summaryrefslogtreecommitdiff
path: root/theories7/ZArith/Znat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/ZArith/Znat.v')
-rw-r--r--theories7/ZArith/Znat.v138
1 files changed, 0 insertions, 138 deletions
diff --git a/theories7/ZArith/Znat.v b/theories7/ZArith/Znat.v
deleted file mode 100644
index 99d1422f..00000000
--- a/theories7/ZArith/Znat.v
+++ /dev/null
@@ -1,138 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Znat.v,v 1.1.2.1 2004/07/16 19:31:43 herbelin Exp $ i*)
-
-(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
-
-Require Export Arith.
-Require BinPos.
-Require BinInt.
-Require Zcompare.
-Require Zorder.
-Require Decidable.
-Require Peano_dec.
-Require Export Compare_dec.
-
-Open Local Scope Z_scope.
-
-Definition neq := [x,y:nat] ~(x=y).
-
-(**********************************************************************)
-(** Properties of the injection from nat into Z *)
-
-Theorem inj_S : (y:nat) (inject_nat (S y)) = (Zs (inject_nat y)).
-Proof.
-Intro y; NewInduction y as [|n H]; [
- Unfold Zs ; Simpl; Trivial with arith
-| Change (POS (add_un (anti_convert n)))=(Zs (inject_nat (S n)));
- Rewrite add_un_Zs; Trivial with arith].
-Qed.
-
-Theorem inj_plus :
- (x,y:nat) (inject_nat (plus x y)) = (Zplus (inject_nat x) (inject_nat y)).
-Proof.
-Intro x; NewInduction x as [|n H]; Intro y; NewDestruct y as [|m]; [
- Simpl; Trivial with arith
-| Simpl; Trivial with arith
-| Simpl; Rewrite <- plus_n_O; Trivial with arith
-| Change (inject_nat (S (plus n (S m))))=
- (Zplus (inject_nat (S n)) (inject_nat (S m)));
- Rewrite inj_S; Rewrite H; Do 2 Rewrite inj_S; Rewrite Zplus_S_n; Trivial with arith].
-Qed.
-
-Theorem inj_mult :
- (x,y:nat) (inject_nat (mult x y)) = (Zmult (inject_nat x) (inject_nat y)).
-Proof.
-Intro x; NewInduction x as [|n H]; [
- Simpl; Trivial with arith
-| Intro y; Rewrite -> inj_S; Rewrite <- Zmult_Sm_n;
- Rewrite <- H;Rewrite <- inj_plus; Simpl; Rewrite plus_sym; Trivial with arith].
-Qed.
-
-Theorem inj_neq:
- (x,y:nat) (neq x y) -> (Zne (inject_nat x) (inject_nat y)).
-Proof.
-Unfold neq Zne not ; Intros x y H1 H2; Apply H1; Generalize H2;
-Case x; Case y; Intros; [
- Auto with arith
-| Discriminate H0
-| Discriminate H0
-| Simpl in H0; Injection H0; Do 2 Rewrite <- bij1; Intros E; Rewrite E; Auto with arith].
-Qed.
-
-Theorem inj_le:
- (x,y:nat) (le x y) -> (Zle (inject_nat x) (inject_nat y)).
-Proof.
-Intros x y; Intros H; Elim H; [
- Unfold Zle ; Elim (Zcompare_EGAL (inject_nat x) (inject_nat x));
- Intros H1 H2; Rewrite H2; [ Discriminate | Trivial with arith]
-| Intros m H1 H2; Apply Zle_trans with (inject_nat m);
- [Assumption | Rewrite inj_S; Apply Zle_n_Sn]].
-Qed.
-
-Theorem inj_lt: (x,y:nat) (lt x y) -> (Zlt (inject_nat x) (inject_nat y)).
-Proof.
-Intros x y H; Apply Zgt_lt; Apply Zle_S_gt; Rewrite <- inj_S; Apply inj_le;
-Exact H.
-Qed.
-
-Theorem inj_gt: (x,y:nat) (gt x y) -> (Zgt (inject_nat x) (inject_nat y)).
-Proof.
-Intros x y H; Apply Zlt_gt; Apply inj_lt; Exact H.
-Qed.
-
-Theorem inj_ge: (x,y:nat) (ge x y) -> (Zge (inject_nat x) (inject_nat y)).
-Proof.
-Intros x y H; Apply Zle_ge; Apply inj_le; Apply H.
-Qed.
-
-Theorem inj_eq: (x,y:nat) x=y -> (inject_nat x) = (inject_nat y).
-Proof.
-Intros x y H; Rewrite H; Trivial with arith.
-Qed.
-
-Theorem intro_Z :
- (x:nat) (EX y:Z | (inject_nat x)=y /\
- (Zle ZERO (Zplus (Zmult y (POS xH)) ZERO))).
-Proof.
-Intros x; Exists (inject_nat x); Split; [
- Trivial with arith
-| Rewrite Zmult_sym; Rewrite Zmult_one; Rewrite Zero_right;
- Unfold Zle ; Elim x; Intros;Simpl; Discriminate ].
-Qed.
-
-Theorem inj_minus1 :
- (x,y:nat) (le y x) ->
- (inject_nat (minus x y)) = (Zminus (inject_nat x) (inject_nat y)).
-Proof.
-Intros x y H; Apply (Zsimpl_plus_l (inject_nat y)); Unfold Zminus ;
-Rewrite Zplus_permute; Rewrite Zplus_inverse_r; Rewrite <- inj_plus;
-Rewrite <- (le_plus_minus y x H);Rewrite Zero_right; Trivial with arith.
-Qed.
-
-Theorem inj_minus2: (x,y:nat) (gt y x) -> (inject_nat (minus x y)) = ZERO.
-Proof.
-Intros x y H; Rewrite inj_minus_aux; [ Trivial with arith | Apply gt_not_le; Assumption].
-Qed.
-
-V7only [ (* From Zdivides *) ].
-Theorem POS_inject: (x : positive) (POS x) = (inject_nat (convert x)).
-Proof.
-Intros x; Elim x; Simpl; Auto.
-Intros p H; Rewrite ZL6.
-Apply f_equal with f := POS.
-Apply convert_intro.
-Rewrite bij1; Unfold convert; Simpl.
-Rewrite ZL6; Auto.
-Intros p H; Unfold convert; Simpl.
-Rewrite ZL6; Simpl.
-Rewrite inj_plus; Repeat Rewrite <- H.
-Rewrite POS_xO; Simpl; Rewrite add_x_x; Reflexivity.
-Qed.
-