summaryrefslogtreecommitdiff
path: root/theories7/ZArith/Zeven.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/ZArith/Zeven.v')
-rw-r--r--theories7/ZArith/Zeven.v184
1 files changed, 184 insertions, 0 deletions
diff --git a/theories7/ZArith/Zeven.v b/theories7/ZArith/Zeven.v
new file mode 100644
index 00000000..04b3ec09
--- /dev/null
+++ b/theories7/ZArith/Zeven.v
@@ -0,0 +1,184 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Zeven.v,v 1.1.2.1 2004/07/16 19:31:43 herbelin Exp $ i*)
+
+Require BinInt.
+Require Zsyntax.
+
+(**********************************************************************)
+(** About parity: even and odd predicates on Z, division by 2 on Z *)
+
+(**********************************************************************)
+(** [Zeven], [Zodd], [Zdiv2] and their related properties *)
+
+Definition Zeven :=
+ [z:Z]Cases z of ZERO => True
+ | (POS (xO _)) => True
+ | (NEG (xO _)) => True
+ | _ => False
+ end.
+
+Definition Zodd :=
+ [z:Z]Cases z of (POS xH) => True
+ | (NEG xH) => True
+ | (POS (xI _)) => True
+ | (NEG (xI _)) => True
+ | _ => False
+ end.
+
+Definition Zeven_bool :=
+ [z:Z]Cases z of ZERO => true
+ | (POS (xO _)) => true
+ | (NEG (xO _)) => true
+ | _ => false
+ end.
+
+Definition Zodd_bool :=
+ [z:Z]Cases z of ZERO => false
+ | (POS (xO _)) => false
+ | (NEG (xO _)) => false
+ | _ => true
+ end.
+
+Definition Zeven_odd_dec : (z:Z) { (Zeven z) }+{ (Zodd z) }.
+Proof.
+ Intro z. Case z;
+ [ Left; Compute; Trivial
+ | Intro p; Case p; Intros;
+ (Right; Compute; Exact I) Orelse (Left; Compute; Exact I)
+ | Intro p; Case p; Intros;
+ (Right; Compute; Exact I) Orelse (Left; Compute; Exact I) ].
+Defined.
+
+Definition Zeven_dec : (z:Z) { (Zeven z) }+{ ~(Zeven z) }.
+Proof.
+ Intro z. Case z;
+ [ Left; Compute; Trivial
+ | Intro p; Case p; Intros;
+ (Left; Compute; Exact I) Orelse (Right; Compute; Trivial)
+ | Intro p; Case p; Intros;
+ (Left; Compute; Exact I) Orelse (Right; Compute; Trivial) ].
+Defined.
+
+Definition Zodd_dec : (z:Z) { (Zodd z) }+{ ~(Zodd z) }.
+Proof.
+ Intro z. Case z;
+ [ Right; Compute; Trivial
+ | Intro p; Case p; Intros;
+ (Left; Compute; Exact I) Orelse (Right; Compute; Trivial)
+ | Intro p; Case p; Intros;
+ (Left; Compute; Exact I) Orelse (Right; Compute; Trivial) ].
+Defined.
+
+Lemma Zeven_not_Zodd : (z:Z)(Zeven z) -> ~(Zodd z).
+Proof.
+ Intro z; NewDestruct z; [ Idtac | NewDestruct p | NewDestruct p ]; Compute; Trivial.
+Qed.
+
+Lemma Zodd_not_Zeven : (z:Z)(Zodd z) -> ~(Zeven z).
+Proof.
+ Intro z; NewDestruct z; [ Idtac | NewDestruct p | NewDestruct p ]; Compute; Trivial.
+Qed.
+
+Lemma Zeven_Sn : (z:Z)(Zodd z) -> (Zeven (Zs z)).
+Proof.
+ Intro z; NewDestruct z; Unfold Zs; [ Idtac | NewDestruct p | NewDestruct p ]; Simpl; Trivial.
+ Unfold double_moins_un; Case p; Simpl; Auto.
+Qed.
+
+Lemma Zodd_Sn : (z:Z)(Zeven z) -> (Zodd (Zs z)).
+Proof.
+ Intro z; NewDestruct z; Unfold Zs; [ Idtac | NewDestruct p | NewDestruct p ]; Simpl; Trivial.
+ Unfold double_moins_un; Case p; Simpl; Auto.
+Qed.
+
+Lemma Zeven_pred : (z:Z)(Zodd z) -> (Zeven (Zpred z)).
+Proof.
+ Intro z; NewDestruct z; Unfold Zpred; [ Idtac | NewDestruct p | NewDestruct p ]; Simpl; Trivial.
+ Unfold double_moins_un; Case p; Simpl; Auto.
+Qed.
+
+Lemma Zodd_pred : (z:Z)(Zeven z) -> (Zodd (Zpred z)).
+Proof.
+ Intro z; NewDestruct z; Unfold Zpred; [ Idtac | NewDestruct p | NewDestruct p ]; Simpl; Trivial.
+ Unfold double_moins_un; Case p; Simpl; Auto.
+Qed.
+
+Hints Unfold Zeven Zodd : zarith.
+
+(**********************************************************************)
+(** [Zdiv2] is defined on all [Z], but notice that for odd negative
+ integers it is not the euclidean quotient: in that case we have [n =
+ 2*(n/2)-1] *)
+
+Definition Zdiv2 :=
+ [z:Z]Cases z of ZERO => ZERO
+ | (POS xH) => ZERO
+ | (POS p) => (POS (Zdiv2_pos p))
+ | (NEG xH) => ZERO
+ | (NEG p) => (NEG (Zdiv2_pos p))
+ end.
+
+Lemma Zeven_div2 : (x:Z) (Zeven x) -> `x = 2*(Zdiv2 x)`.
+Proof.
+Intro x; NewDestruct x.
+Auto with arith.
+NewDestruct p; Auto with arith.
+Intros. Absurd (Zeven (POS (xI p))); Red; Auto with arith.
+Intros. Absurd (Zeven `1`); Red; Auto with arith.
+NewDestruct p; Auto with arith.
+Intros. Absurd (Zeven (NEG (xI p))); Red; Auto with arith.
+Intros. Absurd (Zeven `-1`); Red; Auto with arith.
+Qed.
+
+Lemma Zodd_div2 : (x:Z) `x >= 0` -> (Zodd x) -> `x = 2*(Zdiv2 x)+1`.
+Proof.
+Intro x; NewDestruct x.
+Intros. Absurd (Zodd `0`); Red; Auto with arith.
+NewDestruct p; Auto with arith.
+Intros. Absurd (Zodd (POS (xO p))); Red; Auto with arith.
+Intros. Absurd `(NEG p) >= 0`; Red; Auto with arith.
+Qed.
+
+Lemma Zodd_div2_neg : (x:Z) `x <= 0` -> (Zodd x) -> `x = 2*(Zdiv2 x)-1`.
+Proof.
+Intro x; NewDestruct x.
+Intros. Absurd (Zodd `0`); Red; Auto with arith.
+Intros. Absurd `(NEG p) >= 0`; Red; Auto with arith.
+NewDestruct p; Auto with arith.
+Intros. Absurd (Zodd (NEG (xO p))); Red; Auto with arith.
+Qed.
+
+Lemma Z_modulo_2 : (x:Z) { y:Z | `x=2*y` }+{ y:Z | `x=2*y+1` }.
+Proof.
+Intros x.
+Elim (Zeven_odd_dec x); Intro.
+Left. Split with (Zdiv2 x). Exact (Zeven_div2 x a).
+Right. Generalize b; Clear b; Case x.
+Intro b; Inversion b.
+Intro p; Split with (Zdiv2 (POS p)). Apply (Zodd_div2 (POS p)); Trivial.
+Unfold Zge Zcompare; Simpl; Discriminate.
+Intro p; Split with (Zdiv2 (Zpred (NEG p))).
+Pattern 1 (NEG p); Rewrite (Zs_pred (NEG p)).
+Pattern 1 (Zpred (NEG p)); Rewrite (Zeven_div2 (Zpred (NEG p))).
+Reflexivity.
+Apply Zeven_pred; Assumption.
+Qed.
+
+Lemma Zsplit2 : (x:Z) { p : Z*Z | let (x1,x2)=p in (`x=x1+x2` /\ (x1=x2 \/ `x2=x1+1`)) }.
+Proof.
+Intros x.
+Elim (Z_modulo_2 x); Intros (y,Hy); Rewrite Zmult_sym in Hy; Rewrite <- Zplus_Zmult_2 in Hy.
+Exists (y,y); Split.
+Assumption.
+Left; Reflexivity.
+Exists (y,`y+1`); Split.
+Rewrite Zplus_assoc; Assumption.
+Right; Reflexivity.
+Qed.