From 55ce117e8083477593cf1ff2e51a3641c7973830 Mon Sep 17 00:00:00 2001 From: Samuel Mimram Date: Tue, 13 Feb 2007 13:48:12 +0000 Subject: Imported Upstream version 8.1+dfsg --- doc/faq/interval_discr.v | 419 ----------------------------------------------- 1 file changed, 419 deletions(-) delete mode 100644 doc/faq/interval_discr.v (limited to 'doc/faq/interval_discr.v') diff --git a/doc/faq/interval_discr.v b/doc/faq/interval_discr.v deleted file mode 100644 index 972300da..00000000 --- a/doc/faq/interval_discr.v +++ /dev/null @@ -1,419 +0,0 @@ -(** Sketch of the proof of {p:nat|p<=n} = {p:nat|p<=m} -> n=m - - - preliminary results on the irrelevance of boundedness proofs - - introduce the notion of finite cardinal |A| - - prove that |{p:nat|p<=n}| = n - - prove that |A| = n /\ |A| = m -> n = m if equality is decidable on A - - prove that equality is decidable on A - - conclude -*) - -(** * Preliminary results on [nat] and [le] *) - -(** Proving axiom K on [nat] *) - -Require Import Eqdep_dec. -Require Import Arith. - -Theorem eq_rect_eq_nat : - forall (p:nat) (Q:nat->Type) (x:Q p) (h:p=p), x = eq_rect p Q x p h. -Proof. -intros. -apply K_dec_set with (p := h). -apply eq_nat_dec. -reflexivity. -Qed. - -(** Proving unicity of proofs of [(n<=m)%nat] *) - -Scheme le_ind' := Induction for le Sort Prop. - -Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q. -Proof. -induction p using le_ind'; intro q. - replace (le_n n) with - (eq_rect _ (fun n0 => n <= n0) (le_n n) _ (refl_equal n)). - 2:reflexivity. - generalize (refl_equal n). - pattern n at 2 4 6 10, q; case q; [intro | intros m l e]. - rewrite <- eq_rect_eq_nat; trivial. - contradiction (le_Sn_n m); rewrite <- e; assumption. - replace (le_S n m p) with - (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ (refl_equal (S m))). - 2:reflexivity. - generalize (refl_equal (S m)). - pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS]. - contradiction (le_Sn_n m); rewrite Heq; assumption. - injection HeqS; intro Heq; generalize l HeqS. - rewrite <- Heq; intros; rewrite <- eq_rect_eq_nat. - rewrite (IHp l0); reflexivity. -Qed. - -(** Proving irrelevance of boundedness proofs while building - elements of interval *) - -Lemma dep_pair_intro : - forall (n x y:nat) (Hx : x<=n) (Hy : y<=n), x=y -> - exist (fun x => x <= n) x Hx = exist (fun x => x <= n) y Hy. -Proof. -intros n x y Hx Hy Heq. -generalize Hy. -rewrite <- Heq. -intros. -rewrite (le_uniqueness_proof x n Hx Hy0). -reflexivity. -Qed. - -(** * Proving that {p:nat|p<=n} = {p:nat|p<=m} -> n=m *) - -(** Definition of having finite cardinality [n+1] for a set [A] *) - -Definition card (A:Set) n := - exists f, - (forall x:A, f x <= n) /\ - (forall x y:A, f x = f y -> x = y) /\ - (forall m, m <= n -> exists x:A, f x = m). - -Require Import Arith. - -(** Showing that the interval [0;n] has cardinality [n+1] *) - -Theorem card_interval : forall n, card {x:nat|x<=n} n. -Proof. -intro n. -exists (fun x:{x:nat|x<=n} => proj1_sig x). -split. -(* bounded *) -intro x; apply (proj2_sig x). -split. -(* injectivity *) -intros (p,Hp) (q,Hq). -simpl. -intro Hpq. -apply dep_pair_intro; assumption. -(* surjectivity *) -intros m Hmn. -exists (exist (fun x : nat => x <= n) m Hmn). -reflexivity. -Qed. - -(** Showing that equality on the interval [0;n] is decidable *) - -Lemma interval_dec : - forall n (x y : {m:nat|m<=n}), {x=y}+{x<>y}. -Proof. -intros n (p,Hp). -induction p; intros ([|q],Hq). -left. - apply dep_pair_intro. - reflexivity. -right. - intro H; discriminate H. -right. - intro H; discriminate H. -assert (Hp' : p <= n). - apply le_Sn_le; assumption. -assert (Hq' : q <= n). - apply le_Sn_le; assumption. -destruct (IHp Hp' (exist (fun m => m <= n) q Hq')) - as [Heq|Hneq]. -left. - injection Heq; intro Heq'. - apply dep_pair_intro. - apply eq_S. - assumption. -right. - intro HeqS. - injection HeqS; intro Heq. - apply Hneq. - apply dep_pair_intro. - assumption. -Qed. - -(** Showing that the cardinality relation is functional on decidable sets *) - -Lemma card_inj_aux : - forall (A:Type) f g n, - (forall x:A, f x <= 0) -> - (forall x y:A, f x = f y -> x = y) -> - (forall m, m <= S n -> exists x:A, g x = m) - -> False. -Proof. -intros A f g n Hfbound Hfinj Hgsurj. -destruct (Hgsurj (S n) (le_n _)) as (x,Hx). -destruct (Hgsurj n (le_S _ _ (le_n _))) as (x',Hx'). -assert (Hfx : 0 = f x). -apply le_n_O_eq. -apply Hfbound. -assert (Hfx' : 0 = f x'). -apply le_n_O_eq. -apply Hfbound. -assert (x=x'). -apply Hfinj. -rewrite <- Hfx. -rewrite <- Hfx'. -reflexivity. -rewrite H in Hx. -rewrite Hx' in Hx. -apply (n_Sn _ Hx). -Qed. - -(** For [dec_restrict], we use a lemma on the negation of equality -that requires proof-irrelevance. It should be possible to avoid this -lemma by generalizing over a first-order definition of [x<>y], say -[neq] such that [{x=y}+{neq x y}] and [~(x=y /\ neq x y)]; for such -[neq], unicity of proofs could be proven *) - - Require Import Classical. - Lemma neq_dep_intro : - forall (A:Set) (z x y:A) (p:x<>z) (q:y<>z), x=y -> - exist (fun x => x <> z) x p = exist (fun x => x <> z) y q. - Proof. - intros A z x y p q Heq. - generalize q; clear q; rewrite <- Heq; intro q. - rewrite (proof_irrelevance _ p q); reflexivity. - Qed. - -Lemma dec_restrict : - forall (A:Set), - (forall x y :A, {x=y}+{x<>y}) -> - forall z (x y :{a:A|a<>z}), {x=y}+{x<>y}. -Proof. -intros A Hdec z (x,Hx) (y,Hy). -destruct (Hdec x y) as [Heq|Hneq]. -left; apply neq_dep_intro; assumption. -right; intro Heq; injection Heq; exact Hneq. -Qed. - -Lemma pred_inj : forall n m, - 0 <> n -> 0 <> m -> pred m = pred n -> m = n. -Proof. -destruct n. -intros m H; destruct H; reflexivity. -destruct m. -intros _ H; destruct H; reflexivity. -simpl; intros _ _ H. -rewrite H. -reflexivity. -Qed. - -Lemma le_neq_lt : forall n m, n <= m -> n<>m -> n < m. -Proof. -intros n m Hle Hneq. -destruct (le_lt_eq_dec n m Hle). -assumption. -contradiction. -Qed. - -Lemma inj_restrict : - forall (A:Set) (f:A->nat) x y z, - (forall x y : A, f x = f y -> x = y) - -> x <> z -> f y < f z -> f z <= f x - -> pred (f x) = f y - -> False. - -(* Search error sans le type de f !! *) -Proof. -intros A f x y z Hfinj Hneqx Hfy Hfx Heq. -assert (f z <> f x). - apply sym_not_eq. - intro Heqf. - apply Hneqx. - apply Hfinj. - assumption. -assert (f x = S (f y)). - assert (0 < f x). - apply le_lt_trans with (f z). - apply le_O_n. - apply le_neq_lt; assumption. - apply pred_inj. - apply O_S. - apply lt_O_neq; assumption. - exact Heq. -assert (f z <= f y). -destruct (le_lt_or_eq _ _ Hfx). - apply lt_n_Sm_le. - rewrite <- H0. - assumption. - contradiction Hneqx. - symmetry. - apply Hfinj. - assumption. -contradiction (lt_not_le (f y) (f z)). -Qed. - -Theorem card_inj : forall m n (A:Set), - (forall x y :A, {x=y}+{x<>y}) -> - card A m -> card A n -> m = n. -Proof. -induction m; destruct n; -intros A Hdec - (f,(Hfbound,(Hfinj,Hfsurj))) - (g,(Hgbound,(Hginj,Hgsurj))). -(* 0/0 *) -reflexivity. -(* 0/Sm *) -destruct (card_inj_aux _ _ _ _ Hfbound Hfinj Hgsurj). -(* Sn/0 *) -destruct (card_inj_aux _ _ _ _ Hgbound Hginj Hfsurj). -(* Sn/Sm *) -destruct (Hgsurj (S n) (le_n _)) as (xSn,HSnx). -rewrite IHm with (n:=n) (A := {x:A|x<>xSn}). -reflexivity. -(* decidability of eq on {x:A|x<>xSm} *) -apply dec_restrict. -assumption. -(* cardinality of {x:A|x<>xSn} is m *) -pose (f' := fun x' : {x:A|x<>xSn} => - let (x,Hneq) := x' in - if le_lt_dec (f xSn) (f x) - then pred (f x) - else f x). -exists f'. -split. -(* f' is bounded *) -unfold f'. -intros (x,_). -destruct (le_lt_dec (f xSn) (f x)) as [Hle|Hge]. -change m with (pred (S m)). -apply le_pred. -apply Hfbound. -apply le_S_n. -apply le_trans with (f xSn). -exact Hge. -apply Hfbound. -split. -(* f' is injective *) -unfold f'. -intros (x,Hneqx) (y,Hneqy) Heqf'. -destruct (le_lt_dec (f xSn) (f x)) as [Hlefx|Hgefx]; -destruct (le_lt_dec (f xSn) (f y)) as [Hlefy|Hgefy]. -(* f xSn <= f x et f xSn <= f y *) -assert (Heq : x = y). - apply Hfinj. - assert (f xSn <> f y). - apply sym_not_eq. - intro Heqf. - apply Hneqy. - apply Hfinj. - assumption. - assert (0 < f y). - apply le_lt_trans with (f xSn). - apply le_O_n. - apply le_neq_lt; assumption. - assert (f xSn <> f x). - apply sym_not_eq. - intro Heqf. - apply Hneqx. - apply Hfinj. - assumption. - assert (0 < f x). - apply le_lt_trans with (f xSn). - apply le_O_n. - apply le_neq_lt; assumption. - apply pred_inj. - apply lt_O_neq; assumption. - apply lt_O_neq; assumption. - assumption. -apply neq_dep_intro; assumption. -(* f y < f xSn <= f x *) -destruct (inj_restrict A f x y xSn); assumption. -(* f x < f xSn <= f y *) -symmetry in Heqf'. -destruct (inj_restrict A f y x xSn); assumption. -(* f x < f xSn et f y < f xSn *) -assert (Heq : x=y). - apply Hfinj; assumption. -apply neq_dep_intro; assumption. -(* f' is surjective *) -intros p Hlep. -destruct (le_lt_dec (f xSn) p) as [Hle|Hlt]. -(* case f xSn <= p *) -destruct (Hfsurj (S p) (le_n_S _ _ Hlep)) as (x,Hx). -assert (Hneq : x <> xSn). - intro Heqx. - rewrite Heqx in Hx. - rewrite Hx in Hle. - apply le_Sn_n with p; assumption. -exists (exist (fun a => a<>xSn) x Hneq). -unfold f'. -destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt']. -rewrite Hx; reflexivity. -rewrite Hx in Hlt'. -contradiction (le_not_lt (f xSn) p). -apply lt_trans with (S p). -apply lt_n_Sn. -assumption. -(* case p < f xSn *) -destruct (Hfsurj p (le_S _ _ Hlep)) as (x,Hx). -assert (Hneq : x <> xSn). - intro Heqx. - rewrite Heqx in Hx. - rewrite Hx in Hlt. - apply (lt_irrefl p). - assumption. -exists (exist (fun a => a<>xSn) x Hneq). -unfold f'. -destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt']. - rewrite Hx in Hle'. - contradiction (lt_irrefl p). - apply lt_le_trans with (f xSn); assumption. - assumption. -(* cardinality of {x:A|x<>xSn} is n *) -pose (g' := fun x' : {x:A|x<>xSn} => - let (x,Hneq) := x' in - if Hdec x xSn then 0 else g x). -exists g'. -split. -(* g is bounded *) -unfold g'. -intros (x,_). -destruct (Hdec x xSn) as [_|Hneq]. -apply le_O_n. -assert (Hle_gx:=Hgbound x). -destruct (le_lt_or_eq _ _ Hle_gx). -apply lt_n_Sm_le. -assumption. -contradiction Hneq. -apply Hginj. -rewrite HSnx. -assumption. -split. -(* g is injective *) -unfold g'. -intros (x,Hneqx) (y,Hneqy) Heqg'. -destruct (Hdec x xSn) as [Heqx|_]. -contradiction Hneqx. -destruct (Hdec y xSn) as [Heqy|_]. -contradiction Hneqy. -assert (Heq : x=y). - apply Hginj; assumption. -apply neq_dep_intro; assumption. -(* g is surjective *) -intros p Hlep. -destruct (Hgsurj p (le_S _ _ Hlep)) as (x,Hx). -assert (Hneq : x<>xSn). - intro Heq. - rewrite Heq in Hx. - rewrite Hx in HSnx. - rewrite HSnx in Hlep. - contradiction (le_Sn_n _ Hlep). -exists (exist (fun a => a<>xSn) x Hneq). -simpl. -destruct (Hdec x xSn) as [Heqx|_]. -contradiction Hneq. -assumption. -Qed. - -(** Conclusion *) - -Theorem interval_discr : - forall n m, {p:nat|p<=n} = {p:nat|p<=m} -> n=m. -Proof. -intros n m Heq. -apply card_inj with (A := {p:nat|p<=n}). -apply interval_dec. -apply card_interval. -rewrite Heq. -apply card_interval. -Qed. -- cgit v1.2.3