diff options
Diffstat (limited to 'theories7')
-rw-r--r-- | theories7/Reals/PartSum.v | 5 | ||||
-rw-r--r-- | theories7/Reals/RiemannInt.v | 10 |
2 files changed, 7 insertions, 8 deletions
diff --git a/theories7/Reals/PartSum.v b/theories7/Reals/PartSum.v index ee5fa498..4d28bec8 100644 --- a/theories7/Reals/PartSum.v +++ b/theories7/Reals/PartSum.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: PartSum.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*) +(*i $Id: PartSum.v,v 1.1.2.2 2005/07/13 23:19:16 herbelin Exp $ i*) Require Rbase. Require Rfunctions. @@ -385,8 +385,7 @@ Elim s; Intro. Left; Apply a. Right; Apply b. Cut (Un_growing [n:nat](sum_f_R0 An n)). -Intro; Pose l1 := (sum_f_R0 An N). -Fold l1 in r. +Intro; LetTac l1 := (sum_f_R0 An N) in r. Unfold Un_cv in H; Cut ``0<l1-l``. Intro; Elim (H ? H2); Intros. Pose N0 := (max x N); Cut (ge N0 x). diff --git a/theories7/Reals/RiemannInt.v b/theories7/Reals/RiemannInt.v index c9301b56..cc537c6d 100644 --- a/theories7/Reals/RiemannInt.v +++ b/theories7/Reals/RiemannInt.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: RiemannInt.v,v 1.1.2.1 2004/07/16 19:31:34 herbelin Exp $ i*) +(*i $Id: RiemannInt.v,v 1.1.2.2 2005/07/13 23:19:16 herbelin Exp $ i*) Require Rfunctions. Require SeqSeries. @@ -710,9 +710,9 @@ Apply r_Rmult_mult with ``2``; [Unfold Rdiv; Do 2 Rewrite -> (Rmult_sym ``2``); Qed. Lemma RiemannInt_P17 : (f:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable [x:R](Rabsolu (f x)) a b)) ``a<=b`` -> ``(Rabsolu (RiemannInt pr1))<=(RiemannInt pr2)``. -Intro f; Intros; Unfold RiemannInt; Case (RiemannInt_exists 1!f 2!a 3!b pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!([x0:R](Rabsolu (f x0))) 2!a 3!b pr2 5!RinvN RinvN_cv); Intros; Pose phi1 := (phi_sequence RinvN pr1); Pose phi2 := [N:nat](mkStepFun (StepFun_P32 (phi1 N))); Apply Rle_cv_lim with [N:nat](Rabsolu (RiemannInt_SF (phi1 N))) [N:nat](RiemannInt_SF (phi2 N)). +Intro f; Intros; Unfold RiemannInt; Case (RiemannInt_exists 1!f 2!a 3!b pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!([x0:R](Rabsolu (f x0))) 2!a 3!b pr2 5!RinvN RinvN_cv); Intros; LetTac phi1 := (phi_sequence RinvN pr1) in u0; Pose phi2 := [N:nat](mkStepFun (StepFun_P32 (phi1 N))); Apply Rle_cv_lim with [N:nat](Rabsolu (RiemannInt_SF (phi1 N))) [N:nat](RiemannInt_SF (phi2 N)). Intro; Unfold phi2; Apply StepFun_P34; Assumption. -Fold phi1 in u0; Apply (continuity_seq Rabsolu [N:nat](RiemannInt_SF (phi1 N)) x0); Try Assumption. +Apply (continuity_seq Rabsolu [N:nat](RiemannInt_SF (phi1 N)) x0); Try Assumption. Apply continuity_Rabsolu. Pose phi3 := (phi_sequence RinvN pr2); Assert H0 : (EXT psi3:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((Rabsolu (f t))-((phi3 n) t)))<= (psi3 n t)``)/\``(Rabsolu (RiemannInt_SF (psi3 n))) < (RinvN n)``). Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr2 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr2 n)). @@ -1139,7 +1139,7 @@ Elim (H ? H4); Clear H; Intros N0 H; Assert H5 : (n:nat)(ge n N0)->``(RinvN n)<e Intros; Replace (pos (RinvN n)) with ``(R_dist (mkposreal (/((INR n)+1)) (RinvN_pos n)) 0)``. Apply H; Assumption. Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Apply Rle_sym1; Left; Apply (cond_pos (RinvN n)). -Exists N0; Intros; Elim (H1 n); Elim (H2 n); Elim (H3 n); Clear H1 H2 H3; Intros; Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Pose phi1 := (phi_sequence RinvN pr1 n); Fold phi1 in H8; Pose phi2 := (phi_sequence RinvN pr2 n); Fold phi2 in H3; Pose phi3 := (phi_sequence RinvN pr3 n); Fold phi2 in H1; Assert H10 : (IsStepFun phi3 a b). +Exists N0; Intros; Elim (H1 n); Elim (H2 n); Elim (H3 n); Clear H1 H2 H3; Intros; Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; LetTac phi1 := (phi_sequence RinvN pr1 n) in H8 Goal; LetTac phi2 := (phi_sequence RinvN pr2 n) in H3 Goal; LetTac phi3 := (phi_sequence RinvN pr3 n) in H1 Goal; Assert H10 : (IsStepFun phi3 a b). Apply StepFun_P44 with c. Apply (pre phi3). Split; Assumption. @@ -1171,7 +1171,7 @@ Apply Rle_compatibility; Apply StepFun_P37; Try Assumption. Intros; Simpl; Rewrite Rmult_1l; Apply Rle_trans with ``(Rabsolu ((f x)-(phi3 x)))+(Rabsolu ((f x)-(phi2 x)))``. Rewrite <- (Rabsolu_Ropp ``(f x)-(phi3 x)``); Rewrite Ropp_distr2; Replace ``(phi3 x)+ -1*(phi2 x)`` with ``((phi3 x)-(f x))+((f x)-(phi2 x))``; [Apply Rabsolu_triang | Ring]. Apply Rplus_le. -Fold phi3 in H1; Apply H1. +Apply H1. Elim H14; Intros; Split. Replace (Rmin a c) with a. Apply Rle_trans with b; Try Assumption. |