summaryrefslogtreecommitdiff
path: root/theories7/ZArith/Zcompare.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/ZArith/Zcompare.v')
-rw-r--r--theories7/ZArith/Zcompare.v480
1 files changed, 0 insertions, 480 deletions
diff --git a/theories7/ZArith/Zcompare.v b/theories7/ZArith/Zcompare.v
deleted file mode 100644
index fd11ae9b..00000000
--- a/theories7/ZArith/Zcompare.v
+++ /dev/null
@@ -1,480 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $$ i*)
-
-Require Export BinPos.
-Require Export BinInt.
-Require Zsyntax.
-Require Lt.
-Require Gt.
-Require Plus.
-Require Mult.
-
-Open Local Scope Z_scope.
-
-(**********************************************************************)
-(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
-(**********************************************************************)
-
-(**********************************************************************)
-(** Comparison on integers *)
-
-Lemma Zcompare_x_x : (x:Z) (Zcompare x x) = EGAL.
-Proof.
-Intro x; NewDestruct x as [|p|p]; Simpl; [ Reflexivity | Apply convert_compare_EGAL
- | Rewrite convert_compare_EGAL; Reflexivity ].
-Qed.
-
-Lemma Zcompare_EGAL_eq : (x,y:Z) (Zcompare x y) = EGAL -> x = y.
-Proof.
-Intros x y; NewDestruct x as [|x'|x'];NewDestruct y as [|y'|y'];Simpl;Intro H; Reflexivity Orelse Try Discriminate H; [
- Rewrite (compare_convert_EGAL x' y' H); Reflexivity
- | Rewrite (compare_convert_EGAL x' y'); [
- Reflexivity
- | NewDestruct (compare x' y' EGAL);
- Reflexivity Orelse Discriminate]].
-Qed.
-
-Lemma Zcompare_EGAL : (x,y:Z) (Zcompare x y) = EGAL <-> x = y.
-Proof.
-Intros x y;Split; Intro E; [ Apply Zcompare_EGAL_eq; Assumption
- | Rewrite E; Apply Zcompare_x_x ].
-Qed.
-
-Lemma Zcompare_antisym :
- (x,y:Z)(Op (Zcompare x y)) = (Zcompare y x).
-Proof.
-Intros x y; NewDestruct x; NewDestruct y; Simpl;
- Reflexivity Orelse Discriminate H Orelse
- Rewrite Pcompare_antisym; Reflexivity.
-Qed.
-
-Lemma Zcompare_ANTISYM :
- (x,y:Z) (Zcompare x y) = SUPERIEUR <-> (Zcompare y x) = INFERIEUR.
-Proof.
-Intros x y; Split; Intro H; [
- Change INFERIEUR with (Op SUPERIEUR);
- Rewrite <- Zcompare_antisym; Rewrite H; Reflexivity
-| Change SUPERIEUR with (Op INFERIEUR);
- Rewrite <- Zcompare_antisym; Rewrite H; Reflexivity ].
-Qed.
-
-(** Transitivity of comparison *)
-
-Lemma Zcompare_trans_SUPERIEUR :
- (x,y,z:Z) (Zcompare x y) = SUPERIEUR ->
- (Zcompare y z) = SUPERIEUR ->
- (Zcompare x z) = SUPERIEUR.
-Proof.
-Intros x y z;Case x;Case y;Case z; Simpl;
-Try (Intros; Discriminate H Orelse Discriminate H0);
-Auto with arith; [
- Intros p q r H H0;Apply convert_compare_SUPERIEUR; Unfold gt;
- Apply lt_trans with m:=(convert q);
- Apply compare_convert_INFERIEUR;Apply ZC1;Assumption
-| Intros p q r; Do 3 Rewrite <- ZC4; Intros H H0;
- Apply convert_compare_SUPERIEUR;Unfold gt;Apply lt_trans with m:=(convert q);
- Apply compare_convert_INFERIEUR;Apply ZC1;Assumption ].
-Qed.
-
-(** Comparison and opposite *)
-
-Lemma Zcompare_Zopp :
- (x,y:Z) (Zcompare x y) = (Zcompare (Zopp y) (Zopp x)).
-Proof.
-(Intros x y;Case x;Case y;Simpl;Auto with arith);
-Intros;Rewrite <- ZC4;Trivial with arith.
-Qed.
-
-Hints Local Resolve convert_compare_EGAL.
-
-(** Comparison first-order specification *)
-
-Lemma SUPERIEUR_POS :
- (x,y:Z) (Zcompare x y) = SUPERIEUR ->
- (EX h:positive |(Zplus x (Zopp y)) = (POS h)).
-Proof.
-Intros x y;Case x;Case y; [
- Simpl; Intros H; Discriminate H
-| Simpl; Intros p H; Discriminate H
-| Intros p H; Exists p; Simpl; Auto with arith
-| Intros p H; Exists p; Simpl; Auto with arith
-| Intros q p H; Exists (true_sub p q); Unfold Zplus Zopp;
- Unfold Zcompare in H; Rewrite H; Trivial with arith
-| Intros q p H; Exists (add p q); Simpl; Trivial with arith
-| Simpl; Intros p H; Discriminate H
-| Simpl; Intros q p H; Discriminate H
-| Unfold Zcompare; Intros q p; Rewrite <- ZC4; Intros H; Exists (true_sub q p);
- Simpl; Rewrite (ZC1 q p H); Trivial with arith].
-Qed.
-
-(** Comparison and addition *)
-
-Lemma weaken_Zcompare_Zplus_compatible :
- ((n,m:Z) (p:positive)
- (Zcompare (Zplus (POS p) n) (Zplus (POS p) m)) = (Zcompare n m)) ->
- (x,y,z:Z) (Zcompare (Zplus z x) (Zplus z y)) = (Zcompare x y).
-Proof.
-Intros H x y z; NewDestruct z; [
- Reflexivity
-| Apply H
-| Rewrite (Zcompare_Zopp x y); Rewrite Zcompare_Zopp;
- Do 2 Rewrite Zopp_Zplus; Rewrite Zopp_NEG; Apply H ].
-Qed.
-
-Hints Local Resolve ZC4.
-
-Lemma weak_Zcompare_Zplus_compatible :
- (x,y:Z) (z:positive)
- (Zcompare (Zplus (POS z) x) (Zplus (POS z) y)) = (Zcompare x y).
-Proof.
-Intros x y z;Case x;Case y;Simpl;Auto with arith; [
- Intros p;Apply convert_compare_INFERIEUR; Apply ZL17
-| Intros p;ElimPcompare z p;Intros E;Rewrite E;Auto with arith;
- Apply convert_compare_SUPERIEUR; Rewrite true_sub_convert; [ Unfold gt ;
- Apply ZL16 | Assumption ]
-| Intros p;ElimPcompare z p;
- Intros E;Auto with arith; Apply convert_compare_SUPERIEUR;
- Unfold gt;Apply ZL17
-| Intros p q;
- ElimPcompare q p;
- Intros E;Rewrite E;[
- Rewrite (compare_convert_EGAL q p E); Apply convert_compare_EGAL
- | Apply convert_compare_INFERIEUR;Do 2 Rewrite convert_add;Apply lt_reg_l;
- Apply compare_convert_INFERIEUR with 1:=E
- | Apply convert_compare_SUPERIEUR;Unfold gt ;Do 2 Rewrite convert_add;
- Apply lt_reg_l;Exact (compare_convert_SUPERIEUR q p E) ]
-| Intros p q;
- ElimPcompare z p;
- Intros E;Rewrite E;Auto with arith;
- Apply convert_compare_SUPERIEUR; Rewrite true_sub_convert; [
- Unfold gt; Apply lt_trans with m:=(convert z); [Apply ZL16 | Apply ZL17]
- | Assumption ]
-| Intros p;ElimPcompare z p;Intros E;Rewrite E;Auto with arith; Simpl;
- Apply convert_compare_INFERIEUR;Rewrite true_sub_convert;[Apply ZL16|
- Assumption]
-| Intros p q;
- ElimPcompare z q;
- Intros E;Rewrite E;Auto with arith; Simpl;Apply convert_compare_INFERIEUR;
- Rewrite true_sub_convert;[
- Apply lt_trans with m:=(convert z) ;[Apply ZL16|Apply ZL17]
- | Assumption]
-| Intros p q; ElimPcompare z q; Intros E0;Rewrite E0;
- ElimPcompare z p; Intros E1;Rewrite E1; ElimPcompare q p;
- Intros E2;Rewrite E2;Auto with arith; [
- Absurd (compare q p EGAL)=INFERIEUR; [
- Rewrite <- (compare_convert_EGAL z q E0);
- Rewrite <- (compare_convert_EGAL z p E1);
- Rewrite (convert_compare_EGAL z); Discriminate
- | Assumption ]
- | Absurd (compare q p EGAL)=SUPERIEUR; [
- Rewrite <- (compare_convert_EGAL z q E0);
- Rewrite <- (compare_convert_EGAL z p E1);
- Rewrite (convert_compare_EGAL z);Discriminate
- | Assumption]
- | Absurd (compare z p EGAL)=INFERIEUR; [
- Rewrite (compare_convert_EGAL z q E0);
- Rewrite <- (compare_convert_EGAL q p E2);
- Rewrite (convert_compare_EGAL q);Discriminate
- | Assumption ]
- | Absurd (compare z p EGAL)=INFERIEUR; [
- Rewrite (compare_convert_EGAL z q E0); Rewrite E2;Discriminate
- | Assumption]
- | Absurd (compare z p EGAL)=SUPERIEUR;[
- Rewrite (compare_convert_EGAL z q E0);
- Rewrite <- (compare_convert_EGAL q p E2);
- Rewrite (convert_compare_EGAL q);Discriminate
- | Assumption]
- | Absurd (compare z p EGAL)=SUPERIEUR;[
- Rewrite (compare_convert_EGAL z q E0);Rewrite E2;Discriminate
- | Assumption]
- | Absurd (compare z q EGAL)=INFERIEUR;[
- Rewrite (compare_convert_EGAL z p E1);
- Rewrite (compare_convert_EGAL q p E2);
- Rewrite (convert_compare_EGAL p); Discriminate
- | Assumption]
- | Absurd (compare p q EGAL)=SUPERIEUR; [
- Rewrite <- (compare_convert_EGAL z p E1);
- Rewrite E0; Discriminate
- | Apply ZC2;Assumption ]
- | Simpl; Rewrite (compare_convert_EGAL q p E2);
- Rewrite (convert_compare_EGAL (true_sub p z)); Auto with arith
- | Simpl; Rewrite <- ZC4; Apply convert_compare_SUPERIEUR;
- Rewrite true_sub_convert; [
- Rewrite true_sub_convert; [
- Unfold gt; Apply simpl_lt_plus_l with p:=(convert z);
- Rewrite le_plus_minus_r; [
- Rewrite le_plus_minus_r; [
- Apply compare_convert_INFERIEUR;Assumption
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Assumption ]
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Assumption ]
- | Apply ZC2;Assumption ]
- | Apply ZC2;Assumption ]
- | Simpl; Rewrite <- ZC4; Apply convert_compare_INFERIEUR;
- Rewrite true_sub_convert; [
- Rewrite true_sub_convert; [
- Apply simpl_lt_plus_l with p:=(convert z);
- Rewrite le_plus_minus_r; [
- Rewrite le_plus_minus_r; [
- Apply compare_convert_INFERIEUR;Apply ZC1;Assumption
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Assumption ]
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Assumption ]
- | Apply ZC2;Assumption]
- | Apply ZC2;Assumption ]
- | Absurd (compare z q EGAL)=INFERIEUR; [
- Rewrite (compare_convert_EGAL q p E2);Rewrite E1;Discriminate
- | Assumption ]
- | Absurd (compare q p EGAL)=INFERIEUR; [
- Cut (compare q p EGAL)=SUPERIEUR; [
- Intros E;Rewrite E;Discriminate
- | Apply convert_compare_SUPERIEUR; Unfold gt;
- Apply lt_trans with m:=(convert z); [
- Apply compare_convert_INFERIEUR;Apply ZC1;Assumption
- | Apply compare_convert_INFERIEUR;Assumption ]]
- | Assumption ]
- | Absurd (compare z q EGAL)=SUPERIEUR; [
- Rewrite (compare_convert_EGAL z p E1);
- Rewrite (compare_convert_EGAL q p E2);
- Rewrite (convert_compare_EGAL p); Discriminate
- | Assumption ]
- | Absurd (compare z q EGAL)=SUPERIEUR; [
- Rewrite (compare_convert_EGAL z p E1);
- Rewrite ZC1; [Discriminate | Assumption ]
- | Assumption ]
- | Absurd (compare z q EGAL)=SUPERIEUR; [
- Rewrite (compare_convert_EGAL q p E2); Rewrite E1; Discriminate
- | Assumption ]
- | Absurd (compare q p EGAL)=SUPERIEUR; [
- Rewrite ZC1; [
- Discriminate
- | Apply convert_compare_SUPERIEUR; Unfold gt;
- Apply lt_trans with m:=(convert z); [
- Apply compare_convert_INFERIEUR;Apply ZC1;Assumption
- | Apply compare_convert_INFERIEUR;Assumption ]]
- | Assumption ]
- | Simpl; Rewrite (compare_convert_EGAL q p E2); Apply convert_compare_EGAL
- | Simpl; Apply convert_compare_SUPERIEUR; Unfold gt;
- Rewrite true_sub_convert; [
- Rewrite true_sub_convert; [
- Apply simpl_lt_plus_l with p:=(convert p); Rewrite le_plus_minus_r; [
- Rewrite plus_sym; Apply simpl_lt_plus_l with p:=(convert q);
- Rewrite plus_assoc_l; Rewrite le_plus_minus_r; [
- Rewrite (plus_sym (convert q)); Apply lt_reg_l;
- Apply compare_convert_INFERIEUR;Assumption
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;
- Apply ZC1;Assumption ]
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1;
- Assumption ]
- | Assumption ]
- | Assumption ]
- | Simpl; Apply convert_compare_INFERIEUR; Rewrite true_sub_convert; [
- Rewrite true_sub_convert; [
- Apply simpl_lt_plus_l with p:=(convert q); Rewrite le_plus_minus_r; [
- Rewrite plus_sym; Apply simpl_lt_plus_l with p:=(convert p);
- Rewrite plus_assoc_l; Rewrite le_plus_minus_r; [
- Rewrite (plus_sym (convert p)); Apply lt_reg_l;
- Apply compare_convert_INFERIEUR;Apply ZC1;Assumption
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1;
- Assumption ]
- | Apply lt_le_weak;Apply compare_convert_INFERIEUR;Apply ZC1;Assumption]
- | Assumption]
- | Assumption]]].
-Qed.
-
-Lemma Zcompare_Zplus_compatible :
- (x,y,z:Z) (Zcompare (Zplus z x) (Zplus z y)) = (Zcompare x y).
-Proof.
-Exact (weaken_Zcompare_Zplus_compatible weak_Zcompare_Zplus_compatible).
-Qed.
-
-Lemma Zcompare_Zplus_compatible2 :
- (r:relation)(x,y,z,t:Z)
- (Zcompare x y) = r -> (Zcompare z t) = r ->
- (Zcompare (Zplus x z) (Zplus y t)) = r.
-Proof.
-Intros r x y z t; Case r; [
- Intros H1 H2; Elim (Zcompare_EGAL x y); Elim (Zcompare_EGAL z t);
- Intros H3 H4 H5 H6; Rewrite H3; [
- Rewrite H5; [ Elim (Zcompare_EGAL (Zplus y t) (Zplus y t)); Auto with arith | Auto with arith ]
- | Auto with arith ]
-| Intros H1 H2; Elim (Zcompare_ANTISYM (Zplus y t) (Zplus x z));
- Intros H3 H4; Apply H3;
- Apply Zcompare_trans_SUPERIEUR with y:=(Zplus y z) ; [
- Rewrite Zcompare_Zplus_compatible;
- Elim (Zcompare_ANTISYM t z); Auto with arith
- | Do 2 Rewrite <- (Zplus_sym z);
- Rewrite Zcompare_Zplus_compatible;
- Elim (Zcompare_ANTISYM y x); Auto with arith]
-| Intros H1 H2;
- Apply Zcompare_trans_SUPERIEUR with y:=(Zplus x t) ; [
- Rewrite Zcompare_Zplus_compatible; Assumption
- | Do 2 Rewrite <- (Zplus_sym t);
- Rewrite Zcompare_Zplus_compatible; Assumption]].
-Qed.
-
-Lemma Zcompare_Zs_SUPERIEUR : (x:Z)(Zcompare (Zs x) x)=SUPERIEUR.
-Proof.
-Intro x; Unfold Zs; Pattern 2 x; Rewrite <- (Zero_right x);
-Rewrite Zcompare_Zplus_compatible;Reflexivity.
-Qed.
-
-Lemma Zcompare_et_un:
- (x,y:Z) (Zcompare x y)=SUPERIEUR <->
- ~(Zcompare x (Zplus y (POS xH)))=INFERIEUR.
-Proof.
-Intros x y; Split; [
- Intro H; (ElimCompare 'x '(Zplus y (POS xH)));[
- Intro H1; Rewrite H1; Discriminate
- | Intros H1; Elim SUPERIEUR_POS with 1:=H; Intros h H2;
- Absurd (gt (convert h) O) /\ (lt (convert h) (S O)); [
- Unfold not ;Intros H3;Elim H3;Intros H4 H5; Absurd (gt (convert h) O); [
- Unfold gt ;Apply le_not_lt; Apply le_S_n; Exact H5
- | Assumption]
- | Split; [
- Elim (ZL4 h); Intros i H3;Rewrite H3; Apply gt_Sn_O
- | Change (lt (convert h) (convert xH));
- Apply compare_convert_INFERIEUR;
- Change (Zcompare (POS h) (POS xH))=INFERIEUR;
- Rewrite <- H2; Rewrite <- [m,n:Z](Zcompare_Zplus_compatible m n y);
- Rewrite (Zplus_sym x);Rewrite Zplus_assoc; Rewrite Zplus_inverse_r;
- Simpl; Exact H1 ]]
- | Intros H1;Rewrite -> H1;Discriminate ]
-| Intros H; (ElimCompare 'x '(Zplus y (POS xH))); [
- Intros H1;Elim (Zcompare_EGAL x (Zplus y (POS xH))); Intros H2 H3;
- Rewrite (H2 H1); Exact (Zcompare_Zs_SUPERIEUR y)
- | Intros H1;Absurd (Zcompare x (Zplus y (POS xH)))=INFERIEUR;Assumption
- | Intros H1; Apply Zcompare_trans_SUPERIEUR with y:=(Zs y);
- [ Exact H1 | Exact (Zcompare_Zs_SUPERIEUR y)]]].
-Qed.
-
-(** Successor and comparison *)
-
-Lemma Zcompare_n_S : (n,m:Z)(Zcompare (Zs n) (Zs m)) = (Zcompare n m).
-Proof.
-Intros n m;Unfold Zs ;Do 2 Rewrite -> [t:Z](Zplus_sym t (POS xH));
-Rewrite -> Zcompare_Zplus_compatible;Auto with arith.
-Qed.
-
-(** Multiplication and comparison *)
-
-Lemma Zcompare_Zmult_compatible :
- (x:positive)(y,z:Z)
- (Zcompare (Zmult (POS x) y) (Zmult (POS x) z)) = (Zcompare y z).
-Proof.
-Intros x; NewInduction x as [p H|p H|]; [
- Intros y z;
- Cut (POS (xI p))=(Zplus (Zplus (POS p) (POS p)) (POS xH)); [
- Intros E; Rewrite E; Do 4 Rewrite Zmult_plus_distr_l;
- Do 2 Rewrite Zmult_one;
- Apply Zcompare_Zplus_compatible2; [
- Apply Zcompare_Zplus_compatible2; Apply H
- | Trivial with arith]
- | Simpl; Rewrite (add_x_x p); Trivial with arith]
-| Intros y z; Cut (POS (xO p))=(Zplus (POS p) (POS p)); [
- Intros E; Rewrite E; Do 2 Rewrite Zmult_plus_distr_l;
- Apply Zcompare_Zplus_compatible2; Apply H
- | Simpl; Rewrite (add_x_x p); Trivial with arith]
- | Intros y z; Do 2 Rewrite Zmult_one; Trivial with arith].
-Qed.
-
-
-(** Reverting [x ?= y] to trichotomy *)
-
-Lemma rename : (A:Set)(P:A->Prop)(x:A) ((y:A)(x=y)->(P y)) -> (P x).
-Proof.
-Auto with arith.
-Qed.
-
-Lemma Zcompare_elim :
- (c1,c2,c3:Prop)(x,y:Z)
- ((x=y) -> c1) ->(`x<y` -> c2) ->(`x>y`-> c3)
- -> Cases (Zcompare x y) of EGAL => c1 | INFERIEUR => c2 | SUPERIEUR => c3 end.
-Proof.
-Intros c1 c2 c3 x y; Intros.
-Apply rename with x:=(Zcompare x y); Intro r; Elim r;
-[ Intro; Apply H; Apply (Zcompare_EGAL_eq x y); Assumption
-| Unfold Zlt in H0; Assumption
-| Unfold Zgt in H1; Assumption ].
-Qed.
-
-Lemma Zcompare_eq_case :
- (c1,c2,c3:Prop)(x,y:Z) c1 -> x=y ->
- Cases (Zcompare x y) of EGAL => c1 | INFERIEUR => c2 | SUPERIEUR => c3 end.
-Proof.
-Intros c1 c2 c3 x y; Intros.
-Rewrite H0; Rewrite (Zcompare_x_x).
-Assumption.
-Qed.
-
-(** Decompose an egality between two [?=] relations into 3 implications *)
-
-Lemma Zcompare_egal_dec :
- (x1,y1,x2,y2:Z)
- (`x1<y1`->`x2<y2`)
- ->((Zcompare x1 y1)=EGAL -> (Zcompare x2 y2)=EGAL)
- ->(`x1>y1`->`x2>y2`)->(Zcompare x1 y1)=(Zcompare x2 y2).
-Proof.
-Intros x1 y1 x2 y2.
-Unfold Zgt; Unfold Zlt;
-Case (Zcompare x1 y1); Case (Zcompare x2 y2); Auto with arith; Symmetry; Auto with arith.
-Qed.
-
-(** Relating [x ?= y] to [Zle], [Zlt], [Zge] or [Zgt] *)
-
-Lemma Zle_Zcompare :
- (x,y:Z)`x<=y` ->
- Cases (Zcompare x y) of EGAL => True | INFERIEUR => True | SUPERIEUR => False end.
-Proof.
-Intros x y; Unfold Zle; Elim (Zcompare x y); Auto with arith.
-Qed.
-
-Lemma Zlt_Zcompare :
- (x,y:Z)`x<y` ->
- Cases (Zcompare x y) of EGAL => False | INFERIEUR => True | SUPERIEUR => False end.
-Proof.
-Intros x y; Unfold Zlt; Elim (Zcompare x y); Intros; Discriminate Orelse Trivial with arith.
-Qed.
-
-Lemma Zge_Zcompare :
- (x,y:Z)`x>=y`->
- Cases (Zcompare x y) of EGAL => True | INFERIEUR => False | SUPERIEUR => True end.
-Proof.
-Intros x y; Unfold Zge; Elim (Zcompare x y); Auto with arith.
-Qed.
-
-Lemma Zgt_Zcompare :
- (x,y:Z)`x>y` ->
- Cases (Zcompare x y) of EGAL => False | INFERIEUR => False | SUPERIEUR => True end.
-Proof.
-Intros x y; Unfold Zgt; Elim (Zcompare x y); Intros; Discriminate Orelse Trivial with arith.
-Qed.
-
-(**********************************************************************)
-(* Other properties *)
-
-V7only [Set Implicit Arguments.].
-
-Lemma Zcompare_Zmult_left : (x,y,z:Z)`z>0` -> `x ?= y`=`z*x ?= z*y`.
-Proof.
-Intros x y z H; NewDestruct z.
- Discriminate H.
- Rewrite Zcompare_Zmult_compatible; Reflexivity.
- Discriminate H.
-Qed.
-
-Lemma Zcompare_Zmult_right : (x,y,z:Z)` z>0` -> `x ?= y`=`x*z ?= y*z`.
-Proof.
-Intros x y z H;
-Rewrite (Zmult_sym x z);
-Rewrite (Zmult_sym y z);
-Apply Zcompare_Zmult_left; Assumption.
-Qed.
-
-V7only [Unset Implicit Arguments.].
-