diff options
Diffstat (limited to 'theories7/ZArith/Zbool.v')
-rw-r--r-- | theories7/ZArith/Zbool.v | 158 |
1 files changed, 158 insertions, 0 deletions
diff --git a/theories7/ZArith/Zbool.v b/theories7/ZArith/Zbool.v new file mode 100644 index 00000000..258a485d --- /dev/null +++ b/theories7/ZArith/Zbool.v @@ -0,0 +1,158 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* $Id: Zbool.v,v 1.1.2.1 2004/07/16 19:31:42 herbelin Exp $ *) + +Require BinInt. +Require Zeven. +Require Zorder. +Require Zcompare. +Require ZArith_dec. +Require Zsyntax. +Require Sumbool. + +(** The decidability of equality and order relations over + type [Z] give some boolean functions with the adequate specification. *) + +Definition Z_lt_ge_bool := [x,y:Z](bool_of_sumbool (Z_lt_ge_dec x y)). +Definition Z_ge_lt_bool := [x,y:Z](bool_of_sumbool (Z_ge_lt_dec x y)). + +Definition Z_le_gt_bool := [x,y:Z](bool_of_sumbool (Z_le_gt_dec x y)). +Definition Z_gt_le_bool := [x,y:Z](bool_of_sumbool (Z_gt_le_dec x y)). + +Definition Z_eq_bool := [x,y:Z](bool_of_sumbool (Z_eq_dec x y)). +Definition Z_noteq_bool := [x,y:Z](bool_of_sumbool (Z_noteq_dec x y)). + +Definition Zeven_odd_bool := [x:Z](bool_of_sumbool (Zeven_odd_dec x)). + +(**********************************************************************) +(** Boolean comparisons of binary integers *) + +Definition Zle_bool := + [x,y:Z]Cases `x ?= y` of SUPERIEUR => false | _ => true end. +Definition Zge_bool := + [x,y:Z]Cases `x ?= y` of INFERIEUR => false | _ => true end. +Definition Zlt_bool := + [x,y:Z]Cases `x ?= y` of INFERIEUR => true | _ => false end. +Definition Zgt_bool := + [x,y:Z]Cases ` x ?= y` of SUPERIEUR => true | _ => false end. +Definition Zeq_bool := + [x,y:Z]Cases `x ?= y` of EGAL => true | _ => false end. +Definition Zneq_bool := + [x,y:Z]Cases `x ?= y` of EGAL => false | _ => true end. + +Lemma Zle_cases : (x,y:Z)if (Zle_bool x y) then `x<=y` else `x>y`. +Proof. +Intros x y; Unfold Zle_bool Zle Zgt. +Case (Zcompare x y); Auto; Discriminate. +Qed. + +Lemma Zlt_cases : (x,y:Z)if (Zlt_bool x y) then `x<y` else `x>=y`. +Proof. +Intros x y; Unfold Zlt_bool Zlt Zge. +Case (Zcompare x y); Auto; Discriminate. +Qed. + +Lemma Zge_cases : (x,y:Z)if (Zge_bool x y) then `x>=y` else `x<y`. +Proof. +Intros x y; Unfold Zge_bool Zge Zlt. +Case (Zcompare x y); Auto; Discriminate. +Qed. + +Lemma Zgt_cases : (x,y:Z)if (Zgt_bool x y) then `x>y` else `x<=y`. +Proof. +Intros x y; Unfold Zgt_bool Zgt Zle. +Case (Zcompare x y); Auto; Discriminate. +Qed. + +(** Lemmas on [Zle_bool] used in contrib/graphs *) + +Lemma Zle_bool_imp_le : (x,y:Z) (Zle_bool x y)=true -> (Zle x y). +Proof. + Unfold Zle_bool Zle. Intros x y. Unfold not. + Case (Zcompare x y); Intros; Discriminate. +Qed. + +Lemma Zle_imp_le_bool : (x,y:Z) (Zle x y) -> (Zle_bool x y)=true. +Proof. + Unfold Zle Zle_bool. Intros x y. Case (Zcompare x y); Trivial. Intro. Elim (H (refl_equal ? ?)). +Qed. + +Lemma Zle_bool_refl : (x:Z) (Zle_bool x x)=true. +Proof. + Intro. Apply Zle_imp_le_bool. Apply Zle_refl. Reflexivity. +Qed. + +Lemma Zle_bool_antisym : (x,y:Z) (Zle_bool x y)=true -> (Zle_bool y x)=true -> x=y. +Proof. + Intros. Apply Zle_antisym. Apply Zle_bool_imp_le. Assumption. + Apply Zle_bool_imp_le. Assumption. +Qed. + +Lemma Zle_bool_trans : (x,y,z:Z) (Zle_bool x y)=true -> (Zle_bool y z)=true -> (Zle_bool x z)=true. +Proof. + Intros x y z; Intros. Apply Zle_imp_le_bool. Apply Zle_trans with m:=y. Apply Zle_bool_imp_le. Assumption. + Apply Zle_bool_imp_le. Assumption. +Qed. + +Definition Zle_bool_total : (x,y:Z) {(Zle_bool x y)=true}+{(Zle_bool y x)=true}. +Proof. + Intros x y; Intros. Unfold Zle_bool. Cut (Zcompare x y)=SUPERIEUR<->(Zcompare y x)=INFERIEUR. + Case (Zcompare x y). Left . Reflexivity. + Left . Reflexivity. + Right . Rewrite (proj1 ? ? H (refl_equal ? ?)). Reflexivity. + Apply Zcompare_ANTISYM. +Defined. + +Lemma Zle_bool_plus_mono : (x,y,z,t:Z) (Zle_bool x y)=true -> (Zle_bool z t)=true -> + (Zle_bool (Zplus x z) (Zplus y t))=true. +Proof. + Intros. Apply Zle_imp_le_bool. Apply Zle_plus_plus. Apply Zle_bool_imp_le. Assumption. + Apply Zle_bool_imp_le. Assumption. +Qed. + +Lemma Zone_pos : (Zle_bool `1` `0`)=false. +Proof. + Reflexivity. +Qed. + +Lemma Zone_min_pos : (x:Z) (Zle_bool x `0`)=false -> (Zle_bool `1` x)=true. +Proof. + Intros x; Intros. Apply Zle_imp_le_bool. Change (Zle (Zs ZERO) x). Apply Zgt_le_S. Generalize H. + Unfold Zle_bool Zgt. Case (Zcompare x ZERO). Intro H0. Discriminate H0. + Intro H0. Discriminate H0. + Reflexivity. +Qed. + + + Lemma Zle_is_le_bool : (x,y:Z) (Zle x y) <-> (Zle_bool x y)=true. + Proof. + Intros. Split. Intro. Apply Zle_imp_le_bool. Assumption. + Intro. Apply Zle_bool_imp_le. Assumption. + Qed. + + Lemma Zge_is_le_bool : (x,y:Z) (Zge x y) <-> (Zle_bool y x)=true. + Proof. + Intros. Split. Intro. Apply Zle_imp_le_bool. Apply Zge_le. Assumption. + Intro. Apply Zle_ge. Apply Zle_bool_imp_le. Assumption. + Qed. + + Lemma Zlt_is_le_bool : (x,y:Z) (Zlt x y) <-> (Zle_bool x `y-1`)=true. + Proof. + Intros x y. Split. Intro. Apply Zle_imp_le_bool. Apply Zlt_n_Sm_le. Rewrite (Zs_pred y) in H. + Assumption. + Intro. Rewrite (Zs_pred y). Apply Zle_lt_n_Sm. Apply Zle_bool_imp_le. Assumption. + Qed. + + Lemma Zgt_is_le_bool : (x,y:Z) (Zgt x y) <-> (Zle_bool y `x-1`)=true. + Proof. + Intros x y. Apply iff_trans with `y < x`. Split. Exact (Zgt_lt x y). + Exact (Zlt_gt y x). + Exact (Zlt_is_le_bool y x). + Qed. + |