diff options
Diffstat (limited to 'theories7/Wellfounded/Transitive_Closure.v')
-rw-r--r-- | theories7/Wellfounded/Transitive_Closure.v | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/theories7/Wellfounded/Transitive_Closure.v b/theories7/Wellfounded/Transitive_Closure.v new file mode 100644 index 00000000..4d6cbe28 --- /dev/null +++ b/theories7/Wellfounded/Transitive_Closure.v @@ -0,0 +1,47 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Transitive_Closure.v,v 1.1.2.1 2004/07/16 19:31:42 herbelin Exp $ i*) + +(** Author: Bruno Barras *) + +Require Relation_Definitions. +Require Relation_Operators. + +Section Wf_Transitive_Closure. + Variable A: Set. + Variable R: (relation A). + + Notation trans_clos := (clos_trans A R). + + Lemma incl_clos_trans: (inclusion A R trans_clos). + Red;Auto with sets. + Qed. + + Lemma Acc_clos_trans: (x:A)(Acc A R x)->(Acc A trans_clos x). + NewInduction 1 as [x0 _ H1]. + Apply Acc_intro. + Intros y H2. + NewInduction H2;Auto with sets. + Apply Acc_inv with y ;Auto with sets. + Qed. + + Hints Resolve Acc_clos_trans. + + Lemma Acc_inv_trans: (x,y:A)(trans_clos y x)->(Acc A R x)->(Acc A R y). + Proof. + NewInduction 1 as [|x y];Auto with sets. + Intro; Apply Acc_inv with y; Assumption. + Qed. + + Theorem wf_clos_trans: (well_founded A R) ->(well_founded A trans_clos). + Proof. + Unfold well_founded;Auto with sets. + Qed. + +End Wf_Transitive_Closure. |