summaryrefslogtreecommitdiff
path: root/theories7/ZArith/Zcompare.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/ZArith/Zcompare.v')
-rw-r--r--theories7/ZArith/Zcompare.v480
1 files changed, 480 insertions, 0 deletions
diff --git a/theories7/ZArith/Zcompare.v b/theories7/ZArith/Zcompare.v
new file mode 100644
index 00000000..fd11ae9b
--- /dev/null
+++ b/theories7/ZArith/Zcompare.v
@@ -0,0 +1,480 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $$ i*)
+
+Require Export BinPos.
+Require Export BinInt.
+Require Zsyntax.
+Require Lt.
+Require Gt.
+Require Plus.
+Require Mult.
+
+Open Local Scope Z_scope.
+
+(**********************************************************************)
+(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
+(**********************************************************************)
+
+(**********************************************************************)
+(** Comparison on integers *)
+
+Lemma Zcompare_x_x : (x:Z) (Zcompare x x) = EGAL.
+Proof.
+Intro x; NewDestruct x as [|p|p]; Simpl; [ Reflexivity | Apply convert_compare_EGAL
+ | Rewrite convert_compare_EGAL; Reflexivity ].
+Qed.
+
+Lemma Zcompare_EGAL_eq : (x,y:Z) (Zcompare x y) = EGAL -> x = y.
+Proof.
+Intros x y; NewDestruct x as [|x'|x'];NewDestruct y as [|y'|y'];Simpl;Intro H; Reflexivity Orelse Try Discriminate H; [
+ Rewrite (compare_convert_EGAL x' y' H); Reflexivity
+ | Rewrite (compare_convert_EGAL x' y'); [
+ Reflexivity
+ | NewDestruct (compare x' y' EGAL);
+ Reflexivity Orelse Discriminate]].
+Qed.
+
+Lemma Zcompare_EGAL : (x,y:Z) (Zcompare x y) = EGAL <-> x = y.
+Proof.
+Intros x y;Split; Intro E; [ Apply Zcompare_EGAL_eq; Assumption
+ | Rewrite E; Apply Zcompare_x_x ].
+Qed.
+
+Lemma Zcompare_antisym :
+ (x,y:Z)(Op (Zcompare x y)) = (Zcompare y x).
+Proof.
+Intros x y; NewDestruct x; NewDestruct y; Simpl;
+ Reflexivity Orelse Discriminate H Orelse
+ Rewrite Pcompare_antisym; Reflexivity.
+Qed.
+
+Lemma Zcompare_ANTISYM :
+ (x,y:Z) (Zcompare x y) = SUPERIEUR <-> (Zcompare y x) = INFERIEUR.
+Proof.
+Intros x y; Split; Intro H; [
+ Change INFERIEUR with (Op SUPERIEUR);
+ Rewrite <- Zcompare_antisym; Rewrite H; Reflexivity
+| Change SUPERIEUR with (Op INFERIEUR);
+ Rewrite <- Zcompare_antisym; Rewrite H; Reflexivity ].
+Qed.
+
+(** Transitivity of comparison *)
+
+Lemma Zcompare_trans_SUPERIEUR :
+ (x,y,z:Z) (Zcompare x y) = SUPERIEUR ->
+ (Zcompare y z) = SUPERIEUR ->
+ (Zcompare x z) = SUPERIEUR.
+Proof.
+Intros x y z;Case x;Case y;Case z; Simpl;
+Try (Intros; Discriminate H Orelse Discriminate H0);
+Auto with arith; [
+ Intros p q r H H0;Apply convert_compare_SUPERIEUR; Unfold gt;
+ Apply lt_trans with m:=(convert q);
+ Apply compare_convert_INFERIEUR;Apply ZC1;Assumption
+| Intros p q r; Do 3 Rewrite <- ZC4; Intros H H0;
+ Apply convert_compare_SUPERIEUR;Unfold gt;Apply lt_trans with m:=(convert q);
+ Apply compare_convert_INFERIEUR;Apply ZC1;Assumption ].
+Qed.
+
+(** Comparison and opposite *)
+
+Lemma Zcompare_Zopp :
+ (x,y:Z) (Zcompare x y) = (Zcompare (Zopp y) (Zopp x)).
+Proof.
+(Intros x y;Case x;Case y;Simpl;Auto with arith);
+Intros;Rewrite <- ZC4;Trivial with arith.
+Qed.
+
+Hints Local Resolve convert_compare_EGAL.
+
+(** Comparison first-order specification *)
+
+Lemma SUPERIEUR_POS :
+ (x,y:Z) (Zcompare x y) = SUPERIEUR ->
+ (EX h:positive |(Zplus x (Zopp y)) = (POS h)).
+Proof.
+Intros x y;Case x;Case y; [
+ Simpl; Intros H; Discriminate H
+| Simpl; Intros p H; Discriminate H
+| Intros p H; Exists p; Simpl; Auto with arith
+| Intros p H; Exists p; Simpl; Auto with arith
+| Intros q p H; Exists (true_sub p q); Unfold Zplus Zopp;
+ Unfold Zcompare in H; Rewrite H; Trivial with arith
+| Intros q p H; Exists (add p q); Simpl; Trivial with arith
+| Simpl; Intros p H; Discriminate H
+| Simpl; Intros q p H; Discriminate H
+| Unfold Zcompare; Intros q p; Rewrite <- ZC4; Intros H; Exists (true_sub q p);
+ Simpl; Rewrite (ZC1 q p H); Trivial with arith].
+Qed.
+
+(** Comparison and addition *)
+
+Lemma weaken_Zcompare_Zplus_compatible :
+ ((n,m:Z) (p:positive)
+ (Zcompare (Zplus (POS p) n) (Zplus (POS p) m)) = (Zcompare n m)) ->
+ (x,y,z:Z) (Zcompare (Zplus z x) (Zplus z y)) = (Zcompare x y).
+Proof.
+Intros H x y z; NewDestruct z; [
+ Reflexivity
+| Apply H
+| Rewrite (Zcompare_Zopp x y); Rewrite Zcompare_Zopp;
+ Do 2 Rewrite Zopp_Zplus; Rewrite Zopp_NEG; Apply H ].
+Qed.
+
+Hints Local Resolve ZC4.
+
+Lemma weak_Zcompare_Zplus_compatible :
+ (x,y:Z) (z:positive)
+ (Zcompare (Zplus (POS z) x) (Zplus (POS z) y)) = (Zcompare x y).
+Proof.
+Intros x y z;Case x;Case y;Simpl;Auto with arith; [
+ Intros p;Apply convert_compare_INFERIEUR; Apply ZL17
+| Intros p;ElimPcompare z p;Intros E;Rewrite E;Auto with arith;
+ Apply convert_compare_SUPERIEUR; Rewrite true_sub_convert; [ Unfold gt ;
+ Apply ZL16 | Assumption ]
+| Intros p;ElimPcompare z p;
+ Intros E;Auto with arith; Apply convert_compare_SUPERIEUR;
+ Unfold gt;Apply ZL17
+| Intros p q;
+ ElimPcompare q p;
+ Intros E;Rewrite E;[
+ Rewrite (compare_convert_EGAL q p E); Apply convert_compare_EGAL
+ | Apply convert_compare_INFERIEUR;Do 2 Rewrite convert_add;Apply lt_reg_l;
+ Apply compare_convert_INFERIEUR with 1:=E
+ | Apply convert_compare_SUPERIEUR;Unfold gt ;Do 2 Rewrite convert_add;
+ Apply lt_reg_l;Exact (compare_convert_SUPERIEUR q p E) ]
+| Intros p q;
+ ElimPcompare z p;
+ Intros E;Rewrite E;Auto with arith;
+ Apply convert_compare_SUPERIEUR; Rewrite true_sub_convert; [
+ Unfold gt; Apply lt_trans with m:=(convert z); [Apply ZL16 | Apply ZL17]
+ | Assumption ]
+| Intros p;ElimPcompare z p;Intros E;Rewrite E;Auto with arith; Simpl;
+ Apply convert_compare_INFERIEUR;Rewrite true_sub_convert;[Apply ZL16|
+ Assumption]
+| Intros p q;
+ ElimPcompare z q;
+ Intros E;Rewrite E;Auto with arith; Simpl;Apply convert_compare_INFERIEUR;
+ Rewrite true_sub_convert;[
+ Apply lt_trans with m:=(convert z) ;[Apply ZL16|Apply ZL17]
+ | Assumption]
+| Intros p q; ElimPcompare z q; Intros E0;Rewrite E0;
+ ElimPcompare z p; Intros E1;Rewrite E1; ElimPcompare q p;
+ Intros E2;Rewrite E2;Auto with arith; [
+ Absurd (compare q p EGAL)=INFERIEUR; [
+ Rewrite <- (compare_convert_EGAL z q E0);
+ Rewrite <- (compare_convert_EGAL z p E1);
+ Rewrite (convert_compare_EGAL z); Discriminate
+ | Assumption ]
+ | Absurd (compare q p EGAL)=SUPERIEUR; [
+ Rewrite <- (compare_convert_EGAL z q E0);
+ Rewrite <- (compare_convert_EGAL z p E1);
+ Rewrite (convert_compare_EGAL z);Discriminate
+ | Assumption]
+ | Absurd (compare z p EGAL)=INFERIEUR; [
+ Rewrite (compare_convert_EGAL z q E0);
+ Rewrite <- (compare_convert_EGAL q p E2);
+ Rewrite (convert_compare_EGAL q);Discriminate
+ | Assumption ]
+ | Absurd (compare z p EGAL)=INFERIEUR; [
+ Rewrite (compare_convert_EGAL z q E0); Rewrite E2;Discriminate
+ | Assumption]
+ | Absurd (compare z p EGAL)=SUPERIEUR;[
+ Rewrite (compare_convert_EGAL z q E0);
+ Rewrite <- (compare_convert_EGAL q p E2);
+ Rewrite (convert_compare_EGAL q);Discriminate
+ | Assumption]
+ | Absurd (compare z p EGAL)=SUPERIEUR;[
+ Rewrite (compare_convert_EGAL z q E0);Rewrite E2;Discriminate
+ | Assumption]
+ | Absurd (compare z q EGAL)=INFERIEUR;[
+ Rewrite (compare_convert_EGAL z p E1);
+ Rewrite (compare_convert_EGAL q p E2);
+ Rewrite (convert_compare_EGAL p); Discriminate
+ | Assumption]
+ | Absurd (compare p q EGAL)=SUPERIEUR; [
+ Rewrite <- (compare_convert_EGAL z p E1);
+ Rewrite E0; Discriminate
+ | Apply ZC2;Assumption ]
+ | Simpl; Rewrite (compare_convert_EGAL q p E2);
+ Rewrite (convert_compare_EGAL (true_sub p z)); Auto with arith
+ | Simpl; Rewrite <- ZC4; Apply convert_compare_SUPERIEUR;
+ Rewrite true_sub_convert; [
+ Rewrite true_sub_convert; [
+ Unfold gt; Apply simpl_lt_plus_l with p:=(convert z);
+ Rewrite le_plus_minus_r; [
+ Rewrite le_plus_minus_r; [
+ Apply compare_convert_INFERIEUR;Assumption
+ | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Assumption ]
+ | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Assumption ]
+ | Apply ZC2;Assumption ]
+ | Apply ZC2;Assumption ]
+ | Simpl; Rewrite <- ZC4; Apply convert_compare_INFERIEUR;
+ Rewrite true_sub_convert; [
+ Rewrite true_sub_convert; [
+ Apply simpl_lt_plus_l with p:=(convert z);
+ Rewrite le_plus_minus_r; [
+ Rewrite le_plus_minus_r; [
+ Apply compare_convert_INFERIEUR;Apply ZC1;Assumption
+ | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Assumption ]
+ | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Assumption ]
+ | Apply ZC2;Assumption]
+ | Apply ZC2;Assumption ]
+ | Absurd (compare z q EGAL)=INFERIEUR; [
+ Rewrite (compare_convert_EGAL q p E2);Rewrite E1;Discriminate
+ | Assumption ]
+ | Absurd (compare q p EGAL)=INFERIEUR; [
+ Cut (compare q p EGAL)=SUPERIEUR; [
+ Intros E;Rewrite E;Discriminate
+ | Apply convert_compare_SUPERIEUR; Unfold gt;
+ Apply lt_trans with m:=(convert z); [
+ Apply compare_convert_INFERIEUR;Apply ZC1;Assumption
+ | Apply compare_convert_INFERIEUR;Assumption ]]
+ | Assumption ]
+ | Absurd (compare z q EGAL)=SUPERIEUR; [
+ Rewrite (compare_convert_EGAL z p E1);
+ Rewrite (compare_convert_EGAL q p E2);
+ Rewrite (convert_compare_EGAL p); Discriminate
+ | Assumption ]
+ | Absurd (compare z q EGAL)=SUPERIEUR; [
+ Rewrite (compare_convert_EGAL z p E1);
+ Rewrite ZC1; [Discriminate | Assumption ]
+ | Assumption ]
+ | Absurd (compare z q EGAL)=SUPERIEUR; [
+ Rewrite (compare_convert_EGAL q p E2); Rewrite E1; Discriminate
+ | Assumption ]
+ | Absurd (compare q p EGAL)=SUPERIEUR; [
+ Rewrite ZC1; [
+ Discriminate
+ | Apply convert_compare_SUPERIEUR; Unfold gt;
+ Apply lt_trans with m:=(convert z); [
+ Apply compare_convert_INFERIEUR;Apply ZC1;Assumption
+ | Apply compare_convert_INFERIEUR;Assumption ]]
+ | Assumption ]
+ | Simpl; Rewrite (compare_convert_EGAL q p E2); Apply convert_compare_EGAL
+ | Simpl; Apply convert_compare_SUPERIEUR; Unfold gt;
+ Rewrite true_sub_convert; [
+ Rewrite true_sub_convert; [
+ Apply simpl_lt_plus_l with p:=(convert p); Rewrite le_plus_minus_r; [
+ Rewrite plus_sym; Apply simpl_lt_plus_l with p:=(convert q);
+ Rewrite plus_assoc_l; Rewrite le_plus_minus_r; [
+ Rewrite (plus_sym (convert q)); Apply lt_reg_l;
+ Apply compare_convert_INFERIEUR;Assumption
+ | Apply lt_le_weak; Apply compare_convert_INFERIEUR;
+ Apply ZC1;Assumption ]
+ | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1;
+ Assumption ]
+ | Assumption ]
+ | Assumption ]
+ | Simpl; Apply convert_compare_INFERIEUR; Rewrite true_sub_convert; [
+ Rewrite true_sub_convert; [
+ Apply simpl_lt_plus_l with p:=(convert q); Rewrite le_plus_minus_r; [
+ Rewrite plus_sym; Apply simpl_lt_plus_l with p:=(convert p);
+ Rewrite plus_assoc_l; Rewrite le_plus_minus_r; [
+ Rewrite (plus_sym (convert p)); Apply lt_reg_l;
+ Apply compare_convert_INFERIEUR;Apply ZC1;Assumption
+ | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1;
+ Assumption ]
+ | Apply lt_le_weak;Apply compare_convert_INFERIEUR;Apply ZC1;Assumption]
+ | Assumption]
+ | Assumption]]].
+Qed.
+
+Lemma Zcompare_Zplus_compatible :
+ (x,y,z:Z) (Zcompare (Zplus z x) (Zplus z y)) = (Zcompare x y).
+Proof.
+Exact (weaken_Zcompare_Zplus_compatible weak_Zcompare_Zplus_compatible).
+Qed.
+
+Lemma Zcompare_Zplus_compatible2 :
+ (r:relation)(x,y,z,t:Z)
+ (Zcompare x y) = r -> (Zcompare z t) = r ->
+ (Zcompare (Zplus x z) (Zplus y t)) = r.
+Proof.
+Intros r x y z t; Case r; [
+ Intros H1 H2; Elim (Zcompare_EGAL x y); Elim (Zcompare_EGAL z t);
+ Intros H3 H4 H5 H6; Rewrite H3; [
+ Rewrite H5; [ Elim (Zcompare_EGAL (Zplus y t) (Zplus y t)); Auto with arith | Auto with arith ]
+ | Auto with arith ]
+| Intros H1 H2; Elim (Zcompare_ANTISYM (Zplus y t) (Zplus x z));
+ Intros H3 H4; Apply H3;
+ Apply Zcompare_trans_SUPERIEUR with y:=(Zplus y z) ; [
+ Rewrite Zcompare_Zplus_compatible;
+ Elim (Zcompare_ANTISYM t z); Auto with arith
+ | Do 2 Rewrite <- (Zplus_sym z);
+ Rewrite Zcompare_Zplus_compatible;
+ Elim (Zcompare_ANTISYM y x); Auto with arith]
+| Intros H1 H2;
+ Apply Zcompare_trans_SUPERIEUR with y:=(Zplus x t) ; [
+ Rewrite Zcompare_Zplus_compatible; Assumption
+ | Do 2 Rewrite <- (Zplus_sym t);
+ Rewrite Zcompare_Zplus_compatible; Assumption]].
+Qed.
+
+Lemma Zcompare_Zs_SUPERIEUR : (x:Z)(Zcompare (Zs x) x)=SUPERIEUR.
+Proof.
+Intro x; Unfold Zs; Pattern 2 x; Rewrite <- (Zero_right x);
+Rewrite Zcompare_Zplus_compatible;Reflexivity.
+Qed.
+
+Lemma Zcompare_et_un:
+ (x,y:Z) (Zcompare x y)=SUPERIEUR <->
+ ~(Zcompare x (Zplus y (POS xH)))=INFERIEUR.
+Proof.
+Intros x y; Split; [
+ Intro H; (ElimCompare 'x '(Zplus y (POS xH)));[
+ Intro H1; Rewrite H1; Discriminate
+ | Intros H1; Elim SUPERIEUR_POS with 1:=H; Intros h H2;
+ Absurd (gt (convert h) O) /\ (lt (convert h) (S O)); [
+ Unfold not ;Intros H3;Elim H3;Intros H4 H5; Absurd (gt (convert h) O); [
+ Unfold gt ;Apply le_not_lt; Apply le_S_n; Exact H5
+ | Assumption]
+ | Split; [
+ Elim (ZL4 h); Intros i H3;Rewrite H3; Apply gt_Sn_O
+ | Change (lt (convert h) (convert xH));
+ Apply compare_convert_INFERIEUR;
+ Change (Zcompare (POS h) (POS xH))=INFERIEUR;
+ Rewrite <- H2; Rewrite <- [m,n:Z](Zcompare_Zplus_compatible m n y);
+ Rewrite (Zplus_sym x);Rewrite Zplus_assoc; Rewrite Zplus_inverse_r;
+ Simpl; Exact H1 ]]
+ | Intros H1;Rewrite -> H1;Discriminate ]
+| Intros H; (ElimCompare 'x '(Zplus y (POS xH))); [
+ Intros H1;Elim (Zcompare_EGAL x (Zplus y (POS xH))); Intros H2 H3;
+ Rewrite (H2 H1); Exact (Zcompare_Zs_SUPERIEUR y)
+ | Intros H1;Absurd (Zcompare x (Zplus y (POS xH)))=INFERIEUR;Assumption
+ | Intros H1; Apply Zcompare_trans_SUPERIEUR with y:=(Zs y);
+ [ Exact H1 | Exact (Zcompare_Zs_SUPERIEUR y)]]].
+Qed.
+
+(** Successor and comparison *)
+
+Lemma Zcompare_n_S : (n,m:Z)(Zcompare (Zs n) (Zs m)) = (Zcompare n m).
+Proof.
+Intros n m;Unfold Zs ;Do 2 Rewrite -> [t:Z](Zplus_sym t (POS xH));
+Rewrite -> Zcompare_Zplus_compatible;Auto with arith.
+Qed.
+
+(** Multiplication and comparison *)
+
+Lemma Zcompare_Zmult_compatible :
+ (x:positive)(y,z:Z)
+ (Zcompare (Zmult (POS x) y) (Zmult (POS x) z)) = (Zcompare y z).
+Proof.
+Intros x; NewInduction x as [p H|p H|]; [
+ Intros y z;
+ Cut (POS (xI p))=(Zplus (Zplus (POS p) (POS p)) (POS xH)); [
+ Intros E; Rewrite E; Do 4 Rewrite Zmult_plus_distr_l;
+ Do 2 Rewrite Zmult_one;
+ Apply Zcompare_Zplus_compatible2; [
+ Apply Zcompare_Zplus_compatible2; Apply H
+ | Trivial with arith]
+ | Simpl; Rewrite (add_x_x p); Trivial with arith]
+| Intros y z; Cut (POS (xO p))=(Zplus (POS p) (POS p)); [
+ Intros E; Rewrite E; Do 2 Rewrite Zmult_plus_distr_l;
+ Apply Zcompare_Zplus_compatible2; Apply H
+ | Simpl; Rewrite (add_x_x p); Trivial with arith]
+ | Intros y z; Do 2 Rewrite Zmult_one; Trivial with arith].
+Qed.
+
+
+(** Reverting [x ?= y] to trichotomy *)
+
+Lemma rename : (A:Set)(P:A->Prop)(x:A) ((y:A)(x=y)->(P y)) -> (P x).
+Proof.
+Auto with arith.
+Qed.
+
+Lemma Zcompare_elim :
+ (c1,c2,c3:Prop)(x,y:Z)
+ ((x=y) -> c1) ->(`x<y` -> c2) ->(`x>y`-> c3)
+ -> Cases (Zcompare x y) of EGAL => c1 | INFERIEUR => c2 | SUPERIEUR => c3 end.
+Proof.
+Intros c1 c2 c3 x y; Intros.
+Apply rename with x:=(Zcompare x y); Intro r; Elim r;
+[ Intro; Apply H; Apply (Zcompare_EGAL_eq x y); Assumption
+| Unfold Zlt in H0; Assumption
+| Unfold Zgt in H1; Assumption ].
+Qed.
+
+Lemma Zcompare_eq_case :
+ (c1,c2,c3:Prop)(x,y:Z) c1 -> x=y ->
+ Cases (Zcompare x y) of EGAL => c1 | INFERIEUR => c2 | SUPERIEUR => c3 end.
+Proof.
+Intros c1 c2 c3 x y; Intros.
+Rewrite H0; Rewrite (Zcompare_x_x).
+Assumption.
+Qed.
+
+(** Decompose an egality between two [?=] relations into 3 implications *)
+
+Lemma Zcompare_egal_dec :
+ (x1,y1,x2,y2:Z)
+ (`x1<y1`->`x2<y2`)
+ ->((Zcompare x1 y1)=EGAL -> (Zcompare x2 y2)=EGAL)
+ ->(`x1>y1`->`x2>y2`)->(Zcompare x1 y1)=(Zcompare x2 y2).
+Proof.
+Intros x1 y1 x2 y2.
+Unfold Zgt; Unfold Zlt;
+Case (Zcompare x1 y1); Case (Zcompare x2 y2); Auto with arith; Symmetry; Auto with arith.
+Qed.
+
+(** Relating [x ?= y] to [Zle], [Zlt], [Zge] or [Zgt] *)
+
+Lemma Zle_Zcompare :
+ (x,y:Z)`x<=y` ->
+ Cases (Zcompare x y) of EGAL => True | INFERIEUR => True | SUPERIEUR => False end.
+Proof.
+Intros x y; Unfold Zle; Elim (Zcompare x y); Auto with arith.
+Qed.
+
+Lemma Zlt_Zcompare :
+ (x,y:Z)`x<y` ->
+ Cases (Zcompare x y) of EGAL => False | INFERIEUR => True | SUPERIEUR => False end.
+Proof.
+Intros x y; Unfold Zlt; Elim (Zcompare x y); Intros; Discriminate Orelse Trivial with arith.
+Qed.
+
+Lemma Zge_Zcompare :
+ (x,y:Z)`x>=y`->
+ Cases (Zcompare x y) of EGAL => True | INFERIEUR => False | SUPERIEUR => True end.
+Proof.
+Intros x y; Unfold Zge; Elim (Zcompare x y); Auto with arith.
+Qed.
+
+Lemma Zgt_Zcompare :
+ (x,y:Z)`x>y` ->
+ Cases (Zcompare x y) of EGAL => False | INFERIEUR => False | SUPERIEUR => True end.
+Proof.
+Intros x y; Unfold Zgt; Elim (Zcompare x y); Intros; Discriminate Orelse Trivial with arith.
+Qed.
+
+(**********************************************************************)
+(* Other properties *)
+
+V7only [Set Implicit Arguments.].
+
+Lemma Zcompare_Zmult_left : (x,y,z:Z)`z>0` -> `x ?= y`=`z*x ?= z*y`.
+Proof.
+Intros x y z H; NewDestruct z.
+ Discriminate H.
+ Rewrite Zcompare_Zmult_compatible; Reflexivity.
+ Discriminate H.
+Qed.
+
+Lemma Zcompare_Zmult_right : (x,y,z:Z)` z>0` -> `x ?= y`=`x*z ?= y*z`.
+Proof.
+Intros x y z H;
+Rewrite (Zmult_sym x z);
+Rewrite (Zmult_sym y z);
+Apply Zcompare_Zmult_left; Assumption.
+Qed.
+
+V7only [Unset Implicit Arguments.].
+