summaryrefslogtreecommitdiff
path: root/theories7/ZArith/Znumtheory.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/ZArith/Znumtheory.v')
-rw-r--r--theories7/ZArith/Znumtheory.v629
1 files changed, 0 insertions, 629 deletions
diff --git a/theories7/ZArith/Znumtheory.v b/theories7/ZArith/Znumtheory.v
deleted file mode 100644
index b8e5f300..00000000
--- a/theories7/ZArith/Znumtheory.v
+++ /dev/null
@@ -1,629 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Znumtheory.v,v 1.3.2.1 2004/07/16 19:31:43 herbelin Exp $ i*)
-
-Require ZArith_base.
-Require ZArithRing.
-Require Zcomplements.
-Require Zdiv.
-V7only [Import Z_scope.].
-Open Local Scope Z_scope.
-
-(** This file contains some notions of number theory upon Z numbers:
- - a divisibility predicate [Zdivide]
- - a gcd predicate [gcd]
- - Euclid algorithm [euclid]
- - an efficient [Zgcd] function
- - a relatively prime predicate [rel_prime]
- - a prime predicate [prime]
-*)
-
-(** * Divisibility *)
-
-Inductive Zdivide [a,b:Z] : Prop :=
- Zdivide_intro : (q:Z) `b = q * a` -> (Zdivide a b).
-
-(** Syntax for divisibility *)
-
-Notation "( a | b )" := (Zdivide a b)
- (at level 0, a,b at level 10) : Z_scope
- V8only "( a | b )" (at level 0).
-
-(** Results concerning divisibility*)
-
-Lemma Zdivide_refl : (a:Z) (a|a).
-Proof.
-Intros; Apply Zdivide_intro with `1`; Ring.
-Save.
-
-Lemma Zone_divide : (a:Z) (1|a).
-Proof.
-Intros; Apply Zdivide_intro with `a`; Ring.
-Save.
-
-Lemma Zdivide_0 : (a:Z) (a|0).
-Proof.
-Intros; Apply Zdivide_intro with `0`; Ring.
-Save.
-
-Hints Resolve Zdivide_refl Zone_divide Zdivide_0 : zarith.
-
-Lemma Zdivide_mult_left : (a,b,c:Z) (a|b) -> (`c*a`|`c*b`).
-Proof.
-Induction 1; Intros; Apply Zdivide_intro with q.
-Rewrite H0; Ring.
-Save.
-
-Lemma Zdivide_mult_right : (a,b,c:Z) (a|b) -> (`a*c`|`b*c`).
-Proof.
-Intros a b c; Rewrite (Zmult_sym a c); Rewrite (Zmult_sym b c).
-Apply Zdivide_mult_left; Trivial.
-Save.
-
-Hints Resolve Zdivide_mult_left Zdivide_mult_right : zarith.
-
-Lemma Zdivide_plus : (a,b,c:Z) (a|b) -> (a|c) -> (a|`b+c`).
-Proof.
-Induction 1; Intros q Hq; Induction 1; Intros q' Hq'.
-Apply Zdivide_intro with `q+q'`.
-Rewrite Hq; Rewrite Hq'; Ring.
-Save.
-
-Lemma Zdivide_opp : (a,b:Z) (a|b) -> (a|`-b`).
-Proof.
-Induction 1; Intros; Apply Zdivide_intro with `-q`.
-Rewrite H0; Ring.
-Save.
-
-Lemma Zdivide_opp_rev : (a,b:Z) (a|`-b`) -> (a| b).
-Proof.
-Intros; Replace b with `-(-b)`. Apply Zdivide_opp; Trivial. Ring.
-Save.
-
-Lemma Zdivide_opp_left : (a,b:Z) (a|b) -> (`-a`|b).
-Proof.
-Induction 1; Intros; Apply Zdivide_intro with `-q`.
-Rewrite H0; Ring.
-Save.
-
-Lemma Zdivide_opp_left_rev : (a,b:Z) (`-a`|b) -> (a|b).
-Proof.
-Intros; Replace a with `-(-a)`. Apply Zdivide_opp_left; Trivial. Ring.
-Save.
-
-Lemma Zdivide_minus : (a,b,c:Z) (a|b) -> (a|c) -> (a|`b-c`).
-Proof.
-Induction 1; Intros q Hq; Induction 1; Intros q' Hq'.
-Apply Zdivide_intro with `q-q'`.
-Rewrite Hq; Rewrite Hq'; Ring.
-Save.
-
-Lemma Zdivide_left : (a,b,c:Z) (a|b) -> (a|`b*c`).
-Proof.
-Induction 1; Intros q Hq; Apply Zdivide_intro with `q*c`.
-Rewrite Hq; Ring.
-Save.
-
-Lemma Zdivide_right : (a,b,c:Z) (a|c) -> (a|`b*c`).
-Proof.
-Induction 1; Intros q Hq; Apply Zdivide_intro with `q*b`.
-Rewrite Hq; Ring.
-Save.
-
-Lemma Zdivide_a_ab : (a,b:Z) (a|`a*b`).
-Proof.
-Intros; Apply Zdivide_intro with b; Ring.
-Save.
-
-Lemma Zdivide_a_ba : (a,b:Z) (a|`b*a`).
-Proof.
-Intros; Apply Zdivide_intro with b; Ring.
-Save.
-
-Hints Resolve Zdivide_plus Zdivide_opp Zdivide_opp_rev
- Zdivide_opp_left Zdivide_opp_left_rev
- Zdivide_minus Zdivide_left Zdivide_right
- Zdivide_a_ab Zdivide_a_ba : zarith.
-
-(** Auxiliary result. *)
-
-Lemma Zmult_one :
- (x,y:Z) `x>=0` -> `x*y=1` -> `x=1`.
-Proof.
-Intros x y H H0; NewDestruct (Zmult_1_inversion_l ? ? H0) as [Hpos|Hneg].
- Assumption.
- Rewrite Hneg in H; Simpl in H.
- Contradiction (Zle_not_lt `0` `-1`).
- Apply Zge_le; Assumption.
- Apply NEG_lt_ZERO.
-Save.
-
-(** Only [1] and [-1] divide [1]. *)
-
-Lemma Zdivide_1 : (x:Z) (x|1) -> `x=1` \/ `x=-1`.
-Proof.
-Induction 1; Intros.
-Elim (Z_lt_ge_dec `0` x); [Left|Right].
-Apply Zmult_one with q; Auto with zarith; Rewrite H0; Ring.
-Assert `(-x) = 1`; Auto with zarith.
-Apply Zmult_one with (-q); Auto with zarith; Rewrite H0; Ring.
-Save.
-
-(** If [a] divides [b] and [b] divides [a] then [a] is [b] or [-b]. *)
-
-Lemma Zdivide_antisym : (a,b:Z) (a|b) -> (b|a) -> `a=b` \/ `a=-b`.
-Proof.
-Induction 1; Intros.
-Inversion H1.
-Rewrite H0 in H2; Clear H H1.
-Case (Z_zerop a); Intro.
-Left; Rewrite H0; Rewrite e; Ring.
-Assert Hqq0: `q0*q = 1`.
-Apply Zmult_reg_left with a.
-Assumption.
-Ring.
-Pattern 2 a; Rewrite H2; Ring.
-Assert (q|1).
-Rewrite <- Hqq0; Auto with zarith.
-Elim (Zdivide_1 q H); Intros.
-Rewrite H1 in H0; Left; Omega.
-Rewrite H1 in H0; Right; Omega.
-Save.
-
-(** If [a] divides [b] and [b<>0] then [|a| <= |b|]. *)
-
-Lemma Zdivide_bounds : (a,b:Z) (a|b) -> `b<>0` -> `|a| <= |b|`.
-Proof.
-Induction 1; Intros.
-Assert `|b|=|q|*|a|`.
- Subst; Apply Zabs_Zmult.
-Rewrite H2.
-Assert H3 := (Zabs_pos q).
-Assert H4 := (Zabs_pos a).
-Assert `|q|*|a|>=1*|a|`; Auto with zarith.
-Apply Zge_Zmult_pos_compat; Auto with zarith.
-Elim (Z_lt_ge_dec `|q|` `1`); [ Intros | Auto with zarith ].
-Assert `|q|=0`.
- Omega.
-Assert `q=0`.
- Rewrite <- (Zabs_Zsgn q).
-Rewrite H5; Auto with zarith.
-Subst q; Omega.
-Save.
-
-(** * Greatest common divisor (gcd). *)
-
-(** There is no unicity of the gcd; hence we define the predicate [gcd a b d]
- expressing that [d] is a gcd of [a] and [b].
- (We show later that the [gcd] is actually unique if we discard its sign.) *)
-
-Inductive gcd [a,b,d:Z] : Prop :=
- gcd_intro :
- (d|a) -> (d|b) -> ((x:Z) (x|a) -> (x|b) -> (x|d)) -> (gcd a b d).
-
-(** Trivial properties of [gcd] *)
-
-Lemma gcd_sym : (a,b,d:Z)(gcd a b d) -> (gcd b a d).
-Proof.
-Induction 1; Constructor; Intuition.
-Save.
-
-Lemma gcd_0 : (a:Z)(gcd a `0` a).
-Proof.
-Constructor; Auto with zarith.
-Save.
-
-Lemma gcd_minus :(a,b,d:Z)(gcd a `-b` d) -> (gcd b a d).
-Proof.
-Induction 1; Constructor; Intuition.
-Save.
-
-Lemma gcd_opp :(a,b,d:Z)(gcd a b d) -> (gcd b a `-d`).
-Proof.
-Induction 1; Constructor; Intuition.
-Save.
-
-Hints Resolve gcd_sym gcd_0 gcd_minus gcd_opp : zarith.
-
-(** * Extended Euclid algorithm. *)
-
-(** Euclid's algorithm to compute the [gcd] mainly relies on
- the following property. *)
-
-Lemma gcd_for_euclid :
- (a,b,d,q:Z) (gcd b `a-q*b` d) -> (gcd a b d).
-Proof.
-Induction 1; Constructor; Intuition.
-Replace a with `a-q*b+q*b`. Auto with zarith. Ring.
-Save.
-
-Lemma gcd_for_euclid2 :
- (b,d,q,r:Z) (gcd r b d) -> (gcd b `b*q+r` d).
-Proof.
-Induction 1; Constructor; Intuition.
-Apply H2; Auto.
-Replace r with `b*q+r-b*q`. Auto with zarith. Ring.
-Save.
-
-(** We implement the extended version of Euclid's algorithm,
- i.e. the one computing Bezout's coefficients as it computes
- the [gcd]. We follow the algorithm given in Knuth's
- "Art of Computer Programming", vol 2, page 325. *)
-
-Section extended_euclid_algorithm.
-
-Variable a,b : Z.
-
-(** The specification of Euclid's algorithm is the existence of
- [u], [v] and [d] such that [ua+vb=d] and [(gcd a b d)]. *)
-
-Inductive Euclid : Set :=
- Euclid_intro :
- (u,v,d:Z) `u*a+v*b=d` -> (gcd a b d) -> Euclid.
-
-(** The recursive part of Euclid's algorithm uses well-founded
- recursion of non-negative integers. It maintains 6 integers
- [u1,u2,u3,v1,v2,v3] such that the following invariant holds:
- [u1*a+u2*b=u3] and [v1*a+v2*b=v3] and [gcd(u2,v3)=gcd(a,b)].
- *)
-
-Lemma euclid_rec :
- (v3:Z) `0 <= v3` -> (u1,u2,u3,v1,v2:Z) `u1*a+u2*b=u3` -> `v1*a+v2*b=v3` ->
- ((d:Z)(gcd u3 v3 d) -> (gcd a b d)) -> Euclid.
-Proof.
-Intros v3 Hv3; Generalize Hv3; Pattern v3.
-Apply Z_lt_rec.
-Clear v3 Hv3; Intros.
-Elim (Z_zerop x); Intro.
-Apply Euclid_intro with u:=u1 v:=u2 d:=u3.
-Assumption.
-Apply H2.
-Rewrite a0; Auto with zarith.
-LetTac q := (Zdiv u3 x).
-Assert Hq: `0 <= u3-q*x < x`.
-Replace `u3-q*x` with `u3%x`.
-Apply Z_mod_lt; Omega.
-Assert xpos : `x > 0`. Omega.
-Generalize (Z_div_mod_eq u3 x xpos).
-Unfold q.
-Intro eq; Pattern 2 u3; Rewrite eq; Ring.
-Apply (H `u3-q*x` Hq (proj1 ? ? Hq) v1 v2 x `u1-q*v1` `u2-q*v2`).
-Tauto.
-Replace `(u1-q*v1)*a+(u2-q*v2)*b` with `(u1*a+u2*b)-q*(v1*a+v2*b)`.
-Rewrite H0; Rewrite H1; Trivial.
-Ring.
-Intros; Apply H2.
-Apply gcd_for_euclid with q; Assumption.
-Assumption.
-Save.
-
-(** We get Euclid's algorithm by applying [euclid_rec] on
- [1,0,a,0,1,b] when [b>=0] and [1,0,a,0,-1,-b] when [b<0]. *)
-
-Lemma euclid : Euclid.
-Proof.
-Case (Z_le_gt_dec `0` b); Intro.
-Intros; Apply euclid_rec with u1:=`1` u2:=`0` u3:=a
- v1:=`0` v2:=`1` v3:=b;
-Auto with zarith; Ring.
-Intros; Apply euclid_rec with u1:=`1` u2:=`0` u3:=a
- v1:=`0` v2:=`-1` v3:=`-b`;
-Auto with zarith; Try Ring.
-Save.
-
-End extended_euclid_algorithm.
-
-Theorem gcd_uniqueness_apart_sign :
- (a,b,d,d':Z) (gcd a b d) -> (gcd a b d') -> `d = d'` \/ `d = -d'`.
-Proof.
-Induction 1.
-Intros H1 H2 H3; Induction 1; Intros.
-Generalize (H3 d' H4 H5); Intro Hd'd.
-Generalize (H6 d H1 H2); Intro Hdd'.
-Exact (Zdivide_antisym d d' Hdd' Hd'd).
-Save.
-
-(** * Bezout's coefficients *)
-
-Inductive Bezout [a,b,d:Z] : Prop :=
- Bezout_intro : (u,v:Z) `u*a + v*b = d` -> (Bezout a b d).
-
-(** Existence of Bezout's coefficients for the [gcd] of [a] and [b] *)
-
-Lemma gcd_bezout : (a,b,d:Z) (gcd a b d) -> (Bezout a b d).
-Proof.
-Intros a b d Hgcd.
-Elim (euclid a b); Intros u v d0 e g.
-Generalize (gcd_uniqueness_apart_sign a b d d0 Hgcd g).
-Intro H; Elim H; Clear H; Intros.
-Apply Bezout_intro with u v.
-Rewrite H; Assumption.
-Apply Bezout_intro with `-u` `-v`.
-Rewrite H; Rewrite <- e; Ring.
-Save.
-
-(** gcd of [ca] and [cb] is [c gcd(a,b)]. *)
-
-Lemma gcd_mult : (a,b,c,d:Z) (gcd a b d) -> (gcd `c*a` `c*b` `c*d`).
-Proof.
-Intros a b c d; Induction 1; Constructor; Intuition.
-Elim (gcd_bezout a b d H); Intros.
-Elim H3; Intros.
-Elim H4; Intros.
-Apply Zdivide_intro with `u*q+v*q0`.
-Rewrite <- H5.
-Replace `c*(u*a+v*b)` with `u*(c*a)+v*(c*b)`.
-Rewrite H6; Rewrite H7; Ring.
-Ring.
-Save.
-
-(** We could obtain a [Zgcd] function via [euclid]. But we propose
- here a more direct version of a [Zgcd], with better extraction
- (no bezout coeffs). *)
-
-Definition Zgcd_pos : (a:Z)`0<=a` -> (b:Z)
- { g:Z | `0<=a` -> (gcd a b g) /\ `g>=0` }.
-Proof.
-Intros a Ha.
-Apply (Z_lt_rec [a:Z](b:Z) { g:Z | `0<=a` -> (gcd a b g) /\`g>=0` }); Try Assumption.
-Intro x; Case x.
-Intros _ b; Exists (Zabs b).
- Elim (Z_le_lt_eq_dec ? ? (Zabs_pos b)).
- Intros H0; Split.
- Apply Zabs_ind.
- Intros; Apply gcd_sym; Apply gcd_0; Auto.
- Intros; Apply gcd_opp; Apply gcd_0; Auto.
- Auto with zarith.
-
- Intros H0; Rewrite <- H0.
- Rewrite <- (Zabs_Zsgn b); Rewrite <- H0; Simpl.
- Split; [Apply gcd_0|Idtac];Auto with zarith.
-
-Intros p Hrec b.
-Generalize (Z_div_mod b (POS p)).
-Case (Zdiv_eucl b (POS p)); Intros q r Hqr.
-Elim Hqr; Clear Hqr; Intros; Auto with zarith.
-Elim (Hrec r H0 (POS p)); Intros g Hgkl.
-Inversion_clear H0.
-Elim (Hgkl H1); Clear Hgkl; Intros H3 H4.
-Exists g; Intros.
-Split; Auto.
-Rewrite H.
-Apply gcd_for_euclid2; Auto.
-
-Intros p Hrec b.
-Exists `0`; Intros.
-Elim H; Auto.
-Defined.
-
-Definition Zgcd_spec : (a,b:Z){ g : Z | (gcd a b g) /\ `g>=0` }.
-Proof.
-Intros a; Case (Z_gt_le_dec `0` a).
-Intros; Assert `0 <= -a`.
-Omega.
-Elim (Zgcd_pos `-a` H b); Intros g Hgkl.
-Exists g.
-Intuition.
-Intros Ha b; Elim (Zgcd_pos a Ha b); Intros g; Exists g; Intuition.
-Defined.
-
-Definition Zgcd := [a,b:Z](let (g,_) = (Zgcd_spec a b) in g).
-
-Lemma Zgcd_is_pos : (a,b:Z)`(Zgcd a b) >=0`.
-Intros a b; Unfold Zgcd; Case (Zgcd_spec a b); Tauto.
-Qed.
-
-Lemma Zgcd_is_gcd : (a,b:Z)(gcd a b (Zgcd a b)).
-Intros a b; Unfold Zgcd; Case (Zgcd_spec a b); Tauto.
-Qed.
-
-(** * Relative primality *)
-
-Definition rel_prime [a,b:Z] : Prop := (gcd a b `1`).
-
-(** Bezout's theorem: [a] and [b] are relatively prime if and
- only if there exist [u] and [v] such that [ua+vb = 1]. *)
-
-Lemma rel_prime_bezout :
- (a,b:Z) (rel_prime a b) -> (Bezout a b `1`).
-Proof.
-Intros a b; Exact (gcd_bezout a b `1`).
-Save.
-
-Lemma bezout_rel_prime :
- (a,b:Z) (Bezout a b `1`) -> (rel_prime a b).
-Proof.
-Induction 1; Constructor; Auto with zarith.
-Intros. Rewrite <- H0; Auto with zarith.
-Save.
-
-(** Gauss's theorem: if [a] divides [bc] and if [a] and [b] are
- relatively prime, then [a] divides [c]. *)
-
-Theorem Gauss : (a,b,c:Z) (a |`b*c`) -> (rel_prime a b) -> (a | c).
-Proof.
-Intros. Elim (rel_prime_bezout a b H0); Intros.
-Replace c with `c*1`; [ Idtac | Ring ].
-Rewrite <- H1.
-Replace `c*(u*a+v*b)` with `(c*u)*a + v*(b*c)`; [ EAuto with zarith | Ring ].
-Save.
-
-(** If [a] is relatively prime to [b] and [c], then it is to [bc] *)
-
-Lemma rel_prime_mult :
- (a,b,c:Z) (rel_prime a b) -> (rel_prime a c) -> (rel_prime a `b*c`).
-Proof.
-Intros a b c Hb Hc.
-Elim (rel_prime_bezout a b Hb); Intros.
-Elim (rel_prime_bezout a c Hc); Intros.
-Apply bezout_rel_prime.
-Apply Bezout_intro with u:=`u*u0*a+v0*c*u+u0*v*b` v:=`v*v0`.
-Rewrite <- H.
-Replace `u*a+v*b` with `(u*a+v*b) * 1`; [ Idtac | Ring ].
-Rewrite <- H0.
-Ring.
-Save.
-
-Lemma rel_prime_cross_prod :
- (a,b,c,d:Z) (rel_prime a b) -> (rel_prime c d) -> `b>0` -> `d>0` ->
- `a*d = b*c` -> (a=c /\ b=d).
-Proof.
-Intros a b c d; Intros.
-Elim (Zdivide_antisym b d).
-Split; Auto with zarith.
-Rewrite H4 in H3.
-Rewrite Zmult_sym in H3.
-Apply Zmult_reg_left with d; Auto with zarith.
-Intros; Omega.
-Apply Gauss with a.
-Rewrite H3.
-Auto with zarith.
-Red; Auto with zarith.
-Apply Gauss with c.
-Rewrite Zmult_sym.
-Rewrite <- H3.
-Auto with zarith.
-Red; Auto with zarith.
-Save.
-
-(** After factorization by a gcd, the original numbers are relatively prime. *)
-
-Lemma gcd_rel_prime :
- (a,b,g:Z)`b>0` -> `g>=0`-> (gcd a b g) -> (rel_prime `a/g` `b/g`).
-Intros a b g; Intros.
-Assert `g <> 0`.
- Intro.
- Elim H1; Intros.
- Elim H4; Intros.
- Rewrite H2 in H6; Subst b; Omega.
-Unfold rel_prime.
-Elim (Zgcd_spec `a/g` `b/g`); Intros g' (H3,H4).
-Assert H5 := (gcd_mult ? ? g ? H3).
-Rewrite <- Z_div_exact_2 in H5; Auto with zarith.
-Rewrite <- Z_div_exact_2 in H5; Auto with zarith.
-Elim (gcd_uniqueness_apart_sign ? ? ? ? H1 H5).
-Intros; Rewrite (!Zmult_reg_left `1` g' g); Auto with zarith.
-Intros; Rewrite (!Zmult_reg_left `1` `-g'` g); Auto with zarith.
-Pattern 1 g; Rewrite H6; Ring.
-
-Elim H1; Intros.
-Elim H7; Intros.
-Rewrite H9.
-Replace `q*g` with `0+q*g`.
-Rewrite Z_mod_plus.
-Compute; Auto.
-Omega.
-Ring.
-
-Elim H1; Intros.
-Elim H6; Intros.
-Rewrite H9.
-Replace `q*g` with `0+q*g`.
-Rewrite Z_mod_plus.
-Compute; Auto.
-Omega.
-Ring.
-Save.
-
-(** * Primality *)
-
-Inductive prime [p:Z] : Prop :=
- prime_intro :
- `1 < p` -> ((n:Z) `1 <= n < p` -> (rel_prime n p)) -> (prime p).
-
-(** The sole divisors of a prime number [p] are [-1], [1], [p] and [-p]. *)
-
-Lemma prime_divisors :
- (p:Z) (prime p) ->
- (a:Z) (a|p) -> `a = -1` \/ `a = 1` \/ a = p \/ `a = -p`.
-Proof.
-Induction 1; Intros.
-Assert `a = (-p)`\/`-p<a< -1`\/`a = -1`\/`a=0`\/`a = 1`\/`1<a<p`\/`a = p`.
-Assert `|a| <= |p|`. Apply Zdivide_bounds; [ Assumption | Omega ].
-Generalize H3.
-Pattern `|a|`; Apply Zabs_ind; Pattern `|p|`; Apply Zabs_ind; Intros; Omega.
-Intuition Idtac.
-(* -p < a < -1 *)
-Absurd (rel_prime `-a` p); Intuition.
-Inversion H3.
-Assert (`-a` | `-a`); Auto with zarith.
-Assert (`-a` | p); Auto with zarith.
-Generalize (H8 `-a` H9 H10); Intuition Idtac.
-Generalize (Zdivide_1 `-a` H11); Intuition.
-(* a = 0 *)
-Inversion H2. Subst a; Omega.
-(* 1 < a < p *)
-Absurd (rel_prime a p); Intuition.
-Inversion H3.
-Assert (a | a); Auto with zarith.
-Assert (a | p); Auto with zarith.
-Generalize (H8 a H9 H10); Intuition Idtac.
-Generalize (Zdivide_1 a H11); Intuition.
-Save.
-
-(** A prime number is relatively prime with any number it does not divide *)
-
-Lemma prime_rel_prime :
- (p:Z) (prime p) -> (a:Z) ~ (p|a) -> (rel_prime p a).
-Proof.
-Induction 1; Intros.
-Constructor; Intuition.
-Elim (prime_divisors p H x H3); Intuition; Subst; Auto with zarith.
-Absurd (p | a); Auto with zarith.
-Absurd (p | a); Intuition.
-Save.
-
-Hints Resolve prime_rel_prime : zarith.
-
-(** [Zdivide] can be expressed using [Zmod]. *)
-
-Lemma Zmod_Zdivide : (a,b:Z) `b>0` -> `a%b = 0` -> (b|a).
-Intros a b H H0.
-Apply Zdivide_intro with `(a/b)`.
-Pattern 1 a; Rewrite (Z_div_mod_eq a b H).
-Rewrite H0; Ring.
-Save.
-
-Lemma Zdivide_Zmod : (a,b:Z) `b>0` -> (b|a) -> `a%b = 0`.
-Intros a b; Destruct 2; Intros; Subst.
-Change `q*b` with `0+q*b`.
-Rewrite Z_mod_plus; Auto.
-Save.
-
-(** [Zdivide] is hence decidable *)
-
-Lemma Zdivide_dec : (a,b:Z) { (a|b) } + { ~ (a|b) }.
-Proof.
-Intros a b; Elim (Ztrichotomy_inf a `0`).
-(* a<0 *)
-Intros H; Elim H; Intros.
-Case (Z_eq_dec `b%(-a)` `0`).
-Left; Apply Zdivide_opp_left_rev; Apply Zmod_Zdivide; Auto with zarith.
-Intro H1; Right; Intro; Elim H1; Apply Zdivide_Zmod; Auto with zarith.
-(* a=0 *)
-Case (Z_eq_dec b `0`); Intro.
-Left; Subst; Auto with zarith.
-Right; Subst; Intro H0; Inversion H0; Omega.
-(* a>0 *)
-Intro H; Case (Z_eq_dec `b%a` `0`).
-Left; Apply Zmod_Zdivide; Auto with zarith.
-Intro H1; Right; Intro; Elim H1; Apply Zdivide_Zmod; Auto with zarith.
-Save.
-
-(** If a prime [p] divides [ab] then it divides either [a] or [b] *)
-
-Lemma prime_mult :
- (p:Z) (prime p) -> (a,b:Z) (p | `a*b`) -> (p | a) \/ (p | b).
-Proof.
-Intro p; Induction 1; Intros.
-Case (Zdivide_dec p a); Intuition.
-Right; Apply Gauss with a; Auto with zarith.
-Save.
-
-