summaryrefslogtreecommitdiff
path: root/theories7/Wellfounded/Lexicographic_Exponentiation.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Wellfounded/Lexicographic_Exponentiation.v')
-rw-r--r--theories7/Wellfounded/Lexicographic_Exponentiation.v386
1 files changed, 386 insertions, 0 deletions
diff --git a/theories7/Wellfounded/Lexicographic_Exponentiation.v b/theories7/Wellfounded/Lexicographic_Exponentiation.v
new file mode 100644
index 00000000..17f6d650
--- /dev/null
+++ b/theories7/Wellfounded/Lexicographic_Exponentiation.v
@@ -0,0 +1,386 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Lexicographic_Exponentiation.v,v 1.1.2.1 2004/07/16 19:31:41 herbelin Exp $ i*)
+
+(** Author: Cristina Cornes
+
+ From : Constructing Recursion Operators in Type Theory
+ L. Paulson JSC (1986) 2, 325-355 *)
+
+Require Eqdep.
+Require PolyList.
+Require PolyListSyntax.
+Require Relation_Operators.
+Require Transitive_Closure.
+
+Section Wf_Lexicographic_Exponentiation.
+Variable A:Set.
+Variable leA: A->A->Prop.
+
+Notation Power := (Pow A leA).
+Notation Lex_Exp := (lex_exp A leA).
+Notation ltl := (Ltl A leA).
+Notation Descl := (Desc A leA).
+
+Notation List := (list A).
+Notation Nil := (nil A).
+(* useless but symmetric *)
+Notation Cons := (cons 1!A).
+Notation "<< x , y >>" := (exist List Descl x y) (at level 0)
+ V8only (at level 0, x,y at level 100).
+
+V7only[
+Syntax constr
+ level 1:
+ List [ (list A) ] -> ["List"]
+ | Nil [ (nil A) ] -> ["Nil"]
+ | Cons [ (cons A) ] -> ["Cons"]
+ ;
+ level 10:
+ Cons2 [ (cons A $e $l) ] -> ["Cons " $e:L " " $l:L ].
+
+Syntax constr
+ level 1:
+ pair_sig [ (exist (list A) Desc $e $d) ] -> ["<<" $e:L "," $d:L ">>"].
+].
+Hints Resolve d_one d_nil t_step.
+
+Lemma left_prefix : (x,y,z:List)(ltl x^y z)-> (ltl x z).
+Proof.
+ Induction x.
+ Induction z.
+ Simpl;Intros H.
+ Inversion_clear H.
+ Simpl;Intros;Apply (Lt_nil A leA).
+ Intros a l HInd.
+ Simpl.
+ Intros.
+ Inversion_clear H.
+ Apply (Lt_hd A leA);Auto with sets.
+ Apply (Lt_tl A leA).
+ Apply (HInd y y0);Auto with sets.
+Qed.
+
+
+Lemma right_prefix :
+ (x,y,z:List)(ltl x y^z)-> (ltl x y) \/ (EX y':List | x=(y^y') /\ (ltl y' z)).
+Proof.
+ Intros x y;Generalize x.
+ Elim y;Simpl.
+ Right.
+ Exists x0 ;Auto with sets.
+ Intros.
+ Inversion H0.
+ Left;Apply (Lt_nil A leA).
+ Left;Apply (Lt_hd A leA);Auto with sets.
+ Generalize (H x1 z H3) .
+ Induction 1.
+ Left;Apply (Lt_tl A leA);Auto with sets.
+ Induction 1.
+ Induction 1;Intros.
+ Rewrite -> H8.
+ Right;Exists x2 ;Auto with sets.
+Qed.
+
+
+
+Lemma desc_prefix: (x:List)(a:A)(Descl x^(Cons a Nil))->(Descl x).
+Proof.
+ Intros.
+ Inversion H.
+ Generalize (app_cons_not_nil H1); Induction 1.
+ Cut (x^(Cons a Nil))=(Cons x0 Nil); Auto with sets.
+ Intro.
+ Generalize (app_eq_unit H0) .
+ Induction 1; Induction 1; Intros.
+ Rewrite -> H4; Auto with sets.
+ Discriminate H5.
+ Generalize (app_inj_tail H0) .
+ Induction 1; Intros.
+ Rewrite <- H4; Auto with sets.
+Qed.
+
+Lemma desc_tail: (x:List)(a,b:A)
+ (Descl (Cons b (x^(Cons a Nil))))-> (clos_trans A leA a b).
+Proof.
+ Intro.
+ Apply rev_ind with A:=A
+ P:=[x:List](a,b:A)
+ (Descl (Cons b (x^(Cons a Nil))))-> (clos_trans A leA a b).
+ Intros.
+
+ Inversion H.
+ Cut (Cons b (Cons a Nil))= ((Nil^(Cons b Nil))^ (Cons a Nil)); Auto with sets; Intro.
+ Generalize H0.
+ Intro.
+ Generalize (app_inj_tail 2!(l^(Cons y Nil)) 3!(Nil^(Cons b Nil)) H4);
+ Induction 1.
+ Intros.
+
+ Generalize (app_inj_tail H6); Induction 1; Intros.
+ Generalize H1.
+ Rewrite <- H10; Rewrite <- H7; Intro.
+ Apply (t_step A leA); Auto with sets.
+
+
+
+ Intros.
+ Inversion H0.
+ Generalize (app_cons_not_nil H3); Intro.
+ Elim H1.
+
+ Generalize H0.
+ Generalize (app_comm_cons (l^(Cons x0 Nil)) (Cons a Nil) b); Induction 1.
+ Intro.
+ Generalize (desc_prefix (Cons b (l^(Cons x0 Nil))) a H5); Intro.
+ Generalize (H x0 b H6).
+ Intro.
+ Apply t_trans with A:=A y:=x0; Auto with sets.
+
+ Apply t_step.
+ Generalize H1.
+ Rewrite -> H4; Intro.
+
+ Generalize (app_inj_tail H8); Induction 1.
+ Intros.
+ Generalize H2; Generalize (app_comm_cons l (Cons x0 Nil) b).
+ Intro.
+ Generalize H10.
+ Rewrite ->H12; Intro.
+ Generalize (app_inj_tail H13); Induction 1.
+ Intros.
+ Rewrite <- H11; Rewrite <- H16; Auto with sets.
+Qed.
+
+
+Lemma dist_aux : (z:List)(Descl z)->(x,y:List)z=(x^y)->(Descl x)/\ (Descl y).
+Proof.
+ Intros z D.
+ Elim D.
+ Intros.
+ Cut (x^y)=Nil;Auto with sets; Intro.
+ Generalize (app_eq_nil H0) ; Induction 1.
+ Intros.
+ Rewrite -> H2;Rewrite -> H3; Split;Apply d_nil.
+
+ Intros.
+ Cut (x0^y)=(Cons x Nil); Auto with sets.
+ Intros E.
+ Generalize (app_eq_unit E); Induction 1.
+ Induction 1;Intros.
+ Rewrite -> H2;Rewrite -> H3; Split.
+ Apply d_nil.
+
+ Apply d_one.
+
+ Induction 1; Intros.
+ Rewrite -> H2;Rewrite -> H3; Split.
+ Apply d_one.
+
+ Apply d_nil.
+
+ Do 5 Intro.
+ Intros Hind.
+ Do 2 Intro.
+ Generalize x0 .
+ Apply rev_ind with A:=A
+ P:=[y0:List]
+ (x0:List)
+ ((l^(Cons y Nil))^(Cons x Nil))=(x0^y0)->(Descl x0)/\(Descl y0).
+
+ Intro.
+ Generalize (app_nil_end x1) ; Induction 1; Induction 1.
+ Split. Apply d_conc; Auto with sets.
+
+ Apply d_nil.
+
+ Do 3 Intro.
+ Generalize x1 .
+ Apply rev_ind with
+ A:=A
+ P:=[l0:List]
+ (x1:A)
+ (x0:List)
+ ((l^(Cons y Nil))^(Cons x Nil))=(x0^(l0^(Cons x1 Nil)))
+ ->(Descl x0)/\(Descl (l0^(Cons x1 Nil))).
+
+
+ Simpl.
+ Split.
+ Generalize (app_inj_tail H2) ;Induction 1.
+ Induction 1;Auto with sets.
+
+ Apply d_one.
+ Do 5 Intro.
+ Generalize (app_ass x4 (l1^(Cons x2 Nil)) (Cons x3 Nil)) .
+ Induction 1.
+ Generalize (app_ass x4 l1 (Cons x2 Nil)) ;Induction 1.
+ Intro E.
+ Generalize (app_inj_tail E) .
+ Induction 1;Intros.
+ Generalize (app_inj_tail H6) ;Induction 1;Intros.
+ Rewrite <- H7; Rewrite <- H10; Generalize H6.
+ Generalize (app_ass x4 l1 (Cons x2 Nil)); Intro E1.
+ Rewrite -> E1.
+ Intro.
+ Generalize (Hind x4 (l1^(Cons x2 Nil)) H11) .
+ Induction 1;Split.
+ Auto with sets.
+
+ Generalize H14.
+ Rewrite <- H10; Intro.
+ Apply d_conc;Auto with sets.
+Qed.
+
+
+
+Lemma dist_Desc_concat : (x,y:List)(Descl x^y)->(Descl x)/\(Descl y).
+Proof.
+ Intros.
+ Apply (dist_aux (x^y) H x y); Auto with sets.
+Qed.
+
+
+Lemma desc_end:(a,b:A)(x:List)
+ (Descl x^(Cons a Nil)) /\ (ltl x^(Cons a Nil) (Cons b Nil))
+ -> (clos_trans A leA a b).
+
+Proof.
+ Intros a b x.
+ Case x.
+ Simpl.
+ Induction 1.
+ Intros.
+ Inversion H1;Auto with sets.
+ Inversion H3.
+
+ Induction 1.
+ Generalize (app_comm_cons l (Cons a Nil) a0).
+ Intros E; Rewrite <- E; Intros.
+ Generalize (desc_tail l a a0 H0); Intro.
+ Inversion H1.
+ Apply t_trans with y:=a0 ;Auto with sets.
+
+ Inversion H4.
+Qed.
+
+
+
+
+Lemma ltl_unit: (x:List)(a,b:A)
+ (Descl (x^(Cons a Nil))) -> (ltl x^(Cons a Nil) (Cons b Nil))
+ -> (ltl x (Cons b Nil)).
+Proof.
+ Intro.
+ Case x.
+ Intros;Apply (Lt_nil A leA).
+
+ Simpl;Intros.
+ Inversion_clear H0.
+ Apply (Lt_hd A leA a b);Auto with sets.
+
+ Inversion_clear H1.
+Qed.
+
+
+Lemma acc_app:
+ (x1,x2:List)(y1:(Descl x1^x2))
+ (Acc Power Lex_Exp (exist List Descl (x1^x2) y1))
+ ->(x:List)
+ (y:(Descl x))
+ (ltl x (x1^x2))->(Acc Power Lex_Exp (exist List Descl x y)).
+Proof.
+ Intros.
+ Apply (Acc_inv Power Lex_Exp (exist List Descl (x1^x2) y1)).
+ Auto with sets.
+
+ Unfold lex_exp ;Simpl;Auto with sets.
+Qed.
+
+
+Theorem wf_lex_exp :
+ (well_founded A leA)->(well_founded Power Lex_Exp).
+Proof.
+ Unfold 2 well_founded .
+ Induction a;Intros x y.
+ Apply Acc_intro.
+ Induction y0.
+ Unfold 1 lex_exp ;Simpl.
+ Apply rev_ind with A:=A P:=[x:List]
+ (x0:List)
+ (y:(Descl x0))
+ (ltl x0 x)
+ ->(Acc Power Lex_Exp (exist List Descl x0 y)) .
+ Intros.
+ Inversion_clear H0.
+
+ Intro.
+ Generalize (well_founded_ind A (clos_trans A leA) (wf_clos_trans A leA H)).
+ Intros GR.
+ Apply GR with P:=[x0:A]
+ (l:List)
+ ((x1:List)
+ (y:(Descl x1))
+ (ltl x1 l)
+ ->(Acc Power Lex_Exp (exist List Descl x1 y)))
+ ->(x1:List)
+ (y:(Descl x1))
+ (ltl x1 (l^(Cons x0 Nil)))
+ ->(Acc Power Lex_Exp (exist List Descl x1 y)) .
+ Intro;Intros HInd; Intros.
+ Generalize (right_prefix x2 l (Cons x1 Nil) H1) .
+ Induction 1.
+ Intro; Apply (H0 x2 y1 H3).
+
+ Induction 1.
+ Intro;Induction 1.
+ Clear H4 H2.
+ Intro;Generalize y1 ;Clear y1.
+ Rewrite -> H2.
+ Apply rev_ind with A:=A P:=[x3:List]
+ (y1:(Descl (l^x3)))
+ (ltl x3 (Cons x1 Nil))
+ ->(Acc Power Lex_Exp
+ (exist List Descl (l^x3) y1)) .
+ Intros.
+ Generalize (app_nil_end l) ;Intros Heq.
+ Generalize y1 .
+ Clear y1.
+ Rewrite <- Heq.
+ Intro.
+ Apply Acc_intro.
+ Induction y2.
+ Unfold 1 lex_exp .
+ Simpl;Intros x4 y3. Intros.
+ Apply (H0 x4 y3);Auto with sets.
+
+ Intros.
+ Generalize (dist_Desc_concat l (l0^(Cons x4 Nil)) y1) .
+ Induction 1.
+ Intros.
+ Generalize (desc_end x4 x1 l0 (conj ? ? H8 H5)) ; Intros.
+ Generalize y1 .
+ Rewrite <- (app_ass l l0 (Cons x4 Nil)); Intro.
+ Generalize (HInd x4 H9 (l^l0)) ; Intros HInd2.
+ Generalize (ltl_unit l0 x4 x1 H8 H5); Intro.
+ Generalize (dist_Desc_concat (l^l0) (Cons x4 Nil) y2) .
+ Induction 1;Intros.
+ Generalize (H4 H12 H10); Intro.
+ Generalize (Acc_inv Power Lex_Exp (exist List Descl (l^l0) H12) H14) .
+ Generalize (acc_app l l0 H12 H14).
+ Intros f g.
+ Generalize (HInd2 f);Intro.
+ Apply Acc_intro.
+ Induction y3.
+ Unfold 1 lex_exp ;Simpl; Intros.
+ Apply H15;Auto with sets.
+Qed.
+
+
+End Wf_Lexicographic_Exponentiation.