summaryrefslogtreecommitdiff
path: root/theories7/ZArith/BinInt.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/ZArith/BinInt.v')
-rw-r--r--theories7/ZArith/BinInt.v1005
1 files changed, 0 insertions, 1005 deletions
diff --git a/theories7/ZArith/BinInt.v b/theories7/ZArith/BinInt.v
deleted file mode 100644
index 9071896b..00000000
--- a/theories7/ZArith/BinInt.v
+++ /dev/null
@@ -1,1005 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: BinInt.v,v 1.1.2.1 2004/07/16 19:31:42 herbelin Exp $ i*)
-
-(***********************************************************)
-(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
-(***********************************************************)
-
-Require Export BinPos.
-Require Export Pnat.
-Require BinNat.
-Require Plus.
-Require Mult.
-(**********************************************************************)
-(** Binary integer numbers *)
-
-Inductive Z : Set :=
- ZERO : Z | POS : positive -> Z | NEG : positive -> Z.
-
-(** Declare Scope Z_scope with Key Z *)
-Delimits Scope Z_scope with Z.
-
-(** Automatically open scope positive_scope for the constructors of Z *)
-Bind Scope Z_scope with Z.
-Arguments Scope POS [ positive_scope ].
-Arguments Scope NEG [ positive_scope ].
-
-(** Subtraction of positive into Z *)
-
-Definition Zdouble_plus_one [x:Z] :=
- Cases x of
- | ZERO => (POS xH)
- | (POS p) => (POS (xI p))
- | (NEG p) => (NEG (double_moins_un p))
- end.
-
-Definition Zdouble_minus_one [x:Z] :=
- Cases x of
- | ZERO => (NEG xH)
- | (NEG p) => (NEG (xI p))
- | (POS p) => (POS (double_moins_un p))
- end.
-
-Definition Zdouble [x:Z] :=
- Cases x of
- | ZERO => ZERO
- | (POS p) => (POS (xO p))
- | (NEG p) => (NEG (xO p))
- end.
-
-Fixpoint ZPminus [x,y:positive] : Z :=
- Cases x y of
- | (xI x') (xI y') => (Zdouble (ZPminus x' y'))
- | (xI x') (xO y') => (Zdouble_plus_one (ZPminus x' y'))
- | (xI x') xH => (POS (xO x'))
- | (xO x') (xI y') => (Zdouble_minus_one (ZPminus x' y'))
- | (xO x') (xO y') => (Zdouble (ZPminus x' y'))
- | (xO x') xH => (POS (double_moins_un x'))
- | xH (xI y') => (NEG (xO y'))
- | xH (xO y') => (NEG (double_moins_un y'))
- | xH xH => ZERO
- end.
-
-(** Addition on integers *)
-
-Definition Zplus := [x,y:Z]
- Cases x y of
- ZERO y => y
- | x ZERO => x
- | (POS x') (POS y') => (POS (add x' y'))
- | (POS x') (NEG y') =>
- Cases (compare x' y' EGAL) of
- | EGAL => ZERO
- | INFERIEUR => (NEG (true_sub y' x'))
- | SUPERIEUR => (POS (true_sub x' y'))
- end
- | (NEG x') (POS y') =>
- Cases (compare x' y' EGAL) of
- | EGAL => ZERO
- | INFERIEUR => (POS (true_sub y' x'))
- | SUPERIEUR => (NEG (true_sub x' y'))
- end
- | (NEG x') (NEG y') => (NEG (add x' y'))
- end.
-
-V8Infix "+" Zplus : Z_scope.
-
-(** Opposite *)
-
-Definition Zopp := [x:Z]
- Cases x of
- ZERO => ZERO
- | (POS x) => (NEG x)
- | (NEG x) => (POS x)
- end.
-
-V8Notation "- x" := (Zopp x) : Z_scope.
-
-(** Successor on integers *)
-
-Definition Zs := [x:Z](Zplus x (POS xH)).
-
-(** Predecessor on integers *)
-
-Definition Zpred := [x:Z](Zplus x (NEG xH)).
-
-(** Subtraction on integers *)
-
-Definition Zminus := [m,n:Z](Zplus m (Zopp n)).
-
-V8Infix "-" Zminus : Z_scope.
-
-(** Multiplication on integers *)
-
-Definition Zmult := [x,y:Z]
- Cases x y of
- | ZERO _ => ZERO
- | _ ZERO => ZERO
- | (POS x') (POS y') => (POS (times x' y'))
- | (POS x') (NEG y') => (NEG (times x' y'))
- | (NEG x') (POS y') => (NEG (times x' y'))
- | (NEG x') (NEG y') => (POS (times x' y'))
- end.
-
-V8Infix "*" Zmult : Z_scope.
-
-(** Comparison of integers *)
-
-Definition Zcompare := [x,y:Z]
- Cases x y of
- | ZERO ZERO => EGAL
- | ZERO (POS y') => INFERIEUR
- | ZERO (NEG y') => SUPERIEUR
- | (POS x') ZERO => SUPERIEUR
- | (POS x') (POS y') => (compare x' y' EGAL)
- | (POS x') (NEG y') => SUPERIEUR
- | (NEG x') ZERO => INFERIEUR
- | (NEG x') (POS y') => INFERIEUR
- | (NEG x') (NEG y') => (Op (compare x' y' EGAL))
- end.
-
-V8Infix "?=" Zcompare (at level 70, no associativity) : Z_scope.
-
-Tactic Definition ElimCompare com1 com2:=
- Case (Dcompare (Zcompare com1 com2)); [ Idtac |
- Let x = FreshId "H" In Intro x; Case x; Clear x ].
-
-(** Sign function *)
-
-Definition Zsgn [z:Z] : Z :=
- Cases z of
- ZERO => ZERO
- | (POS p) => (POS xH)
- | (NEG p) => (NEG xH)
- end.
-
-(** Direct, easier to handle variants of successor and addition *)
-
-Definition Zsucc' [x:Z] :=
- Cases x of
- | ZERO => (POS xH)
- | (POS x') => (POS (add_un x'))
- | (NEG x') => (ZPminus xH x')
- end.
-
-Definition Zpred' [x:Z] :=
- Cases x of
- | ZERO => (NEG xH)
- | (POS x') => (ZPminus x' xH)
- | (NEG x') => (NEG (add_un x'))
- end.
-
-Definition Zplus' := [x,y:Z]
- Cases x y of
- ZERO y => y
- | x ZERO => x
- | (POS x') (POS y') => (POS (add x' y'))
- | (POS x') (NEG y') => (ZPminus x' y')
- | (NEG x') (POS y') => (ZPminus y' x')
- | (NEG x') (NEG y') => (NEG (add x' y'))
- end.
-
-Open Local Scope Z_scope.
-
-(**********************************************************************)
-(** Inductive specification of Z *)
-
-Theorem Zind : (P:(Z ->Prop))
- (P ZERO) -> ((x:Z)(P x) ->(P (Zsucc' x))) -> ((x:Z)(P x) ->(P (Zpred' x))) ->
- (z:Z)(P z).
-Proof.
-Intros P H0 Hs Hp z; NewDestruct z.
- Assumption.
- Apply Pind with P:=[p](P (POS p)).
- Change (P (Zsucc' ZERO)); Apply Hs; Apply H0.
- Intro n; Exact (Hs (POS n)).
- Apply Pind with P:=[p](P (NEG p)).
- Change (P (Zpred' ZERO)); Apply Hp; Apply H0.
- Intro n; Exact (Hp (NEG n)).
-Qed.
-
-(**********************************************************************)
-(** Properties of opposite on binary integer numbers *)
-
-Theorem Zopp_NEG : (x:positive) (Zopp (NEG x)) = (POS x).
-Proof.
-Reflexivity.
-Qed.
-
-(** [opp] is involutive *)
-
-Theorem Zopp_Zopp: (x:Z) (Zopp (Zopp x)) = x.
-Proof.
-Intro x; NewDestruct x; Reflexivity.
-Qed.
-
-(** Injectivity of the opposite *)
-
-Theorem Zopp_intro : (x,y:Z) (Zopp x) = (Zopp y) -> x = y.
-Proof.
-Intros x y;Case x;Case y;Simpl;Intros; [
- Trivial | Discriminate H | Discriminate H | Discriminate H
-| Simplify_eq H; Intro E; Rewrite E; Trivial
-| Discriminate H | Discriminate H | Discriminate H
-| Simplify_eq H; Intro E; Rewrite E; Trivial ].
-Qed.
-
-(**********************************************************************)
-(* Properties of the direct definition of successor and predecessor *)
-
-Lemma Zpred'_succ' : (x:Z)(Zpred' (Zsucc' x))=x.
-Proof.
-Intro x; NewDestruct x; Simpl.
- Reflexivity.
-NewDestruct p; Simpl; Try Rewrite double_moins_un_add_un_xI; Reflexivity.
-NewDestruct p; Simpl; Try Rewrite is_double_moins_un; Reflexivity.
-Qed.
-
-Lemma Zsucc'_discr : (x:Z)x<>(Zsucc' x).
-Proof.
-Intro x; NewDestruct x; Simpl.
- Discriminate.
- Injection; Apply add_un_discr.
- NewDestruct p; Simpl.
- Discriminate.
- Intro H; Symmetry in H; Injection H; Apply double_moins_un_xO_discr.
- Discriminate.
-Qed.
-
-(**********************************************************************)
-(** Other properties of binary integer numbers *)
-
-Lemma ZL0 : (S (S O))=(plus (S O) (S O)).
-Proof.
-Reflexivity.
-Qed.
-
-(**********************************************************************)
-(** Properties of the addition on integers *)
-
-(** zero is left neutral for addition *)
-
-Theorem Zero_left: (x:Z) (Zplus ZERO x) = x.
-Proof.
-Intro x; NewDestruct x; Reflexivity.
-Qed.
-
-(** zero is right neutral for addition *)
-
-Theorem Zero_right: (x:Z) (Zplus x ZERO) = x.
-Proof.
-Intro x; NewDestruct x; Reflexivity.
-Qed.
-
-(** addition is commutative *)
-
-Theorem Zplus_sym: (x,y:Z) (Zplus x y) = (Zplus y x).
-Proof.
-Intro x;NewInduction x as [|p|p];Intro y; NewDestruct y as [|q|q];Simpl;Try Reflexivity.
- Rewrite add_sym; Reflexivity.
- Rewrite ZC4; NewDestruct (compare q p EGAL); Reflexivity.
- Rewrite ZC4; NewDestruct (compare q p EGAL); Reflexivity.
- Rewrite add_sym; Reflexivity.
-Qed.
-
-(** opposite distributes over addition *)
-
-Theorem Zopp_Zplus:
- (x,y:Z) (Zopp (Zplus x y)) = (Zplus (Zopp x) (Zopp y)).
-Proof.
-Intro x; NewDestruct x as [|p|p]; Intro y; NewDestruct y as [|q|q]; Simpl;
- Reflexivity Orelse NewDestruct (compare p q EGAL); Reflexivity.
-Qed.
-
-(** opposite is inverse for addition *)
-
-Theorem Zplus_inverse_r: (x:Z) (Zplus x (Zopp x)) = ZERO.
-Proof.
-Intro x; NewDestruct x as [|p|p]; Simpl; [
- Reflexivity
-| Rewrite (convert_compare_EGAL p); Reflexivity
-| Rewrite (convert_compare_EGAL p); Reflexivity ].
-Qed.
-
-Theorem Zplus_inverse_l: (x:Z) (Zplus (Zopp x) x) = ZERO.
-Proof.
-Intro; Rewrite Zplus_sym; Apply Zplus_inverse_r.
-Qed.
-
-Hints Local Resolve Zero_left Zero_right.
-
-(** addition is associative *)
-
-Lemma weak_assoc :
- (x,y:positive)(z:Z) (Zplus (POS x) (Zplus (POS y) z))=
- (Zplus (Zplus (POS x) (POS y)) z).
-Proof.
-Intros x y z';Case z'; [
- Auto with arith
-| Intros z;Simpl; Rewrite add_assoc;Auto with arith
-| Intros z; Simpl; ElimPcompare y z;
- Intros E0;Rewrite E0;
- ElimPcompare '(add x y) 'z;Intros E1;Rewrite E1; [
- Absurd (compare (add x y) z EGAL)=EGAL; [ (* Case 1 *)
- Rewrite convert_compare_SUPERIEUR; [
- Discriminate
- | Rewrite convert_add; Rewrite (compare_convert_EGAL y z E0);
- Elim (ZL4 x);Intros k E2;Rewrite E2; Simpl; Unfold gt lt; Apply le_n_S;
- Apply le_plus_r ]
- | Assumption ]
- | Absurd (compare (add x y) z EGAL)=INFERIEUR; [ (* Case 2 *)
- Rewrite convert_compare_SUPERIEUR; [
- Discriminate
- | Rewrite convert_add; Rewrite (compare_convert_EGAL y z E0);
- Elim (ZL4 x);Intros k E2;Rewrite E2; Simpl; Unfold gt lt; Apply le_n_S;
- Apply le_plus_r]
- | Assumption ]
- | Rewrite (compare_convert_EGAL y z E0); (* Case 3 *)
- Elim (sub_pos_SUPERIEUR (add x z) z);[
- Intros t H; Elim H;Intros H1 H2;Elim H2;Intros H3 H4;
- Unfold true_sub; Rewrite H1; Cut x=t; [
- Intros E;Rewrite E;Auto with arith
- | Apply simpl_add_r with z:=z; Rewrite <- H3; Rewrite add_sym; Trivial with arith ]
- | Pattern 1 z; Rewrite <- (compare_convert_EGAL y z E0); Assumption ]
- | Elim (sub_pos_SUPERIEUR z y); [ (* Case 4 *)
- Intros k H;Elim H;Intros H1 H2;Elim H2;Intros H3 H4; Unfold 1 true_sub;
- Rewrite H1; Cut x=k; [
- Intros E;Rewrite E; Rewrite (convert_compare_EGAL k); Trivial with arith
- | Apply simpl_add_r with z:=y; Rewrite (add_sym k y); Rewrite H3;
- Apply compare_convert_EGAL; Assumption ]
- | Apply ZC2;Assumption]
- | Elim (sub_pos_SUPERIEUR z y); [ (* Case 5 *)
- Intros k H;Elim H;Intros H1 H2;Elim H2;Intros H3 H4;
- Unfold 1 3 5 true_sub; Rewrite H1;
- Cut (compare x k EGAL)=INFERIEUR; [
- Intros E2;Rewrite E2; Elim (sub_pos_SUPERIEUR k x); [
- Intros i H5;Elim H5;Intros H6 H7;Elim H7;Intros H8 H9;
- Elim (sub_pos_SUPERIEUR z (add x y)); [
- Intros j H10;Elim H10;Intros H11 H12;Elim H12;Intros H13 H14;
- Unfold true_sub ;Rewrite H6;Rewrite H11; Cut i=j; [
- Intros E;Rewrite E;Auto with arith
- | Apply (simpl_add_l (add x y)); Rewrite H13;
- Rewrite (add_sym x y); Rewrite <- add_assoc; Rewrite H8;
- Assumption ]
- | Apply ZC2; Assumption]
- | Apply ZC2;Assumption]
- | Apply convert_compare_INFERIEUR;
- Apply simpl_lt_plus_l with p:=(convert y);
- Do 2 Rewrite <- convert_add; Apply compare_convert_INFERIEUR;
- Rewrite H3; Rewrite add_sym; Assumption ]
- | Apply ZC2; Assumption ]
- | Elim (sub_pos_SUPERIEUR z y); [ (* Case 6 *)
- Intros k H;Elim H;Intros H1 H2;Elim H2;Intros H3 H4;
- Elim (sub_pos_SUPERIEUR (add x y) z); [
- Intros i H5;Elim H5;Intros H6 H7;Elim H7;Intros H8 H9;
- Unfold true_sub; Rewrite H1;Rewrite H6;
- Cut (compare x k EGAL)=SUPERIEUR; [
- Intros H10;Elim (sub_pos_SUPERIEUR x k H10);
- Intros j H11;Elim H11;Intros H12 H13;Elim H13;Intros H14 H15;
- Rewrite H10; Rewrite H12; Cut i=j; [
- Intros H16;Rewrite H16;Auto with arith
- | Apply (simpl_add_l (add z k)); Rewrite <- (add_assoc z k j);
- Rewrite H14; Rewrite (add_sym z k); Rewrite <- add_assoc;
- Rewrite H8; Rewrite (add_sym x y); Rewrite add_assoc;
- Rewrite (add_sym k y); Rewrite H3; Trivial with arith]
- | Apply convert_compare_SUPERIEUR; Unfold lt gt;
- Apply simpl_lt_plus_l with p:=(convert y);
- Do 2 Rewrite <- convert_add; Apply compare_convert_INFERIEUR;
- Rewrite H3; Rewrite add_sym; Apply ZC1; Assumption ]
- | Assumption ]
- | Apply ZC2;Assumption ]
- | Absurd (compare (add x y) z EGAL)=EGAL; [ (* Case 7 *)
- Rewrite convert_compare_SUPERIEUR; [
- Discriminate
- | Rewrite convert_add; Unfold gt;Apply lt_le_trans with m:=(convert y);[
- Apply compare_convert_INFERIEUR; Apply ZC1; Assumption
- | Apply le_plus_r]]
- | Assumption ]
- | Absurd (compare (add x y) z EGAL)=INFERIEUR; [ (* Case 8 *)
- Rewrite convert_compare_SUPERIEUR; [
- Discriminate
- | Unfold gt; Apply lt_le_trans with m:=(convert y);[
- Exact (compare_convert_SUPERIEUR y z E0)
- | Rewrite convert_add; Apply le_plus_r]]
- | Assumption ]
- | Elim sub_pos_SUPERIEUR with 1:=E0;Intros k H1; (* Case 9 *)
- Elim sub_pos_SUPERIEUR with 1:=E1; Intros i H2;Elim H1;Intros H3 H4;
- Elim H4;Intros H5 H6; Elim H2;Intros H7 H8;Elim H8;Intros H9 H10;
- Unfold true_sub ;Rewrite H3;Rewrite H7; Cut (add x k)=i; [
- Intros E;Rewrite E;Auto with arith
- | Apply (simpl_add_l z);Rewrite (add_sym x k);
- Rewrite add_assoc; Rewrite H5;Rewrite H9;
- Rewrite add_sym; Trivial with arith ]]].
-Qed.
-
-Hints Local Resolve weak_assoc.
-
-Theorem Zplus_assoc :
- (n,m,p:Z) (Zplus n (Zplus m p))= (Zplus (Zplus n m) p).
-Proof.
-Intros x y z;Case x;Case y;Case z;Auto with arith; Intros; [
- Rewrite (Zplus_sym (NEG p0)); Rewrite weak_assoc;
- Rewrite (Zplus_sym (Zplus (POS p1) (NEG p0))); Rewrite weak_assoc;
- Rewrite (Zplus_sym (POS p1)); Trivial with arith
-| Apply Zopp_intro; Do 4 Rewrite Zopp_Zplus;
- Do 2 Rewrite Zopp_NEG; Rewrite Zplus_sym; Rewrite <- weak_assoc;
- Rewrite (Zplus_sym (Zopp (POS p1)));
- Rewrite (Zplus_sym (Zplus (POS p0) (Zopp (POS p1))));
- Rewrite (weak_assoc p); Rewrite weak_assoc; Rewrite (Zplus_sym (POS p0));
- Trivial with arith
-| Rewrite Zplus_sym; Rewrite (Zplus_sym (POS p0) (POS p));
- Rewrite <- weak_assoc; Rewrite Zplus_sym; Rewrite (Zplus_sym (POS p0));
- Trivial with arith
-| Apply Zopp_intro; Do 4 Rewrite Zopp_Zplus;
- Do 2 Rewrite Zopp_NEG; Rewrite (Zplus_sym (Zopp (POS p0)));
- Rewrite weak_assoc; Rewrite (Zplus_sym (Zplus (POS p1) (Zopp (POS p0))));
- Rewrite weak_assoc;Rewrite (Zplus_sym (POS p)); Trivial with arith
-| Apply Zopp_intro; Do 4 Rewrite Zopp_Zplus; Do 2 Rewrite Zopp_NEG;
- Apply weak_assoc
-| Apply Zopp_intro; Do 4 Rewrite Zopp_Zplus; Do 2 Rewrite Zopp_NEG;
- Apply weak_assoc]
-.
-Qed.
-
-V7only [Notation Zplus_assoc_l := Zplus_assoc.].
-
-Lemma Zplus_assoc_r : (n,m,p:Z)(Zplus (Zplus n m) p) =(Zplus n (Zplus m p)).
-Proof.
-Intros; Symmetry; Apply Zplus_assoc.
-Qed.
-
-(** Associativity mixed with commutativity *)
-
-Theorem Zplus_permute : (n,m,p:Z) (Zplus n (Zplus m p))=(Zplus m (Zplus n p)).
-Proof.
-Intros n m p;
-Rewrite Zplus_sym;Rewrite <- Zplus_assoc; Rewrite (Zplus_sym p n); Trivial with arith.
-Qed.
-
-(** addition simplifies *)
-
-Theorem Zsimpl_plus_l : (n,m,p:Z)(Zplus n m)=(Zplus n p)->m=p.
-Intros n m p H; Cut (Zplus (Zopp n) (Zplus n m))=(Zplus (Zopp n) (Zplus n p));[
- Do 2 Rewrite -> Zplus_assoc; Rewrite -> (Zplus_sym (Zopp n) n);
- Rewrite -> Zplus_inverse_r;Simpl; Trivial with arith
-| Rewrite -> H; Trivial with arith ].
-Qed.
-
-(** addition and successor permutes *)
-
-Lemma Zplus_S_n: (x,y:Z) (Zplus (Zs x) y) = (Zs (Zplus x y)).
-Proof.
-Intros x y; Unfold Zs; Rewrite (Zplus_sym (Zplus x y)); Rewrite Zplus_assoc;
-Rewrite (Zplus_sym (POS xH)); Trivial with arith.
-Qed.
-
-Lemma Zplus_n_Sm : (n,m:Z) (Zs (Zplus n m))=(Zplus n (Zs m)).
-Proof.
-Intros n m; Unfold Zs; Rewrite Zplus_assoc; Trivial with arith.
-Qed.
-
-Lemma Zplus_Snm_nSm : (n,m:Z)(Zplus (Zs n) m)=(Zplus n (Zs m)).
-Proof.
-Unfold Zs ;Intros n m; Rewrite <- Zplus_assoc; Rewrite (Zplus_sym (POS xH));
-Trivial with arith.
-Qed.
-
-(** Misc properties, usually redundant or non natural *)
-
-Lemma Zplus_n_O : (n:Z) n=(Zplus n ZERO).
-Proof.
-Symmetry; Apply Zero_right.
-Qed.
-
-Lemma Zplus_unit_left : (n,m:Z) (Zplus n ZERO)=m -> n=m.
-Proof.
-Intros n m; Rewrite Zero_right; Intro; Assumption.
-Qed.
-
-Lemma Zplus_unit_right : (n,m:Z) n=(Zplus m ZERO) -> n=m.
-Proof.
-Intros n m; Rewrite Zero_right; Intro; Assumption.
-Qed.
-
-Lemma Zplus_simpl : (x,y,z,t:Z) x=y -> z=t -> (Zplus x z)=(Zplus y t).
-Proof.
-Intros; Rewrite H; Rewrite H0; Reflexivity.
-Qed.
-
-Lemma Zplus_Zopp_expand : (x,y,z:Z)
- (Zplus x (Zopp y))=(Zplus (Zplus x (Zopp z)) (Zplus z (Zopp y))).
-Proof.
-Intros x y z.
-Rewrite <- (Zplus_assoc x).
-Rewrite (Zplus_assoc (Zopp z)).
-Rewrite Zplus_inverse_l.
-Reflexivity.
-Qed.
-
-(**********************************************************************)
-(** Properties of successor and predecessor on binary integer numbers *)
-
-Theorem Zn_Sn : (x:Z) ~ x=(Zs x).
-Proof.
-Intros n;Cut ~ZERO=(POS xH);[
- Unfold not ;Intros H1 H2;Apply H1;Apply (Zsimpl_plus_l n);Rewrite Zero_right;
- Exact H2
-| Discriminate ].
-Qed.
-
-Theorem add_un_Zs : (x:positive) (POS (add_un x)) = (Zs (POS x)).
-Proof.
-Intro; Rewrite -> ZL12; Unfold Zs; Simpl; Trivial with arith.
-Qed.
-
-(** successor and predecessor are inverse functions *)
-
-Theorem Zs_pred : (n:Z) n=(Zs (Zpred n)).
-Proof.
-Intros n; Unfold Zs Zpred ;Rewrite <- Zplus_assoc; Simpl; Rewrite Zero_right;
-Trivial with arith.
-Qed.
-
-Hints Immediate Zs_pred : zarith.
-
-Theorem Zpred_Sn : (x:Z) x=(Zpred (Zs x)).
-Proof.
-Intros m; Unfold Zpred Zs; Rewrite <- Zplus_assoc; Simpl;
-Rewrite Zplus_sym; Auto with arith.
-Qed.
-
-Theorem Zeq_add_S : (n,m:Z) (Zs n)=(Zs m) -> n=m.
-Proof.
-Intros n m H.
-Change (Zplus (Zplus (NEG xH) (POS xH)) n)=
- (Zplus (Zplus (NEG xH) (POS xH)) m);
-Do 2 Rewrite <- Zplus_assoc; Do 2 Rewrite (Zplus_sym (POS xH));
-Unfold Zs in H;Rewrite H; Trivial with arith.
-Qed.
-
-(** Misc properties, usually redundant or non natural *)
-
-Lemma Zeq_S : (n,m:Z) n=m -> (Zs n)=(Zs m).
-Proof.
-Intros n m H; Rewrite H; Reflexivity.
-Qed.
-
-Lemma Znot_eq_S : (n,m:Z) ~(n=m) -> ~((Zs n)=(Zs m)).
-Proof.
-Unfold not ;Intros n m H1 H2;Apply H1;Apply Zeq_add_S; Assumption.
-Qed.
-
-(**********************************************************************)
-(** Properties of subtraction on binary integer numbers *)
-
-Lemma Zminus_0_r : (x:Z) (Zminus x ZERO)=x.
-Proof.
-Intro; Unfold Zminus; Simpl;Rewrite Zero_right; Trivial with arith.
-Qed.
-
-Lemma Zminus_n_O : (x:Z) x=(Zminus x ZERO).
-Proof.
-Intro; Symmetry; Apply Zminus_0_r.
-Qed.
-
-Lemma Zminus_diag : (n:Z)(Zminus n n)=ZERO.
-Proof.
-Intro; Unfold Zminus; Rewrite Zplus_inverse_r; Trivial with arith.
-Qed.
-
-Lemma Zminus_n_n : (n:Z)(ZERO=(Zminus n n)).
-Proof.
-Intro; Symmetry; Apply Zminus_diag.
-Qed.
-
-Lemma Zplus_minus : (x,y,z:Z)(x=(Zplus y z))->(z=(Zminus x y)).
-Proof.
-Intros n m p H;Unfold Zminus;Apply (Zsimpl_plus_l m);
-Rewrite (Zplus_sym m (Zplus n (Zopp m))); Rewrite <- Zplus_assoc;
-Rewrite Zplus_inverse_l; Rewrite Zero_right; Rewrite H; Trivial with arith.
-Qed.
-
-Lemma Zminus_plus : (x,y:Z)(Zminus (Zplus x y) x)=y.
-Proof.
-Intros n m;Unfold Zminus ;Rewrite -> (Zplus_sym n m);Rewrite <- Zplus_assoc;
-Rewrite -> Zplus_inverse_r; Apply Zero_right.
-Qed.
-
-Lemma Zle_plus_minus : (n,m:Z) (Zplus n (Zminus m n))=m.
-Proof.
-Unfold Zminus; Intros n m; Rewrite Zplus_permute; Rewrite Zplus_inverse_r;
-Apply Zero_right.
-Qed.
-
-Lemma Zminus_Sn_m : (n,m:Z)((Zs (Zminus n m))=(Zminus (Zs n) m)).
-Proof.
-Intros n m;Unfold Zminus Zs; Rewrite (Zplus_sym n (Zopp m));
-Rewrite <- Zplus_assoc;Apply Zplus_sym.
-Qed.
-
-Lemma Zminus_plus_simpl_l :
- (x,y,z:Z)(Zminus (Zplus z x) (Zplus z y))=(Zminus x y).
-Proof.
-Intros n m p;Unfold Zminus; Rewrite Zopp_Zplus; Rewrite Zplus_assoc;
-Rewrite (Zplus_sym p); Rewrite <- (Zplus_assoc n p); Rewrite Zplus_inverse_r;
-Rewrite Zero_right; Trivial with arith.
-Qed.
-
-Lemma Zminus_plus_simpl :
- (x,y,z:Z)((Zminus x y)=(Zminus (Zplus z x) (Zplus z y))).
-Proof.
-Intros; Symmetry; Apply Zminus_plus_simpl_l.
-Qed.
-
-Lemma Zminus_Zplus_compatible :
- (x,y,z:Z) (Zminus (Zplus x z) (Zplus y z)) = (Zminus x y).
-Intros x y n.
-Unfold Zminus.
-Rewrite -> Zopp_Zplus.
-Rewrite -> (Zplus_sym (Zopp y) (Zopp n)).
-Rewrite -> Zplus_assoc.
-Rewrite <- (Zplus_assoc x n (Zopp n)).
-Rewrite -> (Zplus_inverse_r n).
-Rewrite <- Zplus_n_O.
-Reflexivity.
-Qed.
-
-(** Misc redundant properties *)
-
-V7only [Set Implicit Arguments.].
-
-Lemma Zeq_Zminus : (x,y:Z)x=y -> (Zminus x y)=ZERO.
-Proof.
-Intros x y H; Rewrite H; Symmetry; Apply Zminus_n_n.
-Qed.
-
-Lemma Zminus_Zeq : (x,y:Z)(Zminus x y)=ZERO -> x=y.
-Proof.
-Intros x y H; Rewrite <- (Zle_plus_minus y x); Rewrite H; Apply Zero_right.
-Qed.
-
-V7only [Unset Implicit Arguments.].
-
-(**********************************************************************)
-(** Properties of multiplication on binary integer numbers *)
-
-(** One is neutral for multiplication *)
-
-Theorem Zmult_1_n : (n:Z)(Zmult (POS xH) n)=n.
-Proof.
-Intro x; NewDestruct x; Reflexivity.
-Qed.
-V7only [Notation Zmult_one := Zmult_1_n.].
-
-Theorem Zmult_n_1 : (n:Z)(Zmult n (POS xH))=n.
-Proof.
-Intro x; NewDestruct x; Simpl; Try Rewrite times_x_1; Reflexivity.
-Qed.
-
-(** Zero property of multiplication *)
-
-Theorem Zero_mult_left: (x:Z) (Zmult ZERO x) = ZERO.
-Proof.
-Intro x; NewDestruct x; Reflexivity.
-Qed.
-
-Theorem Zero_mult_right: (x:Z) (Zmult x ZERO) = ZERO.
-Proof.
-Intro x; NewDestruct x; Reflexivity.
-Qed.
-
-Hints Local Resolve Zero_mult_left Zero_mult_right.
-
-Lemma Zmult_n_O : (n:Z) ZERO=(Zmult n ZERO).
-Proof.
-Intro x; NewDestruct x; Reflexivity.
-Qed.
-
-(** Commutativity of multiplication *)
-
-Theorem Zmult_sym : (x,y:Z) (Zmult x y) = (Zmult y x).
-Proof.
-Intros x y; NewDestruct x as [|p|p]; NewDestruct y as [|q|q]; Simpl;
- Try Rewrite (times_sym p q); Reflexivity.
-Qed.
-
-(** Associativity of multiplication *)
-
-Theorem Zmult_assoc :
- (x,y,z:Z) (Zmult x (Zmult y z))= (Zmult (Zmult x y) z).
-Proof.
-Intros x y z; NewDestruct x; NewDestruct y; NewDestruct z; Simpl;
- Try Rewrite times_assoc; Reflexivity.
-Qed.
-V7only [Notation Zmult_assoc_l := Zmult_assoc.].
-
-Lemma Zmult_assoc_r : (n,m,p:Z)((Zmult (Zmult n m) p) = (Zmult n (Zmult m p))).
-Proof.
-Intros n m p; Rewrite Zmult_assoc; Trivial with arith.
-Qed.
-
-(** Associativity mixed with commutativity *)
-
-Theorem Zmult_permute : (n,m,p:Z)(Zmult n (Zmult m p)) = (Zmult m (Zmult n p)).
-Proof.
-Intros x y z; Rewrite -> (Zmult_assoc y x z); Rewrite -> (Zmult_sym y x).
-Apply Zmult_assoc.
-Qed.
-
-(** Z is integral *)
-
-Theorem Zmult_eq: (x,y:Z) ~(x=ZERO) -> (Zmult y x) = ZERO -> y = ZERO.
-Proof.
-Intros x y; NewDestruct x as [|p|p].
- Intro H; Absurd ZERO=ZERO; Trivial.
- Intros _ H; NewDestruct y as [|q|q]; Reflexivity Orelse Discriminate.
- Intros _ H; NewDestruct y as [|q|q]; Reflexivity Orelse Discriminate.
-Qed.
-
-V7only [Set Implicit Arguments.].
-
-Theorem Zmult_zero : (x,y:Z)(Zmult x y)=ZERO -> x=ZERO \/ y=ZERO.
-Proof.
-Intros x y; NewDestruct x; NewDestruct y; Auto; Simpl; Intro H; Discriminate H.
-Qed.
-
-V7only [Unset Implicit Arguments.].
-
-Lemma Zmult_1_inversion_l :
- (x,y:Z) (Zmult x y)=(POS xH) -> x=(POS xH) \/ x=(NEG xH).
-Proof.
-Intros x y; NewDestruct x as [|p|p]; Intro; [ Discriminate | Left | Right ];
- (NewDestruct y as [|q|q]; Try Discriminate;
- Simpl in H; Injection H; Clear H; Intro H;
- Rewrite times_one_inversion_l with 1:=H; Reflexivity).
-Qed.
-
-(** Multiplication and Opposite *)
-
-Theorem Zopp_Zmult_l : (x,y:Z)(Zopp (Zmult x y)) = (Zmult (Zopp x) y).
-Proof.
-Intros x y; NewDestruct x; NewDestruct y; Reflexivity.
-Qed.
-
-Theorem Zopp_Zmult_r : (x,y:Z)(Zopp (Zmult x y)) = (Zmult x (Zopp y)).
-Intros x y; Rewrite (Zmult_sym x y); Rewrite Zopp_Zmult_l; Apply Zmult_sym.
-Qed.
-
-Lemma Zopp_Zmult: (x,y:Z) (Zmult (Zopp x) y) = (Zopp (Zmult x y)).
-Proof.
-Intros x y; Symmetry; Apply Zopp_Zmult_l.
-Qed.
-
-Theorem Zmult_Zopp_left : (x,y:Z)(Zmult (Zopp x) y) = (Zmult x (Zopp y)).
-Intros x y; Rewrite Zopp_Zmult; Rewrite Zopp_Zmult_r; Trivial with arith.
-Qed.
-
-Theorem Zmult_Zopp_Zopp: (x,y:Z) (Zmult (Zopp x) (Zopp y)) = (Zmult x y).
-Proof.
-Intros x y; NewDestruct x; NewDestruct y; Reflexivity.
-Qed.
-
-Theorem Zopp_one : (x:Z)(Zopp x)=(Zmult x (NEG xH)).
-Intro x; NewInduction x; Intros; Rewrite Zmult_sym; Auto with arith.
-Qed.
-
-(** Distributivity of multiplication over addition *)
-
-Lemma weak_Zmult_plus_distr_r:
- (x:positive)(y,z:Z)
- (Zmult (POS x) (Zplus y z)) = (Zplus (Zmult (POS x) y) (Zmult (POS x) z)).
-Proof.
-Intros x y' z';Case y';Case z';Auto with arith;Intros y z;
- (Simpl; Rewrite times_add_distr; Trivial with arith)
-Orelse
- (Simpl; ElimPcompare z y; Intros E0;Rewrite E0; [
- Rewrite (compare_convert_EGAL z y E0);
- Rewrite (convert_compare_EGAL (times x y)); Trivial with arith
- | Cut (compare (times x z) (times x y) EGAL)=INFERIEUR; [
- Intros E;Rewrite E; Rewrite times_true_sub_distr; [
- Trivial with arith
- | Apply ZC2;Assumption ]
- | Apply convert_compare_INFERIEUR;Do 2 Rewrite times_convert;
- Elim (ZL4 x);Intros h H1;Rewrite H1;Apply lt_mult_left;
- Exact (compare_convert_INFERIEUR z y E0)]
- | Cut (compare (times x z) (times x y) EGAL)=SUPERIEUR; [
- Intros E;Rewrite E; Rewrite times_true_sub_distr; Auto with arith
- | Apply convert_compare_SUPERIEUR; Unfold gt; Do 2 Rewrite times_convert;
- Elim (ZL4 x);Intros h H1;Rewrite H1;Apply lt_mult_left;
- Exact (compare_convert_SUPERIEUR z y E0) ]]).
-Qed.
-
-Theorem Zmult_plus_distr_r:
- (x,y,z:Z) (Zmult x (Zplus y z)) = (Zplus (Zmult x y) (Zmult x z)).
-Proof.
-Intros x y z; Case x; [
- Auto with arith
-| Intros x';Apply weak_Zmult_plus_distr_r
-| Intros p; Apply Zopp_intro; Rewrite Zopp_Zplus;
- Do 3 Rewrite <- Zopp_Zmult; Rewrite Zopp_NEG;
- Apply weak_Zmult_plus_distr_r ].
-Qed.
-
-Theorem Zmult_plus_distr_l :
- (n,m,p:Z)((Zmult (Zplus n m) p)=(Zplus (Zmult n p) (Zmult m p))).
-Proof.
-Intros n m p;Rewrite Zmult_sym;Rewrite Zmult_plus_distr_r;
-Do 2 Rewrite -> (Zmult_sym p); Trivial with arith.
-Qed.
-
-(** Distributivity of multiplication over subtraction *)
-
-Lemma Zmult_Zminus_distr_l :
- (x,y,z:Z)((Zmult (Zminus x y) z)=(Zminus (Zmult x z) (Zmult y z))).
-Proof.
-Intros x y z; Unfold Zminus.
-Rewrite <- Zopp_Zmult.
-Apply Zmult_plus_distr_l.
-Qed.
-
-V7only [Notation Zmult_minus_distr := Zmult_Zminus_distr_l.].
-
-Lemma Zmult_Zminus_distr_r :
- (x,y,z:Z)(Zmult z (Zminus x y)) = (Zminus (Zmult z x) (Zmult z y)).
-Proof.
-Intros x y z; Rewrite (Zmult_sym z (Zminus x y)).
-Rewrite (Zmult_sym z x).
-Rewrite (Zmult_sym z y).
-Apply Zmult_Zminus_distr_l.
-Qed.
-
-(** Simplification of multiplication for non-zero integers *)
-V7only [Set Implicit Arguments.].
-
-Lemma Zmult_reg_left : (x,y,z:Z) z<>ZERO -> (Zmult z x)=(Zmult z y) -> x=y.
-Proof.
-Intros x y z H H0.
-Generalize (Zeq_Zminus H0).
-Intro.
-Apply Zminus_Zeq.
-Rewrite <- Zmult_Zminus_distr_r in H1.
-Clear H0; NewDestruct (Zmult_zero H1).
-Contradiction.
-Trivial.
-Qed.
-
-Lemma Zmult_reg_right : (x,y,z:Z) z<>ZERO -> (Zmult x z)=(Zmult y z) -> x=y.
-Proof.
-Intros x y z Hz.
-Rewrite (Zmult_sym x z).
-Rewrite (Zmult_sym y z).
-Intro; Apply Zmult_reg_left with z; Assumption.
-Qed.
-V7only [Unset Implicit Arguments.].
-
-(** Addition and multiplication by 2 *)
-
-Lemma Zplus_Zmult_2 : (x:Z) (Zplus x x) = (Zmult x (POS (xO xH))).
-Proof.
-Intros x; Pattern 1 2 x ; Rewrite <- (Zmult_n_1 x);
-Rewrite <- Zmult_plus_distr_r; Reflexivity.
-Qed.
-
-(** Multiplication and successor *)
-
-Lemma Zmult_succ_r : (n,m:Z) (Zmult n (Zs m))=(Zplus (Zmult n m) n).
-Proof.
-Intros n m;Unfold Zs; Rewrite Zmult_plus_distr_r;
-Rewrite (Zmult_sym n (POS xH));Rewrite Zmult_one; Trivial with arith.
-Qed.
-
-Lemma Zmult_n_Sm : (n,m:Z) (Zplus (Zmult n m) n)=(Zmult n (Zs m)).
-Proof.
-Intros; Symmetry; Apply Zmult_succ_r.
-Qed.
-
-Lemma Zmult_succ_l : (n,m:Z) (Zmult (Zs n) m)=(Zplus (Zmult n m) m).
-Proof.
-Intros n m; Unfold Zs; Rewrite Zmult_plus_distr_l; Rewrite Zmult_1_n;
-Trivial with arith.
-Qed.
-
-Lemma Zmult_Sm_n : (n,m:Z) (Zplus (Zmult n m) m)=(Zmult (Zs n) m).
-Proof.
-Intros; Symmetry; Apply Zmult_succ_l.
-Qed.
-
-(** Misc redundant properties *)
-
-Lemma Z_eq_mult:
- (x,y:Z) y = ZERO -> (Zmult y x) = ZERO.
-Intros x y H; Rewrite H; Auto with arith.
-Qed.
-
-(**********************************************************************)
-(** Relating binary positive numbers and binary integers *)
-
-Lemma POS_xI : (p:positive) (POS (xI p))=(Zplus (Zmult (POS (xO xH)) (POS p)) (POS xH)).
-Proof.
-Intro; Apply refl_equal.
-Qed.
-
-Lemma POS_xO : (p:positive) (POS (xO p))=(Zmult (POS (xO xH)) (POS p)).
-Proof.
-Intro; Apply refl_equal.
-Qed.
-
-Lemma NEG_xI : (p:positive) (NEG (xI p))=(Zminus (Zmult (POS (xO xH)) (NEG p)) (POS xH)).
-Proof.
-Intro; Apply refl_equal.
-Qed.
-
-Lemma NEG_xO : (p:positive) (NEG (xO p))=(Zmult (POS (xO xH)) (NEG p)).
-Proof.
-Reflexivity.
-Qed.
-
-Lemma POS_add : (p,p':positive)(POS (add p p'))=(Zplus (POS p) (POS p')).
-Proof.
-Intros p p'; NewDestruct p; NewDestruct p'; Reflexivity.
-Qed.
-
-Lemma NEG_add : (p,p':positive)(NEG (add p p'))=(Zplus (NEG p) (NEG p')).
-Proof.
-Intros p p'; NewDestruct p; NewDestruct p'; Reflexivity.
-Qed.
-
-(**********************************************************************)
-(** Order relations *)
-
-Definition Zlt := [x,y:Z](Zcompare x y) = INFERIEUR.
-Definition Zgt := [x,y:Z](Zcompare x y) = SUPERIEUR.
-Definition Zle := [x,y:Z]~(Zcompare x y) = SUPERIEUR.
-Definition Zge := [x,y:Z]~(Zcompare x y) = INFERIEUR.
-Definition Zne := [x,y:Z] ~(x=y).
-
-V8Infix "<=" Zle : Z_scope.
-V8Infix "<" Zlt : Z_scope.
-V8Infix ">=" Zge : Z_scope.
-V8Infix ">" Zgt : Z_scope.
-
-V8Notation "x <= y <= z" := (Zle x y)/\(Zle y z) :Z_scope.
-V8Notation "x <= y < z" := (Zle x y)/\(Zlt y z) :Z_scope.
-V8Notation "x < y < z" := (Zlt x y)/\(Zlt y z) :Z_scope.
-V8Notation "x < y <= z" := (Zlt x y)/\(Zle y z) :Z_scope.
-
-(**********************************************************************)
-(** Absolute value on integers *)
-
-Definition absolu [x:Z] : nat :=
- Cases x of
- ZERO => O
- | (POS p) => (convert p)
- | (NEG p) => (convert p)
- end.
-
-Definition Zabs [z:Z] : Z :=
- Cases z of
- ZERO => ZERO
- | (POS p) => (POS p)
- | (NEG p) => (POS p)
- end.
-
-(**********************************************************************)
-(** From [nat] to [Z] *)
-
-Definition inject_nat :=
- [x:nat]Cases x of
- O => ZERO
- | (S y) => (POS (anti_convert y))
- end.
-
-Require BinNat.
-
-Definition entier_of_Z :=
- [z:Z]Cases z of ZERO => Nul | (POS p) => (Pos p) | (NEG p) => (Pos p) end.
-
-Definition Z_of_entier :=
- [x:entier]Cases x of Nul => ZERO | (Pos p) => (POS p) end.