + simpl. case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)). right; reflexivity. - unfold Rdiv in |- *; apply Rmult_le_reg_l with 2. + unfold Rdiv; apply Rmult_le_reg_l with 2. prove_sup0. - pattern 2 at 1 in |- *; rewrite Rmult_comm. + pattern 2 at 1; rewrite Rmult_comm. rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]. rewrite Rmult_1_r. rewrite double. @@ -87,11 +87,11 @@ Lemma dicho_up_decreasing : forall (x y:R) (P:R -> bool), x <= y -> Un_decreasing (dicho_up x y P). Proof. intros. - unfold Un_decreasing in |- *. + unfold Un_decreasing. intro. - simpl in |- *. + simpl. case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)). - unfold Rdiv in |- *; apply Rmult_le_reg_l with 2. + unfold Rdiv; apply Rmult_le_reg_l with 2. prove_sup0. rewrite Rmult_comm. rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]. @@ -112,17 +112,17 @@ Lemma dicho_lb_maj_y : Proof. intros. induction n as [| n Hrecn]. - simpl in |- *; assumption. - simpl in |- *. + simpl; assumption. + simpl. case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)). assumption. - unfold Rdiv in |- *; apply Rmult_le_reg_l with 2. + unfold Rdiv; apply Rmult_le_reg_l with 2. prove_sup0. rewrite Rmult_comm. rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_r | discrR ]. rewrite double; apply Rplus_le_compat. assumption. - pattern y at 2 in |- *; replace y with (Dichotomy_ub x y P 0); + pattern y at 2; replace y with (Dichotomy_ub x y P 0); [ idtac | reflexivity ]. apply decreasing_prop. assert (H0 := dicho_up_decreasing x y P H). @@ -136,10 +136,10 @@ Proof. intros. cut (forall n:nat, dicho_lb x y P n <= y). intro. - unfold has_ub in |- *. - unfold bound in |- *. + unfold has_ub. + unfold bound. exists y. - unfold is_upper_bound in |- *. + unfold is_upper_bound. intros. elim H1; intros. rewrite H2; apply H0. @@ -151,15 +151,15 @@ Lemma dicho_up_min_x : Proof. intros. induction n as [| n Hrecn]. - simpl in |- *; assumption. - simpl in |- *. + simpl; assumption. + simpl. case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)). - unfold Rdiv in |- *; apply Rmult_le_reg_l with 2. + unfold Rdiv; apply Rmult_le_reg_l with 2. prove_sup0. - pattern 2 at 1 in |- *; rewrite Rmult_comm. + pattern 2 at 1; rewrite Rmult_comm. rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_r | discrR ]. rewrite double; apply Rplus_le_compat. - pattern x at 1 in |- *; replace x with (Dichotomy_lb x y P 0); + pattern x at 1; replace x with (Dichotomy_lb x y P 0); [ idtac | reflexivity ]. apply tech9. assert (H0 := dicho_lb_growing x y P H). @@ -175,14 +175,14 @@ Proof. intros. cut (forall n:nat, x <= dicho_up x y P n). intro. - unfold has_lb in |- *. - unfold bound in |- *. + unfold has_lb. + unfold bound. exists (- x). - unfold is_upper_bound in |- *. + unfold is_upper_bound. intros. elim H1; intros. rewrite H2. - unfold opp_seq in |- *. + unfold opp_seq. apply Ropp_le_contravar. apply H0. apply dicho_up_min_x; assumption. @@ -214,35 +214,35 @@ Lemma dicho_lb_dicho_up : Proof. intros. induction n as [| n Hrecn]. - simpl in |- *. - unfold Rdiv in |- *; rewrite Rinv_1; ring. - simpl in |- *. + simpl. + unfold Rdiv; rewrite Rinv_1; ring. + simpl. case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)). - unfold Rdiv in |- *. + unfold Rdiv. replace ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P n) with ((dicho_up x y P n - dicho_lb x y P n) / 2). - unfold Rdiv in |- *; rewrite Hrecn. - unfold Rdiv in |- *. + unfold Rdiv; rewrite Hrecn. + unfold Rdiv. rewrite Rinv_mult_distr. ring. discrR. apply pow_nonzero; discrR. - pattern (Dichotomy_lb x y P n) at 2 in |- *; + pattern (Dichotomy_lb x y P n) at 2; rewrite (double_var (Dichotomy_lb x y P n)); - unfold dicho_up, dicho_lb, Rminus, Rdiv in |- *; ring. + unfold dicho_up, dicho_lb, Rminus, Rdiv; ring. replace (Dichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) with ((dicho_up x y P n - dicho_lb x y P n) / 2). - unfold Rdiv in |- *; rewrite Hrecn. - unfold Rdiv in |- *. + unfold Rdiv; rewrite Hrecn. + unfold Rdiv. rewrite Rinv_mult_distr. ring. discrR. apply pow_nonzero; discrR. - pattern (Dichotomy_ub x y P n) at 1 in |- *; + pattern (Dichotomy_ub x y P n) at 1; rewrite (double_var (Dichotomy_ub x y P n)); - unfold dicho_up, dicho_lb, Rminus, Rdiv in |- *; ring. + unfold dicho_up, dicho_lb, Rminus, Rdiv; ring. Qed. Definition pow_2_n (n:nat) := 2 ^ n. @@ -250,23 +250,23 @@ Definition pow_2_n (n:nat) := 2 ^ n. Lemma pow_2_n_neq_R0 : forall n:nat, pow_2_n n <> 0. Proof. intro. - unfold pow_2_n in |- *. + unfold pow_2_n. apply pow_nonzero. discrR. Qed. Lemma pow_2_n_growing : Un_growing pow_2_n. Proof. - unfold Un_growing in |- *. + unfold Un_growing. intro. replace (S n) with (n + 1)%nat; - [ unfold pow_2_n in |- *; rewrite pow_add | ring ]. - pattern (2 ^ n) at 1 in |- *; rewrite <- Rmult_1_r. + [ unfold pow_2_n; rewrite pow_add | ring ]. + pattern (2 ^ n) at 1; rewrite <- Rmult_1_r. apply Rmult_le_compat_l. left; apply pow_lt; prove_sup0. - simpl in |- *. + simpl. rewrite Rmult_1_r. - pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; + pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; apply Rlt_0_1. Qed. @@ -274,7 +274,7 @@ Lemma pow_2_n_infty : cv_infty pow_2_n. Proof. cut (forall N:nat, INR N <= 2 ^ N). intros. - unfold cv_infty in |- *. + unfold cv_infty. intro. case (total_order_T 0 M); intro. elim s; intro. @@ -287,41 +287,41 @@ Proof. apply Rlt_le_trans with (INR N0). rewrite INR_IZR_INZ. rewrite <- H1. - unfold N in |- *. + unfold N. assert (H3 := archimed M). elim H3; intros; assumption. apply Rle_trans with (pow_2_n N0). - unfold pow_2_n in |- *; apply H. + unfold pow_2_n; apply H. apply Rge_le. apply growing_prop. apply pow_2_n_growing. assumption. apply le_IZR. - unfold N in |- *. - simpl in |- *. + unfold N. + simpl. assert (H0 := archimed M); elim H0; intros. left; apply Rlt_trans with M; assumption. exists 0%nat; intros. rewrite <- b. - unfold pow_2_n in |- *; apply pow_lt; prove_sup0. + unfold pow_2_n; apply pow_lt; prove_sup0. exists 0%nat; intros. apply Rlt_trans with 0. assumption. - unfold pow_2_n in |- *; apply pow_lt; prove_sup0. + unfold pow_2_n; apply pow_lt; prove_sup0. simple induction N. - simpl in |- *. + simpl. left; apply Rlt_0_1. intros. - pattern (S n) at 2 in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ]. + pattern (S n) at 2; replace (S n) with (n + 1)%nat; [ idtac | ring ]. rewrite S_INR; rewrite pow_add. - simpl in |- *. + simpl. rewrite Rmult_1_r. apply Rle_trans with (2 ^ n). rewrite <- (Rplus_comm 1). rewrite <- (Rmult_1_r (INR n)). apply (poly n 1). apply Rlt_0_1. - pattern (2 ^ n) at 1 in |- *; rewrite <- Rplus_0_r. + pattern (2 ^ n) at 1; rewrite <- Rplus_0_r. rewrite <- (Rmult_comm 2). rewrite double. apply Rplus_le_compat_l. @@ -338,8 +338,8 @@ Proof. cut (Un_cv (fun i:nat => dicho_lb x y P i - dicho_up x y P i) 0). intro. assert (H4 := UL_sequence _ _ _ H2 H3). - symmetry in |- *; apply Rminus_diag_uniq_sym; assumption. - unfold Un_cv in |- *; unfold R_dist in |- *. + symmetry ; apply Rminus_diag_uniq_sym; assumption. + unfold Un_cv; unfold R_dist. intros. assert (H4 := cv_infty_cv_R0 pow_2_n pow_2_n_neq_R0 pow_2_n_infty). case (total_order_T x y); intro. @@ -356,7 +356,7 @@ Proof. rewrite <- Rabs_Ropp. rewrite Ropp_minus_distr'. rewrite dicho_lb_dicho_up. - unfold Rdiv in |- *; rewrite Rabs_mult. + unfold Rdiv; rewrite Rabs_mult. rewrite (Rabs_right (y - x)). apply Rmult_lt_reg_l with (/ (y - x)). apply Rinv_0_lt_compat; assumption. @@ -366,12 +366,12 @@ Proof. [ unfold pow_2_n, Rdiv in H6; rewrite <- (Rmult_comm eps); apply H6; assumption | ring ]. - red in |- *; intro; rewrite H8 in Hyp; elim (Rlt_irrefl _ Hyp). + red; intro; rewrite H8 in Hyp; elim (Rlt_irrefl _ Hyp). apply Rle_ge. apply Rplus_le_reg_l with x; rewrite Rplus_0_r. replace (x + (y - x)) with y; [ assumption | ring ]. assumption. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; assumption ]. apply Rplus_lt_reg_r with x; rewrite Rplus_0_r. replace (x + (y - x)) with y; [ assumption | ring ]. @@ -382,7 +382,7 @@ Proof. rewrite Ropp_minus_distr'. rewrite dicho_lb_dicho_up. rewrite b. - unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r; rewrite Rmult_0_l; + unfold Rminus, Rdiv; rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rabs_R0; assumption. assumption. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)). @@ -399,26 +399,26 @@ Lemma continuity_seq : forall (f:R -> R) (Un:nat -> R) (l:R), continuity_pt f l -> Un_cv Un l -> Un_cv (fun i:nat => f (Un i)) (f l). Proof. - unfold continuity_pt, Un_cv in |- *; unfold continue_in in |- *. - unfold limit1_in in |- *. - unfold limit_in in |- *. - unfold dist in |- *. - simpl in |- *. - unfold R_dist in |- *. + unfold continuity_pt, Un_cv; unfold continue_in. + unfold limit1_in. + unfold limit_in. + unfold dist. + simpl. + unfold R_dist. intros. elim (H eps H1); intros alp H2. elim H2; intros. elim (H0 alp H3); intros N H5. exists N; intros. case (Req_dec (Un n) l); intro. - rewrite H7; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + rewrite H7; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. apply H4. split. - unfold D_x, no_cond in |- *. + unfold D_x, no_cond. split. trivial. - apply (sym_not_eq (A:=R)); assumption. + apply (not_eq_sym (A:=R)); assumption. apply H5; assumption. Qed. @@ -428,9 +428,9 @@ Lemma dicho_lb_car : Proof. intros. induction n as [| n Hrecn]. - simpl in |- *. + simpl. assumption. - simpl in |- *. + simpl. assert (X := sumbool_of_bool (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2))). @@ -447,9 +447,9 @@ Lemma dicho_up_car : Proof. intros. induction n as [| n Hrecn]. - simpl in |- *. + simpl. assumption. - simpl in |- *. + simpl. assert (X := sumbool_of_bool (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2))). @@ -480,7 +480,7 @@ Proof. split. split. apply Rle_trans with (dicho_lb x y (fun z:R => cond_positivity (f z)) 0). - simpl in |- *. + simpl. right; reflexivity. apply growing_ineq. apply dicho_lb_growing; assumption. @@ -503,7 +503,7 @@ Proof. assert (H10 := H5 H7). apply Rle_antisym; assumption. intro. - unfold Wn in |- *. + unfold Wn. cut (forall z:R, cond_positivity z = true <-> 0 <= z). intro. assert (H8 := dicho_up_car x y (fun z:R => cond_positivity (f z)) n). @@ -514,7 +514,7 @@ Proof. apply H12. left; assumption. intro. - unfold cond_positivity in |- *. + unfold cond_positivity. case (Rle_dec 0 z); intro. split. intro; assumption. @@ -523,7 +523,7 @@ Proof. intro feqt;discriminate feqt. intro. elim n0; assumption. - unfold Vn in |- *. + unfold Vn. cut (forall z:R, cond_positivity z = false <-> z < 0). intros. assert (H8 := dicho_lb_car x y (fun z:R => cond_positivity (f z)) n). @@ -535,7 +535,7 @@ Proof. apply H12. assumption. intro. - unfold cond_positivity in |- *. + unfold cond_positivity. case (Rle_dec 0 z); intro. split. intro feqt; discriminate feqt. @@ -554,7 +554,7 @@ Proof. cut (0 < - f x0). intro. elim (H7 (- f x0) H8); intros. - cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ]. + cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ]. assert (H11 := H9 x2 H10). rewrite Rabs_right in H11. pattern (- f x0) at 1 in H11; rewrite <- Rplus_0_r in H11. @@ -562,11 +562,11 @@ Proof. assert (H12 := Rplus_lt_reg_r _ _ _ H11). assert (H13 := H6 x2). elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H12)). - apply Rle_ge; left; unfold Rminus in |- *; apply Rplus_le_lt_0_compat. + apply Rle_ge; left; unfold Rminus; apply Rplus_le_lt_0_compat. apply H6. exact H8. apply Ropp_0_gt_lt_contravar; assumption. - unfold Wn in |- *; assumption. + unfold Wn; assumption. cut (Un_cv Vn x0). intros. assert (H7 := continuity_seq f Vn x0 (H x0) H5). @@ -574,7 +574,7 @@ Proof. elim s; intro. unfold Un_cv in H7; unfold R_dist in H7. elim (H7 (f x0) a); intros. - cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ]. + cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ]. assert (H10 := H8 x2 H9). rewrite Rabs_left in H10. pattern (f x0) at 2 in H10; rewrite <- Rplus_0_r in H10. @@ -589,12 +589,12 @@ Proof. apply Ropp_0_gt_lt_contravar; assumption. apply Rplus_lt_reg_r with (f x0 - f (Vn x2)). rewrite Rplus_0_r; replace (f x0 - f (Vn x2) + (f (Vn x2) - f x0)) with 0; - [ unfold Rminus in |- *; apply Rplus_lt_le_0_compat | ring ]. + [ unfold Rminus; apply Rplus_lt_le_0_compat | ring ]. assumption. apply Ropp_0_ge_le_contravar; apply Rle_ge; apply H6. right; rewrite <- b; reflexivity. left; assumption. - unfold Vn in |- *; assumption. + unfold Vn; assumption. Qed. Lemma IVT_cor : @@ -613,11 +613,11 @@ Proof. exists y. split. split; [ assumption | right; reflexivity ]. - symmetry in |- *; exact b. + symmetry ; exact b. exists x. split. split; [ right; reflexivity | assumption ]. - symmetry in |- *; exact b. + symmetry ; exact b. elim s; intro. cut (x < y). intro. @@ -633,8 +633,8 @@ Proof. unfold opp_fct in H7. rewrite <- (Ropp_involutive (f x0)). apply Ropp_eq_0_compat; assumption. - unfold opp_fct in |- *; apply Ropp_0_gt_lt_contravar; assumption. - unfold opp_fct in |- *. + unfold opp_fct; apply Ropp_0_gt_lt_contravar; assumption. + unfold opp_fct. apply Rplus_lt_reg_r with (f x); rewrite Rplus_opp_r; rewrite Rplus_0_r; assumption. inversion H0. @@ -644,7 +644,7 @@ Proof. exists x. split. split; [ right; reflexivity | assumption ]. - symmetry in |- *; assumption. + symmetry ; assumption. case (total_order_T 0 (f y)); intro. elim s; intro. cut (x < y). @@ -657,7 +657,7 @@ Proof. exists y. split. split; [ assumption | right; reflexivity ]. - symmetry in |- *; assumption. + symmetry ; assumption. cut (0 < f x * f y). intro. elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H2 H1)). @@ -690,18 +690,18 @@ Proof. elim H5; intros; assumption. unfold f in H6. apply Rminus_diag_uniq_sym; exact H6. - rewrite Rmult_comm; pattern 0 at 2 in |- *; rewrite <- (Rmult_0_r (f 1)). + rewrite Rmult_comm; pattern 0 at 2; rewrite <- (Rmult_0_r (f 1)). apply Rmult_le_compat_l; assumption. - unfold f in |- *. + unfold f. rewrite Rsqr_1. apply Rplus_le_reg_l with y. - rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *; + rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; left; assumption. exists 1. split. left; apply Rlt_0_1. - rewrite b; symmetry in |- *; apply Rsqr_1. + rewrite b; symmetry ; apply Rsqr_1. cut (0 <= f y). intro. cut (f 0 * f y <= 0). @@ -714,14 +714,14 @@ Proof. elim H5; intros; assumption. unfold f in H6. apply Rminus_diag_uniq_sym; exact H6. - rewrite Rmult_comm; pattern 0 at 2 in |- *; rewrite <- (Rmult_0_r (f y)). + rewrite Rmult_comm; pattern 0 at 2; rewrite <- (Rmult_0_r (f y)). apply Rmult_le_compat_l; assumption. - unfold f in |- *. + unfold f. apply Rplus_le_reg_l with y. - rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *; + rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r. - pattern y at 1 in |- *; rewrite <- Rmult_1_r. - unfold Rsqr in |- *; apply Rmult_le_compat_l. + pattern y at 1; rewrite <- Rmult_1_r. + unfold Rsqr; apply Rmult_le_compat_l. assumption. left; exact r. replace f with (Rsqr - fct_cte y)%F. @@ -729,8 +729,8 @@ Proof. apply derivable_continuous; apply derivable_Rsqr. apply derivable_continuous; apply derivable_const. reflexivity. - unfold f in |- *; rewrite Rsqr_0. - unfold Rminus in |- *; rewrite Rplus_0_l. + unfold f; rewrite Rsqr_0. + unfold Rminus; rewrite Rplus_0_l. apply Rge_le. apply Ropp_0_le_ge_contravar; assumption. Qed. @@ -749,7 +749,7 @@ Proof. intros. elim p; intros. rewrite H in H0; assumption. - unfold Rsqrt in |- *. + unfold Rsqrt. case (Rsqrt_exists x (cond_nonneg x)). intros. elim p; elim a; intros. @@ -770,7 +770,7 @@ Proof. rewrite <- H. elim p; intros. rewrite H1; reflexivity. - unfold Rsqrt in |- *. + unfold Rsqrt. case (Rsqrt_exists x (cond_nonneg x)). intros. elim p; elim a; intros. diff --git a/theories/Reals/Rtopology.v b/theories/Reals/Rtopology.v index f1142d24..51d0b99e 100644 --- a/theories/Reals/Rtopology.v +++ b/theories/Reals/Rtopology.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Prop) (x:R) : Prop := neighbourhood D x. Lemma interior_P1 : forall D:R -> Prop, included (interior D) D. Proof. - intros; unfold included in |- *; unfold interior in |- *; intros; + intros; unfold included; unfold interior; intros; unfold neighbourhood in H; elim H; intros; unfold included in H0; - apply H0; unfold disc in |- *; unfold Rminus in |- *; + apply H0; unfold disc; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos x0). Qed. Lemma interior_P2 : forall D:R -> Prop, open_set D -> included D (interior D). Proof. - intros; unfold open_set in H; unfold included in |- *; intros; - assert (H1 := H _ H0); unfold interior in |- *; apply H1. + intros; unfold open_set in H; unfold included; intros; + assert (H1 := H _ H0); unfold interior; apply H1. Qed. Definition point_adherent (D:R -> Prop) (x:R) : Prop := @@ -49,11 +49,11 @@ Definition adherence (D:R -> Prop) (x:R) : Prop := point_adherent D x. Lemma adherence_P1 : forall D:R -> Prop, included D (adherence D). Proof. - intro; unfold included in |- *; intros; unfold adherence in |- *; - unfold point_adherent in |- *; intros; exists x; - unfold intersection_domain in |- *; split. + intro; unfold included; intros; unfold adherence; + unfold point_adherent; intros; exists x; + unfold intersection_domain; split. unfold neighbourhood in H0; elim H0; intros; unfold included in H1; apply H1; - unfold disc in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r; + unfold disc; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos x0). apply H. Qed. @@ -62,29 +62,29 @@ Lemma included_trans : forall D1 D2 D3:R -> Prop, included D1 D2 -> included D2 D3 -> included D1 D3. Proof. - unfold included in |- *; intros; apply H0; apply H; apply H1. + unfold included; intros; apply H0; apply H; apply H1. Qed. Lemma interior_P3 : forall D:R -> Prop, open_set (interior D). Proof. - intro; unfold open_set, interior in |- *; unfold neighbourhood in |- *; + intro; unfold open_set, interior; unfold neighbourhood; intros; elim H; intros. - exists x0; unfold included in |- *; intros. + exists x0; unfold included; intros. set (del := x0 - Rabs (x - x1)). cut (0 < del). intro; exists (mkposreal del H2); intros. cut (included (disc x1 (mkposreal del H2)) (disc x x0)). intro; assert (H5 := included_trans _ _ _ H4 H0). apply H5; apply H3. - unfold included in |- *; unfold disc in |- *; intros. + unfold included; unfold disc; intros. apply Rle_lt_trans with (Rabs (x3 - x1) + Rabs (x1 - x)). replace (x3 - x) with (x3 - x1 + (x1 - x)); [ apply Rabs_triang | ring ]. replace (pos x0) with (del + Rabs (x1 - x)). do 2 rewrite <- (Rplus_comm (Rabs (x1 - x))); apply Rplus_lt_compat_l; apply H4. - unfold del in |- *; rewrite <- (Rabs_Ropp (x - x1)); rewrite Ropp_minus_distr; + unfold del; rewrite <- (Rabs_Ropp (x - x1)); rewrite Ropp_minus_distr; ring. - unfold del in |- *; apply Rplus_lt_reg_r with (Rabs (x - x1)); + unfold del; apply Rplus_lt_reg_r with (Rabs (x - x1)); rewrite Rplus_0_r; replace (Rabs (x - x1) + (x0 - Rabs (x - x1))) with (pos x0); [ idtac | ring ]. @@ -95,7 +95,7 @@ Lemma complementary_P1 : forall D:R -> Prop, ~ (exists y : R, intersection_domain D (complementary D) y). Proof. - intro; red in |- *; intro; elim H; intros; + intro; red; intro; elim H; intros; unfold intersection_domain, complementary in H0; elim H0; intros; elim H2; assumption. Qed. @@ -103,8 +103,8 @@ Qed. Lemma adherence_P2 : forall D:R -> Prop, closed_set D -> included (adherence D) D. Proof. - unfold closed_set in |- *; unfold open_set, complementary in |- *; intros; - unfold included, adherence in |- *; intros; assert (H1 := classic (D x)); + unfold closed_set; unfold open_set, complementary; intros; + unfold included, adherence; intros; assert (H1 := classic (D x)); elim H1; intro. assumption. assert (H3 := H _ H2); assert (H4 := H0 _ H3); elim H4; intros; @@ -114,8 +114,8 @@ Qed. Lemma adherence_P3 : forall D:R -> Prop, closed_set (adherence D). Proof. - intro; unfold closed_set, adherence in |- *; - unfold open_set, complementary, point_adherent in |- *; + intro; unfold closed_set, adherence; + unfold open_set, complementary, point_adherent; intros; set (P := @@ -123,21 +123,21 @@ Proof. neighbourhood V x -> exists y : R, intersection_domain V D y); assert (H0 := not_all_ex_not _ P H); elim H0; intros V0 H1; unfold P in H1; assert (H2 := imply_to_and _ _ H1); - unfold neighbourhood in |- *; elim H2; intros; unfold neighbourhood in H3; - elim H3; intros; exists x0; unfold included in |- *; - intros; red in |- *; intro. + unfold neighbourhood; elim H2; intros; unfold neighbourhood in H3; + elim H3; intros; exists x0; unfold included; + intros; red; intro. assert (H8 := H7 V0); cut (exists delta : posreal, (forall x:R, disc x1 delta x -> V0 x)). intro; assert (H10 := H8 H9); elim H4; assumption. cut (0 < x0 - Rabs (x - x1)). intro; set (del := mkposreal _ H9); exists del; intros; - unfold included in H5; apply H5; unfold disc in |- *; + unfold included in H5; apply H5; unfold disc; apply Rle_lt_trans with (Rabs (x2 - x1) + Rabs (x1 - x)). replace (x2 - x) with (x2 - x1 + (x1 - x)); [ apply Rabs_triang | ring ]. replace (pos x0) with (del + Rabs (x1 - x)). do 2 rewrite <- (Rplus_comm (Rabs (x1 - x))); apply Rplus_lt_compat_l; apply H10. - unfold del in |- *; simpl in |- *; rewrite <- (Rabs_Ropp (x - x1)); + unfold del; simpl; rewrite <- (Rabs_Ropp (x - x1)); rewrite Ropp_minus_distr; ring. apply Rplus_lt_reg_r with (Rabs (x - x1)); rewrite Rplus_0_r; replace (Rabs (x - x1) + (x0 - Rabs (x - x1))) with (pos x0); @@ -152,10 +152,10 @@ Infix "=_D" := eq_Dom (at level 70, no associativity). Lemma open_set_P1 : forall D:R -> Prop, open_set D <-> D =_D interior D. Proof. intro; split. - intro; unfold eq_Dom in |- *; split. + intro; unfold eq_Dom; split. apply interior_P2; assumption. apply interior_P1. - intro; unfold eq_Dom in H; elim H; clear H; intros; unfold open_set in |- *; + intro; unfold eq_Dom in H; elim H; clear H; intros; unfold open_set; intros; unfold included, interior in H; unfold included in H0; apply (H _ H1). Qed. @@ -163,20 +163,20 @@ Qed. Lemma closed_set_P1 : forall D:R -> Prop, closed_set D <-> D =_D adherence D. Proof. intro; split. - intro; unfold eq_Dom in |- *; split. + intro; unfold eq_Dom; split. apply adherence_P1. apply adherence_P2; assumption. - unfold eq_Dom in |- *; unfold included in |- *; intros; + unfold eq_Dom; unfold included; intros; assert (H0 := adherence_P3 D); unfold closed_set in H0; - unfold closed_set in |- *; unfold open_set in |- *; + unfold closed_set; unfold open_set; unfold open_set in H0; intros; assert (H2 : complementary (adherence D) x). - unfold complementary in |- *; unfold complementary in H1; red in |- *; intro; + unfold complementary; unfold complementary in H1; red; intro; elim H; clear H; intros _ H; elim H1; apply (H _ H2). - assert (H3 := H0 _ H2); unfold neighbourhood in |- *; + assert (H3 := H0 _ H2); unfold neighbourhood; unfold neighbourhood in H3; elim H3; intros; exists x0; - unfold included in |- *; unfold included in H4; intros; + unfold included; unfold included in H4; intros; assert (H6 := H4 _ H5); unfold complementary in H6; - unfold complementary in |- *; red in |- *; intro; + unfold complementary; red; intro; elim H; clear H; intros H _; elim H6; apply (H _ H7). Qed. @@ -184,8 +184,8 @@ Lemma neighbourhood_P1 : forall (D1 D2:R -> Prop) (x:R), included D1 D2 -> neighbourhood D1 x -> neighbourhood D2 x. Proof. - unfold included, neighbourhood in |- *; intros; elim H0; intros; exists x0; - intros; unfold included in |- *; unfold included in H1; + unfold included, neighbourhood; intros; elim H0; intros; exists x0; + intros; unfold included; unfold included in H1; intros; apply (H _ (H1 _ H2)). Qed. @@ -193,12 +193,12 @@ Lemma open_set_P2 : forall D1 D2:R -> Prop, open_set D1 -> open_set D2 -> open_set (union_domain D1 D2). Proof. - unfold open_set in |- *; intros; unfold union_domain in H1; elim H1; intro. + unfold open_set; intros; unfold union_domain in H1; elim H1; intro. apply neighbourhood_P1 with D1. - unfold included, union_domain in |- *; tauto. + unfold included, union_domain; tauto. apply H; assumption. apply neighbourhood_P1 with D2. - unfold included, union_domain in |- *; tauto. + unfold included, union_domain; tauto. apply H0; assumption. Qed. @@ -206,53 +206,53 @@ Lemma open_set_P3 : forall D1 D2:R -> Prop, open_set D1 -> open_set D2 -> open_set (intersection_domain D1 D2). Proof. - unfold open_set in |- *; intros; unfold intersection_domain in H1; elim H1; + unfold open_set; intros; unfold intersection_domain in H1; elim H1; intros. assert (H4 := H _ H2); assert (H5 := H0 _ H3); - unfold intersection_domain in |- *; unfold neighbourhood in H4, H5; + unfold intersection_domain; unfold neighbourhood in H4, H5; elim H4; clear H; intros del1 H; elim H5; clear H0; intros del2 H0; cut (0 < Rmin del1 del2). intro; set (del := mkposreal _ H6). - exists del; unfold included in |- *; intros; unfold included in H, H0; + exists del; unfold included; intros; unfold included in H, H0; unfold disc in H, H0, H7. split. apply H; apply Rlt_le_trans with (pos del). apply H7. - unfold del in |- *; simpl in |- *; apply Rmin_l. + unfold del; simpl; apply Rmin_l. apply H0; apply Rlt_le_trans with (pos del). apply H7. - unfold del in |- *; simpl in |- *; apply Rmin_r. - unfold Rmin in |- *; case (Rle_dec del1 del2); intro. + unfold del; simpl; apply Rmin_r. + unfold Rmin; case (Rle_dec del1 del2); intro. apply (cond_pos del1). apply (cond_pos del2). Qed. Lemma open_set_P4 : open_set (fun x:R => False). Proof. - unfold open_set in |- *; intros; elim H. + unfold open_set; intros; elim H. Qed. Lemma open_set_P5 : open_set (fun x:R => True). Proof. - unfold open_set in |- *; intros; unfold neighbourhood in |- *. - exists (mkposreal 1 Rlt_0_1); unfold included in |- *; intros; trivial. + unfold open_set; intros; unfold neighbourhood. + exists (mkposreal 1 Rlt_0_1); unfold included; intros; trivial. Qed. Lemma disc_P1 : forall (x:R) (del:posreal), open_set (disc x del). Proof. intros; assert (H := open_set_P1 (disc x del)). elim H; intros; apply H1. - unfold eq_Dom in |- *; split. - unfold included, interior, disc in |- *; intros; + unfold eq_Dom; split. + unfold included, interior, disc; intros; cut (0 < del - Rabs (x - x0)). intro; set (del2 := mkposreal _ H3). - exists del2; unfold included in |- *; intros. + exists del2; unfold included; intros. apply Rle_lt_trans with (Rabs (x1 - x0) + Rabs (x0 - x)). replace (x1 - x) with (x1 - x0 + (x0 - x)); [ apply Rabs_triang | ring ]. replace (pos del) with (del2 + Rabs (x0 - x)). do 2 rewrite <- (Rplus_comm (Rabs (x0 - x))); apply Rplus_lt_compat_l. apply H4. - unfold del2 in |- *; simpl in |- *; rewrite <- (Rabs_Ropp (x - x0)); + unfold del2; simpl; rewrite <- (Rabs_Ropp (x - x0)); rewrite Ropp_minus_distr; ring. apply Rplus_lt_reg_r with (Rabs (x - x0)); rewrite Rplus_0_r; replace (Rabs (x - x0) + (del - Rabs (x - x0))) with (pos del); @@ -278,19 +278,19 @@ Proof. elim H3; intros. exists (disc x (mkposreal del2 H4)). intros; unfold included in H1; split. - unfold neighbourhood, disc in |- *. + unfold neighbourhood, disc. exists (mkposreal del2 H4). - unfold included in |- *; intros; assumption. - intros; apply H1; unfold disc in |- *; case (Req_dec y x); intro. - rewrite H7; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + unfold included; intros; assumption. + intros; apply H1; unfold disc; case (Req_dec y x); intro. + rewrite H7; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos del1). apply H5; split. - unfold D_x, no_cond in |- *; split. + unfold D_x, no_cond; split. trivial. - apply (sym_not_eq (A:=R)); apply H7. + apply (not_eq_sym (A:=R)); apply H7. unfold disc in H6; apply H6. - intros; unfold continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; + intros; unfold continuity_pt; unfold continue_in; + unfold limit1_in; unfold limit_in; intros. assert (H1 := H (disc (f x) (mkposreal eps H0))). cut (neighbourhood (disc (f x) (mkposreal eps H0)) (f x)). @@ -299,10 +299,10 @@ Proof. intros del1 H7. exists (pos del1); split. apply (cond_pos del1). - intros; elim H8; intros; simpl in H10; unfold R_dist in H10; simpl in |- *; - unfold R_dist in |- *; apply (H6 _ (H7 _ H10)). - unfold neighbourhood, disc in |- *; exists (mkposreal eps H0); - unfold included in |- *; intros; assumption. + intros; elim H8; intros; simpl in H10; unfold R_dist in H10; simpl; + unfold R_dist; apply (H6 _ (H7 _ H10)). + unfold neighbourhood, disc; exists (mkposreal eps H0); + unfold included; intros; assumption. Qed. Definition image_rec (f:R -> R) (D:R -> Prop) (x:R) : Prop := D (f x). @@ -312,13 +312,13 @@ Lemma continuity_P2 : forall (f:R -> R) (D:R -> Prop), continuity f -> open_set D -> open_set (image_rec f D). Proof. - intros; unfold open_set in H0; unfold open_set in |- *; intros; + intros; unfold open_set in H0; unfold open_set; intros; assert (H2 := continuity_P1 f x); elim H2; intros H3 _; - assert (H4 := H3 (H x)); unfold neighbourhood, image_rec in |- *; + assert (H4 := H3 (H x)); unfold neighbourhood, image_rec; unfold image_rec in H1; assert (H5 := H4 D (H0 (f x) H1)); elim H5; intros V0 H6; elim H6; intros; unfold neighbourhood in H7; elim H7; intros del H9; exists del; unfold included in H9; - unfold included in |- *; intros; apply (H8 _ (H9 _ H10)). + unfold included; intros; apply (H8 _ (H9 _ H10)). Qed. (**********) @@ -329,9 +329,9 @@ Lemma continuity_P3 : Proof. intros; split. intros; apply continuity_P2; assumption. - intros; unfold continuity in |- *; unfold continuity_pt in |- *; - unfold continue_in in |- *; unfold limit1_in in |- *; - unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *; + intros; unfold continuity; unfold continuity_pt; + unfold continue_in; unfold limit1_in; + unfold limit_in; simpl; unfold R_dist; intros; cut (open_set (disc (f x) (mkposreal _ H0))). intro; assert (H2 := H _ H1). unfold open_set, image_rec in H2; cut (disc (f x) (mkposreal _ H0) (f x)). @@ -340,7 +340,7 @@ Proof. exists (pos del); split. apply (cond_pos del). intros; unfold included in H5; apply H5; elim H6; intros; apply H8. - unfold disc in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r; + unfold disc; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply H0. apply disc_P1. Qed. @@ -358,23 +358,23 @@ Proof. cut (0 < D / 2). intro; exists (disc x (mkposreal _ H)). exists (disc y (mkposreal _ H)); split. - unfold neighbourhood in |- *; exists (mkposreal _ H); unfold included in |- *; + unfold neighbourhood; exists (mkposreal _ H); unfold included; tauto. split. - unfold neighbourhood in |- *; exists (mkposreal _ H); unfold included in |- *; + unfold neighbourhood; exists (mkposreal _ H); unfold included; tauto. - red in |- *; intro; elim H0; intros; unfold intersection_domain in H1; + red; intro; elim H0; intros; unfold intersection_domain in H1; elim H1; intros. cut (D < D). intro; elim (Rlt_irrefl _ H4). - change (Rabs (x - y) < D) in |- *; + change (Rabs (x - y) < D); apply Rle_lt_trans with (Rabs (x - x0) + Rabs (x0 - y)). replace (x - y) with (x - x0 + (x0 - y)); [ apply Rabs_triang | ring ]. rewrite (double_var D); apply Rplus_lt_compat. rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H2. apply H3. - unfold Rdiv in |- *; apply Rmult_lt_0_compat. - unfold D in |- *; apply Rabs_pos_lt; apply (Rminus_eq_contra _ _ Hsep). + unfold Rdiv; apply Rmult_lt_0_compat. + unfold D; apply Rabs_pos_lt; apply (Rminus_eq_contra _ _ Hsep). apply Rinv_0_lt_compat; prove_sup0. Qed. @@ -404,7 +404,7 @@ Lemma restriction_family : (exists y : R, (fun z1 z2:R => f z1 z2 /\ D z1) x y) -> intersection_domain (ind f) D x. Proof. - intros; elim H; intros; unfold intersection_domain in |- *; elim H0; intros; + intros; elim H; intros; unfold intersection_domain; elim H0; intros; split. apply (cond_fam f0); exists x0; assumption. assumption. @@ -424,19 +424,19 @@ Lemma family_P1 : forall (f:family) (D:R -> Prop), family_open_set f -> family_open_set (subfamily f D). Proof. - unfold family_open_set in |- *; intros; unfold subfamily in |- *; - simpl in |- *; assert (H0 := classic (D x)). + unfold family_open_set; intros; unfold subfamily; + simpl; assert (H0 := classic (D x)). elim H0; intro. cut (open_set (f0 x) -> open_set (fun y:R => f0 x y /\ D x)). intro; apply H2; apply H. - unfold open_set in |- *; unfold neighbourhood in |- *; intros; elim H3; + unfold open_set; unfold neighbourhood; intros; elim H3; intros; assert (H6 := H2 _ H4); elim H6; intros; exists x1; - unfold included in |- *; intros; split. + unfold included; intros; split. apply (H7 _ H8). assumption. cut (open_set (fun y:R => False) -> open_set (fun y:R => f0 x y /\ D x)). intro; apply H2; apply open_set_P4. - unfold open_set in |- *; unfold neighbourhood in |- *; intros; elim H3; + unfold open_set; unfold neighbourhood; intros; elim H3; intros; elim H1; assumption. Qed. @@ -446,7 +446,7 @@ Definition bounded (D:R -> Prop) : Prop := Lemma open_set_P6 : forall D1 D2:R -> Prop, open_set D1 -> D1 =_D D2 -> open_set D2. Proof. - unfold open_set in |- *; unfold neighbourhood in |- *; intros. + unfold open_set; unfold neighbourhood; intros. unfold eq_Dom in H0; elim H0; intros. assert (H4 := H _ (H3 _ H1)). elim H4; intros. @@ -465,7 +465,7 @@ Proof. intro; assert (H3 := H1 H2); elim H3; intros D' H4; unfold covering_finite in H4; elim H4; intros; unfold family_finite in H6; unfold domain_finite in H6; elim H6; intros l H7; - unfold bounded in |- *; set (r := MaxRlist l). + unfold bounded; set (r := MaxRlist l). exists (- r); exists r; intros. unfold covering in H5; assert (H9 := H5 _ H8); elim H9; intros; unfold subfamily in H10; simpl in H10; elim H10; intros; @@ -484,25 +484,25 @@ Proof. left; apply H11. assumption. apply (MaxRlist_P1 l x0 H16). - unfold intersection_domain, D in |- *; tauto. - unfold covering_open_set in |- *; split. - unfold covering in |- *; intros; simpl in |- *; exists (Rabs x + 1); - unfold g in |- *; pattern (Rabs x) at 1 in |- *; rewrite <- Rplus_0_r; + unfold intersection_domain, D; tauto. + unfold covering_open_set; split. + unfold covering; intros; simpl; exists (Rabs x + 1); + unfold g; pattern (Rabs x) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1. - unfold family_open_set in |- *; intro; case (Rtotal_order 0 x); intro. + unfold family_open_set; intro; case (Rtotal_order 0 x); intro. apply open_set_P6 with (disc 0 (mkposreal _ H2)). apply disc_P1. - unfold eq_Dom in |- *; unfold f0 in |- *; simpl in |- *; - unfold g, disc in |- *; split. - unfold included in |- *; intros; unfold Rminus in H3; rewrite Ropp_0 in H3; + unfold eq_Dom; unfold f0; simpl; + unfold g, disc; split. + unfold included; intros; unfold Rminus in H3; rewrite Ropp_0 in H3; rewrite Rplus_0_r in H3; apply H3. - unfold included in |- *; intros; unfold Rminus in |- *; rewrite Ropp_0; + unfold included; intros; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply H3. apply open_set_P6 with (fun x:R => False). apply open_set_P4. - unfold eq_Dom in |- *; split. - unfold included in |- *; intros; elim H3. - unfold included, f0 in |- *; simpl in |- *; unfold g in |- *; intros; elim H2; + unfold eq_Dom; split. + unfold included; intros; elim H3. + unfold included, f0; simpl; unfold g; intros; elim H2; intro; [ rewrite <- H4 in H3; assert (H5 := Rabs_pos x0); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H5 H3)) @@ -515,10 +515,10 @@ Lemma compact_P2 : forall X:R -> Prop, compact X -> closed_set X. Proof. intros; assert (H0 := closed_set_P1 X); elim H0; clear H0; intros _ H0; apply H0; clear H0. - unfold eq_Dom in |- *; split. + unfold eq_Dom; split. apply adherence_P1. - unfold included in |- *; unfold adherence in |- *; - unfold point_adherent in |- *; intros; unfold compact in H; + unfold included; unfold adherence; + unfold point_adherent; intros; unfold compact in H; assert (H1 := classic (X x)); elim H1; clear H1; intro. assumption. cut (forall y:R, X y -> 0 < Rabs (y - x) / 2). @@ -548,44 +548,44 @@ Proof. replace (y0 - x) with (y0 - y + (y - x)); [ apply Rabs_triang | ring ]. rewrite (double_var (Rabs (y0 - x))); apply Rplus_lt_compat; assumption. apply (MinRlist_P1 (AbsList l x) (Rabs (y0 - x) / 2)); apply AbsList_P1; - elim (H8 y0); clear H8; intros; apply H8; unfold intersection_domain in |- *; + elim (H8 y0); clear H8; intros; apply H8; unfold intersection_domain; split; assumption. assert (H11 := disc_P1 x (mkposreal alp H9)); unfold open_set in H11; apply H11. - unfold disc in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r; + unfold disc; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply H9. - unfold alp in |- *; apply MinRlist_P2; intros; + unfold alp; apply MinRlist_P2; intros; assert (H10 := AbsList_P2 _ _ _ H9); elim H10; clear H10; intros z H10; elim H10; clear H10; intros; rewrite H11; apply H2; elim (H8 z); clear H8; intros; assert (H13 := H12 H10); unfold intersection_domain, D in H13; elim H13; clear H13; intros; assumption. - unfold covering_open_set in |- *; split. - unfold covering in |- *; intros; exists x0; simpl in |- *; unfold g in |- *; + unfold covering_open_set; split. + unfold covering; intros; exists x0; simpl; unfold g; split. - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; unfold Rminus in H2; apply (H2 _ H5). apply H5. - unfold family_open_set in |- *; intro; simpl in |- *; unfold g in |- *; + unfold family_open_set; intro; simpl; unfold g; elim (classic (D x0)); intro. apply open_set_P6 with (disc x0 (mkposreal _ (H2 _ H5))). apply disc_P1. - unfold eq_Dom in |- *; split. - unfold included, disc in |- *; simpl in |- *; intros; split. + unfold eq_Dom; split. + unfold included, disc; simpl; intros; split. rewrite <- (Rabs_Ropp (x0 - x1)); rewrite Ropp_minus_distr; apply H6. apply H5. - unfold included, disc in |- *; simpl in |- *; intros; elim H6; intros; + unfold included, disc; simpl; intros; elim H6; intros; rewrite <- (Rabs_Ropp (x1 - x0)); rewrite Ropp_minus_distr; apply H7. apply open_set_P6 with (fun z:R => False). apply open_set_P4. - unfold eq_Dom in |- *; split. - unfold included in |- *; intros; elim H6. - unfold included in |- *; intros; elim H6; intros; elim H5; assumption. + unfold eq_Dom; split. + unfold included; intros; elim H6. + unfold included; intros; elim H6; intros; elim H5; assumption. intros; elim H3; intros; unfold g in H4; elim H4; clear H4; intros _ H4; apply H4. - intros; unfold Rdiv in |- *; apply Rmult_lt_0_compat. - apply Rabs_pos_lt; apply Rminus_eq_contra; red in |- *; intro; + intros; unfold Rdiv; apply Rmult_lt_0_compat. + apply Rabs_pos_lt; apply Rminus_eq_contra; red; intro; rewrite H3 in H2; elim H1; apply H2. apply Rinv_0_lt_compat; prove_sup0. Qed. @@ -593,29 +593,29 @@ Qed. (**********) Lemma compact_EMP : compact (fun _:R => False). Proof. - unfold compact in |- *; intros; exists (fun x:R => False); - unfold covering_finite in |- *; split. - unfold covering in |- *; intros; elim H0. - unfold family_finite in |- *; unfold domain_finite in |- *; exists nil; intro. + unfold compact; intros; exists (fun x:R => False); + unfold covering_finite; split. + unfold covering; intros; elim H0. + unfold family_finite; unfold domain_finite; exists nil; intro. split. - simpl in |- *; unfold intersection_domain in |- *; intros; elim H0. + simpl; unfold intersection_domain; intros; elim H0. elim H0; clear H0; intros _ H0; elim H0. - simpl in |- *; intro; elim H0. + simpl; intro; elim H0. Qed. Lemma compact_eqDom : forall X1 X2:R -> Prop, compact X1 -> X1 =_D X2 -> compact X2. Proof. - unfold compact in |- *; intros; unfold eq_Dom in H0; elim H0; clear H0; - unfold included in |- *; intros; assert (H3 : covering_open_set X1 f0). - unfold covering_open_set in |- *; unfold covering_open_set in H1; elim H1; + unfold compact; intros; unfold eq_Dom in H0; elim H0; clear H0; + unfold included; intros; assert (H3 : covering_open_set X1 f0). + unfold covering_open_set; unfold covering_open_set in H1; elim H1; clear H1; intros; split. - unfold covering in H1; unfold covering in |- *; intros; + unfold covering in H1; unfold covering; intros; apply (H1 _ (H0 _ H4)). apply H3. - elim (H _ H3); intros D H4; exists D; unfold covering_finite in |- *; + elim (H _ H3); intros D H4; exists D; unfold covering_finite; unfold covering_finite in H4; elim H4; intros; split. - unfold covering in H5; unfold covering in |- *; intros; + unfold covering in H5; unfold covering; intros; apply (H5 _ (H2 _ H7)). apply H6. Qed. @@ -624,7 +624,7 @@ Qed. Lemma compact_P3 : forall a b:R, compact (fun c:R => a <= c <= b). Proof. intros; case (Rle_dec a b); intro. - unfold compact in |- *; intros; + unfold compact; intros; set (A := fun x:R => @@ -647,92 +647,92 @@ Proof. rewrite H11 in H10; rewrite H11 in H8; unfold A in H9; elim H9; clear H9; intros; elim H12; clear H12; intros Dx H12; set (Db := fun x:R => Dx x \/ x = y0); exists Db; - unfold covering_finite in |- *; split. - unfold covering in |- *; unfold covering_finite in H12; elim H12; clear H12; + unfold covering_finite; split. + unfold covering; unfold covering_finite in H12; elim H12; clear H12; intros; unfold covering in H12; case (Rle_dec x0 x); intro. cut (a <= x0 <= x). intro; assert (H16 := H12 x0 H15); elim H16; clear H16; intros; exists x1; - simpl in H16; simpl in |- *; unfold Db in |- *; elim H16; + simpl in H16; simpl; unfold Db; elim H16; clear H16; intros; split; [ apply H16 | left; apply H17 ]. split. elim H14; intros; assumption. assumption. - exists y0; simpl in |- *; split. - apply H8; unfold disc in |- *; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; + exists y0; simpl; split. + apply H8; unfold disc; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; rewrite Rabs_right. apply Rlt_trans with (b - x). - unfold Rminus in |- *; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar; + unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar; auto with real. elim H10; intros H15 _; apply Rplus_lt_reg_r with (x - eps); replace (x - eps + (b - x)) with (b - eps); [ replace (x - eps + eps) with x; [ apply H15 | ring ] | ring ]. apply Rge_minus; apply Rle_ge; elim H14; intros _ H15; apply H15. - unfold Db in |- *; right; reflexivity. - unfold family_finite in |- *; unfold domain_finite in |- *; + unfold Db; right; reflexivity. + unfold family_finite; unfold domain_finite; unfold covering_finite in H12; elim H12; clear H12; intros; unfold family_finite in H13; unfold domain_finite in H13; elim H13; clear H13; intros l H13; exists (cons y0 l); intro; split. intro; simpl in H14; unfold intersection_domain in H14; elim (H13 x0); clear H13; intros; case (Req_dec x0 y0); intro. - simpl in |- *; left; apply H16. - simpl in |- *; right; apply H13. - simpl in |- *; unfold intersection_domain in |- *; unfold Db in H14; + simpl; left; apply H16. + simpl; right; apply H13. + simpl; unfold intersection_domain; unfold Db in H14; decompose [and or] H14. split; assumption. elim H16; assumption. - intro; simpl in H14; elim H14; intro; simpl in |- *; - unfold intersection_domain in |- *. + intro; simpl in H14; elim H14; intro; simpl; + unfold intersection_domain. split. apply (cond_fam f0); rewrite H15; exists m; apply H6. - unfold Db in |- *; right; assumption. - simpl in |- *; unfold intersection_domain in |- *; elim (H13 x0). + unfold Db; right; assumption. + simpl; unfold intersection_domain; elim (H13 x0). intros _ H16; assert (H17 := H16 H15); simpl in H17; unfold intersection_domain in H17; split. elim H17; intros; assumption. - unfold Db in |- *; left; elim H17; intros; assumption. + unfold Db; left; elim H17; intros; assumption. set (m' := Rmin (m + eps / 2) b); cut (A m'). intro; elim H3; intros; unfold is_upper_bound in H13; assert (H15 := H13 m' H12); cut (m < m'). intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H15 H16)). - unfold m' in |- *; unfold Rmin in |- *; case (Rle_dec (m + eps / 2) b); intro. - pattern m at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold m'; unfold Rmin; case (Rle_dec (m + eps / 2) b); intro. + pattern m at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ]. elim H4; intros. elim H17; intro. assumption. elim H11; assumption. - unfold A in |- *; split. + unfold A; split. split. apply Rle_trans with m. elim H4; intros; assumption. - unfold m' in |- *; unfold Rmin in |- *; case (Rle_dec (m + eps / 2) b); intro. - pattern m at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold m'; unfold Rmin; case (Rle_dec (m + eps / 2) b); intro. + pattern m at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ]. elim H4; intros. elim H13; intro. assumption. elim H11; assumption. - unfold m' in |- *; apply Rmin_r. + unfold m'; apply Rmin_r. unfold A in H9; elim H9; clear H9; intros; elim H12; clear H12; intros Dx H12; set (Db := fun x:R => Dx x \/ x = y0); exists Db; - unfold covering_finite in |- *; split. - unfold covering in |- *; unfold covering_finite in H12; elim H12; clear H12; + unfold covering_finite; split. + unfold covering; unfold covering_finite in H12; elim H12; clear H12; intros; unfold covering in H12; case (Rle_dec x0 x); intro. cut (a <= x0 <= x). intro; assert (H16 := H12 x0 H15); elim H16; clear H16; intros; exists x1; - simpl in H16; simpl in |- *; unfold Db in |- *. + simpl in H16; simpl; unfold Db. elim H16; clear H16; intros; split; [ apply H16 | left; apply H17 ]. elim H14; intros; split; assumption. - exists y0; simpl in |- *; split. - apply H8; unfold disc in |- *; unfold Rabs in |- *; case (Rcase_abs (x0 - m)); + exists y0; simpl; split. + apply H8; unfold disc; unfold Rabs; case (Rcase_abs (x0 - m)); intro. rewrite Ropp_minus_distr; apply Rlt_trans with (m - x). - unfold Rminus in |- *; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar; + unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar; auto with real. apply Rplus_lt_reg_r with (x - eps); replace (x - eps + (m - x)) with (m - eps). @@ -741,56 +741,56 @@ Proof. ring. ring. apply Rle_lt_trans with (m' - m). - unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (- m)); + unfold Rminus; do 2 rewrite <- (Rplus_comm (- m)); apply Rplus_le_compat_l; elim H14; intros; assumption. apply Rplus_lt_reg_r with m; replace (m + (m' - m)) with m'. apply Rle_lt_trans with (m + eps / 2). - unfold m' in |- *; apply Rmin_l. + unfold m'; apply Rmin_l. apply Rplus_lt_compat_l; apply Rmult_lt_reg_l with 2. prove_sup0. - unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; + unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. - rewrite Rmult_1_l; pattern (pos eps) at 1 in |- *; rewrite <- Rplus_0_r; + rewrite Rmult_1_l; pattern (pos eps) at 1; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; apply (cond_pos eps). discrR. ring. - unfold Db in |- *; right; reflexivity. - unfold family_finite in |- *; unfold domain_finite in |- *; + unfold Db; right; reflexivity. + unfold family_finite; unfold domain_finite; unfold covering_finite in H12; elim H12; clear H12; intros; unfold family_finite in H13; unfold domain_finite in H13; elim H13; clear H13; intros l H13; exists (cons y0 l); intro; split. intro; simpl in H14; unfold intersection_domain in H14; elim (H13 x0); clear H13; intros; case (Req_dec x0 y0); intro. - simpl in |- *; left; apply H16. - simpl in |- *; right; apply H13; simpl in |- *; - unfold intersection_domain in |- *; unfold Db in H14; + simpl; left; apply H16. + simpl; right; apply H13; simpl; + unfold intersection_domain; unfold Db in H14; decompose [and or] H14. split; assumption. elim H16; assumption. - intro; simpl in H14; elim H14; intro; simpl in |- *; - unfold intersection_domain in |- *. + intro; simpl in H14; elim H14; intro; simpl; + unfold intersection_domain. split. apply (cond_fam f0); rewrite H15; exists m; apply H6. - unfold Db in |- *; right; assumption. + unfold Db; right; assumption. elim (H13 x0); intros _ H16. assert (H17 := H16 H15). simpl in H17. unfold intersection_domain in H17. split. elim H17; intros; assumption. - unfold Db in |- *; left; elim H17; intros; assumption. + unfold Db; left; elim H17; intros; assumption. elim (classic (exists x : R, A x /\ m - eps < x <= m)); intro. assumption. elim H3; intros; cut (is_upper_bound A (m - eps)). intro; assert (H13 := H11 _ H12); cut (m - eps < m). intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H14)). - pattern m at 2 in |- *; rewrite <- Rplus_0_r; unfold Rminus in |- *; + pattern m at 2; rewrite <- Rplus_0_r; unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_cancel; rewrite Ropp_involutive; rewrite Ropp_0; apply (cond_pos eps). set (P := fun n:R => A n /\ m - eps < n <= m); assert (H12 := not_ex_all_not _ P H9); unfold P in H12; - unfold is_upper_bound in |- *; intros; + unfold is_upper_bound; intros; assert (H14 := not_and_or _ _ (H12 x)); elim H14; intro. elim H15; apply H13. @@ -803,44 +803,44 @@ Proof. unfold is_upper_bound in H3. split. apply (H3 _ H0). - apply (H4 b); unfold is_upper_bound in |- *; intros; unfold A in H5; elim H5; + apply (H4 b); unfold is_upper_bound; intros; unfold A in H5; elim H5; clear H5; intros H5 _; elim H5; clear H5; intros _ H5; apply H5. exists a; apply H0. - unfold bound in |- *; exists b; unfold is_upper_bound in |- *; intros; + unfold bound; exists b; unfold is_upper_bound; intros; unfold A in H1; elim H1; clear H1; intros H1 _; elim H1; clear H1; intros _ H1; apply H1. - unfold A in |- *; split. + unfold A; split. split; [ right; reflexivity | apply r ]. unfold covering_open_set in H; elim H; clear H; intros; unfold covering in H; cut (a <= a <= b). intro; elim (H _ H1); intros y0 H2; set (D' := fun x:R => x = y0); exists D'; - unfold covering_finite in |- *; split. - unfold covering in |- *; simpl in |- *; intros; cut (x = a). + unfold covering_finite; split. + unfold covering; simpl; intros; cut (x = a). intro; exists y0; split. rewrite H4; apply H2. - unfold D' in |- *; reflexivity. + unfold D'; reflexivity. elim H3; intros; apply Rle_antisym; assumption. - unfold family_finite in |- *; unfold domain_finite in |- *; + unfold family_finite; unfold domain_finite; exists (cons y0 nil); intro; split. - simpl in |- *; unfold intersection_domain in |- *; intro; elim H3; clear H3; + simpl; unfold intersection_domain; intro; elim H3; clear H3; intros; unfold D' in H4; left; apply H4. - simpl in |- *; unfold intersection_domain in |- *; intro; elim H3; intro. + simpl; unfold intersection_domain; intro; elim H3; intro. split; [ rewrite H4; apply (cond_fam f0); exists a; apply H2 | apply H4 ]. elim H4. split; [ right; reflexivity | apply r ]. apply compact_eqDom with (fun c:R => False). apply compact_EMP. - unfold eq_Dom in |- *; split. - unfold included in |- *; intros; elim H. - unfold included in |- *; intros; elim H; clear H; intros; + unfold eq_Dom; split. + unfold included; intros; elim H. + unfold included; intros; elim H; clear H; intros; assert (H1 := Rle_trans _ _ _ H H0); elim n; apply H1. Qed. Lemma compact_P4 : forall X F:R -> Prop, compact X -> closed_set F -> included F X -> compact F. Proof. - unfold compact in |- *; intros; elim (classic (exists z : R, F z)); + unfold compact; intros; elim (classic (exists z : R, F z)); intro Hyp_F_NE. set (D := ind f0); set (g := f f0); unfold closed_set in H0. set (g' := fun x y:R => f0 x y \/ complementary F y /\ D x). @@ -848,61 +848,61 @@ Proof. cut (forall x:R, (exists y : R, g' x y) -> D' x). intro; set (f' := mkfamily D' g' H3); cut (covering_open_set X f'). intro; elim (H _ H4); intros DX H5; exists DX. - unfold covering_finite in |- *; unfold covering_finite in H5; elim H5; + unfold covering_finite; unfold covering_finite in H5; elim H5; clear H5; intros. split. - unfold covering in |- *; unfold covering in H5; intros. - elim (H5 _ (H1 _ H7)); intros y0 H8; exists y0; simpl in H8; simpl in |- *; + unfold covering; unfold covering in H5; intros. + elim (H5 _ (H1 _ H7)); intros y0 H8; exists y0; simpl in H8; simpl; elim H8; clear H8; intros. split. unfold g' in H8; elim H8; intro. apply H10. elim H10; intros H11 _; unfold complementary in H11; elim H11; apply H7. apply H9. - unfold family_finite in |- *; unfold domain_finite in |- *; + unfold family_finite; unfold domain_finite; unfold family_finite in H6; unfold domain_finite in H6; elim H6; clear H6; intros l H6; exists l; intro; assert (H7 := H6 x); elim H7; clear H7; intros. split. - intro; apply H7; simpl in |- *; unfold intersection_domain in |- *; - simpl in H9; unfold intersection_domain in H9; unfold D' in |- *; + intro; apply H7; simpl; unfold intersection_domain; + simpl in H9; unfold intersection_domain in H9; unfold D'; apply H9. intro; assert (H10 := H8 H9); simpl in H10; unfold intersection_domain in H10; - simpl in |- *; unfold intersection_domain in |- *; + simpl; unfold intersection_domain; unfold D' in H10; apply H10. - unfold covering_open_set in |- *; unfold covering_open_set in H2; elim H2; + unfold covering_open_set; unfold covering_open_set in H2; elim H2; clear H2; intros. split. - unfold covering in |- *; unfold covering in H2; intros. + unfold covering; unfold covering in H2; intros. elim (classic (F x)); intro. - elim (H2 _ H6); intros y0 H7; exists y0; simpl in |- *; unfold g' in |- *; + elim (H2 _ H6); intros y0 H7; exists y0; simpl; unfold g'; left; assumption. cut (exists z : R, D z). - intro; elim H7; clear H7; intros x0 H7; exists x0; simpl in |- *; - unfold g' in |- *; right. + intro; elim H7; clear H7; intros x0 H7; exists x0; simpl; + unfold g'; right. split. - unfold complementary in |- *; apply H6. + unfold complementary; apply H6. apply H7. elim Hyp_F_NE; intros z0 H7. assert (H8 := H2 _ H7). elim H8; clear H8; intros t H8; exists t; apply (cond_fam f0); exists z0; apply H8. - unfold family_open_set in |- *; intro; simpl in |- *; unfold g' in |- *; + unfold family_open_set; intro; simpl; unfold g'; elim (classic (D x)); intro. apply open_set_P6 with (union_domain (f0 x) (complementary F)). apply open_set_P2. unfold family_open_set in H4; apply H4. apply H0. - unfold eq_Dom in |- *; split. - unfold included, union_domain, complementary in |- *; intros. + unfold eq_Dom; split. + unfold included, union_domain, complementary; intros. elim H6; intro; [ left; apply H7 | right; split; assumption ]. - unfold included, union_domain, complementary in |- *; intros. + unfold included, union_domain, complementary; intros. elim H6; intro; [ left; apply H7 | right; elim H7; intros; apply H8 ]. apply open_set_P6 with (f0 x). unfold family_open_set in H4; apply H4. - unfold eq_Dom in |- *; split. - unfold included, complementary in |- *; intros; left; apply H6. - unfold included, complementary in |- *; intros. + unfold eq_Dom; split. + unfold included, complementary; intros; left; apply H6. + unfold included, complementary; intros. elim H6; intro. apply H7. elim H7; intros _ H8; elim H5; apply H8. @@ -914,9 +914,9 @@ Proof. intro; apply (H3 f0 H2). apply compact_eqDom with (fun _:R => False). apply compact_EMP. - unfold eq_Dom in |- *; split. - unfold included in |- *; intros; elim H3. - assert (H3 := not_ex_all_not _ _ Hyp_F_NE); unfold included in |- *; intros; + unfold eq_Dom; split. + unfold included; intros; elim H3. + assert (H3 := not_ex_all_not _ _ Hyp_F_NE); unfold included; intros; elim (H3 x); apply H4. Qed. @@ -947,7 +947,7 @@ Lemma continuity_compact : forall (f:R -> R) (X:R -> Prop), (forall x:R, continuity_pt f x) -> compact X -> compact (image_dir f X). Proof. - unfold compact in |- *; intros; unfold covering_open_set in H1. + unfold compact; intros; unfold covering_open_set in H1. elim H1; clear H1; intros. set (D := ind f1). set (g := fun x y:R => image_rec f0 (f1 x) y). @@ -956,24 +956,24 @@ Proof. cut (covering_open_set X f'). intro; elim (H0 f' H4); intros D' H5; exists D'. unfold covering_finite in H5; elim H5; clear H5; intros; - unfold covering_finite in |- *; split. - unfold covering, image_dir in |- *; simpl in |- *; unfold covering in H5; + unfold covering_finite; split. + unfold covering, image_dir; simpl; unfold covering in H5; intros; elim H7; intros y H8; elim H8; intros; assert (H11 := H5 _ H10); simpl in H11; elim H11; intros z H12; exists z; unfold g in H12; unfold image_rec in H12; rewrite H9; apply H12. unfold family_finite in H6; unfold domain_finite in H6; - unfold family_finite in |- *; unfold domain_finite in |- *; + unfold family_finite; unfold domain_finite; elim H6; intros l H7; exists l; intro; elim (H7 x); intros; split; intro. - apply H8; simpl in H10; simpl in |- *; apply H10. + apply H8; simpl in H10; simpl; apply H10. apply (H9 H10). - unfold covering_open_set in |- *; split. - unfold covering in |- *; intros; simpl in |- *; unfold covering in H1; - unfold image_dir in H1; unfold g in |- *; unfold image_rec in |- *; + unfold covering_open_set; split. + unfold covering; intros; simpl; unfold covering in H1; + unfold image_dir in H1; unfold g; unfold image_rec; apply H1. exists x; split; [ reflexivity | apply H4 ]. - unfold family_open_set in |- *; unfold family_open_set in H2; intro; - simpl in |- *; unfold g in |- *; + unfold family_open_set; unfold family_open_set in H2; intro; + simpl; unfold g; cut ((fun y:R => image_rec f0 (f1 x) y) = image_rec f0 (f1 x)). intro; rewrite H4. apply (continuity_P2 f0 (f1 x) H (H2 x)). @@ -1010,16 +1010,16 @@ Proof. assert (H2 : 0 < b - a). apply Rlt_Rminus; assumption. exists h; split. - unfold continuity in |- *; intro; case (Rtotal_order x a); intro. - unfold continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; unfold R_dist in |- *; intros; exists (a - x); + unfold continuity; intro; case (Rtotal_order x a); intro. + unfold continuity_pt; unfold continue_in; + unfold limit1_in; unfold limit_in; + simpl; unfold R_dist; intros; exists (a - x); split. - change (0 < a - x) in |- *; apply Rlt_Rminus; assumption. - intros; elim H5; clear H5; intros _ H5; unfold h in |- *. + change (0 < a - x); apply Rlt_Rminus; assumption. + intros; elim H5; clear H5; intros _ H5; unfold h. case (Rle_dec x a); intro. case (Rle_dec x0 a); intro. - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. + unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. elim n; left; apply Rplus_lt_reg_r with (- x); do 2 rewrite (Rplus_comm (- x)); apply Rle_lt_trans with (Rabs (x0 - x)). apply RRle_abs. @@ -1030,23 +1030,23 @@ Proof. split; [ right; reflexivity | left; assumption ]. assert (H6 := H0 _ H5); unfold continuity_pt in H6; unfold continue_in in H6; unfold limit1_in in H6; unfold limit_in in H6; simpl in H6; - unfold R_dist in H6; unfold continuity_pt in |- *; - unfold continue_in in |- *; unfold limit1_in in |- *; - unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *; + unfold R_dist in H6; unfold continuity_pt; + unfold continue_in; unfold limit1_in; + unfold limit_in; simpl; unfold R_dist; intros; elim (H6 _ H7); intros; exists (Rmin x0 (b - a)); split. - unfold Rmin in |- *; case (Rle_dec x0 (b - a)); intro. + unfold Rmin; case (Rle_dec x0 (b - a)); intro. elim H8; intros; assumption. - change (0 < b - a) in |- *; apply Rlt_Rminus; assumption. + change (0 < b - a); apply Rlt_Rminus; assumption. intros; elim H9; clear H9; intros _ H9; cut (x1 < b). - intro; unfold h in |- *; case (Rle_dec x a); intro. + intro; unfold h; case (Rle_dec x a); intro. case (Rle_dec x1 a); intro. - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. + unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. case (Rle_dec x1 b); intro. elim H8; intros; apply H12; split. - unfold D_x, no_cond in |- *; split. + unfold D_x, no_cond; split. trivial. - red in |- *; intro; elim n; right; symmetry in |- *; assumption. + red; intro; elim n; right; symmetry ; assumption. apply Rlt_le_trans with (Rmin x0 (b - a)). rewrite H4 in H9; apply H9. apply Rmin_l. @@ -1063,9 +1063,9 @@ Proof. split; left; assumption. assert (H7 := H0 _ H6); unfold continuity_pt in H7; unfold continue_in in H7; unfold limit1_in in H7; unfold limit_in in H7; simpl in H7; - unfold R_dist in H7; unfold continuity_pt in |- *; - unfold continue_in in |- *; unfold limit1_in in |- *; - unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *; + unfold R_dist in H7; unfold continuity_pt; + unfold continue_in; unfold limit1_in; + unfold limit_in; simpl; unfold R_dist; intros; elim (H7 _ H8); intros; elim H9; clear H9; intros. assert (H11 : 0 < x - a). @@ -1073,7 +1073,7 @@ Proof. assert (H12 : 0 < b - x). apply Rlt_Rminus; assumption. exists (Rmin x0 (Rmin (x - a) (b - x))); split. - unfold Rmin in |- *; case (Rle_dec (x - a) (b - x)); intro. + unfold Rmin; case (Rle_dec (x - a) (b - x)); intro. case (Rle_dec x0 (x - a)); intro. assumption. assumption. @@ -1081,7 +1081,7 @@ Proof. assumption. assumption. intros; elim H13; clear H13; intros; cut (a < x1 < b). - intro; elim H15; clear H15; intros; unfold h in |- *; case (Rle_dec x a); + intro; elim H15; clear H15; intros; unfold h; case (Rle_dec x a); intro. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H4)). case (Rle_dec x b); intro. @@ -1115,16 +1115,16 @@ Proof. split; [ left; assumption | right; reflexivity ]. assert (H8 := H0 _ H7); unfold continuity_pt in H8; unfold continue_in in H8; unfold limit1_in in H8; unfold limit_in in H8; simpl in H8; - unfold R_dist in H8; unfold continuity_pt in |- *; - unfold continue_in in |- *; unfold limit1_in in |- *; - unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *; + unfold R_dist in H8; unfold continuity_pt; + unfold continue_in; unfold limit1_in; + unfold limit_in; simpl; unfold R_dist; intros; elim (H8 _ H9); intros; exists (Rmin x0 (b - a)); split. - unfold Rmin in |- *; case (Rle_dec x0 (b - a)); intro. + unfold Rmin; case (Rle_dec x0 (b - a)); intro. elim H10; intros; assumption. - change (0 < b - a) in |- *; apply Rlt_Rminus; assumption. + change (0 < b - a); apply Rlt_Rminus; assumption. intros; elim H11; clear H11; intros _ H11; cut (a < x1). - intro; unfold h in |- *; case (Rle_dec x a); intro. + intro; unfold h; case (Rle_dec x a); intro. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H4)). case (Rle_dec x1 a); intro. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H12)). @@ -1132,15 +1132,15 @@ Proof. case (Rle_dec x1 b); intro. rewrite H6; elim H10; intros; elim r0; intro. apply H14; split. - unfold D_x, no_cond in |- *; split. + unfold D_x, no_cond; split. trivial. - red in |- *; intro; rewrite <- H16 in H15; elim (Rlt_irrefl _ H15). + red; intro; rewrite <- H16 in H15; elim (Rlt_irrefl _ H15). rewrite H6 in H11; apply Rlt_le_trans with (Rmin x0 (b - a)). apply H11. apply Rmin_l. - rewrite H15; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + rewrite H15; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. - rewrite H6; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + rewrite H6; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. elim n1; right; assumption. rewrite H6 in H11; apply Ropp_lt_cancel; apply Rplus_lt_reg_r with b; @@ -1149,18 +1149,18 @@ Proof. apply Rlt_le_trans with (Rmin x0 (b - a)). assumption. apply Rmin_r. - unfold continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; unfold R_dist in |- *; intros; exists (x - b); + unfold continuity_pt; unfold continue_in; + unfold limit1_in; unfold limit_in; + simpl; unfold R_dist; intros; exists (x - b); split. - change (0 < x - b) in |- *; apply Rlt_Rminus; assumption. + change (0 < x - b); apply Rlt_Rminus; assumption. intros; elim H8; clear H8; intros. assert (H10 : b < x0). apply Ropp_lt_cancel; apply Rplus_lt_reg_r with x; apply Rle_lt_trans with (Rabs (x0 - x)). rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs. assumption. - unfold h in |- *; case (Rle_dec x a); intro. + unfold h; case (Rle_dec x a); intro. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H4)). case (Rle_dec x b); intro. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H6)). @@ -1168,8 +1168,8 @@ Proof. elim (Rlt_irrefl _ (Rlt_trans _ _ _ H1 (Rlt_le_trans _ _ _ H10 r))). case (Rle_dec x0 b); intro. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H10)). - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. - intros; elim H3; intros; unfold h in |- *; case (Rle_dec c a); intro. + unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. + intros; elim H3; intros; unfold h; case (Rle_dec c a); intro. elim r; intro. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 H6)). rewrite H6; reflexivity. @@ -1210,7 +1210,7 @@ Proof. intros; rewrite <- (Heq c H10); rewrite <- (Heq Mxx H9); intros; rewrite <- H8; unfold is_lub in H7; elim H7; clear H7; intros H7 _; unfold is_upper_bound in H7; apply H7; - unfold image_dir in |- *; exists c; split; [ reflexivity | apply H10 ]. + unfold image_dir; exists c; split; [ reflexivity | apply H10 ]. apply H9. elim (classic (image_dir g (fun c:R => a <= c <= b) M)); intro. assumption. @@ -1225,13 +1225,13 @@ Proof. cut (is_upper_bound (image_dir g (fun c:R => a <= c <= b)) (M - eps)). intro; assert (H12 := H10 _ H11); cut (M - eps < M). intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H12 H13)). - pattern M at 2 in |- *; rewrite <- Rplus_0_r; unfold Rminus in |- *; + pattern M at 2; rewrite <- Rplus_0_r; unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_cancel; rewrite Ropp_0; rewrite Ropp_involutive; apply (cond_pos eps). - unfold is_upper_bound, image_dir in |- *; intros; cut (x <= M). + unfold is_upper_bound, image_dir; intros; cut (x <= M). intro; case (Rle_dec x (M - eps)); intro. apply r. - elim (H9 x); unfold intersection_domain, disc, image_dir in |- *; split. + elim (H9 x); unfold intersection_domain, disc, image_dir; split. rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; rewrite Rabs_right. apply Rplus_lt_reg_r with (x - eps); replace (x - eps + (M - x)) with (M - eps). @@ -1249,8 +1249,8 @@ Proof. ~ intersection_domain V (image_dir g (fun c:R => a <= c <= b)) y)). intro; elim H9; intros V H10; elim H10; clear H10; intros. unfold neighbourhood in H10; elim H10; intros del H12; exists del; intros; - red in |- *; intro; elim (H11 y). - unfold intersection_domain in |- *; unfold intersection_domain in H13; + red; intro; elim (H11 y). + unfold intersection_domain; unfold intersection_domain in H13; elim H13; clear H13; intros; split. apply (H12 _ H13). apply H14. @@ -1268,18 +1268,18 @@ Proof. split. apply H12. apply (not_ex_all_not _ _ H13). - red in |- *; intro; cut (adherence (image_dir g (fun c:R => a <= c <= b)) M). + red; intro; cut (adherence (image_dir g (fun c:R => a <= c <= b)) M). intro; elim (closed_set_P1 (image_dir g (fun c:R => a <= c <= b))); intros H11 _; assert (H12 := H11 H3). elim H8. unfold eq_Dom in H12; elim H12; clear H12; intros. apply (H13 _ H10). apply H9. - exists (g a); unfold image_dir in |- *; exists a; split. + exists (g a); unfold image_dir; exists a; split. reflexivity. split; [ right; reflexivity | apply H ]. - unfold bound in |- *; unfold bounded in H4; elim H4; clear H4; intros m H4; - elim H4; clear H4; intros M H4; exists M; unfold is_upper_bound in |- *; + unfold bound; unfold bounded in H4; elim H4; clear H4; intros m H4; + elim H4; clear H4; intros M H4; exists M; unfold is_upper_bound; intros; elim (H4 _ H5); intros _ H6; apply H6. apply prolongement_C0; assumption. Qed. @@ -1327,8 +1327,8 @@ Proof. intros; elim H; intros; unfold f in H0; unfold adherence in H0; unfold point_adherent in H0; assert (H1 : neighbourhood (disc x0 (mkposreal _ Rlt_0_1)) x0). - unfold neighbourhood, disc in |- *; exists (mkposreal _ Rlt_0_1); - unfold included in |- *; trivial. + unfold neighbourhood, disc; exists (mkposreal _ Rlt_0_1); + unfold included; trivial. elim (H0 _ H1); intros; unfold intersection_domain in H2; elim H2; intros; elim H4; intros; apply H6. Qed. @@ -1345,17 +1345,17 @@ Lemma ValAdh_un_prop : forall (un:nat -> R) (x:R), ValAdh un x <-> ValAdh_un un x. Proof. intros; split; intro. - unfold ValAdh in H; unfold ValAdh_un in |- *; - unfold intersection_family in |- *; simpl in |- *; - intros; elim H0; intros N H1; unfold adherence in |- *; - unfold point_adherent in |- *; intros; elim (H V N H2); - intros; exists (un x0); unfold intersection_domain in |- *; + unfold ValAdh in H; unfold ValAdh_un; + unfold intersection_family; simpl; + intros; elim H0; intros N H1; unfold adherence; + unfold point_adherent; intros; elim (H V N H2); + intros; exists (un x0); unfold intersection_domain; elim H3; clear H3; intros; split. assumption. split. exists x0; split; [ reflexivity | rewrite H1; apply (le_INR _ _ H3) ]. exists N; assumption. - unfold ValAdh in |- *; intros; unfold ValAdh_un in H; + unfold ValAdh; intros; unfold ValAdh_un in H; unfold intersection_family in H; simpl in H; assert (H1 : @@ -1376,8 +1376,8 @@ Qed. Lemma adherence_P4 : forall F G:R -> Prop, included F G -> included (adherence F) (adherence G). Proof. - unfold adherence, included in |- *; unfold point_adherent in |- *; intros; - elim (H0 _ H1); unfold intersection_domain in |- *; + unfold adherence, included; unfold point_adherent; intros; + elim (H0 _ H1); unfold intersection_domain; intros; elim H2; clear H2; intros; exists x0; split; [ assumption | apply (H _ H3) ]. Qed. @@ -1410,36 +1410,36 @@ Proof. intros; elim H2; intros; unfold f' in H3; elim H3; intros; assumption. set (f0 := mkfamily D' f' H2). unfold compact in H; assert (H3 : covering_open_set X f0). - unfold covering_open_set in |- *; split. - unfold covering in |- *; intros; unfold intersection_vide_in in H1; + unfold covering_open_set; split. + unfold covering; intros; unfold intersection_vide_in in H1; elim (H1 x); intros; unfold intersection_family in H5; assert (H6 := not_ex_all_not _ (fun y:R => forall y0:R, ind g y0 -> g y0 y) H5 x); assert (H7 := not_all_ex_not _ (fun y0:R => ind g y0 -> g y0 x) H6); elim H7; intros; exists x0; elim (imply_to_and _ _ H8); - intros; unfold f0 in |- *; simpl in |- *; unfold f' in |- *; + intros; unfold f0; simpl; unfold f'; split; [ apply H10 | apply H9 ]. - unfold family_open_set in |- *; intro; elim (classic (D' x)); intro. + unfold family_open_set; intro; elim (classic (D' x)); intro. apply open_set_P6 with (complementary (g x)). unfold family_closed_set in H0; unfold closed_set in H0; apply H0. - unfold f0 in |- *; simpl in |- *; unfold f' in |- *; unfold eq_Dom in |- *; + unfold f0; simpl; unfold f'; unfold eq_Dom; split. - unfold included in |- *; intros; split; [ apply H4 | apply H3 ]. - unfold included in |- *; intros; elim H4; intros; assumption. + unfold included; intros; split; [ apply H4 | apply H3 ]. + unfold included; intros; elim H4; intros; assumption. apply open_set_P6 with (fun _:R => False). apply open_set_P4. - unfold eq_Dom in |- *; unfold included in |- *; split; intros; + unfold eq_Dom; unfold included; split; intros; [ elim H4 | simpl in H4; unfold f' in H4; elim H4; intros; elim H3; assumption ]. elim (H _ H3); intros SF H4; exists SF; - unfold intersection_vide_finite_in in |- *; split. - unfold intersection_vide_in in |- *; simpl in |- *; intros; split. - intros; unfold included in |- *; intros; unfold intersection_vide_in in H1; + unfold intersection_vide_finite_in; split. + unfold intersection_vide_in; simpl; intros; split. + intros; unfold included; intros; unfold intersection_vide_in in H1; elim (H1 x); intros; elim H6; intros; apply H7. unfold intersection_domain in H5; elim H5; intros; assumption. assumption. elim (classic (exists y : R, intersection_domain (ind g) SF y)); intro Hyp'. - red in |- *; intro; elim H5; intros; unfold intersection_family in H6; + red; intro; elim H5; intros; unfold intersection_family in H6; simpl in H6. cut (X x0). intro; unfold covering_finite in H4; elim H4; clear H4; intros H4 _; @@ -1462,16 +1462,16 @@ Proof. cut (exists z : R, X z). intro; elim H5; clear H5; intros; unfold covering in H4; elim (H4 x0 H5); intros; simpl in H6; elim Hyp'; exists x1; elim H6; - intros; unfold intersection_domain in |- *; split. + intros; unfold intersection_domain; split. apply (cond_fam f0); exists x0; apply H7. apply H8. apply Hyp. unfold covering_finite in H4; elim H4; clear H4; intros; unfold family_finite in H5; unfold domain_finite in H5; - unfold family_finite in |- *; unfold domain_finite in |- *; + unfold family_finite; unfold domain_finite; elim H5; clear H5; intros l H5; exists l; intro; elim (H5 x); intros; split; intro; - [ apply H6; simpl in |- *; simpl in H8; apply H8 | apply (H7 H8) ]. + [ apply H6; simpl; simpl in H8; apply H8 | apply (H7 H8) ]. Qed. Theorem Bolzano_Weierstrass : @@ -1492,8 +1492,8 @@ Proof. intros; elim H2; intros; unfold g in H3; unfold adherence in H3; unfold point_adherent in H3. assert (H4 : neighbourhood (disc x0 (mkposreal _ Rlt_0_1)) x0). - unfold neighbourhood in |- *; exists (mkposreal _ Rlt_0_1); - unfold included in |- *; trivial. + unfold neighbourhood; exists (mkposreal _ Rlt_0_1); + unfold included; trivial. elim (H3 _ H4); intros; unfold intersection_domain in H5; decompose [and] H5; assumption. set (f0 := mkfamily D g H2). @@ -1509,19 +1509,19 @@ Proof. unfold domain_finite in H9; elim H9; clear H9; intros l H9; set (r := MaxRlist l); cut (D r). intro; unfold D in H11; elim H11; intros; exists (un x); - unfold intersection_family in |- *; simpl in |- *; - unfold intersection_domain in |- *; intros; split. - unfold g in |- *; apply adherence_P1; split. + unfold intersection_family; simpl; + unfold intersection_domain; intros; split. + unfold g; apply adherence_P1; split. exists x; split; [ reflexivity - | rewrite <- H12; unfold r in |- *; apply MaxRlist_P1; elim (H9 y); intros; - apply H14; simpl in |- *; apply H13 ]. + | rewrite <- H12; unfold r; apply MaxRlist_P1; elim (H9 y); intros; + apply H14; simpl; apply H13 ]. elim H13; intros; assumption. elim H13; intros; assumption. elim (H9 r); intros. simpl in H12; unfold intersection_domain in H12; cut (In r l). intro; elim (H12 H13); intros; assumption. - unfold r in |- *; apply MaxRlist_P2; + unfold r; apply MaxRlist_P2; cut (exists z : R, intersection_domain (ind f0) SF z). intro; elim H13; intros; elim (H9 x); intros; simpl in H15; assert (H17 := H15 H14); exists x; apply H17. @@ -1541,16 +1541,16 @@ Proof. not_all_ex_not _ (fun y:R => intersection_domain D SF y -> g y x /\ SF y) H18); elim H19; intros; assert (H21 := imply_to_and _ _ H20); elim (H17 x0); elim H21; intros; assumption. - unfold intersection_vide_in in |- *; intros; split. - intro; simpl in H6; unfold f0 in |- *; simpl in |- *; unfold g in |- *; + unfold intersection_vide_in; intros; split. + intro; simpl in H6; unfold f0; simpl; unfold g; apply included_trans with (adherence X). apply adherence_P4. - unfold included in |- *; intros; elim H7; intros; elim H8; intros; elim H10; + unfold included; intros; elim H7; intros; elim H8; intros; elim H10; intros; rewrite H11; apply H0. apply adherence_P2; apply compact_P2; assumption. apply H4. - unfold family_closed_set in |- *; unfold f0 in |- *; simpl in |- *; - unfold g in |- *; intro; apply adherence_P3. + unfold family_closed_set; unfold f0; simpl; + unfold g; intro; apply adherence_P3. Qed. (********************************************************) @@ -1566,7 +1566,7 @@ Definition uniform_continuity (f:R -> R) (X:R -> Prop) : Prop := Lemma is_lub_u : forall (E:R -> Prop) (x y:R), is_lub E x -> is_lub E y -> x = y. Proof. - unfold is_lub in |- *; intros; elim H; elim H0; intros; apply Rle_antisym; + unfold is_lub; intros; elim H; elim H0; intros; apply Rle_antisym; [ apply (H4 _ H1) | apply (H2 _ H3) ]. Qed. @@ -1581,7 +1581,7 @@ Proof. right; elim H1; intros; elim H2; intros; exists x; exists x0; intros. split; [ assumption - | split; [ assumption | apply (sym_not_eq (A:=R)); assumption ] ]. + | split; [ assumption | apply (not_eq_sym (A:=R)); assumption ] ]. left; exists x; split. assumption. intros; case (Req_dec x0 x); intro. @@ -1597,14 +1597,14 @@ Theorem Heine : Proof. intros f0 X H0 H; elim (domain_P1 X); intro Hyp. (* X is empty *) - unfold uniform_continuity in |- *; intros; exists (mkposreal _ Rlt_0_1); + unfold uniform_continuity; intros; exists (mkposreal _ Rlt_0_1); intros; elim Hyp; exists x; assumption. elim Hyp; clear Hyp; intro Hyp. (* X has only one element *) - unfold uniform_continuity in |- *; intros; exists (mkposreal _ Rlt_0_1); + unfold uniform_continuity; intros; exists (mkposreal _ Rlt_0_1); intros; elim Hyp; clear Hyp; intros; elim H4; clear H4; intros; assert (H6 := H5 _ H1); assert (H7 := H5 _ H2); - rewrite H6; rewrite H7; unfold Rminus in |- *; rewrite Rplus_opp_r; + rewrite H6; rewrite H7; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos eps). (* X has at least two distinct elements *) assert @@ -1624,9 +1624,9 @@ Proof. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H13 H14) r)). elim X_enc; clear X_enc; intros m X_enc; elim X_enc; clear X_enc; intros M X_enc; elim X_enc; clear X_enc Hyp; intros X_enc Hyp; - unfold uniform_continuity in |- *; intro; + unfold uniform_continuity; intro; assert (H1 : forall t:posreal, 0 < t / 2). - intro; unfold Rdiv in |- *; apply Rmult_lt_0_compat; + intro; unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos t) | apply Rinv_0_lt_compat; prove_sup0 ]. set (g := @@ -1644,8 +1644,8 @@ Proof. apply H3. set (f' := mkfamily X g H2); unfold compact in H0; assert (H3 : covering_open_set X f'). - unfold covering_open_set in |- *; split. - unfold covering in |- *; intros; exists x; simpl in |- *; unfold g in |- *; + unfold covering_open_set; split. + unfold covering; intros; exists x; simpl; unfold g; split. assumption. assert (H4 := H _ H3); unfold continuity_pt in H4; unfold continue_in in H4; @@ -1658,22 +1658,22 @@ Proof. 0 < zeta <= M - m /\ (forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2)); assert (H6 : bound E). - unfold bound in |- *; exists (M - m); unfold is_upper_bound in |- *; - unfold E in |- *; intros; elim H6; clear H6; intros H6 _; + unfold bound; exists (M - m); unfold is_upper_bound; + unfold E; intros; elim H6; clear H6; intros H6 _; elim H6; clear H6; intros _ H6; apply H6. assert (H7 : exists x : R, E x). - elim H5; clear H5; intros; exists (Rmin x0 (M - m)); unfold E in |- *; intros; + elim H5; clear H5; intros; exists (Rmin x0 (M - m)); unfold E; intros; split. split. - unfold Rmin in |- *; case (Rle_dec x0 (M - m)); intro. + unfold Rmin; case (Rle_dec x0 (M - m)); intro. apply H5. apply Rlt_Rminus; apply Hyp. apply Rmin_r. intros; case (Req_dec x z); intro. - rewrite H9; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + rewrite H9; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (H1 eps). apply H7; split. - unfold D_x, no_cond in |- *; split; [ trivial | assumption ]. + unfold D_x, no_cond; split; [ trivial | assumption ]. apply Rlt_le_trans with (Rmin x0 (M - m)); [ apply H8 | apply Rmin_l ]. assert (H8 := completeness _ H6 H7); elim H8; clear H8; intros; cut (0 < x1 <= M - m). @@ -1690,15 +1690,15 @@ Proof. unfold is_lub in p; elim p; intros; cut (is_upper_bound E (Rabs (z - x))). intro; assert (H16 := H14 _ H15); elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H10 H16)). - unfold is_upper_bound in |- *; intros; unfold is_upper_bound in H13; + unfold is_upper_bound; intros; unfold is_upper_bound in H13; assert (H16 := H13 _ H15); case (Rle_dec x2 (Rabs (z - x))); intro. assumption. elim (H12 x2); split; [ split; [ auto with real | assumption ] | assumption ]. split. apply p. - unfold disc in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r; - rewrite Rabs_R0; simpl in |- *; unfold Rdiv in |- *; + unfold disc; unfold Rminus; rewrite Rplus_opp_r; + rewrite Rabs_R0; simpl; unfold Rdiv; apply Rmult_lt_0_compat; [ apply H8 | apply Rinv_0_lt_compat; prove_sup0 ]. elim H7; intros; unfold E in H8; elim H8; intros H9 _; elim H9; intros H10 _; unfold is_lub in p; elim p; intros; unfold is_upper_bound in H12; @@ -1706,13 +1706,13 @@ Proof. apply Rlt_le_trans with x2; [ assumption | apply (H11 _ H8) ]. apply H12; intros; unfold E in H13; elim H13; intros; elim H14; intros; assumption. - unfold family_open_set in |- *; intro; simpl in |- *; elim (classic (X x)); + unfold family_open_set; intro; simpl; elim (classic (X x)); intro. - unfold g in |- *; unfold open_set in |- *; intros; elim H4; clear H4; + unfold g; unfold open_set; intros; elim H4; clear H4; intros _ H4; elim H4; clear H4; intros; elim H4; clear H4; - intros; unfold neighbourhood in |- *; case (Req_dec x x0); + intros; unfold neighbourhood; case (Req_dec x x0); intro. - exists (mkposreal _ (H1 x1)); rewrite <- H6; unfold included in |- *; intros; + exists (mkposreal _ (H1 x1)); rewrite <- H6; unfold included; intros; split. assumption. exists x1; split. @@ -1721,24 +1721,24 @@ Proof. elim H5; intros; apply H8. apply H7. set (d := x1 / 2 - Rabs (x0 - x)); assert (H7 : 0 < d). - unfold d in |- *; apply Rlt_Rminus; elim H5; clear H5; intros; + unfold d; apply Rlt_Rminus; elim H5; clear H5; intros; unfold disc in H7; apply H7. - exists (mkposreal _ H7); unfold included in |- *; intros; split. + exists (mkposreal _ H7); unfold included; intros; split. assumption. exists x1; split. apply H4. elim H5; intros; split. assumption. - unfold disc in H8; simpl in H8; unfold disc in |- *; simpl in |- *; + unfold disc in H8; simpl in H8; unfold disc; simpl; unfold disc in H10; simpl in H10; apply Rle_lt_trans with (Rabs (x2 - x0) + Rabs (x0 - x)). replace (x2 - x) with (x2 - x0 + (x0 - x)); [ apply Rabs_triang | ring ]. - replace (x1 / 2) with (d + Rabs (x0 - x)); [ idtac | unfold d in |- *; ring ]. + replace (x1 / 2) with (d + Rabs (x0 - x)); [ idtac | unfold d; ring ]. do 2 rewrite <- (Rplus_comm (Rabs (x0 - x))); apply Rplus_lt_compat_l; apply H8. apply open_set_P6 with (fun _:R => False). apply open_set_P4. - unfold eq_Dom in |- *; unfold included in |- *; intros; split. + unfold eq_Dom; unfold included; intros; split. intros; elim H4. intros; unfold g in H4; elim H4; clear H4; intros H4 _; elim H3; apply H4. elim (H0 _ H3); intros DF H4; unfold covering_finite in H4; elim H4; clear H4; @@ -1776,10 +1776,10 @@ Proof. apply Rlt_trans with (pos_Rl l' i / 2). apply H21. elim H13; clear H13; intros; assumption. - unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2. + unfold Rdiv; apply Rmult_lt_reg_l with 2. prove_sup0. rewrite Rmult_comm; rewrite Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_r; pattern (pos_Rl l' i) at 1 in |- *; rewrite <- Rplus_0_r; + rewrite Rmult_1_r; pattern (pos_Rl l' i) at 1; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; apply H19. discrR. assert (H19 := H8 i H17); elim H19; clear H19; intros; rewrite <- H18 in H20; @@ -1791,15 +1791,15 @@ Proof. rewrite (double_var (pos_Rl l' i)); apply Rplus_lt_compat. apply Rlt_le_trans with (D / 2). rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H12. - unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ 2)); + unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ 2)); apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; prove_sup0. - unfold D in |- *; apply MinRlist_P1; elim (pos_Rl_P2 l' (pos_Rl l' i)); + unfold D; apply MinRlist_P1; elim (pos_Rl_P2 l' (pos_Rl l' i)); intros; apply H26; exists i; split; [ rewrite <- H7; assumption | reflexivity ]. assumption. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; - [ unfold D in |- *; apply MinRlist_P2; intros; elim (pos_Rl_P2 l' y); intros; + unfold Rdiv; apply Rmult_lt_0_compat; + [ unfold D; apply MinRlist_P2; intros; elim (pos_Rl_P2 l' y); intros; elim (H10 H9); intros; elim H12; intros; rewrite H14; rewrite <- H7 in H13; elim (H8 x H13); intros; apply H15 @@ -1811,25 +1811,25 @@ Proof. 0 < zeta <= M - m /\ (forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2)); assert (H11 : bound E). - unfold bound in |- *; exists (M - m); unfold is_upper_bound in |- *; - unfold E in |- *; intros; elim H11; clear H11; intros H11 _; + unfold bound; exists (M - m); unfold is_upper_bound; + unfold E; intros; elim H11; clear H11; intros H11 _; elim H11; clear H11; intros _ H11; apply H11. assert (H12 : exists x : R, E x). assert (H13 := H _ H9); unfold continuity_pt in H13; unfold continue_in in H13; unfold limit1_in in H13; unfold limit_in in H13; simpl in H13; unfold R_dist in H13; elim (H13 _ (H1 eps)); intros; elim H12; clear H12; - intros; exists (Rmin x0 (M - m)); unfold E in |- *; + intros; exists (Rmin x0 (M - m)); unfold E; intros; split. split; - [ unfold Rmin in |- *; case (Rle_dec x0 (M - m)); intro; + [ unfold Rmin; case (Rle_dec x0 (M - m)); intro; [ apply H12 | apply Rlt_Rminus; apply Hyp ] | apply Rmin_r ]. intros; case (Req_dec x z); intro. - rewrite H16; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; + rewrite H16; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (H1 eps). apply H14; split; - [ unfold D_x, no_cond in |- *; split; [ trivial | assumption ] + [ unfold D_x, no_cond; split; [ trivial | assumption ] | apply Rlt_le_trans with (Rmin x0 (M - m)); [ apply H15 | apply Rmin_l ] ]. assert (H13 := completeness _ H11 H12); elim H13; clear H13; intros; cut (0 < x0 <= M - m). @@ -1847,14 +1847,14 @@ Proof. unfold is_lub in p; elim p; intros; cut (is_upper_bound E (Rabs (z - x))). intro; assert (H21 := H19 _ H20); elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H15 H21)). - unfold is_upper_bound in |- *; intros; unfold is_upper_bound in H18; + unfold is_upper_bound; intros; unfold is_upper_bound in H18; assert (H21 := H18 _ H20); case (Rle_dec x1 (Rabs (z - x))); intro. assumption. elim (H17 x1); split. split; [ auto with real | assumption ]. assumption. - unfold included, g in |- *; intros; elim H15; intros; elim H17; intros; + unfold included, g; intros; elim H15; intros; elim H17; intros; decompose [and] H18; cut (x0 = x2). intro; rewrite H20; apply H22. unfold E in p; eapply is_lub_u. diff --git a/theories/Reals/Rtrigo.v b/theories/Reals/Rtrigo.v index e45353b5..32c4d7d3 100644 --- a/theories/Reals/Rtrigo.v +++ b/theories/Reals/Rtrigo.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0. -Proof. - red in |- *; intro; assert (H0 := PI_RGT_0); rewrite H in H0; - elim (Rlt_irrefl _ H0). -Qed. - -(**********) -Lemma cos_minus : forall x y:R, cos (x - y) = cos x * cos y + sin x * sin y. -Proof. - intros; unfold Rminus in |- *; rewrite cos_plus. - rewrite <- cos_sym; rewrite sin_antisym; ring. -Qed. - -(**********) -Lemma sin2_cos2 : forall x:R, Rsqr (sin x) + Rsqr (cos x) = 1. -Proof. - intro; unfold Rsqr in |- *; rewrite Rplus_comm; rewrite <- (cos_minus x x); - unfold Rminus in |- *; rewrite Rplus_opp_r; apply cos_0. -Qed. - -Lemma cos2 : forall x:R, Rsqr (cos x) = 1 - Rsqr (sin x). -Proof. - intro x; generalize (sin2_cos2 x); intro H1; rewrite <- H1; - unfold Rminus in |- *; rewrite <- (Rplus_comm (Rsqr (cos x))); - rewrite Rplus_assoc; rewrite Rplus_opp_r; symmetry in |- *; - apply Rplus_0_r. -Qed. - -(**********) -Lemma cos_PI2 : cos (PI / 2) = 0. -Proof. - apply Rsqr_eq_0; rewrite cos2; rewrite sin_PI2; rewrite Rsqr_1; - unfold Rminus in |- *; apply Rplus_opp_r. -Qed. - -(**********) -Lemma cos_PI : cos PI = -1. -Proof. - replace PI with (PI / 2 + PI / 2). - rewrite cos_plus. - rewrite sin_PI2; rewrite cos_PI2. - ring. - symmetry in |- *; apply double_var. -Qed. - -Lemma sin_PI : sin PI = 0. -Proof. - assert (H := sin2_cos2 PI). - rewrite cos_PI in H. - rewrite <- Rsqr_neg in H. - rewrite Rsqr_1 in H. - cut (Rsqr (sin PI) = 0). - intro; apply (Rsqr_eq_0 _ H0). - apply Rplus_eq_reg_l with 1. - rewrite Rplus_0_r; rewrite Rplus_comm; exact H. -Qed. - -(**********) -Lemma neg_cos : forall x:R, cos (x + PI) = - cos x. -Proof. - intro x; rewrite cos_plus; rewrite sin_PI; rewrite cos_PI; ring. -Qed. - -(**********) -Lemma sin_cos : forall x:R, sin x = - cos (PI / 2 + x). -Proof. - intro x; rewrite cos_plus; rewrite sin_PI2; rewrite cos_PI2; ring. -Qed. - -(**********) -Lemma sin_plus : forall x y:R, sin (x + y) = sin x * cos y + cos x * sin y. -Proof. - intros. - rewrite (sin_cos (x + y)). - replace (PI / 2 + (x + y)) with (PI / 2 + x + y); [ rewrite cos_plus | ring ]. - rewrite (sin_cos (PI / 2 + x)). - replace (PI / 2 + (PI / 2 + x)) with (x + PI). - rewrite neg_cos. - replace (cos (PI / 2 + x)) with (- sin x). - ring. - rewrite sin_cos; rewrite Ropp_involutive; reflexivity. - pattern PI at 1 in |- *; rewrite (double_var PI); ring. -Qed. - -Lemma sin_minus : forall x y:R, sin (x - y) = sin x * cos y - cos x * sin y. -Proof. - intros; unfold Rminus in |- *; rewrite sin_plus. - rewrite <- cos_sym; rewrite sin_antisym; ring. -Qed. - -(**********) -Definition tan (x:R) : R := sin x / cos x. - -Lemma tan_plus : - forall x y:R, - cos x <> 0 -> - cos y <> 0 -> - cos (x + y) <> 0 -> - 1 - tan x * tan y <> 0 -> - tan (x + y) = (tan x + tan y) / (1 - tan x * tan y). -Proof. - intros; unfold tan in |- *; rewrite sin_plus; rewrite cos_plus; - unfold Rdiv in |- *; - replace (cos x * cos y - sin x * sin y) with - (cos x * cos y * (1 - sin x * / cos x * (sin y * / cos y))). - rewrite Rinv_mult_distr. - repeat rewrite <- Rmult_assoc; - replace ((sin x * cos y + cos x * sin y) * / (cos x * cos y)) with - (sin x * / cos x + sin y * / cos y). - reflexivity. - rewrite Rmult_plus_distr_r; rewrite Rinv_mult_distr. - repeat rewrite Rmult_assoc; repeat rewrite (Rmult_comm (sin x)); - repeat rewrite <- Rmult_assoc. - repeat rewrite Rinv_r_simpl_m; [ reflexivity | assumption | assumption ]. - assumption. - assumption. - apply prod_neq_R0; assumption. - assumption. - unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r; - apply Rplus_eq_compat_l; repeat rewrite Rmult_assoc; - rewrite (Rmult_comm (sin x)); rewrite (Rmult_comm (cos y)); - rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite <- Rmult_assoc; - rewrite <- Rinv_r_sym. - rewrite Rmult_1_l; rewrite (Rmult_comm (sin x)); - rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite Rmult_assoc; - apply Rmult_eq_compat_l; rewrite (Rmult_comm (/ cos y)); - rewrite Rmult_assoc; rewrite <- Rinv_r_sym. - apply Rmult_1_r. - assumption. - assumption. -Qed. - -(*******************************************************) -(** * Some properties of cos, sin and tan *) -(*******************************************************) - -Lemma sin2 : forall x:R, Rsqr (sin x) = 1 - Rsqr (cos x). -Proof. - intro x; generalize (cos2 x); intro H1; rewrite H1. - unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; - rewrite Rplus_opp_r; rewrite Rplus_0_l; symmetry in |- *; - apply Ropp_involutive. -Qed. - -Lemma sin_2a : forall x:R, sin (2 * x) = 2 * sin x * cos x. -Proof. - intro x; rewrite double; rewrite sin_plus. - rewrite <- (Rmult_comm (sin x)); symmetry in |- *; rewrite Rmult_assoc; - apply double. -Qed. - -Lemma cos_2a : forall x:R, cos (2 * x) = cos x * cos x - sin x * sin x. -Proof. - intro x; rewrite double; apply cos_plus. -Qed. - -Lemma cos_2a_cos : forall x:R, cos (2 * x) = 2 * cos x * cos x - 1. -Proof. - intro x; rewrite double; unfold Rminus in |- *; rewrite Rmult_assoc; - rewrite cos_plus; generalize (sin2_cos2 x); rewrite double; - intro H1; rewrite <- H1; ring_Rsqr. -Qed. - -Lemma cos_2a_sin : forall x:R, cos (2 * x) = 1 - 2 * sin x * sin x. -Proof. - intro x; rewrite Rmult_assoc; unfold Rminus in |- *; repeat rewrite double. - generalize (sin2_cos2 x); intro H1; rewrite <- H1; rewrite cos_plus; - ring_Rsqr. -Qed. - -Lemma tan_2a : - forall x:R, - cos x <> 0 -> - cos (2 * x) <> 0 -> - 1 - tan x * tan x <> 0 -> tan (2 * x) = 2 * tan x / (1 - tan x * tan x). -Proof. - repeat rewrite double; intros; repeat rewrite double; rewrite double in H0; - apply tan_plus; assumption. -Qed. - -Lemma sin_neg : forall x:R, sin (- x) = - sin x. -Proof. - apply sin_antisym. -Qed. - -Lemma cos_neg : forall x:R, cos (- x) = cos x. -Proof. - intro; symmetry in |- *; apply cos_sym. -Qed. - -Lemma tan_0 : tan 0 = 0. -Proof. - unfold tan in |- *; rewrite sin_0; rewrite cos_0. - unfold Rdiv in |- *; apply Rmult_0_l. -Qed. - -Lemma tan_neg : forall x:R, tan (- x) = - tan x. -Proof. - intros x; unfold tan in |- *; rewrite sin_neg; rewrite cos_neg; - unfold Rdiv in |- *. - apply Ropp_mult_distr_l_reverse. -Qed. - -Lemma tan_minus : - forall x y:R, - cos x <> 0 -> - cos y <> 0 -> - cos (x - y) <> 0 -> - 1 + tan x * tan y <> 0 -> - tan (x - y) = (tan x - tan y) / (1 + tan x * tan y). -Proof. - intros; unfold Rminus in |- *; rewrite tan_plus. - rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse; - rewrite Rmult_opp_opp; reflexivity. - assumption. - rewrite cos_neg; assumption. - assumption. - rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse; - rewrite Rmult_opp_opp; assumption. -Qed. - -Lemma cos_3PI2 : cos (3 * (PI / 2)) = 0. -Proof. - replace (3 * (PI / 2)) with (PI + PI / 2). - rewrite cos_plus; rewrite sin_PI; rewrite cos_PI2; ring. - pattern PI at 1 in |- *; rewrite (double_var PI). - ring. -Qed. - -Lemma sin_2PI : sin (2 * PI) = 0. -Proof. - rewrite sin_2a; rewrite sin_PI; ring. -Qed. - -Lemma cos_2PI : cos (2 * PI) = 1. -Proof. - rewrite cos_2a; rewrite sin_PI; rewrite cos_PI; ring. -Qed. - -Lemma neg_sin : forall x:R, sin (x + PI) = - sin x. -Proof. - intro x; rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; ring. -Qed. - -Lemma sin_PI_x : forall x:R, sin (PI - x) = sin x. -Proof. - intro x; rewrite sin_minus; rewrite sin_PI; rewrite cos_PI; rewrite Rmult_0_l; - unfold Rminus in |- *; rewrite Rplus_0_l; rewrite Ropp_mult_distr_l_reverse; - rewrite Ropp_involutive; apply Rmult_1_l. -Qed. - -Lemma sin_period : forall (x:R) (k:nat), sin (x + 2 * INR k * PI) = sin x. -Proof. - intros x k; induction k as [| k Hreck]. - simpl in |- *; ring_simplify (x + 2 * 0 * PI). - trivial. - - replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI). - rewrite sin_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *. - ring_simplify; trivial. - rewrite S_INR in |- *; ring. -Qed. - -Lemma cos_period : forall (x:R) (k:nat), cos (x + 2 * INR k * PI) = cos x. -Proof. - intros x k; induction k as [| k Hreck]. - simpl in |- *; ring_simplify (x + 2 * 0 * PI). - trivial. - - replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI). - rewrite cos_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *. - ring_simplify; trivial. - rewrite S_INR in |- *; ring. -Qed. - -Lemma sin_shift : forall x:R, sin (PI / 2 - x) = cos x. -Proof. - intro x; rewrite sin_minus; rewrite sin_PI2; rewrite cos_PI2; ring. -Qed. - -Lemma cos_shift : forall x:R, cos (PI / 2 - x) = sin x. -Proof. - intro x; rewrite cos_minus; rewrite sin_PI2; rewrite cos_PI2; ring. -Qed. - -Lemma cos_sin : forall x:R, cos x = sin (PI / 2 + x). -Proof. - intro x; rewrite sin_plus; rewrite sin_PI2; rewrite cos_PI2; ring. -Qed. - -Lemma PI2_RGT_0 : 0 < PI / 2. -Proof. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; - [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup ]. -Qed. - -Lemma SIN_bound : forall x:R, -1 <= sin x <= 1. -Proof. - intro; case (Rle_dec (-1) (sin x)); intro. - case (Rle_dec (sin x) 1); intro. - split; assumption. - cut (1 < sin x). - intro; - generalize - (Rsqr_incrst_1 1 (sin x) H (Rlt_le 0 1 Rlt_0_1) - (Rlt_le 0 (sin x) (Rlt_trans 0 1 (sin x) Rlt_0_1 H))); - rewrite Rsqr_1; intro; rewrite sin2 in H0; unfold Rminus in H0; - generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0); - repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l; - rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1; - generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1); - repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x)); - intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)). - auto with real. - cut (sin x < -1). - intro; generalize (Ropp_lt_gt_contravar (sin x) (-1) H); - rewrite Ropp_involutive; clear H; intro; - generalize - (Rsqr_incrst_1 1 (- sin x) H (Rlt_le 0 1 Rlt_0_1) - (Rlt_le 0 (- sin x) (Rlt_trans 0 1 (- sin x) Rlt_0_1 H))); - rewrite Rsqr_1; intro; rewrite <- Rsqr_neg in H0; - rewrite sin2 in H0; unfold Rminus in H0; - generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0); - repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l; - rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1; - generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1); - repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x)); - intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)). - auto with real. -Qed. - -Lemma COS_bound : forall x:R, -1 <= cos x <= 1. -Proof. - intro; rewrite <- sin_shift; apply SIN_bound. -Qed. - -Lemma cos_sin_0 : forall x:R, ~ (cos x = 0 /\ sin x = 0). -Proof. - intro; red in |- *; intro; elim H; intros; generalize (sin2_cos2 x); intro; - rewrite H0 in H2; rewrite H1 in H2; repeat rewrite Rsqr_0 in H2; - rewrite Rplus_0_r in H2; generalize Rlt_0_1; intro; - rewrite <- H2 in H3; elim (Rlt_irrefl 0 H3). -Qed. - -Lemma cos_sin_0_var : forall x:R, cos x <> 0 \/ sin x <> 0. -Proof. - intros x. - destruct (Req_dec (cos x) 0). 2: now left. - right. intros H'. - apply (cos_sin_0 x). - now split. -Qed. - -(*****************************************************************) -(** * Using series definitions of cos and sin *) -(*****************************************************************) - -Definition sin_lb (a:R) : R := sin_approx a 3. -Definition sin_ub (a:R) : R := sin_approx a 4. -Definition cos_lb (a:R) : R := cos_approx a 3. -Definition cos_ub (a:R) : R := cos_approx a 4. - -Lemma sin_lb_gt_0 : forall a:R, 0 < a -> a <= PI / 2 -> 0 < sin_lb a. -Proof. - intros. - unfold sin_lb in |- *; unfold sin_approx in |- *; unfold sin_term in |- *. - set (Un := fun i:nat => a ^ (2 * i + 1) / INR (fact (2 * i + 1))). - replace - (sum_f_R0 - (fun i:nat => (-1) ^ i * (a ^ (2 * i + 1) / INR (fact (2 * i + 1)))) 3) - with (sum_f_R0 (fun i:nat => (-1) ^ i * Un i) 3); - [ idtac | apply sum_eq; intros; unfold Un in |- *; reflexivity ]. - cut (forall n:nat, Un (S n) < Un n). - intro; simpl in |- *. - repeat rewrite Rmult_1_l; repeat rewrite Rmult_1_r; - replace (-1 * Un 1%nat) with (- Un 1%nat); [ idtac | ring ]; - replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ]; - replace (-1 * (-1 * -1) * Un 3%nat) with (- Un 3%nat); - [ idtac | ring ]; - replace (Un 0%nat + - Un 1%nat + Un 2%nat + - Un 3%nat) with - (Un 0%nat - Un 1%nat + (Un 2%nat - Un 3%nat)); [ idtac | ring ]. - apply Rplus_lt_0_compat. - unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 1%nat); - rewrite Rplus_0_r; rewrite (Rplus_comm (Un 1%nat)); - rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; - apply H1. - unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 3%nat); - rewrite Rplus_0_r; rewrite (Rplus_comm (Un 3%nat)); - rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; - apply H1. - intro; unfold Un in |- *. - cut ((2 * S n + 1)%nat = (2 * n + 1 + 2)%nat). - intro; rewrite H1. - rewrite pow_add; unfold Rdiv in |- *; rewrite Rmult_assoc; - apply Rmult_lt_compat_l. - apply pow_lt; assumption. - rewrite <- H1; apply Rmult_lt_reg_l with (INR (fact (2 * n + 1))). - apply lt_INR_0; apply neq_O_lt. - assert (H2 := fact_neq_0 (2 * n + 1)). - red in |- *; intro; elim H2; symmetry in |- *; assumption. - rewrite <- Rinv_r_sym. - apply Rmult_lt_reg_l with (INR (fact (2 * S n + 1))). - apply lt_INR_0; apply neq_O_lt. - assert (H2 := fact_neq_0 (2 * S n + 1)). - red in |- *; intro; elim H2; symmetry in |- *; assumption. - rewrite (Rmult_comm (INR (fact (2 * S n + 1)))); repeat rewrite Rmult_assoc; - rewrite <- Rinv_l_sym. - do 2 rewrite Rmult_1_r; apply Rle_lt_trans with (INR (fact (2 * n + 1)) * 4). - apply Rmult_le_compat_l. - replace 0 with (INR 0); [ idtac | reflexivity ]; apply le_INR; apply le_O_n. - simpl in |- *; rewrite Rmult_1_r; replace 4 with (Rsqr 2); - [ idtac | ring_Rsqr ]; replace (a * a) with (Rsqr a); - [ idtac | reflexivity ]; apply Rsqr_incr_1. - apply Rle_trans with (PI / 2); - [ assumption - | unfold Rdiv in |- *; apply Rmult_le_reg_l with 2; - [ prove_sup0 - | rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m; - [ replace 4 with 4; [ apply PI_4 | ring ] | discrR ] ] ]. - left; assumption. - left; prove_sup0. - rewrite H1; replace (2 * n + 1 + 2)%nat with (S (S (2 * n + 1))). - do 2 rewrite fact_simpl; do 2 rewrite mult_INR. - repeat rewrite <- Rmult_assoc. - rewrite <- (Rmult_comm (INR (fact (2 * n + 1)))). - rewrite Rmult_assoc. - apply Rmult_lt_compat_l. - apply lt_INR_0; apply neq_O_lt. - assert (H2 := fact_neq_0 (2 * n + 1)). - red in |- *; intro; elim H2; symmetry in |- *; assumption. - do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; set (x := INR n); - unfold INR in |- *. - replace ((2 * x + 1 + 1 + 1) * (2 * x + 1 + 1)) with (4 * x * x + 10 * x + 6); - [ idtac | ring ]. - apply Rplus_lt_reg_r with (-4); rewrite Rplus_opp_l; - replace (-4 + (4 * x * x + 10 * x + 6)) with (4 * x * x + 10 * x + 2); - [ idtac | ring ]. - apply Rplus_le_lt_0_compat. - cut (0 <= x). - intro; apply Rplus_le_le_0_compat; repeat apply Rmult_le_pos; - assumption || left; prove_sup. - unfold x in |- *; replace 0 with (INR 0); - [ apply le_INR; apply le_O_n | reflexivity ]. - prove_sup0. - ring. - apply INR_fact_neq_0. - apply INR_fact_neq_0. - ring. -Qed. - -Lemma SIN : forall a:R, 0 <= a -> a <= PI -> sin_lb a <= sin a <= sin_ub a. - intros; unfold sin_lb, sin_ub in |- *; apply (sin_bound a 1 H H0). -Qed. - -Lemma COS : - forall a:R, - PI / 2 <= a -> a <= PI / 2 -> cos_lb a <= cos a <= cos_ub a. - intros; unfold cos_lb, cos_ub in |- *; apply (cos_bound a 1 H H0). -Qed. - -(**********) -Lemma _PI2_RLT_0 : - (PI / 2) < 0. -Proof. - rewrite <- Ropp_0; apply Ropp_lt_contravar; apply PI2_RGT_0. -Qed. - -Lemma PI4_RLT_PI2 : PI / 4 < PI / 2. -Proof. - unfold Rdiv in |- *; apply Rmult_lt_compat_l. - apply PI_RGT_0. - apply Rinv_lt_contravar. - apply Rmult_lt_0_compat; prove_sup0. - pattern 2 at 1 in |- *; rewrite <- Rplus_0_r. - replace 4 with (2 + 2); [ apply Rplus_lt_compat_l; prove_sup0 | ring ]. -Qed. - -Lemma PI2_Rlt_PI : PI / 2 < PI. -Proof. - unfold Rdiv in |- *; pattern PI at 2 in |- *; rewrite <- Rmult_1_r. - apply Rmult_lt_compat_l. - apply PI_RGT_0. - pattern 1 at 3 in |- *; rewrite <- Rinv_1; apply Rinv_lt_contravar. - rewrite Rmult_1_l; prove_sup0. - pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; - apply Rlt_0_1. -Qed. - -(***************************************************) -(** * Increasing and decreasing of [cos] and [sin] *) -(***************************************************) -Theorem sin_gt_0 : forall x:R, 0 < x -> x < PI -> 0 < sin x. -Proof. - intros; elim (SIN x (Rlt_le 0 x H) (Rlt_le x PI H0)); intros H1 _; - case (Rtotal_order x (PI / 2)); intro H2. - apply Rlt_le_trans with (sin_lb x). - apply sin_lb_gt_0; [ assumption | left; assumption ]. - assumption. - elim H2; intro H3. - rewrite H3; rewrite sin_PI2; apply Rlt_0_1. - rewrite <- sin_PI_x; generalize (Ropp_gt_lt_contravar x (PI / 2) H3); - intro H4; generalize (Rplus_lt_compat_l PI (- x) (- (PI / 2)) H4). - replace (PI + - x) with (PI - x). - replace (PI + - (PI / 2)) with (PI / 2). - intro H5; generalize (Ropp_lt_gt_contravar x PI H0); intro H6; - change (- PI < - x) in H6; generalize (Rplus_lt_compat_l PI (- PI) (- x) H6). - rewrite Rplus_opp_r. - replace (PI + - x) with (PI - x). - intro H7; - elim - (SIN (PI - x) (Rlt_le 0 (PI - x) H7) - (Rlt_le (PI - x) PI (Rlt_trans (PI - x) (PI / 2) PI H5 PI2_Rlt_PI))); - intros H8 _; - generalize (sin_lb_gt_0 (PI - x) H7 (Rlt_le (PI - x) (PI / 2) H5)); - intro H9; apply (Rlt_le_trans 0 (sin_lb (PI - x)) (sin (PI - x)) H9 H8). - reflexivity. - pattern PI at 2 in |- *; rewrite double_var; ring. - reflexivity. -Qed. - -Theorem cos_gt_0 : forall x:R, - (PI / 2) < x -> x < PI / 2 -> 0 < cos x. -Proof. - intros; rewrite cos_sin; - generalize (Rplus_lt_compat_l (PI / 2) (- (PI / 2)) x H). - rewrite Rplus_opp_r; intro H1; - generalize (Rplus_lt_compat_l (PI / 2) x (PI / 2) H0); - rewrite <- double_var; intro H2; apply (sin_gt_0 (PI / 2 + x) H1 H2). -Qed. - -Lemma sin_ge_0 : forall x:R, 0 <= x -> x <= PI -> 0 <= sin x. -Proof. - intros x H1 H2; elim H1; intro H3; - [ elim H2; intro H4; - [ left; apply (sin_gt_0 x H3 H4) - | rewrite H4; right; symmetry in |- *; apply sin_PI ] - | rewrite <- H3; right; symmetry in |- *; apply sin_0 ]. -Qed. - -Lemma cos_ge_0 : forall x:R, - (PI / 2) <= x -> x <= PI / 2 -> 0 <= cos x. -Proof. - intros x H1 H2; elim H1; intro H3; - [ elim H2; intro H4; - [ left; apply (cos_gt_0 x H3 H4) - | rewrite H4; right; symmetry in |- *; apply cos_PI2 ] - | rewrite <- H3; rewrite cos_neg; right; symmetry in |- *; apply cos_PI2 ]. -Qed. - -Lemma sin_le_0 : forall x:R, PI <= x -> x <= 2 * PI -> sin x <= 0. -Proof. - intros x H1 H2; apply Rge_le; rewrite <- Ropp_0; - rewrite <- (Ropp_involutive (sin x)); apply Ropp_le_ge_contravar; - rewrite <- neg_sin; replace (x + PI) with (x - PI + 2 * INR 1 * PI); - [ rewrite (sin_period (x - PI) 1); apply sin_ge_0; - [ replace (x - PI) with (x + - PI); - [ rewrite Rplus_comm; replace 0 with (- PI + PI); - [ apply Rplus_le_compat_l; assumption | ring ] - | ring ] - | replace (x - PI) with (x + - PI); rewrite Rplus_comm; - [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI); - [ apply Rplus_le_compat_l; assumption | ring ] - | ring ] ] - | unfold INR in |- *; ring ]. -Qed. - -Lemma cos_le_0 : forall x:R, PI / 2 <= x -> x <= 3 * (PI / 2) -> cos x <= 0. -Proof. - intros x H1 H2; apply Rge_le; rewrite <- Ropp_0; - rewrite <- (Ropp_involutive (cos x)); apply Ropp_le_ge_contravar; - rewrite <- neg_cos; replace (x + PI) with (x - PI + 2 * INR 1 * PI). - rewrite cos_period; apply cos_ge_0. - replace (- (PI / 2)) with (- PI + PI / 2). - unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_le_compat_l; - assumption. - pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; - ring. - unfold Rminus in |- *; rewrite Rplus_comm; - replace (PI / 2) with (- PI + 3 * (PI / 2)). - apply Rplus_le_compat_l; assumption. - pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; - ring. - unfold INR in |- *; ring. -Qed. - -Lemma sin_lt_0 : forall x:R, PI < x -> x < 2 * PI -> sin x < 0. -Proof. - intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (sin x)); - apply Ropp_lt_gt_contravar; rewrite <- neg_sin; - replace (x + PI) with (x - PI + 2 * INR 1 * PI); - [ rewrite (sin_period (x - PI) 1); apply sin_gt_0; - [ replace (x - PI) with (x + - PI); - [ rewrite Rplus_comm; replace 0 with (- PI + PI); - [ apply Rplus_lt_compat_l; assumption | ring ] - | ring ] - | replace (x - PI) with (x + - PI); rewrite Rplus_comm; - [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI); - [ apply Rplus_lt_compat_l; assumption | ring ] - | ring ] ] - | unfold INR in |- *; ring ]. -Qed. - -Lemma sin_lt_0_var : forall x:R, - PI < x -> x < 0 -> sin x < 0. -Proof. - intros; generalize (Rplus_lt_compat_l (2 * PI) (- PI) x H); - replace (2 * PI + - PI) with PI; - [ intro H1; rewrite Rplus_comm in H1; - generalize (Rplus_lt_compat_l (2 * PI) x 0 H0); - intro H2; rewrite (Rplus_comm (2 * PI)) in H2; - rewrite <- (Rplus_comm 0) in H2; rewrite Rplus_0_l in H2; - rewrite <- (sin_period x 1); unfold INR in |- *; - replace (2 * 1 * PI) with (2 * PI); - [ apply (sin_lt_0 (x + 2 * PI) H1 H2) | ring ] - | ring ]. -Qed. - -Lemma cos_lt_0 : forall x:R, PI / 2 < x -> x < 3 * (PI / 2) -> cos x < 0. -Proof. - intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (cos x)); - apply Ropp_lt_gt_contravar; rewrite <- neg_cos; - replace (x + PI) with (x - PI + 2 * INR 1 * PI). - rewrite cos_period; apply cos_gt_0. - replace (- (PI / 2)) with (- PI + PI / 2). - unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_lt_compat_l; - assumption. - pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; - ring. - unfold Rminus in |- *; rewrite Rplus_comm; - replace (PI / 2) with (- PI + 3 * (PI / 2)). - apply Rplus_lt_compat_l; assumption. - pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; - ring. - unfold INR in |- *; ring. -Qed. - -Lemma tan_gt_0 : forall x:R, 0 < x -> x < PI / 2 -> 0 < tan x. -Proof. - intros x H1 H2; unfold tan in |- *; generalize _PI2_RLT_0; - generalize (Rlt_trans 0 x (PI / 2) H1 H2); intros; - generalize (Rlt_trans (- (PI / 2)) 0 x H0 H1); intro H5; - generalize (Rlt_trans x (PI / 2) PI H2 PI2_Rlt_PI); - intro H7; unfold Rdiv in |- *; apply Rmult_lt_0_compat. - apply sin_gt_0; assumption. - apply Rinv_0_lt_compat; apply cos_gt_0; assumption. -Qed. - -Lemma tan_lt_0 : forall x:R, - (PI / 2) < x -> x < 0 -> tan x < 0. -Proof. - intros x H1 H2; unfold tan in |- *; - generalize (cos_gt_0 x H1 (Rlt_trans x 0 (PI / 2) H2 PI2_RGT_0)); - intro H3; rewrite <- Ropp_0; - replace (sin x / cos x) with (- (- sin x / cos x)). - rewrite <- sin_neg; apply Ropp_gt_lt_contravar; - change (0 < sin (- x) / cos x) in |- *; unfold Rdiv in |- *; - apply Rmult_lt_0_compat. - apply sin_gt_0. - rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; assumption. - apply Rlt_trans with (PI / 2). - rewrite <- (Ropp_involutive (PI / 2)); apply Ropp_gt_lt_contravar; assumption. - apply PI2_Rlt_PI. - apply Rinv_0_lt_compat; assumption. - unfold Rdiv in |- *; ring. -Qed. - -Lemma cos_ge_0_3PI2 : - forall x:R, 3 * (PI / 2) <= x -> x <= 2 * PI -> 0 <= cos x. -Proof. - intros; rewrite <- cos_neg; rewrite <- (cos_period (- x) 1); - unfold INR in |- *; replace (- x + 2 * 1 * PI) with (2 * PI - x). - generalize (Ropp_le_ge_contravar x (2 * PI) H0); intro H1; - generalize (Rge_le (- x) (- (2 * PI)) H1); clear H1; - intro H1; generalize (Rplus_le_compat_l (2 * PI) (- (2 * PI)) (- x) H1). - rewrite Rplus_opp_r. - intro H2; generalize (Ropp_le_ge_contravar (3 * (PI / 2)) x H); intro H3; - generalize (Rge_le (- (3 * (PI / 2))) (- x) H3); clear H3; - intro H3; - generalize (Rplus_le_compat_l (2 * PI) (- x) (- (3 * (PI / 2))) H3). - replace (2 * PI + - (3 * (PI / 2))) with (PI / 2). - intro H4; - apply - (cos_ge_0 (2 * PI - x) - (Rlt_le (- (PI / 2)) (2 * PI - x) - (Rlt_le_trans (- (PI / 2)) 0 (2 * PI - x) _PI2_RLT_0 H2)) H4). - rewrite double; pattern PI at 2 3 in |- *; rewrite double_var; ring. - ring. -Qed. - -Lemma form1 : - forall p q:R, cos p + cos q = 2 * cos ((p - q) / 2) * cos ((p + q) / 2). -Proof. - intros p q; pattern p at 1 in |- *; - replace p with ((p - q) / 2 + (p + q) / 2). - rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2). - rewrite cos_plus; rewrite cos_minus; ring. - pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. - pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. -Qed. - -Lemma form2 : - forall p q:R, cos p - cos q = -2 * sin ((p - q) / 2) * sin ((p + q) / 2). -Proof. - intros p q; pattern p at 1 in |- *; - replace p with ((p - q) / 2 + (p + q) / 2). - rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2). - rewrite cos_plus; rewrite cos_minus; ring. - pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. - pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. -Qed. - -Lemma form3 : - forall p q:R, sin p + sin q = 2 * cos ((p - q) / 2) * sin ((p + q) / 2). -Proof. - intros p q; pattern p at 1 in |- *; - replace p with ((p - q) / 2 + (p + q) / 2). - pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2). - rewrite sin_plus; rewrite sin_minus; ring. - pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. - pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. -Qed. - -Lemma form4 : - forall p q:R, sin p - sin q = 2 * cos ((p + q) / 2) * sin ((p - q) / 2). -Proof. - intros p q; pattern p at 1 in |- *; - replace p with ((p - q) / 2 + (p + q) / 2). - pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2). - rewrite sin_plus; rewrite sin_minus; ring. - pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. - pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. - -Qed. - -Lemma sin_increasing_0 : - forall x y:R, - - (PI / 2) <= x -> - x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x < sin y -> x < y. -Proof. - intros; cut (sin ((x - y) / 2) < 0). - intro H4; case (Rtotal_order ((x - y) / 2) 0); intro H5. - assert (Hyp : 0 < 2). - prove_sup0. - generalize (Rmult_lt_compat_l 2 ((x - y) / 2) 0 Hyp H5). - unfold Rdiv in |- *. - rewrite <- Rmult_assoc. - rewrite Rinv_r_simpl_m. - rewrite Rmult_0_r. - clear H5; intro H5; apply Rminus_lt; assumption. - discrR. - elim H5; intro H6. - rewrite H6 in H4; rewrite sin_0 in H4; elim (Rlt_irrefl 0 H4). - change (0 < (x - y) / 2) in H6; - generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1). - rewrite Ropp_involutive. - intro H7; generalize (Rge_le (PI / 2) (- y) H7); clear H7; intro H7; - generalize (Rplus_le_compat x (PI / 2) (- y) (PI / 2) H0 H7). - rewrite <- double_var. - intro H8. - assert (Hyp : 0 < 2). - prove_sup0. - generalize - (Rmult_le_compat_l (/ 2) (x - y) PI - (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H8). - repeat rewrite (Rmult_comm (/ 2)). - intro H9; - generalize - (sin_gt_0 ((x - y) / 2) H6 - (Rle_lt_trans ((x - y) / 2) (PI / 2) PI H9 PI2_Rlt_PI)); - intro H10; - elim - (Rlt_irrefl (sin ((x - y) / 2)) - (Rlt_trans (sin ((x - y) / 2)) 0 (sin ((x - y) / 2)) H4 H10)). - generalize (Rlt_minus (sin x) (sin y) H3); clear H3; intro H3; - rewrite form4 in H3; - generalize (Rplus_le_compat x (PI / 2) y (PI / 2) H0 H2). - rewrite <- double_var. - assert (Hyp : 0 < 2). - prove_sup0. - intro H4; - generalize - (Rmult_le_compat_l (/ 2) (x + y) PI - (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H4). - repeat rewrite (Rmult_comm (/ 2)). - clear H4; intro H4; - generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) y H H1); - replace (- (PI / 2) + - (PI / 2)) with (- PI). - intro H5; - generalize - (Rmult_le_compat_l (/ 2) (- PI) (x + y) - (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H5). - replace (/ 2 * (x + y)) with ((x + y) / 2). - replace (/ 2 * - PI) with (- (PI / 2)). - clear H5; intro H5; elim H4; intro H40. - elim H5; intro H50. - generalize (cos_gt_0 ((x + y) / 2) H50 H40); intro H6; - generalize (Rmult_lt_compat_l 2 0 (cos ((x + y) / 2)) Hyp H6). - rewrite Rmult_0_r. - clear H6; intro H6; case (Rcase_abs (sin ((x - y) / 2))); intro H7. - assumption. - generalize (Rge_le (sin ((x - y) / 2)) 0 H7); clear H7; intro H7; - generalize - (Rmult_le_pos (2 * cos ((x + y) / 2)) (sin ((x - y) / 2)) - (Rlt_le 0 (2 * cos ((x + y) / 2)) H6) H7); intro H8; - generalize - (Rle_lt_trans 0 (2 * cos ((x + y) / 2) * sin ((x - y) / 2)) 0 H8 H3); - intro H9; elim (Rlt_irrefl 0 H9). - rewrite <- H50 in H3; rewrite cos_neg in H3; rewrite cos_PI2 in H3; - rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3; - elim (Rlt_irrefl 0 H3). - unfold Rdiv in H3. - rewrite H40 in H3; assert (H50 := cos_PI2); unfold Rdiv in H50; - rewrite H50 in H3; rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3; - elim (Rlt_irrefl 0 H3). - unfold Rdiv in |- *. - rewrite <- Ropp_mult_distr_l_reverse. - apply Rmult_comm. - unfold Rdiv in |- *; apply Rmult_comm. - pattern PI at 1 in |- *; rewrite double_var. - rewrite Ropp_plus_distr. - reflexivity. -Qed. - -Lemma sin_increasing_1 : - forall x y:R, - - (PI / 2) <= x -> - x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x < y -> sin x < sin y. -Proof. - intros; generalize (Rplus_lt_compat_l x x y H3); intro H4; - generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) x H H); - replace (- (PI / 2) + - (PI / 2)) with (- PI). - assert (Hyp : 0 < 2). - prove_sup0. - intro H5; generalize (Rle_lt_trans (- PI) (x + x) (x + y) H5 H4); intro H6; - generalize - (Rmult_lt_compat_l (/ 2) (- PI) (x + y) (Rinv_0_lt_compat 2 Hyp) H6); - replace (/ 2 * - PI) with (- (PI / 2)). - replace (/ 2 * (x + y)) with ((x + y) / 2). - clear H4 H5 H6; intro H4; generalize (Rplus_lt_compat_l y x y H3); intro H5; - rewrite Rplus_comm in H5; - generalize (Rplus_le_compat y (PI / 2) y (PI / 2) H2 H2). - rewrite <- double_var. - intro H6; generalize (Rlt_le_trans (x + y) (y + y) PI H5 H6); intro H7; - generalize (Rmult_lt_compat_l (/ 2) (x + y) PI (Rinv_0_lt_compat 2 Hyp) H7); - replace (/ 2 * PI) with (PI / 2). - replace (/ 2 * (x + y)) with ((x + y) / 2). - clear H5 H6 H7; intro H5; generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1); - rewrite Ropp_involutive; clear H1; intro H1; - generalize (Rge_le (PI / 2) (- y) H1); clear H1; intro H1; - generalize (Ropp_le_ge_contravar y (PI / 2) H2); clear H2; - intro H2; generalize (Rge_le (- y) (- (PI / 2)) H2); - clear H2; intro H2; generalize (Rplus_lt_compat_l (- y) x y H3); - replace (- y + x) with (x - y). - rewrite Rplus_opp_l. - intro H6; - generalize (Rmult_lt_compat_l (/ 2) (x - y) 0 (Rinv_0_lt_compat 2 Hyp) H6); - rewrite Rmult_0_r; replace (/ 2 * (x - y)) with ((x - y) / 2). - clear H6; intro H6; - generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) (- y) H H2); - replace (- (PI / 2) + - (PI / 2)) with (- PI). - replace (x + - y) with (x - y). - intro H7; - generalize - (Rmult_le_compat_l (/ 2) (- PI) (x - y) - (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H7); - replace (/ 2 * - PI) with (- (PI / 2)). - replace (/ 2 * (x - y)) with ((x - y) / 2). - clear H7; intro H7; clear H H0 H1 H2; apply Rminus_lt; rewrite form4; - generalize (cos_gt_0 ((x + y) / 2) H4 H5); intro H8; - generalize (Rmult_lt_0_compat 2 (cos ((x + y) / 2)) Hyp H8); - clear H8; intro H8; cut (- PI < - (PI / 2)). - intro H9; - generalize - (sin_lt_0_var ((x - y) / 2) - (Rlt_le_trans (- PI) (- (PI / 2)) ((x - y) / 2) H9 H7) H6); - intro H10; - generalize - (Rmult_lt_gt_compat_neg_l (sin ((x - y) / 2)) 0 ( - 2 * cos ((x + y) / 2)) H10 H8); intro H11; rewrite Rmult_0_r in H11; - rewrite Rmult_comm; assumption. - apply Ropp_lt_gt_contravar; apply PI2_Rlt_PI. - unfold Rdiv in |- *; apply Rmult_comm. - unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_comm. - reflexivity. - pattern PI at 1 in |- *; rewrite double_var. - rewrite Ropp_plus_distr. - reflexivity. - unfold Rdiv in |- *; apply Rmult_comm. - unfold Rminus in |- *; apply Rplus_comm. - unfold Rdiv in |- *; apply Rmult_comm. - unfold Rdiv in |- *; apply Rmult_comm. - unfold Rdiv in |- *; apply Rmult_comm. - unfold Rdiv in |- *. - rewrite <- Ropp_mult_distr_l_reverse. - apply Rmult_comm. - pattern PI at 1 in |- *; rewrite double_var. - rewrite Ropp_plus_distr. - reflexivity. -Qed. - -Lemma sin_decreasing_0 : - forall x y:R, - x <= 3 * (PI / 2) -> - PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x < sin y -> y < x. -Proof. - intros; rewrite <- (sin_PI_x x) in H3; rewrite <- (sin_PI_x y) in H3; - generalize (Ropp_lt_gt_contravar (sin (PI - x)) (sin (PI - y)) H3); - repeat rewrite <- sin_neg; - generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H); - generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0); - generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1); - generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2); - replace (- PI + x) with (x - PI). - replace (- PI + PI / 2) with (- (PI / 2)). - replace (- PI + y) with (y - PI). - replace (- PI + 3 * (PI / 2)) with (PI / 2). - replace (- (PI - x)) with (x - PI). - replace (- (PI - y)) with (y - PI). - intros; change (sin (y - PI) < sin (x - PI)) in H8; - apply Rplus_lt_reg_r with (- PI); rewrite Rplus_comm; - replace (y + - PI) with (y - PI). - rewrite Rplus_comm; replace (x + - PI) with (x - PI). - apply (sin_increasing_0 (y - PI) (x - PI) H4 H5 H6 H7 H8). - reflexivity. - reflexivity. - unfold Rminus in |- *; rewrite Ropp_plus_distr. - rewrite Ropp_involutive. - apply Rplus_comm. - unfold Rminus in |- *; rewrite Ropp_plus_distr. - rewrite Ropp_involutive. - apply Rplus_comm. - pattern PI at 2 in |- *; rewrite double_var. - rewrite Ropp_plus_distr. - ring. - unfold Rminus in |- *; apply Rplus_comm. - pattern PI at 2 in |- *; rewrite double_var. - rewrite Ropp_plus_distr. - ring. - unfold Rminus in |- *; apply Rplus_comm. -Qed. - -Lemma sin_decreasing_1 : - forall x y:R, - x <= 3 * (PI / 2) -> - PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> x < y -> sin y < sin x. -Proof. - intros; rewrite <- (sin_PI_x x); rewrite <- (sin_PI_x y); - generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H); - generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0); - generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1); - generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2); - generalize (Rplus_lt_compat_l (- PI) x y H3); - replace (- PI + PI / 2) with (- (PI / 2)). - replace (- PI + y) with (y - PI). - replace (- PI + 3 * (PI / 2)) with (PI / 2). - replace (- PI + x) with (x - PI). - intros; apply Ropp_lt_cancel; repeat rewrite <- sin_neg; - replace (- (PI - x)) with (x - PI). - replace (- (PI - y)) with (y - PI). - apply (sin_increasing_1 (x - PI) (y - PI) H7 H8 H5 H6 H4). - unfold Rminus in |- *; rewrite Ropp_plus_distr. - rewrite Ropp_involutive. - apply Rplus_comm. - unfold Rminus in |- *; rewrite Ropp_plus_distr. - rewrite Ropp_involutive. - apply Rplus_comm. - unfold Rminus in |- *; apply Rplus_comm. - pattern PI at 2 in |- *; rewrite double_var; ring. - unfold Rminus in |- *; apply Rplus_comm. - pattern PI at 2 in |- *; rewrite double_var; ring. -Qed. - -Lemma cos_increasing_0 : - forall x y:R, - PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x < cos y -> x < y. -Proof. - intros x y H1 H2 H3 H4; rewrite <- (cos_neg x); rewrite <- (cos_neg y); - rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1); - unfold INR in |- *; - replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))). - replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))). - repeat rewrite cos_shift; intro H5; - generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1); - generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2); - generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3); - generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4). - replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). - replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). - replace (-3 * (PI / 2) + 2 * PI) with (PI / 2). - replace (-3 * (PI / 2) + PI) with (- (PI / 2)). - clear H1 H2 H3 H4; intros H1 H2 H3 H4; - apply Rplus_lt_reg_r with (-3 * (PI / 2)); - replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). - replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). - apply (sin_increasing_0 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H4 H3 H2 H1 H5). - unfold Rminus in |- *. - rewrite Ropp_mult_distr_l_reverse. - apply Rplus_comm. - unfold Rminus in |- *. - rewrite Ropp_mult_distr_l_reverse. - apply Rplus_comm. - pattern PI at 3 in |- *; rewrite double_var. - ring. - rewrite double; pattern PI at 3 4 in |- *; rewrite double_var. - ring. - unfold Rminus in |- *. - rewrite Ropp_mult_distr_l_reverse. - apply Rplus_comm. - unfold Rminus in |- *. - rewrite Ropp_mult_distr_l_reverse. - apply Rplus_comm. - rewrite Rmult_1_r. - rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. - ring. - rewrite Rmult_1_r. - rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. - ring. -Qed. - -Lemma cos_increasing_1 : - forall x y:R, - PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x < y -> cos x < cos y. -Proof. - intros x y H1 H2 H3 H4 H5; - generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1); - generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2); - generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3); - generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4); - generalize (Rplus_lt_compat_l (-3 * (PI / 2)) x y H5); - rewrite <- (cos_neg x); rewrite <- (cos_neg y); - rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1); - unfold INR in |- *; replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). - replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). - replace (-3 * (PI / 2) + PI) with (- (PI / 2)). - replace (-3 * (PI / 2) + 2 * PI) with (PI / 2). - clear H1 H2 H3 H4 H5; intros H1 H2 H3 H4 H5; - replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))). - replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))). - repeat rewrite cos_shift; - apply - (sin_increasing_1 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H5 H4 H3 H2 H1). - rewrite Rmult_1_r. - rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. - ring. - rewrite Rmult_1_r. - rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. - ring. - rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. - ring. - pattern PI at 3 in |- *; rewrite double_var; ring. - unfold Rminus in |- *. - rewrite <- Ropp_mult_distr_l_reverse. - apply Rplus_comm. - unfold Rminus in |- *. - rewrite <- Ropp_mult_distr_l_reverse. - apply Rplus_comm. -Qed. - -Lemma cos_decreasing_0 : - forall x y:R, - 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x < cos y -> y < x. -Proof. - intros; generalize (Ropp_lt_gt_contravar (cos x) (cos y) H3); - repeat rewrite <- neg_cos; intro H4; - change (cos (y + PI) < cos (x + PI)) in H4; rewrite (Rplus_comm x) in H4; - rewrite (Rplus_comm y) in H4; generalize (Rplus_le_compat_l PI 0 x H); - generalize (Rplus_le_compat_l PI x PI H0); - generalize (Rplus_le_compat_l PI 0 y H1); - generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r. - rewrite <- double. - clear H H0 H1 H2 H3; intros; apply Rplus_lt_reg_r with PI; - apply (cos_increasing_0 (PI + y) (PI + x) H0 H H2 H1 H4). -Qed. - -Lemma cos_decreasing_1 : - forall x y:R, - 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x < y -> cos y < cos x. -Proof. - intros; apply Ropp_lt_cancel; repeat rewrite <- neg_cos; - rewrite (Rplus_comm x); rewrite (Rplus_comm y); - generalize (Rplus_le_compat_l PI 0 x H); - generalize (Rplus_le_compat_l PI x PI H0); - generalize (Rplus_le_compat_l PI 0 y H1); - generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r. - rewrite <- double. - generalize (Rplus_lt_compat_l PI x y H3); clear H H0 H1 H2 H3; intros; - apply (cos_increasing_1 (PI + x) (PI + y) H3 H2 H1 H0 H). -Qed. - -Lemma tan_diff : - forall x y:R, - cos x <> 0 -> cos y <> 0 -> tan x - tan y = sin (x - y) / (cos x * cos y). -Proof. - intros; unfold tan in |- *; rewrite sin_minus. - unfold Rdiv in |- *. - unfold Rminus in |- *. - rewrite Rmult_plus_distr_r. - rewrite Rinv_mult_distr. - repeat rewrite (Rmult_comm (sin x)). - repeat rewrite Rmult_assoc. - rewrite (Rmult_comm (cos y)). - repeat rewrite Rmult_assoc. - rewrite <- Rinv_l_sym. - rewrite Rmult_1_r. - rewrite (Rmult_comm (sin x)). - apply Rplus_eq_compat_l. - rewrite <- Ropp_mult_distr_l_reverse. - rewrite <- Ropp_mult_distr_r_reverse. - rewrite (Rmult_comm (/ cos x)). - repeat rewrite Rmult_assoc. - rewrite (Rmult_comm (cos x)). - repeat rewrite Rmult_assoc. - rewrite <- Rinv_l_sym. - rewrite Rmult_1_r. - reflexivity. - assumption. - assumption. - assumption. - assumption. -Qed. - -Lemma tan_increasing_0 : - forall x y:R, - - (PI / 4) <= x -> - x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x < tan y -> x < y. -Proof. - intros; generalize PI4_RLT_PI2; intro H4; - generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4); - intro H5; change (- (PI / 2) < - (PI / 4)) in H5; - generalize - (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) - (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1; - generalize - (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) - (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2; - generalize - (sym_not_eq - (Rlt_not_eq 0 (cos x) - (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) - (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)))); - intro H6; - generalize - (sym_not_eq - (Rlt_not_eq 0 (cos y) - (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) - (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)))); - intro H7; generalize (tan_diff x y H6 H7); intro H8; - generalize (Rlt_minus (tan x) (tan y) H3); clear H3; - intro H3; rewrite H8 in H3; cut (sin (x - y) < 0). - intro H9; generalize (Ropp_le_ge_contravar (- (PI / 4)) y H1); - rewrite Ropp_involutive; intro H10; generalize (Rge_le (PI / 4) (- y) H10); - clear H10; intro H10; generalize (Ropp_le_ge_contravar y (PI / 4) H2); - intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11); - clear H11; intro H11; - generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11); - generalize (Rplus_le_compat x (PI / 4) (- y) (PI / 4) H0 H10); - replace (x + - y) with (x - y). - replace (PI / 4 + PI / 4) with (PI / 2). - replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)). - intros; case (Rtotal_order 0 (x - y)); intro H14. - generalize - (sin_gt_0 (x - y) H14 (Rle_lt_trans (x - y) (PI / 2) PI H12 PI2_Rlt_PI)); - intro H15; elim (Rlt_irrefl 0 (Rlt_trans 0 (sin (x - y)) 0 H15 H9)). - elim H14; intro H15. - rewrite <- H15 in H9; rewrite sin_0 in H9; elim (Rlt_irrefl 0 H9). - apply Rminus_lt; assumption. - pattern PI at 1 in |- *; rewrite double_var. - unfold Rdiv in |- *. - rewrite Rmult_plus_distr_r. - repeat rewrite Rmult_assoc. - rewrite <- Rinv_mult_distr. - rewrite Ropp_plus_distr. - replace 4 with 4. - reflexivity. - ring. - discrR. - discrR. - pattern PI at 1 in |- *; rewrite double_var. - unfold Rdiv in |- *. - rewrite Rmult_plus_distr_r. - repeat rewrite Rmult_assoc. - rewrite <- Rinv_mult_distr. - replace 4 with 4. - reflexivity. - ring. - discrR. - discrR. - reflexivity. - case (Rcase_abs (sin (x - y))); intro H9. - assumption. - generalize (Rge_le (sin (x - y)) 0 H9); clear H9; intro H9; - generalize (Rinv_0_lt_compat (cos x) HP1); intro H10; - generalize (Rinv_0_lt_compat (cos y) HP2); intro H11; - generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11); - replace (/ cos x * / cos y) with (/ (cos x * cos y)). - intro H12; - generalize - (Rmult_le_pos (sin (x - y)) (/ (cos x * cos y)) H9 - (Rlt_le 0 (/ (cos x * cos y)) H12)); intro H13; - elim - (Rlt_irrefl 0 (Rle_lt_trans 0 (sin (x - y) * / (cos x * cos y)) 0 H13 H3)). - rewrite Rinv_mult_distr. - reflexivity. - assumption. - assumption. -Qed. - -Lemma tan_increasing_1 : - forall x y:R, - - (PI / 4) <= x -> - x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x < y -> tan x < tan y. -Proof. - intros; apply Rminus_lt; generalize PI4_RLT_PI2; intro H4; - generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4); - intro H5; change (- (PI / 2) < - (PI / 4)) in H5; - generalize - (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) - (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1; - generalize - (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) - (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2; - generalize - (sym_not_eq - (Rlt_not_eq 0 (cos x) - (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) - (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)))); - intro H6; - generalize - (sym_not_eq - (Rlt_not_eq 0 (cos y) - (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) - (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)))); - intro H7; rewrite (tan_diff x y H6 H7); - generalize (Rinv_0_lt_compat (cos x) HP1); intro H10; - generalize (Rinv_0_lt_compat (cos y) HP2); intro H11; - generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11); - replace (/ cos x * / cos y) with (/ (cos x * cos y)). - clear H10 H11; intro H8; generalize (Ropp_le_ge_contravar y (PI / 4) H2); - intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11); - clear H11; intro H11; - generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11); - replace (x + - y) with (x - y). - replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)). - clear H11; intro H9; generalize (Rlt_minus x y H3); clear H3; intro H3; - clear H H0 H1 H2 H4 H5 HP1 HP2; generalize PI2_Rlt_PI; - intro H1; generalize (Ropp_lt_gt_contravar (PI / 2) PI H1); - clear H1; intro H1; - generalize - (sin_lt_0_var (x - y) (Rlt_le_trans (- PI) (- (PI / 2)) (x - y) H1 H9) H3); - intro H2; - generalize - (Rmult_lt_gt_compat_neg_l (sin (x - y)) 0 (/ (cos x * cos y)) H2 H8); - rewrite Rmult_0_r; intro H4; assumption. - pattern PI at 1 in |- *; rewrite double_var. - unfold Rdiv in |- *. - rewrite Rmult_plus_distr_r. - repeat rewrite Rmult_assoc. - rewrite <- Rinv_mult_distr. - replace 4 with 4. - rewrite Ropp_plus_distr. - reflexivity. - ring. - discrR. - discrR. - reflexivity. - apply Rinv_mult_distr; assumption. -Qed. - -Lemma sin_incr_0 : - forall x y:R, - - (PI / 2) <= x -> - x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x <= sin y -> x <= y. -Proof. - intros; case (Rtotal_order (sin x) (sin y)); intro H4; - [ left; apply (sin_increasing_0 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order x y); intro H6; - [ left; assumption - | elim H6; intro H7; - [ right; assumption - | generalize (sin_increasing_1 y x H1 H2 H H0 H7); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) ] ] - | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ]. -Qed. - -Lemma sin_incr_1 : - forall x y:R, - - (PI / 2) <= x -> - x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x <= y -> sin x <= sin y. -Proof. - intros; case (Rtotal_order x y); intro H4; - [ left; apply (sin_increasing_1 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order (sin x) (sin y)); intro H6; - [ left; assumption - | elim H6; intro H7; - [ right; assumption - | generalize (sin_increasing_0 y x H1 H2 H H0 H7); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] - | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. -Qed. - -Lemma sin_decr_0 : - forall x y:R, - x <= 3 * (PI / 2) -> - PI / 2 <= x -> - y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x <= sin y -> y <= x. -Proof. - intros; case (Rtotal_order (sin x) (sin y)); intro H4; - [ left; apply (sin_decreasing_0 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order x y); intro H6; - [ generalize (sin_decreasing_1 x y H H0 H1 H2 H6); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) - | elim H6; intro H7; - [ right; symmetry in |- *; assumption | left; assumption ] ] - | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ]. -Qed. - -Lemma sin_decr_1 : - forall x y:R, - x <= 3 * (PI / 2) -> - PI / 2 <= x -> - y <= 3 * (PI / 2) -> PI / 2 <= y -> x <= y -> sin y <= sin x. -Proof. - intros; case (Rtotal_order x y); intro H4; - [ left; apply (sin_decreasing_1 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order (sin x) (sin y)); intro H6; - [ generalize (sin_decreasing_0 x y H H0 H1 H2 H6); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl y H8) - | elim H6; intro H7; - [ right; symmetry in |- *; assumption | left; assumption ] ] - | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. -Qed. - -Lemma cos_incr_0 : - forall x y:R, - PI <= x -> - x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x <= cos y -> x <= y. -Proof. - intros; case (Rtotal_order (cos x) (cos y)); intro H4; - [ left; apply (cos_increasing_0 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order x y); intro H6; - [ left; assumption - | elim H6; intro H7; - [ right; assumption - | generalize (cos_increasing_1 y x H1 H2 H H0 H7); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) ] ] - | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ]. -Qed. - -Lemma cos_incr_1 : - forall x y:R, - PI <= x -> - x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x <= y -> cos x <= cos y. -Proof. - intros; case (Rtotal_order x y); intro H4; - [ left; apply (cos_increasing_1 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order (cos x) (cos y)); intro H6; - [ left; assumption - | elim H6; intro H7; - [ right; assumption - | generalize (cos_increasing_0 y x H1 H2 H H0 H7); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] - | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. -Qed. - -Lemma cos_decr_0 : - forall x y:R, - 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x <= cos y -> y <= x. -Proof. - intros; case (Rtotal_order (cos x) (cos y)); intro H4; - [ left; apply (cos_decreasing_0 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order x y); intro H6; - [ generalize (cos_decreasing_1 x y H H0 H1 H2 H6); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) - | elim H6; intro H7; - [ right; symmetry in |- *; assumption | left; assumption ] ] - | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ]. -Qed. - -Lemma cos_decr_1 : - forall x y:R, - 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x <= y -> cos y <= cos x. -Proof. - intros; case (Rtotal_order x y); intro H4; - [ left; apply (cos_decreasing_1 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order (cos x) (cos y)); intro H6; - [ generalize (cos_decreasing_0 x y H H0 H1 H2 H6); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl y H8) - | elim H6; intro H7; - [ right; symmetry in |- *; assumption | left; assumption ] ] - | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. -Qed. - -Lemma tan_incr_0 : - forall x y:R, - - (PI / 4) <= x -> - x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x <= tan y -> x <= y. -Proof. - intros; case (Rtotal_order (tan x) (tan y)); intro H4; - [ left; apply (tan_increasing_0 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order x y); intro H6; - [ left; assumption - | elim H6; intro H7; - [ right; assumption - | generalize (tan_increasing_1 y x H1 H2 H H0 H7); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl (tan y) H8) ] ] - | elim (Rlt_irrefl (tan x) (Rle_lt_trans (tan x) (tan y) (tan x) H3 H5)) ] ]. -Qed. - -Lemma tan_incr_1 : - forall x y:R, - - (PI / 4) <= x -> - x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x <= y -> tan x <= tan y. -Proof. - intros; case (Rtotal_order x y); intro H4; - [ left; apply (tan_increasing_1 x y H H0 H1 H2 H4) - | elim H4; intro H5; - [ case (Rtotal_order (tan x) (tan y)); intro H6; - [ left; assumption - | elim H6; intro H7; - [ right; assumption - | generalize (tan_increasing_0 y x H1 H2 H H0 H7); intro H8; - rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] - | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. -Qed. - -(**********) -Lemma sin_eq_0_1 : forall x:R, (exists k : Z, x = IZR k * PI) -> sin x = 0. -Proof. - intros. - elim H; intros. - apply (Zcase_sign x0). - intro. - rewrite H1 in H0. - simpl in H0. - rewrite H0; rewrite Rmult_0_l; apply sin_0. - intro. - cut (0 <= x0)%Z. - intro. - elim (IZN x0 H2); intros. - rewrite H3 in H0. - rewrite <- INR_IZR_INZ in H0. - rewrite H0. - elim (even_odd_cor x1); intros. - elim H4; intro. - rewrite H5. - rewrite mult_INR. - simpl in |- *. - rewrite <- (Rplus_0_l (2 * INR x2 * PI)). - rewrite sin_period. - apply sin_0. - rewrite H5. - rewrite S_INR; rewrite mult_INR. - simpl in |- *. - rewrite Rmult_plus_distr_r. - rewrite Rmult_1_l; rewrite sin_plus. - rewrite sin_PI. - rewrite Rmult_0_r. - rewrite <- (Rplus_0_l (2 * INR x2 * PI)). - rewrite sin_period. - rewrite sin_0; ring. - apply le_IZR. - left; apply IZR_lt. - assert (H2 := Zorder.Zgt_iff_lt). - elim (H2 x0 0%Z); intros. - apply H3; assumption. - intro. - rewrite H0. - replace (sin (IZR x0 * PI)) with (- sin (- IZR x0 * PI)). - cut (0 <= - x0)%Z. - intro. - rewrite <- Ropp_Ropp_IZR. - elim (IZN (- x0) H2); intros. - rewrite H3. - rewrite <- INR_IZR_INZ. - elim (even_odd_cor x1); intros. - elim H4; intro. - rewrite H5. - rewrite mult_INR. - simpl in |- *. - rewrite <- (Rplus_0_l (2 * INR x2 * PI)). - rewrite sin_period. - rewrite sin_0; ring. - rewrite H5. - rewrite S_INR; rewrite mult_INR. - simpl in |- *. - rewrite Rmult_plus_distr_r. - rewrite Rmult_1_l; rewrite sin_plus. - rewrite sin_PI. - rewrite Rmult_0_r. - rewrite <- (Rplus_0_l (2 * INR x2 * PI)). - rewrite sin_period. - rewrite sin_0; ring. - apply le_IZR. - apply Rplus_le_reg_l with (IZR x0). - rewrite Rplus_0_r. - rewrite Ropp_Ropp_IZR. - rewrite Rplus_opp_r. - left; replace 0 with (IZR 0); [ apply IZR_lt | reflexivity ]. - assumption. - rewrite <- sin_neg. - rewrite Ropp_mult_distr_l_reverse. - rewrite Ropp_involutive. - reflexivity. -Qed. - -Lemma sin_eq_0_0 : forall x:R, sin x = 0 -> exists k : Z, x = IZR k * PI. -Proof. - intros. - assert (H0 := euclidian_division x PI PI_neq0). - elim H0; intros q H1. - elim H1; intros r H2. - exists q. - cut (r = 0). - intro. - elim H2; intros H4 _; rewrite H4; rewrite H3. - apply Rplus_0_r. - elim H2; intros. - rewrite H3 in H. - rewrite sin_plus in H. - cut (sin (IZR q * PI) = 0). - intro. - rewrite H5 in H. - rewrite Rmult_0_l in H. - rewrite Rplus_0_l in H. - assert (H6 := Rmult_integral _ _ H). - elim H6; intro. - assert (H8 := sin2_cos2 (IZR q * PI)). - rewrite H5 in H8; rewrite H7 in H8. - rewrite Rsqr_0 in H8. - rewrite Rplus_0_r in H8. - elim R1_neq_R0; symmetry in |- *; assumption. - cut (r = 0 \/ 0 < r < PI). - intro; elim H8; intro. - assumption. - elim H9; intros. - assert (H12 := sin_gt_0 _ H10 H11). - rewrite H7 in H12; elim (Rlt_irrefl _ H12). - rewrite Rabs_right in H4. - elim H4; intros. - case (Rtotal_order 0 r); intro. - right; split; assumption. - elim H10; intro. - left; symmetry in |- *; assumption. - elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H8 H11)). - apply Rle_ge. - left; apply PI_RGT_0. - apply sin_eq_0_1. - exists q; reflexivity. -Qed. - -Lemma cos_eq_0_0 : - forall x:R, cos x = 0 -> exists k : Z, x = IZR k * PI + PI / 2. -Proof. - intros x H; rewrite cos_sin in H; generalize (sin_eq_0_0 (PI / INR 2 + x) H); - intro H2; elim H2; intros x0 H3; exists (x0 - Z_of_nat 1)%Z; - rewrite <- Z_R_minus; simpl. -unfold INR in H3. field_simplify [(sym_eq H3)]. field. -(** - ring_simplify. - (* rewrite (Rmult_comm PI);*) (* old ring compat *) - rewrite <- H3; simpl; - field;repeat split; discrR. -*) -Qed. - -Lemma cos_eq_0_1 : - forall x:R, (exists k : Z, x = IZR k * PI + PI / 2) -> cos x = 0. -Proof. - intros x H1; rewrite cos_sin; elim H1; intros x0 H2; rewrite H2; - replace (PI / 2 + (IZR x0 * PI + PI / 2)) with (IZR x0 * PI + PI). - rewrite neg_sin; rewrite <- Ropp_0. - apply Ropp_eq_compat; apply sin_eq_0_1; exists x0; reflexivity. - pattern PI at 2 in |- *; rewrite (double_var PI); ring. -Qed. - -Lemma sin_eq_O_2PI_0 : - forall x:R, - 0 <= x -> x <= 2 * PI -> sin x = 0 -> x = 0 \/ x = PI \/ x = 2 * PI. -Proof. - intros; generalize (sin_eq_0_0 x H1); intro. - elim H2; intros k0 H3. - case (Rtotal_order PI x); intro. - rewrite H3 in H4; rewrite H3 in H0. - right; right. - generalize - (Rmult_lt_compat_r (/ PI) PI (IZR k0 * PI) (Rinv_0_lt_compat PI PI_RGT_0) H4); - rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym. - rewrite Rmult_1_r; intro; - generalize - (Rmult_le_compat_r (/ PI) (IZR k0 * PI) (2 * PI) - (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H0); - repeat rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym. - repeat rewrite Rmult_1_r; intro; - generalize (Rplus_lt_compat_l (IZR (-2)) 1 (IZR k0) H5); - rewrite <- plus_IZR. - replace (IZR (-2) + 1) with (-1). - intro; generalize (Rplus_le_compat_l (IZR (-2)) (IZR k0) 2 H6); - rewrite <- plus_IZR. - replace (IZR (-2) + 2) with 0. - intro; cut (-1 < IZR (-2 + k0) < 1). - intro; generalize (one_IZR_lt1 (-2 + k0) H9); intro. - cut (k0 = 2%Z). - intro; rewrite H11 in H3; rewrite H3; simpl in |- *. - reflexivity. - rewrite <- (Zplus_opp_l 2) in H10; generalize (Zplus_reg_l (-2) k0 2 H10); - intro; assumption. - split. - assumption. - apply Rle_lt_trans with 0. - assumption. - apply Rlt_0_1. - simpl in |- *; ring. - simpl in |- *; ring. - apply PI_neq0. - apply PI_neq0. - elim H4; intro. - right; left. - symmetry in |- *; assumption. - left. - rewrite H3 in H5; rewrite H3 in H; - generalize - (Rmult_lt_compat_r (/ PI) (IZR k0 * PI) PI (Rinv_0_lt_compat PI PI_RGT_0) - H5); rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym. - rewrite Rmult_1_r; intro; - generalize - (Rmult_le_compat_r (/ PI) 0 (IZR k0 * PI) - (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H); - repeat rewrite Rmult_assoc; repeat rewrite <- Rinv_r_sym. - rewrite Rmult_1_r; rewrite Rmult_0_l; intro. - cut (-1 < IZR k0 < 1). - intro; generalize (one_IZR_lt1 k0 H8); intro; rewrite H9 in H3; rewrite H3; - simpl in |- *; apply Rmult_0_l. - split. - apply Rlt_le_trans with 0. - rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; apply Rlt_0_1. - assumption. - assumption. - apply PI_neq0. - apply PI_neq0. -Qed. - -Lemma sin_eq_O_2PI_1 : - forall x:R, - 0 <= x -> x <= 2 * PI -> x = 0 \/ x = PI \/ x = 2 * PI -> sin x = 0. -Proof. - intros x H1 H2 H3; elim H3; intro H4; - [ rewrite H4; rewrite sin_0; reflexivity - | elim H4; intro H5; - [ rewrite H5; rewrite sin_PI; reflexivity - | rewrite H5; rewrite sin_2PI; reflexivity ] ]. -Qed. - -Lemma cos_eq_0_2PI_0 : - forall x:R, - 0 <= x -> x <= 2 * PI -> cos x = 0 -> x = PI / 2 \/ x = 3 * (PI / 2). -Proof. - intros; case (Rtotal_order x (3 * (PI / 2))); intro. - rewrite cos_sin in H1. - cut (0 <= PI / 2 + x). - cut (PI / 2 + x <= 2 * PI). - intros; generalize (sin_eq_O_2PI_0 (PI / 2 + x) H4 H3 H1); intros. - decompose [or] H5. - generalize (Rplus_le_compat_l (PI / 2) 0 x H); rewrite Rplus_0_r; rewrite H6; - intro. - elim (Rlt_irrefl 0 (Rlt_le_trans 0 (PI / 2) 0 PI2_RGT_0 H7)). - left. - generalize (Rplus_eq_compat_l (- (PI / 2)) (PI / 2 + x) PI H7). - replace (- (PI / 2) + (PI / 2 + x)) with x. - replace (- (PI / 2) + PI) with (PI / 2). - intro; assumption. - pattern PI at 3 in |- *; rewrite (double_var PI); ring. - ring. - right. - generalize (Rplus_eq_compat_l (- (PI / 2)) (PI / 2 + x) (2 * PI) H7). - replace (- (PI / 2) + (PI / 2 + x)) with x. - replace (- (PI / 2) + 2 * PI) with (3 * (PI / 2)). - intro; assumption. - rewrite double; pattern PI at 3 4 in |- *; rewrite (double_var PI); ring. - ring. - left; replace (2 * PI) with (PI / 2 + 3 * (PI / 2)). - apply Rplus_lt_compat_l; assumption. - rewrite (double PI); pattern PI at 3 4 in |- *; rewrite (double_var PI); ring. - apply Rplus_le_le_0_compat. - left; unfold Rdiv in |- *; apply Rmult_lt_0_compat. - apply PI_RGT_0. - apply Rinv_0_lt_compat; prove_sup0. - assumption. - elim H2; intro. - right; assumption. - generalize (cos_eq_0_0 x H1); intro; elim H4; intros k0 H5. - rewrite H5 in H3; rewrite H5 in H0; - generalize - (Rplus_lt_compat_l (- (PI / 2)) (3 * (PI / 2)) (IZR k0 * PI + PI / 2) H3); - generalize - (Rplus_le_compat_l (- (PI / 2)) (IZR k0 * PI + PI / 2) (2 * PI) H0). - replace (- (PI / 2) + 3 * (PI / 2)) with PI. - replace (- (PI / 2) + (IZR k0 * PI + PI / 2)) with (IZR k0 * PI). - replace (- (PI / 2) + 2 * PI) with (3 * (PI / 2)). - intros; - generalize - (Rmult_lt_compat_l (/ PI) PI (IZR k0 * PI) (Rinv_0_lt_compat PI PI_RGT_0) - H7); - generalize - (Rmult_le_compat_l (/ PI) (IZR k0 * PI) (3 * (PI / 2)) - (Rlt_le 0 (/ PI) (Rinv_0_lt_compat PI PI_RGT_0)) H6). - replace (/ PI * (IZR k0 * PI)) with (IZR k0). - replace (/ PI * (3 * (PI / 2))) with (3 * / 2). - rewrite <- Rinv_l_sym. - intros; generalize (Rplus_lt_compat_l (IZR (-2)) 1 (IZR k0) H9); - rewrite <- plus_IZR. - replace (IZR (-2) + 1) with (-1). - intro; generalize (Rplus_le_compat_l (IZR (-2)) (IZR k0) (3 * / 2) H8); - rewrite <- plus_IZR. - replace (IZR (-2) + 2) with 0. - intro; cut (-1 < IZR (-2 + k0) < 1). - intro; generalize (one_IZR_lt1 (-2 + k0) H12); intro. - cut (k0 = 2%Z). - intro; rewrite H14 in H8. - assert (Hyp : 0 < 2). - prove_sup0. - generalize (Rmult_le_compat_l 2 (IZR 2) (3 * / 2) (Rlt_le 0 2 Hyp) H8); - simpl in |- *. - replace 4 with 4. - replace (2 * (3 * / 2)) with 3. - intro; cut (3 < 4). - intro; elim (Rlt_irrefl 3 (Rlt_le_trans 3 4 3 H16 H15)). - generalize (Rplus_lt_compat_l 3 0 1 Rlt_0_1); rewrite Rplus_0_r. - replace (3 + 1) with 4. - intro; assumption. - ring. - symmetry in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m. - discrR. - ring. - rewrite <- (Zplus_opp_l 2) in H13; generalize (Zplus_reg_l (-2) k0 2 H13); - intro; assumption. - split. - assumption. - apply Rle_lt_trans with (IZR (-2) + 3 * / 2). - assumption. - simpl in |- *; replace (-2 + 3 * / 2) with (- (1 * / 2)). - apply Rlt_trans with 0. - rewrite <- Ropp_0; apply Ropp_lt_gt_contravar. - apply Rmult_lt_0_compat; - [ apply Rlt_0_1 | apply Rinv_0_lt_compat; prove_sup0 ]. - apply Rlt_0_1. - rewrite Rmult_1_l; apply Rmult_eq_reg_l with 2. - rewrite Ropp_mult_distr_r_reverse; rewrite <- Rinv_r_sym. - rewrite Rmult_plus_distr_l; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m. - ring. - discrR. - discrR. - discrR. - simpl in |- *; ring. - simpl in |- *; ring. - apply PI_neq0. - unfold Rdiv in |- *; pattern 3 at 1 in |- *; rewrite (Rmult_comm 3); - repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_l; apply Rmult_comm. - apply PI_neq0. - symmetry in |- *; rewrite (Rmult_comm (/ PI)); rewrite Rmult_assoc; - rewrite <- Rinv_r_sym. - apply Rmult_1_r. - apply PI_neq0. - rewrite double; pattern PI at 3 4 in |- *; rewrite double_var; ring. - ring. - pattern PI at 1 in |- *; rewrite double_var; ring. -Qed. - -Lemma cos_eq_0_2PI_1 : - forall x:R, - 0 <= x -> x <= 2 * PI -> x = PI / 2 \/ x = 3 * (PI / 2) -> cos x = 0. -Proof. - intros x H1 H2 H3; elim H3; intro H4; - [ rewrite H4; rewrite cos_PI2; reflexivity - | rewrite H4; rewrite cos_3PI2; reflexivity ]. -Qed. +Require Import Classical_Prop. +Require Import Fourier. +Require Import Ranalysis1. +Require Import Rsqrt_def. +Require Import PSeries_reg. +Require Export Rtrigo1. +Require Export Ratan. +Require Export Machin. \ No newline at end of file diff --git a/theories/Reals/Rtrigo1.v b/theories/Reals/Rtrigo1.v new file mode 100644 index 00000000..6174ef32 --- /dev/null +++ b/theories/Reals/Rtrigo1.v @@ -0,0 +1,1933 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* R -> R, + fn = (fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)) -> + CVN_R fn. +Proof. + unfold CVN_R in |- *; intros. + cut ((r:R) <> 0). + intro hyp_r; unfold CVN_r in |- *. + exists (fun n:nat => / INR (fact (2 * n)) * r ^ (2 * n)). + cut + { l:R | + Un_cv + (fun n:nat => + sum_f_R0 (fun k:nat => Rabs (/ INR (fact (2 * k)) * r ^ (2 * k))) + n) l }. + intro X; elim X; intros. + exists x. + split. + apply p. + intros; rewrite H; unfold Rdiv in |- *; do 2 rewrite Rabs_mult. + rewrite pow_1_abs; rewrite Rmult_1_l. + cut (0 < / INR (fact (2 * n))). + intro; rewrite (Rabs_right _ (Rle_ge _ _ (Rlt_le _ _ H1))). + apply Rmult_le_compat_l. + left; apply H1. + rewrite <- RPow_abs; apply pow_maj_Rabs. + rewrite Rabs_Rabsolu. + unfold Boule in H0; rewrite Rminus_0_r in H0. + left; apply H0. + apply Rinv_0_lt_compat; apply INR_fact_lt_0. + apply Alembert_C2. + intro; apply Rabs_no_R0. + apply prod_neq_R0. + apply Rinv_neq_0_compat. + apply INR_fact_neq_0. + apply pow_nonzero; assumption. + assert (H0 := Alembert_cos). + unfold cos_n in H0; unfold Un_cv in H0; unfold Un_cv in |- *; intros. + cut (0 < eps / Rsqr r). + intro; elim (H0 _ H2); intros N0 H3. + exists N0; intros. + unfold R_dist in |- *; assert (H5 := H3 _ H4). + unfold R_dist in H5; + replace + (Rabs + (Rabs (/ INR (fact (2 * S n)) * r ^ (2 * S n)) / + Rabs (/ INR (fact (2 * n)) * r ^ (2 * n)))) with + (Rsqr r * + Rabs ((-1) ^ S n / INR (fact (2 * S n)) / ((-1) ^ n / INR (fact (2 * n))))). + apply Rmult_lt_reg_l with (/ Rsqr r). + apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption. + pattern (/ Rsqr r) at 1 in |- *; replace (/ Rsqr r) with (Rabs (/ Rsqr r)). + rewrite <- Rabs_mult; rewrite Rmult_minus_distr_l; rewrite Rmult_0_r; + rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. + rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); apply H5. + unfold Rsqr in |- *; apply prod_neq_R0; assumption. + rewrite Rabs_Rinv. + rewrite Rabs_right. + reflexivity. + apply Rle_ge; apply Rle_0_sqr. + unfold Rsqr in |- *; apply prod_neq_R0; assumption. + rewrite (Rmult_comm (Rsqr r)); unfold Rdiv in |- *; repeat rewrite Rabs_mult; + rewrite Rabs_Rabsolu; rewrite pow_1_abs; rewrite Rmult_1_l; + repeat rewrite Rmult_assoc; apply Rmult_eq_compat_l. + rewrite Rabs_Rinv. + rewrite Rabs_mult; rewrite (pow_1_abs n); rewrite Rmult_1_l; + rewrite <- Rabs_Rinv. + rewrite Rinv_involutive. + rewrite Rinv_mult_distr. + rewrite Rabs_Rinv. + rewrite Rinv_involutive. + rewrite (Rmult_comm (Rabs (Rabs (r ^ (2 * S n))))); rewrite Rabs_mult; + rewrite Rabs_Rabsolu; rewrite Rmult_assoc; apply Rmult_eq_compat_l. + rewrite Rabs_Rinv. + do 2 rewrite Rabs_Rabsolu; repeat rewrite Rabs_right. + replace (r ^ (2 * S n)) with (r ^ (2 * n) * r * r). + repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. + unfold Rsqr in |- *; ring. + apply pow_nonzero; assumption. + replace (2 * S n)%nat with (S (S (2 * n))). + simpl in |- *; ring. + ring. + apply Rle_ge; apply pow_le; left; apply (cond_pos r). + apply Rle_ge; apply pow_le; left; apply (cond_pos r). + apply Rabs_no_R0; apply pow_nonzero; assumption. + apply Rabs_no_R0; apply INR_fact_neq_0. + apply INR_fact_neq_0. + apply Rabs_no_R0; apply Rinv_neq_0_compat; apply INR_fact_neq_0. + apply Rabs_no_R0; apply pow_nonzero; assumption. + apply INR_fact_neq_0. + apply Rinv_neq_0_compat; apply INR_fact_neq_0. + apply prod_neq_R0. + apply pow_nonzero; discrR. + apply Rinv_neq_0_compat; apply INR_fact_neq_0. + unfold Rdiv in |- *; apply Rmult_lt_0_compat. + apply H1. + apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption. + assert (H0 := cond_pos r); red in |- *; intro; rewrite H1 in H0; + elim (Rlt_irrefl _ H0). +Qed. + +(**********) +Lemma continuity_cos : continuity cos. +Proof. + set (fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)). + cut (CVN_R fn). + intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }). + intro cv; cut (forall n:nat, continuity (fn n)). + intro; cut (forall x:R, cos x = SFL fn cv x). + intro; cut (continuity (SFL fn cv) -> continuity cos). + intro; apply H1. + apply SFL_continuity; assumption. + unfold continuity in |- *; unfold continuity_pt in |- *; + unfold continue_in in |- *; unfold limit1_in in |- *; + unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *; + intros. + elim (H1 x _ H2); intros. + exists x0; intros. + elim H3; intros. + split. + apply H4. + intros; rewrite (H0 x); rewrite (H0 x1); apply H5; apply H6. + intro; unfold cos, SFL in |- *. + case (cv x); case (exist_cos (Rsqr x)); intros. + symmetry in |- *; eapply UL_sequence. + apply u. + unfold cos_in in c; unfold infinite_sum in c; unfold Un_cv in |- *; intros. + elim (c _ H0); intros N0 H1. + exists N0; intros. + unfold R_dist in H1; unfold R_dist, SP in |- *. + replace (sum_f_R0 (fun k:nat => fn k x) n) with + (sum_f_R0 (fun i:nat => cos_n i * Rsqr x ^ i) n). + apply H1; assumption. + apply sum_eq; intros. + unfold cos_n, fn in |- *; apply Rmult_eq_compat_l. + unfold Rsqr in |- *; rewrite pow_sqr; reflexivity. + intro; unfold fn in |- *; + replace (fun x:R => (-1) ^ n / INR (fact (2 * n)) * x ^ (2 * n)) with + (fct_cte ((-1) ^ n / INR (fact (2 * n))) * pow_fct (2 * n))%F; + [ idtac | reflexivity ]. + apply continuity_mult. + apply derivable_continuous; apply derivable_const. + apply derivable_continuous; apply (derivable_pow (2 * n)). + apply CVN_R_CVS; apply X. + apply CVN_R_cos; unfold fn in |- *; reflexivity. +Qed. + +Lemma sin_gt_cos_7_8 : sin (7 / 8) > cos (7 / 8). +Proof. +assert (lo1 : 0 <= 7/8) by fourier. +assert (up1 : 7/8 <= 4) by fourier. +assert (lo : -2 <= 7/8) by fourier. +assert (up : 7/8 <= 2) by fourier. +destruct (pre_sin_bound _ 0 lo1 up1) as [lower _ ]. +destruct (pre_cos_bound _ 0 lo up) as [_ upper]. +apply Rle_lt_trans with (1 := upper). +apply Rlt_le_trans with (2 := lower). +unfold cos_approx, sin_approx. +simpl sum_f_R0; replace 7 with (IZR 7) by (simpl; field). +replace 8 with (IZR 8) by (simpl; field). +unfold cos_term, sin_term; simpl fact; rewrite !INR_IZR_INZ. +simpl plus; simpl mult. +field_simplify; + try (repeat apply conj; apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity). +unfold Rminus; rewrite !pow_IZR, <- !mult_IZR, <- !opp_IZR, <- ?plus_IZR. +match goal with + |- IZR ?a / ?b < ?c / ?d => + apply Rmult_lt_reg_r with d;[apply (IZR_lt 0); reflexivity | + unfold Rdiv at 2; rewrite Rmult_assoc, Rinv_l, Rmult_1_r, Rmult_comm; + [ |apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity ]]; + apply Rmult_lt_reg_r with b;[apply (IZR_lt 0); reflexivity | ] +end. +unfold Rdiv; rewrite !Rmult_assoc, Rinv_l, Rmult_1_r; + [ | apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity]. +repeat (rewrite <- !plus_IZR || rewrite <- !mult_IZR). +apply IZR_lt; reflexivity. +Qed. + +Definition PI_2_aux : {z | 7/8 <= z <= 7/4 /\ -cos z = 0}. +assert (cc : continuity (fun r =>- cos r)). + apply continuity_opp, continuity_cos. +assert (cvp : 0 < cos (7/8)). + assert (int78 : -2 <= 7/8 <= 2) by (split; fourier). + destruct int78 as [lower upper]. + case (pre_cos_bound _ 0 lower upper). + unfold cos_approx; simpl sum_f_R0; unfold cos_term. + intros cl _; apply Rlt_le_trans with (2 := cl); simpl. + fourier. +assert (cun : cos (7/4) < 0). + replace (7/4) with (7/8 + 7/8) by field. + rewrite cos_plus. + apply Rlt_minus; apply Rsqr_incrst_1. + exact sin_gt_cos_7_8. + apply Rlt_le; assumption. + apply Rlt_le; apply Rlt_trans with (1 := cvp); exact sin_gt_cos_7_8. +apply IVT; auto; fourier. +Qed. + +Definition PI2 := proj1_sig PI_2_aux. + +Definition PI := 2 * PI2. + +Lemma cos_pi2 : cos PI2 = 0. +unfold PI2; case PI_2_aux; simpl. +intros x [_ q]; rewrite <- (Ropp_involutive (cos x)), q; apply Ropp_0. +Qed. + +Lemma pi2_int : 7/8 <= PI2 <= 7/4. +unfold PI2; case PI_2_aux; simpl; tauto. +Qed. + +(**********) +Lemma cos_minus : forall x y:R, cos (x - y) = cos x * cos y + sin x * sin y. +Proof. + intros; unfold Rminus in |- *; rewrite cos_plus. + rewrite <- cos_sym; rewrite sin_antisym; ring. +Qed. + +(**********) +Lemma sin2_cos2 : forall x:R, Rsqr (sin x) + Rsqr (cos x) = 1. +Proof. + intro; unfold Rsqr in |- *; rewrite Rplus_comm; rewrite <- (cos_minus x x); + unfold Rminus in |- *; rewrite Rplus_opp_r; apply cos_0. +Qed. + +Lemma cos2 : forall x:R, Rsqr (cos x) = 1 - Rsqr (sin x). +Proof. + intros x; rewrite <- (sin2_cos2 x); ring. +Qed. + +Lemma sin2 : forall x:R, Rsqr (sin x) = 1 - Rsqr (cos x). +Proof. + intro x; generalize (cos2 x); intro H1; rewrite H1. + unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; + rewrite Rplus_opp_r; rewrite Rplus_0_l; symmetry in |- *; + apply Ropp_involutive. +Qed. + +(**********) +Lemma cos_PI2 : cos (PI / 2) = 0. +Proof. + unfold PI; generalize cos_pi2; replace ((2 * PI2)/2) with PI2 by field; tauto. +Qed. + +Lemma sin_pos_tech : forall x, 0 < x < 2 -> 0 < sin x. +intros x [int1 int2]. +assert (lo : 0 <= x) by (apply Rlt_le; assumption). +assert (up : x <= 4) by (apply Rlt_le, Rlt_trans with (1:=int2); fourier). +destruct (pre_sin_bound _ 0 lo up) as [t _]; clear lo up. +apply Rlt_le_trans with (2:= t); clear t. +unfold sin_approx; simpl sum_f_R0; unfold sin_term; simpl. +match goal with |- _ < ?a => + replace a with (x * (1 - x^2/6)) by (simpl; field) +end. +assert (t' : x ^ 2 <= 4). + replace 4 with (2 ^ 2) by field. + apply (pow_incr x 2); split; apply Rlt_le; assumption. +apply Rmult_lt_0_compat;[assumption | fourier ]. +Qed. + +Lemma sin_PI2 : sin (PI / 2) = 1. +replace (PI / 2) with PI2 by (unfold PI; field). +assert (int' : 0 < PI2 < 2). + destruct pi2_int; split; fourier. +assert (lo2 := sin_pos_tech PI2 int'). +assert (t2 : Rabs (sin PI2) = 1). + rewrite <- Rabs_R1; apply Rsqr_eq_abs_0. + rewrite Rsqr_1, sin2, cos_pi2, Rsqr_0, Rminus_0_r; reflexivity. +revert t2; rewrite Rabs_pos_eq;[| apply Rlt_le]; tauto. +Qed. + +Lemma PI_RGT_0 : PI > 0. +Proof. unfold PI; destruct pi2_int; fourier. Qed. + +Lemma PI_4 : PI <= 4. +Proof. unfold PI; destruct pi2_int; fourier. Qed. + +(**********) +Lemma PI_neq0 : PI <> 0. +Proof. + red in |- *; intro; assert (H0 := PI_RGT_0); rewrite H in H0; + elim (Rlt_irrefl _ H0). +Qed. + + +(**********) +Lemma cos_PI : cos PI = -1. +Proof. + replace PI with (PI / 2 + PI / 2). + rewrite cos_plus. + rewrite sin_PI2; rewrite cos_PI2. + ring. + symmetry in |- *; apply double_var. +Qed. + +Lemma sin_PI : sin PI = 0. +Proof. + assert (H := sin2_cos2 PI). + rewrite cos_PI in H. + rewrite <- Rsqr_neg in H. + rewrite Rsqr_1 in H. + cut (Rsqr (sin PI) = 0). + intro; apply (Rsqr_eq_0 _ H0). + apply Rplus_eq_reg_l with 1. + rewrite Rplus_0_r; rewrite Rplus_comm; exact H. +Qed. + +Lemma sin_bound : forall (a : R) (n : nat), 0 <= a -> a <= PI -> + sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1)). +Proof. +intros a n a0 api; apply pre_sin_bound. + assumption. +apply Rle_trans with (1:= api) (2 := PI_4). +Qed. + +Lemma cos_bound : forall (a : R) (n : nat), - PI / 2 <= a -> a <= PI / 2 -> + cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1)). +Proof. +intros a n lower upper; apply pre_cos_bound. + apply Rle_trans with (2 := lower). + apply Rmult_le_reg_r with 2; [fourier |]. + replace ((-PI/2) * 2) with (-PI) by field. + assert (t := PI_4); fourier. +apply Rle_trans with (1 := upper). +apply Rmult_le_reg_r with 2; [fourier | ]. +replace ((PI/2) * 2) with PI by field. +generalize PI_4; intros; fourier. +Qed. +(**********) +Lemma neg_cos : forall x:R, cos (x + PI) = - cos x. +Proof. + intro x; rewrite cos_plus; rewrite sin_PI; rewrite cos_PI; ring. +Qed. + +(**********) +Lemma sin_cos : forall x:R, sin x = - cos (PI / 2 + x). +Proof. + intro x; rewrite cos_plus; rewrite sin_PI2; rewrite cos_PI2; ring. +Qed. + +(**********) +Lemma sin_plus : forall x y:R, sin (x + y) = sin x * cos y + cos x * sin y. +Proof. + intros. + rewrite (sin_cos (x + y)). + replace (PI / 2 + (x + y)) with (PI / 2 + x + y); [ rewrite cos_plus | ring ]. + rewrite (sin_cos (PI / 2 + x)). + replace (PI / 2 + (PI / 2 + x)) with (x + PI). + rewrite neg_cos. + replace (cos (PI / 2 + x)) with (- sin x). + ring. + rewrite sin_cos; rewrite Ropp_involutive; reflexivity. + pattern PI at 1 in |- *; rewrite (double_var PI); ring. +Qed. + +Lemma sin_minus : forall x y:R, sin (x - y) = sin x * cos y - cos x * sin y. +Proof. + intros; unfold Rminus in |- *; rewrite sin_plus. + rewrite <- cos_sym; rewrite sin_antisym; ring. +Qed. + +(**********) +Definition tan (x:R) : R := sin x / cos x. + +Lemma tan_plus : + forall x y:R, + cos x <> 0 -> + cos y <> 0 -> + cos (x + y) <> 0 -> + 1 - tan x * tan y <> 0 -> + tan (x + y) = (tan x + tan y) / (1 - tan x * tan y). +Proof. + intros; unfold tan in |- *; rewrite sin_plus; rewrite cos_plus; + unfold Rdiv in |- *; + replace (cos x * cos y - sin x * sin y) with + (cos x * cos y * (1 - sin x * / cos x * (sin y * / cos y))). + rewrite Rinv_mult_distr. + repeat rewrite <- Rmult_assoc; + replace ((sin x * cos y + cos x * sin y) * / (cos x * cos y)) with + (sin x * / cos x + sin y * / cos y). + reflexivity. + rewrite Rmult_plus_distr_r; rewrite Rinv_mult_distr. + repeat rewrite Rmult_assoc; repeat rewrite (Rmult_comm (sin x)); + repeat rewrite <- Rmult_assoc. + repeat rewrite Rinv_r_simpl_m; [ reflexivity | assumption | assumption ]. + assumption. + assumption. + apply prod_neq_R0; assumption. + assumption. + unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r; + apply Rplus_eq_compat_l; repeat rewrite Rmult_assoc; + rewrite (Rmult_comm (sin x)); rewrite (Rmult_comm (cos y)); + rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite <- Rmult_assoc; + rewrite <- Rinv_r_sym. + rewrite Rmult_1_l; rewrite (Rmult_comm (sin x)); + rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite Rmult_assoc; + apply Rmult_eq_compat_l; rewrite (Rmult_comm (/ cos y)); + rewrite Rmult_assoc; rewrite <- Rinv_r_sym. + apply Rmult_1_r. + assumption. + assumption. +Qed. + +(*******************************************************) +(** * Some properties of cos, sin and tan *) +(*******************************************************) + +Lemma sin_2a : forall x:R, sin (2 * x) = 2 * sin x * cos x. +Proof. + intro x; rewrite double; rewrite sin_plus. + rewrite <- (Rmult_comm (sin x)); symmetry in |- *; rewrite Rmult_assoc; + apply double. +Qed. + +Lemma cos_2a : forall x:R, cos (2 * x) = cos x * cos x - sin x * sin x. +Proof. + intro x; rewrite double; apply cos_plus. +Qed. + +Lemma cos_2a_cos : forall x:R, cos (2 * x) = 2 * cos x * cos x - 1. +Proof. + intro x; rewrite double; unfold Rminus in |- *; rewrite Rmult_assoc; + rewrite cos_plus; generalize (sin2_cos2 x); rewrite double; + intro H1; rewrite <- H1; ring_Rsqr. +Qed. + +Lemma cos_2a_sin : forall x:R, cos (2 * x) = 1 - 2 * sin x * sin x. +Proof. + intro x; rewrite Rmult_assoc; unfold Rminus in |- *; repeat rewrite double. + generalize (sin2_cos2 x); intro H1; rewrite <- H1; rewrite cos_plus; + ring_Rsqr. +Qed. + +Lemma tan_2a : + forall x:R, + cos x <> 0 -> + cos (2 * x) <> 0 -> + 1 - tan x * tan x <> 0 -> tan (2 * x) = 2 * tan x / (1 - tan x * tan x). +Proof. + repeat rewrite double; intros; repeat rewrite double; rewrite double in H0; + apply tan_plus; assumption. +Qed. + +Lemma sin_neg : forall x:R, sin (- x) = - sin x. +Proof. + apply sin_antisym. +Qed. + +Lemma cos_neg : forall x:R, cos (- x) = cos x. +Proof. + intro; symmetry in |- *; apply cos_sym. +Qed. + +Lemma tan_0 : tan 0 = 0. +Proof. + unfold tan in |- *; rewrite sin_0; rewrite cos_0. + unfold Rdiv in |- *; apply Rmult_0_l. +Qed. + +Lemma tan_neg : forall x:R, tan (- x) = - tan x. +Proof. + intros x; unfold tan in |- *; rewrite sin_neg; rewrite cos_neg; + unfold Rdiv in |- *. + apply Ropp_mult_distr_l_reverse. +Qed. + +Lemma tan_minus : + forall x y:R, + cos x <> 0 -> + cos y <> 0 -> + cos (x - y) <> 0 -> + 1 + tan x * tan y <> 0 -> + tan (x - y) = (tan x - tan y) / (1 + tan x * tan y). +Proof. + intros; unfold Rminus in |- *; rewrite tan_plus. + rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse; + rewrite Rmult_opp_opp; reflexivity. + assumption. + rewrite cos_neg; assumption. + assumption. + rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse; + rewrite Rmult_opp_opp; assumption. +Qed. + +Lemma cos_3PI2 : cos (3 * (PI / 2)) = 0. +Proof. + replace (3 * (PI / 2)) with (PI + PI / 2). + rewrite cos_plus; rewrite sin_PI; rewrite cos_PI2; ring. + pattern PI at 1 in |- *; rewrite (double_var PI). + ring. +Qed. + +Lemma sin_2PI : sin (2 * PI) = 0. +Proof. + rewrite sin_2a; rewrite sin_PI; ring. +Qed. + +Lemma cos_2PI : cos (2 * PI) = 1. +Proof. + rewrite cos_2a; rewrite sin_PI; rewrite cos_PI; ring. +Qed. + +Lemma neg_sin : forall x:R, sin (x + PI) = - sin x. +Proof. + intro x; rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; ring. +Qed. + +Lemma sin_PI_x : forall x:R, sin (PI - x) = sin x. +Proof. + intro x; rewrite sin_minus; rewrite sin_PI; rewrite cos_PI; rewrite Rmult_0_l; + unfold Rminus in |- *; rewrite Rplus_0_l; rewrite Ropp_mult_distr_l_reverse; + rewrite Ropp_involutive; apply Rmult_1_l. +Qed. + +Lemma sin_period : forall (x:R) (k:nat), sin (x + 2 * INR k * PI) = sin x. +Proof. + intros x k; induction k as [| k Hreck]. + simpl in |- *; ring_simplify (x + 2 * 0 * PI). + trivial. + + replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI). + rewrite sin_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *. + ring_simplify; trivial. + rewrite S_INR in |- *; ring. +Qed. + +Lemma cos_period : forall (x:R) (k:nat), cos (x + 2 * INR k * PI) = cos x. +Proof. + intros x k; induction k as [| k Hreck]. + simpl in |- *; ring_simplify (x + 2 * 0 * PI). + trivial. + + replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI). + rewrite cos_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *. + ring_simplify; trivial. + rewrite S_INR in |- *; ring. +Qed. + +Lemma sin_shift : forall x:R, sin (PI / 2 - x) = cos x. +Proof. + intro x; rewrite sin_minus; rewrite sin_PI2; rewrite cos_PI2; ring. +Qed. + +Lemma cos_shift : forall x:R, cos (PI / 2 - x) = sin x. +Proof. + intro x; rewrite cos_minus; rewrite sin_PI2; rewrite cos_PI2; ring. +Qed. + +Lemma cos_sin : forall x:R, cos x = sin (PI / 2 + x). +Proof. + intro x; rewrite sin_plus; rewrite sin_PI2; rewrite cos_PI2; ring. +Qed. + +Lemma PI2_RGT_0 : 0 < PI / 2. +Proof. + unfold Rdiv in |- *; apply Rmult_lt_0_compat; + [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup ]. +Qed. + +Lemma SIN_bound : forall x:R, -1 <= sin x <= 1. +Proof. + intro; case (Rle_dec (-1) (sin x)); intro. + case (Rle_dec (sin x) 1); intro. + split; assumption. + cut (1 < sin x). + intro; + generalize + (Rsqr_incrst_1 1 (sin x) H (Rlt_le 0 1 Rlt_0_1) + (Rlt_le 0 (sin x) (Rlt_trans 0 1 (sin x) Rlt_0_1 H))); + rewrite Rsqr_1; intro; rewrite sin2 in H0; unfold Rminus in H0; + generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0); + repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l; + rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1; + generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1); + repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x)); + intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)). + auto with real. + cut (sin x < -1). + intro; generalize (Ropp_lt_gt_contravar (sin x) (-1) H); + rewrite Ropp_involutive; clear H; intro; + generalize + (Rsqr_incrst_1 1 (- sin x) H (Rlt_le 0 1 Rlt_0_1) + (Rlt_le 0 (- sin x) (Rlt_trans 0 1 (- sin x) Rlt_0_1 H))); + rewrite Rsqr_1; intro; rewrite <- Rsqr_neg in H0; + rewrite sin2 in H0; unfold Rminus in H0; + generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0); + repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l; + rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1; + generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1); + repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x)); + intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)). + auto with real. +Qed. + +Lemma COS_bound : forall x:R, -1 <= cos x <= 1. +Proof. + intro; rewrite <- sin_shift; apply SIN_bound. +Qed. + +Lemma cos_sin_0 : forall x:R, ~ (cos x = 0 /\ sin x = 0). +Proof. + intro; red in |- *; intro; elim H; intros; generalize (sin2_cos2 x); intro; + rewrite H0 in H2; rewrite H1 in H2; repeat rewrite Rsqr_0 in H2; + rewrite Rplus_0_r in H2; generalize Rlt_0_1; intro; + rewrite <- H2 in H3; elim (Rlt_irrefl 0 H3). +Qed. + +Lemma cos_sin_0_var : forall x:R, cos x <> 0 \/ sin x <> 0. +Proof. + intros x. + destruct (Req_dec (cos x) 0). 2: now left. + right. intros H'. + apply (cos_sin_0 x). + now split. +Qed. + +(*****************************************************************) +(** * Using series definitions of cos and sin *) +(*****************************************************************) + +Definition sin_lb (a:R) : R := sin_approx a 3. +Definition sin_ub (a:R) : R := sin_approx a 4. +Definition cos_lb (a:R) : R := cos_approx a 3. +Definition cos_ub (a:R) : R := cos_approx a 4. + +Lemma sin_lb_gt_0 : forall a:R, 0 < a -> a <= PI / 2 -> 0 < sin_lb a. +Proof. + intros. + unfold sin_lb in |- *; unfold sin_approx in |- *; unfold sin_term in |- *. + set (Un := fun i:nat => a ^ (2 * i + 1) / INR (fact (2 * i + 1))). + replace + (sum_f_R0 + (fun i:nat => (-1) ^ i * (a ^ (2 * i + 1) / INR (fact (2 * i + 1)))) 3) + with (sum_f_R0 (fun i:nat => (-1) ^ i * Un i) 3); + [ idtac | apply sum_eq; intros; unfold Un in |- *; reflexivity ]. + cut (forall n:nat, Un (S n) < Un n). + intro; simpl in |- *. + repeat rewrite Rmult_1_l; repeat rewrite Rmult_1_r; + replace (-1 * Un 1%nat) with (- Un 1%nat); [ idtac | ring ]; + replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ]; + replace (-1 * (-1 * -1) * Un 3%nat) with (- Un 3%nat); + [ idtac | ring ]; + replace (Un 0%nat + - Un 1%nat + Un 2%nat + - Un 3%nat) with + (Un 0%nat - Un 1%nat + (Un 2%nat - Un 3%nat)); [ idtac | ring ]. + apply Rplus_lt_0_compat. + unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 1%nat); + rewrite Rplus_0_r; rewrite (Rplus_comm (Un 1%nat)); + rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; + apply H1. + unfold Rminus in |- *; apply Rplus_lt_reg_r with (Un 3%nat); + rewrite Rplus_0_r; rewrite (Rplus_comm (Un 3%nat)); + rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; + apply H1. + intro; unfold Un in |- *. + cut ((2 * S n + 1)%nat = (2 * n + 1 + 2)%nat). + intro; rewrite H1. + rewrite pow_add; unfold Rdiv in |- *; rewrite Rmult_assoc; + apply Rmult_lt_compat_l. + apply pow_lt; assumption. + rewrite <- H1; apply Rmult_lt_reg_l with (INR (fact (2 * n + 1))). + apply lt_INR_0; apply neq_O_lt. + assert (H2 := fact_neq_0 (2 * n + 1)). + red in |- *; intro; elim H2; symmetry in |- *; assumption. + rewrite <- Rinv_r_sym. + apply Rmult_lt_reg_l with (INR (fact (2 * S n + 1))). + apply lt_INR_0; apply neq_O_lt. + assert (H2 := fact_neq_0 (2 * S n + 1)). + red in |- *; intro; elim H2; symmetry in |- *; assumption. + rewrite (Rmult_comm (INR (fact (2 * S n + 1)))); repeat rewrite Rmult_assoc; + rewrite <- Rinv_l_sym. + do 2 rewrite Rmult_1_r; apply Rle_lt_trans with (INR (fact (2 * n + 1)) * 4). + apply Rmult_le_compat_l. + replace 0 with (INR 0); [ idtac | reflexivity ]; apply le_INR; apply le_O_n. + simpl in |- *; rewrite Rmult_1_r; replace 4 with (Rsqr 2); + [ idtac | ring_Rsqr ]; replace (a * a) with (Rsqr a); + [ idtac | reflexivity ]; apply Rsqr_incr_1. + apply Rle_trans with (PI / 2); + [ assumption + | unfold Rdiv in |- *; apply Rmult_le_reg_l with 2; + [ prove_sup0 + | rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m; + [ replace 4 with 4; [ apply PI_4 | ring ] | discrR ] ] ]. + left; assumption. + left; prove_sup0. + rewrite H1; replace (2 * n + 1 + 2)%nat with (S (S (2 * n + 1))). + do 2 rewrite fact_simpl; do 2 rewrite mult_INR. + repeat rewrite <- Rmult_assoc. + rewrite <- (Rmult_comm (INR (fact (2 * n + 1)))). + rewrite Rmult_assoc. + apply Rmult_lt_compat_l. + apply lt_INR_0; apply neq_O_lt. + assert (H2 := fact_neq_0 (2 * n + 1)). + red in |- *; intro; elim H2; symmetry in |- *; assumption. + do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; set (x := INR n); + unfold INR in |- *. + replace ((2 * x + 1 + 1 + 1) * (2 * x + 1 + 1)) with (4 * x * x + 10 * x + 6); + [ idtac | ring ]. + apply Rplus_lt_reg_r with (-4); rewrite Rplus_opp_l; + replace (-4 + (4 * x * x + 10 * x + 6)) with (4 * x * x + 10 * x + 2); + [ idtac | ring ]. + apply Rplus_le_lt_0_compat. + cut (0 <= x). + intro; apply Rplus_le_le_0_compat; repeat apply Rmult_le_pos; + assumption || left; prove_sup. + unfold x in |- *; replace 0 with (INR 0); + [ apply le_INR; apply le_O_n | reflexivity ]. + prove_sup0. + ring. + apply INR_fact_neq_0. + apply INR_fact_neq_0. + ring. +Qed. + +Lemma SIN : forall a:R, 0 <= a -> a <= PI -> sin_lb a <= sin a <= sin_ub a. + intros; unfold sin_lb, sin_ub in |- *; apply (sin_bound a 1 H H0). +Qed. + +Lemma COS : + forall a:R, - PI / 2 <= a -> a <= PI / 2 -> cos_lb a <= cos a <= cos_ub a. + intros; unfold cos_lb, cos_ub in |- *; apply (cos_bound a 1 H H0). +Qed. + +(**********) +Lemma _PI2_RLT_0 : - (PI / 2) < 0. +Proof. + rewrite <- Ropp_0; apply Ropp_lt_contravar; apply PI2_RGT_0. +Qed. + +Lemma PI4_RLT_PI2 : PI / 4 < PI / 2. +Proof. + unfold Rdiv in |- *; apply Rmult_lt_compat_l. + apply PI_RGT_0. + apply Rinv_lt_contravar. + apply Rmult_lt_0_compat; prove_sup0. + pattern 2 at 1 in |- *; rewrite <- Rplus_0_r. + replace 4 with (2 + 2); [ apply Rplus_lt_compat_l; prove_sup0 | ring ]. +Qed. + +Lemma PI2_Rlt_PI : PI / 2 < PI. +Proof. + unfold Rdiv in |- *; pattern PI at 2 in |- *; rewrite <- Rmult_1_r. + apply Rmult_lt_compat_l. + apply PI_RGT_0. + pattern 1 at 3 in |- *; rewrite <- Rinv_1; apply Rinv_lt_contravar. + rewrite Rmult_1_l; prove_sup0. + pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; + apply Rlt_0_1. +Qed. + +(***************************************************) +(** * Increasing and decreasing of [cos] and [sin] *) +(***************************************************) +Theorem sin_gt_0 : forall x:R, 0 < x -> x < PI -> 0 < sin x. +Proof. + intros; elim (SIN x (Rlt_le 0 x H) (Rlt_le x PI H0)); intros H1 _; + case (Rtotal_order x (PI / 2)); intro H2. + apply Rlt_le_trans with (sin_lb x). + apply sin_lb_gt_0; [ assumption | left; assumption ]. + assumption. + elim H2; intro H3. + rewrite H3; rewrite sin_PI2; apply Rlt_0_1. + rewrite <- sin_PI_x; generalize (Ropp_gt_lt_contravar x (PI / 2) H3); + intro H4; generalize (Rplus_lt_compat_l PI (- x) (- (PI / 2)) H4). + replace (PI + - x) with (PI - x). + replace (PI + - (PI / 2)) with (PI / 2). + intro H5; generalize (Ropp_lt_gt_contravar x PI H0); intro H6; + change (- PI < - x) in H6; generalize (Rplus_lt_compat_l PI (- PI) (- x) H6). + rewrite Rplus_opp_r. + replace (PI + - x) with (PI - x). + intro H7; + elim + (SIN (PI - x) (Rlt_le 0 (PI - x) H7) + (Rlt_le (PI - x) PI (Rlt_trans (PI - x) (PI / 2) PI H5 PI2_Rlt_PI))); + intros H8 _; + generalize (sin_lb_gt_0 (PI - x) H7 (Rlt_le (PI - x) (PI / 2) H5)); + intro H9; apply (Rlt_le_trans 0 (sin_lb (PI - x)) (sin (PI - x)) H9 H8). + reflexivity. + pattern PI at 2 in |- *; rewrite double_var; ring. + reflexivity. +Qed. + +Theorem cos_gt_0 : forall x:R, - (PI / 2) < x -> x < PI / 2 -> 0 < cos x. +Proof. + intros; rewrite cos_sin; + generalize (Rplus_lt_compat_l (PI / 2) (- (PI / 2)) x H). + rewrite Rplus_opp_r; intro H1; + generalize (Rplus_lt_compat_l (PI / 2) x (PI / 2) H0); + rewrite <- double_var; intro H2; apply (sin_gt_0 (PI / 2 + x) H1 H2). +Qed. + +Lemma sin_ge_0 : forall x:R, 0 <= x -> x <= PI -> 0 <= sin x. +Proof. + intros x H1 H2; elim H1; intro H3; + [ elim H2; intro H4; + [ left; apply (sin_gt_0 x H3 H4) + | rewrite H4; right; symmetry in |- *; apply sin_PI ] + | rewrite <- H3; right; symmetry in |- *; apply sin_0 ]. +Qed. + +Lemma cos_ge_0 : forall x:R, - (PI / 2) <= x -> x <= PI / 2 -> 0 <= cos x. +Proof. + intros x H1 H2; elim H1; intro H3; + [ elim H2; intro H4; + [ left; apply (cos_gt_0 x H3 H4) + | rewrite H4; right; symmetry in |- *; apply cos_PI2 ] + | rewrite <- H3; rewrite cos_neg; right; symmetry in |- *; apply cos_PI2 ]. +Qed. + +Lemma sin_le_0 : forall x:R, PI <= x -> x <= 2 * PI -> sin x <= 0. +Proof. + intros x H1 H2; apply Rge_le; rewrite <- Ropp_0; + rewrite <- (Ropp_involutive (sin x)); apply Ropp_le_ge_contravar; + rewrite <- neg_sin; replace (x + PI) with (x - PI + 2 * INR 1 * PI); + [ rewrite (sin_period (x - PI) 1); apply sin_ge_0; + [ replace (x - PI) with (x + - PI); + [ rewrite Rplus_comm; replace 0 with (- PI + PI); + [ apply Rplus_le_compat_l; assumption | ring ] + | ring ] + | replace (x - PI) with (x + - PI); rewrite Rplus_comm; + [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI); + [ apply Rplus_le_compat_l; assumption | ring ] + | ring ] ] + | unfold INR in |- *; ring ]. +Qed. + +Lemma cos_le_0 : forall x:R, PI / 2 <= x -> x <= 3 * (PI / 2) -> cos x <= 0. +Proof. + intros x H1 H2; apply Rge_le; rewrite <- Ropp_0; + rewrite <- (Ropp_involutive (cos x)); apply Ropp_le_ge_contravar; + rewrite <- neg_cos; replace (x + PI) with (x - PI + 2 * INR 1 * PI). + rewrite cos_period; apply cos_ge_0. + replace (- (PI / 2)) with (- PI + PI / 2). + unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_le_compat_l; + assumption. + pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; + ring. + unfold Rminus in |- *; rewrite Rplus_comm; + replace (PI / 2) with (- PI + 3 * (PI / 2)). + apply Rplus_le_compat_l; assumption. + pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; + ring. + unfold INR in |- *; ring. +Qed. + +Lemma sin_lt_0 : forall x:R, PI < x -> x < 2 * PI -> sin x < 0. +Proof. + intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (sin x)); + apply Ropp_lt_gt_contravar; rewrite <- neg_sin; + replace (x + PI) with (x - PI + 2 * INR 1 * PI); + [ rewrite (sin_period (x - PI) 1); apply sin_gt_0; + [ replace (x - PI) with (x + - PI); + [ rewrite Rplus_comm; replace 0 with (- PI + PI); + [ apply Rplus_lt_compat_l; assumption | ring ] + | ring ] + | replace (x - PI) with (x + - PI); rewrite Rplus_comm; + [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI); + [ apply Rplus_lt_compat_l; assumption | ring ] + | ring ] ] + | unfold INR in |- *; ring ]. +Qed. + +Lemma sin_lt_0_var : forall x:R, - PI < x -> x < 0 -> sin x < 0. +Proof. + intros; generalize (Rplus_lt_compat_l (2 * PI) (- PI) x H); + replace (2 * PI + - PI) with PI; + [ intro H1; rewrite Rplus_comm in H1; + generalize (Rplus_lt_compat_l (2 * PI) x 0 H0); + intro H2; rewrite (Rplus_comm (2 * PI)) in H2; + rewrite <- (Rplus_comm 0) in H2; rewrite Rplus_0_l in H2; + rewrite <- (sin_period x 1); unfold INR in |- *; + replace (2 * 1 * PI) with (2 * PI); + [ apply (sin_lt_0 (x + 2 * PI) H1 H2) | ring ] + | ring ]. +Qed. + +Lemma cos_lt_0 : forall x:R, PI / 2 < x -> x < 3 * (PI / 2) -> cos x < 0. +Proof. + intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (cos x)); + apply Ropp_lt_gt_contravar; rewrite <- neg_cos; + replace (x + PI) with (x - PI + 2 * INR 1 * PI). + rewrite cos_period; apply cos_gt_0. + replace (- (PI / 2)) with (- PI + PI / 2). + unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_lt_compat_l; + assumption. + pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; + ring. + unfold Rminus in |- *; rewrite Rplus_comm; + replace (PI / 2) with (- PI + 3 * (PI / 2)). + apply Rplus_lt_compat_l; assumption. + pattern PI at 1 in |- *; rewrite (double_var PI); rewrite Ropp_plus_distr; + ring. + unfold INR in |- *; ring. +Qed. + +Lemma tan_gt_0 : forall x:R, 0 < x -> x < PI / 2 -> 0 < tan x. +Proof. + intros x H1 H2; unfold tan in |- *; generalize _PI2_RLT_0; + generalize (Rlt_trans 0 x (PI / 2) H1 H2); intros; + generalize (Rlt_trans (- (PI / 2)) 0 x H0 H1); intro H5; + generalize (Rlt_trans x (PI / 2) PI H2 PI2_Rlt_PI); + intro H7; unfold Rdiv in |- *; apply Rmult_lt_0_compat. + apply sin_gt_0; assumption. + apply Rinv_0_lt_compat; apply cos_gt_0; assumption. +Qed. + +Lemma tan_lt_0 : forall x:R, - (PI / 2) < x -> x < 0 -> tan x < 0. +Proof. + intros x H1 H2; unfold tan in |- *; + generalize (cos_gt_0 x H1 (Rlt_trans x 0 (PI / 2) H2 PI2_RGT_0)); + intro H3; rewrite <- Ropp_0; + replace (sin x / cos x) with (- (- sin x / cos x)). + rewrite <- sin_neg; apply Ropp_gt_lt_contravar; + change (0 < sin (- x) / cos x) in |- *; unfold Rdiv in |- *; + apply Rmult_lt_0_compat. + apply sin_gt_0. + rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; assumption. + apply Rlt_trans with (PI / 2). + rewrite <- (Ropp_involutive (PI / 2)); apply Ropp_gt_lt_contravar; assumption. + apply PI2_Rlt_PI. + apply Rinv_0_lt_compat; assumption. + unfold Rdiv in |- *; ring. +Qed. + +Lemma cos_ge_0_3PI2 : + forall x:R, 3 * (PI / 2) <= x -> x <= 2 * PI -> 0 <= cos x. +Proof. + intros; rewrite <- cos_neg; rewrite <- (cos_period (- x) 1); + unfold INR in |- *; replace (- x + 2 * 1 * PI) with (2 * PI - x). + generalize (Ropp_le_ge_contravar x (2 * PI) H0); intro H1; + generalize (Rge_le (- x) (- (2 * PI)) H1); clear H1; + intro H1; generalize (Rplus_le_compat_l (2 * PI) (- (2 * PI)) (- x) H1). + rewrite Rplus_opp_r. + intro H2; generalize (Ropp_le_ge_contravar (3 * (PI / 2)) x H); intro H3; + generalize (Rge_le (- (3 * (PI / 2))) (- x) H3); clear H3; + intro H3; + generalize (Rplus_le_compat_l (2 * PI) (- x) (- (3 * (PI / 2))) H3). + replace (2 * PI + - (3 * (PI / 2))) with (PI / 2). + intro H4; + apply + (cos_ge_0 (2 * PI - x) + (Rlt_le (- (PI / 2)) (2 * PI - x) + (Rlt_le_trans (- (PI / 2)) 0 (2 * PI - x) _PI2_RLT_0 H2)) H4). + rewrite double; pattern PI at 2 3 in |- *; rewrite double_var; ring. + ring. +Qed. + +Lemma form1 : + forall p q:R, cos p + cos q = 2 * cos ((p - q) / 2) * cos ((p + q) / 2). +Proof. + intros p q; pattern p at 1 in |- *; + replace p with ((p - q) / 2 + (p + q) / 2). + rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2). + rewrite cos_plus; rewrite cos_minus; ring. + pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. +Qed. + +Lemma form2 : + forall p q:R, cos p - cos q = -2 * sin ((p - q) / 2) * sin ((p + q) / 2). +Proof. + intros p q; pattern p at 1 in |- *; + replace p with ((p - q) / 2 + (p + q) / 2). + rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2). + rewrite cos_plus; rewrite cos_minus; ring. + pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. +Qed. + +Lemma form3 : + forall p q:R, sin p + sin q = 2 * cos ((p - q) / 2) * sin ((p + q) / 2). +Proof. + intros p q; pattern p at 1 in |- *; + replace p with ((p - q) / 2 + (p + q) / 2). + pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2). + rewrite sin_plus; rewrite sin_minus; ring. + pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. +Qed. + +Lemma form4 : + forall p q:R, sin p - sin q = 2 * cos ((p + q) / 2) * sin ((p - q) / 2). +Proof. + intros p q; pattern p at 1 in |- *; + replace p with ((p - q) / 2 + (p + q) / 2). + pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2). + rewrite sin_plus; rewrite sin_minus; ring. + pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. + +Qed. + +Lemma sin_increasing_0 : + forall x y:R, + - (PI / 2) <= x -> + x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x < sin y -> x < y. +Proof. + intros; cut (sin ((x - y) / 2) < 0). + intro H4; case (Rtotal_order ((x - y) / 2) 0); intro H5. + assert (Hyp : 0 < 2). + prove_sup0. + generalize (Rmult_lt_compat_l 2 ((x - y) / 2) 0 Hyp H5). + unfold Rdiv in |- *. + rewrite <- Rmult_assoc. + rewrite Rinv_r_simpl_m. + rewrite Rmult_0_r. + clear H5; intro H5; apply Rminus_lt; assumption. + discrR. + elim H5; intro H6. + rewrite H6 in H4; rewrite sin_0 in H4; elim (Rlt_irrefl 0 H4). + change (0 < (x - y) / 2) in H6; + generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1). + rewrite Ropp_involutive. + intro H7; generalize (Rge_le (PI / 2) (- y) H7); clear H7; intro H7; + generalize (Rplus_le_compat x (PI / 2) (- y) (PI / 2) H0 H7). + rewrite <- double_var. + intro H8. + assert (Hyp : 0 < 2). + prove_sup0. + generalize + (Rmult_le_compat_l (/ 2) (x - y) PI + (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H8). + repeat rewrite (Rmult_comm (/ 2)). + intro H9; + generalize + (sin_gt_0 ((x - y) / 2) H6 + (Rle_lt_trans ((x - y) / 2) (PI / 2) PI H9 PI2_Rlt_PI)); + intro H10; + elim + (Rlt_irrefl (sin ((x - y) / 2)) + (Rlt_trans (sin ((x - y) / 2)) 0 (sin ((x - y) / 2)) H4 H10)). + generalize (Rlt_minus (sin x) (sin y) H3); clear H3; intro H3; + rewrite form4 in H3; + generalize (Rplus_le_compat x (PI / 2) y (PI / 2) H0 H2). + rewrite <- double_var. + assert (Hyp : 0 < 2). + prove_sup0. + intro H4; + generalize + (Rmult_le_compat_l (/ 2) (x + y) PI + (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H4). + repeat rewrite (Rmult_comm (/ 2)). + clear H4; intro H4; + generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) y H H1); + replace (- (PI / 2) + - (PI / 2)) with (- PI). + intro H5; + generalize + (Rmult_le_compat_l (/ 2) (- PI) (x + y) + (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H5). + replace (/ 2 * (x + y)) with ((x + y) / 2). + replace (/ 2 * - PI) with (- (PI / 2)). + clear H5; intro H5; elim H4; intro H40. + elim H5; intro H50. + generalize (cos_gt_0 ((x + y) / 2) H50 H40); intro H6; + generalize (Rmult_lt_compat_l 2 0 (cos ((x + y) / 2)) Hyp H6). + rewrite Rmult_0_r. + clear H6; intro H6; case (Rcase_abs (sin ((x - y) / 2))); intro H7. + assumption. + generalize (Rge_le (sin ((x - y) / 2)) 0 H7); clear H7; intro H7; + generalize + (Rmult_le_pos (2 * cos ((x + y) / 2)) (sin ((x - y) / 2)) + (Rlt_le 0 (2 * cos ((x + y) / 2)) H6) H7); intro H8; + generalize + (Rle_lt_trans 0 (2 * cos ((x + y) / 2) * sin ((x - y) / 2)) 0 H8 H3); + intro H9; elim (Rlt_irrefl 0 H9). + rewrite <- H50 in H3; rewrite cos_neg in H3; rewrite cos_PI2 in H3; + rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3; + elim (Rlt_irrefl 0 H3). + unfold Rdiv in H3. + rewrite H40 in H3; assert (H50 := cos_PI2); unfold Rdiv in H50; + rewrite H50 in H3; rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3; + elim (Rlt_irrefl 0 H3). + unfold Rdiv in |- *. + rewrite <- Ropp_mult_distr_l_reverse. + apply Rmult_comm. + unfold Rdiv in |- *; apply Rmult_comm. + pattern PI at 1 in |- *; rewrite double_var. + rewrite Ropp_plus_distr. + reflexivity. +Qed. + +Lemma sin_increasing_1 : + forall x y:R, + - (PI / 2) <= x -> + x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x < y -> sin x < sin y. +Proof. + intros; generalize (Rplus_lt_compat_l x x y H3); intro H4; + generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) x H H); + replace (- (PI / 2) + - (PI / 2)) with (- PI). + assert (Hyp : 0 < 2). + prove_sup0. + intro H5; generalize (Rle_lt_trans (- PI) (x + x) (x + y) H5 H4); intro H6; + generalize + (Rmult_lt_compat_l (/ 2) (- PI) (x + y) (Rinv_0_lt_compat 2 Hyp) H6); + replace (/ 2 * - PI) with (- (PI / 2)). + replace (/ 2 * (x + y)) with ((x + y) / 2). + clear H4 H5 H6; intro H4; generalize (Rplus_lt_compat_l y x y H3); intro H5; + rewrite Rplus_comm in H5; + generalize (Rplus_le_compat y (PI / 2) y (PI / 2) H2 H2). + rewrite <- double_var. + intro H6; generalize (Rlt_le_trans (x + y) (y + y) PI H5 H6); intro H7; + generalize (Rmult_lt_compat_l (/ 2) (x + y) PI (Rinv_0_lt_compat 2 Hyp) H7); + replace (/ 2 * PI) with (PI / 2). + replace (/ 2 * (x + y)) with ((x + y) / 2). + clear H5 H6 H7; intro H5; generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1); + rewrite Ropp_involutive; clear H1; intro H1; + generalize (Rge_le (PI / 2) (- y) H1); clear H1; intro H1; + generalize (Ropp_le_ge_contravar y (PI / 2) H2); clear H2; + intro H2; generalize (Rge_le (- y) (- (PI / 2)) H2); + clear H2; intro H2; generalize (Rplus_lt_compat_l (- y) x y H3); + replace (- y + x) with (x - y). + rewrite Rplus_opp_l. + intro H6; + generalize (Rmult_lt_compat_l (/ 2) (x - y) 0 (Rinv_0_lt_compat 2 Hyp) H6); + rewrite Rmult_0_r; replace (/ 2 * (x - y)) with ((x - y) / 2). + clear H6; intro H6; + generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) (- y) H H2); + replace (- (PI / 2) + - (PI / 2)) with (- PI). + replace (x + - y) with (x - y). + intro H7; + generalize + (Rmult_le_compat_l (/ 2) (- PI) (x - y) + (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H7); + replace (/ 2 * - PI) with (- (PI / 2)). + replace (/ 2 * (x - y)) with ((x - y) / 2). + clear H7; intro H7; clear H H0 H1 H2; apply Rminus_lt; rewrite form4; + generalize (cos_gt_0 ((x + y) / 2) H4 H5); intro H8; + generalize (Rmult_lt_0_compat 2 (cos ((x + y) / 2)) Hyp H8); + clear H8; intro H8; cut (- PI < - (PI / 2)). + intro H9; + generalize + (sin_lt_0_var ((x - y) / 2) + (Rlt_le_trans (- PI) (- (PI / 2)) ((x - y) / 2) H9 H7) H6); + intro H10; + generalize + (Rmult_lt_gt_compat_neg_l (sin ((x - y) / 2)) 0 ( + 2 * cos ((x + y) / 2)) H10 H8); intro H11; rewrite Rmult_0_r in H11; + rewrite Rmult_comm; assumption. + apply Ropp_lt_gt_contravar; apply PI2_Rlt_PI. + unfold Rdiv in |- *; apply Rmult_comm. + unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_comm. + reflexivity. + pattern PI at 1 in |- *; rewrite double_var. + rewrite Ropp_plus_distr. + reflexivity. + unfold Rdiv in |- *; apply Rmult_comm. + unfold Rminus in |- *; apply Rplus_comm. + unfold Rdiv in |- *; apply Rmult_comm. + unfold Rdiv in |- *; apply Rmult_comm. + unfold Rdiv in |- *; apply Rmult_comm. + unfold Rdiv in |- *. + rewrite <- Ropp_mult_distr_l_reverse. + apply Rmult_comm. + pattern PI at 1 in |- *; rewrite double_var. + rewrite Ropp_plus_distr. + reflexivity. +Qed. + +Lemma sin_decreasing_0 : + forall x y:R, + x <= 3 * (PI / 2) -> + PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x < sin y -> y < x. +Proof. + intros; rewrite <- (sin_PI_x x) in H3; rewrite <- (sin_PI_x y) in H3; + generalize (Ropp_lt_gt_contravar (sin (PI - x)) (sin (PI - y)) H3); + repeat rewrite <- sin_neg; + generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H); + generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0); + generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1); + generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2); + replace (- PI + x) with (x - PI). + replace (- PI + PI / 2) with (- (PI / 2)). + replace (- PI + y) with (y - PI). + replace (- PI + 3 * (PI / 2)) with (PI / 2). + replace (- (PI - x)) with (x - PI). + replace (- (PI - y)) with (y - PI). + intros; change (sin (y - PI) < sin (x - PI)) in H8; + apply Rplus_lt_reg_r with (- PI); rewrite Rplus_comm; + replace (y + - PI) with (y - PI). + rewrite Rplus_comm; replace (x + - PI) with (x - PI). + apply (sin_increasing_0 (y - PI) (x - PI) H4 H5 H6 H7 H8). + reflexivity. + reflexivity. + unfold Rminus in |- *; rewrite Ropp_plus_distr. + rewrite Ropp_involutive. + apply Rplus_comm. + unfold Rminus in |- *; rewrite Ropp_plus_distr. + rewrite Ropp_involutive. + apply Rplus_comm. + pattern PI at 2 in |- *; rewrite double_var. + rewrite Ropp_plus_distr. + ring. + unfold Rminus in |- *; apply Rplus_comm. + pattern PI at 2 in |- *; rewrite double_var. + rewrite Ropp_plus_distr. + ring. + unfold Rminus in |- *; apply Rplus_comm. +Qed. + +Lemma sin_decreasing_1 : + forall x y:R, + x <= 3 * (PI / 2) -> + PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> x < y -> sin y < sin x. +Proof. + intros; rewrite <- (sin_PI_x x); rewrite <- (sin_PI_x y); + generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H); + generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0); + generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1); + generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2); + generalize (Rplus_lt_compat_l (- PI) x y H3); + replace (- PI + PI / 2) with (- (PI / 2)). + replace (- PI + y) with (y - PI). + replace (- PI + 3 * (PI / 2)) with (PI / 2). + replace (- PI + x) with (x - PI). + intros; apply Ropp_lt_cancel; repeat rewrite <- sin_neg; + replace (- (PI - x)) with (x - PI). + replace (- (PI - y)) with (y - PI). + apply (sin_increasing_1 (x - PI) (y - PI) H7 H8 H5 H6 H4). + unfold Rminus in |- *; rewrite Ropp_plus_distr. + rewrite Ropp_involutive. + apply Rplus_comm. + unfold Rminus in |- *; rewrite Ropp_plus_distr. + rewrite Ropp_involutive. + apply Rplus_comm. + unfold Rminus in |- *; apply Rplus_comm. + pattern PI at 2 in |- *; rewrite double_var; ring. + unfold Rminus in |- *; apply Rplus_comm. + pattern PI at 2 in |- *; rewrite double_var; ring. +Qed. + +Lemma cos_increasing_0 : + forall x y:R, + PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x < cos y -> x < y. +Proof. + intros x y H1 H2 H3 H4; rewrite <- (cos_neg x); rewrite <- (cos_neg y); + rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1); + unfold INR in |- *; + replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))). + replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))). + repeat rewrite cos_shift; intro H5; + generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1); + generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2); + generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3); + generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4). + replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). + replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). + replace (-3 * (PI / 2) + 2 * PI) with (PI / 2). + replace (-3 * (PI / 2) + PI) with (- (PI / 2)). + clear H1 H2 H3 H4; intros H1 H2 H3 H4; + apply Rplus_lt_reg_r with (-3 * (PI / 2)); + replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). + replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). + apply (sin_increasing_0 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H4 H3 H2 H1 H5). + unfold Rminus in |- *. + rewrite Ropp_mult_distr_l_reverse. + apply Rplus_comm. + unfold Rminus in |- *. + rewrite Ropp_mult_distr_l_reverse. + apply Rplus_comm. + pattern PI at 3 in |- *; rewrite double_var. + ring. + rewrite double; pattern PI at 3 4 in |- *; rewrite double_var. + ring. + unfold Rminus in |- *. + rewrite Ropp_mult_distr_l_reverse. + apply Rplus_comm. + unfold Rminus in |- *. + rewrite Ropp_mult_distr_l_reverse. + apply Rplus_comm. + rewrite Rmult_1_r. + rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. + ring. + rewrite Rmult_1_r. + rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. + ring. +Qed. + +Lemma cos_increasing_1 : + forall x y:R, + PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x < y -> cos x < cos y. +Proof. + intros x y H1 H2 H3 H4 H5; + generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1); + generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2); + generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3); + generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4); + generalize (Rplus_lt_compat_l (-3 * (PI / 2)) x y H5); + rewrite <- (cos_neg x); rewrite <- (cos_neg y); + rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1); + unfold INR in |- *; replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)). + replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)). + replace (-3 * (PI / 2) + PI) with (- (PI / 2)). + replace (-3 * (PI / 2) + 2 * PI) with (PI / 2). + clear H1 H2 H3 H4 H5; intros H1 H2 H3 H4 H5; + replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))). + replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))). + repeat rewrite cos_shift; + apply + (sin_increasing_1 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H5 H4 H3 H2 H1). + rewrite Rmult_1_r. + rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. + ring. + rewrite Rmult_1_r. + rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. + ring. + rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var. + ring. + pattern PI at 3 in |- *; rewrite double_var; ring. + unfold Rminus in |- *. + rewrite <- Ropp_mult_distr_l_reverse. + apply Rplus_comm. + unfold Rminus in |- *. + rewrite <- Ropp_mult_distr_l_reverse. + apply Rplus_comm. +Qed. + +Lemma cos_decreasing_0 : + forall x y:R, + 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x < cos y -> y < x. +Proof. + intros; generalize (Ropp_lt_gt_contravar (cos x) (cos y) H3); + repeat rewrite <- neg_cos; intro H4; + change (cos (y + PI) < cos (x + PI)) in H4; rewrite (Rplus_comm x) in H4; + rewrite (Rplus_comm y) in H4; generalize (Rplus_le_compat_l PI 0 x H); + generalize (Rplus_le_compat_l PI x PI H0); + generalize (Rplus_le_compat_l PI 0 y H1); + generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r. + rewrite <- double. + clear H H0 H1 H2 H3; intros; apply Rplus_lt_reg_r with PI; + apply (cos_increasing_0 (PI + y) (PI + x) H0 H H2 H1 H4). +Qed. + +Lemma cos_decreasing_1 : + forall x y:R, + 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x < y -> cos y < cos x. +Proof. + intros; apply Ropp_lt_cancel; repeat rewrite <- neg_cos; + rewrite (Rplus_comm x); rewrite (Rplus_comm y); + generalize (Rplus_le_compat_l PI 0 x H); + generalize (Rplus_le_compat_l PI x PI H0); + generalize (Rplus_le_compat_l PI 0 y H1); + generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r. + rewrite <- double. + generalize (Rplus_lt_compat_l PI x y H3); clear H H0 H1 H2 H3; intros; + apply (cos_increasing_1 (PI + x) (PI + y) H3 H2 H1 H0 H). +Qed. + +Lemma tan_diff : + forall x y:R, + cos x <> 0 -> cos y <> 0 -> tan x - tan y = sin (x - y) / (cos x * cos y). +Proof. + intros; unfold tan in |- *; rewrite sin_minus. + unfold Rdiv in |- *. + unfold Rminus in |- *. + rewrite Rmult_plus_distr_r. + rewrite Rinv_mult_distr. + repeat rewrite (Rmult_comm (sin x)). + repeat rewrite Rmult_assoc. + rewrite (Rmult_comm (cos y)). + repeat rewrite Rmult_assoc. + rewrite <- Rinv_l_sym. + rewrite Rmult_1_r. + rewrite (Rmult_comm (sin x)). + apply Rplus_eq_compat_l. + rewrite <- Ropp_mult_distr_l_reverse. + rewrite <- Ropp_mult_distr_r_reverse. + rewrite (Rmult_comm (/ cos x)). + repeat rewrite Rmult_assoc. + rewrite (Rmult_comm (cos x)). + repeat rewrite Rmult_assoc. + rewrite <- Rinv_l_sym. + rewrite Rmult_1_r. + reflexivity. + assumption. + assumption. + assumption. + assumption. +Qed. + +Lemma tan_increasing_0 : + forall x y:R, + - (PI / 4) <= x -> + x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x < tan y -> x < y. +Proof. + intros; generalize PI4_RLT_PI2; intro H4; + generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4); + intro H5; change (- (PI / 2) < - (PI / 4)) in H5; + generalize + (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) + (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1; + generalize + (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) + (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2; + generalize + (not_eq_sym + (Rlt_not_eq 0 (cos x) + (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) + (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)))); + intro H6; + generalize + (not_eq_sym + (Rlt_not_eq 0 (cos y) + (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) + (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)))); + intro H7; generalize (tan_diff x y H6 H7); intro H8; + generalize (Rlt_minus (tan x) (tan y) H3); clear H3; + intro H3; rewrite H8 in H3; cut (sin (x - y) < 0). + intro H9; generalize (Ropp_le_ge_contravar (- (PI / 4)) y H1); + rewrite Ropp_involutive; intro H10; generalize (Rge_le (PI / 4) (- y) H10); + clear H10; intro H10; generalize (Ropp_le_ge_contravar y (PI / 4) H2); + intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11); + clear H11; intro H11; + generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11); + generalize (Rplus_le_compat x (PI / 4) (- y) (PI / 4) H0 H10); + replace (x + - y) with (x - y). + replace (PI / 4 + PI / 4) with (PI / 2). + replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)). + intros; case (Rtotal_order 0 (x - y)); intro H14. + generalize + (sin_gt_0 (x - y) H14 (Rle_lt_trans (x - y) (PI / 2) PI H12 PI2_Rlt_PI)); + intro H15; elim (Rlt_irrefl 0 (Rlt_trans 0 (sin (x - y)) 0 H15 H9)). + elim H14; intro H15. + rewrite <- H15 in H9; rewrite sin_0 in H9; elim (Rlt_irrefl 0 H9). + apply Rminus_lt; assumption. + pattern PI at 1 in |- *; rewrite double_var. + unfold Rdiv in |- *. + rewrite Rmult_plus_distr_r. + repeat rewrite Rmult_assoc. + rewrite <- Rinv_mult_distr. + rewrite Ropp_plus_distr. + replace 4 with 4. + reflexivity. + ring. + discrR. + discrR. + pattern PI at 1 in |- *; rewrite double_var. + unfold Rdiv in |- *. + rewrite Rmult_plus_distr_r. + repeat rewrite Rmult_assoc. + rewrite <- Rinv_mult_distr. + replace 4 with 4. + reflexivity. + ring. + discrR. + discrR. + reflexivity. + case (Rcase_abs (sin (x - y))); intro H9. + assumption. + generalize (Rge_le (sin (x - y)) 0 H9); clear H9; intro H9; + generalize (Rinv_0_lt_compat (cos x) HP1); intro H10; + generalize (Rinv_0_lt_compat (cos y) HP2); intro H11; + generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11); + replace (/ cos x * / cos y) with (/ (cos x * cos y)). + intro H12; + generalize + (Rmult_le_pos (sin (x - y)) (/ (cos x * cos y)) H9 + (Rlt_le 0 (/ (cos x * cos y)) H12)); intro H13; + elim + (Rlt_irrefl 0 (Rle_lt_trans 0 (sin (x - y) * / (cos x * cos y)) 0 H13 H3)). + rewrite Rinv_mult_distr. + reflexivity. + assumption. + assumption. +Qed. + +Lemma tan_increasing_1 : + forall x y:R, + - (PI / 4) <= x -> + x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x < y -> tan x < tan y. +Proof. + intros; apply Rminus_lt; generalize PI4_RLT_PI2; intro H4; + generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4); + intro H5; change (- (PI / 2) < - (PI / 4)) in H5; + generalize + (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) + (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1; + generalize + (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) + (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2; + generalize + (not_eq_sym + (Rlt_not_eq 0 (cos x) + (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) + (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)))); + intro H6; + generalize + (not_eq_sym + (Rlt_not_eq 0 (cos y) + (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) + (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)))); + intro H7; rewrite (tan_diff x y H6 H7); + generalize (Rinv_0_lt_compat (cos x) HP1); intro H10; + generalize (Rinv_0_lt_compat (cos y) HP2); intro H11; + generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11); + replace (/ cos x * / cos y) with (/ (cos x * cos y)). + clear H10 H11; intro H8; generalize (Ropp_le_ge_contravar y (PI / 4) H2); + intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11); + clear H11; intro H11; + generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11); + replace (x + - y) with (x - y). + replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)). + clear H11; intro H9; generalize (Rlt_minus x y H3); clear H3; intro H3; + clear H H0 H1 H2 H4 H5 HP1 HP2; generalize PI2_Rlt_PI; + intro H1; generalize (Ropp_lt_gt_contravar (PI / 2) PI H1); + clear H1; intro H1; + generalize + (sin_lt_0_var (x - y) (Rlt_le_trans (- PI) (- (PI / 2)) (x - y) H1 H9) H3); + intro H2; + generalize + (Rmult_lt_gt_compat_neg_l (sin (x - y)) 0 (/ (cos x * cos y)) H2 H8); + rewrite Rmult_0_r; intro H4; assumption. + pattern PI at 1 in |- *; rewrite double_var. + unfold Rdiv in |- *. + rewrite Rmult_plus_distr_r. + repeat rewrite Rmult_assoc. + rewrite <- Rinv_mult_distr. + replace 4 with 4. + rewrite Ropp_plus_distr. + reflexivity. + ring. + discrR. + discrR. + reflexivity. + apply Rinv_mult_distr; assumption. +Qed. + +Lemma sin_incr_0 : + forall x y:R, + - (PI / 2) <= x -> + x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x <= sin y -> x <= y. +Proof. + intros; case (Rtotal_order (sin x) (sin y)); intro H4; + [ left; apply (sin_increasing_0 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order x y); intro H6; + [ left; assumption + | elim H6; intro H7; + [ right; assumption + | generalize (sin_increasing_1 y x H1 H2 H H0 H7); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) ] ] + | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ]. +Qed. + +Lemma sin_incr_1 : + forall x y:R, + - (PI / 2) <= x -> + x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x <= y -> sin x <= sin y. +Proof. + intros; case (Rtotal_order x y); intro H4; + [ left; apply (sin_increasing_1 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order (sin x) (sin y)); intro H6; + [ left; assumption + | elim H6; intro H7; + [ right; assumption + | generalize (sin_increasing_0 y x H1 H2 H H0 H7); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] + | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. +Qed. + +Lemma sin_decr_0 : + forall x y:R, + x <= 3 * (PI / 2) -> + PI / 2 <= x -> + y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x <= sin y -> y <= x. +Proof. + intros; case (Rtotal_order (sin x) (sin y)); intro H4; + [ left; apply (sin_decreasing_0 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order x y); intro H6; + [ generalize (sin_decreasing_1 x y H H0 H1 H2 H6); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) + | elim H6; intro H7; + [ right; symmetry in |- *; assumption | left; assumption ] ] + | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ]. +Qed. + +Lemma sin_decr_1 : + forall x y:R, + x <= 3 * (PI / 2) -> + PI / 2 <= x -> + y <= 3 * (PI / 2) -> PI / 2 <= y -> x <= y -> sin y <= sin x. +Proof. + intros; case (Rtotal_order x y); intro H4; + [ left; apply (sin_decreasing_1 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order (sin x) (sin y)); intro H6; + [ generalize (sin_decreasing_0 x y H H0 H1 H2 H6); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl y H8) + | elim H6; intro H7; + [ right; symmetry in |- *; assumption | left; assumption ] ] + | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. +Qed. + +Lemma cos_incr_0 : + forall x y:R, + PI <= x -> + x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x <= cos y -> x <= y. +Proof. + intros; case (Rtotal_order (cos x) (cos y)); intro H4; + [ left; apply (cos_increasing_0 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order x y); intro H6; + [ left; assumption + | elim H6; intro H7; + [ right; assumption + | generalize (cos_increasing_1 y x H1 H2 H H0 H7); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) ] ] + | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ]. +Qed. + +Lemma cos_incr_1 : + forall x y:R, + PI <= x -> + x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x <= y -> cos x <= cos y. +Proof. + intros; case (Rtotal_order x y); intro H4; + [ left; apply (cos_increasing_1 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order (cos x) (cos y)); intro H6; + [ left; assumption + | elim H6; intro H7; + [ right; assumption + | generalize (cos_increasing_0 y x H1 H2 H H0 H7); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] + | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. +Qed. + +Lemma cos_decr_0 : + forall x y:R, + 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x <= cos y -> y <= x. +Proof. + intros; case (Rtotal_order (cos x) (cos y)); intro H4; + [ left; apply (cos_decreasing_0 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order x y); intro H6; + [ generalize (cos_decreasing_1 x y H H0 H1 H2 H6); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) + | elim H6; intro H7; + [ right; symmetry in |- *; assumption | left; assumption ] ] + | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ]. +Qed. + +Lemma cos_decr_1 : + forall x y:R, + 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x <= y -> cos y <= cos x. +Proof. + intros; case (Rtotal_order x y); intro H4; + [ left; apply (cos_decreasing_1 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order (cos x) (cos y)); intro H6; + [ generalize (cos_decreasing_0 x y H H0 H1 H2 H6); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl y H8) + | elim H6; intro H7; + [ right; symmetry in |- *; assumption | left; assumption ] ] + | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. +Qed. + +Lemma tan_incr_0 : + forall x y:R, + - (PI / 4) <= x -> + x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x <= tan y -> x <= y. +Proof. + intros; case (Rtotal_order (tan x) (tan y)); intro H4; + [ left; apply (tan_increasing_0 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order x y); intro H6; + [ left; assumption + | elim H6; intro H7; + [ right; assumption + | generalize (tan_increasing_1 y x H1 H2 H H0 H7); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl (tan y) H8) ] ] + | elim (Rlt_irrefl (tan x) (Rle_lt_trans (tan x) (tan y) (tan x) H3 H5)) ] ]. +Qed. + +Lemma tan_incr_1 : + forall x y:R, + - (PI / 4) <= x -> + x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x <= y -> tan x <= tan y. +Proof. + intros; case (Rtotal_order x y); intro H4; + [ left; apply (tan_increasing_1 x y H H0 H1 H2 H4) + | elim H4; intro H5; + [ case (Rtotal_order (tan x) (tan y)); intro H6; + [ left; assumption + | elim H6; intro H7; + [ right; assumption + | generalize (tan_increasing_0 y x H1 H2 H H0 H7); intro H8; + rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] + | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. +Qed. + +(**********) +Lemma sin_eq_0_1 : forall x:R, (exists k : Z, x = IZR k * PI) -> sin x = 0. +Proof. + intros. + elim H; intros. + apply (Zcase_sign x0). + intro. + rewrite H1 in H0. + simpl in H0. + rewrite H0; rewrite Rmult_0_l; apply sin_0. + intro. + cut (0 <= x0)%Z. + intro. + elim (IZN x0 H2); intros. + rewrite H3 in H0. + rewrite <- INR_IZR_INZ in H0. + rewrite H0. + elim (even_odd_cor x1); intros. + elim H4; intro. + rewrite H5. + rewrite mult_INR. + simpl in |- *. + rewrite <- (Rplus_0_l (2 * INR x2 * PI)). + rewrite sin_period. + apply sin_0. + rewrite H5. + rewrite S_INR; rewrite mult_INR. + simpl in |- *. + rewrite Rmult_plus_distr_r. + rewrite Rmult_1_l; rewrite sin_plus. + rewrite sin_PI. + rewrite Rmult_0_r. + rewrite <- (Rplus_0_l (2 * INR x2 * PI)). + rewrite sin_period. + rewrite sin_0; ring. + apply le_IZR. + left; apply IZR_lt. + assert (H2 := Z.gt_lt_iff). + elim (H2 x0 0%Z); intros. + apply H3; assumption. + intro. + rewrite H0. + replace (sin (IZR x0 * PI)) with (- sin (- IZR x0 * PI)). + cut (0 <= - x0)%Z. + intro. + rewrite <- Ropp_Ropp_IZR. + elim (IZN (- x0) H2); intros. + rewrite H3. + rewrite <- INR_IZR_INZ. + elim (even_odd_cor x1); intros. + elim H4; intro. + rewrite H5. + rewrite mult_INR. + simpl in |- *. + rewrite <- (Rplus_0_l (2 * INR x2 * PI)). + rewrite sin_period. + rewrite sin_0; ring. + rewrite H5. + rewrite S_INR; rewrite mult_INR. + simpl in |- *. + rewrite Rmult_plus_distr_r. + rewrite Rmult_1_l; rewrite sin_plus. + rewrite sin_PI. + rewrite Rmult_0_r. + rewrite <- (Rplus_0_l (2 * INR x2 * PI)). + rewrite sin_period. + rewrite sin_0; ring. + apply le_IZR. + apply Rplus_le_reg_l with (IZR x0). + rewrite Rplus_0_r. + rewrite Ropp_Ropp_IZR. + rewrite Rplus_opp_r. + left; replace 0 with (IZR 0); [ apply IZR_lt | reflexivity ]. + assumption. + rewrite <- sin_neg. + rewrite Ropp_mult_distr_l_reverse. + rewrite Ropp_involutive. + reflexivity. +Qed. + +Lemma sin_eq_0_0 (x:R) : sin x = 0 -> exists k : Z, x = IZR k * PI. +Proof. + intros Hx. + destruct (euclidian_division x PI PI_neq0) as (q & r & EQ & Hr & Hr'). + exists q. + rewrite <- (Rplus_0_r (_*_)). subst. apply Rplus_eq_compat_l. + rewrite sin_plus in Hx. + assert (H : sin (IZR q * PI) = 0) by (apply sin_eq_0_1; now exists q). + rewrite H, Rmult_0_l, Rplus_0_l in Hx. + destruct (Rmult_integral _ _ Hx) as [H'|H']. + - exfalso. + generalize (sin2_cos2 (IZR q * PI)). + rewrite H, H', Rsqr_0, Rplus_0_l. + intros; now apply R1_neq_R0. + - rewrite Rabs_right in Hr'; [|left; apply PI_RGT_0]. + destruct Hr as [Hr | ->]; trivial. + exfalso. + generalize (sin_gt_0 r Hr Hr'). rewrite H'. apply Rlt_irrefl. +Qed. + +Lemma cos_eq_0_0 (x:R) : + cos x = 0 -> exists k : Z, x = IZR k * PI + PI / 2. +Proof. + rewrite cos_sin. intros Hx. + destruct (sin_eq_0_0 (PI/2 + x) Hx) as (k,Hk). clear Hx. + exists (k-1)%Z. rewrite <- Z_R_minus; simpl. + symmetry in Hk. field_simplify [Hk]. field. +Qed. + +Lemma cos_eq_0_1 (x:R) : + (exists k : Z, x = IZR k * PI + PI / 2) -> cos x = 0. +Proof. + rewrite cos_sin. intros (k,->). + replace (_ + _) with (IZR k * PI + PI) by field. + rewrite neg_sin, <- Ropp_0. apply Ropp_eq_compat. + apply sin_eq_0_1. now exists k. +Qed. + +Lemma sin_eq_O_2PI_0 (x:R) : + 0 <= x -> x <= 2 * PI -> sin x = 0 -> + x = 0 \/ x = PI \/ x = 2 * PI. +Proof. + intros Lo Hi Hx. destruct (sin_eq_0_0 x Hx) as (k,Hk). clear Hx. + destruct (Rtotal_order PI x) as [Hx|[Hx|Hx]]. + - right; right. + clear Lo. subst. + f_equal. change 2 with (IZR (- (-2))). f_equal. + apply Z.add_move_0_l. + apply one_IZR_lt1. + rewrite plus_IZR; simpl. + split. + + replace (-1) with (-2 + 1) by ring. + apply Rplus_lt_compat_l. + apply Rmult_lt_reg_r with PI; [apply PI_RGT_0|]. + now rewrite Rmult_1_l. + + apply Rle_lt_trans with 0; [|apply Rlt_0_1]. + replace 0 with (-2 + 2) by ring. + apply Rplus_le_compat_l. + apply Rmult_le_reg_r with PI; [apply PI_RGT_0|]. + trivial. + - right; left; auto. + - left. + clear Hi. subst. + replace 0 with (IZR 0 * PI) by (simpl; ring). f_equal. f_equal. + apply one_IZR_lt1. + split. + + apply Rlt_le_trans with 0; + [rewrite <- Ropp_0; apply Ropp_gt_lt_contravar, Rlt_0_1 | ]. + apply Rmult_le_reg_r with PI; [apply PI_RGT_0|]. + now rewrite Rmult_0_l. + + apply Rmult_lt_reg_r with PI; [apply PI_RGT_0|]. + now rewrite Rmult_1_l. +Qed. + +Lemma sin_eq_O_2PI_1 (x:R) : + 0 <= x -> x <= 2 * PI -> + x = 0 \/ x = PI \/ x = 2 * PI -> sin x = 0. +Proof. + intros _ _ [ -> |[ -> | -> ]]. + - now rewrite sin_0. + - now rewrite sin_PI. + - now rewrite sin_2PI. +Qed. + +Lemma cos_eq_0_2PI_0 (x:R) : + 0 <= x -> x <= 2 * PI -> cos x = 0 -> + x = PI / 2 \/ x = 3 * (PI / 2). +Proof. + intros Lo Hi Hx. + destruct (Rtotal_order x (3 * (PI / 2))) as [LT|[EQ|GT]]. + - rewrite cos_sin in Hx. + assert (Lo' : 0 <= PI / 2 + x). + { apply Rplus_le_le_0_compat. apply Rlt_le, PI2_RGT_0. trivial. } + assert (Hi' : PI / 2 + x <= 2 * PI). + { apply Rlt_le. + replace (2 * PI) with (PI / 2 + 3 * (PI / 2)) by field. + now apply Rplus_lt_compat_l. } + destruct (sin_eq_O_2PI_0 (PI / 2 + x) Lo' Hi' Hx) as [H|[H|H]]. + + exfalso. + apply (Rplus_le_compat_l (PI/2)) in Lo. + rewrite Rplus_0_r, H in Lo. + apply (Rlt_irrefl 0 (Rlt_le_trans 0 (PI / 2) 0 PI2_RGT_0 Lo)). + + left. + apply (Rplus_eq_compat_l (-(PI/2))) in H. + ring_simplify in H. rewrite H. field. + + right. + apply (Rplus_eq_compat_l (-(PI/2))) in H. + ring_simplify in H. rewrite H. field. + - now right. + - exfalso. + destruct (cos_eq_0_0 x Hx) as (k,Hk). clear Hx Lo. + subst. + assert (LT : (k < 2)%Z). + { apply lt_IZR. simpl. + apply (Rmult_lt_reg_r PI); [apply PI_RGT_0|]. + apply Rlt_le_trans with (IZR k * PI + PI/2); trivial. + rewrite <- (Rplus_0_r (IZR k * PI)) at 1. + apply Rplus_lt_compat_l. apply PI2_RGT_0. } + assert (GT' : (1 < k)%Z). + { apply lt_IZR. simpl. + apply (Rmult_lt_reg_r PI); [apply PI_RGT_0|rewrite Rmult_1_l]. + replace (3*(PI/2)) with (PI/2 + PI) in GT by field. + rewrite Rplus_comm in GT. + now apply Rplus_lt_reg_r in GT. } + omega. +Qed. + +Lemma cos_eq_0_2PI_1 (x:R) : + 0 <= x -> x <= 2 * PI -> + x = PI / 2 \/ x = 3 * (PI / 2) -> cos x = 0. +Proof. + intros Lo Hi [ -> | -> ]. + - now rewrite cos_PI2. + - now rewrite cos_3PI2. +Qed. diff --git a/theories/Reals/Rtrigo_alt.v b/theories/Reals/Rtrigo_alt.v index 3ab7d598..23b8e847 100644 --- a/theories/Reals/Rtrigo_alt.v +++ b/theories/Reals/Rtrigo_alt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* - a <= PI -> sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1)). + a <= 4 -> sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1)). Proof. intros; case (Req_dec a 0); intro Hyp_a. - rewrite Hyp_a; rewrite sin_0; split; right; unfold sin_approx in |- *; - apply sum_eq_R0 || (symmetry in |- *; apply sum_eq_R0); - intros; unfold sin_term in |- *; rewrite pow_add; - simpl in |- *; unfold Rdiv in |- *; rewrite Rmult_0_l; + rewrite Hyp_a; rewrite sin_0; split; right; unfold sin_approx; + apply sum_eq_R0 || (symmetry ; apply sum_eq_R0); + intros; unfold sin_term; rewrite pow_add; + simpl; unfold Rdiv; rewrite Rmult_0_l; ring. - unfold sin_approx in |- *; cut (0 < a). + unfold sin_approx; cut (0 < a). intro Hyp_a_pos. rewrite (decomp_sum (sin_term a) (2 * n + 1)). rewrite (decomp_sum (sin_term a) (2 * (n + 1))). @@ -75,22 +76,22 @@ Proof. - sum_f_R0 (tg_alt Un) (S (2 * n))). intro; apply H2. apply alternated_series_ineq. - unfold Un_decreasing, Un in |- *; intro; + unfold Un_decreasing, Un; intro; cut ((2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))). intro; rewrite H3. replace (a ^ S (S (2 * S n0 + 1))) with (a ^ (2 * S n0 + 1) * (a * a)). - unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l. + unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l. left; apply pow_lt; assumption. apply Rmult_le_reg_l with (INR (fact (S (S (2 * S n0 + 1))))). - rewrite <- H3; apply lt_INR_0; apply neq_O_lt; red in |- *; intro; - assert (H5 := sym_eq H4); elim (fact_neq_0 _ H5). + rewrite <- H3; apply lt_INR_0; apply neq_O_lt; red; intro; + assert (H5 := eq_sym H4); elim (fact_neq_0 _ H5). rewrite <- H3; rewrite (Rmult_comm (INR (fact (2 * S (S n0) + 1)))); rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; rewrite H3; do 2 rewrite fact_simpl; do 2 rewrite mult_INR; repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_r. do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; repeat rewrite S_INR; - simpl in |- *; + simpl; replace (((0 + 1 + 1) * (INR n0 + 1) + (0 + 1) + 1 + 1) * ((0 + 1 + 1) * (INR n0 + 1) + (0 + 1) + 1)) with @@ -100,12 +101,12 @@ Proof. replace 16 with (Rsqr 4); [ idtac | ring_Rsqr ]. replace (a * a) with (Rsqr a); [ idtac | reflexivity ]. apply Rsqr_incr_1. - apply Rle_trans with PI; [ assumption | apply PI_4 ]. + assumption. assumption. left; prove_sup0. rewrite <- (Rplus_0_r 16); replace 20 with (16 + 4); [ apply Rplus_le_compat_l; left; prove_sup0 | ring ]. - rewrite <- (Rplus_comm 20); pattern 20 at 1 in |- *; rewrite <- Rplus_0_r; + rewrite <- (Rplus_comm 20); pattern 20 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l. apply Rplus_le_le_0_compat. repeat apply Rmult_le_pos. @@ -118,14 +119,14 @@ Proof. replace 0 with (INR 0); [ apply le_INR; apply le_O_n | reflexivity ]. apply INR_fact_neq_0. apply INR_fact_neq_0. - simpl in |- *; ring. + simpl; ring. ring. - assert (H3 := cv_speed_pow_fact a); unfold Un in |- *; unfold Un_cv in H3; - unfold R_dist in H3; unfold Un_cv in |- *; unfold R_dist in |- *; + assert (H3 := cv_speed_pow_fact a); unfold Un; unfold Un_cv in H3; + unfold R_dist in H3; unfold Un_cv; unfold R_dist; intros; elim (H3 eps H4); intros N H5. exists N; intros; apply H5. replace (2 * S n0 + 1)%nat with (S (2 * S n0)). - unfold ge in |- *; apply le_trans with (2 * S n0)%nat. + unfold ge; apply le_trans with (2 * S n0)%nat. apply le_trans with (2 * S N)%nat. apply le_trans with (2 * N)%nat. apply le_n_2n. @@ -136,49 +137,49 @@ Proof. assert (X := exist_sin (Rsqr a)); elim X; intros. cut (x = sin a / a). intro; rewrite H3 in p; unfold sin_in in p; unfold infinite_sum in p; - unfold R_dist in p; unfold Un_cv in |- *; unfold R_dist in |- *; + unfold R_dist in p; unfold Un_cv; unfold R_dist; intros. cut (0 < eps / Rabs a). intro; elim (p _ H5); intros N H6. exists N; intros. replace (sum_f_R0 (tg_alt Un) n0) with (a * (1 - sum_f_R0 (fun i:nat => sin_n i * Rsqr a ^ i) (S n0))). - unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r; + unfold Rminus; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r; rewrite Ropp_plus_distr; rewrite Ropp_involutive; repeat rewrite Rplus_assoc; rewrite (Rplus_comm a); rewrite (Rplus_comm (- a)); repeat rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; apply Rmult_lt_reg_l with (/ Rabs a). apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption. - pattern (/ Rabs a) at 1 in |- *; rewrite <- (Rabs_Rinv a Hyp_a). + pattern (/ Rabs a) at 1; rewrite <- (Rabs_Rinv a Hyp_a). rewrite <- Rabs_mult; rewrite Rmult_plus_distr_l; rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_l | assumption ]; rewrite (Rmult_comm (/ a)); rewrite (Rmult_comm (/ Rabs a)); rewrite <- Rabs_Ropp; rewrite Ropp_plus_distr; rewrite Ropp_involutive; - unfold Rminus, Rdiv in H6; apply H6; unfold ge in |- *; + unfold Rminus, Rdiv in H6; apply H6; unfold ge; apply le_trans with n0; [ exact H7 | apply le_n_Sn ]. rewrite (decomp_sum (fun i:nat => sin_n i * Rsqr a ^ i) (S n0)). replace (sin_n 0) with 1. - simpl in |- *; rewrite Rmult_1_r; unfold Rminus in |- *; + simpl; rewrite Rmult_1_r; unfold Rminus; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_l; rewrite Ropp_mult_distr_r_reverse; rewrite <- Ropp_mult_distr_l_reverse; rewrite scal_sum; apply sum_eq. - intros; unfold sin_n, Un, tg_alt in |- *; + intros; unfold sin_n, Un, tg_alt; replace ((-1) ^ S i) with (- (-1) ^ i). replace (a ^ (2 * S i + 1)) with (Rsqr a * Rsqr a ^ i * a). - unfold Rdiv in |- *; ring. - rewrite pow_add; rewrite pow_Rsqr; simpl in |- *; ring. - simpl in |- *; ring. - unfold sin_n in |- *; unfold Rdiv in |- *; simpl in |- *; rewrite Rinv_1; + unfold Rdiv; ring. + rewrite pow_add; rewrite pow_Rsqr; simpl; ring. + simpl; ring. + unfold sin_n; unfold Rdiv; simpl; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity. apply lt_O_Sn. - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + unfold Rdiv; apply Rmult_lt_0_compat. assumption. apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption. - unfold sin in |- *; case (exist_sin (Rsqr a)). + unfold sin; case (exist_sin (Rsqr a)). intros; cut (x = x0). - intro; rewrite H3; unfold Rdiv in |- *. - symmetry in |- *; apply Rinv_r_simpl_m; assumption. + intro; rewrite H3; unfold Rdiv. + symmetry ; apply Rinv_r_simpl_m; assumption. unfold sin_in in p; unfold sin_in in s; eapply uniqueness_sum. apply p. apply s. @@ -187,16 +188,16 @@ Proof. split; apply Ropp_le_contravar; assumption. replace (- sum_f_R0 (tg_alt Un) (S (2 * n))) with (-1 * sum_f_R0 (tg_alt Un) (S (2 * n))); [ rewrite scal_sum | ring ]. - apply sum_eq; intros; unfold sin_term, Un, tg_alt in |- *; + apply sum_eq; intros; unfold sin_term, Un, tg_alt; replace ((-1) ^ S i) with (-1 * (-1) ^ i). - unfold Rdiv in |- *; ring. + unfold Rdiv; ring. reflexivity. replace (- sum_f_R0 (tg_alt Un) (2 * n)) with (-1 * sum_f_R0 (tg_alt Un) (2 * n)); [ rewrite scal_sum | ring ]. apply sum_eq; intros. - unfold sin_term, Un, tg_alt in |- *; + unfold sin_term, Un, tg_alt; replace ((-1) ^ S i) with (-1 * (-1) ^ i). - unfold Rdiv in |- *; ring. + unfold Rdiv; ring. reflexivity. replace (2 * (n + 1))%nat with (S (S (2 * n))). reflexivity. @@ -212,7 +213,7 @@ Proof. apply Rplus_le_reg_l with (- a). rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l; rewrite (Rplus_comm (- a)); apply H3. - unfold sin_term in |- *; simpl in |- *; unfold Rdiv in |- *; rewrite Rinv_1; + unfold sin_term; simpl; unfold Rdiv; rewrite Rinv_1; ring. replace (2 * (n + 1))%nat with (S (S (2 * n))). apply lt_O_Sn. @@ -220,27 +221,26 @@ Proof. replace (2 * n + 1)%nat with (S (2 * n)). apply lt_O_Sn. ring. - inversion H; [ assumption | elim Hyp_a; symmetry in |- *; assumption ]. + inversion H; [ assumption | elim Hyp_a; symmetry ; assumption ]. Qed. (**********) -Lemma cos_bound : +Lemma pre_cos_bound : forall (a:R) (n:nat), - - PI / 2 <= a -> - a <= PI / 2 -> + - 2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1)). Proof. cut ((forall (a:R) (n:nat), 0 <= a -> - a <= PI / 2 -> + a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a:R) (n:nat), - - PI / 2 <= a -> - a <= PI / 2 -> + - 2 <= a -> + a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))). intros H a n; apply H. - intros; unfold cos_approx in |- *. + intros; unfold cos_approx. rewrite (decomp_sum (cos_term a0) (2 * n0 + 1)). rewrite (decomp_sum (cos_term a0) (2 * (n0 + 1))). replace (cos_term a0 0) with 1. @@ -266,21 +266,21 @@ Proof. - sum_f_R0 (tg_alt Un) (S (2 * n0))). intro; apply H3. apply alternated_series_ineq. - unfold Un_decreasing in |- *; intro; unfold Un in |- *. + unfold Un_decreasing; intro; unfold Un. cut ((2 * S (S n1))%nat = S (S (2 * S n1))). intro; rewrite H4; replace (a0 ^ S (S (2 * S n1))) with (a0 ^ (2 * S n1) * (a0 * a0)). - unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l. + unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l. apply pow_le; assumption. apply Rmult_le_reg_l with (INR (fact (S (S (2 * S n1))))). - rewrite <- H4; apply lt_INR_0; apply neq_O_lt; red in |- *; intro; - assert (H6 := sym_eq H5); elim (fact_neq_0 _ H6). + rewrite <- H4; apply lt_INR_0; apply neq_O_lt; red; intro; + assert (H6 := eq_sym H5); elim (fact_neq_0 _ H6). rewrite <- H4; rewrite (Rmult_comm (INR (fact (2 * S (S n1))))); rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; rewrite H4; do 2 rewrite fact_simpl; do 2 rewrite mult_INR; repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_r; do 2 rewrite S_INR; rewrite mult_INR; repeat rewrite S_INR; - simpl in |- *; + simpl; replace (((0 + 1 + 1) * (INR n1 + 1) + 1 + 1) * ((0 + 1 + 1) * (INR n1 + 1) + 1)) with (4 * INR n1 * INR n1 + 14 * INR n1 + 12); [ idtac | ring ]. @@ -289,18 +289,13 @@ Proof. replace 4 with (Rsqr 2); [ idtac | ring_Rsqr ]. replace (a0 * a0) with (Rsqr a0); [ idtac | reflexivity ]. apply Rsqr_incr_1. - apply Rle_trans with (PI / 2). assumption. - unfold Rdiv in |- *; apply Rmult_le_reg_l with 2. - prove_sup0. - rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m. - replace 4 with 4; [ apply PI_4 | ring ]. discrR. assumption. left; prove_sup0. - pattern 4 at 1 in |- *; rewrite <- Rplus_0_r; replace 12 with (4 + 8); + pattern 4 at 1; rewrite <- Rplus_0_r; replace 12 with (4 + 8); [ apply Rplus_le_compat_l; left; prove_sup0 | ring ]. - rewrite <- (Rplus_comm 12); pattern 12 at 1 in |- *; rewrite <- Rplus_0_r; + rewrite <- (Rplus_comm 12); pattern 12 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l. apply Rplus_le_le_0_compat. repeat apply Rmult_le_pos. @@ -313,12 +308,12 @@ Proof. replace 0 with (INR 0); [ apply le_INR; apply le_O_n | reflexivity ]. apply INR_fact_neq_0. apply INR_fact_neq_0. - simpl in |- *; ring. + simpl; ring. ring. - assert (H4 := cv_speed_pow_fact a0); unfold Un in |- *; unfold Un_cv in H4; - unfold R_dist in H4; unfold Un_cv in |- *; unfold R_dist in |- *; + assert (H4 := cv_speed_pow_fact a0); unfold Un; unfold Un_cv in H4; + unfold R_dist in H4; unfold Un_cv; unfold R_dist; intros; elim (H4 eps H5); intros N H6; exists N; intros. - apply H6; unfold ge in |- *; apply le_trans with (2 * S N)%nat. + apply H6; unfold ge; apply le_trans with (2 * S N)%nat. apply le_trans with (2 * N)%nat. apply le_n_2n. apply (fun m n p:nat => mult_le_compat_l p n m); apply le_n_Sn. @@ -326,40 +321,40 @@ Proof. assert (X := exist_cos (Rsqr a0)); elim X; intros. cut (x = cos a0). intro; rewrite H4 in p; unfold cos_in in p; unfold infinite_sum in p; - unfold R_dist in p; unfold Un_cv in |- *; unfold R_dist in |- *; + unfold R_dist in p; unfold Un_cv; unfold R_dist; intros. elim (p _ H5); intros N H6. exists N; intros. replace (sum_f_R0 (tg_alt Un) n1) with (1 - sum_f_R0 (fun i:nat => cos_n i * Rsqr a0 ^ i) (S n1)). - unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite Ropp_involutive; + unfold Rminus; rewrite Ropp_plus_distr; rewrite Ropp_involutive; repeat rewrite Rplus_assoc; rewrite (Rplus_comm 1); rewrite (Rplus_comm (-1)); repeat rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; rewrite <- Rabs_Ropp; rewrite Ropp_plus_distr; rewrite Ropp_involutive; unfold Rminus in H6; apply H6. - unfold ge in |- *; apply le_trans with n1. + unfold ge; apply le_trans with n1. exact H7. apply le_n_Sn. rewrite (decomp_sum (fun i:nat => cos_n i * Rsqr a0 ^ i) (S n1)). replace (cos_n 0) with 1. - simpl in |- *; rewrite Rmult_1_r; unfold Rminus in |- *; + simpl; rewrite Rmult_1_r; unfold Rminus; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_l; replace (- sum_f_R0 (fun i:nat => cos_n (S i) * (Rsqr a0 * Rsqr a0 ^ i)) n1) with (-1 * sum_f_R0 (fun i:nat => cos_n (S i) * (Rsqr a0 * Rsqr a0 ^ i)) n1); [ idtac | ring ]; rewrite scal_sum; apply sum_eq; - intros; unfold cos_n, Un, tg_alt in |- *. + intros; unfold cos_n, Un, tg_alt. replace ((-1) ^ S i) with (- (-1) ^ i). replace (a0 ^ (2 * S i)) with (Rsqr a0 * Rsqr a0 ^ i). - unfold Rdiv in |- *; ring. + unfold Rdiv; ring. rewrite pow_Rsqr; reflexivity. - simpl in |- *; ring. - unfold cos_n in |- *; unfold Rdiv in |- *; simpl in |- *; rewrite Rinv_1; + simpl; ring. + unfold cos_n; unfold Rdiv; simpl; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity. apply lt_O_Sn. - unfold cos in |- *; case (exist_cos (Rsqr a0)); intros; unfold cos_in in p; + unfold cos; case (exist_cos (Rsqr a0)); intros; unfold cos_in in p; unfold cos_in in c; eapply uniqueness_sum. apply p. apply c. @@ -368,15 +363,15 @@ Proof. split; apply Ropp_le_contravar; assumption. replace (- sum_f_R0 (tg_alt Un) (S (2 * n0))) with (-1 * sum_f_R0 (tg_alt Un) (S (2 * n0))); [ rewrite scal_sum | ring ]. - apply sum_eq; intros; unfold cos_term, Un, tg_alt in |- *; + apply sum_eq; intros; unfold cos_term, Un, tg_alt; replace ((-1) ^ S i) with (-1 * (-1) ^ i). - unfold Rdiv in |- *; ring. + unfold Rdiv; ring. reflexivity. replace (- sum_f_R0 (tg_alt Un) (2 * n0)) with (-1 * sum_f_R0 (tg_alt Un) (2 * n0)); [ rewrite scal_sum | ring ]; - apply sum_eq; intros; unfold cos_term, Un, tg_alt in |- *; + apply sum_eq; intros; unfold cos_term, Un, tg_alt; replace ((-1) ^ S i) with (-1 * (-1) ^ i). - unfold Rdiv in |- *; ring. + unfold Rdiv; ring. reflexivity. replace (2 * (n0 + 1))%nat with (S (S (2 * n0))). reflexivity. @@ -391,7 +386,7 @@ Proof. apply Rplus_le_reg_l with (-1). rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l; rewrite (Rplus_comm (-1)); apply H4. - unfold cos_term in |- *; simpl in |- *; unfold Rdiv in |- *; rewrite Rinv_1; + unfold cos_term; simpl; unfold Rdiv; rewrite Rinv_1; ring. replace (2 * (n0 + 1))%nat with (S (S (2 * n0))). apply lt_O_Sn. @@ -407,11 +402,9 @@ Proof. intro; cut (forall (x:R) (n:nat), cos_approx x n = cos_approx (- x) n). intro; rewrite H3; rewrite (H3 a (2 * (n + 1))%nat); rewrite cos_sym; apply H. left; assumption. - rewrite <- (Ropp_involutive (PI / 2)); apply Ropp_le_contravar; - unfold Rdiv in |- *; unfold Rdiv in H0; rewrite <- Ropp_mult_distr_l_reverse; - exact H0. - intros; unfold cos_approx in |- *; apply sum_eq; intros; - unfold cos_term in |- *; do 2 rewrite pow_Rsqr; rewrite Rsqr_neg; - unfold Rdiv in |- *; reflexivity. + rewrite <- (Ropp_involutive 2); apply Ropp_le_contravar; exact H0. + intros; unfold cos_approx; apply sum_eq; intros; + unfold cos_term; do 2 rewrite pow_Rsqr; rewrite Rsqr_neg; + unfold Rdiv; reflexivity. apply Ropp_0_gt_lt_contravar; assumption. Qed. diff --git a/theories/Reals/Rtrigo_calc.v b/theories/Reals/Rtrigo_calc.v index 587c2424..a1a3b007 100644 --- a/theories/Reals/Rtrigo_calc.v +++ b/theories/Reals/Rtrigo_calc.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0); - [ discrR | unfold Rdiv in |- *; rewrite Rinv_mult_distr; try ring ]... + [ discrR | unfold Rdiv; rewrite Rinv_mult_distr; try ring ]... Qed. Lemma sin_PI3_cos_PI6 : sin (PI / 3) = cos (PI / 6). @@ -51,7 +51,7 @@ Proof with trivial. assert (H2 : 2 <> 0); [ discrR | idtac ]... apply Rmult_eq_reg_l with 6... rewrite Rmult_minus_distr_l; repeat rewrite (Rmult_comm 6)... - unfold Rdiv in |- *; repeat rewrite Rmult_assoc... + unfold Rdiv; repeat rewrite Rmult_assoc... rewrite <- Rinv_l_sym... rewrite (Rmult_comm (/ 3)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym... rewrite (Rmult_comm PI); repeat rewrite Rmult_1_r; @@ -68,7 +68,7 @@ Proof with trivial. assert (H2 : 2 <> 0); [ discrR | idtac ]... apply Rmult_eq_reg_l with 6... rewrite Rmult_minus_distr_l; repeat rewrite (Rmult_comm 6)... - unfold Rdiv in |- *; repeat rewrite Rmult_assoc... + unfold Rdiv; repeat rewrite Rmult_assoc... rewrite <- Rinv_l_sym... rewrite (Rmult_comm (/ 3)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym... rewrite (Rmult_comm PI); repeat rewrite Rmult_1_r; @@ -78,13 +78,13 @@ Qed. Lemma PI6_RGT_0 : 0 < PI / 6. Proof. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ]. Qed. Lemma PI6_RLT_PI2 : PI / 6 < PI / 2. Proof. - unfold Rdiv in |- *; apply Rmult_lt_compat_l. + unfold Rdiv; apply Rmult_lt_compat_l. apply PI_RGT_0. apply Rinv_lt_contravar; prove_sup. Qed. @@ -97,11 +97,11 @@ Proof with trivial. (2 * sin (PI / 6) * cos (PI / 6))... rewrite <- sin_2a; replace (2 * (PI / 6)) with (PI / 3)... rewrite sin_PI3_cos_PI6... - unfold Rdiv in |- *; rewrite Rmult_1_l; rewrite Rmult_assoc; - pattern 2 at 2 in |- *; rewrite (Rmult_comm 2); rewrite Rmult_assoc; + unfold Rdiv; rewrite Rmult_1_l; rewrite Rmult_assoc; + pattern 2 at 2; rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym... rewrite Rmult_1_r... - unfold Rdiv in |- *; rewrite Rinv_mult_distr... + unfold Rdiv; rewrite Rinv_mult_distr... rewrite (Rmult_comm (/ 2)); rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym... rewrite Rmult_1_r... @@ -119,7 +119,7 @@ Lemma sqrt2_neq_0 : sqrt 2 <> 0. Proof. assert (Hyp : 0 < 2); [ prove_sup0 - | generalize (Rlt_le 0 2 Hyp); intro H1; red in |- *; intro H2; + | generalize (Rlt_le 0 2 Hyp); intro H1; red; intro H2; generalize (sqrt_eq_0 2 H1 H2); intro H; absurd (2 = 0); [ discrR | assumption ] ]. Qed. @@ -137,7 +137,7 @@ Proof. [ discrR | assert (Hyp : 0 < 3); [ prove_sup0 - | generalize (Rlt_le 0 3 Hyp); intro H1; red in |- *; intro H2; + | generalize (Rlt_le 0 3 Hyp); intro H1; red; intro H2; generalize (sqrt_eq_0 3 H1 H2); intro H; absurd (3 = 0); [ discrR | assumption ] ] ]. Qed. @@ -150,7 +150,7 @@ Proof. intro H2; [ assumption | absurd (0 = sqrt 2); - [ apply (sym_not_eq (A:=R)); apply sqrt2_neq_0 | assumption ] ] ]. + [ apply (not_eq_sym (A:=R)); apply sqrt2_neq_0 | assumption ] ] ]. Qed. Lemma Rlt_sqrt3_0 : 0 < sqrt 3. @@ -162,7 +162,7 @@ Proof. [ prove_sup0 | generalize (Rlt_le 0 3 Hyp2); intro H2; generalize (lt_INR_0 1 (neq_O_lt 1 H0)); - unfold INR in |- *; intro H3; + unfold INR; intro H3; generalize (Rplus_lt_compat_l 2 0 1 H3); rewrite Rplus_comm; rewrite Rplus_0_l; replace (2 + 1) with 3; [ intro H4; generalize (sqrt_lt_1 2 3 H1 H2 H4); clear H3; intro H3; @@ -173,7 +173,7 @@ Qed. Lemma PI4_RGT_0 : 0 < PI / 4. Proof. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ]. Qed. @@ -189,17 +189,17 @@ Proof with trivial. rewrite Rsqr_div... rewrite Rsqr_1; rewrite Rsqr_sqrt... assert (H : 2 <> 0); [ discrR | idtac ]... - unfold Rsqr in |- *; pattern (cos (PI / 4)) at 1 in |- *; + unfold Rsqr; pattern (cos (PI / 4)) at 1; rewrite <- sin_cos_PI4; replace (sin (PI / 4) * cos (PI / 4)) with (1 / 2 * (2 * sin (PI / 4) * cos (PI / 4)))... rewrite <- sin_2a; replace (2 * (PI / 4)) with (PI / 2)... rewrite sin_PI2... apply Rmult_1_r... - unfold Rdiv in |- *; rewrite (Rmult_comm 2); rewrite Rinv_mult_distr... + unfold Rdiv; rewrite (Rmult_comm 2); rewrite Rinv_mult_distr... repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym... rewrite Rmult_1_r... - unfold Rdiv in |- *; rewrite Rmult_1_l; repeat rewrite <- Rmult_assoc... + unfold Rdiv; rewrite Rmult_1_l; repeat rewrite <- Rmult_assoc... rewrite <- Rinv_l_sym... rewrite Rmult_1_l... left; prove_sup... @@ -213,18 +213,18 @@ Qed. Lemma tan_PI4 : tan (PI / 4) = 1. Proof. - unfold tan in |- *; rewrite sin_cos_PI4. - unfold Rdiv in |- *; apply Rinv_r. - change (cos (PI / 4) <> 0) in |- *; rewrite cos_PI4; apply R1_sqrt2_neq_0. + unfold tan; rewrite sin_cos_PI4. + unfold Rdiv; apply Rinv_r. + change (cos (PI / 4) <> 0); rewrite cos_PI4; apply R1_sqrt2_neq_0. Qed. Lemma cos3PI4 : cos (3 * (PI / 4)) = -1 / sqrt 2. Proof with trivial. replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4))... rewrite cos_shift; rewrite sin_neg; rewrite sin_PI4... - unfold Rdiv in |- *; rewrite Ropp_mult_distr_l_reverse... - unfold Rminus in |- *; rewrite Ropp_involutive; pattern PI at 1 in |- *; - rewrite double_var; unfold Rdiv in |- *; rewrite Rmult_plus_distr_r; + unfold Rdiv; rewrite Ropp_mult_distr_l_reverse... + unfold Rminus; rewrite Ropp_involutive; pattern PI at 1; + rewrite double_var; unfold Rdiv; rewrite Rmult_plus_distr_r; repeat rewrite Rmult_assoc; rewrite <- Rinv_mult_distr; [ ring | discrR | discrR ]... Qed. @@ -233,8 +233,8 @@ Lemma sin3PI4 : sin (3 * (PI / 4)) = 1 / sqrt 2. Proof with trivial. replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4))... rewrite sin_shift; rewrite cos_neg; rewrite cos_PI4... - unfold Rminus in |- *; rewrite Ropp_involutive; pattern PI at 1 in |- *; - rewrite double_var; unfold Rdiv in |- *; rewrite Rmult_plus_distr_r; + unfold Rminus; rewrite Ropp_involutive; pattern PI at 1; + rewrite double_var; unfold Rdiv; rewrite Rmult_plus_distr_r; repeat rewrite Rmult_assoc; rewrite <- Rinv_mult_distr; [ ring | discrR | discrR ]... Qed. @@ -251,8 +251,8 @@ Proof with trivial. assert (H : 2 <> 0); [ discrR | idtac ]... assert (H1 : 4 <> 0); [ apply prod_neq_R0 | idtac ]... rewrite Rsqr_div... - rewrite cos2; unfold Rsqr in |- *; rewrite sin_PI6; rewrite sqrt_def... - unfold Rdiv in |- *; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4... + rewrite cos2; unfold Rsqr; rewrite sin_PI6; rewrite sqrt_def... + unfold Rdiv; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4... rewrite Rmult_minus_distr_l; rewrite (Rmult_comm 3); repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym... rewrite Rmult_1_l; rewrite Rmult_1_r... @@ -265,14 +265,14 @@ Qed. Lemma tan_PI6 : tan (PI / 6) = 1 / sqrt 3. Proof. - unfold tan in |- *; rewrite sin_PI6; rewrite cos_PI6; unfold Rdiv in |- *; + unfold tan; rewrite sin_PI6; rewrite cos_PI6; unfold Rdiv; repeat rewrite Rmult_1_l; rewrite Rinv_mult_distr. rewrite Rinv_involutive. rewrite (Rmult_comm (/ 2)); rewrite Rmult_assoc; rewrite <- Rinv_r_sym. apply Rmult_1_r. discrR. discrR. - red in |- *; intro; assert (H1 := Rlt_sqrt3_0); rewrite H in H1; + red; intro; assert (H1 := Rlt_sqrt3_0); rewrite H in H1; elim (Rlt_irrefl 0 H1). apply Rinv_neq_0_compat; discrR. Qed. @@ -289,7 +289,7 @@ Qed. Lemma tan_PI3 : tan (PI / 3) = sqrt 3. Proof. - unfold tan in |- *; rewrite sin_PI3; rewrite cos_PI3; unfold Rdiv in |- *; + unfold tan; rewrite sin_PI3; rewrite cos_PI3; unfold Rdiv; rewrite Rmult_1_l; rewrite Rinv_involutive. rewrite Rmult_assoc; rewrite <- Rinv_l_sym. apply Rmult_1_r. @@ -300,7 +300,7 @@ Qed. Lemma sin_2PI3 : sin (2 * (PI / 3)) = sqrt 3 / 2. Proof. rewrite double; rewrite sin_plus; rewrite sin_PI3; rewrite cos_PI3; - unfold Rdiv in |- *; repeat rewrite Rmult_1_l; rewrite (Rmult_comm (/ 2)); + unfold Rdiv; repeat rewrite Rmult_1_l; rewrite (Rmult_comm (/ 2)); repeat rewrite <- Rmult_assoc; rewrite double_var; reflexivity. Qed. @@ -310,12 +310,12 @@ Proof with trivial. assert (H : 2 <> 0); [ discrR | idtac ]... assert (H0 : 4 <> 0); [ apply prod_neq_R0 | idtac ]... rewrite double; rewrite cos_plus; rewrite sin_PI3; rewrite cos_PI3; - unfold Rdiv in |- *; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4... + unfold Rdiv; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4... rewrite Rmult_minus_distr_l; repeat rewrite Rmult_assoc; rewrite (Rmult_comm 2)... repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym... rewrite Rmult_1_r; rewrite <- Rinv_r_sym... - pattern 2 at 4 in |- *; rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; + pattern 2 at 4; rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym... rewrite Rmult_1_r; rewrite Ropp_mult_distr_r_reverse; rewrite Rmult_1_r... rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym... @@ -329,7 +329,7 @@ Qed. Lemma tan_2PI3 : tan (2 * (PI / 3)) = - sqrt 3. Proof with trivial. assert (H : 2 <> 0); [ discrR | idtac ]... - unfold tan in |- *; rewrite sin_2PI3; rewrite cos_2PI3; unfold Rdiv in |- *; + unfold tan; rewrite sin_2PI3; rewrite cos_2PI3; unfold Rdiv; rewrite Ropp_mult_distr_l_reverse; rewrite Rmult_1_l; rewrite <- Ropp_inv_permute... rewrite Rinv_involutive... @@ -341,21 +341,21 @@ Qed. Lemma cos_5PI4 : cos (5 * (PI / 4)) = -1 / sqrt 2. Proof with trivial. replace (5 * (PI / 4)) with (PI / 4 + PI)... - rewrite neg_cos; rewrite cos_PI4; unfold Rdiv in |- *; + rewrite neg_cos; rewrite cos_PI4; unfold Rdiv; rewrite Ropp_mult_distr_l_reverse... - pattern PI at 2 in |- *; rewrite double_var; pattern PI at 2 3 in |- *; + pattern PI at 2; rewrite double_var; pattern PI at 2 3; rewrite double_var; assert (H : 2 <> 0); - [ discrR | unfold Rdiv in |- *; repeat rewrite Rinv_mult_distr; try ring ]... + [ discrR | unfold Rdiv; repeat rewrite Rinv_mult_distr; try ring ]... Qed. Lemma sin_5PI4 : sin (5 * (PI / 4)) = -1 / sqrt 2. Proof with trivial. replace (5 * (PI / 4)) with (PI / 4 + PI)... - rewrite neg_sin; rewrite sin_PI4; unfold Rdiv in |- *; + rewrite neg_sin; rewrite sin_PI4; unfold Rdiv; rewrite Ropp_mult_distr_l_reverse... - pattern PI at 2 in |- *; rewrite double_var; pattern PI at 2 3 in |- *; + pattern PI at 2; rewrite double_var; pattern PI at 2 3; rewrite double_var; assert (H : 2 <> 0); - [ discrR | unfold Rdiv in |- *; repeat rewrite Rinv_mult_distr; try ring ]... + [ discrR | unfold Rdiv; repeat rewrite Rinv_mult_distr; try ring ]... Qed. Lemma sin_cos5PI4 : cos (5 * (PI / 4)) = sin (5 * (PI / 4)). @@ -367,7 +367,7 @@ Lemma Rgt_3PI2_0 : 0 < 3 * (PI / 2). Proof. apply Rmult_lt_0_compat; [ prove_sup0 - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ] ]. Qed. @@ -382,7 +382,7 @@ Proof. generalize (Rplus_lt_compat_l PI 0 (PI / 2) H1); replace (PI + PI / 2) with (3 * (PI / 2)). rewrite Rplus_0_r; intro H2; assumption. - pattern PI at 2 in |- *; rewrite double_var; ring. + pattern PI at 2; rewrite double_var; ring. Qed. Lemma Rlt_3PI2_2PI : 3 * (PI / 2) < 2 * PI. @@ -391,7 +391,7 @@ Proof. generalize (Rplus_lt_compat_l (3 * (PI / 2)) 0 (PI / 2) H1); replace (3 * (PI / 2) + PI / 2) with (2 * PI). rewrite Rplus_0_r; intro H2; assumption. - rewrite double; pattern PI at 1 2 in |- *; rewrite double_var; ring. + rewrite double; pattern PI at 1 2; rewrite double_var; ring. Qed. (***************************************************************) @@ -404,13 +404,13 @@ Definition toDeg (x:R) : R := x * plat * / PI. Lemma rad_deg : forall x:R, toRad (toDeg x) = x. Proof. - intro; unfold toRad, toDeg in |- *; + intro; unfold toRad, toDeg; replace (x * plat * / PI * PI * / plat) with (x * (plat * / plat) * (PI * / PI)); [ idtac | ring ]. repeat rewrite <- Rinv_r_sym. ring. apply PI_neq0. - unfold plat in |- *; discrR. + unfold plat; discrR. Qed. Lemma toRad_inj : forall x y:R, toRad x = toRad y -> x = y. @@ -420,7 +420,7 @@ Proof. apply Rmult_eq_reg_l with (/ plat). rewrite <- (Rmult_comm (x * PI)); rewrite <- (Rmult_comm (y * PI)); assumption. - apply Rinv_neq_0_compat; unfold plat in |- *; discrR. + apply Rinv_neq_0_compat; unfold plat; discrR. apply PI_neq0. Qed. @@ -435,7 +435,7 @@ Definition tand (x:R) : R := tan (toRad x). Lemma Rsqr_sin_cos_d_one : forall x:R, Rsqr (sind x) + Rsqr (cosd x) = 1. Proof. - intro x; unfold sind in |- *; unfold cosd in |- *; apply sin2_cos2. + intro x; unfold sind; unfold cosd; apply sin2_cos2. Qed. (***************************************************) @@ -447,10 +447,10 @@ Proof. intros; case (Rtotal_order 0 a); intro. left; apply sin_lb_gt_0; assumption. elim H1; intro. - rewrite <- H2; unfold sin_lb in |- *; unfold sin_approx in |- *; - unfold sum_f_R0 in |- *; unfold sin_term in |- *; + rewrite <- H2; unfold sin_lb; unfold sin_approx; + unfold sum_f_R0; unfold sin_term; repeat rewrite pow_ne_zero. - unfold Rdiv in |- *; repeat rewrite Rmult_0_l; repeat rewrite Rmult_0_r; + unfold Rdiv; repeat rewrite Rmult_0_l; repeat rewrite Rmult_0_r; repeat rewrite Rplus_0_r; right; reflexivity. discriminate. discriminate. diff --git a/theories/Reals/Rtrigo_def.v b/theories/Reals/Rtrigo_def.v index c6493135..f3e69037 100644 --- a/theories/Reals/Rtrigo_def.v +++ b/theories/Reals/Rtrigo_def.v @@ -1,13 +1,13 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* / INR (fact n)) x exp_cof_no_R0 Alembert_exp). - unfold Pser, exp_in in |- *. + unfold Pser, exp_in. trivial. Defined. @@ -36,24 +36,24 @@ Definition exp (x:R) : R := proj1_sig (exist_exp x). Lemma pow_i : forall i:nat, (0 < i)%nat -> 0 ^ i = 0. Proof. intros; apply pow_ne_zero. - red in |- *; intro; rewrite H0 in H; elim (lt_irrefl _ H). + red; intro; rewrite H0 in H; elim (lt_irrefl _ H). Qed. Lemma exist_exp0 : { l:R | exp_in 0 l }. Proof. exists 1. - unfold exp_in in |- *; unfold infinite_sum in |- *; intros. + unfold exp_in; unfold infinite_sum; intros. exists 0%nat. intros; replace (sum_f_R0 (fun i:nat => / INR (fact i) * 0 ^ i) n) with 1. - unfold R_dist in |- *; replace (1 - 1) with 0; + unfold R_dist; replace (1 - 1) with 0; [ rewrite Rabs_R0; assumption | ring ]. induction n as [| n Hrecn]. - simpl in |- *; rewrite Rinv_1; ring. + simpl; rewrite Rinv_1; ring. rewrite tech5. rewrite <- Hrecn. - simpl in |- *. + simpl. ring. - unfold ge in |- *; apply le_O_n. + unfold ge; apply le_O_n. Defined. (* Value of [exp 0] *) @@ -61,7 +61,7 @@ Lemma exp_0 : exp 0 = 1. Proof. cut (exp_in 0 (exp 0)). cut (exp_in 0 1). - unfold exp_in in |- *; intros; eapply uniqueness_sum. + unfold exp_in; intros; eapply uniqueness_sum. apply H0. apply H. exact (proj2_sig exist_exp0). @@ -77,14 +77,14 @@ Definition tanh (x:R) : R := sinh x / cosh x. Lemma cosh_0 : cosh 0 = 1. Proof. - unfold cosh in |- *; rewrite Ropp_0; rewrite exp_0. - unfold Rdiv in |- *; rewrite <- Rinv_r_sym; [ reflexivity | discrR ]. + unfold cosh; rewrite Ropp_0; rewrite exp_0. + unfold Rdiv; rewrite <- Rinv_r_sym; [ reflexivity | discrR ]. Qed. Lemma sinh_0 : sinh 0 = 0. Proof. - unfold sinh in |- *; rewrite Ropp_0; rewrite exp_0. - unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r; apply Rmult_0_l. + unfold sinh; rewrite Ropp_0; rewrite exp_0. + unfold Rminus, Rdiv; rewrite Rplus_opp_r; apply Rmult_0_l. Qed. Definition cos_n (n:nat) : R := (-1) ^ n / INR (fact (2 * n)). @@ -92,8 +92,8 @@ Definition cos_n (n:nat) : R := (-1) ^ n / INR (fact (2 * n)). Lemma simpl_cos_n : forall n:nat, cos_n (S n) / cos_n n = - / INR (2 * S n * (2 * n + 1)). Proof. - intro; unfold cos_n in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ]. - rewrite pow_add; unfold Rdiv in |- *; rewrite Rinv_mult_distr. + intro; unfold cos_n; replace (S n) with (n + 1)%nat; [ idtac | ring ]. + rewrite pow_add; unfold Rdiv; rewrite Rinv_mult_distr. rewrite Rinv_involutive. replace ((-1) ^ n * (-1) ^ 1 * / INR (fact (2 * (n + 1))) * @@ -101,7 +101,7 @@ Proof. ((-1) ^ n * / (-1) ^ n * / INR (fact (2 * (n + 1))) * INR (fact (2 * n)) * (-1) ^ 1); [ idtac | ring ]. rewrite <- Rinv_r_sym. - rewrite Rmult_1_l; unfold pow in |- *; rewrite Rmult_1_r. + rewrite Rmult_1_l; unfold pow; rewrite Rmult_1_r. replace (2 * (n + 1))%nat with (S (S (2 * n))); [ idtac | ring ]. do 2 rewrite fact_simpl; do 2 rewrite mult_INR; repeat rewrite Rinv_mult_distr; try (apply not_O_INR; discriminate). @@ -130,29 +130,29 @@ Proof. intro; cut (0 <= up (/ eps))%Z. intro; assert (H2 := IZN _ H1); elim H2; intros; exists (max x 1). split. - cut (0 < IZR (Z_of_nat x)). - intro; rewrite INR_IZR_INZ; apply Rle_lt_trans with (/ IZR (Z_of_nat x)). - apply Rmult_le_reg_l with (IZR (Z_of_nat x)). + cut (0 < IZR (Z.of_nat x)). + intro; rewrite INR_IZR_INZ; apply Rle_lt_trans with (/ IZR (Z.of_nat x)). + apply Rmult_le_reg_l with (IZR (Z.of_nat x)). assumption. rewrite <- Rinv_r_sym; - [ idtac | red in |- *; intro; rewrite H5 in H4; elim (Rlt_irrefl _ H4) ]. - apply Rmult_le_reg_l with (IZR (Z_of_nat (max x 1))). - apply Rlt_le_trans with (IZR (Z_of_nat x)). + [ idtac | red; intro; rewrite H5 in H4; elim (Rlt_irrefl _ H4) ]. + apply Rmult_le_reg_l with (IZR (Z.of_nat (max x 1))). + apply Rlt_le_trans with (IZR (Z.of_nat x)). assumption. repeat rewrite <- INR_IZR_INZ; apply le_INR; apply le_max_l. - rewrite Rmult_1_r; rewrite (Rmult_comm (IZR (Z_of_nat (max x 1)))); + rewrite Rmult_1_r; rewrite (Rmult_comm (IZR (Z.of_nat (max x 1)))); rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; repeat rewrite <- INR_IZR_INZ; apply le_INR; apply le_max_l. rewrite <- INR_IZR_INZ; apply not_O_INR. - red in |- *; intro; assert (H6 := le_max_r x 1); cut (0 < 1)%nat; + red; intro; assert (H6 := le_max_r x 1); cut (0 < 1)%nat; [ intro | apply lt_O_Sn ]; assert (H8 := lt_le_trans _ _ _ H7 H6); rewrite H5 in H8; elim (lt_irrefl _ H8). - pattern eps at 1 in |- *; rewrite <- Rinv_involutive. + pattern eps at 1; rewrite <- Rinv_involutive. apply Rinv_lt_contravar. apply Rmult_lt_0_compat; [ apply Rinv_0_lt_compat; assumption | assumption ]. rewrite H3 in H0; assumption. - red in |- *; intro; rewrite H5 in H; elim (Rlt_irrefl _ H). + red; intro; rewrite H5 in H; elim (Rlt_irrefl _ H). apply Rlt_trans with (/ eps). apply Rinv_0_lt_compat; assumption. rewrite H3 in H0; assumption. @@ -166,10 +166,10 @@ Qed. Lemma Alembert_cos : Un_cv (fun n:nat => Rabs (cos_n (S n) / cos_n n)) 0. Proof. - unfold Un_cv in |- *; intros. + unfold Un_cv; intros. assert (H0 := archimed_cor1 eps H). elim H0; intros; exists x. - intros; rewrite simpl_cos_n; unfold R_dist in |- *; unfold Rminus in |- *; + intros; rewrite simpl_cos_n; unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; rewrite Rabs_Ropp; rewrite Rabs_right. rewrite mult_INR; rewrite Rinv_mult_distr. @@ -177,7 +177,7 @@ Proof. intro; cut (/ INR (2 * n + 1) < eps). intro; rewrite <- (Rmult_1_l eps). apply Rmult_gt_0_lt_compat; try assumption. - change (0 < / INR (2 * n + 1)) in |- *; apply Rinv_0_lt_compat; + change (0 < / INR (2 * n + 1)); apply Rinv_0_lt_compat; apply lt_INR_0. replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ]. apply Rlt_0_1. @@ -221,7 +221,7 @@ Proof. Qed. Lemma cosn_no_R0 : forall n:nat, cos_n n <> 0. - intro; unfold cos_n in |- *; unfold Rdiv in |- *; apply prod_neq_R0. + intro; unfold cos_n; unfold Rdiv; apply prod_neq_R0. apply pow_nonzero; discrR. apply Rinv_neq_0_compat. apply INR_fact_neq_0. @@ -234,7 +234,7 @@ Definition cos_in (x l:R) : Prop := (**********) Lemma exist_cos : forall x:R, { l:R | cos_in x l }. intro; generalize (Alembert_C3 cos_n x cosn_no_R0 Alembert_cos). - unfold Pser, cos_in in |- *; trivial. + unfold Pser, cos_in; trivial. Qed. @@ -246,8 +246,8 @@ Definition sin_n (n:nat) : R := (-1) ^ n / INR (fact (2 * n + 1)). Lemma simpl_sin_n : forall n:nat, sin_n (S n) / sin_n n = - / INR ((2 * S n + 1) * (2 * S n)). Proof. - intro; unfold sin_n in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ]. - rewrite pow_add; unfold Rdiv in |- *; rewrite Rinv_mult_distr. + intro; unfold sin_n; replace (S n) with (n + 1)%nat; [ idtac | ring ]. + rewrite pow_add; unfold Rdiv; rewrite Rinv_mult_distr. rewrite Rinv_involutive. replace ((-1) ^ n * (-1) ^ 1 * / INR (fact (2 * (n + 1) + 1)) * @@ -255,7 +255,7 @@ Proof. ((-1) ^ n * / (-1) ^ n * / INR (fact (2 * (n + 1) + 1)) * INR (fact (2 * n + 1)) * (-1) ^ 1); [ idtac | ring ]. rewrite <- Rinv_r_sym. - rewrite Rmult_1_l; unfold pow in |- *; rewrite Rmult_1_r; + rewrite Rmult_1_l; unfold pow; rewrite Rmult_1_r; replace (2 * (n + 1) + 1)%nat with (S (S (2 * n + 1))). do 2 rewrite fact_simpl; do 2 rewrite mult_INR; repeat rewrite Rinv_mult_distr. @@ -291,9 +291,9 @@ Qed. Lemma Alembert_sin : Un_cv (fun n:nat => Rabs (sin_n (S n) / sin_n n)) 0. Proof. - unfold Un_cv in |- *; intros; assert (H0 := archimed_cor1 eps H). + unfold Un_cv; intros; assert (H0 := archimed_cor1 eps H). elim H0; intros; exists x. - intros; rewrite simpl_sin_n; unfold R_dist in |- *; unfold Rminus in |- *; + intros; rewrite simpl_sin_n; unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; rewrite Rabs_Ropp; rewrite Rabs_right. rewrite mult_INR; rewrite Rinv_mult_distr. @@ -301,7 +301,7 @@ Proof. intro; cut (/ INR (2 * S n + 1) < eps). intro; rewrite <- (Rmult_1_l eps); rewrite (Rmult_comm (/ INR (2 * S n + 1))); apply Rmult_gt_0_lt_compat; try assumption. - change (0 < / INR (2 * S n + 1)) in |- *; apply Rinv_0_lt_compat; + change (0 < / INR (2 * S n + 1)); apply Rinv_0_lt_compat; apply lt_INR_0; replace (2 * S n + 1)%nat with (S (2 * S n)); [ apply lt_O_Sn | ring ]. apply Rlt_0_1. @@ -329,7 +329,7 @@ Proof. apply not_O_INR; discriminate. apply not_O_INR; discriminate. apply not_O_INR; discriminate. - left; change (0 < / INR ((2 * S n + 1) * (2 * S n))) in |- *; + left; change (0 < / INR ((2 * S n + 1) * (2 * S n))); apply Rinv_0_lt_compat. apply lt_INR_0. replace ((2 * S n + 1) * (2 * S n))%nat with @@ -342,7 +342,7 @@ Defined. Lemma sin_no_R0 : forall n:nat, sin_n n <> 0. Proof. - intro; unfold sin_n in |- *; unfold Rdiv in |- *; apply prod_neq_R0. + intro; unfold sin_n; unfold Rdiv; apply prod_neq_R0. apply pow_nonzero; discrR. apply Rinv_neq_0_compat; apply INR_fact_neq_0. Qed. @@ -355,7 +355,7 @@ Definition sin_in (x l:R) : Prop := Lemma exist_sin : forall x:R, { l:R | sin_in x l }. Proof. intro; generalize (Alembert_C3 sin_n x sin_no_R0 Alembert_sin). - unfold Pser, sin_n in |- *; trivial. + unfold Pser, sin_n; trivial. Defined. (***********************) @@ -368,40 +368,40 @@ Definition sin (x:R) : R := let (a,_) := exist_sin (Rsqr x) in x * a. Lemma cos_sym : forall x:R, cos x = cos (- x). Proof. - intros; unfold cos in |- *; replace (Rsqr (- x)) with (Rsqr x). + intros; unfold cos; replace (Rsqr (- x)) with (Rsqr x). reflexivity. apply Rsqr_neg. Qed. Lemma sin_antisym : forall x:R, sin (- x) = - sin x. Proof. - intro; unfold sin in |- *; replace (Rsqr (- x)) with (Rsqr x); + intro; unfold sin; replace (Rsqr (- x)) with (Rsqr x); [ idtac | apply Rsqr_neg ]. case (exist_sin (Rsqr x)); intros; ring. Qed. Lemma sin_0 : sin 0 = 0. Proof. - unfold sin in |- *; case (exist_sin (Rsqr 0)). + unfold sin; case (exist_sin (Rsqr 0)). intros; ring. Qed. Lemma exist_cos0 : { l:R | cos_in 0 l }. Proof. exists 1. - unfold cos_in in |- *; unfold infinite_sum in |- *; intros; exists 0%nat. + unfold cos_in; unfold infinite_sum; intros; exists 0%nat. intros. - unfold R_dist in |- *. + unfold R_dist. induction n as [| n Hrecn]. - unfold cos_n in |- *; simpl in |- *. - unfold Rdiv in |- *; rewrite Rinv_1. + unfold cos_n; simpl. + unfold Rdiv; rewrite Rinv_1. do 2 rewrite Rmult_1_r. - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. + unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. rewrite tech5. replace (cos_n (S n) * 0 ^ S n) with 0. rewrite Rplus_0_r. - apply Hrecn; unfold ge in |- *; apply le_O_n. - simpl in |- *; ring. + apply Hrecn; unfold ge; apply le_O_n. + simpl; ring. Defined. (* Value of [cos 0] *) @@ -409,10 +409,10 @@ Lemma cos_0 : cos 0 = 1. Proof. cut (cos_in 0 (cos 0)). cut (cos_in 0 1). - unfold cos_in in |- *; intros; eapply uniqueness_sum. + unfold cos_in; intros; eapply uniqueness_sum. apply H0. apply H. exact (proj2_sig exist_cos0). - assert (H := proj2_sig (exist_cos (Rsqr 0))); unfold cos in |- *; - pattern 0 at 1 in |- *; replace 0 with (Rsqr 0); [ exact H | apply Rsqr_0 ]. + assert (H := proj2_sig (exist_cos (Rsqr 0))); unfold cos; + pattern 0 at 1; replace 0 with (Rsqr 0); [ exact H | apply Rsqr_0 ]. Qed. diff --git a/theories/Reals/Rtrigo_fun.v b/theories/Reals/Rtrigo_fun.v index b7720141..b131b510 100644 --- a/theories/Reals/Rtrigo_fun.v +++ b/theories/Reals/Rtrigo_fun.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0. Proof. - unfold Un_cv in |- *; intros; elim (Rgt_dec eps 1); intro. - split with 0%nat; intros; rewrite (simpl_fact n); unfold R_dist in |- *; + unfold Un_cv; intros; elim (Rgt_dec eps 1); intro. + split with 0%nat; intros; rewrite (simpl_fact n); unfold R_dist; rewrite (Rminus_0_r (Rabs (/ INR (S n)))); rewrite (Rabs_Rabsolu (/ INR (S n))); cut (/ INR (S n) > 0). intro; rewrite (Rabs_pos_eq (/ INR (S n))). @@ -39,7 +39,7 @@ Proof. in H4; rewrite (let (H1, H2) := Rmult_ne (/ INR (S n)) in H1) in H4; rewrite (Rmult_comm (/ INR (S n))) in H4; rewrite (Rmult_assoc eps (/ INR (S n)) (INR (S n))) in H4; - rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (sym_not_equal (O_S n)))) in H4; + rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (not_eq_sym (O_S n)))) in H4; rewrite (let (H1, H2) := Rmult_ne eps in H1) in H4; assumption. apply Rlt_minus; unfold Rgt in a; rewrite <- Rinv_1; @@ -47,11 +47,11 @@ Proof. rewrite (let (H1, H2) := Rmult_ne eps in H2); unfold Rgt in H; assumption. unfold Rgt in H1; apply Rlt_le; assumption. - unfold Rgt in |- *; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn. + unfold Rgt; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn. (**) cut (0 <= up (/ eps - 1))%Z. intro; elim (IZN (up (/ eps - 1)) H0); intros; split with x; intros; - rewrite (simpl_fact n); unfold R_dist in |- *; + rewrite (simpl_fact n); unfold R_dist; rewrite (Rminus_0_r (Rabs (/ INR (S n)))); rewrite (Rabs_Rabsolu (/ INR (S n))); cut (/ INR (S n) > 0). intro; rewrite (Rabs_pos_eq (/ INR (S n))). @@ -72,28 +72,28 @@ Proof. in H6; rewrite (let (H1, H2) := Rmult_ne (/ INR (S n)) in H1) in H6; rewrite (Rmult_comm (/ INR (S n))) in H6; rewrite (Rmult_assoc eps (/ INR (S n)) (INR (S n))) in H6; - rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (sym_not_equal (O_S n)))) in H6; + rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (not_eq_sym (O_S n)))) in H6; rewrite (let (H1, H2) := Rmult_ne eps in H1) in H6; assumption. - cut (IZR (up (/ eps - 1)) = IZR (Z_of_nat x)); + cut (IZR (up (/ eps - 1)) = IZR (Z.of_nat x)); [ intro | rewrite H1; trivial ]. elim (archimed (/ eps - 1)); intros; clear H6; unfold Rgt in H5; rewrite H4 in H5; rewrite INR_IZR_INZ; assumption. unfold Rgt in H1; apply Rlt_le; assumption. - unfold Rgt in |- *; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn. + unfold Rgt; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn. apply (le_O_IZR (up (/ eps - 1))); apply (Rle_trans 0 (/ eps - 1) (IZR (up (/ eps - 1)))). - generalize (Rnot_gt_le eps 1 b); clear b; unfold Rle in |- *; intro; elim H0; + generalize (Rnot_gt_le eps 1 b); clear b; unfold Rle; intro; elim H0; clear H0; intro. left; unfold Rgt in H; generalize (Rmult_lt_compat_l (/ eps) eps 1 (Rinv_0_lt_compat eps H) H0); rewrite (Rinv_l eps - (sym_not_eq (Rlt_dichotomy_converse 0 eps (or_introl (0 > eps) H)))) + (not_eq_sym (Rlt_dichotomy_converse 0 eps (or_introl (0 > eps) H)))) ; rewrite (let (H1, H2) := Rmult_ne (/ eps) in H1); - intro; fold (/ eps - 1 > 0) in |- *; apply Rgt_minus; - unfold Rgt in |- *; assumption. - right; rewrite H0; rewrite Rinv_1; apply sym_eq; apply Rminus_diag_eq; auto. + intro; fold (/ eps - 1 > 0); apply Rgt_minus; + unfold Rgt; assumption. + right; rewrite H0; rewrite Rinv_1; symmetry; apply Rminus_diag_eq; auto. elim (archimed (/ eps - 1)); intros; clear H1; unfold Rgt in H0; apply Rlt_le; assumption. Qed. diff --git a/theories/Reals/Rtrigo_reg.v b/theories/Reals/Rtrigo_reg.v index 100e0818..fff4fec9 100644 --- a/theories/Reals/Rtrigo_reg.v +++ b/theories/Reals/Rtrigo_reg.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* R -> R, - fn = (fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)) -> - CVN_R fn. -Proof. - unfold CVN_R in |- *; intros. - cut ((r:R) <> 0). - intro hyp_r; unfold CVN_r in |- *. - exists (fun n:nat => / INR (fact (2 * n)) * r ^ (2 * n)). - cut - { l:R | - Un_cv - (fun n:nat => - sum_f_R0 (fun k:nat => Rabs (/ INR (fact (2 * k)) * r ^ (2 * k))) - n) l }. - intro X; elim X; intros. - exists x. - split. - apply p. - intros; rewrite H; unfold Rdiv in |- *; do 2 rewrite Rabs_mult. - rewrite pow_1_abs; rewrite Rmult_1_l. - cut (0 < / INR (fact (2 * n))). - intro; rewrite (Rabs_right _ (Rle_ge _ _ (Rlt_le _ _ H1))). - apply Rmult_le_compat_l. - left; apply H1. - rewrite <- RPow_abs; apply pow_maj_Rabs. - rewrite Rabs_Rabsolu. - unfold Boule in H0; rewrite Rminus_0_r in H0. - left; apply H0. - apply Rinv_0_lt_compat; apply INR_fact_lt_0. - apply Alembert_C2. - intro; apply Rabs_no_R0. - apply prod_neq_R0. - apply Rinv_neq_0_compat. - apply INR_fact_neq_0. - apply pow_nonzero; assumption. - assert (H0 := Alembert_cos). - unfold cos_n in H0; unfold Un_cv in H0; unfold Un_cv in |- *; intros. - cut (0 < eps / Rsqr r). - intro; elim (H0 _ H2); intros N0 H3. - exists N0; intros. - unfold R_dist in |- *; assert (H5 := H3 _ H4). - unfold R_dist in H5; - replace - (Rabs - (Rabs (/ INR (fact (2 * S n)) * r ^ (2 * S n)) / - Rabs (/ INR (fact (2 * n)) * r ^ (2 * n)))) with - (Rsqr r * - Rabs ((-1) ^ S n / INR (fact (2 * S n)) / ((-1) ^ n / INR (fact (2 * n))))). - apply Rmult_lt_reg_l with (/ Rsqr r). - apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption. - pattern (/ Rsqr r) at 1 in |- *; replace (/ Rsqr r) with (Rabs (/ Rsqr r)). - rewrite <- Rabs_mult; rewrite Rmult_minus_distr_l; rewrite Rmult_0_r; - rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. - rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); apply H5. - unfold Rsqr in |- *; apply prod_neq_R0; assumption. - rewrite Rabs_Rinv. - rewrite Rabs_right. - reflexivity. - apply Rle_ge; apply Rle_0_sqr. - unfold Rsqr in |- *; apply prod_neq_R0; assumption. - rewrite (Rmult_comm (Rsqr r)); unfold Rdiv in |- *; repeat rewrite Rabs_mult; - rewrite Rabs_Rabsolu; rewrite pow_1_abs; rewrite Rmult_1_l; - repeat rewrite Rmult_assoc; apply Rmult_eq_compat_l. - rewrite Rabs_Rinv. - rewrite Rabs_mult; rewrite (pow_1_abs n); rewrite Rmult_1_l; - rewrite <- Rabs_Rinv. - rewrite Rinv_involutive. - rewrite Rinv_mult_distr. - rewrite Rabs_Rinv. - rewrite Rinv_involutive. - rewrite (Rmult_comm (Rabs (Rabs (r ^ (2 * S n))))); rewrite Rabs_mult; - rewrite Rabs_Rabsolu; rewrite Rmult_assoc; apply Rmult_eq_compat_l. - rewrite Rabs_Rinv. - do 2 rewrite Rabs_Rabsolu; repeat rewrite Rabs_right. - replace (r ^ (2 * S n)) with (r ^ (2 * n) * r * r). - repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. - unfold Rsqr in |- *; ring. - apply pow_nonzero; assumption. - replace (2 * S n)%nat with (S (S (2 * n))). - simpl in |- *; ring. - ring. - apply Rle_ge; apply pow_le; left; apply (cond_pos r). - apply Rle_ge; apply pow_le; left; apply (cond_pos r). - apply Rabs_no_R0; apply pow_nonzero; assumption. - apply Rabs_no_R0; apply INR_fact_neq_0. - apply INR_fact_neq_0. - apply Rabs_no_R0; apply Rinv_neq_0_compat; apply INR_fact_neq_0. - apply Rabs_no_R0; apply pow_nonzero; assumption. - apply INR_fact_neq_0. - apply Rinv_neq_0_compat; apply INR_fact_neq_0. - apply prod_neq_R0. - apply pow_nonzero; discrR. - apply Rinv_neq_0_compat; apply INR_fact_neq_0. - unfold Rdiv in |- *; apply Rmult_lt_0_compat. - apply H1. - apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption. - assert (H0 := cond_pos r); red in |- *; intro; rewrite H1 in H0; - elim (Rlt_irrefl _ H0). -Qed. - -(**********) -Lemma continuity_cos : continuity cos. -Proof. - set (fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)). - cut (CVN_R fn). - intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }). - intro cv; cut (forall n:nat, continuity (fn n)). - intro; cut (forall x:R, cos x = SFL fn cv x). - intro; cut (continuity (SFL fn cv) -> continuity cos). - intro; apply H1. - apply SFL_continuity; assumption. - unfold continuity in |- *; unfold continuity_pt in |- *; - unfold continue_in in |- *; unfold limit1_in in |- *; - unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *; - intros. - elim (H1 x _ H2); intros. - exists x0; intros. - elim H3; intros. - split. - apply H4. - intros; rewrite (H0 x); rewrite (H0 x1); apply H5; apply H6. - intro; unfold cos, SFL in |- *. - case (cv x); case (exist_cos (Rsqr x)); intros. - symmetry in |- *; eapply UL_sequence. - apply u. - unfold cos_in in c; unfold infinite_sum in c; unfold Un_cv in |- *; intros. - elim (c _ H0); intros N0 H1. - exists N0; intros. - unfold R_dist in H1; unfold R_dist, SP in |- *. - replace (sum_f_R0 (fun k:nat => fn k x) n) with - (sum_f_R0 (fun i:nat => cos_n i * Rsqr x ^ i) n). - apply H1; assumption. - apply sum_eq; intros. - unfold cos_n, fn in |- *; apply Rmult_eq_compat_l. - unfold Rsqr in |- *; rewrite pow_sqr; reflexivity. - intro; unfold fn in |- *; - replace (fun x:R => (-1) ^ n / INR (fact (2 * n)) * x ^ (2 * n)) with - (fct_cte ((-1) ^ n / INR (fact (2 * n))) * pow_fct (2 * n))%F; - [ idtac | reflexivity ]. - apply continuity_mult. - apply derivable_continuous; apply derivable_const. - apply derivable_continuous; apply (derivable_pow (2 * n)). - apply CVN_R_CVS; apply X. - apply CVN_R_cos; unfold fn in |- *; reflexivity. -Qed. (**********) Lemma continuity_sin : continuity sin. Proof. - unfold continuity in |- *; intro. + unfold continuity; intro. assert (H0 := continuity_cos (PI / 2 - x)). unfold continuity_pt in H0; unfold continue_in in H0; unfold limit1_in in H0; unfold limit_in in H0; simpl in H0; unfold R_dist in H0; - unfold continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; unfold R_dist in |- *; intros. + unfold continuity_pt; unfold continue_in; + unfold limit1_in; unfold limit_in; + simpl; unfold R_dist; intros. elim (H0 _ H); intros. exists x0; intros. elim H1; intros. @@ -180,9 +34,9 @@ Proof. intros; rewrite <- (cos_shift x); rewrite <- (cos_shift x1); apply H3. elim H4; intros. split. - unfold D_x, no_cond in |- *; split. + unfold D_x, no_cond; split. trivial. - red in |- *; intro; unfold D_x, no_cond in H5; elim H5; intros _ H8; elim H8; + red; intro; unfold D_x, no_cond in H5; elim H5; intros _ H8; elim H8; rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive x1); apply Ropp_eq_compat; apply Rplus_eq_reg_l with (PI / 2); apply H7. @@ -196,7 +50,7 @@ Lemma CVN_R_sin : (fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)) -> CVN_R fn. Proof. - unfold CVN_R in |- *; unfold CVN_r in |- *; intros fn H r. + unfold CVN_R; unfold CVN_r; intros fn H r. exists (fun n:nat => / INR (fact (2 * n + 1)) * r ^ (2 * n)). cut { l:R | @@ -209,7 +63,7 @@ Proof. exists x. split. apply p. - intros; rewrite H; unfold Rdiv in |- *; do 2 rewrite Rabs_mult; + intros; rewrite H; unfold Rdiv; do 2 rewrite Rabs_mult; rewrite pow_1_abs; rewrite Rmult_1_l. cut (0 < / INR (fact (2 * n + 1))). intro; rewrite (Rabs_right _ (Rle_ge _ _ (Rlt_le _ _ H1))). @@ -226,11 +80,11 @@ Proof. apply Rinv_neq_0_compat; apply INR_fact_neq_0. apply pow_nonzero; assumption. assert (H1 := Alembert_sin). - unfold sin_n in H1; unfold Un_cv in H1; unfold Un_cv in |- *; intros. + unfold sin_n in H1; unfold Un_cv in H1; unfold Un_cv; intros. cut (0 < eps / Rsqr r). intro; elim (H1 _ H3); intros N0 H4. exists N0; intros. - unfold R_dist in |- *; assert (H6 := H4 _ H5). + unfold R_dist; assert (H6 := H4 _ H5). unfold R_dist in H5; replace (Rabs @@ -242,15 +96,15 @@ Proof. ((-1) ^ n / INR (fact (2 * n + 1))))). apply Rmult_lt_reg_l with (/ Rsqr r). apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption. - pattern (/ Rsqr r) at 1 in |- *; rewrite <- (Rabs_right (/ Rsqr r)). + pattern (/ Rsqr r) at 1; rewrite <- (Rabs_right (/ Rsqr r)). rewrite <- Rabs_mult. rewrite Rmult_minus_distr_l. rewrite Rmult_0_r; rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_l; rewrite <- (Rmult_comm eps). apply H6. - unfold Rsqr in |- *; apply prod_neq_R0; assumption. + unfold Rsqr; apply prod_neq_R0; assumption. apply Rle_ge; left; apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption. - unfold Rdiv in |- *; rewrite (Rmult_comm (Rsqr r)); repeat rewrite Rabs_mult; + unfold Rdiv; rewrite (Rmult_comm (Rsqr r)); repeat rewrite Rabs_mult; rewrite Rabs_Rabsolu; rewrite pow_1_abs. rewrite Rmult_1_l. repeat rewrite Rmult_assoc; apply Rmult_eq_compat_l. @@ -272,10 +126,10 @@ Proof. replace (r ^ (2 * S n)) with (r ^ (2 * n) * r * r). do 2 rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. - unfold Rsqr in |- *; ring. + unfold Rsqr; ring. apply pow_nonzero; assumption. replace (2 * S n)%nat with (S (S (2 * n))). - simpl in |- *; ring. + simpl; ring. ring. apply Rle_ge; apply pow_le; left; apply (cond_pos r). apply Rle_ge; apply pow_le; left; apply (cond_pos r). @@ -288,16 +142,16 @@ Proof. apply INR_fact_neq_0. apply pow_nonzero; discrR. apply Rinv_neq_0_compat; apply INR_fact_neq_0. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption ]. - assert (H0 := cond_pos r); red in |- *; intro; rewrite H1 in H0; + assert (H0 := cond_pos r); red; intro; rewrite H1 in H0; elim (Rlt_irrefl _ H0). Qed. (** (sin h)/h -> 1 when h -> 0 *) Lemma derivable_pt_lim_sin_0 : derivable_pt_lim sin 0 1. Proof. - unfold derivable_pt_lim in |- *; intros. + unfold derivable_pt_lim; intros. set (fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)). cut (CVN_R fn). @@ -313,58 +167,58 @@ Proof. elim (H2 _ H); intros alp H3. elim H3; intros. exists (mkposreal _ H4). - simpl in |- *; intros. - rewrite sin_0; rewrite Rplus_0_l; unfold Rminus in |- *; rewrite Ropp_0; + simpl; intros. + rewrite sin_0; rewrite Rplus_0_l; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r. cut (Rabs (SFL fn cv h - SFL fn cv 0) < eps). intro; cut (SFL fn cv 0 = 1). intro; cut (SFL fn cv h = sin h / h). intro; rewrite H9 in H8; rewrite H10 in H8. apply H8. - unfold SFL, sin in |- *. + unfold SFL, sin. case (cv h); intros. case (exist_sin (Rsqr h)); intros. - unfold Rdiv in |- *; rewrite (Rinv_r_simpl_m h x0 H6). + unfold Rdiv; rewrite (Rinv_r_simpl_m h x0 H6). eapply UL_sequence. apply u. unfold sin_in in s; unfold sin_n, infinite_sum in s; - unfold SP, fn, Un_cv in |- *; intros. + unfold SP, fn, Un_cv; intros. elim (s _ H10); intros N0 H11. exists N0; intros. - unfold R_dist in |- *; unfold R_dist in H11. + unfold R_dist; unfold R_dist in H11. replace (sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n) with (sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i + 1)) * Rsqr h ^ i) n). apply H11; assumption. - apply sum_eq; intros; apply Rmult_eq_compat_l; unfold Rsqr in |- *; + apply sum_eq; intros; apply Rmult_eq_compat_l; unfold Rsqr; rewrite pow_sqr; reflexivity. - unfold SFL, sin in |- *. + unfold SFL, sin. case (cv 0); intros. eapply UL_sequence. apply u. - unfold SP, fn in |- *; unfold Un_cv in |- *; intros; exists 1%nat; intros. - unfold R_dist in |- *; + unfold SP, fn; unfold Un_cv; intros; exists 1%nat; intros. + unfold R_dist; replace (sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k)) n) with 1. - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. + unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. rewrite decomp_sum. - simpl in |- *; rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite Rinv_1; - rewrite Rmult_1_r; pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; + simpl; rewrite Rmult_1_r; unfold Rdiv; rewrite Rinv_1; + rewrite Rmult_1_r; pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_eq_compat_l. - symmetry in |- *; apply sum_eq_R0; intros. + symmetry ; apply sum_eq_R0; intros. rewrite Rmult_0_l; rewrite Rmult_0_r; reflexivity. unfold ge in H10; apply lt_le_trans with 1%nat; [ apply lt_n_Sn | apply H10 ]. apply H5. split. - unfold D_x, no_cond in |- *; split. + unfold D_x, no_cond; split. trivial. - apply (sym_not_eq (A:=R)); apply H6. - unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply H7. - unfold Boule in |- *; unfold Rminus in |- *; rewrite Ropp_0; + apply (not_eq_sym (A:=R)); apply H6. + unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply H7. + unfold Boule; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_R0; apply (cond_pos r). - intros; unfold fn in |- *; + intros; unfold fn; replace (fun x:R => (-1) ^ n / INR (fact (2 * n + 1)) * x ^ (2 * n)) with (fct_cte ((-1) ^ n / INR (fact (2 * n + 1))) * pow_fct (2 * n))%F; [ idtac | reflexivity ]. @@ -375,13 +229,13 @@ Proof. apply (derivable_pt_pow (2 * n) y). apply (X r). apply (CVN_R_CVS _ X). - apply CVN_R_sin; unfold fn in |- *; reflexivity. + apply CVN_R_sin; unfold fn; reflexivity. Qed. (** ((cos h)-1)/h -> 0 when h -> 0 *) Lemma derivable_pt_lim_cos_0 : derivable_pt_lim cos 0 0. Proof. - unfold derivable_pt_lim in |- *; intros. + unfold derivable_pt_lim; intros. assert (H0 := derivable_pt_lim_sin_0). unfold derivable_pt_lim in H0. cut (0 < eps / 2). @@ -396,8 +250,8 @@ Proof. intro; set (delta := mkposreal _ H6). exists delta; intros. rewrite Rplus_0_l; replace (cos h - cos 0) with (-2 * Rsqr (sin (h / 2))). - unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r. - unfold Rdiv in |- *; do 2 rewrite Ropp_mult_distr_l_reverse. + unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r. + unfold Rdiv; do 2 rewrite Ropp_mult_distr_l_reverse. rewrite Rabs_Ropp. replace (2 * Rsqr (sin (h * / 2)) * / h) with (sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2)). @@ -407,12 +261,12 @@ Proof. rewrite (double_var eps); apply Rplus_lt_compat. apply Rle_lt_trans with (Rabs (sin (h / 2) / (h / 2) - 1)). rewrite Rabs_mult; rewrite Rmult_comm; - pattern (Rabs (sin (h / 2) / (h / 2) - 1)) at 2 in |- *; + pattern (Rabs (sin (h / 2) / (h / 2) - 1)) at 2; rewrite <- Rmult_1_r; apply Rmult_le_compat_l. apply Rabs_pos. assert (H9 := SIN_bound (h / 2)). - unfold Rabs in |- *; case (Rcase_abs (sin (h / 2))); intro. - pattern 1 at 3 in |- *; rewrite <- (Ropp_involutive 1). + unfold Rabs; case (Rcase_abs (sin (h / 2))); intro. + pattern 1 at 3; rewrite <- (Ropp_involutive 1). apply Ropp_le_contravar. elim H9; intros; assumption. elim H9; intros; assumption. @@ -421,50 +275,50 @@ Proof. intro; assert (H11 := H2 _ H10 H9). rewrite Rplus_0_l in H11; rewrite sin_0 in H11. rewrite Rminus_0_r in H11; apply H11. - unfold Rdiv in |- *; apply prod_neq_R0. + unfold Rdiv; apply prod_neq_R0. apply H7. apply Rinv_neq_0_compat; discrR. apply Rlt_trans with (del / 2). - unfold Rdiv in |- *; rewrite Rabs_mult. + unfold Rdiv; rewrite Rabs_mult. rewrite (Rabs_right (/ 2)). do 2 rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l. apply Rinv_0_lt_compat; prove_sup0. apply Rlt_le_trans with (pos delta). apply H8. - unfold delta in |- *; simpl in |- *; apply Rmin_l. + unfold delta; simpl; apply Rmin_l. apply Rle_ge; left; apply Rinv_0_lt_compat; prove_sup0. - rewrite <- (Rplus_0_r (del / 2)); pattern del at 1 in |- *; + rewrite <- (Rplus_0_r (del / 2)); pattern del at 1; rewrite (double_var del); apply Rplus_lt_compat_l; - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + unfold Rdiv; apply Rmult_lt_0_compat. apply (cond_pos del). apply Rinv_0_lt_compat; prove_sup0. elim H5; intros; assert (H11 := H10 (h / 2)). rewrite sin_0 in H11; do 2 rewrite Rminus_0_r in H11. apply H11. split. - unfold D_x, no_cond in |- *; split. + unfold D_x, no_cond; split. trivial. - apply (sym_not_eq (A:=R)); unfold Rdiv in |- *; apply prod_neq_R0. + apply (not_eq_sym (A:=R)); unfold Rdiv; apply prod_neq_R0. apply H7. apply Rinv_neq_0_compat; discrR. apply Rlt_trans with (del_c / 2). - unfold Rdiv in |- *; rewrite Rabs_mult. + unfold Rdiv; rewrite Rabs_mult. rewrite (Rabs_right (/ 2)). do 2 rewrite <- (Rmult_comm (/ 2)). apply Rmult_lt_compat_l. apply Rinv_0_lt_compat; prove_sup0. apply Rlt_le_trans with (pos delta). apply H8. - unfold delta in |- *; simpl in |- *; apply Rmin_r. + unfold delta; simpl; apply Rmin_r. apply Rle_ge; left; apply Rinv_0_lt_compat; prove_sup0. - rewrite <- (Rplus_0_r (del_c / 2)); pattern del_c at 2 in |- *; + rewrite <- (Rplus_0_r (del_c / 2)); pattern del_c at 2; rewrite (double_var del_c); apply Rplus_lt_compat_l. - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + unfold Rdiv; apply Rmult_lt_0_compat. apply H9. apply Rinv_0_lt_compat; prove_sup0. - rewrite Rmult_minus_distr_l; rewrite Rmult_1_r; unfold Rminus in |- *; + rewrite Rmult_minus_distr_l; rewrite Rmult_1_r; unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; - rewrite (Rmult_comm 2); unfold Rdiv, Rsqr in |- *. + rewrite (Rmult_comm 2); unfold Rdiv, Rsqr. repeat rewrite Rmult_assoc. repeat apply Rmult_eq_compat_l. rewrite Rinv_mult_distr. @@ -473,16 +327,16 @@ Proof. discrR. apply H7. apply Rinv_neq_0_compat; discrR. - pattern h at 2 in |- *; replace h with (2 * (h / 2)). + pattern h at 2; replace h with (2 * (h / 2)). rewrite (cos_2a_sin (h / 2)). - rewrite cos_0; unfold Rsqr in |- *; ring. - unfold Rdiv in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m. + rewrite cos_0; unfold Rsqr; ring. + unfold Rdiv; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m. discrR. - unfold Rmin in |- *; case (Rle_dec del del_c); intro. + unfold Rmin; case (Rle_dec del del_c); intro. apply (cond_pos del). elim H5; intros; assumption. apply continuity_sin. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. Qed. @@ -492,10 +346,10 @@ Proof. intro; assert (H0 := derivable_pt_lim_sin_0). assert (H := derivable_pt_lim_cos_0). unfold derivable_pt_lim in H0, H. - unfold derivable_pt_lim in |- *; intros. + unfold derivable_pt_lim; intros. cut (0 < eps / 2); [ intro - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ apply H1 | apply Rinv_0_lt_compat; prove_sup0 ] ]. elim (H0 _ H2); intros alp1 H3. elim (H _ H2); intros alp2 H4. @@ -510,11 +364,11 @@ Proof. rewrite (double_var eps); apply Rplus_lt_compat. apply Rle_lt_trans with (Rabs ((cos h - 1) / h)). rewrite Rabs_mult; rewrite Rmult_comm; - pattern (Rabs ((cos h - 1) / h)) at 2 in |- *; rewrite <- Rmult_1_r; + pattern (Rabs ((cos h - 1) / h)) at 2; rewrite <- Rmult_1_r; apply Rmult_le_compat_l. apply Rabs_pos. assert (H8 := SIN_bound x); elim H8; intros. - unfold Rabs in |- *; case (Rcase_abs (sin x)); intro. + unfold Rabs; case (Rcase_abs (sin x)); intro. rewrite <- (Ropp_involutive 1). apply Ropp_le_contravar; assumption. assumption. @@ -524,14 +378,14 @@ Proof. apply H9. apply Rlt_le_trans with alp. apply H7. - unfold alp in |- *; apply Rmin_r. + unfold alp; apply Rmin_r. apply Rle_lt_trans with (Rabs (sin h / h - 1)). rewrite Rabs_mult; rewrite Rmult_comm; - pattern (Rabs (sin h / h - 1)) at 2 in |- *; rewrite <- Rmult_1_r; + pattern (Rabs (sin h / h - 1)) at 2; rewrite <- Rmult_1_r; apply Rmult_le_compat_l. apply Rabs_pos. assert (H8 := COS_bound x); elim H8; intros. - unfold Rabs in |- *; case (Rcase_abs (cos x)); intro. + unfold Rabs; case (Rcase_abs (cos x)); intro. rewrite <- (Ropp_involutive 1); apply Ropp_le_contravar; assumption. assumption. cut (Rabs h < alp1). @@ -540,8 +394,8 @@ Proof. apply H9. apply Rlt_le_trans with alp. apply H7. - unfold alp in |- *; apply Rmin_l. - rewrite sin_plus; unfold Rminus, Rdiv in |- *; + unfold alp; apply Rmin_l. + rewrite sin_plus; unfold Rminus, Rdiv; repeat rewrite Rmult_plus_distr_r; repeat rewrite Rmult_plus_distr_l; repeat rewrite Rmult_assoc; repeat rewrite Rplus_assoc; apply Rplus_eq_compat_l. @@ -550,7 +404,7 @@ Proof. rewrite Ropp_mult_distr_r_reverse; rewrite Ropp_mult_distr_l_reverse; rewrite Rmult_1_r; rewrite Rmult_1_l; rewrite Ropp_mult_distr_r_reverse; rewrite <- Ropp_mult_distr_l_reverse; apply Rplus_comm. - unfold alp in |- *; unfold Rmin in |- *; case (Rle_dec alp1 alp2); intro. + unfold alp; unfold Rmin; case (Rle_dec alp1 alp2); intro. apply (cond_pos alp1). apply (cond_pos alp2). Qed. @@ -565,7 +419,7 @@ Proof. intros; generalize (H0 _ _ _ H2 H1); replace (comp sin (id + fct_cte (PI / 2))%F) with (fun x:R => sin (x + PI / 2)); [ idtac | reflexivity ]. - unfold derivable_pt_lim in |- *; intros. + unfold derivable_pt_lim; intros. elim (H3 eps H4); intros. exists x0. intros; rewrite <- (H (x + h)); rewrite <- (H x); apply H5; assumption. @@ -579,26 +433,26 @@ Qed. Lemma derivable_pt_sin : forall x:R, derivable_pt sin x. Proof. - unfold derivable_pt in |- *; intro. + unfold derivable_pt; intro. exists (cos x). apply derivable_pt_lim_sin. Qed. Lemma derivable_pt_cos : forall x:R, derivable_pt cos x. Proof. - unfold derivable_pt in |- *; intro. + unfold derivable_pt; intro. exists (- sin x). apply derivable_pt_lim_cos. Qed. Lemma derivable_sin : derivable sin. Proof. - unfold derivable in |- *; intro; apply derivable_pt_sin. + unfold derivable; intro; apply derivable_pt_sin. Qed. Lemma derivable_cos : derivable cos. Proof. - unfold derivable in |- *; intro; apply derivable_pt_cos. + unfold derivable; intro; apply derivable_pt_cos. Qed. Lemma derive_pt_sin : diff --git a/theories/Reals/SeqProp.v b/theories/Reals/SeqProp.v index 75c57401..41e853cc 100644 --- a/theories/Reals/SeqProp.v +++ b/theories/Reals/SeqProp.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* R, Un_decreasing Un -> Un_growing (opp_seq Un). Proof. intro. - unfold Un_growing, opp_seq, Un_decreasing in |- *. + unfold Un_growing, opp_seq, Un_decreasing. intros. apply Ropp_le_contravar. apply H. @@ -58,8 +58,8 @@ Proof. unfold Un_cv in p. unfold R_dist in p. unfold opp_seq in p. - unfold Un_cv in |- *. - unfold R_dist in |- *. + unfold Un_cv. + unfold R_dist. intros. elim (p eps H1); intros. exists x0; intros. @@ -77,7 +77,7 @@ Proof. apply completeness. assumption. exists (Un 0%nat). - unfold EUn in |- *. + unfold EUn. exists 0%nat; reflexivity. Qed. @@ -114,9 +114,9 @@ Proof. unfold bound in H. elim H; intros. unfold is_upper_bound in H0. - unfold has_ub in |- *. + unfold has_ub. exists x. - unfold is_upper_bound in |- *. + unfold is_upper_bound. intros. apply H0. elim H1; intros. @@ -132,9 +132,9 @@ Proof. unfold bound in H. elim H; intros. unfold is_upper_bound in H0. - unfold has_lb in |- *. + unfold has_lb. exists x. - unfold is_upper_bound in |- *. + unfold is_upper_bound. intros. apply H0. elim H1; intros. @@ -155,9 +155,9 @@ Lemma Wn_decreasing : forall (Un:nat -> R) (pr:has_ub Un), Un_decreasing (sequence_ub Un pr). Proof. intros. - unfold Un_decreasing in |- *. + unfold Un_decreasing. intro. - unfold sequence_ub in |- *. + unfold sequence_ub. assert (H := ub_to_lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)). assert (H0 := ub_to_lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)). elim H; intros. @@ -171,7 +171,7 @@ Proof. elim p; intros. apply H2. elim p0; intros. - unfold is_upper_bound in |- *. + unfold is_upper_bound. intros. unfold is_upper_bound in H3. apply H3. @@ -190,7 +190,7 @@ Proof. assert (H7 := H3 (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)) H4). apply Rle_antisym; assumption. - unfold lub in |- *. + unfold lub. case (ub_to_lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)). trivial. cut @@ -204,7 +204,7 @@ Proof. (H7 := H3 (lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)) H4). apply Rle_antisym; assumption. - unfold lub in |- *. + unfold lub. case (ub_to_lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)). trivial. Qed. @@ -213,9 +213,9 @@ Lemma Vn_growing : forall (Un:nat -> R) (pr:has_lb Un), Un_growing (sequence_lb Un pr). Proof. intros. - unfold Un_growing in |- *. + unfold Un_growing. intro. - unfold sequence_lb in |- *. + unfold sequence_lb. assert (H := lb_to_glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)). assert (H0 := lb_to_glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)). elim H; intros. @@ -230,14 +230,14 @@ Proof. apply Ropp_le_contravar. apply H2. elim p0; intros. - unfold is_upper_bound in |- *. + unfold is_upper_bound. intros. unfold is_upper_bound in H3. apply H3. elim H5; intros. exists (1 + x2)%nat. unfold opp_seq in H6. - unfold opp_seq in |- *. + unfold opp_seq. replace (n + (1 + x2))%nat with (S n + x2)%nat. assumption. replace (S n) with (1 + n)%nat; [ ring | ring ]. @@ -254,7 +254,7 @@ Proof. (Ropp_involutive (glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr))) . apply Ropp_eq_compat; apply Rle_antisym; assumption. - unfold glb in |- *. + unfold glb. case (lb_to_glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)); simpl. intro; rewrite Ropp_involutive. trivial. @@ -273,7 +273,7 @@ Proof. (glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr))) . apply Ropp_eq_compat; apply Rle_antisym; assumption. - unfold glb in |- *. + unfold glb. case (lb_to_glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)); simpl. intro; rewrite Ropp_involutive. trivial. @@ -286,7 +286,7 @@ Lemma Vn_Un_Wn_order : Proof. intros. split. - unfold sequence_lb in |- *. + unfold sequence_lb. cut { l:R | is_lub (EUn (opp_seq (fun i:nat => Un (n + i)%nat))) l }. intro X. elim X; intros. @@ -298,7 +298,7 @@ Proof. apply Ropp_le_contravar. apply H. exists 0%nat. - unfold opp_seq in |- *. + unfold opp_seq. replace (n + 0)%nat with n; [ reflexivity | ring ]. cut (is_lub (EUn (opp_seq (fun k:nat => Un (n + k)%nat))) @@ -313,13 +313,13 @@ Proof. (Ropp_involutive (glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2))) . apply Ropp_eq_compat; apply Rle_antisym; assumption. - unfold glb in |- *. + unfold glb. case (lb_to_glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)); simpl. intro; rewrite Ropp_involutive. trivial. apply lb_to_glb. apply min_ss; assumption. - unfold sequence_ub in |- *. + unfold sequence_ub. cut { l:R | is_lub (EUn (fun i:nat => Un (n + i)%nat)) l }. intro X. elim X; intros. @@ -340,7 +340,7 @@ Proof. assert (H5 := H1 (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)) H2). apply Rle_antisym; assumption. - unfold lub in |- *. + unfold lub. case (ub_to_lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)). intro; trivial. apply ub_to_lub. @@ -353,13 +353,13 @@ Lemma min_maj : Proof. intros. assert (H := Vn_Un_Wn_order Un pr1 pr2). - unfold has_ub in |- *. - unfold bound in |- *. + unfold has_ub. + unfold bound. unfold has_ub in pr1. unfold bound in pr1. elim pr1; intros. exists x. - unfold is_upper_bound in |- *. + unfold is_upper_bound. intros. unfold is_upper_bound in H0. elim H1; intros. @@ -376,20 +376,20 @@ Lemma maj_min : Proof. intros. assert (H := Vn_Un_Wn_order Un pr1 pr2). - unfold has_lb in |- *. - unfold bound in |- *. + unfold has_lb. + unfold bound. unfold has_lb in pr2. unfold bound in pr2. elim pr2; intros. exists x. - unfold is_upper_bound in |- *. + unfold is_upper_bound. intros. unfold is_upper_bound in H0. elim H1; intros. rewrite H2. apply Rle_trans with (opp_seq Un x1). assert (H3 := H x1); elim H3; intros. - unfold opp_seq in |- *; apply Ropp_le_contravar. + unfold opp_seq; apply Ropp_le_contravar. assumption. apply H0. exists x1; reflexivity. @@ -399,7 +399,7 @@ Qed. Lemma cauchy_maj : forall Un:nat -> R, Cauchy_crit Un -> has_ub Un. Proof. intros. - unfold has_ub in |- *. + unfold has_ub. apply cauchy_bound. assumption. Qed. @@ -409,12 +409,12 @@ Lemma cauchy_opp : forall Un:nat -> R, Cauchy_crit Un -> Cauchy_crit (opp_seq Un). Proof. intro. - unfold Cauchy_crit in |- *. - unfold R_dist in |- *. + unfold Cauchy_crit. + unfold R_dist. intros. elim (H eps H0); intros. exists x; intros. - unfold opp_seq in |- *. + unfold opp_seq. rewrite <- Rabs_Ropp. replace (- (- Un n - - Un m)) with (Un n - Un m); [ apply H1; assumption | ring ]. @@ -424,7 +424,7 @@ Qed. Lemma cauchy_min : forall Un:nat -> R, Cauchy_crit Un -> has_lb Un. Proof. intros. - unfold has_lb in |- *. + unfold has_lb. assert (H0 := cauchy_opp _ H). apply cauchy_bound. assumption. @@ -485,7 +485,7 @@ Qed. Lemma not_Rlt : forall r1 r2:R, ~ r1 < r2 -> r1 >= r2. Proof. - intros r1 r2; generalize (Rtotal_order r1 r2); unfold Rge in |- *. + intros r1 r2; generalize (Rtotal_order r1 r2); unfold Rge. tauto. Qed. @@ -595,11 +595,11 @@ Qed. Lemma UL_sequence : forall (Un:nat -> R) (l1 l2:R), Un_cv Un l1 -> Un_cv Un l2 -> l1 = l2. Proof. - intros Un l1 l2; unfold Un_cv in |- *; unfold R_dist in |- *; intros. + intros Un l1 l2; unfold Un_cv; unfold R_dist; intros. apply cond_eq. intros; cut (0 < eps / 2); [ intro - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ]. elim (H (eps / 2) H2); intros. elim (H0 (eps / 2) H2); intros. @@ -609,8 +609,8 @@ Proof. [ apply Rabs_triang | ring ]. rewrite (double_var eps); apply Rplus_lt_compat. rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H3; - unfold ge, N in |- *; apply le_max_l. - apply H4; unfold ge, N in |- *; apply le_max_r. + unfold ge, N; apply le_max_l. + apply H4; unfold ge, N; apply le_max_r. Qed. (**********) @@ -618,10 +618,10 @@ Lemma CV_plus : forall (An Bn:nat -> R) (l1 l2:R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i:nat => An i + Bn i) (l1 + l2). Proof. - unfold Un_cv in |- *; unfold R_dist in |- *; intros. + unfold Un_cv; unfold R_dist; intros. cut (0 < eps / 2); [ intro - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ]. elim (H (eps / 2) H2); intros. elim (H0 (eps / 2) H2); intros. @@ -632,10 +632,10 @@ Proof. apply Rle_lt_trans with (Rabs (An n - l1) + Rabs (Bn n - l2)). apply Rabs_triang. rewrite (double_var eps); apply Rplus_lt_compat. - apply H3; unfold ge in |- *; apply le_trans with N; - [ unfold N in |- *; apply le_max_l | assumption ]. - apply H4; unfold ge in |- *; apply le_trans with N; - [ unfold N in |- *; apply le_max_r | assumption ]. + apply H3; unfold ge; apply le_trans with N; + [ unfold N; apply le_max_l | assumption ]. + apply H4; unfold ge; apply le_trans with N; + [ unfold N; apply le_max_r | assumption ]. Qed. (**********) @@ -643,7 +643,7 @@ Lemma cv_cvabs : forall (Un:nat -> R) (l:R), Un_cv Un l -> Un_cv (fun i:nat => Rabs (Un i)) (Rabs l). Proof. - unfold Un_cv in |- *; unfold R_dist in |- *; intros. + unfold Un_cv; unfold R_dist; intros. elim (H eps H0); intros. exists x; intros. apply Rle_lt_trans with (Rabs (Un n - l)). @@ -656,15 +656,15 @@ Lemma CV_Cauchy : forall Un:nat -> R, { l:R | Un_cv Un l } -> Cauchy_crit Un. Proof. intros Un X; elim X; intros. - unfold Cauchy_crit in |- *; intros. + unfold Cauchy_crit; intros. unfold Un_cv in p; unfold R_dist in p. cut (0 < eps / 2); [ intro - | unfold Rdiv in |- *; apply Rmult_lt_0_compat; + | unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ]. elim (p (eps / 2) H0); intros. exists x0; intros. - unfold R_dist in |- *; + unfold R_dist; apply Rle_lt_trans with (Rabs (Un n - x) + Rabs (x - Un m)). replace (Un n - Un m) with (Un n - x + (x - Un m)); [ apply Rabs_triang | ring ]. @@ -695,7 +695,7 @@ Proof. unfold is_upper_bound in H1. apply H1. exists n; reflexivity. - pattern x0 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; + pattern x0 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; apply Rlt_0_1. apply Rle_trans with (Rabs (Un 0%nat)). apply Rabs_pos. @@ -717,7 +717,7 @@ Proof. assert (H1 := maj_by_pos An X). elim H1; intros M H2. elim H2; intros. - unfold Un_cv in |- *; unfold R_dist in |- *; intros. + unfold Un_cv; unfold R_dist; intros. cut (0 < eps / (2 * M)). intro. case (Req_dec l2 0); intro. @@ -744,24 +744,24 @@ Proof. rewrite Rmult_1_l; rewrite (Rmult_comm (/ M)). apply Rlt_trans with (eps / (2 * M)). apply H8; assumption. - unfold Rdiv in |- *; rewrite Rinv_mult_distr. + unfold Rdiv; rewrite Rinv_mult_distr. apply Rmult_lt_reg_l with 2. prove_sup0. replace (2 * (eps * (/ 2 * / M))) with (2 * / 2 * (eps * / M)); [ idtac | ring ]. rewrite <- Rinv_r_sym. rewrite Rmult_1_l; rewrite double. - pattern (eps * / M) at 1 in |- *; rewrite <- Rplus_0_r. + pattern (eps * / M) at 1; rewrite <- Rplus_0_r. apply Rplus_lt_compat_l; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; assumption ]. discrR. discrR. - red in |- *; intro; rewrite H10 in H3; elim (Rlt_irrefl _ H3). - red in |- *; intro; rewrite H10 in H3; elim (Rlt_irrefl _ H3). - rewrite H7; do 2 rewrite Rmult_0_r; unfold Rminus in |- *; + red; intro; rewrite H10 in H3; elim (Rlt_irrefl _ H3). + red; intro; rewrite H10 in H3; elim (Rlt_irrefl _ H3). + rewrite H7; do 2 rewrite Rmult_0_r; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; reflexivity. replace (An n * Bn n - An n * l2) with (An n * (Bn n - l2)); [ idtac | ring ]. - symmetry in |- *; apply Rabs_mult. + symmetry ; apply Rabs_mult. cut (0 < eps / (2 * Rabs l2)). intro. unfold Un_cv in H; unfold R_dist in H; unfold Un_cv in H0; @@ -790,36 +790,36 @@ Proof. rewrite Rmult_1_l; rewrite (Rmult_comm (/ M)). apply Rlt_le_trans with (eps / (2 * M)). apply H10. - unfold ge in |- *; apply le_trans with N. - unfold N in |- *; apply le_max_r. + unfold ge; apply le_trans with N. + unfold N; apply le_max_r. assumption. - unfold Rdiv in |- *; rewrite Rinv_mult_distr. + unfold Rdiv; rewrite Rinv_mult_distr. right; ring. discrR. - red in |- *; intro; rewrite H12 in H3; elim (Rlt_irrefl _ H3). - red in |- *; intro; rewrite H12 in H3; elim (Rlt_irrefl _ H3). + red; intro; rewrite H12 in H3; elim (Rlt_irrefl _ H3). + red; intro; rewrite H12 in H3; elim (Rlt_irrefl _ H3). apply Rmult_lt_reg_l with (/ Rabs l2). apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption. rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_l; apply Rlt_le_trans with (eps / (2 * Rabs l2)). apply H9. - unfold ge in |- *; apply le_trans with N. - unfold N in |- *; apply le_max_l. + unfold ge; apply le_trans with N. + unfold N; apply le_max_l. assumption. - unfold Rdiv in |- *; right; rewrite Rinv_mult_distr. + unfold Rdiv; right; rewrite Rinv_mult_distr. ring. discrR. apply Rabs_no_R0; assumption. apply Rabs_no_R0; assumption. replace (An n * l2 - l1 * l2) with (l2 * (An n - l1)); - [ symmetry in |- *; apply Rabs_mult | ring ]. + [ symmetry ; apply Rabs_mult | ring ]. replace (An n * Bn n - An n * l2) with (An n * (Bn n - l2)); - [ symmetry in |- *; apply Rabs_mult | ring ]. - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + [ symmetry ; apply Rabs_mult | ring ]. + unfold Rdiv; apply Rmult_lt_0_compat. assumption. apply Rinv_0_lt_compat; apply Rmult_lt_0_compat; [ prove_sup0 | apply Rabs_pos_lt; assumption ]. - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; apply Rmult_lt_0_compat; [ prove_sup0 | assumption ] ]. @@ -858,15 +858,15 @@ Proof. intros; exists (k + (1 - k) / 2). split. split. - pattern k at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l. - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + pattern k at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l. + unfold Rdiv; apply Rmult_lt_0_compat. apply Rplus_lt_reg_r with k; rewrite Rplus_0_r; replace (k + (1 - k)) with 1; [ elim H; intros; assumption | ring ]. apply Rinv_0_lt_compat; prove_sup0. apply Rmult_lt_reg_l with 2. prove_sup0. - unfold Rdiv in |- *; rewrite Rmult_1_r; rewrite Rmult_plus_distr_l; - pattern 2 at 1 in |- *; rewrite Rmult_comm; rewrite Rmult_assoc; + unfold Rdiv; rewrite Rmult_1_r; rewrite Rmult_plus_distr_l; + pattern 2 at 1; rewrite Rmult_comm; rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]; rewrite Rmult_1_r; replace (2 * k + (1 - k)) with (1 + k); [ idtac | ring ]. elim H; intros. @@ -885,7 +885,7 @@ Proof. repeat rewrite <- Rplus_assoc; rewrite Rplus_opp_l; repeat rewrite Rplus_0_l; apply H4. apply Rle_ge; elim H; intros; assumption. - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + unfold Rdiv; apply Rmult_lt_0_compat. apply Rplus_lt_reg_r with k; rewrite Rplus_0_r; elim H; intros; replace (k + (1 - k)) with 1; [ assumption | ring ]. apply Rinv_0_lt_compat; prove_sup0. @@ -910,12 +910,12 @@ Proof. apply Rle_lt_trans with (Rabs (Un N - l)). apply RRle_abs. apply H2. - unfold ge, N in |- *; apply le_max_r. - unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (- l)); + unfold ge, N; apply le_max_r. + unfold Rminus; do 2 rewrite <- (Rplus_comm (- l)); apply Rplus_le_compat_l. apply tech9. assumption. - unfold N in |- *; apply le_max_l. + unfold N; apply le_max_l. apply Rplus_lt_reg_r with l. rewrite Rplus_0_r. replace (l + (Un n - l)) with (Un n); [ assumption | ring ]. @@ -926,10 +926,10 @@ Lemma CV_opp : forall (An:nat -> R) (l:R), Un_cv An l -> Un_cv (opp_seq An) (- l). Proof. intros An l. - unfold Un_cv in |- *; unfold R_dist in |- *; intros. + unfold Un_cv; unfold R_dist; intros. elim (H eps H0); intros. exists x; intros. - unfold opp_seq in |- *; replace (- An n - - l) with (- (An n - l)); + unfold opp_seq; replace (- An n - - l) with (- (An n - l)); [ rewrite Rabs_Ropp | ring ]. apply H1; assumption. Qed. @@ -954,10 +954,10 @@ Lemma CV_minus : Proof. intros. replace (fun i:nat => An i - Bn i) with (fun i:nat => An i + opp_seq Bn i). - unfold Rminus in |- *; apply CV_plus. + unfold Rminus; apply CV_plus. assumption. apply CV_opp; assumption. - unfold Rminus, opp_seq in |- *; reflexivity. + unfold Rminus, opp_seq; reflexivity. Qed. (** Un -> +oo *) @@ -969,10 +969,10 @@ Lemma cv_infty_cv_R0 : forall Un:nat -> R, (forall n:nat, Un n <> 0) -> cv_infty Un -> Un_cv (fun n:nat => / Un n) 0. Proof. - unfold cv_infty, Un_cv in |- *; unfold R_dist in |- *; intros. + unfold cv_infty, Un_cv; unfold R_dist; intros. elim (H0 (/ eps)); intros N0 H2. exists N0; intros. - unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; + unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite (Rabs_Rinv _ (H n)). apply Rmult_lt_reg_l with (Rabs (Un n)). apply Rabs_pos_lt; apply H. @@ -984,7 +984,7 @@ Proof. rewrite Rmult_1_r; apply Rlt_le_trans with (Un n). apply H2; assumption. apply RRle_abs. - red in |- *; intro; rewrite H4 in H1; elim (Rlt_irrefl _ H1). + red; intro; rewrite H4 in H1; elim (Rlt_irrefl _ H1). apply Rabs_no_R0; apply H. Qed. @@ -993,7 +993,7 @@ Lemma decreasing_prop : forall (Un:nat -> R) (m n:nat), Un_decreasing Un -> (m <= n)%nat -> Un n <= Un m. Proof. - unfold Un_decreasing in |- *; intros. + unfold Un_decreasing; intros. induction n as [| n Hrecn]. induction m as [| m Hrecm]. right; reflexivity. @@ -1016,17 +1016,17 @@ Proof. (Un_cv (fun n:nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n:nat => x ^ n / INR (fact n)) 0). intro; apply H. - unfold Un_cv in |- *; unfold R_dist in |- *; intros; case (Req_dec x 0); + unfold Un_cv; unfold R_dist; intros; case (Req_dec x 0); intro. exists 1%nat; intros. - rewrite H1; unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; + rewrite H1; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_R0; rewrite pow_ne_zero; - [ unfold Rdiv in |- *; rewrite Rmult_0_l; rewrite Rabs_R0; assumption - | red in |- *; intro; rewrite H3 in H2; elim (le_Sn_n _ H2) ]. + [ unfold Rdiv; rewrite Rmult_0_l; rewrite Rabs_R0; assumption + | red; intro; rewrite H3 in H2; elim (le_Sn_n _ H2) ]. assert (H2 := Rabs_pos_lt x H1); set (M := up (Rabs x)); cut (0 <= M)%Z. intro; elim (IZN M H3); intros M_nat H4. set (Un := fun n:nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n))). - cut (Un_cv Un 0); unfold Un_cv in |- *; unfold R_dist in |- *; intros. + cut (Un_cv Un 0); unfold Un_cv; unfold R_dist; intros. elim (H5 eps H0); intros N H6. exists (M_nat + N)%nat; intros; cut (exists p : nat, (p >= N)%nat /\ n = (M_nat + p)%nat). @@ -1034,7 +1034,7 @@ Proof. elim H9; intros; rewrite H11; unfold Un in H6; apply H6; assumption. exists (n - M_nat)%nat. split. - unfold ge in |- *; apply (fun p n m:nat => plus_le_reg_l n m p) with M_nat; + unfold ge; apply (fun p n m:nat => plus_le_reg_l n m p) with M_nat; rewrite <- le_plus_minus. assumption. apply le_trans with (M_nat + N)%nat. @@ -1048,43 +1048,43 @@ Proof. intro; cut (Un_decreasing Un). intro; cut (forall n:nat, Un (S n) <= Vn n). intro; cut (Un_cv Vn 0). - unfold Un_cv in |- *; unfold R_dist in |- *; intros. + unfold Un_cv; unfold R_dist; intros. elim (H10 eps0 H5); intros N1 H11. exists (S N1); intros. cut (forall n:nat, 0 < Vn n). intro; apply Rle_lt_trans with (Rabs (Vn (pred n) - 0)). repeat rewrite Rabs_right. - unfold Rminus in |- *; rewrite Ropp_0; do 2 rewrite Rplus_0_r; + unfold Rminus; rewrite Ropp_0; do 2 rewrite Rplus_0_r; replace n with (S (pred n)). apply H9. - inversion H12; simpl in |- *; reflexivity. - apply Rle_ge; unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; left; + inversion H12; simpl; reflexivity. + apply Rle_ge; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; left; apply H13. - apply Rle_ge; unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; left; + apply Rle_ge; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; left; apply H7. - apply H11; unfold ge in |- *; apply le_S_n; replace (S (pred n)) with n; - [ unfold ge in H12; exact H12 | inversion H12; simpl in |- *; reflexivity ]. + apply H11; unfold ge; apply le_S_n; replace (S (pred n)) with n; + [ unfold ge in H12; exact H12 | inversion H12; simpl; reflexivity ]. intro; apply Rlt_le_trans with (Un (S n0)); [ apply H7 | apply H9 ]. cut (cv_infty (fun n:nat => INR (S n))). intro; cut (Un_cv (fun n:nat => / INR (S n)) 0). - unfold Un_cv, R_dist in |- *; intros; unfold Vn in |- *. + unfold Un_cv, R_dist; intros; unfold Vn. cut (0 < eps1 / (Rabs x * Un 0%nat)). intro; elim (H11 _ H13); intros N H14. exists N; intros; replace (Rabs x * (Un 0%nat / INR (S n)) - 0) with (Rabs x * Un 0%nat * (/ INR (S n) - 0)); - [ idtac | unfold Rdiv in |- *; ring ]. + [ idtac | unfold Rdiv; ring ]. rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs (Rabs x * Un 0%nat)). apply Rinv_0_lt_compat; apply Rabs_pos_lt. apply prod_neq_R0. apply Rabs_no_R0; assumption. - assert (H16 := H7 0%nat); red in |- *; intro; rewrite H17 in H16; + assert (H16 := H7 0%nat); red; intro; rewrite H17 in H16; elim (Rlt_irrefl _ H16). rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_l. replace (/ Rabs (Rabs x * Un 0%nat) * eps1) with (eps1 / (Rabs x * Un 0%nat)). apply H14; assumption. - unfold Rdiv in |- *; rewrite (Rabs_right (Rabs x * Un 0%nat)). + unfold Rdiv; rewrite (Rabs_right (Rabs x * Un 0%nat)). apply Rmult_comm. apply Rle_ge; apply Rmult_le_pos. apply Rabs_pos. @@ -1092,9 +1092,9 @@ Proof. apply Rabs_no_R0. apply prod_neq_R0; [ apply Rabs_no_R0; assumption - | assert (H16 := H7 0%nat); red in |- *; intro; rewrite H17 in H16; + | assert (H16 := H7 0%nat); red; intro; rewrite H17 in H16; elim (Rlt_irrefl _ H16) ]. - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + unfold Rdiv; apply Rmult_lt_0_compat. assumption. apply Rinv_0_lt_compat; apply Rmult_lt_0_compat. apply Rabs_pos_lt; assumption. @@ -1102,7 +1102,7 @@ Proof. apply (cv_infty_cv_R0 (fun n:nat => INR (S n))). intro; apply not_O_INR; discriminate. assumption. - unfold cv_infty in |- *; intro; case (total_order_T M0 0); intro. + unfold cv_infty; intro; case (total_order_T M0 0); intro. elim s; intro. exists 0%nat; intros. apply Rlt_trans with 0; [ assumption | apply lt_INR_0; apply lt_O_Sn ]. @@ -1116,13 +1116,13 @@ Proof. elim H10; intros; assumption. rewrite H12; rewrite <- INR_IZR_INZ; apply le_INR. apply le_trans with n; [ assumption | apply le_n_Sn ]. - apply le_IZR; left; simpl in |- *; unfold M0_z in |- *; + apply le_IZR; left; simpl; unfold M0_z; apply Rlt_trans with M0; [ assumption | elim H10; intros; assumption ]. intro; apply Rle_trans with (Rabs x * Un n * / INR (S n)). - unfold Un in |- *; replace (M_nat + S n)%nat with (M_nat + n + 1)%nat. + unfold Un; replace (M_nat + S n)%nat with (M_nat + n + 1)%nat. rewrite pow_add; replace (Rabs x ^ 1) with (Rabs x); - [ idtac | simpl in |- *; ring ]. - unfold Rdiv in |- *; rewrite <- (Rmult_comm (Rabs x)); + [ idtac | simpl; ring ]. + unfold Rdiv; rewrite <- (Rmult_comm (Rabs x)); repeat rewrite Rmult_assoc; repeat apply Rmult_le_compat_l. apply Rabs_pos. left; apply pow_lt; assumption. @@ -1130,33 +1130,33 @@ Proof. rewrite fact_simpl; rewrite mult_comm; rewrite mult_INR; rewrite Rinv_mult_distr. apply Rmult_le_compat_l. - left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red in |- *; - intro; assert (H10 := sym_eq H9); elim (fact_neq_0 _ H10). + left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red; + intro; assert (H10 := eq_sym H9); elim (fact_neq_0 _ H10). left; apply Rinv_lt_contravar. apply Rmult_lt_0_compat; apply lt_INR_0; apply lt_O_Sn. apply lt_INR; apply lt_n_S. - pattern n at 1 in |- *; replace n with (0 + n)%nat; [ idtac | reflexivity ]. + pattern n at 1; replace n with (0 + n)%nat; [ idtac | reflexivity ]. apply plus_lt_compat_r. apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ]. apply INR_fact_neq_0. apply not_O_INR; discriminate. ring. ring. - unfold Vn in |- *; rewrite Rmult_assoc; unfold Rdiv in |- *; + unfold Vn; rewrite Rmult_assoc; unfold Rdiv; rewrite (Rmult_comm (Un 0%nat)); rewrite (Rmult_comm (Un n)). repeat apply Rmult_le_compat_l. apply Rabs_pos. left; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn. apply decreasing_prop; [ assumption | apply le_O_n ]. - unfold Un_decreasing in |- *; intro; unfold Un in |- *. + unfold Un_decreasing; intro; unfold Un. replace (M_nat + S n)%nat with (M_nat + n + 1)%nat. - rewrite pow_add; unfold Rdiv in |- *; rewrite Rmult_assoc; + rewrite pow_add; unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l. left; apply pow_lt; assumption. - replace (Rabs x ^ 1) with (Rabs x); [ idtac | simpl in |- *; ring ]. + replace (Rabs x ^ 1) with (Rabs x); [ idtac | simpl; ring ]. replace (M_nat + n + 1)%nat with (S (M_nat + n)). apply Rmult_le_reg_l with (INR (fact (S (M_nat + n)))). - apply lt_INR_0; apply neq_O_lt; red in |- *; intro; assert (H9 := sym_eq H8); + apply lt_INR_0; apply neq_O_lt; red; intro; assert (H9 := eq_sym H8); elim (fact_neq_0 _ H9). rewrite (Rmult_comm (Rabs x)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_l. @@ -1170,37 +1170,37 @@ Proof. apply INR_fact_neq_0. ring. ring. - intro; unfold Un in |- *; unfold Rdiv in |- *; apply Rmult_lt_0_compat. + intro; unfold Un; unfold Rdiv; apply Rmult_lt_0_compat. apply pow_lt; assumption. - apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red in |- *; intro; - assert (H8 := sym_eq H7); elim (fact_neq_0 _ H8). - clear Un Vn; apply INR_le; simpl in |- *. + apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red; intro; + assert (H8 := eq_sym H7); elim (fact_neq_0 _ H8). + clear Un Vn; apply INR_le; simpl. induction M_nat as [| M_nat HrecM_nat]. assert (H6 := archimed (Rabs x)); fold M in H6; elim H6; intros. rewrite H4 in H7; rewrite <- INR_IZR_INZ in H7. simpl in H7; elim (Rlt_irrefl _ (Rlt_trans _ _ _ H2 H7)). replace 1 with (INR 1); [ apply le_INR | reflexivity ]; apply le_n_S; apply le_O_n. - apply le_IZR; simpl in |- *; left; apply Rlt_trans with (Rabs x). + apply le_IZR; simpl; left; apply Rlt_trans with (Rabs x). assumption. elim (archimed (Rabs x)); intros; assumption. - unfold Un_cv in |- *; unfold R_dist in |- *; intros; elim (H eps H0); intros. + unfold Un_cv; unfold R_dist; intros; elim (H eps H0); intros. exists x0; intros; apply Rle_lt_trans with (Rabs (Rabs x ^ n / INR (fact n) - 0)). - unfold Rminus in |- *; rewrite Ropp_0; do 2 rewrite Rplus_0_r; + unfold Rminus; rewrite Ropp_0; do 2 rewrite Rplus_0_r; rewrite (Rabs_right (Rabs x ^ n / INR (fact n))). - unfold Rdiv in |- *; rewrite Rabs_mult; rewrite (Rabs_right (/ INR (fact n))). + unfold Rdiv; rewrite Rabs_mult; rewrite (Rabs_right (/ INR (fact n))). rewrite RPow_abs; right; reflexivity. apply Rle_ge; left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; - red in |- *; intro; assert (H4 := sym_eq H3); elim (fact_neq_0 _ H4). - apply Rle_ge; unfold Rdiv in |- *; apply Rmult_le_pos. + red; intro; assert (H4 := eq_sym H3); elim (fact_neq_0 _ H4). + apply Rle_ge; unfold Rdiv; apply Rmult_le_pos. case (Req_dec x 0); intro. rewrite H3; rewrite Rabs_R0. induction n as [| n Hrecn]; - [ simpl in |- *; left; apply Rlt_0_1 - | simpl in |- *; rewrite Rmult_0_l; right; reflexivity ]. + [ simpl; left; apply Rlt_0_1 + | simpl; rewrite Rmult_0_l; right; reflexivity ]. left; apply pow_lt; apply Rabs_pos_lt; assumption. - left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red in |- *; - intro; assert (H4 := sym_eq H3); elim (fact_neq_0 _ H4). + left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red; + intro; assert (H4 := eq_sym H3); elim (fact_neq_0 _ H4). apply H1; assumption. Qed. diff --git a/theories/Reals/SeqSeries.v b/theories/Reals/SeqSeries.v index 0d876be5..5140c29c 100644 --- a/theories/Reals/SeqSeries.v +++ b/theories/Reals/SeqSeries.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* An (S N + l)%nat) (fun (l:nat) (x:R) => fn (S N + l)%nat x) x. - unfold SP in |- *; apply H2. + unfold SP; apply H2. apply H3. intros; apply H1. - symmetry in |- *; eapply UL_sequence. + symmetry ; eapply UL_sequence. apply H3. - unfold Un_cv in H0; unfold Un_cv in |- *; intros; elim (H0 eps H5); + unfold Un_cv in H0; unfold Un_cv; intros; elim (H0 eps H5); intros N0 H6. unfold R_dist in H6; exists N0; intros. - unfold R_dist in |- *; + unfold R_dist; replace (sum_f_R0 (fun l:nat => An (S N + l)%nat) n - (l2 - sum_f_R0 An N)) with (sum_f_R0 An N + sum_f_R0 (fun l:nat => An (S N + l)%nat) n - l2); [ idtac | ring ]. replace (sum_f_R0 An N + sum_f_R0 (fun l:nat => An (S N + l)%nat) n) with (sum_f_R0 An (S (N + n))). - apply H6; unfold ge in |- *; apply le_trans with n. + apply H6; unfold ge; apply le_trans with n. apply H7. apply le_trans with (N + n)%nat. apply le_plus_r. @@ -80,12 +80,12 @@ Proof. reflexivity. apply le_lt_n_Sm; apply le_plus_l. apply le_O_n. - symmetry in |- *; eapply UL_sequence. + symmetry ; eapply UL_sequence. apply H2. - unfold Un_cv in H; unfold Un_cv in |- *; intros. + unfold Un_cv in H; unfold Un_cv; intros. elim (H eps H4); intros N0 H5. unfold R_dist in H5; exists N0; intros. - unfold R_dist, SP in |- *; + unfold R_dist, SP; replace (sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n - (l1 - sum_f_R0 (fun k:nat => fn k x) N)) with @@ -96,7 +96,7 @@ Proof. (sum_f_R0 (fun k:nat => fn k x) N + sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n) with (sum_f_R0 (fun k:nat => fn k x) (S (N + n))). - unfold SP in H5; apply H5; unfold ge in |- *; apply le_trans with n. + unfold SP in H5; apply H5; unfold ge; apply le_trans with n. apply H6. apply le_trans with (N + n)%nat. apply le_plus_r. @@ -124,16 +124,16 @@ Proof. apply le_plus_l. apply le_O_n. exists (l2 - sum_f_R0 An N). - unfold Un_cv in H0; unfold Un_cv in |- *; intros. + unfold Un_cv in H0; unfold Un_cv; intros. elim (H0 eps H2); intros N0 H3. unfold R_dist in H3; exists N0; intros. - unfold R_dist in |- *; + unfold R_dist; replace (sum_f_R0 (fun l:nat => An (S N + l)%nat) n - (l2 - sum_f_R0 An N)) with (sum_f_R0 An N + sum_f_R0 (fun l:nat => An (S N + l)%nat) n - l2); [ idtac | ring ]. replace (sum_f_R0 An N + sum_f_R0 (fun l:nat => An (S N + l)%nat) n) with (sum_f_R0 An (S (N + n))). - apply H3; unfold ge in |- *; apply le_trans with n. + apply H3; unfold ge; apply le_trans with n. apply H4. apply le_trans with (N + n)%nat. apply le_plus_r. @@ -160,10 +160,10 @@ Proof. apply le_plus_l. apply le_O_n. exists (l1 - SP fn N x). - unfold Un_cv in H; unfold Un_cv in |- *; intros. + unfold Un_cv in H; unfold Un_cv; intros. elim (H eps H2); intros N0 H3. unfold R_dist in H3; exists N0; intros. - unfold R_dist, SP in |- *. + unfold R_dist, SP. replace (sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n - (l1 - sum_f_R0 (fun k:nat => fn k x) N)) with @@ -175,7 +175,7 @@ Proof. sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n) with (sum_f_R0 (fun k:nat => fn k x) (S (N + n))). unfold SP in H3; apply H3. - unfold ge in |- *; apply le_trans with n. + unfold ge; apply le_trans with n. apply H4. apply le_trans with (N + n)%nat. apply le_plus_r. @@ -213,7 +213,7 @@ Lemma Rseries_CV_comp : Proof. intros An Bn H X; apply cv_cauchy_2. assert (H0 := cv_cauchy_1 _ X). - unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *. + unfold Cauchy_crit_series; unfold Cauchy_crit. intros; elim (H0 eps H1); intros. exists x; intros. cut @@ -227,7 +227,7 @@ Proof. elim a; intro. rewrite (tech2 An n m); [ idtac | assumption ]. rewrite (tech2 Bn n m); [ idtac | assumption ]. - unfold R_dist in |- *; unfold Rminus in |- *; do 2 rewrite Ropp_plus_distr; + unfold R_dist; unfold Rminus; do 2 rewrite Ropp_plus_distr; do 2 rewrite <- Rplus_assoc; do 2 rewrite Rplus_opp_r; do 2 rewrite Rplus_0_l; do 2 rewrite Rabs_Ropp; repeat rewrite Rabs_right. apply sum_Rle; intros. @@ -238,12 +238,12 @@ Proof. apply Rle_trans with (An (S n + n0)%nat); assumption. apply Rle_ge; apply cond_pos_sum; intro. elim (H (S n + n0)%nat); intros; assumption. - rewrite b; unfold R_dist in |- *; unfold Rminus in |- *; + rewrite b; unfold R_dist; unfold Rminus; do 2 rewrite Rplus_opp_r; rewrite Rabs_R0; right; reflexivity. rewrite (tech2 An m n); [ idtac | assumption ]. rewrite (tech2 Bn m n); [ idtac | assumption ]. - unfold R_dist in |- *; unfold Rminus in |- *; do 2 rewrite Rplus_assoc; + unfold R_dist; unfold Rminus; do 2 rewrite Rplus_assoc; rewrite (Rplus_comm (sum_f_R0 An m)); rewrite (Rplus_comm (sum_f_R0 Bn m)); do 2 rewrite Rplus_assoc; do 2 rewrite Rplus_opp_l; do 2 rewrite Rplus_0_r; repeat rewrite Rabs_right. @@ -266,13 +266,13 @@ Lemma Cesaro : Un_cv (fun n:nat => sum_f_R0 (fun k:nat => An k * Bn k) n / sum_f_R0 An n) l. Proof with trivial. - unfold Un_cv in |- *; intros; assert (H3 : forall n:nat, 0 < sum_f_R0 An n)... + unfold Un_cv; intros; assert (H3 : forall n:nat, 0 < sum_f_R0 An n)... intro; apply tech1... assert (H4 : forall n:nat, sum_f_R0 An n <> 0)... - intro; red in |- *; intro; assert (H5 := H3 n); rewrite H4 in H5; + intro; red; intro; assert (H5 := H3 n); rewrite H4 in H5; elim (Rlt_irrefl _ H5)... assert (H5 := cv_infty_cv_R0 _ H4 H1); assert (H6 : 0 < eps / 2)... - unfold Rdiv in |- *; apply Rmult_lt_0_compat... + unfold Rdiv; apply Rmult_lt_0_compat... apply Rinv_0_lt_compat; prove_sup... elim (H _ H6); clear H; intros N1 H; set (C := Rabs (sum_f_R0 (fun k:nat => An k * (Bn k - l)) N1)); @@ -282,10 +282,10 @@ Proof with trivial. (forall n:nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2))... case (Req_dec C 0); intro... exists 0%nat; intros... - rewrite H7; unfold Rdiv in |- *; rewrite Rmult_0_l; apply Rmult_lt_0_compat... + rewrite H7; unfold Rdiv; rewrite Rmult_0_l; apply Rmult_lt_0_compat... apply Rinv_0_lt_compat; prove_sup... assert (H8 : 0 < eps / (2 * Rabs C))... - unfold Rdiv in |- *; apply Rmult_lt_0_compat... + unfold Rdiv; apply Rmult_lt_0_compat... apply Rinv_0_lt_compat; apply Rmult_lt_0_compat... prove_sup... apply Rabs_pos_lt... @@ -294,23 +294,23 @@ Proof with trivial. rewrite Rplus_0_r in H11... apply Rle_lt_trans with (Rabs (C / sum_f_R0 An n))... apply RRle_abs... - unfold Rdiv in |- *; rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs C)... + unfold Rdiv; rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs C)... apply Rinv_0_lt_compat; apply Rabs_pos_lt... rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym... rewrite Rmult_1_l; replace (/ Rabs C * (eps * / 2)) with (eps / (2 * Rabs C))... - unfold Rdiv in |- *; rewrite Rinv_mult_distr... + unfold Rdiv; rewrite Rinv_mult_distr... ring... discrR... apply Rabs_no_R0... apply Rabs_no_R0... elim H7; clear H7; intros N2 H7; set (N := max N1 N2); exists (S N); intros; - unfold R_dist in |- *; + unfold R_dist; replace (sum_f_R0 (fun k:nat => An k * Bn k) n / sum_f_R0 An n - l) with (sum_f_R0 (fun k:nat => An k * (Bn k - l)) n / sum_f_R0 An n)... assert (H9 : (N1 < n)%nat)... apply lt_le_trans with (S N)... - apply le_lt_n_Sm; unfold N in |- *; apply le_max_l... - rewrite (tech2 (fun k:nat => An k * (Bn k - l)) _ _ H9); unfold Rdiv in |- *; + apply le_lt_n_Sm; unfold N; apply le_max_l... + rewrite (tech2 (fun k:nat => An k * (Bn k - l)) _ _ H9); unfold Rdiv; rewrite Rmult_plus_distr_r; apply Rle_lt_trans with (Rabs (sum_f_R0 (fun k:nat => An k * (Bn k - l)) N1 / sum_f_R0 An n) + @@ -319,12 +319,12 @@ Proof with trivial. (n - S N1) / sum_f_R0 An n))... apply Rabs_triang... rewrite (double_var eps); apply Rplus_lt_compat... - unfold Rdiv in |- *; rewrite Rabs_mult; fold C in |- *; rewrite Rabs_right... + unfold Rdiv; rewrite Rabs_mult; fold C; rewrite Rabs_right... apply (H7 n); apply le_trans with (S N)... - apply le_trans with N; [ unfold N in |- *; apply le_max_r | apply le_n_Sn ]... + apply le_trans with N; [ unfold N; apply le_max_r | apply le_n_Sn ]... apply Rle_ge; left; apply Rinv_0_lt_compat... - unfold R_dist in H; unfold Rdiv in |- *; rewrite Rabs_mult; + unfold R_dist in H; unfold Rdiv; rewrite Rabs_mult; rewrite (Rabs_right (/ sum_f_R0 An n))... apply Rle_lt_trans with (sum_f_R0 (fun i:nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) @@ -340,22 +340,22 @@ Proof with trivial. do 2 rewrite <- (Rmult_comm (/ sum_f_R0 An n)); apply Rmult_le_compat_l... left; apply Rinv_0_lt_compat... apply sum_Rle; intros; rewrite Rabs_mult; - pattern (An (S N1 + n0)%nat) at 2 in |- *; + pattern (An (S N1 + n0)%nat) at 2; rewrite <- (Rabs_right (An (S N1 + n0)%nat))... apply Rmult_le_compat_l... apply Rabs_pos... - left; apply H; unfold ge in |- *; apply le_trans with (S N1); + left; apply H; unfold ge; apply le_trans with (S N1); [ apply le_n_Sn | apply le_plus_l ]... apply Rle_ge; left... rewrite <- (scal_sum (fun i:nat => An (S N1 + i)%nat) (n - S N1) (eps / 2)); - unfold Rdiv in |- *; repeat rewrite Rmult_assoc; apply Rmult_lt_compat_l... - pattern (/ 2) at 2 in |- *; rewrite <- Rmult_1_r; apply Rmult_lt_compat_l... + unfold Rdiv; repeat rewrite Rmult_assoc; apply Rmult_lt_compat_l... + pattern (/ 2) at 2; rewrite <- Rmult_1_r; apply Rmult_lt_compat_l... apply Rinv_0_lt_compat; prove_sup... rewrite Rmult_comm; apply Rmult_lt_reg_l with (sum_f_R0 An n)... rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym... rewrite Rmult_1_l; rewrite Rmult_1_r; rewrite (tech2 An N1 n)... rewrite Rplus_comm; - pattern (sum_f_R0 (fun i:nat => An (S N1 + i)%nat) (n - S N1)) at 1 in |- *; + pattern (sum_f_R0 (fun i:nat => An (S N1 + i)%nat) (n - S N1)) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l... apply Rle_ge; left; apply Rinv_0_lt_compat... replace (sum_f_R0 (fun k:nat => An k * (Bn k - l)) n) with @@ -371,41 +371,41 @@ Lemma Cesaro_1 : Proof with trivial. intros Bn l H; set (An := fun _:nat => 1)... assert (H0 : forall n:nat, 0 < An n)... - intro; unfold An in |- *; apply Rlt_0_1... + intro; unfold An; apply Rlt_0_1... assert (H1 : forall n:nat, 0 < sum_f_R0 An n)... intro; apply tech1... assert (H2 : cv_infty (fun n:nat => sum_f_R0 An n))... - unfold cv_infty in |- *; intro; case (Rle_dec M 0); intro... + unfold cv_infty; intro; case (Rle_dec M 0); intro... exists 0%nat; intros; apply Rle_lt_trans with 0... assert (H2 : 0 < M)... auto with real... clear n; set (m := up M); elim (archimed M); intros; assert (H5 : (0 <= m)%Z)... - apply le_IZR; unfold m in |- *; simpl in |- *; left; apply Rlt_trans with M... - elim (IZN _ H5); intros; exists x; intros; unfold An in |- *; rewrite sum_cte; + apply le_IZR; unfold m; simpl; left; apply Rlt_trans with M... + elim (IZN _ H5); intros; exists x; intros; unfold An; rewrite sum_cte; rewrite Rmult_1_l; apply Rlt_trans with (IZR (up M))... apply Rle_lt_trans with (INR x)... - rewrite INR_IZR_INZ; fold m in |- *; rewrite <- H6; right... + rewrite INR_IZR_INZ; fold m; rewrite <- H6; right... apply lt_INR; apply le_lt_n_Sm... assert (H3 := Cesaro _ _ _ H H0 H2)... - unfold Un_cv in |- *; unfold Un_cv in H3; intros; elim (H3 _ H4); intros; - exists (S x); intros; unfold R_dist in |- *; unfold R_dist in H5; + unfold Un_cv; unfold Un_cv in H3; intros; elim (H3 _ H4); intros; + exists (S x); intros; unfold R_dist; unfold R_dist in H5; apply Rle_lt_trans with (Rabs (sum_f_R0 (fun k:nat => An k * Bn k) (pred n) / sum_f_R0 An (pred n) - l))... right; replace (sum_f_R0 Bn (pred n) / INR n - l) with (sum_f_R0 (fun k:nat => An k * Bn k) (pred n) / sum_f_R0 An (pred n) - l)... - unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (- l)); + unfold Rminus; do 2 rewrite <- (Rplus_comm (- l)); apply Rplus_eq_compat_l... - unfold An in |- *; + unfold An; replace (sum_f_R0 (fun k:nat => 1 * Bn k) (pred n)) with (sum_f_R0 Bn (pred n))... rewrite sum_cte; rewrite Rmult_1_l; replace (S (pred n)) with n... apply S_pred with 0%nat; apply lt_le_trans with (S x)... apply lt_O_Sn... apply sum_eq; intros; ring... - apply H5; unfold ge in |- *; apply le_S_n; replace (S (pred n)) with n... + apply H5; unfold ge; apply le_S_n; replace (S (pred n)) with n... apply S_pred with 0%nat; apply lt_le_trans with (S x)... apply lt_O_Sn... Qed. diff --git a/theories/Reals/SplitAbsolu.v b/theories/Reals/SplitAbsolu.v index 819606c4..d0de58b0 100644 --- a/theories/Reals/SplitAbsolu.v +++ b/theories/Reals/SplitAbsolu.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* generalize id; clear id; try split_Rabs | |- context [(Rabs ?X1)] => - unfold Rabs in |- *; try split_case_Rabs; intros + unfold Rabs; try split_case_Rabs; intros end. diff --git a/theories/Reals/SplitRmult.v b/theories/Reals/SplitRmult.v index e554913c..09031fd6 100644 --- a/theories/Reals/SplitRmult.v +++ b/theories/Reals/SplitRmult.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 *) Lemma sqrt_continuity_pt : forall x:R, 0 < x -> continuity_pt sqrt x. Proof. intros; generalize sqrt_continuity_pt_R1. - unfold continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; - unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; + unfold continuity_pt; unfold continue_in; + unfold limit1_in; unfold limit_in; + unfold dist; simpl; unfold R_dist; intros. cut (0 < eps / sqrt x). intro; elim (H0 _ H2); intros alp_1 H3. @@ -136,9 +136,9 @@ Proof. set (alpha := alp_1 * x). exists (Rmin alpha x); intros. split. - change (0 < Rmin alpha x) in |- *; unfold Rmin in |- *; + change (0 < Rmin alpha x); unfold Rmin; case (Rle_dec alpha x); intro. - unfold alpha in |- *; apply Rmult_lt_0_compat; assumption. + unfold alpha; apply Rmult_lt_0_compat; assumption. apply H. intros; replace x0 with (x + (x0 - x)); [ idtac | ring ]; replace (sqrt (x + (x0 - x)) - sqrt x) with @@ -150,7 +150,7 @@ Proof. rewrite Rmult_1_l; rewrite Rmult_comm. unfold Rdiv in H5. case (Req_dec x x0); intro. - rewrite H7; unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r; + rewrite H7; unfold Rminus, Rdiv; rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rplus_0_r; rewrite Rplus_opp_r; rewrite Rabs_R0. apply Rmult_lt_0_compat. @@ -158,10 +158,10 @@ Proof. apply Rinv_0_lt_compat; rewrite <- H7; apply sqrt_lt_R0; assumption. apply H5. split. - unfold D_x, no_cond in |- *. + unfold D_x, no_cond. split. trivial. - red in |- *; intro. + red; intro. cut ((x0 - x) * / x = 0). intro. elim (Rmult_integral _ _ H9); intro. @@ -170,35 +170,35 @@ Proof. assert (H11 := Rmult_eq_0_compat_r _ x H10). rewrite <- Rinv_l_sym in H11. elim R1_neq_R0; exact H11. - red in |- *; intro; rewrite H12 in H; elim (Rlt_irrefl _ H). - symmetry in |- *; apply Rplus_eq_reg_l with 1; rewrite Rplus_0_r; + red; intro; rewrite H12 in H; elim (Rlt_irrefl _ H). + symmetry ; apply Rplus_eq_reg_l with 1; rewrite Rplus_0_r; unfold Rdiv in H8; exact H8. - unfold Rminus in |- *; rewrite Rplus_comm; rewrite <- Rplus_assoc; + unfold Rminus; rewrite Rplus_comm; rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l; elim H6; intros. - unfold Rdiv in |- *; rewrite Rabs_mult. + unfold Rdiv; rewrite Rabs_mult. rewrite Rabs_Rinv. rewrite (Rabs_right x). rewrite Rmult_comm; apply Rmult_lt_reg_l with x. apply H. rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. - rewrite Rmult_1_l; rewrite Rmult_comm; fold alpha in |- *. + rewrite Rmult_1_l; rewrite Rmult_comm; fold alpha. apply Rlt_le_trans with (Rmin alpha x). apply H9. apply Rmin_l. - red in |- *; intro; rewrite H10 in H; elim (Rlt_irrefl _ H). + red; intro; rewrite H10 in H; elim (Rlt_irrefl _ H). apply Rle_ge; left; apply H. - red in |- *; intro; rewrite H10 in H; elim (Rlt_irrefl _ H). + red; intro; rewrite H10 in H; elim (Rlt_irrefl _ H). assert (H7 := sqrt_lt_R0 x H). - red in |- *; intro; rewrite H8 in H7; elim (Rlt_irrefl _ H7). + red; intro; rewrite H8 in H7; elim (Rlt_irrefl _ H7). apply Rle_ge; apply sqrt_positivity. left; apply H. - unfold Rminus in |- *; rewrite Rmult_plus_distr_l; + unfold Rminus; rewrite Rmult_plus_distr_l; rewrite Ropp_mult_distr_r_reverse; repeat rewrite <- sqrt_mult. rewrite Rmult_1_r; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r; - unfold Rdiv in |- *; rewrite Rmult_comm; rewrite Rmult_assoc; + unfold Rdiv; rewrite Rmult_comm; rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; reflexivity. - red in |- *; intro; rewrite H7 in H; elim (Rlt_irrefl _ H). + red; intro; rewrite H7 in H; elim (Rlt_irrefl _ H). left; apply H. left; apply Rlt_0_1. left; apply H. @@ -208,7 +208,7 @@ Proof. rewrite Rplus_comm. apply Rplus_le_reg_l with (- ((x0 - x) / x)). rewrite Rplus_0_r; rewrite <- Rplus_assoc; rewrite Rplus_opp_l; - rewrite Rplus_0_l; unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse. + rewrite Rplus_0_l; unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse. apply Rmult_le_reg_l with x. apply H. rewrite Rmult_1_r; rewrite Rmult_comm; rewrite Rmult_assoc; @@ -216,13 +216,13 @@ Proof. rewrite Rmult_1_r; left; apply Rlt_le_trans with (Rmin alpha x). apply H8. apply Rmin_r. - red in |- *; intro; rewrite H9 in H; elim (Rlt_irrefl _ H). + red; intro; rewrite H9 in H; elim (Rlt_irrefl _ H). apply Rplus_le_le_0_compat. left; apply Rlt_0_1. - unfold Rdiv in |- *; apply Rmult_le_pos. + unfold Rdiv; apply Rmult_le_pos. apply Rge_le; exact r. left; apply Rinv_0_lt_compat; apply H. - unfold Rdiv in |- *; apply Rmult_lt_0_compat. + unfold Rdiv; apply Rmult_lt_0_compat. apply H1. apply Rinv_0_lt_compat; apply sqrt_lt_R0; apply H. Qed. @@ -235,7 +235,7 @@ Proof. cut (continuity_pt g 0). intro; cut (g 0 <> 0). intro; assert (H2 := continuity_pt_inv g 0 H0 H1). - unfold derivable_pt_lim in |- *; intros; unfold continuity_pt in H2; + unfold derivable_pt_lim; intros; unfold continuity_pt in H2; unfold continue_in in H2; unfold limit1_in in H2; unfold limit_in in H2; simpl in H2; unfold R_dist in H2. elim (H2 eps H3); intros alpha H4. @@ -247,29 +247,29 @@ Proof. unfold inv_fct, g in H6; replace (2 * sqrt x) with (sqrt x + sqrt (x + 0)). apply H6. split. - unfold D_x, no_cond in |- *. + unfold D_x, no_cond. split. trivial. - apply (sym_not_eq (A:=R)); exact H8. - unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; + apply (not_eq_sym (A:=R)); exact H8. + unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rlt_le_trans with alpha1. exact H9. - unfold alpha1 in |- *; apply Rmin_l. + unfold alpha1; apply Rmin_l. rewrite Rplus_0_r; ring. cut (0 <= x + h). intro; cut (0 < sqrt x + sqrt (x + h)). intro; apply Rmult_eq_reg_l with (sqrt x + sqrt (x + h)). rewrite <- Rinv_r_sym. - rewrite Rplus_comm; unfold Rdiv in |- *; rewrite <- Rmult_assoc; + rewrite Rplus_comm; unfold Rdiv; rewrite <- Rmult_assoc; rewrite Rsqr_plus_minus; repeat rewrite Rsqr_sqrt. - rewrite Rplus_comm; unfold Rminus in |- *; rewrite Rplus_assoc; + rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_r; rewrite <- Rinv_r_sym. reflexivity. apply H8. left; apply H. assumption. - red in |- *; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11). - red in |- *; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11). + red; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11). + red; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11). apply Rplus_lt_le_0_compat. apply sqrt_lt_R0; apply H. apply sqrt_positivity; apply H10. @@ -279,35 +279,35 @@ Proof. rewrite Rplus_0_r; rewrite Rplus_comm; rewrite Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_r; left; apply Rlt_le_trans with alpha1. apply H9. - unfold alpha1 in |- *; apply Rmin_r. + unfold alpha1; apply Rmin_r. apply Rplus_le_le_0_compat. left; assumption. apply Rge_le; apply r. - unfold alpha1 in |- *; unfold Rmin in |- *; case (Rle_dec alpha x); intro. + unfold alpha1; unfold Rmin; case (Rle_dec alpha x); intro. apply H5. apply H. - unfold g in |- *; rewrite Rplus_0_r. + unfold g; rewrite Rplus_0_r. cut (0 < sqrt x + sqrt x). - intro; red in |- *; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1). + intro; red; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1). apply Rplus_lt_0_compat; apply sqrt_lt_R0; apply H. replace g with (fct_cte (sqrt x) + comp sqrt (fct_cte x + id))%F; [ idtac | reflexivity ]. apply continuity_pt_plus. - apply continuity_pt_const; unfold constant, fct_cte in |- *; intro; + apply continuity_pt_const; unfold constant, fct_cte; intro; reflexivity. apply continuity_pt_comp. apply continuity_pt_plus. - apply continuity_pt_const; unfold constant, fct_cte in |- *; intro; + apply continuity_pt_const; unfold constant, fct_cte; intro; reflexivity. apply derivable_continuous_pt; apply derivable_pt_id. apply sqrt_continuity_pt. - unfold plus_fct, fct_cte, id in |- *; rewrite Rplus_0_r; apply H. + unfold plus_fct, fct_cte, id; rewrite Rplus_0_r; apply H. Qed. (**********) Lemma derivable_pt_sqrt : forall x:R, 0 < x -> derivable_pt sqrt x. Proof. - unfold derivable_pt in |- *; intros. + unfold derivable_pt; intros. exists (/ (2 * sqrt x)). apply derivable_pt_lim_sqrt; assumption. Qed. @@ -330,19 +330,19 @@ Proof. intros; case (Rtotal_order 0 x); intro. apply (sqrt_continuity_pt x H0). elim H0; intro. - unfold continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; unfold R_dist in |- *; intros. + unfold continuity_pt; unfold continue_in; + unfold limit1_in; unfold limit_in; + simpl; unfold R_dist; intros. exists (Rsqr eps); intros. split. - change (0 < Rsqr eps) in |- *; apply Rsqr_pos_lt. - red in |- *; intro; rewrite H3 in H2; elim (Rlt_irrefl _ H2). + change (0 < Rsqr eps); apply Rsqr_pos_lt. + red; intro; rewrite H3 in H2; elim (Rlt_irrefl _ H2). intros; elim H3; intros. - rewrite <- H1; rewrite sqrt_0; unfold Rminus in |- *; rewrite Ropp_0; + rewrite <- H1; rewrite sqrt_0; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite <- H1 in H5; unfold Rminus in H5; rewrite Ropp_0 in H5; rewrite Rplus_0_r in H5. case (Rcase_abs x0); intro. - unfold sqrt in |- *; case (Rcase_abs x0); intro. + unfold sqrt; case (Rcase_abs x0); intro. rewrite Rabs_R0; apply H2. assert (H6 := Rge_le _ _ r0); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H6 r)). rewrite Rabs_right. diff --git a/theories/Reals/vo.itarget b/theories/Reals/vo.itarget index bcd47a0b..36dd0f56 100644 --- a/theories/Reals/vo.itarget +++ b/theories/Reals/vo.itarget @@ -9,6 +9,7 @@ DiscrR.vo Exp_prop.vo Integration.vo LegacyRfield.vo +Machin.vo MVT.vo NewtonInt.vo PartSum.vo @@ -17,7 +18,10 @@ Ranalysis1.vo Ranalysis2.vo Ranalysis3.vo Ranalysis4.vo +Ranalysis5.vo Ranalysis.vo +Ranalysis_reg.vo +Ratan.vo Raxioms.vo Rbase.vo Rbasic_fun.vo @@ -48,6 +52,7 @@ Rtrigo_calc.vo Rtrigo_def.vo Rtrigo_fun.vo Rtrigo_reg.vo +Rtrigo1.vo Rtrigo.vo SeqProp.vo SeqSeries.vo diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v index f7f5512e..779c3d9a 100644 --- a/theories/Relations/Operators_Properties.v +++ b/theories/Relations/Operators_Properties.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* A -> Prop. Variable leB : forall x:A, B x -> B x -> Prop. - Inductive lexprod : sigS B -> sigS B -> Prop := + Inductive lexprod : sigT B -> sigT B -> Prop := | left_lex : forall (x x':A) (y:B x) (y':B x'), - leA x x' -> lexprod (existS B x y) (existS B x' y') + leA x x' -> lexprod (existT B x y) (existT B x' y') | right_lex : forall (x:A) (y y':B x), - leB x y y' -> lexprod (existS B x y) (existS B x y'). + leB x y y' -> lexprod (existT B x y) (existT B x y'). End Lexicographic_Product. diff --git a/theories/Relations/Relations.v b/theories/Relations/Relations.v index f9fb2c44..08b7574f 100644 --- a/theories/Relations/Relations.v +++ b/theories/Relations/Relations.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* B) (r:relation B), equivalence B r -> equivalence A (fun x y:A => r (f x) (f y)). Proof. - intros; split; elim H; red in |- *; auto. + intros; split; elim H; red; auto. intros _ equiv_trans _ x y z H0 H1; apply equiv_trans with (f y); assumption. Qed. Lemma inverse_image_of_eq : forall (A B:Type) (f:A -> B), equivalence A (fun x y:A => f x = f y). Proof. - split; red in |- *; + split; red; [ (* reflexivity *) reflexivity | (* transitivity *) intros; transitivity (f y); assumption - | (* symmetry *) intros; symmetry in |- *; assumption ]. + | (* symmetry *) intros; symmetry ; assumption ]. Qed. diff --git a/theories/Setoids/Setoid.v b/theories/Setoids/Setoid.v index f5677005..eec7aa2d 100644 --- a/theories/Setoids/Setoid.v +++ b/theories/Setoids/Setoid.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* ~ In U A x)). intros x H; apply Inhabited_intro with x. apply NNPP; auto with sets. - red in |- *; intro. - apply NI; red in |- *. + red; intro. + apply NI; red. intros x H'; elim (H x); trivial with sets. Qed. @@ -47,7 +47,7 @@ Section Ensembles_classical. forall A:Ensemble U, A <> Empty_set U -> Inhabited U A. Proof. intros; apply not_included_empty_Inhabited. - red in |- *; auto with sets. + red; auto with sets. Qed. Lemma Inhabited_Setminus : @@ -73,7 +73,7 @@ Section Ensembles_classical. Lemma Subtract_intro : forall (A:Ensemble U) (x y:U), In U A y -> x <> y -> In U (Subtract U A x) y. Proof. - unfold Subtract at 1 in |- *; auto with sets. + unfold Subtract at 1; auto with sets. Qed. Hint Resolve Subtract_intro : sets. @@ -103,7 +103,7 @@ Section Ensembles_classical. Lemma not_SIncl_empty : forall X:Ensemble U, ~ Strict_Included U X (Empty_set U). Proof. - intro X; red in |- *; intro H'; try exact H'. + intro X; red; intro H'; try exact H'. lapply (Strict_Included_inv X (Empty_set U)); auto with sets. intro H'0; elim H'0; intros H'1 H'2; elim H'2; clear H'0. intros x H'0; elim H'0. @@ -113,10 +113,10 @@ Section Ensembles_classical. Lemma Complement_Complement : forall A:Ensemble U, Complement U (Complement U A) = A. Proof. - unfold Complement in |- *; intros; apply Extensionality_Ensembles; + unfold Complement; intros; apply Extensionality_Ensembles; auto with sets. - red in |- *; split; auto with sets. - red in |- *; intros; apply NNPP; auto with sets. + red; split; auto with sets. + red; intros; apply NNPP; auto with sets. Qed. End Ensembles_classical. diff --git a/theories/Sets/Constructive_sets.v b/theories/Sets/Constructive_sets.v index e6dd8381..f559533a 100644 --- a/theories/Sets/Constructive_sets.v +++ b/theories/Sets/Constructive_sets.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* In U (Add U A x) y. Proof. - unfold Add at 1 in |- *; auto with sets. + unfold Add at 1; auto with sets. Qed. Lemma Add_intro2 : forall (A:Ensemble U) (x:U), In U (Add U A x) x. Proof. - unfold Add at 1 in |- *; auto with sets. + unfold Add at 1; auto with sets. Qed. Lemma Inhabited_add : forall (A:Ensemble U) (x:U), Inhabited U (Add U A x). @@ -66,7 +66,7 @@ Section Ensembles_facts. forall X:Ensemble U, Inhabited U X -> X <> Empty_set U. Proof. intros X H'; elim H'. - intros x H'0; red in |- *; intro H'1. + intros x H'0; red; intro H'1. absurd (In U X x); auto with sets. rewrite H'1; auto using Noone_in_empty with sets. Qed. @@ -78,7 +78,7 @@ Section Ensembles_facts. Lemma not_Empty_Add : forall (A:Ensemble U) (x:U), Empty_set U <> Add U A x. Proof. - intros; red in |- *; intro H; generalize (Add_not_Empty A x); auto with sets. + intros; red; intro H; generalize (Add_not_Empty A x); auto with sets. Qed. Lemma Singleton_inv : forall x y:U, In U (Singleton U x) y -> x = y. @@ -121,7 +121,7 @@ Section Ensembles_facts. forall (A B:Ensemble U) (x:U), In U A x -> ~ In U B x -> In U (Setminus U A B) x. Proof. - unfold Setminus at 1 in |- *; red in |- *; auto with sets. + unfold Setminus at 1; red; auto with sets. Qed. Lemma Strict_Included_intro : @@ -132,7 +132,7 @@ Section Ensembles_facts. Lemma Strict_Included_strict : forall X:Ensemble U, ~ Strict_Included U X X. Proof. - intro X; red in |- *; intro H'; elim H'. + intro X; red; intro H'; elim H'. intros H'0 H'1; elim H'1; auto with sets. Qed. diff --git a/theories/Sets/Cpo.v b/theories/Sets/Cpo.v index d612e71e..058eec3d 100644 --- a/theories/Sets/Cpo.v +++ b/theories/Sets/Cpo.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Inhabited U X end. Proof. - intros X p C; elim C; simpl in |- *; trivial with sets. + intros X p C; elim C; simpl; trivial with sets. Qed. End Ensembles_finis_facts. diff --git a/theories/Sets/Finite_sets_facts.v b/theories/Sets/Finite_sets_facts.v index 350cd783..c0613637 100644 --- a/theories/Sets/Finite_sets_facts.v +++ b/theories/Sets/Finite_sets_facts.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0) in |- *. + change (n > 0). apply inh_card_gt_O with (X := X); auto with sets. apply Inhabited_intro with (x := x0); auto with sets. - red in |- *; intro H'3. + red; intro H'3. apply H'1. elim H'3; auto with sets. rewrite H'3; auto with sets. @@ -152,7 +152,7 @@ Section Finite_sets_facts. intro H'4; rewrite H'4; auto with sets. intros H'3 H'4; try assumption. absurd (In U (Add U X x) x0); auto with sets. - red in |- *; intro H'5; try exact H'5. + red; intro H'5; try exact H'5. lapply (Add_inv U X x x0); tauto. Qed. @@ -183,11 +183,11 @@ Section Finite_sets_facts. intros H'6 H'7; apply f_equal. apply H'0 with (Y := X0); auto with sets. apply Simplify_add with (x := x); auto with sets. - pattern x at 2 in |- *; rewrite H'6; auto with sets. + pattern x at 2; rewrite H'6; auto with sets. intros H'6 H'7. absurd (Add U X x = Add U X0 x0); auto with sets. clear H'0 H' H'3 n H'5 H'4 H'2 H'1 c2. - red in |- *; intro H'. + red; intro H'. lapply (Extension U (Add U X x) (Add U X0 x0)); auto with sets. clear H'. intro H'; red in H'. @@ -254,7 +254,7 @@ Section Finite_sets_facts. apply H'0 with (Y := X0); auto with sets arith. apply sincl_add_x with (x := x0). rewrite <- H'6; auto with sets arith. - pattern x0 at 1 in |- *; rewrite <- H'6; trivial with sets arith. + pattern x0 at 1; rewrite <- H'6; trivial with sets arith. intros H'6 H'7; red in H'5. elim H'5; intros H'8 H'9; try exact H'8; clear H'5. red in H'8. diff --git a/theories/Sets/Image.v b/theories/Sets/Image.v index 24facb6f..bdb7c077 100644 --- a/theories/Sets/Image.v +++ b/theories/Sets/Image.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* V, ~ injective f -> exists x : _, (exists y : _, f x = f y /\ x <> y). Proof. - unfold injective in |- *; intros f H. + unfold injective; intros f H. cut (exists x : _, ~ (forall y:U, f x = f y -> x = y)). 2: apply not_all_ex_not with (P := fun x:U => forall y:U, f x = f y -> x = y); trivial with sets. @@ -153,7 +153,7 @@ Section Image. apply cardinal_unicity with V (Add _ (Im A f) (f x)); trivial with sets. apply card_add; auto with sets. rewrite <- H1; trivial with sets. - red in |- *; intro; apply H'2. + red; intro; apply H'2. apply In_Image_elim with f; trivial with sets. Qed. @@ -180,7 +180,7 @@ Section Image. cardinal U A n -> forall n':nat, cardinal V (Im A f) n' -> n' < n -> ~ injective f. Proof. - unfold not in |- *; intros A f n CAn n' CIfn' ltn'n I. + unfold not; intros A f n CAn n' CIfn' ltn'n I. cut (n' = n). intro E; generalize ltn'n; rewrite E; exact (lt_irrefl n). apply injective_preserves_cardinal with (A := A) (f := f) (n := n); diff --git a/theories/Sets/Infinite_sets.v b/theories/Sets/Infinite_sets.v index a21fe880..897046ab 100644 --- a/theories/Sets/Infinite_sets.v +++ b/theories/Sets/Infinite_sets.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* meq y z -> meq x z. Proof. - unfold meq in |- *. + unfold meq. destruct x; destruct y; destruct z. intros; rewrite H; auto. Qed. Lemma meq_sym : forall x y:multiset, meq x y -> meq y x. Proof. - unfold meq in |- *. + unfold meq. destruct x; destruct y; auto. Qed. @@ -59,12 +59,12 @@ Section multiset_defs. Lemma munion_empty_left : forall x:multiset, meq x (munion EmptyBag x). Proof. - unfold meq in |- *; unfold munion in |- *; simpl in |- *; auto. + unfold meq; unfold munion; simpl; auto. Qed. Lemma munion_empty_right : forall x:multiset, meq x (munion x EmptyBag). Proof. - unfold meq in |- *; unfold munion in |- *; simpl in |- *; auto. + unfold meq; unfold munion; simpl; auto. Qed. @@ -72,21 +72,21 @@ Section multiset_defs. Lemma munion_comm : forall x y:multiset, meq (munion x y) (munion y x). Proof. - unfold meq in |- *; unfold multiplicity in |- *; unfold munion in |- *. + unfold meq; unfold multiplicity; unfold munion. destruct x; destruct y; auto with arith. Qed. Lemma munion_ass : forall x y z:multiset, meq (munion (munion x y) z) (munion x (munion y z)). Proof. - unfold meq in |- *; unfold munion in |- *; unfold multiplicity in |- *. + unfold meq; unfold munion; unfold multiplicity. destruct x; destruct y; destruct z; auto with arith. Qed. Lemma meq_left : forall x y z:multiset, meq x y -> meq (munion x z) (munion y z). Proof. - unfold meq in |- *; unfold munion in |- *; unfold multiplicity in |- *. + unfold meq; unfold munion; unfold multiplicity. destruct x; destruct y; destruct z. intros; elim H; auto with arith. Qed. @@ -94,7 +94,7 @@ Section multiset_defs. Lemma meq_right : forall x y z:multiset, meq x y -> meq (munion z x) (munion z y). Proof. - unfold meq in |- *; unfold munion in |- *; unfold multiplicity in |- *. + unfold meq; unfold munion; unfold multiplicity. destruct x; destruct y; destruct z. intros; elim H; auto. Qed. diff --git a/theories/Sets/Partial_Order.v b/theories/Sets/Partial_Order.v index a319b983..054164da 100644 --- a/theories/Sets/Partial_Order.v +++ b/theories/Sets/Partial_Order.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Rel_of U D y z -> Strict_Rel_of U D x z. Proof. - unfold Strict_Rel_of at 1 in |- *. - red in |- *. - elim D; simpl in |- *. + unfold Strict_Rel_of at 1. + red. + elim D; simpl. intros C R H' H'0; elim H'0. intros H'1 H'2 H'3 x y z H'4 H'5; split. apply H'2 with (y := y); tauto. - red in |- *; intro H'6. + red; intro H'6. elim H'4; intros H'7 H'8; apply H'8; clear H'4. apply H'3; auto. rewrite H'6; tauto. @@ -79,20 +79,20 @@ Section Partial_order_facts. forall x y z:U, Rel_of U D x y -> Strict_Rel_of U D y z -> Strict_Rel_of U D x z. Proof. - unfold Strict_Rel_of at 1 in |- *. - red in |- *. - elim D; simpl in |- *. + unfold Strict_Rel_of at 1. + red. + elim D; simpl. intros C R H' H'0; elim H'0. intros H'1 H'2 H'3 x y z H'4 H'5; split. apply H'2 with (y := y); tauto. - red in |- *; intro H'6. + red; intro H'6. elim H'5; intros H'7 H'8; apply H'8; clear H'5. apply H'3; auto. rewrite <- H'6; auto. Qed. Lemma Strict_Rel_Transitive : Transitive U (Strict_Rel_of U D). - red in |- *. + red. intros x y z H' H'0. apply Strict_Rel_Transitive_with_Rel with (y := y); [ intuition | unfold Strict_Rel_of in H', H'0; intuition ]. diff --git a/theories/Sets/Permut.v b/theories/Sets/Permut.v index e28a1264..5523f64c 100644 --- a/theories/Sets/Permut.v +++ b/theories/Sets/Permut.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Included U y z -> Strict_Included U x z. intros x y z H' H'0; try assumption. elim Strict_Rel_is_Strict_Included. -unfold contains in |- *. +unfold contains. intros H'1 H'2; try assumption. apply H'1. apply Strict_Rel_Transitive_with_Rel with (y := y); auto with sets. @@ -90,7 +90,7 @@ Lemma Strict_inclusion_is_transitive_with_inclusion_left : Included U x y -> Strict_Included U y z -> Strict_Included U x z. intros x y z H' H'0; try assumption. elim Strict_Rel_is_Strict_Included. -unfold contains in |- *. +unfold contains. intros H'1 H'2; try assumption. apply H'1. apply Strict_Rel_Transitive_with_Rel_left with (y := y); auto with sets. @@ -105,14 +105,14 @@ Qed. Theorem Empty_set_is_Bottom : forall A:Ensemble U, Bottom (Ensemble U) (Power_set_PO A) (Empty_set U). -intro A; apply Bottom_definition; simpl in |- *; auto with sets. +intro A; apply Bottom_definition; simpl; auto with sets. Qed. Hint Resolve Empty_set_is_Bottom. Theorem Union_minimal : forall a b X:Ensemble U, Included U a X -> Included U b X -> Included U (Union U a b) X. -intros a b X H' H'0; red in |- *. +intros a b X H' H'0; red. intros x H'1; elim H'1; auto with sets. Qed. Hint Resolve Union_minimal. @@ -133,13 +133,13 @@ Qed. Theorem Intersection_decreases_l : forall a b:Ensemble U, Included U (Intersection U a b) a. -intros a b; red in |- *. +intros a b; red. intros x H'; elim H'; auto with sets. Qed. Theorem Intersection_decreases_r : forall a b:Ensemble U, Included U (Intersection U a b) b. -intros a b; red in |- *. +intros a b; red. intros x H'; elim H'; auto with sets. Qed. Hint Resolve Union_increases_l Union_increases_r Intersection_decreases_l @@ -151,10 +151,10 @@ Theorem Union_is_Lub : Included U b A -> Lub (Ensemble U) (Power_set_PO A) (Couple (Ensemble U) a b) (Union U a b). intros A a b H' H'0. -apply Lub_definition; simpl in |- *. -apply Upper_Bound_definition; simpl in |- *; auto with sets. +apply Lub_definition; simpl. +apply Upper_Bound_definition; simpl; auto with sets. intros y H'1; elim H'1; auto with sets. -intros y H'1; elim H'1; simpl in |- *; auto with sets. +intros y H'1; elim H'1; simpl; auto with sets. Qed. Theorem Intersection_is_Glb : @@ -164,13 +164,13 @@ Theorem Intersection_is_Glb : Glb (Ensemble U) (Power_set_PO A) (Couple (Ensemble U) a b) (Intersection U a b). intros A a b H' H'0. -apply Glb_definition; simpl in |- *. -apply Lower_Bound_definition; simpl in |- *; auto with sets. +apply Glb_definition; simpl. +apply Lower_Bound_definition; simpl; auto with sets. apply Definition_of_Power_set. generalize Inclusion_is_transitive; intro IT; red in IT; apply IT with a; auto with sets. intros y H'1; elim H'1; auto with sets. -intros y H'1; elim H'1; simpl in |- *; auto with sets. +intros y H'1; elim H'1; simpl; auto with sets. Qed. End The_power_set_partial_order. diff --git a/theories/Sets/Powerset_Classical_facts.v b/theories/Sets/Powerset_Classical_facts.v index 09fc2094..d24e931d 100644 --- a/theories/Sets/Powerset_Classical_facts.v +++ b/theories/Sets/Powerset_Classical_facts.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Strict_Included U (Add U A x) (Add U B x) -> Strict_Included U A B. Proof. - intros A B x H' H'0; red in |- *. + intros A B x H' H'0; red. lapply (Strict_Included_inv U (Add U A x) (Add U B x)); auto with sets. clear H'0; intro H'0; split. apply incl_add_x with (x := x); tauto. elim H'0; intros H'1 H'2; elim H'2; clear H'0 H'2. intros x0 H'0. - red in |- *; intro H'2. + red; intro H'2. elim H'0; clear H'0. rewrite <- H'2; auto with sets. Qed. @@ -58,7 +58,7 @@ Section Sets_as_an_algebra. Lemma incl_soustr_in : forall (X:Ensemble U) (x:U), In U X x -> Included U (Subtract U X x) X. Proof. - intros X x H'; red in |- *. + intros X x H'; red. intros x0 H'0; elim H'0; auto with sets. Qed. @@ -66,7 +66,7 @@ Section Sets_as_an_algebra. forall (X Y:Ensemble U) (x:U), Included U X Y -> Included U (Subtract U X x) (Subtract U Y x). Proof. - intros X Y x H'; red in |- *. + intros X Y x H'; red. intros x0 H'0; elim H'0. intros H'1 H'2. apply Subtract_intro; auto with sets. @@ -75,7 +75,7 @@ Section Sets_as_an_algebra. Lemma incl_soustr_add_l : forall (X:Ensemble U) (x:U), Included U (Subtract U (Add U X x) x) X. Proof. - intros X x; red in |- *. + intros X x; red. intros x0 H'; elim H'; auto with sets. intro H'0; elim H'0; auto with sets. intros t H'1 H'2; elim H'2; auto with sets. @@ -85,10 +85,10 @@ Section Sets_as_an_algebra. forall (X:Ensemble U) (x:U), ~ In U X x -> Included U X (Subtract U (Add U X x) x). Proof. - intros X x H'; red in |- *. + intros X x H'; red. intros x0 H'0; try assumption. apply Subtract_intro; auto with sets. - red in |- *; intro H'1; apply H'; rewrite H'1; auto with sets. + red; intro H'1; apply H'; rewrite H'1; auto with sets. Qed. Hint Resolve incl_soustr_add_r: sets v62. @@ -96,7 +96,7 @@ Section Sets_as_an_algebra. forall (X:Ensemble U) (x:U), In U X x -> Included U X (Add U (Subtract U X x) x). Proof. - intros X x H'; red in |- *. + intros X x H'; red. intros x0 H'0; try assumption. elim (classic (x = x0)); intro K; auto with sets. elim K; auto with sets. @@ -106,7 +106,7 @@ Section Sets_as_an_algebra. forall (X:Ensemble U) (x:U), In U X x -> Included U (Add U (Subtract U X x) x) X. Proof. - intros X x H'; red in |- *. + intros X x H'; red. intros x0 H'0; elim H'0; auto with sets. intros y H'1; elim H'1; auto with sets. intros t H'1; try assumption. @@ -118,7 +118,7 @@ Section Sets_as_an_algebra. x <> y -> Subtract U (Add U X x) y = Add U (Subtract U X y) x. Proof. intros X x y H'; apply Extensionality_Ensembles. - split; red in |- *. + split; red. intros x0 H'0; elim H'0; auto with sets. intro H'1; elim H'1. intros u H'2 H'3; try assumption. @@ -146,7 +146,7 @@ Section Sets_as_an_algebra. apply H'4 with (y := Y); auto using add_soustr_2 with sets. red in H'0. elim H'0; intros H'1 H'2; try exact H'1; clear H'0. (* PB *) - red in |- *; intro H'0; apply H'2. + red; intro H'0; apply H'2. rewrite H'0; auto 8 using add_soustr_xy, add_soustr_1, add_soustr_2 with sets. Qed. @@ -177,7 +177,7 @@ Section Sets_as_an_algebra. exists (Subtract U X x). split; auto using incl_soustr_in, add_soustr_xy, add_soustr_1, add_soustr_2 with sets. red in H'0. - red in |- *. + red. intros x0 H'2; try assumption. lapply (Subtract_inv U X x x0); auto with sets. intro H'3; elim H'3; intros K K'; clear H'3. @@ -189,7 +189,7 @@ Section Sets_as_an_algebra. elim K'; auto with sets. intro H'1; left; try assumption. red in H'0. - red in |- *. + red. intros x0 H'2; try assumption. lapply (H'0 x0); auto with sets. intro H'3; try assumption. @@ -207,7 +207,7 @@ Section Sets_as_an_algebra. (forall z:Ensemble U, Included U x z -> Included U z y -> x = z \/ z = y). Proof. intros A x y H'; elim H'. - unfold Strict_Rel_of in |- *; simpl in |- *. + unfold Strict_Rel_of; simpl. intros H'0 H'1; split; [ auto with sets | idtac ]. intros z H'2 H'3; try assumption. elim (classic (x = z)); auto with sets. @@ -227,11 +227,11 @@ Section Sets_as_an_algebra. Proof. intros A a H' x H'0 H'1; try assumption. apply setcover_intro; auto with sets. - red in |- *. - split; [ idtac | red in |- *; intro H'2; try exact H'2 ]; auto with sets. + red. + split; [ idtac | red; intro H'2; try exact H'2 ]; auto with sets. apply H'1. rewrite H'2; auto with sets. - red in |- *; intro H'2; elim H'2; clear H'2. + red; intro H'2; elim H'2; clear H'2. intros z H'2; elim H'2; intros H'3 H'4; try exact H'3; clear H'2. lapply (Strict_Included_inv U a z); auto with sets; clear H'3. intro H'2; elim H'2; intros H'3 H'5; elim H'5; clear H'2 H'5. @@ -249,7 +249,7 @@ Section Sets_as_an_algebra. red in K. elim K; intros H'11 H'12; apply H'12; clear K; auto with sets. rewrite H'15. - red in |- *. + red. intros x1 H'10; elim H'10; auto with sets. intros x2 H'11; elim H'11; auto with sets. Qed. @@ -275,11 +275,11 @@ Section Sets_as_an_algebra. elim (H'7 (Add U a x)); auto with sets. intro H'1. absurd (a = Add U a x); auto with sets. - red in |- *; intro H'8; try exact H'8. + red; intro H'8; try exact H'8. apply H'3. rewrite H'8; auto with sets. auto with sets. - red in |- *. + red. intros x0 H'1; elim H'1; auto with sets. intros x1 H'8; elim H'8; auto with sets. split; [ idtac | try assumption ]. diff --git a/theories/Sets/Powerset_facts.v b/theories/Sets/Powerset_facts.v index f756f985..58e3f44d 100644 --- a/theories/Sets/Powerset_facts.v +++ b/theories/Sets/Powerset_facts.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Add U X x = X. Proof. - intros X x H'; unfold Add in |- *. - apply Extensionality_Ensembles; red in |- *. - split; red in |- *; auto with sets. + intros X x H'; unfold Add. + apply Extensionality_Ensembles; red. + split; red; auto with sets. intros x0 H'0; elim H'0; auto with sets. intros t H'1; elim H'1; auto with sets. Qed. @@ -167,12 +167,12 @@ Section Sets_as_an_algebra. Theorem Non_disjoint_union' : forall (X:Ensemble U) (x:U), ~ In U X x -> Subtract U X x = X. Proof. - intros X x H'; unfold Subtract in |- *. + intros X x H'; unfold Subtract. apply Extensionality_Ensembles. - split; red in |- *; auto with sets. + split; red; auto with sets. intros x0 H'0; elim H'0; auto with sets. intros x0 H'0; apply Setminus_intro; auto with sets. - red in |- *; intro H'1; elim H'1. + red; intro H'1; elim H'1. lapply (Singleton_inv U x x0); auto with sets. intro H'4; apply H'; rewrite H'4; auto with sets. Qed. @@ -186,7 +186,7 @@ Section Sets_as_an_algebra. forall (A B:Ensemble U) (x:U), Included U A B -> Included U (Add U A x) (Add U B x). Proof. - intros A B x H'; red in |- *; auto with sets. + intros A B x H'; red; auto with sets. intros x0 H'0. lapply (Add_inv U A x x0); auto with sets. intro H'1; elim H'1; @@ -198,7 +198,7 @@ Section Sets_as_an_algebra. forall (A B:Ensemble U) (x:U), ~ In U A x -> Included U (Add U A x) (Add U B x) -> Included U A B. Proof. - unfold Included in |- *. + unfold Included. intros A B x H' H'0 x0 H'1. lapply (H'0 x0); auto with sets. intro H'2; lapply (Add_inv U B x x0); auto with sets. @@ -212,7 +212,7 @@ Section Sets_as_an_algebra. forall (A:Ensemble U) (x y:U), Add U (Add U A x) y = Add U (Add U A y) x. Proof. intros A x y. - unfold Add in |- *. + unfold Add. rewrite (Union_associative A (Singleton U x) (Singleton U y)). rewrite (Union_commutative (Singleton U x) (Singleton U y)). rewrite <- (Union_associative A (Singleton U y) (Singleton U x)); @@ -234,7 +234,7 @@ Section Sets_as_an_algebra. Proof. intros A B x y H'; try assumption. rewrite <- (Union_add (Add U A x) B y). - unfold Add at 4 in |- *. + unfold Add at 4. rewrite (Union_commutative A (Singleton U x)). rewrite Union_associative. rewrite (Union_absorbs A B H'). diff --git a/theories/Sets/Relations_1.v b/theories/Sets/Relations_1.v index a7fbb53d..229ef592 100644 --- a/theories/Sets/Relations_1.v +++ b/theories/Sets/Relations_1.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Symmetric U (Complement U R). Proof. -unfold Symmetric, Complement in |- *. -intros U R H' x y H'0; red in |- *; intro H'1; apply H'0; auto with sets. +unfold Symmetric, Complement. +intros U R H' x y H'0; red; intro H'1; apply H'0; auto with sets. Qed. Theorem Equiv_from_preorder : @@ -44,8 +44,8 @@ Proof. intros U R H'; elim H'; intros H'0 H'1. apply Definition_of_equivalence. red in H'0; auto 10 with sets. -2: red in |- *; intros x y h; elim h; intros H'3 H'4; auto 10 with sets. -red in H'1; red in |- *; auto 10 with sets. +2: red; intros x y h; elim h; intros H'3 H'4; auto 10 with sets. +red in H'1; red; auto 10 with sets. intros x y z h; elim h; intros H'3 H'4; clear h. intro h; elim h; intros H'5 H'6; clear h. split; apply H'1 with y; auto 10 with sets. @@ -70,7 +70,7 @@ Hint Resolve contains_is_preorder. Theorem same_relation_is_equivalence : forall U:Type, Equivalence (Relation U) (same_relation U). Proof. -unfold same_relation at 1 in |- *; auto 10 with sets. +unfold same_relation at 1; auto 10 with sets. Qed. Hint Resolve same_relation_is_equivalence. @@ -78,14 +78,14 @@ Theorem cong_reflexive_same_relation : forall (U:Type) (R R':Relation U), same_relation U R R' -> Reflexive U R -> Reflexive U R'. Proof. -unfold same_relation in |- *; intuition. +unfold same_relation; intuition. Qed. Theorem cong_symmetric_same_relation : forall (U:Type) (R R':Relation U), same_relation U R R' -> Symmetric U R -> Symmetric U R'. Proof. - compute in |- *; intros; elim H; intros; clear H; + compute; intros; elim H; intros; clear H; apply (H3 y x (H0 x y (H2 x y H1))). (*Intuition.*) Qed. @@ -94,7 +94,7 @@ Theorem cong_antisymmetric_same_relation : forall (U:Type) (R R':Relation U), same_relation U R R' -> Antisymmetric U R -> Antisymmetric U R'. Proof. - compute in |- *; intros; elim H; intros; clear H; + compute; intros; elim H; intros; clear H; apply (H0 x y (H3 x y H1) (H3 y x H2)). (*Intuition.*) Qed. @@ -103,7 +103,7 @@ Theorem cong_transitive_same_relation : forall (U:Type) (R R':Relation U), same_relation U R R' -> Transitive U R -> Transitive U R'. Proof. -intros U R R' H' H'0; red in |- *. +intros U R R' H' H'0; red. elim H'. intros H'1 H'2 x y z H'3 H'4; apply H'2. apply H'0 with y; auto with sets. diff --git a/theories/Sets/Relations_2.v b/theories/Sets/Relations_2.v index e7a69c99..a371f316 100644 --- a/theories/Sets/Relations_2.v +++ b/theories/Sets/Relations_2.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Symmetric U (Rstar U R). Proof. -intros U R H'; red in |- *. +intros U R H'; red. intros x y H'0; elim H'0; auto with sets. intros x0 y0 z H'1 H'2 H'3. generalize Rstar_transitive; intro T1; red in T1. @@ -97,7 +97,7 @@ Theorem Sstar_contains_Rstar : forall (U:Type) (R S:Relation U), contains U (Rstar U S) R -> contains U (Rstar U S) (Rstar U R). Proof. -unfold contains in |- *. +unfold contains. intros U R S H' x y H'0; elim H'0; auto with sets. generalize Rstar_transitive; intro T1; red in T1. intros x0 y0 z H'1 H'2 H'3; apply T1 with y0; auto with sets. diff --git a/theories/Sets/Relations_3.v b/theories/Sets/Relations_3.v index 51092f7a..6d1853e2 100644 --- a/theories/Sets/Relations_3.v +++ b/theories/Sets/Relations_3.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* coherent U R x y. Proof. -intros U R x y H'; red in |- *. +intros U R x y H'; red. exists y; auto with sets. Qed. Hint Resolve Rstar_imp_coherent. @@ -41,8 +41,8 @@ Hint Resolve Rstar_imp_coherent. Theorem coherent_symmetric : forall (U:Type) (R:Relation U), Symmetric U (coherent U R). Proof. -unfold coherent at 1 in |- *. -intros U R; red in |- *. +unfold coherent at 1. +intros U R; red. intros x y H'; elim H'. intros z H'0; exists z; tauto. Qed. @@ -50,9 +50,9 @@ Qed. Theorem Strong_confluence : forall (U:Type) (R:Relation U), Strongly_confluent U R -> Confluent U R. Proof. -intros U R H'; red in |- *. -intro x; red in |- *; intros a b H'0. -unfold coherent at 1 in |- *. +intros U R H'; red. +intro x; red; intros a b H'0. +unfold coherent at 1. generalize b; clear b. elim H'0; clear H'0. intros x0 b H'1; exists b; auto with sets. @@ -75,9 +75,9 @@ Qed. Theorem Strong_confluence_direct : forall (U:Type) (R:Relation U), Strongly_confluent U R -> Confluent U R. Proof. -intros U R H'; red in |- *. -intro x; red in |- *; intros a b H'0. -unfold coherent at 1 in |- *. +intros U R H'; red. +intro x; red; intros a b H'0. +unfold coherent at 1. generalize b; clear b. elim H'0; clear H'0. intros x0 b H'1; exists b; auto with sets. @@ -111,7 +111,7 @@ Theorem Noetherian_contains_Noetherian : forall (U:Type) (R R':Relation U), Noetherian U R -> contains U R R' -> Noetherian U R'. Proof. -unfold Noetherian at 2 in |- *. +unfold Noetherian at 2. intros U R R' H' H'0 x. elim (H' x); auto with sets. Qed. @@ -120,8 +120,8 @@ Theorem Newman : forall (U:Type) (R:Relation U), Noetherian U R -> Locally_confluent U R -> Confluent U R. Proof. -intros U R H' H'0; red in |- *; intro x. -elim (H' x); unfold confluent in |- *. +intros U R H' H'0; red; intro x. +elim (H' x); unfold confluent. intros x0 H'1 H'2 y z H'3 H'4. generalize (Rstar_cases U R x0 y); intro h; lapply h; [ intro h0; elim h0; @@ -163,7 +163,7 @@ generalize (H'2 v); intro h; lapply h; | clear h h0 ] | clear h h0 ] | clear h ]; auto with sets. -red in |- *; (exists z1; split); auto with sets. +red; (exists z1; split); auto with sets. apply T with y1; auto with sets. apply T with t; auto with sets. Qed. diff --git a/theories/Sets/Uniset.v b/theories/Sets/Uniset.v index bf1aaf8d..6e38b5e5 100644 --- a/theories/Sets/Uniset.v +++ b/theories/Sets/Uniset.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* incl s1 s2. Proof. -unfold incl in |- *; intros s1 s2 E a; elim (E a); auto. +unfold incl; intros s1 s2 E a; elim (E a); auto. Qed. Lemma incl_right : forall s1 s2:uniset, seq s1 s2 -> incl s2 s1. Proof. -unfold incl in |- *; intros s1 s2 E a; elim (E a); auto. +unfold incl; intros s1 s2 E a; elim (E a); auto. Qed. Lemma seq_refl : forall x:uniset, seq x x. Proof. -destruct x; unfold seq in |- *; auto. +destruct x; unfold seq; auto. Qed. Hint Resolve seq_refl. Lemma seq_trans : forall x y z:uniset, seq x y -> seq y z -> seq x z. Proof. -unfold seq in |- *. -destruct x; destruct y; destruct z; simpl in |- *; intros. +unfold seq. +destruct x; destruct y; destruct z; simpl; intros. rewrite H; auto. Qed. Lemma seq_sym : forall x y:uniset, seq x y -> seq y x. Proof. -unfold seq in |- *. -destruct x; destruct y; simpl in |- *; auto. +unfold seq. +destruct x; destruct y; simpl; auto. Qed. (** uniset union *) @@ -90,20 +90,20 @@ Definition union (m1 m2:uniset) := Lemma union_empty_left : forall x:uniset, seq x (union Emptyset x). Proof. -unfold seq in |- *; unfold union in |- *; simpl in |- *; auto. +unfold seq; unfold union; simpl; auto. Qed. Hint Resolve union_empty_left. Lemma union_empty_right : forall x:uniset, seq x (union x Emptyset). Proof. -unfold seq in |- *; unfold union in |- *; simpl in |- *. +unfold seq; unfold union; simpl. intros x a; rewrite (orb_b_false (charac x a)); auto. Qed. Hint Resolve union_empty_right. Lemma union_comm : forall x y:uniset, seq (union x y) (union y x). Proof. -unfold seq in |- *; unfold charac in |- *; unfold union in |- *. +unfold seq; unfold charac; unfold union. destruct x; destruct y; auto with bool. Qed. Hint Resolve union_comm. @@ -111,14 +111,14 @@ Hint Resolve union_comm. Lemma union_ass : forall x y z:uniset, seq (union (union x y) z) (union x (union y z)). Proof. -unfold seq in |- *; unfold union in |- *; unfold charac in |- *. +unfold seq; unfold union; unfold charac. destruct x; destruct y; destruct z; auto with bool. Qed. Hint Resolve union_ass. Lemma seq_left : forall x y z:uniset, seq x y -> seq (union x z) (union y z). Proof. -unfold seq in |- *; unfold union in |- *; unfold charac in |- *. +unfold seq; unfold union; unfold charac. destruct x; destruct y; destruct z. intros; elim H; auto. Qed. @@ -126,7 +126,7 @@ Hint Resolve seq_left. Lemma seq_right : forall x y z:uniset, seq x y -> seq (union z x) (union z y). Proof. -unfold seq in |- *; unfold union in |- *; unfold charac in |- *. +unfold seq; unfold union; unfold charac. destruct x; destruct y; destruct z. intros; elim H; auto. Qed. diff --git a/theories/Sorting/Heap.v b/theories/Sorting/Heap.v index 60bb50ce..8b1bdbd4 100644 --- a/theories/Sorting/Heap.v +++ b/theories/Sorting/Heap.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* leA_Tree a (Tree_Node b G D). Proof. - simpl in |- *; auto with datatypes. + simpl; auto with datatypes. Qed. @@ -121,7 +121,7 @@ Section defs. forall (T:Tree) (a b:A), leA a b -> leA_Tree b T -> leA_Tree a T. Proof. simple induction T; auto with datatypes. - intros; simpl in |- *; apply leA_trans with b; auto with datatypes. + intros; simpl; apply leA_trans with b; auto with datatypes. Qed. (** ** Merging two sorted lists *) @@ -213,12 +213,12 @@ Section defs. simple induction 1; intros. apply insert_exist with (Tree_Node a Tree_Leaf Tree_Leaf); auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes. - simpl in |- *; unfold meq, munion in |- *; auto using node_is_heap with datatypes. + simpl; unfold meq, munion; auto using node_is_heap with datatypes. elim (leA_dec a a0); intros. elim (X a0); intros. apply insert_exist with (Tree_Node a T2 T0); auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes. - simpl in |- *; apply treesort_twist1; trivial with datatypes. + simpl; apply treesort_twist1; trivial with datatypes. elim (X a); intros T3 HeapT3 ConT3 LeA. apply insert_exist with (Tree_Node a0 T2 T3); auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes. @@ -226,7 +226,7 @@ Section defs. apply low_trans with a; auto with datatypes. apply LeA; auto with datatypes. apply low_trans with a; auto with datatypes. - simpl in |- *; apply treesort_twist2; trivial with datatypes. + simpl; apply treesort_twist2; trivial with datatypes. Qed. @@ -242,10 +242,10 @@ Section defs. Proof. simple induction l. apply (heap_exist nil Tree_Leaf); auto with datatypes. - simpl in |- *; unfold meq in |- *; exact nil_is_heap. + simpl; unfold meq; exact nil_is_heap. simple induction 1. intros T i m; elim (insert T i a). - intros; apply heap_exist with T1; simpl in |- *; auto with datatypes. + intros; apply heap_exist with T1; simpl; auto with datatypes. apply meq_trans with (munion (contents T) (singletonBag a)). apply meq_trans with (munion (singletonBag a) (contents T)). apply meq_right; trivial with datatypes. @@ -269,7 +269,7 @@ Section defs. apply flat_exist with (nil (A:=A)); auto with datatypes. elim X; intros l1 s1 i1 m1; elim X0; intros l2 s2 i2 m2. elim (merge _ s1 _ s2); intros. - apply flat_exist with (a :: l); simpl in |- *; auto with datatypes. + apply flat_exist with (a :: l); simpl; auto with datatypes. apply meq_trans with (munion (list_contents _ eqA_dec l1) (munion (list_contents _ eqA_dec l2) (singletonBag a))). @@ -288,7 +288,7 @@ Section defs. forall l:list A, {m : list A | Sorted leA m & permutation _ eqA_dec l m}. Proof. - intro l; unfold permutation in |- *. + intro l; unfold permutation. elim (list_to_heap l). intros. elim (heap_to_list T); auto with datatypes. diff --git a/theories/Sorting/Mergesort.v b/theories/Sorting/Mergesort.v index 7124cd53..301a2142 100644 --- a/theories/Sorting/Mergesort.v +++ b/theories/Sorting/Mergesort.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Sorted l2 -> Sorted (merge l1 l2). Proof. induction l1; induction l2; intros; simpl; auto. - destruct (a <=? a0) as ()_eqn:Heq1. + destruct (a <=? a0) eqn:Heq1. invert H. simpl. constructor; trivial; rewrite Heq1; constructor. assert (Sorted (merge (b::l) (a0::l2))) by (apply IHl1; auto). diff --git a/theories/Sorting/PermutEq.v b/theories/Sorting/PermutEq.v index d4e5fba4..cc47b500 100644 --- a/theories/Sorting/PermutEq.v +++ b/theories/Sorting/PermutEq.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* permutation l2 l1. Proof. - unfold permutation, meq; intros; apply sym_eq; trivial. + unfold permutation, meq; intros; symmetry; trivial. Qed. Lemma permut_trans : forall l m n:list A, permutation l m -> permutation m n -> permutation l n. Proof. - unfold permutation in |- *; intros. + unfold permutation; intros. apply meq_trans with (list_contents m); auto with datatypes. Qed. @@ -102,7 +102,7 @@ Lemma permut_app : forall l l' m m':list A, permutation l l' -> permutation m m' -> permutation (l ++ m) (l' ++ m'). Proof. - unfold permutation in |- *; intros. + unfold permutation; intros. apply meq_trans with (munion (list_contents l) (list_contents m)); auto using permut_cons, list_contents_app with datatypes. apply meq_trans with (munion (list_contents l') (list_contents m')); diff --git a/theories/Sorting/Permutation.v b/theories/Sorting/Permutation.v index 797583d0..a69c4aa7 100644 --- a/theories/Sorting/Permutation.v +++ b/theories/Sorting/Permutation.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* s1 = s2. Proof. -intros s1; elim s1; simpl in |- *. -intros s2; case s2; simpl in |- *; split; auto. +intros s1; elim s1; simpl. +intros s2; case s2; simpl; split; auto. intros H; generalize (H 0); intros H1; inversion H1. intros; discriminate. -intros a s1' Rec s2; case s2; simpl in |- *; split; auto. +intros a s1' Rec s2; case s2; simpl; split; auto. intros H; generalize (H 0); intros H1; inversion H1. intros; discriminate. -intros H; generalize (H 0); simpl in |- *; intros H1; inversion H1. +intros H; generalize (H 0); simpl; intros H1; inversion H1. case (Rec s). intros H0; rewrite H0; auto. intros n; exact (H (S n)). @@ -94,9 +94,9 @@ Theorem append_correct1 : forall (s1 s2 : string) (n : nat), n < length s1 -> get n s1 = get n (s1 ++ s2). Proof. -intros s1; elim s1; simpl in |- *; auto. +intros s1; elim s1; simpl; auto. intros s2 n H; inversion H. -intros a s1' Rec s2 n; case n; simpl in |- *; auto. +intros a s1' Rec s2 n; case n; simpl; auto. intros n0 H; apply Rec; auto. apply lt_S_n; auto. Qed. @@ -107,10 +107,10 @@ Theorem append_correct2 : forall (s1 s2 : string) (n : nat), get n s2 = get (n + length s1) (s1 ++ s2). Proof. -intros s1; elim s1; simpl in |- *; auto. -intros s2 n; rewrite plus_comm; simpl in |- *; auto. -intros a s1' Rec s2 n; case n; simpl in |- *; auto. -generalize (Rec s2 0); simpl in |- *; auto. intros. +intros s1; elim s1; simpl; auto. +intros s2 n; rewrite plus_comm; simpl; auto. +intros a s1' Rec s2 n; case n; simpl; auto. +generalize (Rec s2 0); simpl; auto. intros. rewrite <- Plus.plus_Snm_nSm; auto. Qed. @@ -135,16 +135,16 @@ Theorem substring_correct1 : forall (s : string) (n m p : nat), p < m -> get p (substring n m s) = get (p + n) s. Proof. -intros s; elim s; simpl in |- *; auto. -intros n; case n; simpl in |- *; auto. -intros m; case m; simpl in |- *; auto. -intros a s' Rec; intros n; case n; simpl in |- *; auto. -intros m; case m; simpl in |- *; auto. +intros s; elim s; simpl; auto. +intros n; case n; simpl; auto. +intros m; case m; simpl; auto. +intros a s' Rec; intros n; case n; simpl; auto. +intros m; case m; simpl; auto. intros p H; inversion H. -intros m' p; case p; simpl in |- *; auto. -intros n0 H; apply Rec; simpl in |- *; auto. +intros m' p; case p; simpl; auto. +intros n0 H; apply Rec; simpl; auto. apply Lt.lt_S_n; auto. -intros n' m p H; rewrite <- Plus.plus_Snm_nSm; simpl in |- *; auto. +intros n' m p H; rewrite <- Plus.plus_Snm_nSm; simpl; auto. Qed. (** The substring has at most [m] elements *) @@ -152,14 +152,14 @@ Qed. Theorem substring_correct2 : forall (s : string) (n m p : nat), m <= p -> get p (substring n m s) = None. Proof. -intros s; elim s; simpl in |- *; auto. -intros n; case n; simpl in |- *; auto. -intros m; case m; simpl in |- *; auto. -intros a s' Rec; intros n; case n; simpl in |- *; auto. -intros m; case m; simpl in |- *; auto. -intros m' p; case p; simpl in |- *; auto. +intros s; elim s; simpl; auto. +intros n; case n; simpl; auto. +intros m; case m; simpl; auto. +intros a s' Rec; intros n; case n; simpl; auto. +intros m; case m; simpl; auto. +intros m' p; case p; simpl; auto. intros H; inversion H. -intros n0 H; apply Rec; simpl in |- *; auto. +intros n0 H; apply Rec; simpl; auto. apply Le.le_S_n; auto. Qed. @@ -188,11 +188,11 @@ Theorem prefix_correct : forall s1 s2 : string, prefix s1 s2 = true <-> substring 0 (length s1) s2 = s1. Proof. -intros s1; elim s1; simpl in |- *; auto. -intros s2; case s2; simpl in |- *; split; auto. -intros a s1' Rec s2; case s2; simpl in |- *; auto. +intros s1; elim s1; simpl; auto. +intros s2; case s2; simpl; split; auto. +intros a s1' Rec s2; case s2; simpl; auto. split; intros; discriminate. -intros b s2'; case (ascii_dec a b); simpl in |- *; auto. +intros b s2'; case (ascii_dec a b); simpl; auto. intros e; case (Rec s2'); intros H1 H2; split; intros H3; auto. rewrite e; rewrite H1; auto. apply H2; injection H3; auto. @@ -234,25 +234,25 @@ Theorem index_correct1 : forall (n m : nat) (s1 s2 : string), index n s1 s2 = Some m -> substring m (length s1) s2 = s1. Proof. -intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl in |- *; +intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl; auto. -intros n; case n; simpl in |- *; auto. -intros m s1; case s1; simpl in |- *; auto. +intros n; case n; simpl; auto. +intros m s1; case s1; simpl; auto. intros H; injection H; intros H1; rewrite <- H1; auto. intros; discriminate. intros; discriminate. intros b s2' Rec n m s1. -case n; simpl in |- *; auto. +case n; simpl; auto. generalize (prefix_correct s1 (String b s2')); case (prefix s1 (String b s2')). intros H0 H; injection H; intros H1; rewrite <- H1; auto. -case H0; simpl in |- *; auto. -case m; simpl in |- *; auto. +case H0; simpl; auto. +case m; simpl; auto. case (index 0 s1 s2'); intros; discriminate. intros m'; generalize (Rec 0 m' s1); case (index 0 s1 s2'); auto. intros x H H0 H1; apply H; injection H1; auto. intros; discriminate. -intros n'; case m; simpl in |- *; auto. +intros n'; case m; simpl; auto. case (index n' s1 s2'); intros; discriminate. intros m'; generalize (Rec n' m' s1); case (index n' s1 s2'); auto. intros x H H1; apply H; injection H1; auto. @@ -267,35 +267,35 @@ Theorem index_correct2 : index n s1 s2 = Some m -> forall p : nat, n <= p -> p < m -> substring p (length s1) s2 <> s1. Proof. -intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl in |- *; +intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl; auto. -intros n; case n; simpl in |- *; auto. -intros m s1; case s1; simpl in |- *; auto. +intros n; case n; simpl; auto. +intros m s1; case s1; simpl; auto. intros H; injection H; intros H1; rewrite <- H1. intros p H0 H2; inversion H2. intros; discriminate. intros; discriminate. intros b s2' Rec n m s1. -case n; simpl in |- *; auto. +case n; simpl; auto. generalize (prefix_correct s1 (String b s2')); case (prefix s1 (String b s2')). intros H0 H; injection H; intros H1; rewrite <- H1; auto. intros p H2 H3; inversion H3. -case m; simpl in |- *; auto. +case m; simpl; auto. case (index 0 s1 s2'); intros; discriminate. intros m'; generalize (Rec 0 m' s1); case (index 0 s1 s2'); auto. -intros x H H0 H1 p; try case p; simpl in |- *; auto. -intros H2 H3; red in |- *; intros H4; case H0. +intros x H H0 H1 p; try case p; simpl; auto. +intros H2 H3; red; intros H4; case H0. intros H5 H6; absurd (false = true); auto with bool. intros n0 H2 H3; apply H; auto. injection H1; auto. apply Le.le_O_n. apply Lt.lt_S_n; auto. intros; discriminate. -intros n'; case m; simpl in |- *; auto. +intros n'; case m; simpl; auto. case (index n' s1 s2'); intros; discriminate. intros m'; generalize (Rec n' m' s1); case (index n' s1 s2'); auto. -intros x H H0 p; case p; simpl in |- *; auto. +intros x H H0 p; case p; simpl; auto. intros H1; inversion H1; auto. intros n0 H1 H2; apply H; auto. injection H0; auto. @@ -312,33 +312,33 @@ Theorem index_correct3 : index n s1 s2 = None -> s1 <> EmptyString -> n <= m -> substring m (length s1) s2 <> s1. Proof. -intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl in |- *; +intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl; auto. -intros n; case n; simpl in |- *; auto. -intros m s1; case s1; simpl in |- *; auto. -case m; intros; red in |- *; intros; discriminate. +intros n; case n; simpl; auto. +intros m s1; case s1; simpl; auto. +case m; intros; red; intros; discriminate. intros n' m; case m; auto. -intros s1; case s1; simpl in |- *; auto. +intros s1; case s1; simpl; auto. intros b s2' Rec n m s1. -case n; simpl in |- *; auto. +case n; simpl; auto. generalize (prefix_correct s1 (String b s2')); case (prefix s1 (String b s2')). intros; discriminate. -case m; simpl in |- *; auto with bool. -case s1; simpl in |- *; auto. -intros a s H H0 H1 H2; red in |- *; intros H3; case H. +case m; simpl; auto with bool. +case s1; simpl; auto. +intros a s H H0 H1 H2; red; intros H3; case H. intros H4 H5; absurd (false = true); auto with bool. -case s1; simpl in |- *; auto. +case s1; simpl; auto. intros a s n0 H H0 H1 H2; - change (substring n0 (length (String a s)) s2' <> String a s) in |- *; + change (substring n0 (length (String a s)) s2' <> String a s); apply (Rec 0); auto. -generalize H0; case (index 0 (String a s) s2'); simpl in |- *; auto; intros; +generalize H0; case (index 0 (String a s) s2'); simpl; auto; intros; discriminate. apply Le.le_O_n. -intros n'; case m; simpl in |- *; auto. +intros n'; case m; simpl; auto. intros H H0 H1; inversion H1. intros n0 H H0 H1; apply (Rec n'); auto. -generalize H; case (index n' s1 s2'); simpl in |- *; auto; intros; +generalize H; case (index n' s1 s2'); simpl; auto; intros; discriminate. apply Le.le_S_n; auto. Qed. @@ -353,13 +353,13 @@ Theorem index_correct4 : forall (n : nat) (s : string), index n EmptyString s = None -> length s < n. Proof. -intros n s; generalize n; clear n; elim s; simpl in |- *; auto. -intros n; case n; simpl in |- *; auto. +intros n s; generalize n; clear n; elim s; simpl; auto. +intros n; case n; simpl; auto. intros; discriminate. intros; apply Lt.lt_O_Sn. -intros a s' H n; case n; simpl in |- *; auto. +intros a s' H n; case n; simpl; auto. intros; discriminate. -intros n'; generalize (H n'); case (index n' EmptyString s'); simpl in |- *; +intros n'; generalize (H n'); case (index n' EmptyString s'); simpl; auto. intros; discriminate. intros H0 H1; apply Lt.lt_n_S; auto. diff --git a/theories/Structures/DecidableTypeEx.v b/theories/Structures/DecidableTypeEx.v index 2c02f8dd..971fcd7f 100644 --- a/theories/Structures/DecidableTypeEx.v +++ b/theories/Structures/DecidableTypeEx.v @@ -79,9 +79,9 @@ End PairDecidableType. Module PairUsualDecidableType(D1 D2:UsualDecidableType) <: UsualDecidableType. Definition t := prod D1.t D2.t. Definition eq := @eq t. - Definition eq_refl := @refl_equal t. - Definition eq_sym := @sym_eq t. - Definition eq_trans := @trans_eq t. + Definition eq_refl := @eq_refl t. + Definition eq_sym := @eq_sym t. + Definition eq_trans := @eq_trans t. Definition eq_dec : forall x y, { eq x y }+{ ~eq x y }. Proof. intros (x1,x2) (y1,y2); diff --git a/theories/Structures/OrderedTypeEx.v b/theories/Structures/OrderedTypeEx.v index adeba9e4..83130deb 100644 --- a/theories/Structures/OrderedTypeEx.v +++ b/theories/Structures/OrderedTypeEx.v @@ -21,9 +21,9 @@ Module Type UsualOrderedType. Parameter Inline t : Type. Definition eq := @eq t. Parameter Inline lt : t -> t -> Prop. - Definition eq_refl := @refl_equal t. - Definition eq_sym := @sym_eq t. - Definition eq_trans := @trans_eq t. + Definition eq_refl := @eq_refl t. + Definition eq_sym := @eq_sym t. + Definition eq_trans := @eq_trans t. Axiom lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z. Axiom lt_not_eq : forall x y : t, lt x y -> ~ eq x y. Parameter compare : forall x y : t, Compare lt eq x y. @@ -41,9 +41,9 @@ Module Nat_as_OT <: UsualOrderedType. Definition t := nat. Definition eq := @eq nat. - Definition eq_refl := @refl_equal t. - Definition eq_sym := @sym_eq t. - Definition eq_trans := @trans_eq t. + Definition eq_refl := @eq_refl t. + Definition eq_sym := @eq_sym t. + Definition eq_trans := @eq_trans t. Definition lt := lt. @@ -53,12 +53,12 @@ Module Nat_as_OT <: UsualOrderedType. Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y. Proof. unfold lt, eq; intros; omega. Qed. - Definition compare : forall x y : t, Compare lt eq x y. + Definition compare x y : Compare lt eq x y. Proof. - intros x y; destruct (nat_compare x y) as [ | | ]_eqn. - apply EQ. apply nat_compare_eq; assumption. - apply LT. apply nat_compare_Lt_lt; assumption. - apply GT. apply nat_compare_Gt_gt; assumption. + case_eq (nat_compare x y); intro. + - apply EQ. now apply nat_compare_eq. + - apply LT. now apply nat_compare_Lt_lt. + - apply GT. now apply nat_compare_Gt_gt. Defined. Definition eq_dec := eq_nat_dec. @@ -68,15 +68,15 @@ End Nat_as_OT. (** [Z] is an ordered type with respect to the usual order on integers. *) -Open Local Scope Z_scope. +Local Open Scope Z_scope. Module Z_as_OT <: UsualOrderedType. Definition t := Z. Definition eq := @eq Z. - Definition eq_refl := @refl_equal t. - Definition eq_sym := @sym_eq t. - Definition eq_trans := @trans_eq t. + Definition eq_refl := @eq_refl t. + Definition eq_sym := @eq_sym t. + Definition eq_trans := @eq_trans t. Definition lt (x y:Z) := (x ~ x=y. Proof. intros; omega. Qed. - Definition compare : forall x y, Compare lt eq x y. + Definition compare x y : Compare lt eq x y. Proof. - intros x y; destruct (x ?= y) as [ | | ]_eqn. - apply EQ; apply Zcompare_Eq_eq; assumption. - apply LT; assumption. - apply GT; apply Zgt_lt; assumption. + case_eq (x ?= y); intro. + - apply EQ. now apply Z.compare_eq. + - apply LT. assumption. + - apply GT. now apply Z.gt_lt. Defined. - Definition eq_dec := Z_eq_dec. + Definition eq_dec := Z.eq_dec. End Z_as_OT. (** [positive] is an ordered type with respect to the usual order on natural numbers. *) -Open Local Scope positive_scope. +Local Open Scope positive_scope. Module Positive_as_OT <: UsualOrderedType. Definition t:=positive. Definition eq:=@eq positive. - Definition eq_refl := @refl_equal t. - Definition eq_sym := @sym_eq t. - Definition eq_trans := @trans_eq t. + Definition eq_refl := @eq_refl t. + Definition eq_sym := @eq_sym t. + Definition eq_trans := @eq_trans t. - Definition lt := Plt. + Definition lt := Pos.lt. - Definition lt_trans := Plt_trans. + Definition lt_trans := Pos.lt_trans. Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y. Proof. - intros x y H. contradict H. rewrite H. apply Plt_irrefl. + intros x y H. contradict H. rewrite H. apply Pos.lt_irrefl. Qed. - Definition compare : forall x y : t, Compare lt eq x y. + Definition compare x y : Compare lt eq x y. Proof. - intros x y. destruct (x ?= y) as [ | | ]_eqn. - apply EQ; apply Pcompare_Eq_eq; assumption. - apply LT; assumption. - apply GT; apply ZC1; assumption. + case_eq (x ?= y); intros H. + - apply EQ. now apply Pos.compare_eq. + - apply LT; assumption. + - apply GT. now apply Pos.gt_lt. Defined. - Definition eq_dec : forall x y, { eq x y } + { ~ eq x y }. - Proof. - intros; unfold eq; decide equality. - Defined. + Definition eq_dec := Pos.eq_dec. End Positive_as_OT. (** [N] is an ordered type with respect to the usual order on natural numbers. *) -Open Local Scope positive_scope. - Module N_as_OT <: UsualOrderedType. Definition t:=N. Definition eq:=@eq N. - Definition eq_refl := @refl_equal t. - Definition eq_sym := @sym_eq t. - Definition eq_trans := @trans_eq t. + Definition eq_refl := @eq_refl t. + Definition eq_sym := @eq_sym t. + Definition eq_trans := @eq_trans t. - Definition lt:=Nlt. - Definition lt_trans := Nlt_trans. - Definition lt_not_eq := Nlt_not_eq. + Definition lt := N.lt. + Definition lt_trans := N.lt_trans. + Definition lt_not_eq := N.lt_neq. - Definition compare : forall x y : t, Compare lt eq x y. + Definition compare x y : Compare lt eq x y. Proof. - intros x y. destruct (x ?= y)%N as [ | | ]_eqn. - apply EQ; apply Ncompare_Eq_eq; assumption. - apply LT; assumption. - apply GT. apply Ngt_Nlt; assumption. + case_eq (x ?= y)%N; intro. + - apply EQ. now apply N.compare_eq. + - apply LT. assumption. + - apply GT. now apply N.gt_lt. Defined. - Definition eq_dec : forall x y, { eq x y } + { ~ eq x y }. - Proof. - intros. unfold eq. decide equality. apply Positive_as_OT.eq_dec. - Defined. + Definition eq_dec := N.eq_dec. End N_as_OT. @@ -240,9 +232,9 @@ End PairOrderedType. Module PositiveOrderedTypeBits <: UsualOrderedType. Definition t:=positive. Definition eq:=@eq positive. - Definition eq_refl := @refl_equal t. - Definition eq_sym := @sym_eq t. - Definition eq_trans := @trans_eq t. + Definition eq_refl := @eq_refl t. + Definition eq_sym := @eq_sym t. + Definition eq_trans := @eq_trans t. Fixpoint bits_lt (p q:positive) : Prop := match p, q with @@ -286,38 +278,38 @@ Module PositiveOrderedTypeBits <: UsualOrderedType. Definition compare : forall x y : t, Compare lt eq x y. Proof. induction x; destruct y. - (* I I *) - destruct (IHx y). - apply LT; auto. - apply EQ; rewrite e; red; auto. - apply GT; auto. - (* I O *) - apply GT; simpl; auto. - (* I H *) - apply GT; simpl; auto. - (* O I *) - apply LT; simpl; auto. - (* O O *) - destruct (IHx y). - apply LT; auto. - apply EQ; rewrite e; red; auto. - apply GT; auto. - (* O H *) - apply LT; simpl; auto. - (* H I *) - apply LT; simpl; auto. - (* H O *) - apply GT; simpl; auto. - (* H H *) - apply EQ; red; auto. + - (* I I *) + destruct (IHx y). + apply LT; auto. + apply EQ; rewrite e; red; auto. + apply GT; auto. + - (* I O *) + apply GT; simpl; auto. + - (* I H *) + apply GT; simpl; auto. + - (* O I *) + apply LT; simpl; auto. + - (* O O *) + destruct (IHx y). + apply LT; auto. + apply EQ; rewrite e; red; auto. + apply GT; auto. + - (* O H *) + apply LT; simpl; auto. + - (* H I *) + apply LT; simpl; auto. + - (* H O *) + apply GT; simpl; auto. + - (* H H *) + apply EQ; red; auto. Qed. Lemma eq_dec (x y: positive): {x = y} + {x <> y}. Proof. intros. case_eq (x ?= y); intros. - left. apply Pcompare_Eq_eq; auto. - right. red. intro. subst y. rewrite (Pos.compare_refl x) in H. discriminate. - right. red. intro. subst y. rewrite (Pos.compare_refl x) in H. discriminate. + - left. now apply Pos.compare_eq. + - right. intro. subst y. now rewrite (Pos.compare_refl x) in *. + - right. intro. subst y. now rewrite (Pos.compare_refl x) in *. Qed. End PositiveOrderedTypeBits. diff --git a/theories/Structures/OrdersAlt.v b/theories/Structures/OrdersAlt.v index 85e7fb17..5dd917a7 100644 --- a/theories/Structures/OrdersAlt.v +++ b/theories/Structures/OrdersAlt.v @@ -140,7 +140,7 @@ Module OT_from_Alt (Import O:OrderedTypeAlt) <: OrderedType. Lemma lt_eq : forall x y z, lt x y -> eq y z -> lt x z. Proof. unfold lt, eq; intros x y z Hxy Hyz. - destruct (compare x z) as [ ]_eqn:Hxz; auto. + destruct (compare x z) eqn:Hxz; auto. rewrite compare_sym, CompOpp_iff in Hyz. simpl in Hyz. rewrite (compare_trans Hxz Hyz) in Hxy; discriminate. rewrite compare_sym, CompOpp_iff in Hxy. simpl in Hxy. @@ -150,7 +150,7 @@ Module OT_from_Alt (Import O:OrderedTypeAlt) <: OrderedType. Lemma eq_lt : forall x y z, eq x y -> lt y z -> lt x z. Proof. unfold lt, eq; intros x y z Hxy Hyz. - destruct (compare x z) as [ ]_eqn:Hxz; auto. + destruct (compare x z) eqn:Hxz; auto. rewrite compare_sym, CompOpp_iff in Hxy. simpl in Hxy. rewrite (compare_trans Hxy Hxz) in Hyz; discriminate. rewrite compare_sym, CompOpp_iff in Hyz. simpl in Hyz. @@ -169,7 +169,7 @@ Module OT_from_Alt (Import O:OrderedTypeAlt) <: OrderedType. Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y). Proof. unfold eq, lt, compare; intros. - destruct (O.compare x y) as [ ]_eqn:H; auto. + destruct (O.compare x y) eqn:H; auto. apply CompGt. rewrite compare_sym, H; auto. Qed. diff --git a/theories/Unicode/Utf8.v b/theories/Unicode/Utf8.v index 86ab4776..6d2da154 100644 --- a/theories/Unicode/Utf8.v +++ b/theories/Unicode/Utf8.v @@ -1,7 +1,7 @@ (* -*- coding:utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (∃ y v, x + v ≥ y + z) ∨ x ≤ 0. (* Integer Arithmetic *) (* TODO: this should come after ZArith -Notation "x ≤ y" := (Zle x y) (at level 70, no associativity). +Notation "x ≤ y" := (Z.le x y) (at level 70, no associativity). *) diff --git a/theories/Unicode/Utf8_core.v b/theories/Unicode/Utf8_core.v index 13387f30..f9670d17 100644 --- a/theories/Unicode/Utf8_core.v +++ b/theories/Unicode/Utf8_core.v @@ -1,7 +1,7 @@ (* -*- coding:utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* well_founded leB -> well_founded Le_AsB. Proof. intros. - unfold well_founded in |- *. + unfold well_founded. destruct a as [a| b]. apply (acc_A_sum a). apply (H a). diff --git a/theories/Wellfounded/Inclusion.v b/theories/Wellfounded/Inclusion.v index 1c83c481..c7cc29b5 100644 --- a/theories/Wellfounded/Inclusion.v +++ b/theories/Wellfounded/Inclusion.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* well_founded R2 -> well_founded R1. Proof. - unfold well_founded in |- *; auto with sets. + unfold well_founded; auto with sets. Qed. End WfInclusion. diff --git a/theories/Wellfounded/Inverse_Image.v b/theories/Wellfounded/Inverse_Image.v index 27a1c381..e38b2157 100644 --- a/theories/Wellfounded/Inverse_Image.v +++ b/theories/Wellfounded/Inverse_Image.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* well_founded Rof. Proof. - red in |- *; intros; apply Acc_inverse_image; auto. + red; intros; apply Acc_inverse_image; auto. Qed. Variable F : A -> B -> Prop. @@ -49,7 +49,7 @@ Section Inverse_Image. Theorem wf_inverse_rel : well_founded R -> well_founded RoF. Proof. - red in |- *; constructor; intros. + red; constructor; intros. case H0; intros. apply (Acc_inverse_rel x); auto. Qed. diff --git a/theories/Wellfounded/Lexicographic_Exponentiation.v b/theories/Wellfounded/Lexicographic_Exponentiation.v index 6d5b663b..13db01a3 100644 --- a/theories/Wellfounded/Lexicographic_Exponentiation.v +++ b/theories/Wellfounded/Lexicographic_Exponentiation.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* ltl x y \/ (exists y' : List, x = y ++ y' /\ ltl y' z). Proof. intros x y; generalize x. - elim y; simpl in |- *. + elim y; simpl. right. exists x0; auto with sets. intros. @@ -196,7 +196,7 @@ Section Wf_Lexicographic_Exponentiation. Descl x0 /\ Descl (l0 ++ Cons x1 Nil)). - simpl in |- *. + simpl. split. generalize (app_inj_tail _ _ _ _ H2); simple induction 1. simple induction 1; auto with sets. @@ -239,7 +239,7 @@ Section Wf_Lexicographic_Exponentiation. Proof. intros a b x. case x. - simpl in |- *. + simpl. simple induction 1. intros. inversion H1; auto with sets. @@ -267,7 +267,7 @@ Section Wf_Lexicographic_Exponentiation. case x. intros; apply (Lt_nil A leA). - simpl in |- *; intros. + simpl; intros. inversion_clear H0. apply (Lt_hd A leA a b); auto with sets. @@ -284,17 +284,17 @@ Section Wf_Lexicographic_Exponentiation. apply (Acc_inv (R:=Lex_Exp) (x:=<< x1 ++ x2, y1 >>)). auto with sets. - unfold lex_exp in |- *; simpl in |- *; auto with sets. + unfold lex_exp; simpl; auto with sets. Qed. Theorem wf_lex_exp : well_founded leA -> well_founded Lex_Exp. Proof. - unfold well_founded at 2 in |- *. + unfold well_founded at 2. simple induction a; intros x y. apply Acc_intro. simple induction y0. - unfold lex_exp at 1 in |- *; simpl in |- *. + unfold lex_exp at 1; simpl. apply rev_ind with (A := A) (P := fun x:List => @@ -335,8 +335,8 @@ Section Wf_Lexicographic_Exponentiation. intro. apply Acc_intro. simple induction y2. - unfold lex_exp at 1 in |- *. - simpl in |- *; intros x4 y3. intros. + unfold lex_exp at 1. + simpl; intros x4 y3. intros. apply (H0 x4 y3); auto with sets. intros. @@ -357,7 +357,7 @@ Section Wf_Lexicographic_Exponentiation. generalize (HInd2 f); intro. apply Acc_intro. simple induction y3. - unfold lex_exp at 1 in |- *; simpl in |- *; intros. + unfold lex_exp at 1; simpl; intros. apply H15; auto with sets. Qed. diff --git a/theories/Wellfounded/Lexicographic_Product.v b/theories/Wellfounded/Lexicographic_Product.v index 0e096100..c3e8c92c 100644 --- a/theories/Wellfounded/Lexicographic_Product.v +++ b/theories/Wellfounded/Lexicographic_Product.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (forall x0:A, clos_trans A leA x0 x -> well_founded (leB x0)) -> - forall y:B x, Acc (leB x) y -> Acc LexProd (existS B x y). + forall y:B x, Acc (leB x) y -> Acc LexProd (existT B x y). Proof. induction 1 as [x _ IHAcc]; intros H2 y. induction 1 as [x0 H IHAcc0]; intros. @@ -60,7 +60,7 @@ Section WfLexicographic_Product. well_founded leA -> (forall x:A, well_founded (leB x)) -> well_founded LexProd. Proof. - intros wfA wfB; unfold well_founded in |- *. + intros wfA wfB; unfold well_founded. destruct a. apply acc_A_B_lexprod; auto with sets; intros. red in wfB. @@ -94,7 +94,7 @@ Section Wf_Symmetric_Product. Lemma wf_symprod : well_founded leA -> well_founded leB -> well_founded Symprod. Proof. - red in |- *. + red. destruct a. apply Acc_symprod; auto with sets. Defined. @@ -161,7 +161,7 @@ Section Swap. Lemma wf_swapprod : well_founded R -> well_founded SwapProd. Proof. - red in |- *. + red. destruct a; intros. apply Acc_swapprod; auto with sets. Defined. diff --git a/theories/Wellfounded/Transitive_Closure.v b/theories/Wellfounded/Transitive_Closure.v index e9bc7ccf..943840cd 100644 --- a/theories/Wellfounded/Transitive_Closure.v +++ b/theories/Wellfounded/Transitive_Closure.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Acc trans_clos x. @@ -39,7 +39,7 @@ Section Wf_Transitive_Closure. Theorem wf_clos_trans : well_founded R -> well_founded trans_clos. Proof. - unfold well_founded in |- *; auto with sets. + unfold well_founded; auto with sets. Defined. End Wf_Transitive_Closure. diff --git a/theories/Wellfounded/Union.v b/theories/Wellfounded/Union.v index e3fdc4c5..5e4fec65 100644 --- a/theories/Wellfounded/Union.v +++ b/theories/Wellfounded/Union.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* well_founded R1 -> well_founded R2 -> well_founded Union. Proof. - unfold well_founded in |- *. + unfold well_founded. intros. apply Acc_union; auto with sets. Qed. diff --git a/theories/Wellfounded/Well_Ordering.v b/theories/Wellfounded/Well_Ordering.v index fc4e2ebc..df6d9ed6 100644 --- a/theories/Wellfounded/Well_Ordering.v +++ b/theories/Wellfounded/Well_Ordering.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* B a0 -> WO) a0 f1 f H5). Qed. @@ -61,7 +61,7 @@ Section Characterisation_wf_relations. apply (well_founded_induction_type H (fun a:A => WO A B)); auto. intros x H1. apply (sup A B x). - unfold B at 1 in |- *. + unfold B at 1. destruct 1 as [x0]. apply (H1 x0); auto. Qed. diff --git a/theories/Wellfounded/Wellfounded.v b/theories/Wellfounded/Wellfounded.v index 4dc4d59d..b8c6653b 100644 --- a/theories/Wellfounded/Wellfounded.v +++ b/theories/Wellfounded/Wellfounded.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 - | Lt => Zneg (q - p) - | Gt => Zpos (p - q) + | Lt => neg (q - p) + | Gt => pos (p - q) end. Proof. revert q. induction p; destruct q; simpl; trivial; @@ -95,6 +95,18 @@ Proof. subst; unfold Pos.sub; simpl; now rewrite Pos.sub_mask_diag. Qed. +Lemma pos_sub_discr p q : + match pos_sub p q with + | Z0 => p = q + | pos k => p = q + k + | neg k => q = p + k + end%positive. +Proof. + rewrite pos_sub_spec. + case Pos.compare_spec; auto; intros; + now rewrite Pos.add_comm, Pos.sub_add. +Qed. + (** Particular cases of the previous result *) Lemma pos_sub_diag p : pos_sub p p = 0. @@ -102,12 +114,12 @@ Proof. now rewrite pos_sub_spec, Pos.compare_refl. Qed. -Lemma pos_sub_lt p q : (p < q)%positive -> pos_sub p q = Zneg (q - p). +Lemma pos_sub_lt p q : (p < q)%positive -> pos_sub p q = neg (q - p). Proof. intros H. now rewrite pos_sub_spec, H. Qed. -Lemma pos_sub_gt p q : (q < p)%positive -> pos_sub p q = Zpos (p - q). +Lemma pos_sub_gt p q : (q < p)%positive -> pos_sub p q = pos (p - q). Proof. intros H. now rewrite pos_sub_spec, Pos.compare_antisym, H. Qed. @@ -120,89 +132,6 @@ Proof. rewrite <- IHp; now destruct pos_sub. Qed. -(** * Results concerning [Zpos] and [Zneg] and the operators *) - -Lemma opp_Zneg p : - Zneg p = Zpos p. -Proof. - reflexivity. -Qed. - -Lemma opp_Zpos p : - Zpos p = Zneg p. -Proof. - reflexivity. -Qed. - -Lemma succ_Zpos p : succ (Zpos p) = Zpos (Pos.succ p). -Proof. - simpl. f_equal. apply Pos.add_1_r. -Qed. - -Lemma add_Zpos p q : Zpos p + Zpos q = Zpos (p+q). -Proof. - reflexivity. -Qed. - -Lemma add_Zneg p q : Zneg p + Zneg q = Zneg (p+q). -Proof. - reflexivity. -Qed. - -Lemma add_Zpos_Zneg p q : Zpos p + Zneg q = pos_sub p q. -Proof. - reflexivity. -Qed. - -Lemma add_Zneg_Zpos p q : Zneg p + Zpos q = pos_sub q p. -Proof. - reflexivity. -Qed. - -Lemma sub_Zpos n m : (n < m)%positive -> Zpos m - Zpos n = Zpos (m-n). -Proof. - intros H. simpl. now apply pos_sub_gt. -Qed. - -Lemma mul_Zpos (p q : positive) : Zpos p * Zpos q = Zpos (p*q). -Proof. - reflexivity. -Qed. - -Lemma pow_Zpos p q : (Zpos p)^(Zpos q) = Zpos (p^q). -Proof. - unfold Pos.pow, pow, pow_pos. - symmetry. now apply Pos.iter_swap_gen. -Qed. - -Lemma inj_Zpos p q : Zpos p = Zpos q <-> p = q. -Proof. - split; intros H. now injection H. now f_equal. -Qed. - -Lemma inj_Zneg p q : Zneg p = Zneg q <-> p = q. -Proof. - split; intros H. now injection H. now f_equal. -Qed. - -Lemma pos_xI p : Zpos p~1 = 2 * Zpos p + 1. -Proof. - reflexivity. -Qed. - -Lemma pos_xO p : Zpos p~0 = 2 * Zpos p. -Proof. - reflexivity. -Qed. - -Lemma neg_xI p : Zneg p~1 = 2 * Zneg p - 1. -Proof. - reflexivity. -Qed. - -Lemma neg_xO p : Zneg p~0 = 2 * Zneg p. -Proof. - reflexivity. -Qed. - (** In the following module, we group results that are needed now to prove specifications of operations, but will also be provided later by the generic functor of properties. *) @@ -242,7 +171,7 @@ Qed. (** ** Addition is associative *) Lemma pos_sub_add p q r : - pos_sub (p + q) r = Zpos p + pos_sub q r. + pos_sub (p + q) r = pos p + pos_sub q r. Proof. simpl. rewrite !pos_sub_spec. case (Pos.compare_spec q r); intros E0. @@ -269,19 +198,19 @@ Qed. Lemma add_assoc n m p : n + (m + p) = n + m + p. Proof. - assert (AUX : forall x y z, Zpos x + (y + z) = Zpos x + y + z). + assert (AUX : forall x y z, pos x + (y + z) = pos x + y + z). { intros x [|y|y] [|z|z]; rewrite ?add_0_r; trivial. - simpl. now rewrite Pos.add_assoc. - - simpl (_ + Zneg _). symmetry. apply pos_sub_add. - - simpl (Zneg _ + _); simpl (_ + Zneg _). - now rewrite (add_comm _ (Zpos _)), <- 2 pos_sub_add, Pos.add_comm. - - apply opp_inj. rewrite !opp_add_distr, opp_Zpos, !opp_Zneg. - simpl (Zneg _ + _); simpl (_ + Zneg _). + - simpl (_ + neg _). symmetry. apply pos_sub_add. + - simpl (neg _ + _); simpl (_ + neg _). + now rewrite (add_comm _ (pos _)), <- 2 pos_sub_add, Pos.add_comm. + - apply opp_inj. rewrite !opp_add_distr. simpl opp. + simpl (neg _ + _); simpl (_ + neg _). rewrite add_comm, Pos.add_comm. apply pos_sub_add. } destruct n. - trivial. - apply AUX. - - apply opp_inj. rewrite !opp_add_distr, opp_Zneg. apply AUX. + - apply opp_inj. rewrite !opp_add_distr. simpl opp. apply AUX. Qed. (** ** Subtraction and successor *) @@ -354,7 +283,7 @@ Qed. (** ** Distributivity of multiplication over addition *) Lemma mul_add_distr_pos (p:positive) n m : - Zpos p * (n + m) = Zpos p * n + Zpos p * m. + pos p * (n + m) = pos p * n + pos p * m. Proof. destruct n as [|n|n], m as [|m|m]; simpl; trivial; rewrite ?pos_sub_spec, ?Pos.mul_compare_mono_l; try case Pos.compare_spec; @@ -365,7 +294,8 @@ Lemma mul_add_distr_l n m p : n * (m + p) = n * m + n * p. Proof. destruct n as [|n|n]. trivial. apply mul_add_distr_pos. - rewrite <- opp_Zpos, !mul_opp_l, <- opp_add_distr. f_equal. + change (neg n) with (- pos n). + rewrite !mul_opp_l, <- opp_add_distr. f_equal. apply mul_add_distr_pos. Qed. @@ -374,6 +304,57 @@ Proof. rewrite !(mul_comm _ p). apply mul_add_distr_l. Qed. +(** ** Basic properties of divisibility *) + +Lemma divide_Zpos p q : (pos p|pos q) <-> (p|q)%positive. +Proof. + split. + intros ([ |r|r],H); simpl in *; destr_eq H. exists r; auto. + intros (r,H). exists (pos r); simpl; now f_equal. +Qed. + +Lemma divide_Zpos_Zneg_r n p : (n|pos p) <-> (n|neg p). +Proof. + split; intros (m,H); exists (-m); now rewrite mul_opp_l, <- H. +Qed. + +Lemma divide_Zpos_Zneg_l n p : (pos p|n) <-> (neg p|n). +Proof. + split; intros (m,H); exists (-m); now rewrite mul_opp_l, <- mul_opp_r. +Qed. + +(** ** Conversions between [Z.testbit] and [N.testbit] *) + +Lemma testbit_of_N a n : + testbit (of_N a) (of_N n) = N.testbit a n. +Proof. + destruct a as [|a], n; simpl; trivial. now destruct a. +Qed. + +Lemma testbit_of_N' a n : 0<=n -> + testbit (of_N a) n = N.testbit a (to_N n). +Proof. + intro Hn. rewrite <- testbit_of_N. f_equal. + destruct n; trivial; now destruct Hn. +Qed. + +Lemma testbit_Zpos a n : 0<=n -> + testbit (pos a) n = N.testbit (N.pos a) (to_N n). +Proof. + intro Hn. now rewrite <- testbit_of_N'. +Qed. + +Lemma testbit_Zneg a n : 0<=n -> + testbit (neg a) n = negb (N.testbit (Pos.pred_N a) (to_N n)). +Proof. + intro Hn. + rewrite <- testbit_of_N' by trivial. + destruct n as [ |n|n]; + [ | simpl; now destruct (Pos.pred_N a) | now destruct Hn]. + unfold testbit. + now destruct a as [|[ | | ]| ]. +Qed. + End Private_BootStrap. (** * Proofs of specifications *) @@ -454,9 +435,8 @@ Qed. Lemma eqb_eq n m : (n =? m) = true <-> n = m. Proof. - destruct n, m; simpl; try (now split). - rewrite inj_Zpos. apply Pos.eqb_eq. - rewrite inj_Zneg. apply Pos.eqb_eq. + destruct n, m; simpl; try (now split); rewrite Pos.eqb_eq; + split; (now injection 1) || (intros; now f_equal). Qed. Lemma ltb_lt n m : (n n < m. @@ -580,7 +560,7 @@ Qed. (** For folding back a [pow_pos] into a [pow] *) -Lemma pow_pos_fold n p : pow_pos n p = n ^ (Zpos p). +Lemma pow_pos_fold n p : pow_pos n p = n ^ (pos p). Proof. reflexivity. Qed. @@ -607,7 +587,7 @@ Lemma sqrt_spec n : 0<=n -> let s := sqrt n in s*s <= n < (succ s)*(succ s). Proof. destruct n. now repeat split. unfold sqrt. - rewrite succ_Zpos. intros _. apply (Pos.sqrt_spec p). + intros _. simpl succ. rewrite Pos.add_1_r. apply (Pos.sqrt_spec p). now destruct 1. Qed. @@ -627,8 +607,10 @@ Qed. Lemma log2_spec n : 0 < n -> 2^(log2 n) <= n < 2^(succ (log2 n)). Proof. + assert (Pow : forall p q, pos (p^q) = (pos p)^(pos q)). + { intros. now apply Pos.iter_swap_gen. } destruct n as [|[p|p|]|]; intros Hn; split; try easy; unfold log2; - rewrite ?succ_Zpos, pow_Zpos. + simpl succ; rewrite ?Pos.add_1_r, <- Pow. change (2^Pos.size p <= Pos.succ (p~0))%positive. apply Pos.lt_le_incl, Pos.lt_succ_r, Pos.size_le. apply Pos.size_gt. @@ -678,20 +660,22 @@ Qed. (** ** Correctness proofs for Trunc division *) Lemma pos_div_eucl_eq a b : 0 < b -> - let (q, r) := pos_div_eucl a b in Zpos a = q * b + r. + let (q, r) := pos_div_eucl a b in pos a = q * b + r. Proof. intros Hb. induction a; unfold pos_div_eucl; fold pos_div_eucl. - (* ~1 *) destruct pos_div_eucl as (q,r). - rewrite pos_xI, IHa, mul_add_distr_l, mul_assoc. + change (pos a~1) with (2*(pos a)+1). + rewrite IHa, mul_add_distr_l, mul_assoc. destruct ltb. now rewrite add_assoc. rewrite mul_add_distr_r, mul_1_l, <- !add_assoc. f_equal. unfold sub. now rewrite (add_comm _ (-b)), add_assoc, add_opp_diag_r. - (* ~0 *) destruct pos_div_eucl as (q,r). - rewrite (pos_xO a), IHa, mul_add_distr_l, mul_assoc. + change (pos a~0) with (2*pos a). + rewrite IHa, mul_add_distr_l, mul_assoc. destruct ltb. trivial. rewrite mul_add_distr_r, mul_1_l, <- !add_assoc. f_equal. @@ -709,21 +693,23 @@ Lemma div_eucl_eq a b : b<>0 -> Proof. destruct a as [ |a|a], b as [ |b|b]; unfold div_eucl; trivial; (now destruct 1) || intros _; - generalize (pos_div_eucl_eq a (Zpos b) (eq_refl _)); - destruct pos_div_eucl as (q,r); rewrite <- ?opp_Zpos, mul_comm; - intros ->. - - (* Zpos Zpos *) + generalize (pos_div_eucl_eq a (pos b) (eq_refl _)); + destruct pos_div_eucl as (q,r); rewrite mul_comm. + - (* pos pos *) trivial. - - (* Zpos Zneg *) - destruct r as [ |r|r]; rewrite !mul_opp_opp; trivial; + - (* pos neg *) + intros ->. + destruct r as [ |r|r]; rewrite <- !mul_opp_comm; trivial; rewrite mul_add_distr_l, mul_1_r, <- add_assoc; f_equal; now rewrite add_assoc, add_opp_diag_r. - - (* Zneg Zpos *) + - (* neg pos *) + change (neg a) with (- pos a). intros ->. rewrite (opp_add_distr _ r), <- mul_opp_r. destruct r as [ |r|r]; trivial; rewrite opp_add_distr, mul_add_distr_l, <- add_assoc; f_equal; unfold sub; now rewrite add_assoc, mul_opp_r, mul_1_r, add_opp_diag_l. - - (* Zneg Zneg *) + - (* neg neg *) + change (neg a) with (- pos a). intros ->. now rewrite opp_add_distr, <- mul_opp_l. Qed. @@ -735,10 +721,10 @@ Qed. Lemma pos_div_eucl_bound a b : 0 0 <= snd (pos_div_eucl a b) < b. Proof. - assert (AUX : forall m p, m < Zpos (p~0) -> m - Zpos p < Zpos p). + assert (AUX : forall m p, m < pos (p~0) -> m - pos p < pos p). intros m p. unfold lt. - rewrite (compare_sub m), (compare_sub _ (Zpos _)). unfold sub. - rewrite <- add_assoc. simpl opp; simpl (Zneg _ + _). + rewrite (compare_sub m), (compare_sub _ (pos _)). unfold sub. + rewrite <- add_assoc. simpl opp; simpl (neg _ + _). now rewrite Pos.add_diag. intros Hb. destruct b as [|b|b]; discriminate Hb || clear Hb. @@ -770,7 +756,7 @@ Proof. destruct a as [|a|a]; unfold modulo, div_eucl. now split. now apply pos_div_eucl_bound. - generalize (pos_div_eucl_bound a (Zpos b) (eq_refl _)). + generalize (pos_div_eucl_bound a (pos b) (eq_refl _)). destruct pos_div_eucl as (q,r); unfold snd; intros (Hr,Hr'). destruct r as [|r|r]; (now destruct Hr) || clear Hr. now split. @@ -787,17 +773,17 @@ Proof. destruct b as [|b|b]; try easy; intros _. destruct a as [|a|a]; unfold modulo, div_eucl. now split. - generalize (pos_div_eucl_bound a (Zpos b) (eq_refl _)). + generalize (pos_div_eucl_bound a (pos b) (eq_refl _)). destruct pos_div_eucl as (q,r); unfold snd; intros (Hr,Hr'). destruct r as [|r|r]; (now destruct Hr) || clear Hr. now split. split. unfold lt in *; simpl in *. rewrite pos_sub_lt by trivial. rewrite <- Pos.compare_antisym. now apply Pos.sub_decr. - change (Zneg b - Zneg r <= 0). unfold le, lt in *. + change (neg b - neg r <= 0). unfold le, lt in *. rewrite <- compare_sub. simpl in *. now rewrite <- Pos.compare_antisym, Hr'. - generalize (pos_div_eucl_bound a (Zpos b) (eq_refl _)). + generalize (pos_div_eucl_bound a (pos b) (eq_refl _)). destruct pos_div_eucl as (q,r); unfold snd; intros (Hr,Hr'). split; destruct r; try easy. red; simpl; now rewrite <- Pos.compare_antisym. @@ -808,9 +794,10 @@ Qed. Theorem quotrem_eq a b : let (q,r) := quotrem a b in a = q * b + r. Proof. destruct a as [|a|a], b as [|b|b]; simpl; trivial; - generalize (N.pos_div_eucl_spec a (Npos b)); case N.pos_div_eucl; trivial; - intros q r; rewrite <- ?opp_Zpos; - change (Zpos a) with (of_N (Npos a)); intros ->; now destruct q, r. + generalize (N.pos_div_eucl_spec a (N.pos b)); case N.pos_div_eucl; trivial; + intros q r; + try change (neg a) with (-pos a); + change (pos a) with (of_N (N.pos a)); intros ->; now destruct q, r. Qed. Lemma quot_rem' a b : a = b*(a÷b) + rem a b. @@ -829,7 +816,7 @@ Proof. destruct a as [|a|a]; (now destruct Ha) || clear Ha. compute. now split. unfold rem, quotrem. - assert (H := N.pos_div_eucl_remainder a (Npos b)). + assert (H := N.pos_div_eucl_remainder a (N.pos b)). destruct N.pos_div_eucl as (q,[|r]); simpl; split; try easy. now apply H. Qed. @@ -852,25 +839,6 @@ Proof. intros _. apply rem_opp_l'. Qed. Lemma rem_opp_r a b : b<>0 -> rem a (-b) = rem a b. Proof. intros _. apply rem_opp_r'. Qed. -(** ** Basic properties of divisibility *) - -Lemma divide_Zpos p q : (Zpos p|Zpos q) <-> (p|q)%positive. -Proof. - split. - intros ([ |r|r],H); simpl in *; destr_eq H. exists r; auto. - intros (r,H). exists (Zpos r); simpl; now f_equal. -Qed. - -Lemma divide_Zpos_Zneg_r n p : (n|Zpos p) <-> (n|Zneg p). -Proof. - split; intros (m,H); exists (-m); now rewrite mul_opp_l, <- H. -Qed. - -Lemma divide_Zpos_Zneg_l n p : (Zpos p|n) <-> (Zneg p|n). -Proof. - split; intros (m,H); exists (-m); now rewrite mul_opp_l, <- mul_opp_r. -Qed. - (** ** Correctness proofs for gcd *) Lemma ggcd_gcd a b : fst (ggcd a b) = gcd a b. @@ -905,7 +873,7 @@ Qed. Lemma gcd_greatest a b c : (c|a) -> (c|b) -> (c | gcd a b). Proof. - assert (H : forall p q r, (r|Zpos p) -> (r|Zpos q) -> (r|Zpos (Pos.gcd p q))). + assert (H : forall p q r, (r|pos p) -> (r|pos q) -> (r|pos (Pos.gcd p q))). { intros p q [|r|r] H H'. destruct H; now rewrite mul_comm in *. apply divide_Zpos, Pos.gcd_greatest; now apply divide_Zpos. @@ -930,38 +898,6 @@ Proof. destruct (Pos.ggcd a b) as (g,(aa,bb)); auto. Qed. -(** ** Conversions between [Z.testbit] and [N.testbit] *) - -Lemma testbit_of_N a n : - testbit (of_N a) (of_N n) = N.testbit a n. -Proof. - destruct a as [|a], n; simpl; trivial. now destruct a. -Qed. - -Lemma testbit_of_N' a n : 0<=n -> - testbit (of_N a) n = N.testbit a (to_N n). -Proof. - intro Hn. rewrite <- testbit_of_N. f_equal. - destruct n; trivial; now destruct Hn. -Qed. - -Lemma testbit_Zpos a n : 0<=n -> - testbit (Zpos a) n = N.testbit (Npos a) (to_N n). -Proof. - intro Hn. now rewrite <- testbit_of_N'. -Qed. - -Lemma testbit_Zneg a n : 0<=n -> - testbit (Zneg a) n = negb (N.testbit (Pos.pred_N a) (to_N n)). -Proof. - intro Hn. - rewrite <- testbit_of_N' by trivial. - destruct n as [ |n|n]; - [ | simpl; now destruct (Ppred_N a) | now destruct Hn]. - unfold testbit. - now destruct a as [|[ | | ]| ]. -Qed. - (** ** Proofs of specifications for bitwise operations *) Lemma div2_spec a : div2 a = shiftr a 1. @@ -994,9 +930,9 @@ Lemma testbit_odd_succ a n : 0<=n -> Proof. destruct n as [|n|n]; (now destruct 1) || intros _. destruct a as [|[a|a|]|[a|a|]]; simpl; trivial. now destruct a. - unfold testbit. rewrite succ_Zpos. + unfold testbit; simpl. destruct a as [|a|[a|a|]]; simpl; trivial; - rewrite ?Pos.pred_N_succ; now destruct n. + rewrite ?Pos.add_1_r, ?Pos.pred_N_succ; now destruct n. Qed. Lemma testbit_even_succ a n : 0<=n -> @@ -1004,9 +940,9 @@ Lemma testbit_even_succ a n : 0<=n -> Proof. destruct n as [|n|n]; (now destruct 1) || intros _. destruct a as [|[a|a|]|[a|a|]]; simpl; trivial. now destruct a. - unfold testbit. rewrite succ_Zpos. + unfold testbit; simpl. destruct a as [|a|[a|a|]]; simpl; trivial; - rewrite ?Pos.pred_N_succ; now destruct n. + rewrite ?Pos.add_1_r, ?Pos.pred_N_succ; now destruct n. Qed. (** Correctness proofs about [Z.shiftr] and [Z.shiftl] *) @@ -1017,9 +953,9 @@ Proof. intros Hn Hm. unfold shiftr. destruct n as [ |n|n]; (now destruct Hn) || clear Hn; simpl. now rewrite add_0_r. - assert (forall p, to_N (m + Zpos p) = (to_N m + Npos p)%N). + assert (forall p, to_N (m + pos p) = (to_N m + N.pos p)%N). destruct m; trivial; now destruct Hm. - assert (forall p, 0 <= m + Zpos p). + assert (forall p, 0 <= m + pos p). destruct m; easy || now destruct Hm. destruct a as [ |a|a]. (* a = 0 *) @@ -1027,15 +963,15 @@ Proof. by (apply Pos.iter_invariant; intros; subst; trivial). now rewrite 2 testbit_0_l. (* a > 0 *) - change (Zpos a) with (of_N (Npos a)) at 1. - rewrite <- (Pos.iter_swap_gen _ _ _ Ndiv2) by now intros [|[ | | ]]. + change (pos a) with (of_N (N.pos a)) at 1. + rewrite <- (Pos.iter_swap_gen _ _ _ N.div2) by now intros [|[ | | ]]. rewrite testbit_Zpos, testbit_of_N', H; trivial. - exact (N.shiftr_spec' (Npos a) (Npos n) (to_N m)). + exact (N.shiftr_spec' (N.pos a) (N.pos n) (to_N m)). (* a < 0 *) - rewrite <- (Pos.iter_swap_gen _ _ _ Pdiv2_up) by trivial. + rewrite <- (Pos.iter_swap_gen _ _ _ Pos.div2_up) by trivial. rewrite 2 testbit_Zneg, H; trivial. f_equal. - rewrite (Pos.iter_swap_gen _ _ _ _ Ndiv2) by exact N.pred_div2_up. - exact (N.shiftr_spec' (Ppred_N a) (Npos n) (to_N m)). + rewrite (Pos.iter_swap_gen _ _ _ _ N.div2) by exact N.pred_div2_up. + exact (N.shiftr_spec' (Pos.pred_N a) (N.pos n) (to_N m)). Qed. Lemma shiftl_spec_low a n m : m @@ -1052,11 +988,11 @@ Proof. (* a > 0 *) rewrite <- (Pos.iter_swap_gen _ _ _ xO) by trivial. rewrite testbit_Zpos by easy. - exact (N.shiftl_spec_low (Npos a) (Npos n) (Npos m) H). + exact (N.shiftl_spec_low (N.pos a) (N.pos n) (N.pos m) H). (* a < 0 *) rewrite <- (Pos.iter_swap_gen _ _ _ xO) by trivial. rewrite testbit_Zneg by easy. - now rewrite (N.pos_pred_shiftl_low a (Npos n)). + now rewrite (N.pos_pred_shiftl_low a (N.pos n)). Qed. Lemma shiftl_spec_high a n m : 0<=m -> n<=m -> @@ -1066,9 +1002,9 @@ Proof. destruct n as [ |n|n]. simpl. now rewrite sub_0_r. (* n > 0 *) destruct m as [ |m|m]; try (now destruct H). - assert (0 <= Zpos m - Zpos n). + assert (0 <= pos m - pos n). red. now rewrite compare_antisym, <- compare_sub, <- compare_antisym. - assert (EQ : to_N (Zpos m - Zpos n) = (Npos m - Npos n)%N). + assert (EQ : to_N (pos m - pos n) = (N.pos m - N.pos n)%N). red in H. simpl in H. simpl to_N. rewrite pos_sub_spec, Pos.compare_antisym. destruct (Pos.compare_spec n m) as [H'|H'|H']; try (now destruct H). @@ -1083,16 +1019,16 @@ Proof. (* ... a > 0 *) rewrite <- (Pos.iter_swap_gen _ _ _ xO) by trivial. rewrite 2 testbit_Zpos, EQ by easy. - exact (N.shiftl_spec_high' (Npos p) (Npos n) (Npos m) H). + exact (N.shiftl_spec_high' (N.pos p) (N.pos n) (N.pos m) H). (* ... a < 0 *) rewrite <- (Pos.iter_swap_gen _ _ _ xO) by trivial. rewrite 2 testbit_Zneg, EQ by easy. f_equal. simpl to_N. rewrite <- N.shiftl_spec_high by easy. - now apply (N.pos_pred_shiftl_high p (Npos n)). + now apply (N.pos_pred_shiftl_high p (N.pos n)). (* n < 0 *) unfold sub. simpl. - now apply (shiftr_spec_aux a (Zpos n) m). + now apply (shiftr_spec_aux a (pos n) m). Qed. Lemma shiftr_spec a n m : 0<=m -> @@ -1180,11 +1116,11 @@ Proof. induction p using Pos.peano_ind. now apply (Hs 0). rewrite <- Pos.add_1_r. - now apply (Hs (Zpos p)). + now apply (Hs (pos p)). induction p using Pos.peano_ind. now apply (Hp 0). rewrite <- Pos.add_1_r. - now apply (Hp (Zneg p)). + now apply (Hp (neg p)). Qed. Lemma bi_induction (P : Z -> Prop) : @@ -1217,11 +1153,11 @@ Program Definition rem_wd : Proper (eq==>eq==>eq) rem := _. Program Definition pow_wd : Proper (eq==>eq==>eq) pow := _. Program Definition testbit_wd : Proper (eq==>eq==>Logic.eq) testbit := _. -Include ZProp - <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties. +(** The Bind Scope prevents Z to stay associated with abstract_scope. + (TODO FIX) *) -(** Otherwise Z stays associated with abstract_scope : (TODO FIX) *) -Bind Scope Z_scope with Z. +Include ZProp. Bind Scope Z_scope with Z. +Include UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties. (** In generic statements, the predicates [lt] and [le] have been favored, whereas [gt] and [ge] don't even exist in the abstract @@ -1341,7 +1277,7 @@ Qed. End Z. -(** Export Notations *) +(** Re-export Notations *) Infix "+" := Z.add : Z_scope. Notation "- x" := (Z.opp x) : Z_scope. @@ -1351,111 +1287,362 @@ Infix "^" := Z.pow : Z_scope. Infix "/" := Z.div : Z_scope. Infix "mod" := Z.modulo (at level 40, no associativity) : Z_scope. Infix "÷" := Z.quot (at level 40, left associativity) : Z_scope. - -(* TODO : transition from Zdivide *) -Notation "( x | y )" := (Z.divide x y) (at level 0). - Infix "?=" := Z.compare (at level 70, no associativity) : Z_scope. - +Infix "=?" := Z.eqb (at level 70, no associativity) : Z_scope. +Infix "<=?" := Z.leb (at level 70, no associativity) : Z_scope. +Infix "=?" := Z.geb (at level 70, no associativity) : Z_scope. +Infix ">?" := Z.gtb (at level 70, no associativity) : Z_scope. +Notation "( x | y )" := (Z.divide x y) (at level 0) : Z_scope. Infix "<=" := Z.le : Z_scope. Infix "<" := Z.lt : Z_scope. Infix ">=" := Z.ge : Z_scope. Infix ">" := Z.gt : Z_scope. - Notation "x <= y <= z" := (x <= y /\ y <= z) : Z_scope. Notation "x <= y < z" := (x <= y /\ y < z) : Z_scope. Notation "x < y < z" := (x < y /\ y < z) : Z_scope. Notation "x < y <= z" := (x < y /\ y <= z) : Z_scope. -Infix "=?" := Z.eqb (at level 70, no associativity) : Z_scope. -Infix "<=?" := Z.leb (at level 70, no associativity) : Z_scope. -Infix "=?" := Z.geb (at level 70, no associativity) : Z_scope. -Infix ">?" := Z.gtb (at level 70, no associativity) : Z_scope. +(** Conversions from / to positive numbers *) + +Module Pos2Z. + +Lemma id p : Z.to_pos (Z.pos p) = p. +Proof. reflexivity. Qed. + +Lemma inj p q : Z.pos p = Z.pos q -> p = q. +Proof. now injection 1. Qed. + +Lemma inj_iff p q : Z.pos p = Z.pos q <-> p = q. +Proof. split. apply inj. intros; now f_equal. Qed. + +Lemma is_pos p : 0 < Z.pos p. +Proof. reflexivity. Qed. + +Lemma is_nonneg p : 0 <= Z.pos p. +Proof. easy. Qed. + +Lemma inj_1 : Z.pos 1 = 1. +Proof. reflexivity. Qed. + +Lemma inj_xO p : Z.pos p~0 = 2 * Z.pos p. +Proof. reflexivity. Qed. + +Lemma inj_xI p : Z.pos p~1 = 2 * Z.pos p + 1. +Proof. reflexivity. Qed. + +Lemma inj_succ p : Z.pos (Pos.succ p) = Z.succ (Z.pos p). +Proof. simpl. now rewrite Pos.add_1_r. Qed. + +Lemma inj_add p q : Z.pos (p+q) = Z.pos p + Z.pos q. +Proof. reflexivity. Qed. + +Lemma inj_sub p q : (p < q)%positive -> + Z.pos (q-p) = Z.pos q - Z.pos p. +Proof. intros. simpl. now rewrite Z.pos_sub_gt. Qed. + +Lemma inj_sub_max p q : Z.pos (p - q) = Z.max 1 (Z.pos p - Z.pos q). +Proof. + simpl. rewrite Z.pos_sub_spec. case Pos.compare_spec; intros. + - subst; now rewrite Pos.sub_diag. + - now rewrite Pos.sub_lt. + - now destruct (p-q)%positive. +Qed. + +Lemma inj_pred p : p <> 1%positive -> + Z.pos (Pos.pred p) = Z.pred (Z.pos p). +Proof. destruct p; easy || now destruct 1. Qed. + +Lemma inj_mul p q : Z.pos (p*q) = Z.pos p * Z.pos q. +Proof. reflexivity. Qed. + +Lemma inj_pow_pos p q : Z.pos (p^q) = Z.pow_pos (Z.pos p) q. +Proof. now apply Pos.iter_swap_gen. Qed. + +Lemma inj_pow p q : Z.pos (p^q) = (Z.pos p)^(Z.pos q). +Proof. apply inj_pow_pos. Qed. + +Lemma inj_square p : Z.pos (Pos.square p) = Z.square (Z.pos p). +Proof. reflexivity. Qed. + +Lemma inj_compare p q : (p ?= q)%positive = (Z.pos p ?= Z.pos q). +Proof. reflexivity. Qed. + +Lemma inj_leb p q : (p <=? q)%positive = (Z.pos p <=? Z.pos q). +Proof. reflexivity. Qed. + +Lemma inj_ltb p q : (p (p|q)%positive. +Proof. apply Z.Private_BootStrap.divide_Zpos. Qed. + +Lemma inj_testbit a n : 0<=n -> + Z.testbit (Z.pos a) n = N.testbit (N.pos a) (Z.to_N n). +Proof. apply Z.Private_BootStrap.testbit_Zpos. Qed. + +(** Some results concerning Z.neg *) + +Lemma inj_neg p q : Z.neg p = Z.neg q -> p = q. +Proof. now injection 1. Qed. + +Lemma inj_neg_iff p q : Z.neg p = Z.neg q <-> p = q. +Proof. split. apply inj_neg. intros; now f_equal. Qed. + +Lemma neg_is_neg p : Z.neg p < 0. +Proof. reflexivity. Qed. + +Lemma neg_is_nonpos p : Z.neg p <= 0. +Proof. easy. Qed. + +Lemma neg_xO p : Z.neg p~0 = 2 * Z.neg p. +Proof. reflexivity. Qed. + +Lemma neg_xI p : Z.neg p~1 = 2 * Z.neg p - 1. +Proof. reflexivity. Qed. + +Lemma opp_neg p : - Z.neg p = Z.pos p. +Proof. reflexivity. Qed. + +Lemma opp_pos p : - Z.pos p = Z.neg p. +Proof. reflexivity. Qed. + +Lemma add_neg_neg p q : Z.neg p + Z.neg q = Z.neg (p+q). +Proof. reflexivity. Qed. + +Lemma add_pos_neg p q : Z.pos p + Z.neg q = Z.pos_sub p q. +Proof. reflexivity. Qed. + +Lemma add_neg_pos p q : Z.neg p + Z.pos q = Z.pos_sub q p. +Proof. reflexivity. Qed. + +Lemma divide_pos_neg_r n p : (n|Z.pos p) <-> (n|Z.neg p). +Proof. apply Z.Private_BootStrap.divide_Zpos_Zneg_r. Qed. + +Lemma divide_pos_neg_l n p : (Z.pos p|n) <-> (Z.neg p|n). +Proof. apply Z.Private_BootStrap.divide_Zpos_Zneg_l. Qed. + +Lemma testbit_neg a n : 0<=n -> + Z.testbit (Z.neg a) n = negb (N.testbit (Pos.pred_N a) (Z.to_N n)). +Proof. apply Z.Private_BootStrap.testbit_Zneg. Qed. + +End Pos2Z. + +Module Z2Pos. + +Lemma id x : 0 < x -> Z.pos (Z.to_pos x) = x. +Proof. now destruct x. Qed. + +Lemma inj x y : 0 < x -> 0 < y -> Z.to_pos x = Z.to_pos y -> x = y. +Proof. + destruct x; simpl; try easy. intros _ H ->. now apply id. +Qed. + +Lemma inj_iff x y : 0 < x -> 0 < y -> (Z.to_pos x = Z.to_pos y <-> x = y). +Proof. split. now apply inj. intros; now f_equal. Qed. + +Lemma to_pos_nonpos x : x <= 0 -> Z.to_pos x = 1%positive. +Proof. destruct x; trivial. now destruct 1. Qed. + +Lemma inj_1 : Z.to_pos 1 = 1%positive. +Proof. reflexivity. Qed. + +Lemma inj_double x : 0 < x -> + Z.to_pos (Z.double x) = (Z.to_pos x)~0%positive. +Proof. now destruct x. Qed. + +Lemma inj_succ_double x : 0 < x -> + Z.to_pos (Z.succ_double x) = (Z.to_pos x)~1%positive. +Proof. now destruct x. Qed. + +Lemma inj_succ x : 0 < x -> Z.to_pos (Z.succ x) = Pos.succ (Z.to_pos x). +Proof. + destruct x; try easy. simpl. now rewrite Pos.add_1_r. +Qed. + +Lemma inj_add x y : 0 < x -> 0 < y -> + Z.to_pos (x+y) = (Z.to_pos x + Z.to_pos y)%positive. +Proof. destruct x; easy || now destruct y. Qed. + +Lemma inj_sub x y : 0 < x < y -> + Z.to_pos (y-x) = (Z.to_pos y - Z.to_pos x)%positive. +Proof. + destruct x; try easy. destruct y; try easy. simpl. + intros. now rewrite Z.pos_sub_gt. +Qed. + +Lemma inj_pred x : 1 < x -> Z.to_pos (Z.pred x) = Pos.pred (Z.to_pos x). +Proof. now destruct x as [|[x|x|]|]. Qed. + +Lemma inj_mul x y : 0 < x -> 0 < y -> + Z.to_pos (x*y) = (Z.to_pos x * Z.to_pos y)%positive. +Proof. destruct x; easy || now destruct y. Qed. + +Lemma inj_pow x y : 0 < x -> 0 < y -> + Z.to_pos (x^y) = (Z.to_pos x ^ Z.to_pos y)%positive. +Proof. + intros. apply Pos2Z.inj. rewrite Pos2Z.inj_pow, !id; trivial. + apply Z.pow_pos_nonneg. trivial. now apply Z.lt_le_incl. +Qed. + +Lemma inj_pow_pos x p : 0 < x -> + Z.to_pos (Z.pow_pos x p) = ((Z.to_pos x)^p)%positive. +Proof. intros. now apply (inj_pow x (Z.pos p)). Qed. + +Lemma inj_compare x y : 0 < x -> 0 < y -> + (x ?= y) = (Z.to_pos x ?= Z.to_pos y)%positive. +Proof. destruct x; easy || now destruct y. Qed. + +Lemma inj_leb x y : 0 < x -> 0 < y -> + (x <=? y) = (Z.to_pos x <=? Z.to_pos y)%positive. +Proof. destruct x; easy || now destruct y. Qed. + +Lemma inj_ltb x y : 0 < x -> 0 < y -> + (x 0 < y -> + (x =? y) = (Z.to_pos x =? Z.to_pos y)%positive. +Proof. destruct x; easy || now destruct y. Qed. + +Lemma inj_max x y : + Z.to_pos (Z.max x y) = Pos.max (Z.to_pos x) (Z.to_pos y). +Proof. + destruct x; simpl; try rewrite Pos.max_1_l. + - now destruct y. + - destruct y; simpl; now rewrite ?Pos.max_1_r, <- ?Pos2Z.inj_max. + - destruct y; simpl; rewrite ?Pos.max_1_r; trivial. + apply to_pos_nonpos. now apply Z.max_lub. +Qed. + +Lemma inj_min x y : + Z.to_pos (Z.min x y) = Pos.min (Z.to_pos x) (Z.to_pos y). +Proof. + destruct x; simpl; try rewrite Pos.min_1_l. + - now destruct y. + - destruct y; simpl; now rewrite ?Pos.min_1_r, <- ?Pos2Z.inj_min. + - destruct y; simpl; rewrite ?Pos.min_1_r; trivial. + apply to_pos_nonpos. apply Z.min_le_iff. now left. +Qed. + +Lemma inj_sqrt x : Z.to_pos (Z.sqrt x) = Pos.sqrt (Z.to_pos x). +Proof. now destruct x. Qed. + +Lemma inj_gcd x y : 0 < x -> 0 < y -> + Z.to_pos (Z.gcd x y) = Pos.gcd (Z.to_pos x) (Z.to_pos y). +Proof. destruct x; easy || now destruct y. Qed. + +End Z2Pos. (** Compatibility Notations *) -Notation Zdouble_plus_one := Z.succ_double (only parsing). -Notation Zdouble_minus_one := Z.pred_double (only parsing). -Notation Zdouble := Z.double (only parsing). -Notation ZPminus := Z.pos_sub (only parsing). -Notation Zsucc' := Z.succ (only parsing). -Notation Zpred' := Z.pred (only parsing). -Notation Zplus' := Z.add (only parsing). -Notation Zplus := Z.add (only parsing). (* Slightly incompatible *) -Notation Zopp := Z.opp (only parsing). -Notation Zsucc := Z.succ (only parsing). -Notation Zpred := Z.pred (only parsing). -Notation Zminus := Z.sub (only parsing). -Notation Zmult := Z.mul (only parsing). -Notation Zcompare := Z.compare (only parsing). -Notation Zsgn := Z.sgn (only parsing). -Notation Zle := Z.le (only parsing). -Notation Zge := Z.ge (only parsing). -Notation Zlt := Z.lt (only parsing). -Notation Zgt := Z.gt (only parsing). -Notation Zmax := Z.max (only parsing). -Notation Zmin := Z.min (only parsing). -Notation Zabs := Z.abs (only parsing). -Notation Zabs_nat := Z.abs_nat (only parsing). -Notation Zabs_N := Z.abs_N (only parsing). -Notation Z_of_nat := Z.of_nat (only parsing). -Notation Z_of_N := Z.of_N (only parsing). - -Notation Zind := Z.peano_ind (only parsing). -Notation Zopp_0 := Z.opp_0 (only parsing). -Notation Zopp_neg := Z.opp_Zneg (only parsing). -Notation Zopp_involutive := Z.opp_involutive (only parsing). -Notation Zopp_inj := Z.opp_inj (only parsing). -Notation Zplus_0_l := Z.add_0_l (only parsing). -Notation Zplus_0_r := Z.add_0_r (only parsing). -Notation Zplus_comm := Z.add_comm (only parsing). -Notation Zopp_plus_distr := Z.opp_add_distr (only parsing). -Notation Zopp_succ := Z.opp_succ (only parsing). -Notation Zplus_opp_r := Z.add_opp_diag_r (only parsing). -Notation Zplus_opp_l := Z.add_opp_diag_l (only parsing). -Notation Zplus_assoc := Z.add_assoc (only parsing). -Notation Zplus_permute := Z.add_shuffle3 (only parsing). -Notation Zplus_reg_l := Z.add_reg_l (only parsing). -Notation Zplus_succ_l := Z.add_succ_l (only parsing). -Notation Zplus_succ_comm := Z.add_succ_comm (only parsing). -Notation Zsucc_discr := Z.neq_succ_diag_r (only parsing). -Notation Zsucc_inj := Z.succ_inj (only parsing). -Notation Zsucc'_inj := Z.succ_inj (only parsing). -Notation Zsucc'_pred' := Z.succ_pred (only parsing). -Notation Zpred'_succ' := Z.pred_succ (only parsing). -Notation Zpred'_inj := Z.pred_inj (only parsing). -Notation Zsucc'_discr := Z.neq_succ_diag_r (only parsing). -Notation Zminus_0_r := Z.sub_0_r (only parsing). -Notation Zminus_diag := Z.sub_diag (only parsing). -Notation Zminus_plus_distr := Z.sub_add_distr (only parsing). -Notation Zminus_succ_r := Z.sub_succ_r (only parsing). -Notation Zminus_plus := Z.add_simpl_l (only parsing). -Notation Zmult_0_l := Z.mul_0_l (only parsing). -Notation Zmult_0_r := Z.mul_0_r (only parsing). -Notation Zmult_1_l := Z.mul_1_l (only parsing). -Notation Zmult_1_r := Z.mul_1_r (only parsing). -Notation Zmult_comm := Z.mul_comm (only parsing). -Notation Zmult_assoc := Z.mul_assoc (only parsing). -Notation Zmult_permute := Z.mul_shuffle3 (only parsing). -Notation Zmult_1_inversion_l := Z.mul_eq_1 (only parsing). -Notation Zdouble_mult := Z.double_spec (only parsing). -Notation Zdouble_plus_one_mult := Z.succ_double_spec (only parsing). -Notation Zopp_mult_distr_l_reverse := Z.mul_opp_l (only parsing). -Notation Zmult_opp_opp := Z.mul_opp_opp (only parsing). -Notation Zmult_opp_comm := Z.mul_opp_comm (only parsing). -Notation Zopp_eq_mult_neg_1 := Z.opp_eq_mul_m1 (only parsing). -Notation Zmult_plus_distr_r := Z.mul_add_distr_l (only parsing). -Notation Zmult_plus_distr_l := Z.mul_add_distr_r (only parsing). -Notation Zmult_minus_distr_r := Z.mul_sub_distr_r (only parsing). -Notation Zmult_reg_l := Z.mul_reg_l (only parsing). -Notation Zmult_reg_r := Z.mul_reg_r (only parsing). -Notation Zmult_succ_l := Z.mul_succ_l (only parsing). -Notation Zmult_succ_r := Z.mul_succ_r (only parsing). -Notation Zpos_xI := Z.pos_xI (only parsing). -Notation Zpos_xO := Z.pos_xO (only parsing). -Notation Zneg_xI := Z.neg_xI (only parsing). -Notation Zneg_xO := Z.neg_xO (only parsing). +Notation Zdouble_plus_one := Z.succ_double (compat "8.3"). +Notation Zdouble_minus_one := Z.pred_double (compat "8.3"). +Notation Zdouble := Z.double (compat "8.3"). +Notation ZPminus := Z.pos_sub (compat "8.3"). +Notation Zsucc' := Z.succ (compat "8.3"). +Notation Zpred' := Z.pred (compat "8.3"). +Notation Zplus' := Z.add (compat "8.3"). +Notation Zplus := Z.add (compat "8.3"). (* Slightly incompatible *) +Notation Zopp := Z.opp (compat "8.3"). +Notation Zsucc := Z.succ (compat "8.3"). +Notation Zpred := Z.pred (compat "8.3"). +Notation Zminus := Z.sub (compat "8.3"). +Notation Zmult := Z.mul (compat "8.3"). +Notation Zcompare := Z.compare (compat "8.3"). +Notation Zsgn := Z.sgn (compat "8.3"). +Notation Zle := Z.le (compat "8.3"). +Notation Zge := Z.ge (compat "8.3"). +Notation Zlt := Z.lt (compat "8.3"). +Notation Zgt := Z.gt (compat "8.3"). +Notation Zmax := Z.max (compat "8.3"). +Notation Zmin := Z.min (compat "8.3"). +Notation Zabs := Z.abs (compat "8.3"). +Notation Zabs_nat := Z.abs_nat (compat "8.3"). +Notation Zabs_N := Z.abs_N (compat "8.3"). +Notation Z_of_nat := Z.of_nat (compat "8.3"). +Notation Z_of_N := Z.of_N (compat "8.3"). + +Notation Zind := Z.peano_ind (compat "8.3"). +Notation Zopp_0 := Z.opp_0 (compat "8.3"). +Notation Zopp_involutive := Z.opp_involutive (compat "8.3"). +Notation Zopp_inj := Z.opp_inj (compat "8.3"). +Notation Zplus_0_l := Z.add_0_l (compat "8.3"). +Notation Zplus_0_r := Z.add_0_r (compat "8.3"). +Notation Zplus_comm := Z.add_comm (compat "8.3"). +Notation Zopp_plus_distr := Z.opp_add_distr (compat "8.3"). +Notation Zopp_succ := Z.opp_succ (compat "8.3"). +Notation Zplus_opp_r := Z.add_opp_diag_r (compat "8.3"). +Notation Zplus_opp_l := Z.add_opp_diag_l (compat "8.3"). +Notation Zplus_assoc := Z.add_assoc (compat "8.3"). +Notation Zplus_permute := Z.add_shuffle3 (compat "8.3"). +Notation Zplus_reg_l := Z.add_reg_l (compat "8.3"). +Notation Zplus_succ_l := Z.add_succ_l (compat "8.3"). +Notation Zplus_succ_comm := Z.add_succ_comm (compat "8.3"). +Notation Zsucc_discr := Z.neq_succ_diag_r (compat "8.3"). +Notation Zsucc_inj := Z.succ_inj (compat "8.3"). +Notation Zsucc'_inj := Z.succ_inj (compat "8.3"). +Notation Zsucc'_pred' := Z.succ_pred (compat "8.3"). +Notation Zpred'_succ' := Z.pred_succ (compat "8.3"). +Notation Zpred'_inj := Z.pred_inj (compat "8.3"). +Notation Zsucc'_discr := Z.neq_succ_diag_r (compat "8.3"). +Notation Zminus_0_r := Z.sub_0_r (compat "8.3"). +Notation Zminus_diag := Z.sub_diag (compat "8.3"). +Notation Zminus_plus_distr := Z.sub_add_distr (compat "8.3"). +Notation Zminus_succ_r := Z.sub_succ_r (compat "8.3"). +Notation Zminus_plus := Z.add_simpl_l (compat "8.3"). +Notation Zmult_0_l := Z.mul_0_l (compat "8.3"). +Notation Zmult_0_r := Z.mul_0_r (compat "8.3"). +Notation Zmult_1_l := Z.mul_1_l (compat "8.3"). +Notation Zmult_1_r := Z.mul_1_r (compat "8.3"). +Notation Zmult_comm := Z.mul_comm (compat "8.3"). +Notation Zmult_assoc := Z.mul_assoc (compat "8.3"). +Notation Zmult_permute := Z.mul_shuffle3 (compat "8.3"). +Notation Zmult_1_inversion_l := Z.mul_eq_1 (compat "8.3"). +Notation Zdouble_mult := Z.double_spec (compat "8.3"). +Notation Zdouble_plus_one_mult := Z.succ_double_spec (compat "8.3"). +Notation Zopp_mult_distr_l_reverse := Z.mul_opp_l (compat "8.3"). +Notation Zmult_opp_opp := Z.mul_opp_opp (compat "8.3"). +Notation Zmult_opp_comm := Z.mul_opp_comm (compat "8.3"). +Notation Zopp_eq_mult_neg_1 := Z.opp_eq_mul_m1 (compat "8.3"). +Notation Zmult_plus_distr_r := Z.mul_add_distr_l (compat "8.3"). +Notation Zmult_plus_distr_l := Z.mul_add_distr_r (compat "8.3"). +Notation Zmult_minus_distr_r := Z.mul_sub_distr_r (compat "8.3"). +Notation Zmult_reg_l := Z.mul_reg_l (compat "8.3"). +Notation Zmult_reg_r := Z.mul_reg_r (compat "8.3"). +Notation Zmult_succ_l := Z.mul_succ_l (compat "8.3"). +Notation Zmult_succ_r := Z.mul_succ_r (compat "8.3"). + +Notation Zpos_xI := Pos2Z.inj_xI (compat "8.3"). +Notation Zpos_xO := Pos2Z.inj_xO (compat "8.3"). +Notation Zneg_xI := Pos2Z.neg_xI (compat "8.3"). +Notation Zneg_xO := Pos2Z.neg_xO (compat "8.3"). +Notation Zopp_neg := Pos2Z.opp_neg (compat "8.3"). +Notation Zpos_succ_morphism := Pos2Z.inj_succ (compat "8.3"). +Notation Zpos_mult_morphism := Pos2Z.inj_mul (compat "8.3"). +Notation Zpos_minus_morphism := Pos2Z.inj_sub (compat "8.3"). +Notation Zpos_eq_rev := Pos2Z.inj (compat "8.3"). +Notation Zpos_plus_distr := Pos2Z.inj_add (compat "8.3"). +Notation Zneg_plus_distr := Pos2Z.add_neg_neg (compat "8.3"). Notation Z := Z (only parsing). Notation Z_rect := Z_rect (only parsing). @@ -1482,8 +1669,6 @@ Lemma Zplus_0_r_reverse : forall n, n = n + 0. Proof (SYM1 Z.add_0_r). Lemma Zplus_eq_compat : forall n m p q, n=m -> p=q -> n+p=m+q. Proof (f_equal2 Z.add). -Lemma Zpos_succ_morphism : forall p, Zpos (Psucc p) = Zsucc (Zpos p). -Proof (SYM1 Z.succ_Zpos). Lemma Zsucc_pred : forall n, n = Z.succ (Z.pred n). Proof (SYM1 Z.succ_pred). Lemma Zpred_succ : forall n, n = Z.pred (Z.succ n). @@ -1506,15 +1691,10 @@ Lemma Zminus_plus_simpl_l_reverse : forall n m p, n - m = p + n - (p + m). Proof (SYM3 Zminus_plus_simpl_l). Lemma Zminus_plus_simpl_r : forall n m p, n + p - (m + p) = n - m. Proof (fun n m p => Z.add_add_simpl_r_r n p m). -Lemma Zpos_minus_morphism : forall a b, - Pcompare a b Eq = Lt -> Zpos (b - a) = Zpos b - Zpos a. -Proof. intros. now rewrite Z.sub_Zpos. Qed. Lemma Zeq_minus : forall n m, n = m -> n - m = 0. Proof (fun n m => proj2 (Z.sub_move_0_r n m)). Lemma Zminus_eq : forall n m, n - m = 0 -> n = m. Proof (fun n m => proj1 (Z.sub_move_0_r n m)). -Lemma Zpos_mult_morphism : forall p q, Zpos (p * q) = Zpos p * Zpos q. -Proof (SYM2 Z.mul_Zpos). Lemma Zmult_0_r_reverse : forall n, 0 = n * 0. Proof (SYM1 Z.mul_0_r). Lemma Zmult_assoc_reverse : forall n m p, n * m * p = n * (m * p). @@ -1529,20 +1709,14 @@ Lemma Zopp_mult_distr_r : forall n m, - (n * m) = n * - m. Proof (SYM2 Z.mul_opp_r). Lemma Zmult_minus_distr_l : forall n m p, p * (n - m) = p * n - p * m. Proof (fun n m p => Z.mul_sub_distr_l p n m). -Lemma Zmult_succ_r_reverse : forall n m, n * m + n = n * Zsucc m. +Lemma Zmult_succ_r_reverse : forall n m, n * m + n = n * Z.succ m. Proof (SYM2 Z.mul_succ_r). -Lemma Zmult_succ_l_reverse : forall n m, n * m + m = Zsucc n * m. +Lemma Zmult_succ_l_reverse : forall n m, n * m + m = Z.succ n * m. Proof (SYM2 Z.mul_succ_l). -Lemma Zpos_eq : forall p q, p = q -> Zpos p = Zpos q. -Proof (fun p q => proj2 (Z.inj_Zpos p q)). -Lemma Zpos_eq_rev : forall p q, Zpos p = Zpos q -> p = q. -Proof (fun p q => proj1 (Z.inj_Zpos p q)). -Lemma Zpos_eq_iff : forall p q, p = q <-> Zpos p = Zpos q. -Proof (fun p q => iff_sym (Z.inj_Zpos p q)). -Lemma Zpos_plus_distr : forall p q, Zpos (p + q) = Zpos p + Zpos q. -Proof (SYM2 Z.add_Zpos). -Lemma Zneg_plus_distr : forall p q, Zneg (p + q) = Zneg p + Zneg q. -Proof (SYM2 Z.add_Zneg). +Lemma Zpos_eq : forall p q, p = q -> Z.pos p = Z.pos q. +Proof. congruence. Qed. +Lemma Zpos_eq_iff : forall p q, p = q <-> Z.pos p = Z.pos q. +Proof (fun p q => iff_sym (Pos2Z.inj_iff p q)). Hint Immediate Zsucc_pred: zarith. diff --git a/theories/ZArith/BinIntDef.v b/theories/ZArith/BinIntDef.v index d96d20fb..958ce2ef 100644 --- a/theories/ZArith/BinIntDef.v +++ b/theories/ZArith/BinIntDef.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 - | Zpos p => Zpos p~0 - | Zneg p => Zneg p~0 + | pos p => pos p~0 + | neg p => neg p~0 end. Definition succ_double x := match x with | 0 => 1 - | Zpos p => Zpos p~1 - | Zneg p => Zneg (Pos.pred_double p) + | pos p => pos p~1 + | neg p => neg (Pos.pred_double p) end. Definition pred_double x := match x with | 0 => -1 - | Zneg p => Zneg p~1 - | Zpos p => Zpos (Pos.pred_double p) + | neg p => neg p~1 + | pos p => pos (Pos.pred_double p) end. (** ** Subtraction of positive into Z *) @@ -57,12 +62,12 @@ Fixpoint pos_sub (x y:positive) {struct y} : Z := match x, y with | p~1, q~1 => double (pos_sub p q) | p~1, q~0 => succ_double (pos_sub p q) - | p~1, 1 => Zpos p~0 + | p~1, 1 => pos p~0 | p~0, q~1 => pred_double (pos_sub p q) | p~0, q~0 => double (pos_sub p q) - | p~0, 1 => Zpos (Pos.pred_double p) - | 1, q~1 => Zneg q~0 - | 1, q~0 => Zneg (Pos.pred_double q) + | p~0, 1 => pos (Pos.pred_double p) + | 1, q~1 => neg q~0 + | 1, q~0 => neg (Pos.pred_double q) | 1, 1 => Z0 end%positive. @@ -72,10 +77,10 @@ Definition add x y := match x, y with | 0, y => y | x, 0 => x - | Zpos x', Zpos y' => Zpos (x' + y') - | Zpos x', Zneg y' => pos_sub x' y' - | Zneg x', Zpos y' => pos_sub y' x' - | Zneg x', Zneg y' => Zneg (x' + y') + | pos x', pos y' => pos (x' + y') + | pos x', neg y' => pos_sub x' y' + | neg x', pos y' => pos_sub y' x' + | neg x', neg y' => neg (x' + y') end. Infix "+" := add : Z_scope. @@ -85,8 +90,8 @@ Infix "+" := add : Z_scope. Definition opp x := match x with | 0 => 0 - | Zpos x => Zneg x - | Zneg x => Zpos x + | pos x => neg x + | neg x => pos x end. Notation "- x" := (opp x) : Z_scope. @@ -111,10 +116,10 @@ Definition mul x y := match x, y with | 0, _ => 0 | _, 0 => 0 - | Zpos x', Zpos y' => Zpos (x' * y') - | Zpos x', Zneg y' => Zneg (x' * y') - | Zneg x', Zpos y' => Zneg (x' * y') - | Zneg x', Zneg y' => Zpos (x' * y') + | pos x', pos y' => pos (x' * y') + | pos x', neg y' => neg (x' * y') + | neg x', pos y' => neg (x' * y') + | neg x', neg y' => pos (x' * y') end. Infix "*" := mul : Z_scope. @@ -125,9 +130,9 @@ Definition pow_pos (z:Z) (n:positive) := Pos.iter n (mul z) 1. Definition pow x y := match y with - | Zpos p => pow_pos x p + | pos p => pow_pos x p | 0 => 1 - | Zneg _ => 0 + | neg _ => 0 end. Infix "^" := pow : Z_scope. @@ -137,8 +142,8 @@ Infix "^" := pow : Z_scope. Definition square x := match x with | 0 => 0 - | Zpos p => Zpos (Pos.square p) - | Zneg p => Zpos (Pos.square p) + | pos p => pos (Pos.square p) + | neg p => pos (Pos.square p) end. (** ** Comparison *) @@ -146,14 +151,14 @@ Definition square x := Definition compare x y := match x, y with | 0, 0 => Eq - | 0, Zpos y' => Lt - | 0, Zneg y' => Gt - | Zpos x', 0 => Gt - | Zpos x', Zpos y' => (x' ?= y')%positive - | Zpos x', Zneg y' => Gt - | Zneg x', 0 => Lt - | Zneg x', Zpos y' => Lt - | Zneg x', Zneg y' => CompOpp ((x' ?= y')%positive) + | 0, pos y' => Lt + | 0, neg y' => Gt + | pos x', 0 => Gt + | pos x', pos y' => (x' ?= y')%positive + | pos x', neg y' => Gt + | neg x', 0 => Lt + | neg x', pos y' => Lt + | neg x', neg y' => CompOpp ((x' ?= y')%positive) end. Infix "?=" := compare (at level 70, no associativity) : Z_scope. @@ -163,8 +168,8 @@ Infix "?=" := compare (at level 70, no associativity) : Z_scope. Definition sgn z := match z with | 0 => 0 - | Zpos p => 1 - | Zneg p => -1 + | pos p => 1 + | neg p => -1 end. (** Boolean equality and comparisons *) @@ -183,7 +188,7 @@ Definition ltb x y := (** Nota: [geb] and [gtb] are provided for compatibility, but [leb] and [ltb] should rather be used instead, since - more results we be available on them. *) + more results will be available on them. *) Definition geb x y := match x ?= y with @@ -197,15 +202,11 @@ Definition gtb x y := | _ => false end. -(** Nota: this [eqb] is not convertible with the generated [Z_beq], - since the underlying [Pos.eqb] differs from [positive_beq] - (cf BinIntDef). *) - Fixpoint eqb x y := match x, y with | 0, 0 => true - | Zpos p, Zpos q => Pos.eqb p q - | Zneg p, Zneg q => Pos.eqb p q + | pos p, pos q => Pos.eqb p q + | neg p, neg q => Pos.eqb p q | _, _ => false end. @@ -234,8 +235,8 @@ Definition min n m := Definition abs z := match z with | 0 => 0 - | Zpos p => Zpos p - | Zneg p => Zpos p + | pos p => pos p + | neg p => pos p end. (** ** Conversions *) @@ -245,24 +246,24 @@ Definition abs z := Definition abs_nat (z:Z) : nat := match z with | 0 => 0%nat - | Zpos p => Pos.to_nat p - | Zneg p => Pos.to_nat p + | pos p => Pos.to_nat p + | neg p => Pos.to_nat p end. (** From [Z] to [N] via absolute value *) Definition abs_N (z:Z) : N := match z with - | Z0 => 0%N - | Zpos p => Npos p - | Zneg p => Npos p + | 0 => 0%N + | pos p => N.pos p + | neg p => N.pos p end. (** From [Z] to [nat] by rounding negative numbers to 0 *) Definition to_nat (z:Z) : nat := match z with - | Zpos p => Pos.to_nat p + | pos p => Pos.to_nat p | _ => O end. @@ -270,7 +271,7 @@ Definition to_nat (z:Z) : nat := Definition to_N (z:Z) : N := match z with - | Zpos p => Npos p + | pos p => N.pos p | _ => 0%N end. @@ -279,15 +280,23 @@ Definition to_N (z:Z) : N := Definition of_nat (n:nat) : Z := match n with | O => 0 - | S n => Zpos (Pos.of_succ_nat n) + | S n => pos (Pos.of_succ_nat n) end. (** From [N] to [Z] *) Definition of_N (n:N) : Z := match n with - | N0 => 0 - | Npos p => Zpos p + | 0%N => 0 + | N.pos p => pos p + end. + +(** From [Z] to [positive] by rounding nonpositive numbers to 1 *) + +Definition to_pos (z:Z) : positive := + match z with + | pos p => p + | _ => 1%positive end. (** ** Iteration of a function @@ -297,7 +306,7 @@ Definition of_N (n:N) : Z := Definition iter (n:Z) {A} (f:A -> A) (x:A) := match n with - | Zpos p => Pos.iter p f x + | pos p => Pos.iter p f x | _ => x end. @@ -352,17 +361,17 @@ Definition div_eucl (a b:Z) : Z * Z := match a, b with | 0, _ => (0, 0) | _, 0 => (0, 0) - | Zpos a', Zpos _ => pos_div_eucl a' b - | Zneg a', Zpos _ => + | pos a', pos _ => pos_div_eucl a' b + | neg a', pos _ => let (q, r) := pos_div_eucl a' b in match r with | 0 => (- q, 0) | _ => (- (q + 1), b - r) end - | Zneg a', Zneg b' => - let (q, r) := pos_div_eucl a' (Zpos b') in (q, - r) - | Zpos a', Zneg b' => - let (q, r) := pos_div_eucl a' (Zpos b') in + | neg a', neg b' => + let (q, r) := pos_div_eucl a' (pos b') in (q, - r) + | pos a', neg b' => + let (q, r) := pos_div_eucl a' (pos b') in match r with | 0 => (- q, 0) | _ => (- (q + 1), b + r) @@ -396,14 +405,14 @@ Definition quotrem (a b:Z) : Z * Z := match a, b with | 0, _ => (0, 0) | _, 0 => (0, a) - | Zpos a, Zpos b => - let (q, r) := N.pos_div_eucl a (Npos b) in (of_N q, of_N r) - | Zneg a, Zpos b => - let (q, r) := N.pos_div_eucl a (Npos b) in (-of_N q, - of_N r) - | Zpos a, Zneg b => - let (q, r) := N.pos_div_eucl a (Npos b) in (-of_N q, of_N r) - | Zneg a, Zneg b => - let (q, r) := N.pos_div_eucl a (Npos b) in (of_N q, - of_N r) + | pos a, pos b => + let (q, r) := N.pos_div_eucl a (N.pos b) in (of_N q, of_N r) + | neg a, pos b => + let (q, r) := N.pos_div_eucl a (N.pos b) in (-of_N q, - of_N r) + | pos a, neg b => + let (q, r) := N.pos_div_eucl a (N.pos b) in (-of_N q, of_N r) + | neg a, neg b => + let (q, r) := N.pos_div_eucl a (N.pos b) in (of_N q, - of_N r) end. Definition quot a b := fst (quotrem a b). @@ -418,16 +427,16 @@ Infix "÷" := quot (at level 40, left associativity) : Z_scope. Definition even z := match z with | 0 => true - | Zpos (xO _) => true - | Zneg (xO _) => true + | pos (xO _) => true + | neg (xO _) => true | _ => false end. Definition odd z := match z with | 0 => false - | Zpos (xO _) => false - | Zneg (xO _) => false + | pos (xO _) => false + | neg (xO _) => false | _ => true end. @@ -441,9 +450,9 @@ Definition odd z := Definition div2 z := match z with | 0 => 0 - | Zpos 1 => 0 - | Zpos p => Zpos (Pos.div2 p) - | Zneg p => Zneg (Pos.div2_up p) + | pos 1 => 0 + | pos p => pos (Pos.div2 p) + | neg p => neg (Pos.div2_up p) end. (** [quot2] performs rounding toward zero, it is hence a particular @@ -453,21 +462,21 @@ Definition div2 z := Definition quot2 (z:Z) := match z with | 0 => 0 - | Zpos 1 => 0 - | Zpos p => Zpos (Pos.div2 p) - | Zneg 1 => 0 - | Zneg p => Zneg (Pos.div2 p) + | pos 1 => 0 + | pos p => pos (Pos.div2 p) + | neg 1 => 0 + | neg p => neg (Pos.div2 p) end. -(** NB: [Z.quot2] used to be named [Zdiv2] in Coq <= 8.3 *) +(** NB: [Z.quot2] used to be named [Z.div2] in Coq <= 8.3 *) (** * Base-2 logarithm *) Definition log2 z := match z with - | Zpos (p~1) => Zpos (Pos.size p) - | Zpos (p~0) => Zpos (Pos.size p) + | pos (p~1) => pos (Pos.size p) + | pos (p~0) => pos (Pos.size p) | _ => 0 end. @@ -477,17 +486,17 @@ Definition log2 z := Definition sqrtrem n := match n with | 0 => (0, 0) - | Zpos p => + | pos p => match Pos.sqrtrem p with - | (s, IsPos r) => (Zpos s, Zpos r) - | (s, _) => (Zpos s, 0) + | (s, IsPos r) => (pos s, pos r) + | (s, _) => (pos s, 0) end - | Zneg _ => (0,0) + | neg _ => (0,0) end. Definition sqrt n := match n with - | Zpos p => Zpos (Pos.sqrt p) + | pos p => pos (Pos.sqrt p) | _ => 0 end. @@ -498,10 +507,10 @@ Definition gcd a b := match a,b with | 0, _ => abs b | _, 0 => abs a - | Zpos a, Zpos b => Zpos (Pos.gcd a b) - | Zpos a, Zneg b => Zpos (Pos.gcd a b) - | Zneg a, Zpos b => Zpos (Pos.gcd a b) - | Zneg a, Zneg b => Zpos (Pos.gcd a b) + | pos a, pos b => pos (Pos.gcd a b) + | pos a, neg b => pos (Pos.gcd a b) + | neg a, pos b => pos (Pos.gcd a b) + | neg a, neg b => pos (Pos.gcd a b) end. (** A generalized gcd, also computing division of a and b by gcd. *) @@ -510,14 +519,14 @@ Definition ggcd a b : Z*(Z*Z) := match a,b with | 0, _ => (abs b,(0, sgn b)) | _, 0 => (abs a,(sgn a, 0)) - | Zpos a, Zpos b => - let '(g,(aa,bb)) := Pos.ggcd a b in (Zpos g, (Zpos aa, Zpos bb)) - | Zpos a, Zneg b => - let '(g,(aa,bb)) := Pos.ggcd a b in (Zpos g, (Zpos aa, Zneg bb)) - | Zneg a, Zpos b => - let '(g,(aa,bb)) := Pos.ggcd a b in (Zpos g, (Zneg aa, Zpos bb)) - | Zneg a, Zneg b => - let '(g,(aa,bb)) := Pos.ggcd a b in (Zpos g, (Zneg aa, Zneg bb)) + | pos a, pos b => + let '(g,(aa,bb)) := Pos.ggcd a b in (pos g, (pos aa, pos bb)) + | pos a, neg b => + let '(g,(aa,bb)) := Pos.ggcd a b in (pos g, (pos aa, neg bb)) + | neg a, pos b => + let '(g,(aa,bb)) := Pos.ggcd a b in (pos g, (neg aa, pos bb)) + | neg a, neg b => + let '(g,(aa,bb)) := Pos.ggcd a b in (pos g, (neg aa, neg bb)) end. @@ -536,13 +545,13 @@ Definition ggcd a b : Z*(Z*Z) := Definition testbit a n := match n with | 0 => odd a - | Zpos p => + | pos p => match a with | 0 => false - | Zpos a => Pos.testbit a (Npos p) - | Zneg a => negb (N.testbit (Pos.pred_N a) (Npos p)) + | pos a => Pos.testbit a (N.pos p) + | neg a => negb (N.testbit (Pos.pred_N a) (N.pos p)) end - | Zneg _ => false + | neg _ => false end. (** Shifts @@ -559,8 +568,8 @@ Definition testbit a n := Definition shiftl a n := match n with | 0 => a - | Zpos p => Pos.iter p (mul 2) a - | Zneg p => Pos.iter p div2 a + | pos p => Pos.iter p (mul 2) a + | neg p => Pos.iter p div2 a end. Definition shiftr a n := shiftl a (-n). @@ -571,40 +580,40 @@ Definition lor a b := match a, b with | 0, _ => b | _, 0 => a - | Zpos a, Zpos b => Zpos (Pos.lor a b) - | Zneg a, Zpos b => Zneg (N.succ_pos (N.ldiff (Pos.pred_N a) (Npos b))) - | Zpos a, Zneg b => Zneg (N.succ_pos (N.ldiff (Pos.pred_N b) (Npos a))) - | Zneg a, Zneg b => Zneg (N.succ_pos (N.land (Pos.pred_N a) (Pos.pred_N b))) + | pos a, pos b => pos (Pos.lor a b) + | neg a, pos b => neg (N.succ_pos (N.ldiff (Pos.pred_N a) (N.pos b))) + | pos a, neg b => neg (N.succ_pos (N.ldiff (Pos.pred_N b) (N.pos a))) + | neg a, neg b => neg (N.succ_pos (N.land (Pos.pred_N a) (Pos.pred_N b))) end. Definition land a b := match a, b with | 0, _ => 0 | _, 0 => 0 - | Zpos a, Zpos b => of_N (Pos.land a b) - | Zneg a, Zpos b => of_N (N.ldiff (Npos b) (Pos.pred_N a)) - | Zpos a, Zneg b => of_N (N.ldiff (Npos a) (Pos.pred_N b)) - | Zneg a, Zneg b => Zneg (N.succ_pos (N.lor (Pos.pred_N a) (Pos.pred_N b))) + | pos a, pos b => of_N (Pos.land a b) + | neg a, pos b => of_N (N.ldiff (N.pos b) (Pos.pred_N a)) + | pos a, neg b => of_N (N.ldiff (N.pos a) (Pos.pred_N b)) + | neg a, neg b => neg (N.succ_pos (N.lor (Pos.pred_N a) (Pos.pred_N b))) end. Definition ldiff a b := match a, b with | 0, _ => 0 | _, 0 => a - | Zpos a, Zpos b => of_N (Pos.ldiff a b) - | Zneg a, Zpos b => Zneg (N.succ_pos (N.lor (Pos.pred_N a) (Npos b))) - | Zpos a, Zneg b => of_N (N.land (Npos a) (Pos.pred_N b)) - | Zneg a, Zneg b => of_N (N.ldiff (Pos.pred_N b) (Pos.pred_N a)) + | pos a, pos b => of_N (Pos.ldiff a b) + | neg a, pos b => neg (N.succ_pos (N.lor (Pos.pred_N a) (N.pos b))) + | pos a, neg b => of_N (N.land (N.pos a) (Pos.pred_N b)) + | neg a, neg b => of_N (N.ldiff (Pos.pred_N b) (Pos.pred_N a)) end. Definition lxor a b := match a, b with | 0, _ => b | _, 0 => a - | Zpos a, Zpos b => of_N (Pos.lxor a b) - | Zneg a, Zpos b => Zneg (N.succ_pos (N.lxor (Pos.pred_N a) (Npos b))) - | Zpos a, Zneg b => Zneg (N.succ_pos (N.lxor (Npos a) (Pos.pred_N b))) - | Zneg a, Zneg b => of_N (N.lxor (Pos.pred_N a) (Pos.pred_N b)) + | pos a, pos b => of_N (Pos.lxor a b) + | neg a, pos b => neg (N.succ_pos (N.lxor (Pos.pred_N a) (N.pos b))) + | pos a, neg b => neg (N.succ_pos (N.lxor (N.pos a) (Pos.pred_N b))) + | neg a, neg b => of_N (N.lxor (Pos.pred_N a) (Pos.pred_N b)) end. End Z. \ No newline at end of file diff --git a/theories/ZArith/Int.v b/theories/ZArith/Int.v index 7c840c56..384c046f 100644 --- a/theories/ZArith/Int.v +++ b/theories/ZArith/Int.v @@ -250,7 +250,7 @@ Module MoreInt (Import I:Int). | EZplus e1 e2 => ((ez2z e1)+(ez2z e2))%Z | EZminus e1 e2 => ((ez2z e1)-(ez2z e2))%Z | EZmult e1 e2 => ((ez2z e1)*(ez2z e2))%Z - | EZmax e1 e2 => Zmax (ez2z e1) (ez2z e2) + | EZmax e1 e2 => Z.max (ez2z e1) (ez2z e2) | EZopp e => (-(ez2z e))%Z | EZofI e => i2z (ei2i e) | EZraw z => z @@ -367,14 +367,14 @@ Module Z_as_Int <: Int. Definition _1 := 1. Definition _2 := 2. Definition _3 := 3. - Definition plus := Zplus. - Definition opp := Zopp. - Definition minus := Zminus. - Definition mult := Zmult. - Definition max := Zmax. + Definition plus := Z.add. + Definition opp := Z.opp. + Definition minus := Z.sub. + Definition mult := Z.mul. + Definition max := Z.max. Definition gt_le_dec := Z_gt_le_dec. Definition ge_lt_dec := Z_ge_lt_dec. - Definition eq_dec := Z_eq_dec. + Definition eq_dec := Z.eq_dec. Definition i2z : int -> Z := fun n => n. Lemma i2z_eq : forall n p, i2z n=i2z p -> n = p. Proof. auto. Qed. Lemma i2z_0 : i2z _0 = 0. Proof. auto. Qed. @@ -385,5 +385,5 @@ Module Z_as_Int <: Int. Lemma i2z_opp n : i2z (- n) = - i2z n. Proof. auto. Qed. Lemma i2z_minus n p : i2z (n - p) = i2z n - i2z p. Proof. auto. Qed. Lemma i2z_mult n p : i2z (n * p) = i2z n * i2z p. Proof. auto. Qed. - Lemma i2z_max n p : i2z (max n p) = Zmax (i2z n) (i2z p). Proof. auto. Qed. + Lemma i2z_max n p : i2z (max n p) = Z.max (i2z n) (i2z p). Proof. auto. Qed. End Z_as_Int. diff --git a/theories/ZArith/Wf_Z.v b/theories/ZArith/Wf_Z.v index bcccc126..3935e124 100644 --- a/theories/ZArith/Wf_Z.v +++ b/theories/ZArith/Wf_Z.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* {n : nat | x = Z_of_nat n}. + 0 <= x -> {n : nat | x = Z.of_nat n}. Proof. intros H. exists (Z.to_nat x). symmetry. now apply Z2Nat.id. Qed. @@ -53,7 +53,7 @@ Qed. Lemma Z_of_nat_set : forall P:Z -> Set, - (forall n:nat, P (Z_of_nat n)) -> forall x:Z, 0 <= x -> P x. + (forall n:nat, P (Z.of_nat n)) -> forall x:Z, 0 <= x -> P x. Proof. intros P H x Hx. now destruct (Z_of_nat_complete_inf x Hx) as (n,->). Qed. @@ -129,7 +129,7 @@ Section Efficient_Rec. - now destruct Hz. Qed. - (** A more general induction principle on non-negative numbers using [Zlt]. *) + (** A more general induction principle on non-negative numbers using [Z.lt]. *) Lemma Zlt_0_rec : forall P:Z -> Type, @@ -155,7 +155,7 @@ Section Efficient_Rec. exact Zlt_0_rec. Qed. - (** Obsolete version of [Zlt] induction principle on non-negative numbers *) + (** Obsolete version of [Z.lt] induction principle on non-negative numbers *) Lemma Z_lt_rec : forall P:Z -> Type, @@ -173,7 +173,7 @@ Section Efficient_Rec. exact Z_lt_rec. Qed. - (** An even more general induction principle using [Zlt]. *) + (** An even more general induction principle using [Z.lt]. *) Lemma Zlt_lower_bound_rec : forall P:Z -> Type, forall z:Z, diff --git a/theories/ZArith/ZArith.v b/theories/ZArith/ZArith.v index 265e62f0..033dc11f 100644 --- a/theories/ZArith/ZArith.v +++ b/theories/ZArith/ZArith.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* P) -> ((n ?= m) = Lt -> P) -> ((n ?= m) = Gt -> P) -> P. +Lemma Zcompare_rect (P:Type) (n m:Z) : + ((n ?= m) = Eq -> P) -> ((n ?= m) = Lt -> P) -> ((n ?= m) = Gt -> P) -> P. Proof. - intros * H1 H2 H3. + intros H1 H2 H3. destruct (n ?= m); auto. Defined. -Lemma Zcompare_rec : - forall (P:Set) (n m:Z), - ((n ?= m) = Eq -> P) -> ((n ?= m) = Lt -> P) -> ((n ?= m) = Gt -> P) -> P. -Proof. - intro; apply Zcompare_rect. -Defined. +Lemma Zcompare_rec (P:Set) (n m:Z) : + ((n ?= m) = Eq -> P) -> ((n ?= m) = Lt -> P) -> ((n ?= m) = Gt -> P) -> P. +Proof. apply Zcompare_rect. Defined. -Notation Z_eq_dec := Z.eq_dec (only parsing). +Notation Z_eq_dec := Z.eq_dec (compat "8.3"). Section decidability. @@ -46,38 +42,22 @@ Section decidability. Definition Z_lt_dec : {x < y} + {~ x < y}. Proof. - unfold Zlt in |- *. - apply Zcompare_rec with (n := x) (m := y); intro H. - right. rewrite H. discriminate. - left; assumption. - right. rewrite H. discriminate. + unfold Z.lt; case Z.compare; (now left) || (now right). Defined. Definition Z_le_dec : {x <= y} + {~ x <= y}. Proof. - unfold Zle in |- *. - apply Zcompare_rec with (n := x) (m := y); intro H. - left. rewrite H. discriminate. - left. rewrite H. discriminate. - right. tauto. + unfold Z.le; case Z.compare; (now left) || (right; tauto). Defined. Definition Z_gt_dec : {x > y} + {~ x > y}. Proof. - unfold Zgt in |- *. - apply Zcompare_rec with (n := x) (m := y); intro H. - right. rewrite H. discriminate. - right. rewrite H. discriminate. - left; assumption. + unfold Z.gt; case Z.compare; (now left) || (now right). Defined. Definition Z_ge_dec : {x >= y} + {~ x >= y}. Proof. - unfold Zge in |- *. - apply Zcompare_rec with (n := x) (m := y); intro H. - left. rewrite H. discriminate. - right. tauto. - left. rewrite H. discriminate. + unfold Z.ge; case Z.compare; (now left) || (right; tauto). Defined. Definition Z_lt_ge_dec : {x < y} + {x >= y}. @@ -87,16 +67,15 @@ Section decidability. Lemma Z_lt_le_dec : {x < y} + {y <= x}. Proof. - intros. elim Z_lt_ge_dec. - intros; left; assumption. - intros; right; apply Zge_le; assumption. + * now left. + * right; now apply Z.ge_le. Defined. Definition Z_le_gt_dec : {x <= y} + {x > y}. Proof. elim Z_le_dec; auto with arith. - intro. right. apply Znot_le_gt; auto with arith. + intro. right. Z.swap_greater. now apply Z.nle_gt. Defined. Definition Z_gt_le_dec : {x > y} + {x <= y}. @@ -107,15 +86,15 @@ Section decidability. Definition Z_ge_lt_dec : {x >= y} + {x < y}. Proof. elim Z_ge_dec; auto with arith. - intro. right. apply Znot_ge_lt; auto with arith. + intro. right. Z.swap_greater. now apply Z.lt_nge. Defined. Definition Z_le_lt_eq_dec : x <= y -> {x < y} + {x = y}. Proof. intro H. apply Zcompare_rec with (n := x) (m := y). - intro. right. elim (Zcompare_Eq_iff_eq x y); auto with arith. - intro. left. elim (Zcompare_Eq_iff_eq x y); auto with arith. + intro. right. elim (Z.compare_eq_iff x y); auto with arith. + intro. left. elim (Z.compare_eq_iff x y); auto with arith. intro H1. absurd (x > y); auto with arith. Defined. @@ -132,8 +111,8 @@ Proof. assumption. intro. right. - apply Zle_lt_trans with (m := x). - apply Zge_le. + apply Z.le_lt_trans with (m := x). + apply Z.ge_le. assumption. assumption. Defined. @@ -142,20 +121,16 @@ Lemma Zlt_cotrans_pos : forall n m:Z, 0 < n + m -> {0 < n} + {0 < m}. Proof. intros x y H. case (Zlt_cotrans 0 (x + y) H x). - intro. - left. - assumption. - intro. - right. - apply Zplus_lt_reg_l with (p := x). - rewrite Zplus_0_r. - assumption. + - now left. + - right. + apply Z.add_lt_mono_l with (p := x). + now rewrite Z.add_0_r. Defined. Lemma Zlt_cotrans_neg : forall n m:Z, n + m < 0 -> {n < 0} + {m < 0}. Proof. intros x y H; case (Zlt_cotrans (x + y) 0 H x); intro Hxy; - [ right; apply Zplus_lt_reg_l with (p := x); rewrite Zplus_0_r | left ]; + [ right; apply Z.add_lt_mono_l with (p := x); rewrite Z.add_0_r | left ]; assumption. Defined. @@ -167,7 +142,7 @@ Proof. left. assumption. intro H0. - generalize (Zge_le _ _ H0). + generalize (Z.ge_le _ _ H0). intro. case (Z_le_lt_eq_dec _ _ H1). intro. @@ -176,7 +151,7 @@ Proof. intro. apply False_rec. apply H. - symmetry in |- *. + symmetry . assumption. Defined. @@ -189,17 +164,17 @@ Proof. left. assumption. intro H. - generalize (Zge_le _ _ H). + generalize (Z.ge_le _ _ H). intro H0. case (Z_le_lt_eq_dec y x H0). intro H1. left. right. - apply Zlt_gt. + apply Z.lt_gt. assumption. intro. right. - symmetry in |- *. + symmetry . assumption. Defined. @@ -207,7 +182,7 @@ Defined. Lemma Z_dec' : forall n m:Z, {n < m} + {m < n} + {n = m}. Proof. intros x y. - case (Z_eq_dec x y); intro H; + case (Z.eq_dec x y); intro H; [ right; assumption | left; apply (not_Zeq_inf _ _ H) ]. Defined. @@ -215,12 +190,12 @@ Defined. (* To deprecate ? *) Corollary Z_zerop : forall x:Z, {x = 0} + {x <> 0}. Proof. - exact (fun x:Z => Z_eq_dec x 0). + exact (fun x:Z => Z.eq_dec x 0). Defined. Corollary Z_notzerop : forall (x:Z), {x <> 0} + {x = 0}. Proof (fun x => sumbool_not _ _ (Z_zerop x)). Corollary Z_noteq_dec : forall (x y:Z), {x <> y} + {x = y}. -Proof (fun x y => sumbool_not _ _ (Z_eq_dec x y)). +Proof (fun x y => sumbool_not _ _ (Z.eq_dec x y)). (* end hide *) diff --git a/theories/ZArith/Zabs.v b/theories/ZArith/Zabs.v index 23473e93..08d1a931 100644 --- a/theories/ZArith/Zabs.v +++ b/theories/ZArith/Zabs.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* x /\ Zsgn x = -1. + 0 < x /\ Z.sgn x = 1 \/ + 0 = x /\ Z.sgn x = 0 \/ + 0 > x /\ Z.sgn x = -1. Proof. intros. Z.swap_greater. apply Z.sgn_spec. Qed. (** Compatibility *) -Notation inj_Zabs_nat := Zabs2Nat.id_abs (only parsing). -Notation Zabs_nat_Z_of_nat := Zabs2Nat.id (only parsing). -Notation Zabs_nat_mult := Zabs2Nat.inj_mul (only parsing). -Notation Zabs_nat_Zsucc := Zabs2Nat.inj_succ (only parsing). -Notation Zabs_nat_Zplus := Zabs2Nat.inj_add (only parsing). -Notation Zabs_nat_Zminus := (fun n m => Zabs2Nat.inj_sub m n) (only parsing). -Notation Zabs_nat_compare := Zabs2Nat.inj_compare (only parsing). +Notation inj_Zabs_nat := Zabs2Nat.id_abs (compat "8.3"). +Notation Zabs_nat_Z_of_nat := Zabs2Nat.id (compat "8.3"). +Notation Zabs_nat_mult := Zabs2Nat.inj_mul (compat "8.3"). +Notation Zabs_nat_Zsucc := Zabs2Nat.inj_succ (compat "8.3"). +Notation Zabs_nat_Zplus := Zabs2Nat.inj_add (compat "8.3"). +Notation Zabs_nat_Zminus := (fun n m => Zabs2Nat.inj_sub m n) (compat "8.3"). +Notation Zabs_nat_compare := Zabs2Nat.inj_compare (compat "8.3"). Lemma Zabs_nat_le n m : 0 <= n <= m -> (Z.abs_nat n <= Z.abs_nat m)%nat. Proof. intros (H,H'). apply Zabs2Nat.inj_le; trivial. now transitivity n. Qed. -Lemma Zabs_nat_lt n m : 0 <= n < m -> (Zabs_nat n < Zabs_nat m)%nat. +Lemma Zabs_nat_lt n m : 0 <= n < m -> (Z.abs_nat n < Z.abs_nat m)%nat. Proof. intros (H,H'). apply Zabs2Nat.inj_lt; trivial. transitivity n; trivial. now apply Z.lt_le_incl. diff --git a/theories/ZArith/Zbool.v b/theories/ZArith/Zbool.v index d0901282..f20bc4bb 100644 --- a/theories/ZArith/Zbool.v +++ b/theories/ZArith/Zbool.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (m <=? n) = true -> n = m. diff --git a/theories/ZArith/Zcompare.v b/theories/ZArith/Zcompare.v index 20e1b006..fe91698f 100644 --- a/theories/ZArith/Zcompare.v +++ b/theories/ZArith/Zcompare.v @@ -1,13 +1,13 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 -> (n ?= m) = (n * p ?= m * p). Proof. - intros; rewrite 2 (Zmult_comm _ p); now apply Zmult_compare_compat_l. + intros; rewrite 2 (Z.mul_comm _ p); now apply Zmult_compare_compat_l. Qed. (** * Relating [x ?= y] to [=], [<=], [<], [>=] or [>] *) @@ -181,18 +181,18 @@ Qed. (** Compatibility notations *) -Notation Zcompare_refl := Z.compare_refl (only parsing). -Notation Zcompare_Eq_eq := Z.compare_eq (only parsing). -Notation Zcompare_Eq_iff_eq := Z.compare_eq_iff (only parsing). -Notation Zcompare_spec := Z.compare_spec (only parsing). -Notation Zmin_l := Z.min_l (only parsing). -Notation Zmin_r := Z.min_r (only parsing). -Notation Zmax_l := Z.max_l (only parsing). -Notation Zmax_r := Z.max_r (only parsing). -Notation Zabs_eq := Z.abs_eq (only parsing). -Notation Zabs_non_eq := Z.abs_neq (only parsing). -Notation Zsgn_0 := Z.sgn_null (only parsing). -Notation Zsgn_1 := Z.sgn_pos (only parsing). -Notation Zsgn_m1 := Z.sgn_neg (only parsing). +Notation Zcompare_refl := Z.compare_refl (compat "8.3"). +Notation Zcompare_Eq_eq := Z.compare_eq (compat "8.3"). +Notation Zcompare_Eq_iff_eq := Z.compare_eq_iff (compat "8.3"). +Notation Zcompare_spec := Z.compare_spec (compat "8.3"). +Notation Zmin_l := Z.min_l (compat "8.3"). +Notation Zmin_r := Z.min_r (compat "8.3"). +Notation Zmax_l := Z.max_l (compat "8.3"). +Notation Zmax_r := Z.max_r (compat "8.3"). +Notation Zabs_eq := Z.abs_eq (compat "8.3"). +Notation Zabs_non_eq := Z.abs_neq (compat "8.3"). +Notation Zsgn_0 := Z.sgn_null (compat "8.3"). +Notation Zsgn_1 := Z.sgn_pos (compat "8.3"). +Notation Zsgn_m1 := Z.sgn_neg (compat "8.3"). (** Not kept: Zcompare_egal_dec *) diff --git a/theories/ZArith/Zcomplements.v b/theories/ZArith/Zcomplements.v index 5a2c3cc3..b4163ef9 100644 --- a/theories/ZArith/Zcomplements.v +++ b/theories/ZArith/Zcomplements.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 <= z -> P z * P (- z)) in *. cut (Q (Z.abs p)); [ intros | apply (Z_lt_rec Q); auto with zarith ]. elim (Zabs_dec p); intro eq; rewrite eq; elim H; auto with zarith. - unfold Q in |- *; clear Q; intros. + unfold Q; clear Q; intros. split; apply HP. rewrite Z.abs_eq; auto; intros. elim (H (Z.abs m)); intros; auto with zarith. @@ -75,7 +75,7 @@ Proof. set (Q := fun z => 0 <= z -> P z /\ P (- z)) in *. cut (Q (Z.abs p)); [ intros | apply (Z_lt_induction Q); auto with zarith ]. elim (Zabs_dec p); intro eq; rewrite eq; elim H; auto with zarith. - unfold Q in |- *; clear Q; intros. + unfold Q; clear Q; intros. split; apply HP. rewrite Z.abs_eq; auto; intros. elim (H (Z.abs m)); intros; auto with zarith. @@ -107,7 +107,7 @@ Require Import List. Fixpoint Zlength_aux (acc:Z) (A:Type) (l:list A) : Z := match l with | nil => acc - | _ :: l => Zlength_aux (Zsucc acc) A l + | _ :: l => Zlength_aux (Z.succ acc) A l end. Definition Zlength := Zlength_aux 0. diff --git a/theories/ZArith/Zdigits.v b/theories/ZArith/Zdigits.v index ff1d96df..fa8f5c27 100644 --- a/theories/ZArith/Zdigits.v +++ b/theories/ZArith/Zdigits.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Bvector (S n). Proof. simple induction n; intros. - exact (Bcons (Zeven.Zodd_bool H) 0 Bnil). + exact (Bcons (Z.odd H) 0 Bnil). - exact (Bcons (Zeven.Zodd_bool H0) (S n0) (H (Zmod2 H0))). + exact (Bcons (Z.odd H0) (S n0) (H (Zmod2 H0))). Defined. End ENCODING_VALUE. @@ -145,17 +145,17 @@ Section Z_BRIC_A_BRAC. (z >= 0)%Z -> Z_to_binary (S n) (bit_value b + 2 * z) = Bcons b n (Z_to_binary n z). Proof. - destruct b; destruct z; simpl in |- *; auto. + destruct b; destruct z; simpl; auto. intro H; elim H; trivial. Qed. Lemma binary_value_pos : forall (n:nat) (bv:Bvector n), (binary_value n bv >= 0)%Z. Proof. - induction bv as [| a n v IHbv]; simpl in |- *. + induction bv as [| a n v IHbv]; simpl. omega. - destruct a; destruct (binary_value n v); simpl in |- *; auto. + destruct a; destruct (binary_value n v); simpl; auto. auto with zarith. Qed. @@ -174,34 +174,34 @@ Section Z_BRIC_A_BRAC. Proof. destruct b; destruct z as [| p| p]; auto. destruct p as [p| p| ]; auto. - destruct p as [p| p| ]; simpl in |- *; auto. - intros; rewrite (Psucc_o_double_minus_one_eq_xO p); trivial. + destruct p as [p| p| ]; simpl; auto. + intros; rewrite (Pos.succ_pred_double p); trivial. Qed. Lemma Z_to_binary_Sn_z : forall (n:nat) (z:Z), Z_to_binary (S n) z = - Bcons (Zeven.Zodd_bool z) n (Z_to_binary n (Zeven.Zdiv2 z)). + Bcons (Z.odd z) n (Z_to_binary n (Z.div2 z)). Proof. intros; auto. Qed. Lemma Z_div2_value : forall z:Z, - (z >= 0)%Z -> (bit_value (Zeven.Zodd_bool z) + 2 * Zeven.Zdiv2 z)%Z = z. + (z >= 0)%Z -> (bit_value (Z.odd z) + 2 * Z.div2 z)%Z = z. Proof. destruct z as [| p| p]; auto. destruct p; auto. intro H; elim H; trivial. Qed. - Lemma Pdiv2 : forall z:Z, (z >= 0)%Z -> (Zeven.Zdiv2 z >= 0)%Z. + Lemma Pdiv2 : forall z:Z, (z >= 0)%Z -> (Z.div2 z >= 0)%Z. Proof. destruct z as [| p| p]. auto. destruct p; auto. - simpl in |- *; intros; omega. + simpl; intros; omega. intro H; elim H; trivial. Qed. @@ -209,10 +209,10 @@ Section Z_BRIC_A_BRAC. Lemma Zdiv2_two_power_nat : forall (z:Z) (n:nat), (z >= 0)%Z -> - (z < two_power_nat (S n))%Z -> (Zeven.Zdiv2 z < two_power_nat n)%Z. + (z < two_power_nat (S n))%Z -> (Z.div2 z < two_power_nat n)%Z. Proof. intros. - cut (2 * Zeven.Zdiv2 z < 2 * two_power_nat n)%Z; intros. + cut (2 * Z.div2 z < 2 * two_power_nat n)%Z; intros. omega. rewrite <- two_power_nat_S. @@ -225,23 +225,23 @@ Section Z_BRIC_A_BRAC. Lemma Z_to_two_compl_Sn_z : forall (n:nat) (z:Z), Z_to_two_compl (S n) z = - Bcons (Zeven.Zodd_bool z) (S n) (Z_to_two_compl n (Zmod2 z)). + Bcons (Z.odd z) (S n) (Z_to_two_compl n (Zmod2 z)). Proof. intros; auto. Qed. Lemma Zeven_bit_value : - forall z:Z, Zeven.Zeven z -> bit_value (Zeven.Zodd_bool z) = 0%Z. + forall z:Z, Zeven.Zeven z -> bit_value (Z.odd z) = 0%Z. Proof. - destruct z; unfold bit_value in |- *; auto. + destruct z; unfold bit_value; auto. destruct p; tauto || (intro H; elim H). destruct p; tauto || (intro H; elim H). Qed. Lemma Zodd_bit_value : - forall z:Z, Zeven.Zodd z -> bit_value (Zeven.Zodd_bool z) = 1%Z. + forall z:Z, Zeven.Zodd z -> bit_value (Z.odd z) = 1%Z. Proof. - destruct z; unfold bit_value in |- *; auto. + destruct z; unfold bit_value; auto. intros; elim H. destruct p; tauto || (intros; elim H). destruct p; tauto || (intros; elim H). @@ -310,7 +310,7 @@ Section COHERENT_VALUE. (z < two_power_nat n)%Z -> binary_value n (Z_to_binary n z) = z. Proof. induction n as [| n IHn]. - unfold two_power_nat, shift_nat in |- *; simpl in |- *; intros; omega. + unfold two_power_nat, shift_nat; simpl; intros; omega. intros; rewrite Z_to_binary_Sn_z. rewrite binary_value_Sn. @@ -328,7 +328,7 @@ Section COHERENT_VALUE. (z < two_power_nat n)%Z -> two_compl_value n (Z_to_two_compl n z) = z. Proof. induction n as [| n IHn]. - unfold two_power_nat, shift_nat in |- *; simpl in |- *; intros. + unfold two_power_nat, shift_nat; simpl; intros. assert (z = (-1)%Z \/ z = 0%Z). omega. intuition; subst z; trivial. diff --git a/theories/ZArith/Zdiv.v b/theories/ZArith/Zdiv.v index 314f696a..27fb21bc 100644 --- a/theories/ZArith/Zdiv.v +++ b/theories/ZArith/Zdiv.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* - Z.sgn b. -(* In the last formulation, [ Zsgn r <> - Zsgn b ] is less nice than saying - [ Zsgn r = Zsgn b ], but at least it works even when [r] is null. *) +(* In the last formulation, [ Z.sgn r <> - Z.sgn b ] is less nice than saying + [ Z.sgn r = Z.sgn b ], but at least it works even when [r] is null. *) Lemma Remainder_equiv : forall r b, Remainder r b <-> Remainder_alt r b. Proof. @@ -89,7 +89,7 @@ Proof. now destruct Hb. left; now apply POS. right; now apply NEG. Qed. -(** The same results as before, stated separately in terms of Zdiv and Zmod *) +(** The same results as before, stated separately in terms of Z.div and Z.modulo *) Lemma Z_mod_remainder a b : b<>0 -> Remainder (a mod b) b. Proof. @@ -98,7 +98,7 @@ Proof. Qed. Lemma Z_mod_lt a b : b > 0 -> 0 <= a mod b < b. -Proof (fun Hb => Z.mod_pos_bound a b (Zgt_lt _ _ Hb)). +Proof (fun Hb => Z.mod_pos_bound a b (Z.gt_lt _ _ Hb)). Lemma Z_mod_neg a b : b < 0 -> b < a mod b <= 0. Proof (Z.mod_neg_bound a b). @@ -220,7 +220,7 @@ Proof. intros. zero_or_not b. apply Z.mod_mul. auto. Qed. Lemma Z_div_mult_full : forall a b:Z, b <> 0 -> (a*b)/b = a. Proof Z.div_mul. -(** * Order results about Zmod and Zdiv *) +(** * Order results about Z.modulo and Z.div *) (* Division of positive numbers is positive. *) @@ -248,12 +248,12 @@ Proof Z.div_small. Theorem Zmod_small: forall a n, 0 <= a < n -> a mod n = a. Proof Z.mod_small. -(** [Zge] is compatible with a positive division. *) +(** [Z.ge] is compatible with a positive division. *) Lemma Z_div_ge : forall a b c:Z, c > 0 -> a >= b -> a/c >= b/c. -Proof. intros. apply Zle_ge. apply Z.div_le_mono; auto with zarith. Qed. +Proof. intros. apply Z.le_ge. apply Z.div_le_mono; auto with zarith. Qed. -(** Same, with [Zle]. *) +(** Same, with [Z.le]. *) Lemma Z_div_le : forall a b c:Z, c > 0 -> a <= b -> a/c <= b/c. Proof. intros. apply Z.div_le_mono; auto with zarith. Qed. @@ -264,7 +264,7 @@ Lemma Z_mult_div_ge : forall a b:Z, b > 0 -> b*(a/b) <= a. Proof. intros. apply Z.mul_div_le; auto with zarith. Qed. Lemma Z_mult_div_ge_neg : forall a b:Z, b < 0 -> b*(a/b) >= a. -Proof. intros. apply Zle_ge. apply Z.mul_div_ge; auto with zarith. Qed. +Proof. intros. apply Z.le_ge. apply Z.mul_div_ge; auto with zarith. Qed. (** The previous inequalities are exact iff the modulo is zero. *) @@ -279,7 +279,7 @@ Proof. intros; rewrite Z.div_exact; auto. Qed. Theorem Zmod_le: forall a b, 0 < b -> 0 <= a -> a mod b <= a. Proof. intros. apply Z.mod_le; auto. Qed. -(** Some additionnal inequalities about Zdiv. *) +(** Some additionnal inequalities about Z.div. *) Theorem Zdiv_lt_upper_bound: forall a b q, 0 < b -> a < q*b -> a/b < q. @@ -307,7 +307,7 @@ Proof. destruct Z.pos_div_eucl as (q,r); destruct r; omega with *. Qed. -(** * Relations between usual operations and Zmod and Zdiv *) +(** * Relations between usual operations and Z.modulo and Z.div *) Lemma Z_mod_plus_full : forall a b c:Z, (a + b * c) mod c = a mod c. Proof. intros. zero_or_not c. apply Z.mod_add; auto. Qed. @@ -318,9 +318,9 @@ Proof Z.div_add. Theorem Z_div_plus_full_l: forall a b c : Z, b <> 0 -> (a * b + c) / b = a + c / b. Proof Z.div_add_l. -(** [Zopp] and [Zdiv], [Zmod]. +(** [Z.opp] and [Z.div], [Z.modulo]. Due to the choice of convention for our Euclidean division, - some of the relations about [Zopp] and divisions are rather complex. *) + some of the relations about [Z.opp] and divisions are rather complex. *) Lemma Zdiv_opp_opp : forall a b:Z, (-a)/(-b) = a/b. Proof. intros. zero_or_not b. apply Z.div_opp_opp; auto. Qed. @@ -365,22 +365,22 @@ Proof. intros. zero_or_not b. apply Z.div_mul_cancel_r; auto. Qed. Lemma Zdiv_mult_cancel_l : forall a b c:Z, c<>0 -> (c*a)/(c*b) = a/b. Proof. - intros. rewrite (Zmult_comm c b); zero_or_not b. - rewrite (Zmult_comm b c). apply Z.div_mul_cancel_l; auto. + intros. rewrite (Z.mul_comm c b); zero_or_not b. + rewrite (Z.mul_comm b c). apply Z.div_mul_cancel_l; auto. Qed. Lemma Zmult_mod_distr_l: forall a b c, (c*a) mod (c*b) = c * (a mod b). Proof. - intros. zero_or_not c. rewrite (Zmult_comm c b); zero_or_not b. - rewrite (Zmult_comm b c). apply Z.mul_mod_distr_l; auto. + intros. zero_or_not c. rewrite (Z.mul_comm c b); zero_or_not b. + rewrite (Z.mul_comm b c). apply Z.mul_mod_distr_l; auto. Qed. Lemma Zmult_mod_distr_r: forall a b c, (a*c) mod (b*c) = (a mod b) * c. Proof. - intros. zero_or_not b. rewrite (Zmult_comm b c); zero_or_not c. - rewrite (Zmult_comm c b). apply Z.mul_mod_distr_r; auto. + intros. zero_or_not b. rewrite (Z.mul_comm b c); zero_or_not c. + rewrite (Z.mul_comm c b). apply Z.mul_mod_distr_r; auto. Qed. (** Operations modulo. *) @@ -464,22 +464,22 @@ Proof. constructor; [exact eqm_refl | exact eqm_sym | exact eqm_trans]. Qed. -Instance Zplus_eqm : Proper (eqm ==> eqm ==> eqm) Zplus. +Instance Zplus_eqm : Proper (eqm ==> eqm ==> eqm) Z.add. Proof. unfold eqm; repeat red; intros. rewrite Zplus_mod, H, H0, <- Zplus_mod; auto. Qed. -Instance Zminus_eqm : Proper (eqm ==> eqm ==> eqm) Zminus. +Instance Zminus_eqm : Proper (eqm ==> eqm ==> eqm) Z.sub. Proof. unfold eqm; repeat red; intros. rewrite Zminus_mod, H, H0, <- Zminus_mod; auto. Qed. -Instance Zmult_eqm : Proper (eqm ==> eqm ==> eqm) Zmult. +Instance Zmult_eqm : Proper (eqm ==> eqm ==> eqm) Z.mul. Proof. unfold eqm; repeat red; intros. rewrite Zmult_mod, H, H0, <- Zmult_mod; auto. Qed. -Instance Zopp_eqm : Proper (eqm ==> eqm) Zopp. +Instance Zopp_eqm : Proper (eqm ==> eqm) Z.opp. Proof. intros x y H. change ((-x)==(-y)) with ((0-x)==(0-y)). now rewrite H. Qed. @@ -489,7 +489,7 @@ Proof. intros; exact (Zmod_mod a N). Qed. -(* NB: Zmod and Zdiv are not morphisms with respect to eqm. +(* NB: Z.modulo and Z.div are not morphisms with respect to eqm. For instance, let (==) be (eqm 2). Then we have (3 == 1) but: ~ (3 mod 3 == 1 mod 3) ~ (1 mod 3 == 1 mod 1) @@ -501,7 +501,7 @@ End EqualityModulo. Lemma Zdiv_Zdiv : forall a b c, 0<=b -> 0<=c -> (a/b)/c = a/(b*c). Proof. - intros. zero_or_not b. rewrite Zmult_comm. zero_or_not c. + intros. zero_or_not b. rewrite Z.mul_comm. zero_or_not c. rewrite Z.mul_comm. apply Z.div_div; auto with zarith. Qed. @@ -515,7 +515,7 @@ Theorem Zdiv_mult_le: Proof. intros. zero_or_not b. apply Z.div_mul_le; auto with zarith. Qed. -(** Zmod is related to divisibility (see more in Znumtheory) *) +(** Z.modulo is related to divisibility (see more in Znumtheory) *) Lemma Zmod_divides : forall a b, b<>0 -> (a mod b = 0 <-> exists c, a = b*c). @@ -536,17 +536,17 @@ Qed. Lemma Zmod_even : forall a, a mod 2 = if Z.even a then 0 else 1. Proof. - intros a. rewrite Zmod_odd, Zodd_even_bool. now destruct Zeven_bool. + intros a. rewrite Zmod_odd, Zodd_even_bool. now destruct Z.even. Qed. Lemma Zodd_mod : forall a, Z.odd a = Zeq_bool (a mod 2) 1. Proof. - intros a. rewrite Zmod_odd. now destruct Zodd_bool. + intros a. rewrite Zmod_odd. now destruct Z.odd. Qed. Lemma Zeven_mod : forall a, Z.even a = Zeq_bool (a mod 2) 0. Proof. - intros a. rewrite Zmod_even. now destruct Zeven_bool. + intros a. rewrite Zmod_even. now destruct Z.even. Qed. (** * Compatibility *) @@ -593,7 +593,7 @@ Proof. intros; apply Z_mod_zero_opp_full; auto with zarith. Qed. -(** * A direct way to compute Zmod *) +(** * A direct way to compute Z.modulo *) Fixpoint Zmod_POS (a : positive) (b : Z) : Z := match a with @@ -675,7 +675,7 @@ Proof. exists (- q, r). elim Hqr; intros. split. - rewrite <- Zmult_opp_comm; assumption. + rewrite <- Z.mul_opp_comm; assumption. rewrite Z.abs_neq; [ assumption | omega ]. Qed. @@ -692,7 +692,7 @@ Proof. apply (Zdiv_unique _ _ _ (Z.of_nat (n mod m))). split. auto with zarith. now apply inj_lt, Nat.mod_upper_bound. - rewrite <- inj_mult, <- inj_plus. + rewrite <- Nat2Z.inj_mul, <- Nat2Z.inj_add. now apply inj_eq, Nat.div_mod. Qed. @@ -703,6 +703,6 @@ Proof. apply (Zmod_unique _ _ (Z.of_nat n / Z.of_nat m)). split. auto with zarith. now apply inj_lt, Nat.mod_upper_bound. - rewrite <- div_Zdiv, <- inj_mult, <- inj_plus by trivial. + rewrite <- div_Zdiv, <- Nat2Z.inj_mul, <- Nat2Z.inj_add by trivial. now apply inj_eq, Nat.div_mod. Qed. diff --git a/theories/ZArith/Zeuclid.v b/theories/ZArith/Zeuclid.v index f1b59749..1dfe2fb3 100644 --- a/theories/ZArith/Zeuclid.v +++ b/theories/ZArith/Zeuclid.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Zeven n. Proof. @@ -130,17 +130,17 @@ Qed. Hint Unfold Zeven Zodd: zarith. -Notation Zeven_bool_succ := Z.even_succ (only parsing). -Notation Zeven_bool_pred := Z.even_pred (only parsing). -Notation Zodd_bool_succ := Z.odd_succ (only parsing). -Notation Zodd_bool_pred := Z.odd_pred (only parsing). +Notation Zeven_bool_succ := Z.even_succ (compat "8.3"). +Notation Zeven_bool_pred := Z.even_pred (compat "8.3"). +Notation Zodd_bool_succ := Z.odd_succ (compat "8.3"). +Notation Zodd_bool_pred := Z.odd_pred (compat "8.3"). (******************************************************************) -(** * Definition of [Zquot2], [Zdiv2] and properties wrt [Zeven] +(** * Definition of [Z.quot2], [Z.div2] and properties wrt [Zeven] and [Zodd] *) -Notation Zdiv2 := Z.div2 (only parsing). -Notation Zquot2 := Z.quot2 (only parsing). +Notation Zdiv2 := Z.div2 (compat "8.3"). +Notation Zquot2 := Z.quot2 (compat "8.3"). (** Properties of [Z.div2] *) @@ -223,7 +223,7 @@ Lemma Zsplit2 n : {p : Z * Z | let (x1, x2) := p in n = x1 + x2 /\ (x1 = x2 \/ x2 = x1 + 1)}. Proof. destruct (Z_modulo_2 n) as [(y,Hy)|(y,Hy)]; - rewrite Z.mul_comm, <- Zplus_diag_eq_mult_2 in Hy. + rewrite <- Z.add_diag in Hy. - exists (y, y). split. assumption. now left. - exists (y, y + 1). split. now rewrite Z.add_assoc. now right. Qed. diff --git a/theories/ZArith/Zgcd_alt.v b/theories/ZArith/Zgcd_alt.v index ebf3d024..40d2b129 100644 --- a/theories/ZArith/Zgcd_alt.v +++ b/theories/ZArith/Zgcd_alt.v @@ -1,19 +1,19 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 1 (* arbitrary, since n should be big enough *) | S n => match a with - | Z0 => Zabs b - | Zpos _ => Zgcdn n (Zmod b a) a - | Zneg a => Zgcdn n (Zmod b (Zpos a)) (Zpos a) + | Z0 => Z.abs b + | Zpos _ => Zgcdn n (Z.modulo b a) a + | Zneg a => Zgcdn n (Z.modulo b (Zpos a)) (Zpos a) end end. Definition Zgcd_bound (a:Z) := match a with | Z0 => S O - | Zpos p => let n := Psize p in (n+n)%nat - | Zneg p => let n := Psize p in (n+n)%nat + | Zpos p => let n := Pos.size_nat p in (n+n)%nat + | Zneg p => let n := Pos.size_nat p in (n+n)%nat end. Definition Zgcd_alt a b := Zgcdn (Zgcd_bound a) a b. - (** A first obvious fact : [Zgcd a b] is positive. *) + (** A first obvious fact : [Z.gcd a b] is positive. *) Lemma Zgcdn_pos : forall n a b, 0 <= Zgcdn n a b. @@ -62,28 +62,28 @@ Open Scope Z_scope. Lemma Zgcd_alt_pos : forall a b, 0 <= Zgcd_alt a b. Proof. - intros; unfold Zgcd; apply Zgcdn_pos; auto. + intros; unfold Z.gcd; apply Zgcdn_pos; auto. Qed. - (** We now prove that Zgcd is indeed a gcd. *) + (** We now prove that Z.gcd is indeed a gcd. *) (** 1) We prove a weaker & easier bound. *) Lemma Zgcdn_linear_bound : forall n a b, - Zabs a < Z_of_nat n -> Zis_gcd a b (Zgcdn n a b). + Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b). Proof. induction n. simpl; intros. - exfalso; generalize (Zabs_pos a); omega. + exfalso; generalize (Z.abs_nonneg a); omega. destruct a; intros; simpl; [ generalize (Zis_gcd_0_abs b); intuition | | ]; - unfold Zmod; - generalize (Z_div_mod b (Zpos p) (refl_equal Gt)); - destruct (Zdiv_eucl b (Zpos p)) as (q,r); + unfold Z.modulo; + generalize (Z_div_mod b (Zpos p) (eq_refl Gt)); + destruct (Z.div_eucl b (Zpos p)) as (q,r); intros (H0,H1); - rewrite inj_S in H; simpl Zabs in H; - (assert (H2: Zabs r < Z_of_nat n) by - (rewrite Zabs_eq; auto with zarith)); + rewrite Nat2Z.inj_succ in H; simpl Z.abs in H; + (assert (H2: Z.abs r < Z.of_nat n) by + (rewrite Z.abs_eq; auto with zarith)); assert (IH:=IHn r (Zpos p) H2); clear IHn; simpl in IH |- *; rewrite H0. @@ -122,7 +122,7 @@ Open Scope Z_scope. Proof. induction 1. auto with zarith. - apply Zle_trans with (fibonacci m); auto. + apply Z.le_trans with (fibonacci m); auto. clear. destruct m. simpl; auto with zarith. @@ -142,53 +142,38 @@ Open Scope Z_scope. fibonacci (S (S n)) <= b. Proof. induction n. - simpl; intros. - destruct a; omega. - intros. - destruct a; [simpl in *; omega| | destruct H; discriminate]. - revert H1; revert H0. - set (m:=S n) in *; (assert (m=S n) by auto); clearbody m. - pattern m at 2; rewrite H0. - simpl Zgcdn. - unfold Zmod; generalize (Z_div_mod b (Zpos p) (refl_equal Gt)). - destruct (Zdiv_eucl b (Zpos p)) as (q,r). - intros (H1,H2). - destruct H2. - destruct (Zle_lt_or_eq _ _ H2). - generalize (IHn _ _ (conj H4 H3)). - intros H5 H6 H7. - replace (fibonacci (S (S m))) with (fibonacci (S m) + fibonacci m) by auto. - assert (r = Zpos p * (-q) + b) by (rewrite H1; ring). - destruct H5; auto. - pattern r at 1; rewrite H8. - apply Zis_gcd_sym. - apply Zis_gcd_for_euclid2; auto. - apply Zis_gcd_sym; auto. - split; auto. - rewrite H1. - apply Zplus_le_compat; auto. - apply Zle_trans with (Zpos p * 1); auto. - ring_simplify (Zpos p * 1); auto. - apply Zmult_le_compat_l. - destruct q. - omega. - assert (0 < Zpos p0) by (compute; auto). - omega. - assert (Zpos p * Zneg p0 < 0) by (compute; auto). - omega. - compute; intros; discriminate. - (* r=0 *) - subst r. - simpl; rewrite H0. - intros. - simpl in H4. - simpl in H5. - destruct n. - simpl in H5. - simpl. - omega. - simpl in H5. - elim H5; auto. + intros [|a|a]; intros; simpl; omega. + intros [|a|a] b (Ha,Ha'); [simpl; omega | | easy ]. + remember (S n) as m. + rewrite Heqm at 2. simpl Zgcdn. + unfold Z.modulo; generalize (Z_div_mod b (Zpos a) eq_refl). + destruct (Z.div_eucl b (Zpos a)) as (q,r). + intros (EQ,(Hr,Hr')). + Z.le_elim Hr. + - (* r > 0 *) + replace (fibonacci (S (S m))) with (fibonacci (S m) + fibonacci m) by auto. + intros. + destruct (IHn r (Zpos a) (conj Hr Hr')); auto. + + assert (EQ' : r = Zpos a * (-q) + b) by (rewrite EQ; ring). + rewrite EQ' at 1. + apply Zis_gcd_sym. + apply Zis_gcd_for_euclid2; auto. + apply Zis_gcd_sym; auto. + + split; auto. + rewrite EQ. + apply Z.add_le_mono; auto. + apply Z.le_trans with (Zpos a * 1); auto. + now rewrite Z.mul_1_r. + apply Z.mul_le_mono_nonneg_l; auto with zarith. + change 1 with (Z.succ 0). apply Z.le_succ_l. + destruct q; auto with zarith. + assert (Zpos a * Zneg p < 0) by now compute. omega. + - (* r = 0 *) + clear IHn EQ Hr'; intros _. + subst r; simpl; rewrite Heqm. + destruct n. + + simpl. omega. + + now destruct 1. Qed. (** 3b) We reformulate the previous result in a more positive way. *) @@ -199,18 +184,18 @@ Open Scope Z_scope. Proof. destruct a; [ destruct 1; exfalso; omega | | destruct 1; discriminate]. cut (forall k n b, - k = (S (nat_of_P p) - n)%nat -> + k = (S (Pos.to_nat p) - n)%nat -> 0 < Zpos p < b -> Zpos p < fibonacci (S n) -> Zis_gcd (Zpos p) b (Zgcdn n (Zpos p) b)). destruct 2; eauto. clear n; induction k. intros. - assert (nat_of_P p < n)%nat by omega. + assert (Pos.to_nat p < n)%nat by omega. apply Zgcdn_linear_bound. simpl. generalize (inj_le _ _ H2). - rewrite inj_S. - rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto. + rewrite Nat2Z.inj_succ. + rewrite positive_nat_Z; auto. omega. intros. generalize (Zgcdn_worst_is_fibonacci n (Zpos p) b H0); intros. @@ -233,77 +218,69 @@ Open Scope Z_scope. induction p; [ | | compute; auto ]; simpl Zgcd_bound in *; rewrite plus_comm; simpl plus; - set (n:= (Psize p+Psize p)%nat) in *; simpl; + set (n:= (Pos.size_nat p+Pos.size_nat p)%nat) in *; simpl; assert (n <> O) by (unfold n; destruct p; simpl; auto). destruct n as [ |m]; [elim H; auto| ]. - generalize (fibonacci_pos m); rewrite Zpos_xI; omega. + generalize (fibonacci_pos m); rewrite Pos2Z.inj_xI; omega. destruct n as [ |m]; [elim H; auto| ]. - generalize (fibonacci_pos m); rewrite Zpos_xO; omega. + generalize (fibonacci_pos m); rewrite Pos2Z.inj_xO; omega. Qed. (* 5) the end: we glue everything together and take care of situations not corresponding to [0 - Zis_gcd a b (Zgcdn n a b). + Lemma Zgcd_bound_opp a : Zgcd_bound (-a) = Zgcd_bound a. + Proof. + now destruct a. + Qed. + + Lemma Zgcdn_opp n a b : Zgcdn n (-a) b = Zgcdn n a b. + Proof. + induction n; simpl; auto. + destruct a; simpl; auto. + Qed. + + Lemma Zgcdn_is_gcd_pos n a b : (Zgcd_bound (Zpos a) <= n)%nat -> + Zis_gcd (Zpos a) b (Zgcdn n (Zpos a) b). + Proof. + intros. + generalize (Zgcd_bound_fibonacci (Zpos a)). + simpl Zgcd_bound in *. + remember (Pos.size_nat a+Pos.size_nat a)%nat as m. + assert (1 < m)%nat. + { rewrite Heqm; destruct a; simpl; rewrite 1?plus_comm; + auto with arith. } + destruct m as [ |m]; [inversion H0; auto| ]. + destruct n as [ |n]; [inversion H; auto| ]. + simpl Zgcdn. + unfold Z.modulo. + generalize (Z_div_mod b (Zpos a) (eq_refl Gt)). + destruct (Z.div_eucl b (Zpos a)) as (q,r). + intros (->,(H1,H2)) H3. + apply Zis_gcd_for_euclid2. + Z.le_elim H1. + + apply Zgcdn_ok_before_fibonacci; auto. + apply Z.lt_le_trans with (fibonacci (S m)); + [ omega | apply fibonacci_incr; auto]. + + subst r; simpl. + destruct m as [ |m]; [exfalso; omega| ]. + destruct n as [ |n]; [exfalso; omega| ]. + simpl; apply Zis_gcd_sym; apply Zis_gcd_0. + Qed. + + Lemma Zgcdn_is_gcd n a b : + (Zgcd_bound a <= n)%nat -> Zis_gcd a b (Zgcdn n a b). Proof. - destruct a; intros. - simpl in H. - destruct n; [exfalso; omega | ]. - simpl; generalize (Zis_gcd_0_abs b); intuition. - (*Zpos*) - generalize (Zgcd_bound_fibonacci (Zpos p)). - simpl Zgcd_bound in *. - remember (Psize p+Psize p)%nat as m. - assert (1 < m)%nat. - rewrite Heqm; destruct p; simpl; rewrite 1? plus_comm; - auto with arith. - destruct m as [ |m]; [inversion H0; auto| ]. - destruct n as [ |n]; [inversion H; auto| ]. - simpl Zgcdn. - unfold Zmod. - generalize (Z_div_mod b (Zpos p) (refl_equal Gt)). - destruct (Zdiv_eucl b (Zpos p)) as (q,r). - intros (H2,H3) H4. - rewrite H2. - apply Zis_gcd_for_euclid2. - destruct H3. - destruct (Zle_lt_or_eq _ _ H1). - apply Zgcdn_ok_before_fibonacci; auto. - apply Zlt_le_trans with (fibonacci (S m)); [ omega | apply fibonacci_incr; auto]. - subst r; simpl. - destruct m as [ |m]; [exfalso; omega| ]. - destruct n as [ |n]; [exfalso; omega| ]. - simpl; apply Zis_gcd_sym; apply Zis_gcd_0. - (*Zneg*) - generalize (Zgcd_bound_fibonacci (Zpos p)). - simpl Zgcd_bound in *. - remember (Psize p+Psize p)%nat as m. - assert (1 < m)%nat. - rewrite Heqm; destruct p; simpl; rewrite 1? plus_comm; - auto with arith. - destruct m as [ |m]; [inversion H0; auto| ]. - destruct n as [ |n]; [inversion H; auto| ]. - simpl Zgcdn. - unfold Zmod. - generalize (Z_div_mod b (Zpos p) (refl_equal Gt)). - destruct (Zdiv_eucl b (Zpos p)) as (q,r). - intros (H1,H2) H3. - rewrite H1. - apply Zis_gcd_minus. - apply Zis_gcd_sym. - apply Zis_gcd_for_euclid2. - destruct H2. - destruct (Zle_lt_or_eq _ _ H2). - apply Zgcdn_ok_before_fibonacci; auto. - apply Zlt_le_trans with (fibonacci (S m)); [ omega | apply fibonacci_incr; auto]. - subst r; simpl. - destruct m as [ |m]; [exfalso; omega| ]. - destruct n as [ |n]; [exfalso; omega| ]. - simpl; apply Zis_gcd_sym; apply Zis_gcd_0. + destruct a. + - simpl; intros. + destruct n; [exfalso; omega | ]. + simpl; generalize (Zis_gcd_0_abs b); intuition. + - apply Zgcdn_is_gcd_pos. + - rewrite <- Zgcd_bound_opp, <- Zgcdn_opp. + intros. apply Zis_gcd_minus, Zis_gcd_sym. simpl Z.opp. + now apply Zgcdn_is_gcd_pos. Qed. Lemma Zgcd_is_gcd : diff --git a/theories/ZArith/Zhints.v b/theories/ZArith/Zhints.v index 6a14d693..8b879fbe 100644 --- a/theories/ZArith/Zhints.v +++ b/theories/ZArith/Zhints.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* `(Zs n) = (Zs m)` *) - - (** Lemmas ending by Zgt *) - Zsucc_gt_compat (* :(n,m:Z)`m > n`->`(Zs m) > (Zs n)` *) - Zgt_succ (* :(n:Z)`(Zs n) > n` *) - Zorder.Zgt_pos_0 (* :(p:positive)`(POS p) > 0` *) - Zplus_gt_compat_l (* :(n,m,p:Z)`n > m`->`p+n > p+m` *) - Zplus_gt_compat_r (* :(n,m,p:Z)`n > m`->`n+p > m+p` *) - - (** Lemmas ending by Zlt *) - Zlt_succ (* :(n:Z)`n < (Zs n)` *) - Zsucc_lt_compat (* :(n,m:Z)`n < m`->`(Zs n) < (Zs m)` *) - Zlt_pred (* :(n:Z)`(Zpred n) < n` *) - Zplus_lt_compat_l (* :(n,m,p:Z)`n < m`->`p+n < p+m` *) - Zplus_lt_compat_r (* :(n,m,p:Z)`n < m`->`n+p < m+p` *) - - (** Lemmas ending by Zle *) - Zle_0_nat (* :(n:nat)`0 <= (inject_nat n)` *) - Zorder.Zle_0_pos (* :(p:positive)`0 <= (POS p)` *) - Zle_refl (* :(n:Z)`n <= n` *) - Zle_succ (* :(n:Z)`n <= (Zs n)` *) - Zsucc_le_compat (* :(n,m:Z)`m <= n`->`(Zs m) <= (Zs n)` *) - Zle_pred (* :(n:Z)`(Zpred n) <= n` *) - Zle_min_l (* :(n,m:Z)`(Zmin n m) <= n` *) - Zle_min_r (* :(n,m:Z)`(Zmin n m) <= m` *) - Zplus_le_compat_l (* :(n,m,p:Z)`n <= m`->`p+n <= p+m` *) - Zplus_le_compat_r (* :(a,b,c:Z)`a <= b`->`a+c <= b+c` *) - Zabs_pos (* :(x:Z)`0 <= |x|` *) + Zsucc_eq_compat (* n = m -> Z.succ n = Z.succ m *) + + (** Lemmas ending by Z.gt *) + Zsucc_gt_compat (* m > n -> Z.succ m > Z.succ n *) + Zgt_succ (* Z.succ n > n *) + Zorder.Zgt_pos_0 (* Z.pos p > 0 *) + Zplus_gt_compat_l (* n > m -> p+n > p+m *) + Zplus_gt_compat_r (* n > m -> n+p > m+p *) + + (** Lemmas ending by Z.lt *) + Pos2Z.is_pos (* 0 < Z.pos p *) + Z.lt_succ_diag_r (* n < Z.succ n *) + Zsucc_lt_compat (* n < m -> Z.succ n < Z.succ m *) + Z.lt_pred_l (* Z.pred n < n *) + Zplus_lt_compat_l (* n < m -> p+n < p+m *) + Zplus_lt_compat_r (* n < m -> n+p < m+p *) + + (** Lemmas ending by Z.le *) + Nat2Z.is_nonneg (* 0 <= Z.of_nat n *) + Pos2Z.is_nonneg (* 0 <= Z.pos p *) + Z.le_refl (* n <= n *) + Z.le_succ_diag_r (* n <= Z.succ n *) + Zsucc_le_compat (* m <= n -> Z.succ m <= Z.succ n *) + Z.le_pred_l (* Z.pred n <= n *) + Z.le_min_l (* Z.min n m <= n *) + Z.le_min_r (* Z.min n m <= m *) + Zplus_le_compat_l (* n <= m -> p+n <= p+m *) + Zplus_le_compat_r (* a <= b -> a+c <= b+c *) + Z.abs_nonneg (* 0 <= |x| *) (** ** Irreversible simplification lemmas *) (** Probably to be declared as hints, when no other simplification is possible *) (** Lemmas ending by eq *) - BinInt.Z_eq_mult (* :(x,y:Z)`y = 0`->`y*x = 0` *) - Zplus_eq_compat (* :(n,m,p,q:Z)`n = m`->`p = q`->`n+p = m+q` *) + Z_eq_mult (* y = 0 -> y*x = 0 *) + Zplus_eq_compat (* n = m -> p = q -> n+p = m+q *) - (** Lemmas ending by Zge *) - Zorder.Zmult_ge_compat_r (* :(a,b,c:Z)`a >= b`->`c >= 0`->`a*c >= b*c` *) - Zorder.Zmult_ge_compat_l (* :(a,b,c:Z)`a >= b`->`c >= 0`->`c*a >= c*b` *) + (** Lemmas ending by Z.ge *) + Zorder.Zmult_ge_compat_r (* a >= b -> c >= 0 -> a*c >= b*c *) + Zorder.Zmult_ge_compat_l (* a >= b -> c >= 0 -> c*a >= c*b *) Zorder.Zmult_ge_compat (* : - (a,b,c,d:Z)`a >= c`->`b >= d`->`c >= 0`->`d >= 0`->`a*b >= c*d` *) - - (** Lemmas ending by Zlt *) - Zorder.Zmult_gt_0_compat (* :(a,b:Z)`a > 0`->`b > 0`->`a*b > 0` *) - Zlt_lt_succ (* :(n,m:Z)`n < m`->`n < (Zs m)` *) - - (** Lemmas ending by Zle *) - Zorder.Zmult_le_0_compat (* :(x,y:Z)`0 <= x`->`0 <= y`->`0 <= x*y` *) - Zorder.Zmult_le_compat_r (* :(a,b,c:Z)`a <= b`->`0 <= c`->`a*c <= b*c` *) - Zorder.Zmult_le_compat_l (* :(a,b,c:Z)`a <= b`->`0 <= c`->`c*a <= c*b` *) - Zplus_le_0_compat (* :(x,y:Z)`0 <= x`->`0 <= y`->`0 <= x+y` *) - Zle_le_succ (* :(x,y:Z)`x <= y`->`x <= (Zs y)` *) - Zplus_le_compat (* :(n,m,p,q:Z)`n <= m`->`p <= q`->`n+p <= m+q` *) + a >= c -> b >= d -> c >= 0 -> d >= 0 -> a*b >= c*d *) + + (** Lemmas ending by Z.lt *) + Zorder.Zmult_gt_0_compat (* a > 0 -> b > 0 -> a*b > 0 *) + Z.lt_lt_succ_r (* n < m -> n < Z.succ m *) + + (** Lemmas ending by Z.le *) + Z.mul_nonneg_nonneg (* 0 <= x -> 0 <= y -> 0 <= x*y *) + Zorder.Zmult_le_compat_r (* a <= b -> 0 <= c -> a*c <= b*c *) + Zorder.Zmult_le_compat_l (* a <= b -> 0 <= c -> c*a <= c*b *) + Z.add_nonneg_nonneg (* 0 <= x -> 0 <= y -> 0 <= x+y *) + Z.le_le_succ_r (* x <= y -> x <= Z.succ y *) + Z.add_le_mono (* n <= m -> p <= q -> n+p <= m+q *) : zarith. diff --git a/theories/ZArith/Zlogarithm.v b/theories/ZArith/Zlogarithm.v index 30948ca7..319e2c26 100644 --- a/theories/ZArith/Zlogarithm.v +++ b/theories/ZArith/Zlogarithm.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 (* 1 *) - | xO q => Zsucc (log_inf q) (* 2n *) - | xI q => Zsucc (log_inf q) (* 2n+1 *) + | xO q => Z.succ (log_inf q) (* 2n *) + | xI q => Z.succ (log_inf q) (* 2n+1 *) end. Fixpoint log_sup (p:positive) : Z := match p with | xH => 0 (* 1 *) - | xO n => Zsucc (log_sup n) (* 2n *) - | xI n => Zsucc (Zsucc (log_inf n)) (* 2n+1 *) + | xO n => Z.succ (log_sup n) (* 2n *) + | xI n => Z.succ (Z.succ (log_inf n)) (* 2n+1 *) end. Hint Unfold log_inf log_sup. Lemma Psize_log_inf : forall p, Zpos (Pos.size p) = Z.succ (log_inf p). Proof. - induction p; simpl; now rewrite <- ?Z.succ_Zpos, ?IHp. + induction p; simpl; now rewrite ?Pos2Z.inj_succ, ?IHp. Qed. Lemma Zlog2_log_inf : forall p, Z.log2 (Zpos p) = log_inf p. @@ -71,26 +71,26 @@ Section Log_pos. (* Log of positive integers *) (** Then we give the specifications of [log_inf] and [log_sup] and prove their validity *) - Hint Resolve Zle_trans: zarith. + Hint Resolve Z.le_trans: zarith. Theorem log_inf_correct : forall x:positive, - 0 <= log_inf x /\ two_p (log_inf x) <= Zpos x < two_p (Zsucc (log_inf x)). + 0 <= log_inf x /\ two_p (log_inf x) <= Zpos x < two_p (Z.succ (log_inf x)). Proof. - simple induction x; intros; simpl in |- *; + simple induction x; intros; simpl; [ elim H; intros Hp HR; clear H; split; [ auto with zarith - | rewrite two_p_S with (x := Zsucc (log_inf p)) by (apply Zle_le_succ; trivial); + | rewrite two_p_S with (x := Z.succ (log_inf p)) by (apply Z.le_le_succ_r; trivial); rewrite two_p_S by trivial; - rewrite two_p_S in HR by trivial; rewrite (BinInt.Zpos_xI p); + rewrite two_p_S in HR by trivial; rewrite (BinInt.Pos2Z.inj_xI p); omega ] | elim H; intros Hp HR; clear H; split; [ auto with zarith - | rewrite two_p_S with (x := Zsucc (log_inf p)) by (apply Zle_le_succ; trivial); + | rewrite two_p_S with (x := Z.succ (log_inf p)) by (apply Z.le_le_succ_r; trivial); rewrite two_p_S by trivial; - rewrite two_p_S in HR by trivial; rewrite (BinInt.Zpos_xO p); + rewrite two_p_S in HR by trivial; rewrite (BinInt.Pos2Z.inj_xO p); omega ] - | unfold two_power_pos in |- *; unfold shift_pos in |- *; simpl in |- *; + | unfold two_power_pos; unfold shift_pos; simpl; omega ]. Qed. @@ -103,7 +103,7 @@ Section Log_pos. (* Log of positive integers *) Lemma log_sup_correct1 : forall p:positive, 0 <= log_sup p. Proof. - simple induction p; intros; simpl in |- *; auto with zarith. + simple induction p; intros; simpl; auto with zarith. Qed. (** For every [p], either [p] is a power of two and [(log_inf p)=(log_sup p)] @@ -112,46 +112,46 @@ Section Log_pos. (* Log of positive integers *) Theorem log_sup_log_inf : forall p:positive, IF Zpos p = two_p (log_inf p) then Zpos p = two_p (log_sup p) - else log_sup p = Zsucc (log_inf p). + else log_sup p = Z.succ (log_inf p). Proof. simple induction p; intros; - [ elim H; right; simpl in |- *; + [ elim H; right; simpl; rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0)); - rewrite BinInt.Zpos_xI; unfold Zsucc in |- *; omega + rewrite BinInt.Pos2Z.inj_xI; unfold Z.succ; omega | elim H; clear H; intro Hif; - [ left; simpl in |- *; + [ left; simpl; rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0)); rewrite (two_p_S (log_sup p0) (log_sup_correct1 p0)); rewrite <- (proj1 Hif); rewrite <- (proj2 Hif); auto - | right; simpl in |- *; + | right; simpl; rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0)); - rewrite BinInt.Zpos_xO; unfold Zsucc in |- *; + rewrite BinInt.Pos2Z.inj_xO; unfold Z.succ; omega ] | left; auto ]. Qed. Theorem log_sup_correct2 : - forall x:positive, two_p (Zpred (log_sup x)) < Zpos x <= two_p (log_sup x). + forall x:positive, two_p (Z.pred (log_sup x)) < Zpos x <= two_p (log_sup x). Proof. intro. elim (log_sup_log_inf x). (* x is a power of two and [log_sup = log_inf] *) intros [E1 E2]; rewrite E2. - split; [ apply two_p_pred; apply log_sup_correct1 | apply Zle_refl ]. + split; [ apply two_p_pred; apply log_sup_correct1 | apply Z.le_refl ]. intros [E1 E2]; rewrite E2. - rewrite <- (Zpred_succ (log_inf x)). + rewrite (Z.pred_succ (log_inf x)). generalize (log_inf_correct2 x); omega. Qed. Lemma log_inf_le_log_sup : forall p:positive, log_inf p <= log_sup p. Proof. - simple induction p; simpl in |- *; intros; omega. + simple induction p; simpl; intros; omega. Qed. - Lemma log_sup_le_Slog_inf : forall p:positive, log_sup p <= Zsucc (log_inf p). + Lemma log_sup_le_Slog_inf : forall p:positive, log_sup p <= Z.succ (log_inf p). Proof. - simple induction p; simpl in |- *; intros; omega. + simple induction p; simpl; intros; omega. Qed. (** Now it's possible to specify and build the [Log] rounded to the nearest *) @@ -161,22 +161,20 @@ Section Log_pos. (* Log of positive integers *) | xH => 0 | xO xH => 1 | xI xH => 2 - | xO y => Zsucc (log_near y) - | xI y => Zsucc (log_near y) + | xO y => Z.succ (log_near y) + | xI y => Z.succ (log_near y) end. Theorem log_near_correct1 : forall p:positive, 0 <= log_near p. Proof. - simple induction p; simpl in |- *; intros; + simple induction p; simpl; intros; [ elim p0; auto with zarith | elim p0; auto with zarith | trivial with zarith ]. - intros; apply Zle_le_succ. - generalize H0; elim p1; intros; simpl in |- *; - [ assumption | assumption | apply Zorder.Zle_0_pos ]. - intros; apply Zle_le_succ. - generalize H0; elim p1; intros; simpl in |- *; - [ assumption | assumption | apply Zorder.Zle_0_pos ]. + intros; apply Z.le_le_succ_r. + generalize H0; now elim p1. + intros; apply Z.le_le_succ_r. + generalize H0; now elim p1. Qed. Theorem log_near_correct2 : @@ -184,9 +182,9 @@ Section Log_pos. (* Log of positive integers *) Proof. simple induction p. intros p0 [Einf| Esup]. - simpl in |- *. rewrite Einf. + simpl. rewrite Einf. case p0; [ left | left | right ]; reflexivity. - simpl in |- *; rewrite Esup. + simpl; rewrite Esup. elim (log_sup_log_inf p0). generalize (log_inf_le_log_sup p0). generalize (log_sup_le_Slog_inf p0). @@ -194,10 +192,10 @@ Section Log_pos. (* Log of positive integers *) intros; omega. case p0; intros; auto with zarith. intros p0 [Einf| Esup]. - simpl in |- *. + simpl. repeat rewrite Einf. case p0; intros; auto with zarith. - simpl in |- *. + simpl. repeat rewrite Esup. case p0; intros; auto with zarith. auto. @@ -218,20 +216,20 @@ Section divers. Lemma ZERO_le_N_digits : forall x:Z, 0 <= N_digits x. Proof. - simple induction x; simpl in |- *; - [ apply Zle_refl | exact log_inf_correct1 | exact log_inf_correct1 ]. + simple induction x; simpl; + [ apply Z.le_refl | exact log_inf_correct1 | exact log_inf_correct1 ]. Qed. - Lemma log_inf_shift_nat : forall n:nat, log_inf (shift_nat n 1) = Z_of_nat n. + Lemma log_inf_shift_nat : forall n:nat, log_inf (shift_nat n 1) = Z.of_nat n. Proof. simple induction n; intros; - [ try trivial | rewrite Znat.inj_S; rewrite <- H; reflexivity ]. + [ try trivial | rewrite Nat2Z.inj_succ; rewrite <- H; reflexivity ]. Qed. - Lemma log_sup_shift_nat : forall n:nat, log_sup (shift_nat n 1) = Z_of_nat n. + Lemma log_sup_shift_nat : forall n:nat, log_sup (shift_nat n 1) = Z.of_nat n. Proof. simple induction n; intros; - [ try trivial | rewrite Znat.inj_S; rewrite <- H; reflexivity ]. + [ try trivial | rewrite Nat2Z.inj_succ; rewrite <- H; reflexivity ]. Qed. (** [Is_power p] means that p is a power of two *) @@ -247,21 +245,21 @@ Section divers. Proof. split; [ elim p; - [ simpl in |- *; tauto - | simpl in |- *; intros; generalize (H H0); intro H1; elim H1; + [ simpl; tauto + | simpl; intros; generalize (H H0); intro H1; elim H1; intros y0 Hy0; exists (S y0); rewrite Hy0; reflexivity | intro; exists 0%nat; reflexivity ] - | intros; elim H; intros; rewrite H0; elim x; intros; simpl in |- *; trivial ]. + | intros; elim H; intros; rewrite H0; elim x; intros; simpl; trivial ]. Qed. Lemma Is_power_or : forall p:positive, Is_power p \/ ~ Is_power p. Proof. simple induction p; - [ intros; right; simpl in |- *; tauto + [ intros; right; simpl; tauto | intros; elim H; - [ intros; left; simpl in |- *; exact H0 - | intros; right; simpl in |- *; exact H0 ] - | left; simpl in |- *; trivial ]. + [ intros; left; simpl; exact H0 + | intros; right; simpl; exact H0 ] + | left; simpl; trivial ]. Qed. End divers. diff --git a/theories/ZArith/Zmax.v b/theories/ZArith/Zmax.v index 999564f0..31880c17 100644 --- a/theories/ZArith/Zmax.v +++ b/theories/ZArith/Zmax.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* = y /\ Z.max x y = x \/ x < y /\ Z.max x y = y. @@ -26,86 +52,9 @@ Proof. Qed. Lemma Zmax_left n m : n>=m -> Z.max n m = n. -Proof. Z.swap_greater. apply Zmax_l. Qed. - -Lemma Zmax_right : forall n m, n<=m -> Z.max n m = m. Proof Zmax_r. - -(** * Least upper bound properties of max *) - -Lemma Zle_max_l : forall n m, n <= Z.max n m. Proof Z.le_max_l. -Lemma Zle_max_r : forall n m, m <= Z.max n m. Proof Z.le_max_r. - -Lemma Zmax_lub : forall n m p, n <= p -> m <= p -> Z.max n m <= p. -Proof Z.max_lub. - -Lemma Zmax_lub_lt : forall n m p:Z, n < p -> m < p -> Z.max n m < p. -Proof Z.max_lub_lt. - - -(** * Compatibility with order *) - -Lemma Zle_max_compat_r : forall n m p, n <= m -> Z.max n p <= Z.max m p. -Proof Z.max_le_compat_r. - -Lemma Zle_max_compat_l : forall n m p, n <= m -> Z.max p n <= Z.max p m. -Proof Z.max_le_compat_l. - - -(** * Semi-lattice properties of max *) - -Lemma Zmax_idempotent : forall n, Z.max n n = n. Proof Z.max_id. -Lemma Zmax_comm : forall n m, Z.max n m = Z.max m n. Proof Z.max_comm. -Lemma Zmax_assoc : forall n m p, Z.max n (Z.max m p) = Z.max (Z.max n m) p. -Proof Z.max_assoc. - -(** * Additional properties of max *) - -Lemma Zmax_irreducible_dec : forall n m, {Z.max n m = n} + {Z.max n m = m}. -Proof Z.max_dec. +Proof. Z.swap_greater. apply Z.max_l. Qed. -Lemma Zmax_le_prime : forall n m p, p <= Z.max n m -> p <= n \/ p <= m. -Proof Z.max_le. - - -(** * Operations preserving max *) - -Lemma Zsucc_max_distr : - forall n m, Z.succ (Z.max n m) = Z.max (Z.succ n) (Z.succ m). -Proof Z.succ_max_distr. - -Lemma Zplus_max_distr_l : forall n m p, Z.max (p + n) (p + m) = p + Z.max n m. -Proof Z.add_max_distr_l. - -Lemma Zplus_max_distr_r : forall n m p, Z.max (n + p) (m + p) = Z.max n m + p. -Proof Z.add_max_distr_r. - -(** * Maximum and Zpos *) - -Lemma Zpos_max p q : Zpos (Pos.max p q) = Z.max (Zpos p) (Zpos q). -Proof. - unfold Zmax, Pmax. simpl. - case Pos.compare_spec; auto; congruence. -Qed. - -Lemma Zpos_max_1 p : Z.max 1 (Zpos p) = Zpos p. +Lemma Zpos_max_1 p : Z.max 1 (Z.pos p) = Z.pos p. Proof. now destruct p. Qed. - -(** * Characterization of Pos.sub in term of Z.sub and Z.max *) - -Lemma Zpos_minus p q : Zpos (p - q) = Z.max 1 (Zpos p - Zpos q). -Proof. - simpl. rewrite Z.pos_sub_spec. case Pos.compare_spec; intros H. - subst; now rewrite Pos.sub_diag. - now rewrite Pos.sub_lt. - symmetry. apply Zpos_max_1. -Qed. - -(* begin hide *) -(* Compatibility *) -Notation Zmax1 := Z.le_max_l (only parsing). -Notation Zmax2 := Z.le_max_r (only parsing). -Notation Zmax_irreducible_inf := Z.max_dec (only parsing). -Notation Zmax_le_prime_inf := Z.max_le (only parsing). -(* end hide *) diff --git a/theories/ZArith/Zmin.v b/theories/ZArith/Zmin.v index 2c5003a6..30b88d8f 100644 --- a/theories/ZArith/Zmin.v +++ b/theories/ZArith/Zmin.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* y /\ Z.min x y = y. @@ -25,71 +43,15 @@ Proof. Z.swap_greater. rewrite Z.min_comm. destruct (Z.min_spec y x); auto. Qed. -(** * Greatest lower bound properties of min *) - -Lemma Zle_min_l : forall n m, Z.min n m <= n. Proof Z.le_min_l. -Lemma Zle_min_r : forall n m, Z.min n m <= m. Proof Z.le_min_r. - -Lemma Zmin_glb : forall n m p, p <= n -> p <= m -> p <= Z.min n m. -Proof Z.min_glb. -Lemma Zmin_glb_lt : forall n m p, p < n -> p < m -> p < Z.min n m. -Proof Z.min_glb_lt. - -(** * Compatibility with order *) - -Lemma Zle_min_compat_r : forall n m p, n <= m -> Z.min n p <= Z.min m p. -Proof Z.min_le_compat_r. -Lemma Zle_min_compat_l : forall n m p, n <= m -> Z.min p n <= Z.min p m. -Proof Z.min_le_compat_l. - -(** * Semi-lattice properties of min *) - -Lemma Zmin_idempotent : forall n, Z.min n n = n. Proof Z.min_id. -Notation Zmin_n_n := Z.min_id (only parsing). -Lemma Zmin_comm : forall n m, Z.min n m = Z.min m n. Proof Z.min_comm. -Lemma Zmin_assoc : forall n m p, Z.min n (Z.min m p) = Z.min (Z.min n m) p. -Proof Z.min_assoc. - -(** * Additional properties of min *) - -Lemma Zmin_irreducible_inf : forall n m, {Z.min n m = n} + {Z.min n m = m}. -Proof Z.min_dec. - Lemma Zmin_irreducible n m : Z.min n m = n \/ Z.min n m = m. Proof. destruct (Z.min_dec n m); auto. Qed. -Notation Zmin_or := Zmin_irreducible (only parsing). +Notation Zmin_or := Zmin_irreducible (compat "8.3"). Lemma Zmin_le_prime_inf n m p : Z.min n m <= p -> {n <= p} + {m <= p}. -Proof. apply Zmin_case; auto. Qed. - -(** * Operations preserving min *) - -Lemma Zsucc_min_distr : - forall n m, Z.succ (Z.min n m) = Z.min (Z.succ n) (Z.succ m). -Proof Z.succ_min_distr. - -Notation Zmin_SS := Z.succ_min_distr (only parsing). - -Lemma Zplus_min_distr_r : - forall n m p, Z.min (n + p) (m + p) = Z.min n m + p. -Proof Z.add_min_distr_r. - -Notation Zmin_plus := Z.add_min_distr_r (only parsing). - -(** * Minimum and Zpos *) - -Lemma Zpos_min p q : Zpos (Pos.min p q) = Z.min (Zpos p) (Zpos q). -Proof. - unfold Z.min, Pos.min; simpl. destruct Pos.compare; auto. -Qed. +Proof. apply Z.min_case; auto. Qed. Lemma Zpos_min_1 p : Z.min 1 (Zpos p) = 1. Proof. now destruct p. Qed. - - - - - diff --git a/theories/ZArith/Zminmax.v b/theories/ZArith/Zminmax.v index 8908175f..ce589e28 100644 --- a/theories/ZArith/Zminmax.v +++ b/theories/ZArith/Zminmax.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* - iter n A f x = iter_nat (Z.abs_nat n) A f x. + Z.iter n f x = iter_nat (Z.abs_nat n) A f x. +Proof. intros n A f x; case n; auto. -intros p _; unfold Z.iter, Z.abs_nat; apply iter_nat_of_P. +intros p _; unfold Z.iter, Z.abs_nat; apply Pos2Nat.inj_iter. intros p abs; case abs; trivial. Qed. diff --git a/theories/ZArith/Znat.v b/theories/ZArith/Znat.v index e3843990..27b7e6a0 100644 --- a/theories/ZArith/Znat.v +++ b/theories/ZArith/Znat.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* + Z.testbit (Z.of_N a) n = N.testbit a (Z.to_N n). +Proof. apply Z.Private_BootStrap.testbit_of_N'. Qed. + End Z2N. Module Zabs2N. @@ -526,9 +546,9 @@ Proof. intros. rewrite abs_N_nonneg. now apply Z2N.inj_quot. now apply Z.quot_pos. destruct n, m; trivial; simpl. - trivial. - - now rewrite <- Z.opp_Zpos, Z.quot_opp_r, inj_opp. - - now rewrite <- Z.opp_Zpos, Z.quot_opp_l, inj_opp. - - now rewrite <- 2 Z.opp_Zpos, Z.quot_opp_opp. + - now rewrite <- Pos2Z.opp_pos, Z.quot_opp_r, inj_opp. + - now rewrite <- Pos2Z.opp_pos, Z.quot_opp_l, inj_opp. + - now rewrite <- 2 Pos2Z.opp_pos, Z.quot_opp_opp. Qed. Lemma inj_rem n m : Z.abs_N (Z.rem n m) = ((Z.abs_N n) mod (Z.abs_N m))%N. @@ -538,9 +558,9 @@ Proof. intros. rewrite abs_N_nonneg. now apply Z2N.inj_rem. now apply Z.rem_nonneg. destruct n, m; trivial; simpl. - trivial. - - now rewrite <- Z.opp_Zpos, Z.rem_opp_r. - - now rewrite <- Z.opp_Zpos, Z.rem_opp_l, inj_opp. - - now rewrite <- 2 Z.opp_Zpos, Z.rem_opp_opp, inj_opp. + - now rewrite <- Pos2Z.opp_pos, Z.rem_opp_r. + - now rewrite <- Pos2Z.opp_pos, Z.rem_opp_l, inj_opp. + - now rewrite <- 2 Pos2Z.opp_pos, Z.rem_opp_opp, inj_opp. Qed. Lemma inj_pow n m : 0<=m -> Z.abs_N (n^m) = ((Z.abs_N n)^(Z.abs_N m))%N. @@ -584,7 +604,7 @@ Qed. Lemma inj_succ n : Z.of_nat (S n) = Z.succ (Z.of_nat n). Proof. - destruct n. trivial. simpl. symmetry. apply Z.succ_Zpos. + destruct n. trivial. simpl. apply Pos2Z.inj_succ. Qed. (** [Z.of_N] produce non-negative integers *) @@ -915,10 +935,10 @@ End Zabs2Nat. Definition neq (x y:nat) := x <> y. -Lemma inj_neq n m : neq n m -> Zne (Z_of_nat n) (Z_of_nat m). +Lemma inj_neq n m : neq n m -> Zne (Z.of_nat n) (Z.of_nat m). Proof. intros H H'. now apply H, Nat2Z.inj. Qed. -Lemma Zpos_P_of_succ_nat n : Zpos (P_of_succ_nat n) = Zsucc (Z_of_nat n). +Lemma Zpos_P_of_succ_nat n : Zpos (Pos.of_succ_nat n) = Z.succ (Z.of_nat n). Proof (Nat2Z.inj_succ n). (** For these one, used in omega, a Definition is necessary *) @@ -931,67 +951,67 @@ Definition inj_gt n m := proj1 (Nat2Z.inj_gt n m). (** For the others, a Notation is fine *) -Notation inj_0 := Nat2Z.inj_0 (only parsing). -Notation inj_S := Nat2Z.inj_succ (only parsing). -Notation inj_compare := Nat2Z.inj_compare (only parsing). -Notation inj_eq_rev := Nat2Z.inj (only parsing). -Notation inj_eq_iff := (fun n m => iff_sym (Nat2Z.inj_iff n m)) (only parsing). -Notation inj_le_iff := Nat2Z.inj_le (only parsing). -Notation inj_lt_iff := Nat2Z.inj_lt (only parsing). -Notation inj_ge_iff := Nat2Z.inj_ge (only parsing). -Notation inj_gt_iff := Nat2Z.inj_gt (only parsing). -Notation inj_le_rev := (fun n m => proj2 (Nat2Z.inj_le n m)) (only parsing). -Notation inj_lt_rev := (fun n m => proj2 (Nat2Z.inj_lt n m)) (only parsing). -Notation inj_ge_rev := (fun n m => proj2 (Nat2Z.inj_ge n m)) (only parsing). -Notation inj_gt_rev := (fun n m => proj2 (Nat2Z.inj_gt n m)) (only parsing). -Notation inj_plus := Nat2Z.inj_add (only parsing). -Notation inj_mult := Nat2Z.inj_mul (only parsing). -Notation inj_minus1 := Nat2Z.inj_sub (only parsing). -Notation inj_minus := Nat2Z.inj_sub_max (only parsing). -Notation inj_min := Nat2Z.inj_min (only parsing). -Notation inj_max := Nat2Z.inj_max (only parsing). - -Notation Z_of_nat_of_P := positive_nat_Z (only parsing). +Notation inj_0 := Nat2Z.inj_0 (compat "8.3"). +Notation inj_S := Nat2Z.inj_succ (compat "8.3"). +Notation inj_compare := Nat2Z.inj_compare (compat "8.3"). +Notation inj_eq_rev := Nat2Z.inj (compat "8.3"). +Notation inj_eq_iff := (fun n m => iff_sym (Nat2Z.inj_iff n m)) (compat "8.3"). +Notation inj_le_iff := Nat2Z.inj_le (compat "8.3"). +Notation inj_lt_iff := Nat2Z.inj_lt (compat "8.3"). +Notation inj_ge_iff := Nat2Z.inj_ge (compat "8.3"). +Notation inj_gt_iff := Nat2Z.inj_gt (compat "8.3"). +Notation inj_le_rev := (fun n m => proj2 (Nat2Z.inj_le n m)) (compat "8.3"). +Notation inj_lt_rev := (fun n m => proj2 (Nat2Z.inj_lt n m)) (compat "8.3"). +Notation inj_ge_rev := (fun n m => proj2 (Nat2Z.inj_ge n m)) (compat "8.3"). +Notation inj_gt_rev := (fun n m => proj2 (Nat2Z.inj_gt n m)) (compat "8.3"). +Notation inj_plus := Nat2Z.inj_add (compat "8.3"). +Notation inj_mult := Nat2Z.inj_mul (compat "8.3"). +Notation inj_minus1 := Nat2Z.inj_sub (compat "8.3"). +Notation inj_minus := Nat2Z.inj_sub_max (compat "8.3"). +Notation inj_min := Nat2Z.inj_min (compat "8.3"). +Notation inj_max := Nat2Z.inj_max (compat "8.3"). + +Notation Z_of_nat_of_P := positive_nat_Z (compat "8.3"). Notation Zpos_eq_Z_of_nat_o_nat_of_P := - (fun p => sym_eq (positive_nat_Z p)) (only parsing). - -Notation Z_of_nat_of_N := N_nat_Z (only parsing). -Notation Z_of_N_of_nat := nat_N_Z (only parsing). - -Notation Z_of_N_eq := (f_equal Z.of_N) (only parsing). -Notation Z_of_N_eq_rev := N2Z.inj (only parsing). -Notation Z_of_N_eq_iff := (fun n m => iff_sym (N2Z.inj_iff n m)) (only parsing). -Notation Z_of_N_compare := N2Z.inj_compare (only parsing). -Notation Z_of_N_le_iff := N2Z.inj_le (only parsing). -Notation Z_of_N_lt_iff := N2Z.inj_lt (only parsing). -Notation Z_of_N_ge_iff := N2Z.inj_ge (only parsing). -Notation Z_of_N_gt_iff := N2Z.inj_gt (only parsing). -Notation Z_of_N_le := (fun n m => proj1 (N2Z.inj_le n m)) (only parsing). -Notation Z_of_N_lt := (fun n m => proj1 (N2Z.inj_lt n m)) (only parsing). -Notation Z_of_N_ge := (fun n m => proj1 (N2Z.inj_ge n m)) (only parsing). -Notation Z_of_N_gt := (fun n m => proj1 (N2Z.inj_gt n m)) (only parsing). -Notation Z_of_N_le_rev := (fun n m => proj2 (N2Z.inj_le n m)) (only parsing). -Notation Z_of_N_lt_rev := (fun n m => proj2 (N2Z.inj_lt n m)) (only parsing). -Notation Z_of_N_ge_rev := (fun n m => proj2 (N2Z.inj_ge n m)) (only parsing). -Notation Z_of_N_gt_rev := (fun n m => proj2 (N2Z.inj_gt n m)) (only parsing). -Notation Z_of_N_pos := N2Z.inj_pos (only parsing). -Notation Z_of_N_abs := N2Z.inj_abs_N (only parsing). -Notation Z_of_N_le_0 := N2Z.is_nonneg (only parsing). -Notation Z_of_N_plus := N2Z.inj_add (only parsing). -Notation Z_of_N_mult := N2Z.inj_mul (only parsing). -Notation Z_of_N_minus := N2Z.inj_sub_max (only parsing). -Notation Z_of_N_succ := N2Z.inj_succ (only parsing). -Notation Z_of_N_min := N2Z.inj_min (only parsing). -Notation Z_of_N_max := N2Z.inj_max (only parsing). -Notation Zabs_of_N := Zabs2N.id (only parsing). -Notation Zabs_N_succ_abs := Zabs2N.inj_succ_abs (only parsing). -Notation Zabs_N_succ := Zabs2N.inj_succ (only parsing). -Notation Zabs_N_plus_abs := Zabs2N.inj_add_abs (only parsing). -Notation Zabs_N_plus := Zabs2N.inj_add (only parsing). -Notation Zabs_N_mult_abs := Zabs2N.inj_mul_abs (only parsing). -Notation Zabs_N_mult := Zabs2N.inj_mul (only parsing). - -Theorem inj_minus2 : forall n m:nat, (m > n)%nat -> Z_of_nat (n - m) = 0. + (fun p => eq_sym (positive_nat_Z p)) (compat "8.3"). + +Notation Z_of_nat_of_N := N_nat_Z (compat "8.3"). +Notation Z_of_N_of_nat := nat_N_Z (compat "8.3"). + +Notation Z_of_N_eq := (f_equal Z.of_N) (compat "8.3"). +Notation Z_of_N_eq_rev := N2Z.inj (compat "8.3"). +Notation Z_of_N_eq_iff := (fun n m => iff_sym (N2Z.inj_iff n m)) (compat "8.3"). +Notation Z_of_N_compare := N2Z.inj_compare (compat "8.3"). +Notation Z_of_N_le_iff := N2Z.inj_le (compat "8.3"). +Notation Z_of_N_lt_iff := N2Z.inj_lt (compat "8.3"). +Notation Z_of_N_ge_iff := N2Z.inj_ge (compat "8.3"). +Notation Z_of_N_gt_iff := N2Z.inj_gt (compat "8.3"). +Notation Z_of_N_le := (fun n m => proj1 (N2Z.inj_le n m)) (compat "8.3"). +Notation Z_of_N_lt := (fun n m => proj1 (N2Z.inj_lt n m)) (compat "8.3"). +Notation Z_of_N_ge := (fun n m => proj1 (N2Z.inj_ge n m)) (compat "8.3"). +Notation Z_of_N_gt := (fun n m => proj1 (N2Z.inj_gt n m)) (compat "8.3"). +Notation Z_of_N_le_rev := (fun n m => proj2 (N2Z.inj_le n m)) (compat "8.3"). +Notation Z_of_N_lt_rev := (fun n m => proj2 (N2Z.inj_lt n m)) (compat "8.3"). +Notation Z_of_N_ge_rev := (fun n m => proj2 (N2Z.inj_ge n m)) (compat "8.3"). +Notation Z_of_N_gt_rev := (fun n m => proj2 (N2Z.inj_gt n m)) (compat "8.3"). +Notation Z_of_N_pos := N2Z.inj_pos (compat "8.3"). +Notation Z_of_N_abs := N2Z.inj_abs_N (compat "8.3"). +Notation Z_of_N_le_0 := N2Z.is_nonneg (compat "8.3"). +Notation Z_of_N_plus := N2Z.inj_add (compat "8.3"). +Notation Z_of_N_mult := N2Z.inj_mul (compat "8.3"). +Notation Z_of_N_minus := N2Z.inj_sub_max (compat "8.3"). +Notation Z_of_N_succ := N2Z.inj_succ (compat "8.3"). +Notation Z_of_N_min := N2Z.inj_min (compat "8.3"). +Notation Z_of_N_max := N2Z.inj_max (compat "8.3"). +Notation Zabs_of_N := Zabs2N.id (compat "8.3"). +Notation Zabs_N_succ_abs := Zabs2N.inj_succ_abs (compat "8.3"). +Notation Zabs_N_succ := Zabs2N.inj_succ (compat "8.3"). +Notation Zabs_N_plus_abs := Zabs2N.inj_add_abs (compat "8.3"). +Notation Zabs_N_plus := Zabs2N.inj_add (compat "8.3"). +Notation Zabs_N_mult_abs := Zabs2N.inj_mul_abs (compat "8.3"). +Notation Zabs_N_mult := Zabs2N.inj_mul (compat "8.3"). + +Theorem inj_minus2 : forall n m:nat, (m > n)%nat -> Z.of_nat (n - m) = 0. Proof. intros. rewrite not_le_minus_0; auto with arith. Qed. diff --git a/theories/ZArith/Znumtheory.v b/theories/ZArith/Znumtheory.v index 6eb1a709..c1e01451 100644 --- a/theories/ZArith/Znumtheory.v +++ b/theories/ZArith/Znumtheory.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* (a | - b). Proof. apply Z.divide_opp_r. Qed. @@ -76,11 +76,11 @@ Proof. apply Z.divide_abs_l. Qed. Theorem Zdivide_Zabs_inv_l a b : (a | b) -> (Z.abs a | b). Proof. apply Z.divide_abs_l. Qed. -Hint Resolve Zdivide_refl Zone_divide Zdivide_0: zarith. -Hint Resolve Zmult_divide_compat_l Zmult_divide_compat_r: zarith. -Hint Resolve Zdivide_plus_r Zdivide_opp_r Zdivide_opp_r_rev Zdivide_opp_l - Zdivide_opp_l_rev Zdivide_minus_l Zdivide_mult_l Zdivide_mult_r - Zdivide_factor_r Zdivide_factor_l: zarith. +Hint Resolve Z.divide_refl Z.divide_1_l Z.divide_0_r: zarith. +Hint Resolve Z.mul_divide_mono_l Z.mul_divide_mono_r: zarith. +Hint Resolve Z.divide_add_r Zdivide_opp_r Zdivide_opp_r_rev Zdivide_opp_l + Zdivide_opp_l_rev Z.divide_sub_r Z.divide_mul_l Z.divide_mul_r + Z.divide_factor_l Z.divide_factor_r: zarith. (** Auxiliary result. *) @@ -91,12 +91,12 @@ Qed. (** Only [1] and [-1] divide [1]. *) -Notation Zdivide_1 := Z.divide_1_r (only parsing). +Notation Zdivide_1 := Z.divide_1_r (compat "8.3"). (** If [a] divides [b] and [b] divides [a] then [a] is [b] or [-b]. *) -Notation Zdivide_antisym := Z.divide_antisym (only parsing). -Notation Zdivide_trans := Z.divide_trans (only parsing). +Notation Zdivide_antisym := Z.divide_antisym (compat "8.3"). +Notation Zdivide_trans := Z.divide_trans (compat "8.3"). (** If [a] divides [b] and [b<>0] then [|a| <= |b|]. *) @@ -108,7 +108,7 @@ Proof. now apply Z.divide_pos_le. Qed. -(** [Zdivide] can be expressed using [Zmod]. *) +(** [Z.divide] can be expressed using [Z.modulo]. *) Lemma Zmod_divide : forall a b, b<>0 -> a mod b = 0 -> (b | a). Proof. @@ -120,7 +120,7 @@ Proof. intros a b (c,->); apply Z_mod_mult. Qed. -(** [Zdivide] is hence decidable *) +(** [Z.divide] is hence decidable *) Lemma Zdivide_dec a b : {(a | b)} + {~ (a | b)}. Proof. @@ -193,14 +193,16 @@ Qed. (** * Greatest common divisor (gcd). *) -(** There is no unicity of the gcd; hence we define the predicate [gcd a b d] - expressing that [d] is a gcd of [a] and [b]. - (We show later that the [gcd] is actually unique if we discard its sign.) *) +(** There is no unicity of the gcd; hence we define the predicate + [Zis_gcd a b g] expressing that [g] is a gcd of [a] and [b]. + (We show later that the [gcd] is actually unique if we discard its sign.) *) -Inductive Zis_gcd (a b d:Z) : Prop := - Zis_gcd_intro : - (d | a) -> - (d | b) -> (forall x:Z, (x | a) -> (x | b) -> (x | d)) -> Zis_gcd a b d. +Inductive Zis_gcd (a b g:Z) : Prop := + Zis_gcd_intro : + (g | a) -> + (g | b) -> + (forall x, (x | a) -> (x | b) -> (x | g)) -> + Zis_gcd a b g. (** Trivial properties of [gcd] *) @@ -246,12 +248,10 @@ Hint Resolve Zis_gcd_sym Zis_gcd_0 Zis_gcd_minus Zis_gcd_opp: zarith. Theorem Zis_gcd_unique: forall a b c d : Z, Zis_gcd a b c -> Zis_gcd a b d -> c = d \/ c = (- d). Proof. -intros a b c d H1 H2. -inversion_clear H1 as [Hc1 Hc2 Hc3]. -inversion_clear H2 as [Hd1 Hd2 Hd3]. -assert (H3: Zdivide c d); auto. -assert (H4: Zdivide d c); auto. -apply Zdivide_antisym; auto. +intros a b c d [Hc1 Hc2 Hc3] [Hd1 Hd2 Hd3]. +assert (c|d) by auto. +assert (d|c) by auto. +apply Z.divide_antisym; auto. Qed. @@ -305,7 +305,7 @@ Section extended_euclid_algorithm. v1 * a + v2 * b = v3 -> (forall d:Z, Zis_gcd u3 v3 d -> Zis_gcd a b d) -> Euclid. Proof. - intros v3 Hv3; generalize Hv3; pattern v3 in |- *. + intros v3 Hv3; generalize Hv3; pattern v3. apply Zlt_0_rec. clear v3 Hv3; intros. elim (Z_zerop x); intro. @@ -319,8 +319,8 @@ Section extended_euclid_algorithm. apply Z_mod_lt; omega. assert (xpos : x > 0). omega. generalize (Z_div_mod_eq u3 x xpos). - unfold q in |- *. - intro eq; pattern u3 at 2 in |- *; rewrite eq; ring. + unfold q. + intro eq; pattern u3 at 2; rewrite eq; ring. apply (H (u3 - q * x) Hq (proj1 Hq) v1 v2 x (u1 - q * v1) (u2 - q * v2)). tauto. replace ((u1 - q * v1) * a + (u2 - q * v2) * b) with @@ -357,7 +357,7 @@ Proof. intros H1 H2 H3; simple induction 1; intros. generalize (H3 d' H4 H5); intro Hd'd. generalize (H6 d H1 H2); intro Hdd'. - exact (Zdivide_antisym d d' Hdd' Hd'd). + exact (Z.divide_antisym d d' Hdd' Hd'd). Qed. (** * Bezout's coefficients *) @@ -450,21 +450,21 @@ Lemma rel_prime_cross_prod : rel_prime c d -> b > 0 -> d > 0 -> a * d = b * c -> a = c /\ b = d. Proof. intros a b c d; intros. - elim (Zdivide_antisym b d). + elim (Z.divide_antisym b d). split; auto with zarith. rewrite H4 in H3. - rewrite Zmult_comm in H3. - apply Zmult_reg_l with d; auto with zarith. + rewrite Z.mul_comm in H3. + apply Z.mul_reg_l with d; auto with zarith. intros; omega. apply Gauss with a. rewrite H3. auto with zarith. - red in |- *; auto with zarith. + red; auto with zarith. apply Gauss with c. - rewrite Zmult_comm. + rewrite Z.mul_comm. rewrite <- H3. auto with zarith. - red in |- *; auto with zarith. + red; auto with zarith. Qed. (** After factorization by a gcd, the original numbers are relatively prime. *) @@ -479,7 +479,7 @@ Proof. elim H1; intros. elim H4; intros. rewrite H2 in H6; subst b; omega. - unfold rel_prime in |- *. + unfold rel_prime. destruct H1. destruct H1 as (a',H1). destruct H3 as (b',H3). @@ -492,12 +492,12 @@ Proof. exists b'; auto with zarith. intros x (xa,H5) (xb,H6). destruct (H4 (x*g)) as (x',Hx'). - exists xa; rewrite Zmult_assoc; rewrite <- H5; auto. - exists xb; rewrite Zmult_assoc; rewrite <- H6; auto. + exists xa; rewrite Z.mul_assoc; rewrite <- H5; auto. + exists xb; rewrite Z.mul_assoc; rewrite <- H6; auto. replace g with (1*g) in Hx'; auto with zarith. - do 2 rewrite Zmult_assoc in Hx'. - apply Zmult_reg_r in Hx'; trivial. - rewrite Zmult_1_r in Hx'. + do 2 rewrite Z.mul_assoc in Hx'. + apply Z.mul_reg_r in Hx'; trivial. + rewrite Z.mul_1_r in Hx'. exists x'; auto with zarith. Qed. @@ -512,9 +512,9 @@ Theorem rel_prime_div: forall p q r, Proof. intros p q r H (u, H1); subst. inversion_clear H as [H1 H2 H3]. - red; apply Zis_gcd_intro; try apply Zone_divide. + red; apply Zis_gcd_intro; try apply Z.divide_1_l. intros x H4 H5; apply H3; auto. - apply Zdivide_mult_r; auto. + apply Z.divide_mul_r; auto. Qed. Theorem rel_prime_1: forall n, rel_prime 1 n. @@ -575,30 +575,29 @@ Lemma prime_divisors : forall p:Z, prime p -> forall a:Z, (a | p) -> a = -1 \/ a = 1 \/ a = p \/ a = - p. Proof. - simple induction 1; intros. + destruct 1; intros. assert (a = - p \/ - p < a < -1 \/ a = -1 \/ a = 0 \/ a = 1 \/ 1 < a < p \/ a = p). - assert (Zabs a <= Zabs p). apply Zdivide_bounds; [ assumption | omega ]. - generalize H3. - pattern (Zabs a) in |- *; apply Zabs_ind; pattern (Zabs p) in |- *; - apply Zabs_ind; intros; omega. + { assert (Z.abs a <= Z.abs p) as H2. + apply Zdivide_bounds; [ assumption | omega ]. + revert H2. + pattern (Z.abs a); apply Zabs_ind; pattern (Z.abs p); apply Zabs_ind; + intros; omega. } intuition idtac. (* -p < a < -1 *) - absurd (rel_prime (- a) p); intuition. - inversion H3. - assert (- a | - a); auto with zarith. - assert (- a | p); auto with zarith. - generalize (H8 (- a) H9 H10); intuition idtac. - generalize (Zdivide_1 (- a) H11); intuition. + - absurd (rel_prime (- a) p); intuition. + inversion H2. + assert (- a | - a) by auto with zarith. + assert (- a | p) by auto with zarith. + apply H7, Z.divide_1_r in H8; intuition. (* a = 0 *) - inversion H2. subst a; omega. + - inversion H1. subst a; omega. (* 1 < a < p *) - absurd (rel_prime a p); intuition. - inversion H3. - assert (a | a); auto with zarith. - assert (a | p); auto with zarith. - generalize (H8 a H9 H10); intuition idtac. - generalize (Zdivide_1 a H11); intuition. + - absurd (rel_prime a p); intuition. + inversion H2. + assert (a | a) by auto with zarith. + assert (a | p) by auto with zarith. + apply H7, Z.divide_1_r in H8; intuition. Qed. (** A prime number is relatively prime with any number it does not divide *) @@ -623,7 +622,7 @@ Proof. intros a p Hp [H1 H2]. apply rel_prime_sym; apply prime_rel_prime; auto. intros [q Hq]; subst a. - case (Zle_or_lt q 0); intros Hl. + case (Z.le_gt_cases q 0); intros Hl. absurd (q * p <= 0 * p); auto with zarith. absurd (1 * p <= q * p); auto with zarith. Qed. @@ -653,87 +652,79 @@ Qed. Lemma prime_2: prime 2. Proof. apply prime_intro; auto with zarith. - intros n [H1 H2]; case Zle_lt_or_eq with ( 1 := H1 ); auto with zarith; - clear H1; intros H1. - contradict H2; auto with zarith. - subst n; red; auto with zarith. - apply Zis_gcd_intro; auto with zarith. + intros n (H,H'); Z.le_elim H; auto with zarith. + - contradict H'; auto with zarith. + - subst n. constructor; auto with zarith. Qed. Theorem prime_3: prime 3. Proof. apply prime_intro; auto with zarith. - intros n [H1 H2]; case Zle_lt_or_eq with ( 1 := H1 ); auto with zarith; - clear H1; intros H1. - case (Zle_lt_or_eq 2 n); auto with zarith; clear H1; intros H1. - contradict H2; auto with zarith. - subst n; red; auto with zarith. - apply Zis_gcd_intro; auto with zarith. - intros x [q1 Hq1] [q2 Hq2]. - exists (q2 - q1). - apply trans_equal with (3 - 2); auto with zarith. - rewrite Hq1; rewrite Hq2; ring. - subst n; red; auto with zarith. - apply Zis_gcd_intro; auto with zarith. + intros n (H,H'); Z.le_elim H; auto with zarith. + - replace n with 2 by omega. + constructor; auto with zarith. + intros x (q,Hq) (q',Hq'). + exists (q' - q). ring_simplify. now rewrite <- Hq, <- Hq'. + - replace n with 1 by trivial. + constructor; auto with zarith. Qed. -Theorem prime_ge_2: forall p, prime p -> 2 <= p. +Theorem prime_ge_2 p : prime p -> 2 <= p. Proof. - intros p Hp; inversion Hp; auto with zarith. + intros (Hp,_); auto with zarith. Qed. Definition prime' p := 1

~ (n|p)). -Theorem prime_alt: - forall p, prime' p <-> prime p. -Proof. - split; destruct 1; intros. - (* prime -> prime' *) - constructor; auto; intros. - red; apply Zis_gcd_intro; auto with zarith; intros. - case (Zle_lt_or_eq 0 (Zabs x)); auto with zarith; intros H6. - case (Zle_lt_or_eq 1 (Zabs x)); auto with zarith; intros H7. - case (Zle_lt_or_eq (Zabs x) p); auto with zarith. - apply Zdivide_le; auto with zarith. - apply Zdivide_Zabs_inv_l; auto. - intros H8; case (H0 (Zabs x)); auto. - apply Zdivide_Zabs_inv_l; auto. - intros H8; subst p; absurd (Zabs x <= n); auto with zarith. - apply Zdivide_le; auto with zarith. - apply Zdivide_Zabs_inv_l; auto. - rewrite H7; pattern (Zabs x); apply Zabs_intro; auto with zarith. - absurd (0%Z = p); auto with zarith. - assert (x=0) by (destruct x; simpl in *; now auto). - subst x; elim H3; intro q; rewrite Zmult_0_r; auto. - (* prime' -> prime *) - split; auto; intros. - intros H2. - case (Zis_gcd_unique n p n 1); auto with zarith. - apply Zis_gcd_intro; auto with zarith. - apply H0; auto with zarith. +Lemma Z_0_1_more x : 0<=x -> x=0 \/ x=1 \/ 1 prime p. +Proof. + split; intros (Hp,H). + - (* prime -> prime' *) + constructor; trivial; intros n Hn. + constructor; auto with zarith; intros x Hxn Hxp. + rewrite <- Z.divide_abs_l in Hxn, Hxp |- *. + assert (Hx := Z.abs_nonneg x). + set (y:=Z.abs x) in *; clearbody y; clear x; rename y into x. + destruct (Z_0_1_more x Hx) as [->|[->|Hx']]. + + exfalso. apply Z.divide_0_l in Hxn. omega. + + now exists 1. + + elim (H x); auto. + split; trivial. + apply Z.le_lt_trans with n; auto with zarith. + apply Z.divide_pos_le; auto with zarith. + - (* prime' -> prime *) + constructor; trivial. intros n Hn Hnp. + case (Zis_gcd_unique n p n 1); auto with zarith. + constructor; auto with zarith. + apply H; auto with zarith. Qed. Theorem square_not_prime: forall a, ~ prime (a * a). Proof. intros a Ha. - rewrite <- (Zabs_square a) in Ha. - assert (0 <= Zabs a) by auto with zarith. - set (b:=Zabs a) in *; clearbody b. - rewrite <- prime_alt in Ha; destruct Ha. - case (Zle_lt_or_eq 0 b); auto with zarith; intros Hza1; [ | subst; omega]. - case (Zle_lt_or_eq 1 b); auto with zarith; intros Hza2; [ | subst; omega]. - assert (Hza3 := Zmult_lt_compat_r 1 b b Hza1 Hza2). - rewrite Zmult_1_l in Hza3. - elim (H1 _ (conj Hza2 Hza3)). - exists b; auto. + rewrite <- (Z.abs_square a) in Ha. + assert (H:=Z.abs_nonneg a). + set (b:=Z.abs a) in *; clearbody b; clear a; rename b into a. + rewrite <- prime_alt in Ha; destruct Ha as (Ha,Ha'). + assert (H' : 1 < a) by now apply (Z.square_lt_simpl_nonneg 1). + apply (Ha' a). + + split; trivial. + rewrite <- (Z.mul_1_l a) at 1. apply Z.mul_lt_mono_pos_r; omega. + + exists a; auto. Qed. Theorem prime_div_prime: forall p q, prime p -> prime q -> (p | q) -> p = q. Proof. intros p q H H1 H2; - assert (Hp: 0 < p); try apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith. - assert (Hq: 0 < q); try apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith. + assert (Hp: 0 < p); try apply Z.lt_le_trans with 2; try apply prime_ge_2; auto with zarith. + assert (Hq: 0 < q); try apply Z.lt_le_trans with 2; try apply prime_ge_2; auto with zarith. case prime_divisors with (2 := H2); auto. intros H4; contradict Hp; subst; auto with zarith. intros [H4| [H4 | H4]]; subst; auto. @@ -744,7 +735,7 @@ Qed. (** we now prove that [Z.gcd] is indeed a gcd in the sense of [Zis_gcd]. *) -Notation Zgcd_is_pos := Z.gcd_nonneg (only parsing). +Notation Zgcd_is_pos := Z.gcd_nonneg (compat "8.3"). Lemma Zgcd_is_gcd : forall a b, Zis_gcd a b (Z.gcd a b). Proof. @@ -770,15 +761,15 @@ Theorem Zis_gcd_gcd: forall a b c : Z, 0 <= c -> Zis_gcd a b c -> Z.gcd a b = c. Proof. intros a b c H1 H2. - case (Zis_gcd_uniqueness_apart_sign a b c (Zgcd a b)); auto. + case (Zis_gcd_uniqueness_apart_sign a b c (Z.gcd a b)); auto. apply Zgcd_is_gcd; auto. Z.le_elim H1. - generalize (Z.gcd_nonneg a b); auto with zarith. - subst. now case (Z.gcd a b). + - generalize (Z.gcd_nonneg a b); auto with zarith. + - subst. now case (Z.gcd a b). Qed. -Notation Zgcd_inv_0_l := Z.gcd_eq_0_l (only parsing). -Notation Zgcd_inv_0_r := Z.gcd_eq_0_r (only parsing). +Notation Zgcd_inv_0_l := Z.gcd_eq_0_l (compat "8.3"). +Notation Zgcd_inv_0_r := Z.gcd_eq_0_r (compat "8.3"). Theorem Zgcd_div_swap0 : forall a b : Z, 0 < Z.gcd a b -> @@ -788,8 +779,8 @@ Proof. intros a b Hg Hb. assert (F := Zgcd_is_gcd a b); inversion F as [F1 F2 F3]. pattern b at 2; rewrite (Zdivide_Zdiv_eq (Z.gcd a b) b); auto. - repeat rewrite Zmult_assoc; f_equal. - rewrite Zmult_comm. + repeat rewrite Z.mul_assoc; f_equal. + rewrite Z.mul_comm. rewrite <- Zdivide_Zdiv_eq; auto. Qed. @@ -800,42 +791,42 @@ Theorem Zgcd_div_swap : forall a b c : Z, Proof. intros a b c Hg Hb. assert (F := Zgcd_is_gcd a b); inversion F as [F1 F2 F3]. - pattern b at 2; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto. - repeat rewrite Zmult_assoc; f_equal. + pattern b at 2; rewrite (Zdivide_Zdiv_eq (Z.gcd a b) b); auto. + repeat rewrite Z.mul_assoc; f_equal. rewrite Zdivide_Zdiv_eq_2; auto. - repeat rewrite <- Zmult_assoc; f_equal. - rewrite Zmult_comm. + repeat rewrite <- Z.mul_assoc; f_equal. + rewrite Z.mul_comm. rewrite <- Zdivide_Zdiv_eq; auto. Qed. -Notation Zgcd_comm := Z.gcd_comm (only parsing). +Notation Zgcd_comm := Z.gcd_comm (compat "8.3"). -Lemma Zgcd_ass a b c : Zgcd (Zgcd a b) c = Zgcd a (Zgcd b c). +Lemma Zgcd_ass a b c : Z.gcd (Z.gcd a b) c = Z.gcd a (Z.gcd b c). Proof. symmetry. apply Z.gcd_assoc. Qed. -Notation Zgcd_Zabs := Z.gcd_abs_l (only parsing). -Notation Zgcd_0 := Z.gcd_0_r (only parsing). -Notation Zgcd_1 := Z.gcd_1_r (only parsing). +Notation Zgcd_Zabs := Z.gcd_abs_l (compat "8.3"). +Notation Zgcd_0 := Z.gcd_0_r (compat "8.3"). +Notation Zgcd_1 := Z.gcd_1_r (compat "8.3"). -Hint Resolve Zgcd_0 Zgcd_1 : zarith. +Hint Resolve Z.gcd_0_r Z.gcd_1_r : zarith. Theorem Zgcd_1_rel_prime : forall a b, Z.gcd a b = 1 <-> rel_prime a b. Proof. unfold rel_prime; split; intro H. rewrite <- H; apply Zgcd_is_gcd. - case (Zis_gcd_unique a b (Zgcd a b) 1); auto. + case (Zis_gcd_unique a b (Z.gcd a b) 1); auto. apply Zgcd_is_gcd. - intros H2; absurd (0 <= Zgcd a b); auto with zarith. - generalize (Zgcd_is_pos a b); auto with zarith. + intros H2; absurd (0 <= Z.gcd a b); auto with zarith. + generalize (Z.gcd_nonneg a b); auto with zarith. Qed. Definition rel_prime_dec: forall a b, { rel_prime a b }+{ ~ rel_prime a b }. Proof. - intros a b; case (Z_eq_dec (Zgcd a b) 1); intros H1. + intros a b; case (Z.eq_dec (Z.gcd a b) 1); intros H1. left; apply -> Zgcd_1_rel_prime; auto. right; contradict H1; apply <- Zgcd_1_rel_prime; auto. Defined. @@ -853,25 +844,24 @@ Proof. intros x Hx IH; destruct IH as [F|E]. destruct (rel_prime_dec x p) as [Y|N]. left; intros n [HH1 HH2]. - case (Zgt_succ_gt_or_eq x n); auto with zarith. - intros HH3; subst x; auto. - case (Z_lt_dec 1 x); intros HH1. - right; exists x; split; auto with zarith. - left; intros n [HHH1 HHH2]; contradict HHH1; auto with zarith. - right; destruct E as (n,((H0,H2),H3)); exists n; auto with zarith. + rewrite Z.lt_succ_r in HH2. + Z.le_elim HH2; subst; auto with zarith. + - case (Z_lt_dec 1 x); intros HH1. + * right; exists x; split; auto with zarith. + * left; intros n [HHH1 HHH2]; contradict HHH1; auto with zarith. + - right; destruct E as (n,((H0,H2),H3)); exists n; auto with zarith. Defined. Definition prime_dec: forall p, { prime p }+{ ~ prime p }. Proof. intros p; case (Z_lt_dec 1 p); intros H1. - case (prime_dec_aux p p); intros H2. - left; apply prime_intro; auto. - intros n [Hn1 Hn2]; case Zle_lt_or_eq with ( 1 := Hn1 ); auto. - intros HH; subst n. - red; apply Zis_gcd_intro; auto with zarith. - right; intros H3; inversion_clear H3 as [Hp1 Hp2]. - case H2; intros n [Hn1 Hn2]; case Hn2; auto with zarith. - right; intros H3; inversion_clear H3 as [Hp1 Hp2]; case H1; auto. + + case (prime_dec_aux p p); intros H2. + * left; apply prime_intro; auto. + intros n (Hn1,Hn2). Z.le_elim Hn1; auto; subst n. + constructor; auto with zarith. + * right; intros H3; inversion_clear H3 as [Hp1 Hp2]. + case H2; intros n [Hn1 Hn2]; case Hn2; auto with zarith. + + right; intros H3; inversion_clear H3 as [Hp1 Hp2]; case H1; auto. Defined. Theorem not_prime_divide: @@ -879,29 +869,16 @@ Theorem not_prime_divide: Proof. intros p Hp Hp1. case (prime_dec_aux p p); intros H1. - elim Hp1; constructor; auto. - intros n [Hn1 Hn2]. - case Zle_lt_or_eq with ( 1 := Hn1 ); auto with zarith. - intros H2; subst n; red; apply Zis_gcd_intro; auto with zarith. - case H1; intros n [Hn1 Hn2]. - generalize (Zgcd_is_pos n p); intros Hpos. - case (Zle_lt_or_eq 0 (Zgcd n p)); auto with zarith; intros H3. - case (Zle_lt_or_eq 1 (Zgcd n p)); auto with zarith; intros H4. - exists (Zgcd n p); split; auto. - split; auto. - apply Zle_lt_trans with n; auto with zarith. - generalize (Zgcd_is_gcd n p); intros tmp; inversion_clear tmp as [Hr1 Hr2 Hr3]. - case Hr1; intros q Hq. - case (Zle_or_lt q 0); auto with zarith; intros Ht. - absurd (n <= 0 * Zgcd n p) ; auto with zarith. - pattern n at 1; rewrite Hq; auto with zarith. - apply Zle_trans with (1 * Zgcd n p); auto with zarith. - pattern n at 2; rewrite Hq; auto with zarith. - generalize (Zgcd_is_gcd n p); intros Ht; inversion Ht; auto. - case Hn2; red. - rewrite H4; apply Zgcd_is_gcd. - generalize (Zgcd_is_gcd n p); rewrite <- H3; intros tmp; - inversion_clear tmp as [Hr1 Hr2 Hr3]. - absurd (n = 0); auto with zarith. - case Hr1; auto with zarith. + - elim Hp1; constructor; auto. + intros n (Hn1,Hn2). + Z.le_elim Hn1; auto with zarith. + subst n; constructor; auto with zarith. + - case H1; intros n (Hn1,Hn2). + destruct (Z_0_1_more _ (Z.gcd_nonneg n p)) as [H|[H|H]]. + + exfalso. apply Z.gcd_eq_0_l in H. omega. + + elim Hn2. red. rewrite <- H. apply Zgcd_is_gcd. + + exists (Z.gcd n p); split; [ split; auto | apply Z.gcd_divide_r ]. + apply Z.le_lt_trans with n; auto with zarith. + apply Z.divide_pos_le; auto with zarith. + apply Z.gcd_divide_l. Qed. diff --git a/theories/ZArith/Zorder.v b/theories/ZArith/Zorder.v index a8cd69bb..b1d1f8b5 100644 --- a/theories/ZArith/Zorder.v +++ b/theories/ZArith/Zorder.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* ~ m < n. Proof. @@ -121,18 +121,18 @@ Qed. (** Reflexivity *) -Notation Zle_refl := Z.le_refl (only parsing). -Notation Zeq_le := Z.eq_le_incl (only parsing). +Notation Zle_refl := Z.le_refl (compat "8.3"). +Notation Zeq_le := Z.eq_le_incl (compat "8.3"). Hint Resolve Z.le_refl: zarith. (** Antisymmetry *) -Notation Zle_antisym := Z.le_antisymm (only parsing). +Notation Zle_antisym := Z.le_antisymm (compat "8.3"). (** Asymmetry *) -Notation Zlt_asym := Z.lt_asymm (only parsing). +Notation Zlt_asym := Z.lt_asymm (compat "8.3"). Lemma Zgt_asym n m : n > m -> ~ m > n. Proof. @@ -141,8 +141,8 @@ Qed. (** Irreflexivity *) -Notation Zlt_irrefl := Z.lt_irrefl (only parsing). -Notation Zlt_not_eq := Z.lt_neq (only parsing). +Notation Zlt_irrefl := Z.lt_irrefl (compat "8.3"). +Notation Zlt_not_eq := Z.lt_neq (compat "8.3"). Lemma Zgt_irrefl n : ~ n > n. Proof. @@ -151,8 +151,8 @@ Qed. (** Large = strict or equal *) -Notation Zlt_le_weak := Z.lt_le_incl (only parsing). -Notation Zle_lt_or_eq_iff := Z.lt_eq_cases (only parsing). +Notation Zlt_le_weak := Z.lt_le_incl (compat "8.3"). +Notation Zle_lt_or_eq_iff := Z.lt_eq_cases (compat "8.3"). Lemma Zle_lt_or_eq n m : n <= m -> n < m \/ n = m. Proof. @@ -161,19 +161,21 @@ Qed. (** Dichotomy *) -Notation Zle_or_lt := Z.le_gt_cases (only parsing). +Notation Zle_or_lt := Z.le_gt_cases (compat "8.3"). (** Transitivity of strict orders *) -Notation Zlt_trans := Z.lt_trans (only parsing). +Notation Zlt_trans := Z.lt_trans (compat "8.3"). -Lemma Zgt_trans : forall n m p:Z, n > m -> m > p -> n > p. -Proof Zcompare_Gt_trans. +Lemma Zgt_trans n m p : n > m -> m > p -> n > p. +Proof. + Z.swap_greater. intros; now transitivity m. +Qed. (** Mixed transitivity *) -Notation Zlt_le_trans := Z.lt_le_trans (only parsing). -Notation Zle_lt_trans := Z.le_lt_trans (only parsing). +Notation Zlt_le_trans := Z.lt_le_trans (compat "8.3"). +Notation Zle_lt_trans := Z.le_lt_trans (compat "8.3"). Lemma Zle_gt_trans n m p : m <= n -> m > p -> n > p. Proof. @@ -187,7 +189,7 @@ Qed. (** Transitivity of large orders *) -Notation Zle_trans := Z.le_trans (only parsing). +Notation Zle_trans := Z.le_trans (compat "8.3"). Lemma Zge_trans n m p : n >= m -> m >= p -> n >= p. Proof. @@ -238,8 +240,8 @@ Qed. (** Special base instances of order *) -Notation Zlt_succ := Z.lt_succ_diag_r (only parsing). -Notation Zlt_pred := Z.lt_pred_l (only parsing). +Notation Zlt_succ := Z.lt_succ_diag_r (compat "8.3"). +Notation Zlt_pred := Z.lt_pred_l (compat "8.3"). Lemma Zgt_succ n : Z.succ n > n. Proof. @@ -253,8 +255,8 @@ Qed. (** Relating strict and large order using successor or predecessor *) -Notation Zlt_succ_r := Z.lt_succ_r (only parsing). -Notation Zle_succ_l := Z.le_succ_l (only parsing). +Notation Zlt_succ_r := Z.lt_succ_r (compat "8.3"). +Notation Zle_succ_l := Z.le_succ_l (compat "8.3"). Lemma Zgt_le_succ n m : m > n -> Z.succ n <= m. Proof. @@ -293,10 +295,10 @@ Qed. (** Weakening order *) -Notation Zle_succ := Z.le_succ_diag_r (only parsing). -Notation Zle_pred := Z.le_pred_l (only parsing). -Notation Zlt_lt_succ := Z.lt_lt_succ_r (only parsing). -Notation Zle_le_succ := Z.le_le_succ_r (only parsing). +Notation Zle_succ := Z.le_succ_diag_r (compat "8.3"). +Notation Zle_pred := Z.le_pred_l (compat "8.3"). +Notation Zlt_lt_succ := Z.lt_lt_succ_r (compat "8.3"). +Notation Zle_le_succ := Z.le_le_succ_r (compat "8.3"). Lemma Zle_succ_le n m : Z.succ n <= m -> n <= m. Proof. @@ -304,7 +306,7 @@ Proof. Qed. Hint Resolve Z.le_succ_diag_r: zarith. -Hint Resolve Zle_le_succ: zarith. +Hint Resolve Z.le_le_succ_r: zarith. (** Relating order wrt successor and order wrt predecessor *) @@ -332,8 +334,8 @@ Qed. (** Special cases of ordered integers *) -Notation Zlt_0_1 := Z.lt_0_1 (only parsing). -Notation Zle_0_1 := Z.le_0_1 (only parsing). +Notation Zlt_0_1 := Z.lt_0_1 (compat "8.3"). +Notation Zle_0_1 := Z.le_0_1 (compat "8.3"). Lemma Zle_neg_pos : forall p q:positive, Zneg p <= Zpos q. Proof. @@ -345,7 +347,7 @@ Proof. easy. Qed. -(* weaker but useful (in [Zpower] for instance) *) +(* weaker but useful (in [Z.pow] for instance) *) Lemma Zle_0_pos : forall p:positive, 0 <= Zpos p. Proof. easy. @@ -361,7 +363,7 @@ Proof. induction n; simpl; intros. apply Z.le_refl. easy. Qed. -Hint Immediate Zeq_le: zarith. +Hint Immediate Z.eq_le_incl: zarith. (** Derived lemma *) @@ -373,10 +375,10 @@ Qed. (** ** Addition *) (** Compatibility of addition wrt to order *) -Notation Zplus_lt_le_compat := Z.add_lt_le_mono (only parsing). -Notation Zplus_le_lt_compat := Z.add_le_lt_mono (only parsing). -Notation Zplus_le_compat := Z.add_le_mono (only parsing). -Notation Zplus_lt_compat := Z.add_lt_mono (only parsing). +Notation Zplus_lt_le_compat := Z.add_lt_le_mono (compat "8.3"). +Notation Zplus_le_lt_compat := Z.add_le_lt_mono (compat "8.3"). +Notation Zplus_le_compat := Z.add_le_mono (compat "8.3"). +Notation Zplus_lt_compat := Z.add_lt_mono (compat "8.3"). Lemma Zplus_gt_compat_l n m p : n > m -> p + n > p + m. Proof. @@ -410,7 +412,7 @@ Qed. (** Compatibility of addition wrt to being positive *) -Notation Zplus_le_0_compat := Z.add_nonneg_nonneg (only parsing). +Notation Zplus_le_0_compat := Z.add_nonneg_nonneg (compat "8.3"). (** Simplification of addition wrt to order *) @@ -568,9 +570,9 @@ Qed. (** Compatibility of multiplication by a positive wrt to being positive *) -Notation Zmult_le_0_compat := Z.mul_nonneg_nonneg (only parsing). -Notation Zmult_lt_0_compat := Z.mul_pos_pos (only parsing). -Notation Zmult_lt_O_compat := Z.mul_pos_pos (only parsing). +Notation Zmult_le_0_compat := Z.mul_nonneg_nonneg (compat "8.3"). +Notation Zmult_lt_0_compat := Z.mul_pos_pos (compat "8.3"). +Notation Zmult_lt_O_compat := Z.mul_pos_pos (compat "8.3"). Lemma Zmult_gt_0_compat n m : n > 0 -> m > 0 -> n * m > 0. Proof. @@ -622,9 +624,9 @@ Qed. (** * Equivalence between inequalities *) -Notation Zle_plus_swap := Z.le_add_le_sub_r (only parsing). -Notation Zlt_plus_swap := Z.lt_add_lt_sub_r (only parsing). -Notation Zlt_minus_simpl_swap := Z.lt_sub_pos (only parsing). +Notation Zle_plus_swap := Z.le_add_le_sub_r (compat "8.3"). +Notation Zlt_plus_swap := Z.lt_add_lt_sub_r (compat "8.3"). +Notation Zlt_minus_simpl_swap := Z.lt_sub_pos (compat "8.3"). Lemma Zeq_plus_swap n m p : n + p = m <-> n = m - p. Proof. diff --git a/theories/ZArith/Zpow_alt.v b/theories/ZArith/Zpow_alt.v index a90eedb4..f3eb63a8 100644 --- a/theories/ZArith/Zpow_alt.v +++ b/theories/ZArith/Zpow_alt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0 < Z.pow_pos x p. Proof. intros. now apply (Z.pow_pos_nonneg x (Zpos p)). Qed. -Notation Zpower_1_r := Z.pow_1_r (only parsing). -Notation Zpower_1_l := Z.pow_1_l (only parsing). -Notation Zpower_0_l := Z.pow_0_l' (only parsing). -Notation Zpower_0_r := Z.pow_0_r (only parsing). -Notation Zpower_2 := Z.pow_2_r (only parsing). -Notation Zpower_gt_0 := Z.pow_pos_nonneg (only parsing). -Notation Zpower_ge_0 := Z.pow_nonneg (only parsing). -Notation Zpower_Zabs := Z.abs_pow (only parsing). -Notation Zpower_Zsucc := Z.pow_succ_r (only parsing). -Notation Zpower_mult := Z.pow_mul_r (only parsing). -Notation Zpower_le_monotone2 := Z.pow_le_mono_r (only parsing). +Notation Zpower_1_r := Z.pow_1_r (compat "8.3"). +Notation Zpower_1_l := Z.pow_1_l (compat "8.3"). +Notation Zpower_0_l := Z.pow_0_l' (compat "8.3"). +Notation Zpower_0_r := Z.pow_0_r (compat "8.3"). +Notation Zpower_2 := Z.pow_2_r (compat "8.3"). +Notation Zpower_gt_0 := Z.pow_pos_nonneg (compat "8.3"). +Notation Zpower_ge_0 := Z.pow_nonneg (compat "8.3"). +Notation Zpower_Zabs := Z.abs_pow (compat "8.3"). +Notation Zpower_Zsucc := Z.pow_succ_r (compat "8.3"). +Notation Zpower_mult := Z.pow_mul_r (compat "8.3"). +Notation Zpower_le_monotone2 := Z.pow_le_mono_r (compat "8.3"). Theorem Zpower_le_monotone a b c : 0 < a -> 0 <= b <= c -> a^b <= a^c. @@ -85,15 +85,15 @@ Proof. assert (Hn := Nat2Z.is_nonneg n). destruct p; simpl Pos.size_nat. - specialize IHn with p. - rewrite Z.pos_xI, Nat2Z.inj_succ, Z.pow_succ_r; omega. + rewrite Pos2Z.inj_xI, Nat2Z.inj_succ, Z.pow_succ_r; omega. - specialize IHn with p. - rewrite Z.pos_xO, Nat2Z.inj_succ, Z.pow_succ_r; omega. + rewrite Pos2Z.inj_xO, Nat2Z.inj_succ, Z.pow_succ_r; omega. - split; auto with zarith. intros _. apply Z.pow_gt_1. easy. now rewrite Nat2Z.inj_succ, Z.lt_succ_r. Qed. -(** * Zpower and modulo *) +(** * Z.pow and modulo *) Theorem Zpower_mod p q n : 0 < n -> (p^q) mod n = ((p mod n)^q) mod n. @@ -106,7 +106,7 @@ Proof. - rewrite !Z.pow_neg_r; auto with zarith. Qed. -(** A direct way to compute Zpower modulo **) +(** A direct way to compute Z.pow modulo **) Fixpoint Zpow_mod_pos (a: Z)(m: positive)(n : Z) : Z := match m with @@ -231,9 +231,9 @@ Proof. exists n; destruct H; rewrite Z.mul_0_r in H; auto. Qed. -(** * Zsquare: a direct definition of [z^2] *) +(** * Z.square: a direct definition of [z^2] *) -Notation Psquare := Pos.square (only parsing). -Notation Zsquare := Z.square (only parsing). -Notation Psquare_correct := Pos.square_spec (only parsing). -Notation Zsquare_correct := Z.square_spec (only parsing). +Notation Psquare := Pos.square (compat "8.3"). +Notation Zsquare := Z.square (compat "8.3"). +Notation Psquare_correct := Pos.square_spec (compat "8.3"). +Notation Zsquare_correct := Z.square_spec (compat "8.3"). diff --git a/theories/ZArith/Zpower.v b/theories/ZArith/Zpower.v index 5052d01a..0d9b08d6 100644 --- a/theories/ZArith/Zpower.v +++ b/theories/ZArith/Zpower.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* = 0 -> m >= 0 -> x ^ (n + m) = x ^ n * x ^ m. @@ -181,7 +181,7 @@ Section Powers_of_2. Qed. Theorem shift_pos_correct p x : - Zpos (shift_pos p x) = Zpower_pos 2 p * Zpos x. + Zpos (shift_pos p x) = Z.pow_pos 2 p * Zpos x. Proof. now rewrite shift_pos_nat, Zpower_pos_nat, shift_nat_correct. Qed. @@ -266,13 +266,13 @@ Section power_div_with_rest. apply Pos.iter_invariant; [|omega]. intros ((q,r),d) (H,H'). unfold Zdiv_rest_aux. destruct q as [ |[q|q| ]|[q|q| ]]; try omega. - - rewrite Z.pos_xI, Z.mul_add_distr_r in H. + - rewrite Pos2Z.inj_xI, Z.mul_add_distr_r in H. rewrite Z.mul_shuffle3, Z.mul_assoc. omega. - - rewrite Z.pos_xO in H. + - rewrite Pos2Z.inj_xO in H. rewrite Z.mul_shuffle3, Z.mul_assoc. omega. - - rewrite Z.neg_xI, Z.mul_sub_distr_r in H. + - rewrite Pos2Z.neg_xI, Z.mul_sub_distr_r in H. rewrite Z.mul_sub_distr_r, Z.mul_shuffle3, Z.mul_assoc. omega. - - rewrite Z.neg_xO in H. + - rewrite Pos2Z.neg_xO in H. rewrite Z.mul_shuffle3, Z.mul_assoc. omega. Qed. diff --git a/theories/ZArith/Zquot.v b/theories/ZArith/Zquot.v index 9a95669f..c02f0ae6 100644 --- a/theories/ZArith/Zquot.v +++ b/theories/ZArith/Zquot.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* 0] condition + whenever possible. *) + +Lemma Zrem_0_l a : Z.rem 0 a = 0. +Proof. now destruct a. Qed. + +Lemma Zquot_0_l a : 0÷a = 0. +Proof. now destruct a. Qed. + +Hint Resolve Zrem_0_l Zrem_0_r Zquot_0_l Zquot_0_r Z.quot_1_r Z.rem_1_r + : zarith. -Lemma Ndiv_Zquot : forall a b:N, - Z_of_N (a/b) = (Z_of_N a ÷ Z_of_N b). -Proof. - intros. - destruct a; destruct b; simpl; auto. - unfold N.div, Z.quot; simpl. destruct N.pos_div_eucl; auto. -Qed. +Ltac zero_or_not a := + destruct (Z.eq_decidable a 0) as [->|?]; + [rewrite ?Zquot_0_l, ?Zrem_0_l, ?Zquot_0_r, ?Zrem_0_r; + auto with zarith|]. -Lemma Nmod_Zrem : forall a b:N, - Z.of_N (a mod b) = Z.rem (Z.of_N a) (Z.of_N b). -Proof. - intros. - destruct a; destruct b; simpl; auto. - unfold N.modulo, Z.rem; simpl; destruct N.pos_div_eucl; auto. -Qed. +Lemma Z_rem_same a : Z.rem a a = 0. +Proof. zero_or_not a. now apply Z.rem_same. Qed. -(** * Characterization of this euclidean division. *) +Lemma Z_rem_mult a b : Z.rem (a*b) b = 0. +Proof. zero_or_not b. now apply Z.rem_mul. Qed. -(** First, the usual equation [a=q*b+r]. Notice that [a mod 0] - has been chosen to be [a], so this equation holds even for [b=0]. -*) +(** * Division and Opposite *) -Notation Z_quot_rem_eq := Z.quot_rem' (only parsing). +(* The precise equalities that are invalid with "historic" Zdiv. *) -(** Then, the inequalities constraining the remainder: - The remainder is bounded by the divisor, in term of absolute values *) +Theorem Zquot_opp_l a b : (-a)÷b = -(a÷b). +Proof. zero_or_not b. now apply Z.quot_opp_l. Qed. -Theorem Zrem_lt : forall a b:Z, b<>0 -> - Z.abs (Z.rem a b) < Z.abs b. -Proof. - apply Z.rem_bound_abs. -Qed. +Theorem Zquot_opp_r a b : a÷(-b) = -(a÷b). +Proof. zero_or_not b. now apply Z.quot_opp_r. Qed. + +Theorem Zrem_opp_l a b : Z.rem (-a) b = -(Z.rem a b). +Proof. zero_or_not b. now apply Z.rem_opp_l. Qed. + +Theorem Zrem_opp_r a b : Z.rem a (-b) = Z.rem a b. +Proof. zero_or_not b. now apply Z.rem_opp_r. Qed. + +Theorem Zquot_opp_opp a b : (-a)÷(-b) = a÷b. +Proof. zero_or_not b. now apply Z.quot_opp_opp. Qed. + +Theorem Zrem_opp_opp a b : Z.rem (-a) (-b) = -(Z.rem a b). +Proof. zero_or_not b. now apply Z.rem_opp_opp. Qed. (** The sign of the remainder is the one of [a]. Due to the possible nullity of [a], a general result is to be stated in the following form: @@ -63,41 +107,33 @@ Qed. Theorem Zrem_sgn a b : 0 <= Z.sgn (Z.rem a b) * Z.sgn a. Proof. - destruct b as [ |b|b]; destruct a as [ |a|a]; simpl; auto with zarith; - unfold Z.rem, Z.quotrem; destruct N.pos_div_eucl; - simpl; destruct n0; simpl; auto with zarith. + zero_or_not b. + - apply Z.square_nonneg. + - zero_or_not (Z.rem a b). + rewrite Z.rem_sign_nz; trivial. apply Z.square_nonneg. Qed. (** This can also be said in a simplier way: *) Theorem Zrem_sgn2 a b : 0 <= (Z.rem a b) * a. Proof. - rewrite <-Z.sgn_nonneg, Z.sgn_mul; apply Zrem_sgn. + zero_or_not b. + - apply Z.square_nonneg. + - now apply Z.rem_sign_mul. Qed. -(** Reformulation of [Zquot_lt] and [Zrem_sgn] in 2 - then 4 particular cases. *) +(** Reformulation of [Z.rem_bound_abs] in 2 then 4 particular cases. *) Theorem Zrem_lt_pos a b : 0<=a -> b<>0 -> 0 <= Z.rem a b < Z.abs b. Proof. - intros. - assert (0 <= Z.rem a b). - generalize (Zrem_sgn a b). - destruct (Zle_lt_or_eq 0 a H). - rewrite <- Zsgn_pos in H1; rewrite H1. romega with *. - subst a; simpl; auto. - generalize (Zrem_lt a b H0); romega with *. + intros; generalize (Z.rem_nonneg a b) (Z.rem_bound_abs a b); + romega with *. Qed. Theorem Zrem_lt_neg a b : a<=0 -> b<>0 -> -Z.abs b < Z.rem a b <= 0. Proof. - intros. - assert (Z.rem a b <= 0). - generalize (Zrem_sgn a b). - destruct (Zle_lt_or_eq a 0 H). - rewrite <- Zsgn_neg in H1; rewrite H1; romega with *. - subst a; simpl; auto. - generalize (Zrem_lt a b H0); romega with *. + intros; generalize (Z.rem_nonpos a b) (Z.rem_bound_abs a b); + romega with *. Qed. Theorem Zrem_lt_pos_pos a b : 0<=a -> 0 0 <= Z.rem a b < b. @@ -120,45 +156,6 @@ Proof. intros; generalize (Zrem_lt_neg a b); romega with *. Qed. -(** * Division and Opposite *) - -(* The precise equalities that are invalid with "historic" Zdiv. *) - -Theorem Zquot_opp_l a b : (-a)÷b = -(a÷b). -Proof. - destruct a; destruct b; simpl; auto; - unfold Z.quot, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith. -Qed. - -Theorem Zquot_opp_r a b : a÷(-b) = -(a÷b). -Proof. - destruct a; destruct b; simpl; auto; - unfold Z.quot, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith. -Qed. - -Theorem Zrem_opp_l a b : Z.rem (-a) b = -(Z.rem a b). -Proof. - destruct a; destruct b; simpl; auto; - unfold Z.rem, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith. -Qed. - -Theorem Zrem_opp_r a b : Z.rem a (-b) = Z.rem a b. -Proof. - destruct a; destruct b; simpl; auto; - unfold Z.rem, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith. -Qed. - -Theorem Zquot_opp_opp a b : (-a)÷(-b) = a÷b. -Proof. - destruct a; destruct b; simpl; auto; - unfold Z.quot, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith. -Qed. - -Theorem Zrem_opp_opp a b : Z.rem (-a) (-b) = -(Z.rem a b). -Proof. - destruct a; destruct b; simpl; auto; - unfold Z.rem, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith. -Qed. (** * Unicity results *) @@ -172,170 +169,93 @@ Lemma Remainder_equiv : forall a b r, Remainder a b r <-> Remainder_alt a b r. Proof. unfold Remainder, Remainder_alt; intuition. - romega with *. - romega with *. - rewrite <-(Zmult_opp_opp). - apply Zmult_le_0_compat; romega. - assert (0 <= Z.sgn r * Z.sgn a) by (rewrite <-Z.sgn_mul, Z.sgn_nonneg; auto). - destruct r; simpl Z.sgn in *; romega with *. + - romega with *. + - romega with *. + - rewrite <-(Z.mul_opp_opp). apply Z.mul_nonneg_nonneg; romega. + - assert (0 <= Z.sgn r * Z.sgn a). + { rewrite <-Z.sgn_mul, Z.sgn_nonneg; auto. } + destruct r; simpl Z.sgn in *; romega with *. Qed. -Theorem Zquot_mod_unique_full: - forall a b q r, Remainder a b r -> - a = b*q + r -> q = a÷b /\ r = Z.rem a b. +Theorem Zquot_mod_unique_full a b q r : + Remainder a b r -> a = b*q + r -> q = a÷b /\ r = Z.rem a b. Proof. destruct 1 as [(H,H0)|(H,H0)]; intros. apply Zdiv_mod_unique with b; auto. apply Zrem_lt_pos; auto. romega with *. - rewrite <- H1; apply Z_quot_rem_eq. + rewrite <- H1; apply Z.quot_rem'. - rewrite <- (Zopp_involutive a). + rewrite <- (Z.opp_involutive a). rewrite Zquot_opp_l, Zrem_opp_l. generalize (Zdiv_mod_unique b (-q) (-a÷b) (-r) (Z.rem (-a) b)). generalize (Zrem_lt_pos (-a) b). - rewrite <-Z_quot_rem_eq, <-Zopp_mult_distr_r, <-Zopp_plus_distr, <-H1. + rewrite <-Z.quot_rem', Z.mul_opp_r, <-Z.opp_add_distr, <-H1. romega with *. Qed. -Theorem Zquot_unique_full: - forall a b q r, Remainder a b r -> - a = b*q + r -> q = a÷b. +Theorem Zquot_unique_full a b q r : + Remainder a b r -> a = b*q + r -> q = a÷b. Proof. intros; destruct (Zquot_mod_unique_full a b q r); auto. Qed. -Theorem Zquot_unique: - forall a b q r, 0 <= a -> 0 <= r < b -> - a = b*q + r -> q = a÷b. -Proof. exact Z.quot_unique. Qed. - -Theorem Zrem_unique_full: - forall a b q r, Remainder a b r -> - a = b*q + r -> r = Z.rem a b. +Theorem Zrem_unique_full a b q r : + Remainder a b r -> a = b*q + r -> r = Z.rem a b. Proof. intros; destruct (Zquot_mod_unique_full a b q r); auto. Qed. -Theorem Zrem_unique: - forall a b q r, 0 <= a -> 0 <= r < b -> - a = b*q + r -> r = Z.rem a b. -Proof. exact Z.rem_unique. Qed. - -(** * Basic values of divisions and modulo. *) - -Lemma Zrem_0_l: forall a, Z.rem 0 a = 0. -Proof. - destruct a; simpl; auto. -Qed. - -Lemma Zrem_0_r: forall a, Z.rem a 0 = a. -Proof. - destruct a; simpl; auto. -Qed. - -Lemma Zquot_0_l: forall a, 0÷a = 0. -Proof. - destruct a; simpl; auto. -Qed. - -Lemma Zquot_0_r: forall a, a÷0 = 0. -Proof. - destruct a; simpl; auto. -Qed. - -Lemma Zrem_1_r: forall a, Z.rem a 1 = 0. -Proof. exact Z.rem_1_r. Qed. - -Lemma Zquot_1_r: forall a, a÷1 = a. -Proof. exact Z.quot_1_r. Qed. - -Hint Resolve Zrem_0_l Zrem_0_r Zquot_0_l Zquot_0_r Zquot_1_r Zrem_1_r - : zarith. - -Lemma Zquot_1_l: forall a, 1 < a -> 1÷a = 0. -Proof. exact Z.quot_1_l. Qed. - -Lemma Zrem_1_l: forall a, 1 < a -> Z.rem 1 a = 1. -Proof. exact Z.rem_1_l. Qed. - -Lemma Z_quot_same : forall a:Z, a<>0 -> a÷a = 1. -Proof. exact Z.quot_same. Qed. - -Ltac zero_or_not a := - destruct (Z.eq_dec a 0); - [subst; rewrite ?Zrem_0_l, ?Zquot_0_l, ?Zrem_0_r, ?Zquot_0_r; - auto with zarith|]. - -Lemma Z_rem_same : forall a, Z.rem a a = 0. -Proof. intros. zero_or_not a. apply Z.rem_same; auto. Qed. - -Lemma Z_rem_mult : forall a b, Z.rem (a*b) b = 0. -Proof. intros. zero_or_not b. apply Z.rem_mul; auto. Qed. - -Lemma Z_quot_mult : forall a b:Z, b <> 0 -> (a*b)÷b = a. -Proof. exact Z.quot_mul. Qed. - (** * Order results about Zrem and Zquot *) (* Division of positive numbers is positive. *) -Lemma Z_quot_pos: forall a b, 0 <= a -> 0 <= b -> 0 <= a÷b. +Lemma Z_quot_pos a b : 0 <= a -> 0 <= b -> 0 <= a÷b. Proof. intros. zero_or_not b. apply Z.quot_pos; auto with zarith. Qed. (** As soon as the divisor is greater or equal than 2, the division is strictly decreasing. *) -Lemma Z_quot_lt : forall a b:Z, 0 < a -> 2 <= b -> a÷b < a. +Lemma Z_quot_lt a b : 0 < a -> 2 <= b -> a÷b < a. Proof. intros. apply Z.quot_lt; auto with zarith. Qed. -(** A division of a small number by a bigger one yields zero. *) +(** [<=] is compatible with a positive division. *) -Theorem Zquot_small: forall a b, 0 <= a < b -> a÷b = 0. -Proof. exact Z.quot_small. Qed. - -(** Same situation, in term of modulo: *) - -Theorem Zrem_small: forall a n, 0 <= a < n -> Z.rem a n = a. -Proof. exact Z.rem_small. Qed. - -(** [Zge] is compatible with a positive division. *) - -Lemma Z_quot_monotone : forall a b c, 0<=c -> a<=b -> a÷c <= b÷c. +Lemma Z_quot_monotone a b c : 0<=c -> a<=b -> a÷c <= b÷c. Proof. intros. zero_or_not c. apply Z.quot_le_mono; auto with zarith. Qed. -(** With our choice of division, rounding of (a÷b) is always done toward zero: *) +(** With our choice of division, rounding of (a÷b) is always done toward 0: *) -Lemma Z_mult_quot_le : forall a b:Z, 0 <= a -> 0 <= b*(a÷b) <= a. +Lemma Z_mult_quot_le a b : 0 <= a -> 0 <= b*(a÷b) <= a. Proof. intros. zero_or_not b. apply Z.mul_quot_le; auto with zarith. Qed. -Lemma Z_mult_quot_ge : forall a b:Z, a <= 0 -> a <= b*(a÷b) <= 0. +Lemma Z_mult_quot_ge a b : a <= 0 -> a <= b*(a÷b) <= 0. Proof. intros. zero_or_not b. apply Z.mul_quot_ge; auto with zarith. Qed. (** The previous inequalities between [b*(a÷b)] and [a] are exact iff the modulo is zero. *) -Lemma Z_quot_exact_full : forall a b:Z, a = b*(a÷b) <-> Z.rem a b = 0. +Lemma Z_quot_exact_full a b : a = b*(a÷b) <-> Z.rem a b = 0. Proof. intros. zero_or_not b. intuition. apply Z.quot_exact; auto. Qed. (** A modulo cannot grow beyond its starting point. *) -Theorem Zrem_le: forall a b, 0 <= a -> 0 <= b -> Z.rem a b <= a. +Theorem Zrem_le a b : 0 <= a -> 0 <= b -> Z.rem a b <= a. Proof. intros. zero_or_not b. apply Z.rem_le; auto with zarith. Qed. (** Some additionnal inequalities about Zdiv. *) Theorem Zquot_le_upper_bound: forall a b q, 0 < b -> a <= q*b -> a÷b <= q. -Proof. intros a b q; rewrite Zmult_comm; apply Z.quot_le_upper_bound. Qed. +Proof. intros a b q; rewrite Z.mul_comm; apply Z.quot_le_upper_bound. Qed. Theorem Zquot_lt_upper_bound: forall a b q, 0 <= a -> 0 < b -> a < q*b -> a÷b < q. -Proof. intros a b q; rewrite Zmult_comm; apply Z.quot_lt_upper_bound. Qed. +Proof. intros a b q; rewrite Z.mul_comm; apply Z.quot_lt_upper_bound. Qed. Theorem Zquot_le_lower_bound: forall a b q, 0 < b -> q*b <= a -> q <= a÷b. -Proof. intros a b q; rewrite Zmult_comm; apply Z.quot_le_lower_bound. Qed. +Proof. intros a b q; rewrite Z.mul_comm; apply Z.quot_le_lower_bound. Qed. Theorem Zquot_sgn: forall a b, 0 <= Z.sgn (a÷b) * Z.sgn a * Z.sgn b. @@ -374,22 +294,22 @@ Proof. intros. zero_or_not b. apply Z.quot_mul_cancel_r; auto. Qed. Lemma Zquot_mult_cancel_l : forall a b c:Z, c<>0 -> (c*a)÷(c*b) = a÷b. Proof. - intros. rewrite (Zmult_comm c b). zero_or_not b. - rewrite (Zmult_comm b c). apply Z.quot_mul_cancel_l; auto. + intros. rewrite (Z.mul_comm c b). zero_or_not b. + rewrite (Z.mul_comm b c). apply Z.quot_mul_cancel_l; auto. Qed. Lemma Zmult_rem_distr_l: forall a b c, Z.rem (c*a) (c*b) = c * (Z.rem a b). Proof. - intros. zero_or_not c. rewrite (Zmult_comm c b). zero_or_not b. - rewrite (Zmult_comm b c). apply Z.mul_rem_distr_l; auto. + intros. zero_or_not c. rewrite (Z.mul_comm c b). zero_or_not b. + rewrite (Z.mul_comm b c). apply Z.mul_rem_distr_l; auto. Qed. Lemma Zmult_rem_distr_r: forall a b c, Z.rem (a*c) (b*c) = (Z.rem a b) * c. Proof. - intros. zero_or_not b. rewrite (Zmult_comm b c). zero_or_not c. - rewrite (Zmult_comm c b). apply Z.mul_rem_distr_r; auto. + intros. zero_or_not b. rewrite (Z.mul_comm b c). zero_or_not c. + rewrite (Z.mul_comm c b). apply Z.mul_rem_distr_r; auto. Qed. (** Operations modulo. *) @@ -424,7 +344,7 @@ Lemma Zplus_rem_idemp_r: forall a b n, Z.rem (b + Z.rem a n) n = Z.rem (b + a) n. Proof. intros. zero_or_not n. apply Z.add_rem_idemp_r; auto. - rewrite Zmult_comm; auto. + rewrite Z.mul_comm; auto. Qed. Lemma Zmult_rem_idemp_l: forall a b n, Z.rem (Z.rem a n * b) n = Z.rem (a * b) n. @@ -437,8 +357,8 @@ Proof. intros. zero_or_not n. apply Z.mul_rem_idemp_r; auto. Qed. Lemma Zquot_Zquot : forall a b c, (a÷b)÷c = a÷(b*c). Proof. - intros. zero_or_not b. rewrite Zmult_comm. zero_or_not c. - rewrite Zmult_comm. apply Z.quot_quot; auto. + intros. zero_or_not b. rewrite Z.mul_comm. zero_or_not c. + rewrite Z.mul_comm. apply Z.quot_quot; auto. Qed. (** A last inequality: *) @@ -468,28 +388,26 @@ Proof. right. destruct p; simpl; split; now auto with zarith. Qed. -Notation Zquot2_quot := Zquot2_quot (only parsing). - Lemma Zrem_odd : forall a, Z.rem a 2 = if Z.odd a then Z.sgn a else 0. Proof. intros. symmetry. - apply Zrem_unique_full with (Zquot2 a). + apply Zrem_unique_full with (Z.quot2 a). apply Zquot2_odd_remainder. apply Zquot2_odd_eqn. Qed. Lemma Zrem_even : forall a, Z.rem a 2 = if Z.even a then 0 else Z.sgn a. Proof. - intros a. rewrite Zrem_odd, Zodd_even_bool. now destruct Zeven_bool. + intros a. rewrite Zrem_odd, Zodd_even_bool. now destruct Z.even. Qed. -Lemma Zeven_rem : forall a, Z.even a = Zeq_bool (Z.rem a 2) 0. +Lemma Zeven_rem : forall a, Z.even a = Z.eqb (Z.rem a 2) 0. Proof. intros a. rewrite Zrem_even. destruct a as [ |p|p]; trivial; now destruct p. Qed. -Lemma Zodd_rem : forall a, Z.odd a = negb (Zeq_bool (Z.rem a 2) 0). +Lemma Zodd_rem : forall a, Z.odd a = negb (Z.eqb (Z.rem a 2) 0). Proof. intros a. rewrite Zrem_odd. destruct a as [ |p|p]; trivial; now destruct p. @@ -505,18 +423,17 @@ Proof. intros. apply Zdiv_mod_unique with b. apply Zrem_lt_pos; auto with zarith. - rewrite Zabs_eq; auto with *; apply Z_mod_lt; auto with *. + rewrite Z.abs_eq; auto with *; apply Z_mod_lt; auto with *. rewrite <- Z_div_mod_eq; auto with *. - symmetry; apply Z_quot_rem_eq; auto with *. + symmetry; apply Z.quot_rem; auto with *. Qed. Theorem Zquot_Zdiv_pos : forall a b, 0 <= a -> 0 <= b -> a÷b = a/b. Proof. - intros a b Ha Hb. - destruct (Zle_lt_or_eq _ _ Hb). - generalize (Zquotrem_Zdiv_eucl_pos a b Ha H); intuition. - subst; rewrite Zquot_0_r, Zdiv_0_r; reflexivity. + intros a b Ha Hb. Z.le_elim Hb. + - generalize (Zquotrem_Zdiv_eucl_pos a b Ha Hb); intuition. + - subst; now rewrite Zquot_0_r, Zdiv_0_r. Qed. Theorem Zrem_Zmod_pos : forall a b, 0 <= a -> 0 < b -> diff --git a/theories/ZArith/Zsqrt_compat.v b/theories/ZArith/Zsqrt_compat.v index 4584c3f8..a6c83241 100644 --- a/theories/ZArith/Zsqrt_compat.v +++ b/theories/ZArith/Zsqrt_compat.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* match constr:X1 with | context [1%positive] => fail 1 - | _ => rewrite (BinInt.Zpos_xI X1) + | _ => rewrite (Pos2Z.inj_xI X1) end | |- context [(Zpos (xO ?X1))] => match constr:X1 with | context [1%positive] => fail 1 - | _ => rewrite (BinInt.Zpos_xO X1) + | _ => rewrite (Pos2Z.inj_xO X1) end end. @@ -115,7 +115,7 @@ Definition Zsqrt : fun h => match sqrtrempos p with | c_sqrt s r Heq Hint => - existS + existT (fun s:Z => {r : Z | Zpos p = s * s + r /\ s * s <= Zpos p < (s + 1) * (s + 1)}) @@ -131,10 +131,10 @@ Definition Zsqrt : {s : Z & {r : Z | Zneg p = s * s + r /\ s * s <= Zneg p < (s + 1) * (s + 1)}} - (h (refl_equal Datatypes.Gt)) + (h (eq_refl Datatypes.Gt)) | Z0 => fun h => - existS + existT (fun s:Z => {r : Z | 0 = s * s + r /\ s * s <= 0 < (s + 1) * (s + 1)}) 0 (exist @@ -149,8 +149,8 @@ Defined. Definition Zsqrt_plain (x:Z) : Z := match x with | Zpos p => - match Zsqrt (Zpos p) (Zorder.Zle_0_pos p) with - | existS s _ => s + match Zsqrt (Zpos p) (Pos2Z.is_nonneg p) with + | existT s _ => s end | Zneg p => 0 | Z0 => 0 @@ -164,12 +164,11 @@ Theorem Zsqrt_interval : Zsqrt_plain n * Zsqrt_plain n <= n < (Zsqrt_plain n + 1) * (Zsqrt_plain n + 1). Proof. - intros x; case x. - unfold Zsqrt_plain in |- *; omega. - intros p; unfold Zsqrt_plain in |- *; - case (Zsqrt (Zpos p) (Zorder.Zle_0_pos p)). - intros s [r [Heq Hint]] Hle; assumption. - intros p Hle; elim Hle; auto. + intros [|p|p] Hp. + - now compute. + - unfold Zsqrt_plain. + now destruct Zsqrt as (s & r & Heq & Hint). + - now elim Hp. Qed. (** Positivity *) @@ -177,9 +176,9 @@ Qed. Theorem Zsqrt_plain_is_pos: forall n, 0 <= n -> 0 <= Zsqrt_plain n. Proof. intros n m; case (Zsqrt_interval n); auto with zarith. - intros H1 H2; case (Zle_or_lt 0 (Zsqrt_plain n)); auto. - intros H3; contradict H2; auto; apply Zle_not_lt. - apply Zle_trans with ( 2 := H1 ). + intros H1 H2; case (Z.le_gt_cases 0 (Zsqrt_plain n)); auto. + intros H3; contradict H2; auto; apply Z.le_ngt. + apply Z.le_trans with ( 2 := H1 ). replace ((Zsqrt_plain n + 1) * (Zsqrt_plain n + 1)) with (Zsqrt_plain n * Zsqrt_plain n + (2 * Zsqrt_plain n + 1)); auto with zarith. @@ -194,13 +193,13 @@ Proof. generalize (Zsqrt_plain_is_pos (a * a)); auto with zarith; intros Haa. case (Zsqrt_interval (a * a)); auto with zarith. intros H1 H2. - case (Zle_or_lt a (Zsqrt_plain (a * a))); intros H3; auto. - case Zle_lt_or_eq with (1:=H3); auto; clear H3; intros H3. - contradict H1; auto; apply Zlt_not_le; auto with zarith. - apply Zle_lt_trans with (a * Zsqrt_plain (a * a)); auto with zarith. - apply Zmult_lt_compat_r; auto with zarith. - contradict H2; auto; apply Zle_not_lt; auto with zarith. - apply Zmult_le_compat; auto with zarith. + case (Z.le_gt_cases a (Zsqrt_plain (a * a))); intros H3. + - Z.le_elim H3; auto. + contradict H1; auto; apply Z.lt_nge; auto with zarith. + apply Z.le_lt_trans with (a * Zsqrt_plain (a * a)); auto with zarith. + apply Z.mul_lt_mono_pos_r; auto with zarith. + - contradict H2; auto; apply Z.le_ngt; auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. Qed. (** [Zsqrt_plain] is increasing *) @@ -208,16 +207,16 @@ Qed. Theorem Zsqrt_le: forall p q, 0 <= p <= q -> Zsqrt_plain p <= Zsqrt_plain q. Proof. - intros p q [H1 H2]; case Zle_lt_or_eq with (1:=H2); clear H2; intros H2; - [ | subst q; auto with zarith]. - case (Zle_or_lt (Zsqrt_plain p) (Zsqrt_plain q)); auto; intros H3. + intros p q [H1 H2]. + Z.le_elim H2; [ | subst q; auto with zarith]. + case (Z.le_gt_cases (Zsqrt_plain p) (Zsqrt_plain q)); auto; intros H3. assert (Hp: (0 <= Zsqrt_plain q)). - apply Zsqrt_plain_is_pos; auto with zarith. + { apply Zsqrt_plain_is_pos; auto with zarith. } absurd (q <= p); auto with zarith. - apply Zle_trans with ((Zsqrt_plain q + 1) * (Zsqrt_plain q + 1)). + apply Z.le_trans with ((Zsqrt_plain q + 1) * (Zsqrt_plain q + 1)). case (Zsqrt_interval q); auto with zarith. - apply Zle_trans with (Zsqrt_plain p * Zsqrt_plain p); auto with zarith. - apply Zmult_le_compat; auto with zarith. + apply Z.le_trans with (Zsqrt_plain p * Zsqrt_plain p); auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. case (Zsqrt_interval p); auto with zarith. Qed. diff --git a/theories/ZArith/Zwf.v b/theories/ZArith/Zwf.v index 30802f82..e07fc715 100644 --- a/theories/ZArith/Zwf.v +++ b/theories/ZArith/Zwf.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Acc (Zwf c) a). clear a; simple induction n; intros. (** n= 0 *) case H; intros. case (lt_n_O (f a)); auto. - apply Acc_intro; unfold Zwf in |- *; intros. + apply Acc_intro; unfold Zwf; intros. assert False; omega || contradiction. (** inductive case *) case H0; clear H0; intro; auto. apply Acc_intro; intros. apply H. unfold Zwf in H1. - case (Zle_or_lt c y); intro; auto with zarith. + case (Z.le_gt_cases c y); intro; auto with zarith. left. red in H0. apply lt_le_trans with (f a); auto with arith. - unfold f in |- *. - apply Zabs.Zabs_nat_lt; omega. + unfold f. + apply Zabs2Nat.inj_lt; omega. apply (H (S (f a))); auto. Qed. @@ -75,18 +75,15 @@ Section wf_proof_up. (** The proof of well-foundness is classic: we do the proof by induction on a measure in nat, which is here [|c-x|] *) - Let f (z:Z) := Zabs_nat (c - z). + Let f (z:Z) := Z.abs_nat (c - z). Lemma Zwf_up_well_founded : well_founded (Zwf_up c). Proof. apply well_founded_lt_compat with (f := f). - unfold Zwf_up, f in |- *. + unfold Zwf_up, f. intros. - apply Zabs.Zabs_nat_lt. - unfold Zminus in |- *. split. - apply Zle_left; intuition. - apply Zplus_lt_compat_l; unfold Zlt in |- *; rewrite <- Zcompare_opp; - intuition. + apply Zabs2Nat.inj_lt; try (apply Z.le_0_sub; intuition). + now apply Z.sub_lt_mono_l. Qed. End wf_proof_up. diff --git a/theories/ZArith/auxiliary.v b/theories/ZArith/auxiliary.v index 742f4bde..af7d5a2e 100644 --- a/theories/ZArith/auxiliary.v +++ b/theories/ZArith/auxiliary.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* !r), start_env, stop_env + + let in_emph, start_emph, stop_emph = in_env Output.start_emph Output.stop_emph + let in_quote, start_quote, stop_quote = in_env Output.start_quote Output.stop_quote + + let url_buffer = Buffer.create 40 + let url_name_buffer = Buffer.create 40 let backtrack lexbuf = lexbuf.lex_curr_pos <- lexbuf.lex_start_pos; lexbuf.lex_curr_p <- lexbuf.lex_start_p @@ -254,7 +263,7 @@ let nbsp,isp = count_spaces s in Output.indentation nbsp; let s = String.sub s isp (String.length s - isp) in - Output.ident s (lexeme_start lexbuf + isp) + Output.keyword s (lexeme_start lexbuf + isp) } @@ -369,13 +378,17 @@ let commands = | "Drop" | "ProtectedLoop" | "Quit" + | "Restart" | "Load" | "Add" | "Remove" space+ "Loadpath" | "Print" | "Inspect" | "About" + | "SearchAbout" + | "SearchRewrite" | "Search" + | "Locate" | "Eval" | "Reset" | "Check" @@ -403,6 +416,14 @@ let prog_kw = | "Obligations" | "Solve" +let hint_kw = + "Extern" | "Rewrite" | "Resolve" | "Immediate" | "Transparent" | "Opaque" | "Unfold" | "Constructors" + +let set_kw = + "Printing" space+ ("Coercions" | "Universes" | "All") + | "Implicit" space+ "Arguments" + + let gallina_kw_to_hide = "Implicit" space+ "Arguments" | "Ltac" @@ -410,15 +431,16 @@ let gallina_kw_to_hide = | "Import" | "Export" | "Load" - | "Hint" + | "Hint" space+ hint_kw | "Open" | "Close" | "Delimit" | "Transparent" | "Opaque" | ("Declare" space+ ("Morphism" | "Step") ) - | ("Set" | "Unset") space+ "Printing" space+ "Coercions" + | ("Set" | "Unset") space+ set_kw | "Declare" space+ ("Left" | "Right") space+ "Step" + | "Debug" space+ ("On" | "Off") let section = "*" | "**" | "***" | "****" @@ -689,7 +711,7 @@ and doc_bol = parse | space* nl+ { Output.paragraph (); doc_bol lexbuf } | "<<" space* - { Output.start_verbatim (); verbatim lexbuf; doc_bol lexbuf } + { Output.start_verbatim false; verbatim false lexbuf; doc_bol lexbuf } | eof { true } | '_' @@ -713,8 +735,8 @@ and doc_list_bol indents = parse backtrack lexbuf; doc_bol lexbuf } | "<<" space* - { Output.start_verbatim (); - verbatim lexbuf; + { Output.start_verbatim false; + verbatim false lexbuf; doc_list_bol indents lexbuf } | "[[" nl { formatted := true; @@ -813,6 +835,7 @@ and doc indents = parse { inf_rules indents lexbuf } | "[]" { Output.proofbox (); doc indents lexbuf } + | "{{" { url lexbuf; doc indents lexbuf } | "[" { if !Cdglobals.plain_comments then Output.char '[' else (brackets := 1; Output.start_inline_coq (); escaped_coq lexbuf; @@ -872,6 +895,15 @@ and doc indents = parse { if !Cdglobals.plain_comments then Output.char '_' else stop_emph () ; Output.char (lexeme_char lexbuf 1); doc indents lexbuf } + | "<<" space* + { Output.start_verbatim true; verbatim true lexbuf; doc_bol lexbuf } + | '"' + { if !Cdglobals.plain_comments + then Output.char '"' + else if in_quote () + then stop_quote () + else start_quote (); + doc indents lexbuf } | eof { false } | _ @@ -898,11 +930,22 @@ and escaped_html = parse | eof { () } | _ { Output.html_char (lexeme_char lexbuf 0); escaped_html lexbuf } -and verbatim = parse - | nl ">>" space* nl { Output.verbatim_char '\n'; Output.stop_verbatim () } - | nl ">>" { Output.verbatim_char '\n'; Output.stop_verbatim () } - | eof { Output.stop_verbatim () } - | _ { Output.verbatim_char (lexeme_char lexbuf 0); verbatim lexbuf } +and verbatim inline = parse + | nl ">>" space* nl { Output.verbatim_char inline '\n'; Output.stop_verbatim inline } + | nl ">>" { Output.verbatim_char inline '\n'; Output.stop_verbatim inline } + | ">>" { Output.stop_verbatim inline } + | eof { Output.stop_verbatim inline } + | _ { Output.verbatim_char inline (lexeme_char lexbuf 0); verbatim inline lexbuf } + +and url = parse + | "}}" { Output.url (Buffer.contents url_buffer) None; Buffer.clear url_buffer } + | "}" { url_name lexbuf } + | _ { Buffer.add_char url_buffer (lexeme_char lexbuf 0); url lexbuf } + +and url_name = parse + | "}" { Output.url (Buffer.contents url_buffer) (Some (Buffer.contents url_name_buffer)); + Buffer.clear url_buffer; Buffer.clear url_name_buffer } + | _ { Buffer.add_char url_name_buffer (lexeme_char lexbuf 0); url_name lexbuf } (*s Coq, inside quotations *) diff --git a/tools/coqdoc/index.ml b/tools/coqdoc/index.ml index f19433e9..d319ce72 100644 --- a/tools/coqdoc/index.ml +++ b/tools/coqdoc/index.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* for loc=loc1 to loc2 do - add_ref !cur_mod loc lib_dp sp id (type_of_string ty) + add_ref !cur_mod loc lib_dp sp id (type_of_string ty); + + (* Also add an entry for each module mentioned in [lib_dp], + * to use in interpolation. *) + ignore (List.fold_right (fun thisPiece priorPieces -> + let newPieces = match priorPieces with + | "" -> thisPiece + | _ -> thisPiece ^ "." ^ priorPieces in + add_ref !cur_mod loc "" "" newPieces Library; + newPieces) (Str.split (Str.regexp_string ".") lib_dp) "") done) with _ -> ()) | _ -> diff --git a/tools/coqdoc/index.mli b/tools/coqdoc/index.mli index bb775d26..8c658a90 100644 --- a/tools/coqdoc/index.mli +++ b/tools/coqdoc/index.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Buffer.add_char buff '\\'; Buffer.add_char buff c; Buffer.add_string buff "{}" + | '\'' -> + if i < String.length s - 1 && s.[i+1] = '\'' then begin + Buffer.add_char buff '\''; Buffer.add_char buff '{'; + Buffer.add_char buff '}' + end else + Buffer.add_char buff '\'' | c -> Buffer.add_char buff c done; @@ -282,9 +300,23 @@ module Latex = struct let stop_latex_math () = output_char '$' - let start_verbatim () = printf "\\begin{verbatim}" + let start_quote () = output_char '`'; output_char '`' + let stop_quote () = output_char '\''; output_char '\'' + + let start_verbatim inline = + if inline then printf "\\texttt{" + else printf "\\begin{verbatim}" - let stop_verbatim () = printf "\\end{verbatim}\n" + let stop_verbatim inline = + if inline then printf "}" + else printf "\\end{verbatim}\n" + + let url addr name = + printf "%s\\footnote{\\url{%s}}" + (match name with + | None -> "" + | Some n -> n) + addr let indentation n = if n == 0 then @@ -342,11 +374,19 @@ module Latex = struct | Some ref -> reference s ref | None -> if issymbchar then output_string s else printf "\\coqdocvar{%s}" s + let last_was_in = ref false + let sublexer c loc = - let tag = - try Some (Index.find (get_module false) loc) with Not_found -> None - in - Tokens.output_tagged_symbol_char tag c + if c = '*' && !last_was_in then begin + Tokens.flush_sublexer (); + output_char '*' + end else begin + let tag = + try Some (Index.find (get_module false) loc) with Not_found -> None + in + Tokens.output_tagged_symbol_char tag c + end; + last_was_in := false let initialize () = Tokens.token_tree := token_tree_latex; @@ -357,7 +397,11 @@ module Latex = struct let translate s = match Tokens.translate s with Some s -> s | None -> escaped s + let keyword s loc = + printf "\\coqdockw{%s}" (translate s) + let ident s loc = + last_was_in := s = "in"; try let tag = Index.find (get_module false) loc in reference (translate s) tag @@ -559,8 +603,22 @@ module Html = struct let start_latex_math () = () let stop_latex_math () = () - let start_verbatim () = printf "

"
-  let stop_verbatim () = printf "
\n" + let start_quote () = char '"' + let stop_quote () = start_quote () + + let start_verbatim inline = + if inline then printf "" + else printf "
"
+
+  let stop_verbatim inline = 
+    if inline then printf "" 
+    else printf "
\n" + + let url addr name = + printf "%s" addr + (match name with + | Some n -> n + | None -> addr) let module_ref m s = match find_module m with @@ -615,6 +673,9 @@ module Html = struct let translate s = match Tokens.translate s with Some s -> s | None -> escaped s + let keyword s loc = + printf "%s" (translate s) + let ident s loc = if is_keyword s then begin printf "%s" (translate s) @@ -915,19 +976,28 @@ module TeXmacs = struct let stop_latex_math () = output_char '>' - let start_verbatim () = in_doc := true; printf "<\\verbatim>" + let start_verbatim inline = in_doc := true; printf "<\\verbatim>" + let stop_verbatim inline = in_doc := false; printf "" - let stop_verbatim () = in_doc := false; printf "" + let url addr name = + printf "%s<\\footnote><\\url>%s" addr + (match name with + | None -> "" + | Some n -> n) + + let start_quote () = output_char '`'; output_char '`' + let stop_quote () = output_char '\''; output_char '\'' let indentation n = () + let keyword s = + printf "" + let ident_true s = - if is_keyword s then begin - printf "" - end else begin - raw_ident s - end + if is_keyword s then keyword s + else raw_ident s + let keyword s loc = keyword s let ident s _ = if !in_doc then ident_true s else raw_ident s let output_sublexer_string doescape issymbchar tag s = @@ -1042,13 +1112,21 @@ module Raw = struct let start_latex_math () = () let stop_latex_math () = () - let start_verbatim () = () + let start_verbatim inline = () + let stop_verbatim inline = () + + let url addr name = + match name with + | Some n -> printf "%s (%s)" n addr + | None -> printf "%s" addr - let stop_verbatim () = () + let start_quote () = printf "\"" + let stop_quote () = printf "\"" let indentation n = for i = 1 to n do printf " " done + let keyword s loc = raw_ident s let ident s loc = raw_ident s let sublexer c l = char c @@ -1162,6 +1240,7 @@ let rule = select Latex.rule Html.rule TeXmacs.rule Raw.rule let nbsp = select Latex.nbsp Html.nbsp TeXmacs.nbsp Raw.nbsp let char = select Latex.char Html.char TeXmacs.char Raw.char +let keyword = select Latex.keyword Html.keyword TeXmacs.keyword Raw.keyword let ident = select Latex.ident Html.ident TeXmacs.ident Raw.ident let sublexer = select Latex.sublexer Html.sublexer TeXmacs.sublexer Raw.sublexer let initialize = select Latex.initialize Html.initialize TeXmacs.initialize Raw.initialize @@ -1189,12 +1268,20 @@ let start_verbatim = select Latex.start_verbatim Html.start_verbatim TeXmacs.start_verbatim Raw.start_verbatim let stop_verbatim = select Latex.stop_verbatim Html.stop_verbatim TeXmacs.stop_verbatim Raw.stop_verbatim -let verbatim_char = - select output_char Html.char TeXmacs.char Raw.char +let verbatim_char inline = + select (if inline then Latex.char else output_char) Html.char TeXmacs.char Raw.char let hard_verbatim_char = output_char +let url = + select Latex.url Html.url TeXmacs.url Raw.url + +let start_quote = + select Latex.start_quote Html.start_quote TeXmacs.start_quote Raw.start_quote +let stop_quote = + select Latex.stop_quote Html.stop_quote TeXmacs.stop_quote Raw.stop_quote + let inf_rule_dumb assumptions (midsp,midln,midnm) conclusions = - start_verbatim (); + start_verbatim false; let dumb_line = function (sp,ln) -> (String.iter char ((String.make sp ' ') ^ ln); char '\n') @@ -1204,7 +1291,7 @@ let inf_rule_dumb assumptions (midsp,midln,midnm) conclusions = | Some s -> " " ^ s | None -> "")); List.iter dumb_line conclusions); - stop_verbatim () + stop_verbatim false let inf_rule = select inf_rule_dumb Html.inf_rule inf_rule_dumb inf_rule_dumb diff --git a/tools/coqdoc/output.mli b/tools/coqdoc/output.mli index 53d88666..80f39011 100644 --- a/tools/coqdoc/output.mli +++ b/tools/coqdoc/output.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* unit val nbsp : unit -> unit val char : char -> unit +val keyword : string -> loc -> unit val ident : string -> loc -> unit val sublexer : char -> loc -> unit val initialize : unit -> unit @@ -70,13 +71,17 @@ val latex_char : char -> unit val latex_string : string -> unit val html_char : char -> unit val html_string : string -> unit -val verbatim_char : char -> unit +val verbatim_char : bool -> char -> unit val hard_verbatim_char : char -> unit val start_latex_math : unit -> unit val stop_latex_math : unit -> unit -val start_verbatim : unit -> unit -val stop_verbatim : unit -> unit +val start_verbatim : bool -> unit +val stop_verbatim : bool -> unit +val start_quote : unit -> unit +val stop_quote : unit -> unit + +val url : string -> string option -> unit (* this outputs an inference rule in one go. You pass it the list of assumptions, then the middle line info, then the conclusion (which diff --git a/tools/coqdoc/tokens.ml b/tools/coqdoc/tokens.ml index a228797e..10a105f9 100644 --- a/tools/coqdoc/tokens.ml +++ b/tools/coqdoc/tokens.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* while i != Stack.top history do pop () done +(** An auxiliary function to retrieve the number of remaining subgoals *) + +let get_ngoals () = + try + let prf = Proof_global.give_me_the_proof () in + List.length (Evd.sig_it (Proof.V82.background_subgoals prf)) + with Proof_global.NoCurrentProof -> 0 + (** Register the end of a command and store the current state *) let mark_command ast = @@ -85,6 +99,7 @@ let mark_command ast = prfname = (try Some (Pfedit.get_current_proof_name ()) with _ -> None); prfdepth = max 0 (Pfedit.current_proof_depth ()); reachable = true; + ngoals = get_ngoals (); cmd = ast } history @@ -175,6 +190,7 @@ let reset_initial () = nproofs = 0; prfname = None; prfdepth = 0; + ngoals = 0; reachable = true; cmd = VernacNop } history @@ -215,10 +231,10 @@ let get_script prf = | _ -> () in (try Stack.iter select history with Not_found -> ()); - (* Get rid of intermediate commands which don't grow the depth *) + (* Get rid of intermediate commands which don't grow the proof depth *) let rec filter n = function | [] -> [] - | {prfdepth=d; cmd=c}::l when n < d -> c :: filter d l + | {prfdepth=d; cmd=c; ngoals=ng}::l when n < d -> (c,ng) :: filter d l | {prfdepth=d}::l -> filter d l in (* initial proof depth (after entering the lemma statement) is 1 *) diff --git a/toplevel/backtrack.mli b/toplevel/backtrack.mli index 3fde5b11..413ecd2e 100644 --- a/toplevel/backtrack.mli +++ b/toplevel/backtrack.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* unit +(** Is this history stack active (i.e. nonempty) ? + The stack is currently inactive when compiling files (coqc). *) + +val is_active : unit -> bool + (** The [Invalid] exception is raised when one of the following function tries to empty the history stack, or reach an unknown states, etc. The stack is preserved in these cases. *) @@ -76,7 +81,7 @@ val mark_unreachable : ?after:int -> Names.identifier list -> unit (** Parse the history stack for printing the script of a proof *) -val get_script : Names.identifier -> Vernacexpr.vernac_expr list +val get_script : Names.identifier -> (Vernacexpr.vernac_expr * int) list (** For debug purpose, a dump of the history *) @@ -86,6 +91,7 @@ type info = { nproofs : int; prfname : Names.identifier option; prfdepth : int; + ngoals : int; cmd : Vernacexpr.vernac_expr; mutable reachable : bool; } diff --git a/toplevel/cerrors.ml b/toplevel/cerrors.ml index 5f2c3dbb..3b6f0f7c 100644 --- a/toplevel/cerrors.ml +++ b/toplevel/cerrors.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* false - (* Very syntactical equality *) let eq_local_binder d1 d2 = match d1,d2 with | LocalRawAssum (nal1,k1,c1), LocalRawAssum (nal2,k2,c2) -> List.length nal1 = List.length nal2 && k1 = k2 && List.for_all2 (fun (_,na1) (_,na2) -> na1 = na2) nal1 nal2 && - eq_constr_expr c1 c2 + Constrextern.is_same_type c1 c2 | LocalRawDef ((_,id1),c1), LocalRawDef ((_,id2),c2) -> - id1 = id2 && eq_constr_expr c1 c2 + id1 = id2 && Constrextern.is_same_type c1 c2 | _ -> false diff --git a/toplevel/command.mli b/toplevel/command.mli index 8ffdbdec..b1cf2053 100644 --- a/toplevel/command.mli +++ b/toplevel/command.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Flags.V8_3 + | "8.2" -> Flags.V8_2 + | ("8.1" | "8.0") as s -> + warning ("Compatibility with version "^s^" not supported."); + Flags.V8_2 + | s -> Util.error ("Unknown compatibility version \""^s^"\".") diff --git a/toplevel/coqinit.mli b/toplevel/coqinit.mli index 43b1556d..9ca1deb4 100644 --- a/toplevel/coqinit.mli +++ b/toplevel/coqinit.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* unit val init_library_roots : unit -> unit val init_ocaml_path : unit -> unit + +val get_compat_version : string -> Flags.compat_version diff --git a/toplevel/coqtop.ml b/toplevel/coqtop.ml index a60e0d82..df388d1d 100644 --- a/toplevel/coqtop.ml +++ b/toplevel/coqtop.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* compat_version := Some V8_3 - | "8.2" -> compat_version := Some V8_2 - | "8.1" -> warning "Compatibility with version 8.1 not supported." - | "8.0" -> warning "Compatibility with version 8.0 not supported." - | s -> error ("Unknown compatibility version \""^s^"\".") - (*s options for the virtual machine *) let boxed_val = ref false @@ -152,6 +145,9 @@ let warning s = msg_warning (str s) let ide_slave = ref false let filter_opts = ref false +let verb_compat_ntn = ref false +let no_compat_ntn = ref false + let parse_args arglist = let glob_opt = ref false in let rec parse = function @@ -243,9 +239,13 @@ let parse_args arglist = | "-debug" :: rem -> set_debug (); parse rem - | "-compat" :: v :: rem -> set_compat_version v; parse rem + | "-compat" :: v :: rem -> + Flags.compat_version := get_compat_version v; parse rem | "-compat" :: [] -> usage () + | "-verbose-compat-notations" :: rem -> verb_compat_ntn := true; parse rem + | "-no-compat-notations" :: rem -> no_compat_ntn := true; parse rem + | "-vm" :: rem -> use_vm := true; parse rem | "-emacs" :: rem -> Flags.print_emacs := true; Pp.make_pp_emacs(); @@ -332,6 +332,9 @@ let init arglist = Mltop.init_known_plugins (); set_vm_opt (); engage (); + (* Be careful to set these variables after the inputstate *) + Syntax_def.set_verbose_compat_notations !verb_compat_ntn; + Syntax_def.set_compat_notations (not !no_compat_ntn); if (not !batch_mode|| !compile_list=[]) && Global.env_is_empty() then Option.iter Declaremods.start_library !toplevel_name; init_library_roots (); diff --git a/toplevel/coqtop.mli b/toplevel/coqtop.mli index 16d2b874..73e21484 100644 --- a/toplevel/coqtop.mli +++ b/toplevel/coqtop.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* - (match Typeclasses.class_of_constr evi.evar_concl with - | Some c -> - let env = Evd.evar_env evi in - fnl () ++ str "Could not find an instance for " ++ - pr_lconstr_env env evi.evar_concl ++ - pr_ne_context_of (str " in environment:"++ fnl ()) (str ".") env - | None -> mt()) + match Typeclasses.class_of_constr evi.evar_concl with + | Some c -> + let env = Evd.evar_env evi in + fnl () ++ str "Could not find an instance for " ++ + pr_lconstr_env env evi.evar_concl ++ + pr_ne_context_of (str " in environment:"++ fnl ()) (str ".") env | _ -> mt() let explain_unsolvable_implicit env evi k explain = @@ -698,12 +695,8 @@ let explain_no_instance env (_,id) l = let is_goal_evar evi = match evi.evar_source with (_, GoalEvar) -> true | _ -> false let pr_constraints printenv env evm = - let evm = Evd.undefined_evars (Evarutil.nf_evar_map_undefined evm) in - let evm = fold_undefined - (fun ev evi evm' -> - if is_goal_evar evi then Evd.remove evm' ev else evm') evm evm - in let l = Evd.to_list evm in + assert(l <> []); let (ev, evi) = List.hd l in if List.for_all (fun (ev', evi') -> eq_named_context_val evi.evar_hyps evi'.evar_hyps) l @@ -719,18 +712,23 @@ let pr_constraints printenv env evm = pr_evar_map None evm let explain_unsatisfiable_constraints env evd constr = - let evm = Evarutil.nf_evar_map evd in - let undef = Evd.undefined_evars evm in + let evm = Evd.undefined_evars (Evarutil.nf_evar_map_undefined evd) in + (* Remove goal evars *) + let undef = fold_undefined + (fun ev evi evm' -> + if is_goal_evar evi then Evd.remove evm' ev else evm') evm evm + in match constr with | None -> str"Unable to satisfy the following constraints:" ++ fnl() ++ pr_constraints true env undef | Some (ev, k) -> - explain_unsolvable_implicit env (Evd.find evm ev) k None ++ fnl () ++ - if List.length (Evd.to_list undef) > 1 then - str"With the following constraints:" ++ fnl() ++ - pr_constraints false env (Evd.remove undef ev) - else mt () + explain_typeclass_resolution env (Evd.find evm ev) k ++ fnl () ++ + (let remaining = Evd.remove undef ev in + if Evd.has_undefined remaining then + str"With the following constraints:" ++ fnl() ++ + pr_constraints false env remaining + else mt ()) let explain_mismatched_contexts env c i j = str"Mismatched contexts while declaring instance: " ++ brk (1,1) ++ @@ -995,6 +993,11 @@ let explain_reduction_tactic_error = function let explain_ltac_call_trace (nrep,last,trace,loc) = let calls = (nrep,last) :: List.rev (List.map(fun(n,_,ck)->(n,ck))trace) in + let tacexpr_differ te te' = + (* NB: The following comparison may raise an exception + since a tacexpr may embed a functional part via a TacExtend *) + try te <> te' with Invalid_argument _ -> false + in let pr_call (n,ck) = (match ck with | Proof_type.LtacNotationCall s -> quote (str s) @@ -1006,11 +1009,11 @@ let explain_ltac_call_trace (nrep,last,trace,loc) = (Pptactic.pr_glob_tactic (Global.env()) (Tacexpr.TacAtom (dummy_loc,te))) ++ (match !otac with - | Some te' when (Obj.magic te' <> te) -> - strbrk " (expanded to " ++ quote - (Pptactic.pr_tactic (Global.env()) - (Tacexpr.TacAtom (dummy_loc,te'))) - ++ str ")" + | Some te' when tacexpr_differ (Obj.magic te') te -> + strbrk " (expanded to " ++ quote + (Pptactic.pr_tactic (Global.env()) + (Tacexpr.TacAtom (dummy_loc,te'))) + ++ str ")" | _ -> mt ()) | Proof_type.LtacConstrInterp (c,(vars,unboundvars)) -> let filter = diff --git a/toplevel/himsg.mli b/toplevel/himsg.mli index a763472b..84d3ec95 100644 --- a/toplevel/himsg.mli +++ b/toplevel/himsg.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* +| Element ("status", [], [path; name; prfs; snum; pnum]) -> { - status_path = to_option to_string path; + status_path = to_list to_string path; status_proofname = to_option to_string name; + status_allproofs = to_list to_string prfs; + status_statenum = to_int snum; + status_proofnum = to_int pnum; } | _ -> raise Marshal_error @@ -370,14 +382,16 @@ let to_goal = function | _ -> raise Marshal_error let of_goals g = + let of_glist = of_list of_goal in let fg = of_list of_goal g.fg_goals in - let bg = of_list of_goal g.bg_goals in + let bg = of_list (of_pair of_glist of_glist) g.bg_goals in Element ("goals", [], [fg; bg]) let to_goals = function | Element ("goals", [], [fg; bg]) -> + let to_glist = to_list to_goal in let fg = to_list to_goal fg in - let bg = to_list to_goal bg in + let bg = to_list (to_pair to_glist to_glist) bg in { fg_goals = fg; bg_goals = bg; } | _ -> raise Marshal_error @@ -495,9 +509,9 @@ let pr_string s = "["^s^"]" let pr_bool b = if b then "true" else "false" let pr_status s = - let path = match s.status_path with - | None -> "no path; " - | Some p -> "path = " ^ p ^ "; " + let path = + let l = String.concat "." s.status_path in + "path=" ^ l ^ ";" in let name = match s.status_proofname with | None -> "no proof;" @@ -512,7 +526,14 @@ let pr_mkcases l = let pr_goals_aux g = if g.fg_goals = [] then if g.bg_goals = [] then "Proof completed." - else Printf.sprintf "Still %i unfocused goals." (List.length g.bg_goals) + else + let rec pr_focus _ = function + | [] -> assert false + | [lg, rg] -> Printf.sprintf "%i" (List.length lg + List.length rg) + | (lg, rg) :: l -> + Printf.sprintf "%i:%a" (List.length lg + List.length rg) pr_focus l + in + Printf.sprintf "Still focussed: [%a]." pr_focus g.bg_goals else let pr_menu s = s in let pr_goal { goal_hyp = hyps; goal_ccl = goal } = diff --git a/toplevel/ide_intf.mli b/toplevel/ide_intf.mli index deee50e5..26c6b671 100644 --- a/toplevel/ide_intf.mli +++ b/toplevel/ide_intf.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* "),("absurd "^type_s^".\n") - ] @ (if Hipattern.is_equality_type ast then [ + ] @ [ ("discriminate "^id_s),("discriminate "^id_s^".\n"); ("injection "^id_s),("injection "^id_s^".\n") - ] else []) @ (if Hipattern.is_equality_type (snd (Reductionops.splay_prod env sigma ast)) then [ + ] @ [ ("rewrite "^id_s),("rewrite "^id_s^".\n"); ("rewrite <- "^id_s),("rewrite <- "^id_s^".\n") - ] else []) @ [ + ] @ [ ("elim "^id_s), ("elim "^id_s^".\n"); ("inversion "^id_s), ("inversion "^id_s^".\n"); ("inversion clear "^id_s), ("inversion_clear "^id_s^".\n") @@ -150,11 +150,11 @@ let concl_next_tac sigma concl = "intro"; "intros"; "intuition" - ] @ (if Hipattern.is_equality_type (Goal.V82.concl sigma concl) then [ + ] @ [ "reflexivity"; "discriminate"; "symmetry" - ] else []) @ [ + ] @ [ "assumption"; "omega"; "ring"; @@ -180,19 +180,21 @@ let process_goal sigma g = let process_hyp h_env d acc = let d = Term.map_named_declaration (Reductionops.nf_evar sigma) d in (string_of_ppcmds (pr_var_decl h_env d)) :: acc in -(* (string_of_ppcmds (pr_var_decl h_env d), hyp_next_tac sigma h_env d)::acc in *) let hyps = List.rev (Environ.fold_named_context process_hyp env ~init: []) in { Interface.goal_hyp = hyps; Interface.goal_ccl = ccl; Interface.goal_id = id; } -(* hyps,(ccl,concl_next_tac sigma g)) *) let goals () = try let pfts = Proof_global.give_me_the_proof () in - let { Evd.it = all_goals ; sigma = sigma } = Proof.V82.subgoals pfts in - let fg = List.map (process_goal sigma) all_goals in - let { Evd.it = bgoals ; sigma = sigma } = Proof.V82.background_subgoals pfts in - let bg = List.map (process_goal sigma) bgoals in + let (goals, zipper, sigma) = Proof.proof pfts in + let fg = List.map (process_goal sigma) goals in + let map_zip (lg, rg) = + let lg = List.map (process_goal sigma) lg in + let rg = List.map (process_goal sigma) rg in + (lg, rg) + in + let bg = List.map map_zip zipper in Some { Interface.fg_goals = fg; Interface.bg_goals = bg; } with Proof_global.NoCurrentProof -> None @@ -231,16 +233,23 @@ let status () = and display the other parts (opened sections and modules) *) let path = let l = Names.repr_dirpath (Lib.cwd ()) in - let l = snd (Util.list_sep_last l) in - if l = [] then None - else Some (Names.string_of_dirpath (Names.make_dirpath l)) + List.rev_map Names.string_of_id l in let proof = - try - Some (Names.string_of_id (Pfedit.get_current_proof_name ())) + try Some (Names.string_of_id (Proof_global.get_current_proof_name ())) with _ -> None in - { Interface.status_path = path; Interface.status_proofname = proof } + let allproofs = + let l = Proof_global.get_all_proof_names () in + List.map Names.string_of_id l + in + { + Interface.status_path = path; + Interface.status_proofname = proof; + Interface.status_allproofs = allproofs; + Interface.status_statenum = Lib.current_command_label (); + Interface.status_proofnum = Pfedit.current_proof_depth (); + } (** This should be elsewhere... *) let search flags = diff --git a/toplevel/ide_slave.mli b/toplevel/ide_slave.mli index 13dff280..fb927cf3 100644 --- a/toplevel/ide_slave.mli +++ b/toplevel/ide_slave.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* if assoc <> None then error"An associativity is given more than once."; interp (Some a) level etyps format l - | SetOnlyParsing :: l -> + | SetOnlyParsing _ :: l -> onlyparsing := true; interp assoc level etyps format l | SetFormat s :: l -> @@ -770,8 +770,13 @@ let check_infix_modifiers modifiers = if t <> [] then error "Explicit entry level or type unexpected in infix notation." -let no_syntax_modifiers modifiers = - modifiers = [] or modifiers = [SetOnlyParsing] +let no_syntax_modifiers = function + | [] | [SetOnlyParsing _] -> true + | _ -> false + +let is_only_parsing = function + | [SetOnlyParsing _] -> true + | _ -> false (* Compute precedences from modifiers (or find default ones) *) @@ -1118,7 +1123,7 @@ let add_notation local c ((loc,df),modifiers) sc = let df' = if no_syntax_modifiers modifiers then (* No syntax data: try to rely on a previously declared rule *) - let onlyparse = modifiers=[SetOnlyParsing] in + let onlyparse = is_only_parsing modifiers in try add_notation_interpretation_core local df c sc onlyparse with NoSyntaxRule -> (* Try to determine a default syntax rule *) @@ -1193,6 +1198,9 @@ let add_syntactic_definition ident (vars,c) local onlyparse = let vars,pat = interp_aconstr i_vars [] c in List.map (fun (id,(sc,kind)) -> (id,sc)) vars, pat in - let onlyparse = onlyparse or is_not_printable pat in + let onlyparse = match onlyparse with + | None when (is_not_printable pat) -> Some Flags.Current + | p -> p + in Syntax_def.declare_syntactic_definition local ident onlyparse (vars,pat) diff --git a/toplevel/metasyntax.mli b/toplevel/metasyntax.mli index 32568854..38a0ae59 100644 --- a/toplevel/metasyntax.mli +++ b/toplevel/metasyntax.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* identifier list * constr_expr -> - bool -> bool -> unit + bool -> Flags.compat_version option -> unit (** Print the Camlp4 state of a grammar *) diff --git a/toplevel/mltop.ml4 b/toplevel/mltop.ml4 index 025c972f..2059ca60 100644 --- a/toplevel/mltop.ml4 +++ b/toplevel/mltop.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* f()) !known_loaded_plugins + +(** ml object = ml module or plugin *) + let init_ml_object mname = try Stringmap.find mname !known_loaded_plugins () with Not_found -> () @@ -246,81 +253,75 @@ let load_ml_object mname fname= add_known_module mname; init_ml_object mname -let add_known_plugin init name = - let name = String.capitalize name in - add_known_module name; - known_loaded_plugins := Stringmap.add name init !known_loaded_plugins - -let init_known_plugins () = - Stringmap.iter (fun _ f -> f()) !known_loaded_plugins - (* Summary of declared ML Modules *) -(* List and not Stringset because order is important *) +(* List and not Stringset because order is important: most recent first. *) + let loaded_modules = ref [] -let get_loaded_modules () = !loaded_modules +let get_loaded_modules () = List.rev !loaded_modules let add_loaded_module md = loaded_modules := md :: !loaded_modules +let reset_loaded_modules () = loaded_modules := [] -let orig_loaded_modules = ref !loaded_modules -let init_ml_modules () = loaded_modules := !orig_loaded_modules +let if_verbose_load verb f name fname = + if not verb then f name fname + else + let info = "[Loading ML file "^fname^" ..." in + try + f name fname; + msgnl (str (info^" done]")); + with e -> + msgnl (str (info^" failed]")); + raise e + +(** Load a module for the first time (i.e. dynlink it) + or simulate its reload (i.e. doing nothing except maybe + an initialization function). *) + +let cache_ml_object verb reinit name = + begin + if module_is_known name then + (if reinit then init_ml_object name) + else if not has_dynlink then + error ("Dynamic link not supported (module "^name^")") + else + if_verbose_load (verb && is_verbose ()) + load_ml_object name (file_of_name name) + end; + add_loaded_module name let unfreeze_ml_modules x = - loaded_modules := []; - List.iter - (fun name -> - let mname = mod_of_name name in - if not (module_is_known mname) then - if has_dynlink then - let fname = file_of_name mname in - load_ml_object mname fname - else - errorlabstrm "Mltop.unfreeze_ml_modules" - (str"Loading of ML object file forbidden in a native Coq.") - else init_ml_object mname; - add_loaded_module mname) - x + reset_loaded_modules (); + List.iter (cache_ml_object false false) x let _ = Summary.declare_summary "ML-MODULES" - { Summary.freeze_function = (fun () -> List.rev (get_loaded_modules())); - Summary.unfreeze_function = (fun x -> unfreeze_ml_modules x); - Summary.init_function = (fun () -> init_ml_modules ()) } - -(* Same as restore_ml_modules, but verbosely *) - -let cache_ml_module_object (_,{mnames=mnames}) = - List.iter - (fun name -> - let mname = mod_of_name name in - if not (module_is_known mname) then - if has_dynlink then - let fname = file_of_name mname in - try - if_verbose - msg (str"[Loading ML file " ++ str fname ++ str" ..."); - load_ml_object mname fname; - if_verbose msgnl (str" done]"); - add_loaded_module mname - with e -> - if_verbose msgnl (str" failed]"); - raise e - else - (if_verbose msgnl (str" failed]"); - error ("Dynamic link not supported (module "^name^")")) - else init_ml_object mname) - mnames - -let classify_ml_module_object ({mlocal=mlocal} as o) = + { Summary.freeze_function = get_loaded_modules; + Summary.unfreeze_function = unfreeze_ml_modules; + Summary.init_function = reset_loaded_modules } + +(* Liboject entries of declared ML Modules *) + +type ml_module_object = { + mlocal : Vernacexpr.locality_flag; + mnames : string list +} + +let cache_ml_objects (_,{mnames=mnames}) = + List.iter (cache_ml_object true true) mnames + +let classify_ml_objects ({mlocal=mlocal} as o) = if mlocal then Dispose else Substitute o let inMLModule : ml_module_object -> obj = - declare_object {(default_object "ML-MODULE") with - load_function = (fun _ -> cache_ml_module_object); - cache_function = cache_ml_module_object; - subst_function = (fun (_,o) -> o); - classify_function = classify_ml_module_object } + declare_object + {(default_object "ML-MODULE") with + load_function = (fun _ -> cache_ml_objects); + cache_function = cache_ml_objects; + subst_function = (fun (_,o) -> o); + classify_function = classify_ml_objects } let declare_ml_modules local l = + let l = List.map mod_of_name l in Lib.add_anonymous_leaf (inMLModule {mlocal=local; mnames=l}) let print_ml_path () = @@ -328,7 +329,7 @@ let print_ml_path () = ppnl (str"ML Load Path:" ++ fnl () ++ str" " ++ hv 0 (prlist_with_sep pr_fnl pr_str l)) - (* Printing of loaded ML modules *) +(* Printing of loaded ML modules *) let print_ml_modules () = let l = get_loaded_modules () in diff --git a/toplevel/mltop.mli b/toplevel/mltop.mli index 99b96ed7..ebea73f1 100644 --- a/toplevel/mltop.mli +++ b/toplevel/mltop.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* unit val module_is_known : string -> bool val load_ml_object : string -> string -> unit -(* Declare a plugin and its initialization function. - * A plugin is just an ML module with an initialization function. - * Adding a known plugin implies adding it as a known ML module. - * The initialization function is granted to be called after Coq is fully - * bootstrapped, even if the plugin is statically linked with the toplevel *) +(** Declare a plugin and its initialization function. + A plugin is just an ML module with an initialization function. + Adding a known plugin implies adding it as a known ML module. + The initialization function is granted to be called after Coq is fully + bootstrapped, even if the plugin is statically linked with the toplevel *) val add_known_plugin : (unit -> unit) -> string -> unit -(* Calls all initialization functions in a non-specified order *) +(** Calls all initialization functions in a non-specified order *) val init_known_plugins : unit -> unit -(** Summary of Declared ML Modules *) -val get_loaded_modules : unit -> string list -val add_loaded_module : string -> unit -val init_ml_modules : unit -> unit -val unfreeze_ml_modules : string list -> unit - -type ml_module_object = { - mlocal: Vernacexpr.locality_flag; - mnames: string list; -} - val declare_ml_modules : Vernacexpr.locality_flag -> string list -> unit val print_ml_path : unit -> unit diff --git a/toplevel/record.ml b/toplevel/record.ml index 0c55861f..3708c2f7 100644 --- a/toplevel/record.ml +++ b/toplevel/record.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* !atomic_load); + Goptions.optwrite = ((:=) atomic_load) } + (* Specifies which file is read. The intermediate file names are discarded here. The Drop exception becomes an error. We forget if the error ocurred during interpretation or not *) @@ -272,16 +296,24 @@ and read_vernac_file verbosely s = else Flags.silently Vernacentries.interp in let checknav loc cmd = - if is_navigation_vernac cmd then + if is_navigation_vernac cmd && not (is_reset cmd) then user_error loc "Navigation commands forbidden in files" in + let end_inner_command cmd = + if !atomic_load || is_reset cmd then + Lib.mark_end_of_command () (* for Reset in coqc or coqtop -l *) + else + Backtrack.mark_command cmd; (* for Show Script, cf bug #2820 *) + in let (in_chan, fname, input) = open_file_twice_if verbosely s in try (* we go out of the following infinite loop when a End_of_input is * raised, which means that we raised the end of the file being loaded *) while true do - vernac_com interpfun checknav (parse_sentence input); + let loc_ast = parse_sentence input in + vernac_com interpfun checknav loc_ast; + end_inner_command (snd loc_ast); pp_flush () done with e -> (* whatever the exception *) @@ -324,6 +356,7 @@ let load_vernac verb file = chan_beautify := if !Flags.beautify_file then open_out (file^beautify_suffix) else stdout; try + Lib.mark_end_of_command (); (* in case we're still in coqtop init *) read_vernac_file verb file; if !Flags.beautify_file then close_out !chan_beautify; with e -> diff --git a/toplevel/vernac.mli b/toplevel/vernac.mli index bcfe9b71..96bc8865 100644 --- a/toplevel/vernac.mli +++ b/toplevel/vernac.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* ngprev then + (* We've branched *) + (ng - ngprev + 1, ng1 - 1 :: ngl1) + else if ng < ngprev then + (* A subgoal have been solved. Let's compute the new current level + by discarding all levels with 0 remaining goals. *) + let _ = assert (ng = ngprev - 1) in + let rec loop = function + | (0, ng2::ngl2) -> loop (ng2,ngl2) + | p -> p + in loop (ng1-1, ngl1) + else + (* Standard case, same goal number as before *) + (ng1, ngl1) + in + (* When a subgoal have been solved, separate this block by an empty line *) + let new_nl = (ng < ngprev) + in + (* Indentation depth *) + let ind = List.length ngl1 + in + (* Some special handling of bullets and { }, to get a nicer display *) + let pred n = max 0 (n-1) in + let ind, nl, new_beginend = match cmd with + | VernacSubproof _ -> pred ind, nl, (pred ind)::beginend + | VernacEndSubproof -> List.hd beginend, false, List.tl beginend + | VernacBullet _ -> pred ind, nl, beginend + | _ -> ind, nl, beginend + in + let pp = + (if nl then fnl () else mt ()) ++ + (hov (ind+1) (str (String.make ind ' ') ++ Ppvernac.pr_vernac cmd)) + in + (new_ngl, new_nl, new_beginend, pp :: ppl) + let show_script () = let prf = Pfedit.get_current_proof_name () in let cmds = Backtrack.get_script prf in - msgnl (Util.prlist_with_sep Pp.fnl Ppvernac.pr_vernac cmds) + let _,_,_,indented_cmds = + List.fold_left indent_script_item ((1,[]),false,[],[]) cmds + in + let indented_cmds = List.rev (indented_cmds) in + msgnl (v 0 (Util.prlist_with_sep Pp.fnl (fun x -> x) indented_cmds)) let show_thesis () = msgnl (anomaly "TODO" ) @@ -311,6 +360,11 @@ let smart_global r = Dumpglob.add_glob (Genarg.loc_of_or_by_notation loc_of_reference r) gr; gr +let dump_global r = + try + let gr = Smartlocate.smart_global r in + Dumpglob.add_glob (Genarg.loc_of_or_by_notation loc_of_reference r) gr + with _ -> () (**********) (* Syntax *) @@ -389,8 +443,10 @@ let vernac_end_proof = function let vernac_exact_proof c = (* spiwack: for simplicity I do not enforce that "Proof proof_term" is called only at the begining of a proof. *) - by (Tactics.exact_proof c); - save_named true + let prf = Pfedit.get_current_proof_name () in + by (Tactics.exact_proof c); + save_named true; + Backtrack.mark_unreachable [prf] let vernac_assumption kind l nl= let global = fst kind = Global in @@ -458,9 +514,21 @@ let vernac_cofixpoint l = List.iter (fun ((lid, _, _, _), _) -> Dumpglob.dump_definition lid false "def") l; do_cofixpoint l -let vernac_scheme = Indschemes.do_scheme - -let vernac_combined_scheme = Indschemes.do_combined_scheme +let vernac_scheme l = + if Dumpglob.dump () then + List.iter (fun (lid, s) -> + Option.iter (fun lid -> Dumpglob.dump_definition lid false "def") lid; + match s with + | InductionScheme (_, r, _) + | CaseScheme (_, r, _) + | EqualityScheme r -> dump_global r) l; + Indschemes.do_scheme l + +let vernac_combined_scheme lid l = + if Dumpglob.dump () then + (Dumpglob.dump_definition lid false "def"; + List.iter (fun lid -> dump_global (Genarg.AN (Ident lid))) l); + Indschemes.do_combined_scheme lid l (**********************) (* Modules *) @@ -1190,6 +1258,7 @@ let vernac_check_may_eval redexp glopt rc = if !pcoq <> None then (Option.get !pcoq).print_check env j else msg (print_judgment env j) | Some r -> + Tacinterp.dump_glob_red_expr r; let (sigma',r_interp) = interp_redexp env sigma' r in let redfun = fst (reduction_of_red_expr r_interp) in if !pcoq <> None @@ -1248,8 +1317,10 @@ let vernac_print = function pp (Notation.pr_scope (Constrextern.without_symbols pr_lglob_constr) s) | PrintVisibility s -> pp (Notation.pr_visibility (Constrextern.without_symbols pr_lglob_constr) s) - | PrintAbout qid -> msg (print_about qid) - | PrintImplicit qid -> msg (print_impargs qid) + | PrintAbout qid -> + msg (print_about qid) + | PrintImplicit qid -> + dump_global qid; msg (print_impargs qid) | PrintAssumptions (o,r) -> (* Prints all the axioms and section variables used by a term *) let cstr = constr_of_global (smart_global r) in @@ -1340,10 +1411,43 @@ let vernac_back n = with Backtrack.Invalid -> error "Invalid backtrack." let vernac_reset_name id = - try Backtrack.reset_name id; try_print_subgoals () - with Backtrack.Invalid -> error "Invalid Reset." + try + let globalized = + try + let gr = Smartlocate.global_with_alias (Ident id) in + Dumpglob.add_glob (fst id) gr; + true + with _ -> false in + + if not globalized then begin + try begin match Lib.find_opening_node (snd id) with + | Lib.OpenedSection _ -> Dumpglob.dump_reference (fst id) + (string_of_dirpath (Lib.current_dirpath true)) "<>" "sec"; + (* Might be nice to implement module cases, too.... *) + | _ -> () + end with UserError _ -> () + end; -let vernac_reset_initial () = Backtrack.reset_initial () + if Backtrack.is_active () then + (Backtrack.reset_name id; try_print_subgoals ()) + else + (* When compiling files, Reset is now allowed again + as asked by A. Chlipala. we emulate a simple reset, + that discards all proofs. *) + let lbl = Lib.label_before_name id in + Pfedit.delete_all_proofs (); + Pp.msg_warning (str "Reset command occurred in non-interactive mode."); + Lib.reset_label lbl + with Backtrack.Invalid | Not_found -> error "Invalid Reset." + + +let vernac_reset_initial () = + if Backtrack.is_active () then + Backtrack.reset_initial () + else begin + Pp.msg_warning (str "Reset command occurred in non-interactive mode."); + Lib.reset_label Lib.first_command_label + end (* For compatibility with ProofGeneral: *) @@ -1393,7 +1497,10 @@ let vernac_undoto n = let vernac_focus gln = let p = Proof_global.give_me_the_proof () in let n = match gln with None -> 1 | Some n -> n in - Proof.focus focus_command_cond () n p; print_subgoals () + if n = 0 then + Util.error "Invalid goal number: 0. Goal numbering starts with 1." + else + Proof.focus focus_command_cond () n p; print_subgoals () (* Unfocuses one step in the focus stack. *) let vernac_unfocus () = @@ -1594,11 +1701,11 @@ let interp c = match c with | VernacEndSubproof -> vernac_end_subproof () | VernacShow s -> vernac_show s | VernacCheckGuard -> vernac_check_guard () - | VernacProof (None, None) -> () - | VernacProof (Some tac, None) -> vernac_set_end_tac tac - | VernacProof (None, Some l) -> vernac_set_used_variables l + | VernacProof (None, None) -> print_subgoals () + | VernacProof (Some tac, None) -> vernac_set_end_tac tac ; print_subgoals () + | VernacProof (None, Some l) -> vernac_set_used_variables l ; print_subgoals () | VernacProof (Some tac, Some l) -> - vernac_set_end_tac tac; vernac_set_used_variables l + vernac_set_end_tac tac; vernac_set_used_variables l ; print_subgoals () | VernacProofMode mn -> Proof_global.set_proof_mode mn (* Toplevel control *) | VernacToplevelControl e -> raise e diff --git a/toplevel/vernacentries.mli b/toplevel/vernacentries.mli index a9d384ea..b0d41b15 100644 --- a/toplevel/vernacentries.mli +++ b/toplevel/vernacentries.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* unit + (** Vernacular entries *) val show_script : unit -> unit diff --git a/toplevel/vernacexpr.ml b/toplevel/vernacexpr.ml index d9f15337..3106e866 100644 --- a/toplevel/vernacexpr.ml +++ b/toplevel/vernacexpr.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* Current, it contains the name of the coq version + which this notation is trying to be compatible with *) type option_value = Goptionstyp.option_value = | BoolValue of bool @@ -189,7 +192,7 @@ type syntax_modifier = | SetLevel of int | SetAssoc of gram_assoc | SetEntryType of string * simple_constr_prod_entry_key - | SetOnlyParsing + | SetOnlyParsing of Flags.compat_version | SetFormat of string located type proof_end = @@ -377,13 +380,20 @@ let rec is_navigation_vernac = function | VernacBacktrack _ | VernacBackTo _ | VernacBack _ -> true + | VernacTime c -> is_navigation_vernac c (* Time Back* is harmless *) | c -> is_deep_navigation_vernac c and is_deep_navigation_vernac = function - | VernacTime c | VernacTimeout (_,c) | VernacFail c -> is_navigation_vernac c + | VernacTimeout (_,c) | VernacFail c -> is_navigation_vernac c | VernacList l -> List.exists (fun (_,c) -> is_navigation_vernac c) l | _ -> false +(* NB: Reset is now allowed again as asked by A. Chlipala *) + +let is_reset = function + | VernacResetInitial | VernacResetName _ -> true + | _ -> false + (* Locating errors raised just after the dot is parsed but before the interpretation phase *) diff --git a/toplevel/vernacinterp.ml b/toplevel/vernacinterp.ml index 10c5a00f..c4cc4ae5 100644 --- a/toplevel/vernacinterp.ml +++ b/toplevel/vernacinterp.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(*