summaryrefslogtreecommitdiff
path: root/theories7/Wellfounded/Transitive_Closure.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Wellfounded/Transitive_Closure.v')
-rw-r--r--theories7/Wellfounded/Transitive_Closure.v47
1 files changed, 47 insertions, 0 deletions
diff --git a/theories7/Wellfounded/Transitive_Closure.v b/theories7/Wellfounded/Transitive_Closure.v
new file mode 100644
index 00000000..4d6cbe28
--- /dev/null
+++ b/theories7/Wellfounded/Transitive_Closure.v
@@ -0,0 +1,47 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Transitive_Closure.v,v 1.1.2.1 2004/07/16 19:31:42 herbelin Exp $ i*)
+
+(** Author: Bruno Barras *)
+
+Require Relation_Definitions.
+Require Relation_Operators.
+
+Section Wf_Transitive_Closure.
+ Variable A: Set.
+ Variable R: (relation A).
+
+ Notation trans_clos := (clos_trans A R).
+
+ Lemma incl_clos_trans: (inclusion A R trans_clos).
+ Red;Auto with sets.
+ Qed.
+
+ Lemma Acc_clos_trans: (x:A)(Acc A R x)->(Acc A trans_clos x).
+ NewInduction 1 as [x0 _ H1].
+ Apply Acc_intro.
+ Intros y H2.
+ NewInduction H2;Auto with sets.
+ Apply Acc_inv with y ;Auto with sets.
+ Qed.
+
+ Hints Resolve Acc_clos_trans.
+
+ Lemma Acc_inv_trans: (x,y:A)(trans_clos y x)->(Acc A R x)->(Acc A R y).
+ Proof.
+ NewInduction 1 as [|x y];Auto with sets.
+ Intro; Apply Acc_inv with y; Assumption.
+ Qed.
+
+ Theorem wf_clos_trans: (well_founded A R) ->(well_founded A trans_clos).
+ Proof.
+ Unfold well_founded;Auto with sets.
+ Qed.
+
+End Wf_Transitive_Closure.