diff options
Diffstat (limited to 'theories7/Wellfounded/Lexicographic_Exponentiation.v')
-rw-r--r-- | theories7/Wellfounded/Lexicographic_Exponentiation.v | 386 |
1 files changed, 0 insertions, 386 deletions
diff --git a/theories7/Wellfounded/Lexicographic_Exponentiation.v b/theories7/Wellfounded/Lexicographic_Exponentiation.v deleted file mode 100644 index 17f6d650..00000000 --- a/theories7/Wellfounded/Lexicographic_Exponentiation.v +++ /dev/null @@ -1,386 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Lexicographic_Exponentiation.v,v 1.1.2.1 2004/07/16 19:31:41 herbelin Exp $ i*) - -(** Author: Cristina Cornes - - From : Constructing Recursion Operators in Type Theory - L. Paulson JSC (1986) 2, 325-355 *) - -Require Eqdep. -Require PolyList. -Require PolyListSyntax. -Require Relation_Operators. -Require Transitive_Closure. - -Section Wf_Lexicographic_Exponentiation. -Variable A:Set. -Variable leA: A->A->Prop. - -Notation Power := (Pow A leA). -Notation Lex_Exp := (lex_exp A leA). -Notation ltl := (Ltl A leA). -Notation Descl := (Desc A leA). - -Notation List := (list A). -Notation Nil := (nil A). -(* useless but symmetric *) -Notation Cons := (cons 1!A). -Notation "<< x , y >>" := (exist List Descl x y) (at level 0) - V8only (at level 0, x,y at level 100). - -V7only[ -Syntax constr - level 1: - List [ (list A) ] -> ["List"] - | Nil [ (nil A) ] -> ["Nil"] - | Cons [ (cons A) ] -> ["Cons"] - ; - level 10: - Cons2 [ (cons A $e $l) ] -> ["Cons " $e:L " " $l:L ]. - -Syntax constr - level 1: - pair_sig [ (exist (list A) Desc $e $d) ] -> ["<<" $e:L "," $d:L ">>"]. -]. -Hints Resolve d_one d_nil t_step. - -Lemma left_prefix : (x,y,z:List)(ltl x^y z)-> (ltl x z). -Proof. - Induction x. - Induction z. - Simpl;Intros H. - Inversion_clear H. - Simpl;Intros;Apply (Lt_nil A leA). - Intros a l HInd. - Simpl. - Intros. - Inversion_clear H. - Apply (Lt_hd A leA);Auto with sets. - Apply (Lt_tl A leA). - Apply (HInd y y0);Auto with sets. -Qed. - - -Lemma right_prefix : - (x,y,z:List)(ltl x y^z)-> (ltl x y) \/ (EX y':List | x=(y^y') /\ (ltl y' z)). -Proof. - Intros x y;Generalize x. - Elim y;Simpl. - Right. - Exists x0 ;Auto with sets. - Intros. - Inversion H0. - Left;Apply (Lt_nil A leA). - Left;Apply (Lt_hd A leA);Auto with sets. - Generalize (H x1 z H3) . - Induction 1. - Left;Apply (Lt_tl A leA);Auto with sets. - Induction 1. - Induction 1;Intros. - Rewrite -> H8. - Right;Exists x2 ;Auto with sets. -Qed. - - - -Lemma desc_prefix: (x:List)(a:A)(Descl x^(Cons a Nil))->(Descl x). -Proof. - Intros. - Inversion H. - Generalize (app_cons_not_nil H1); Induction 1. - Cut (x^(Cons a Nil))=(Cons x0 Nil); Auto with sets. - Intro. - Generalize (app_eq_unit H0) . - Induction 1; Induction 1; Intros. - Rewrite -> H4; Auto with sets. - Discriminate H5. - Generalize (app_inj_tail H0) . - Induction 1; Intros. - Rewrite <- H4; Auto with sets. -Qed. - -Lemma desc_tail: (x:List)(a,b:A) - (Descl (Cons b (x^(Cons a Nil))))-> (clos_trans A leA a b). -Proof. - Intro. - Apply rev_ind with A:=A - P:=[x:List](a,b:A) - (Descl (Cons b (x^(Cons a Nil))))-> (clos_trans A leA a b). - Intros. - - Inversion H. - Cut (Cons b (Cons a Nil))= ((Nil^(Cons b Nil))^ (Cons a Nil)); Auto with sets; Intro. - Generalize H0. - Intro. - Generalize (app_inj_tail 2!(l^(Cons y Nil)) 3!(Nil^(Cons b Nil)) H4); - Induction 1. - Intros. - - Generalize (app_inj_tail H6); Induction 1; Intros. - Generalize H1. - Rewrite <- H10; Rewrite <- H7; Intro. - Apply (t_step A leA); Auto with sets. - - - - Intros. - Inversion H0. - Generalize (app_cons_not_nil H3); Intro. - Elim H1. - - Generalize H0. - Generalize (app_comm_cons (l^(Cons x0 Nil)) (Cons a Nil) b); Induction 1. - Intro. - Generalize (desc_prefix (Cons b (l^(Cons x0 Nil))) a H5); Intro. - Generalize (H x0 b H6). - Intro. - Apply t_trans with A:=A y:=x0; Auto with sets. - - Apply t_step. - Generalize H1. - Rewrite -> H4; Intro. - - Generalize (app_inj_tail H8); Induction 1. - Intros. - Generalize H2; Generalize (app_comm_cons l (Cons x0 Nil) b). - Intro. - Generalize H10. - Rewrite ->H12; Intro. - Generalize (app_inj_tail H13); Induction 1. - Intros. - Rewrite <- H11; Rewrite <- H16; Auto with sets. -Qed. - - -Lemma dist_aux : (z:List)(Descl z)->(x,y:List)z=(x^y)->(Descl x)/\ (Descl y). -Proof. - Intros z D. - Elim D. - Intros. - Cut (x^y)=Nil;Auto with sets; Intro. - Generalize (app_eq_nil H0) ; Induction 1. - Intros. - Rewrite -> H2;Rewrite -> H3; Split;Apply d_nil. - - Intros. - Cut (x0^y)=(Cons x Nil); Auto with sets. - Intros E. - Generalize (app_eq_unit E); Induction 1. - Induction 1;Intros. - Rewrite -> H2;Rewrite -> H3; Split. - Apply d_nil. - - Apply d_one. - - Induction 1; Intros. - Rewrite -> H2;Rewrite -> H3; Split. - Apply d_one. - - Apply d_nil. - - Do 5 Intro. - Intros Hind. - Do 2 Intro. - Generalize x0 . - Apply rev_ind with A:=A - P:=[y0:List] - (x0:List) - ((l^(Cons y Nil))^(Cons x Nil))=(x0^y0)->(Descl x0)/\(Descl y0). - - Intro. - Generalize (app_nil_end x1) ; Induction 1; Induction 1. - Split. Apply d_conc; Auto with sets. - - Apply d_nil. - - Do 3 Intro. - Generalize x1 . - Apply rev_ind with - A:=A - P:=[l0:List] - (x1:A) - (x0:List) - ((l^(Cons y Nil))^(Cons x Nil))=(x0^(l0^(Cons x1 Nil))) - ->(Descl x0)/\(Descl (l0^(Cons x1 Nil))). - - - Simpl. - Split. - Generalize (app_inj_tail H2) ;Induction 1. - Induction 1;Auto with sets. - - Apply d_one. - Do 5 Intro. - Generalize (app_ass x4 (l1^(Cons x2 Nil)) (Cons x3 Nil)) . - Induction 1. - Generalize (app_ass x4 l1 (Cons x2 Nil)) ;Induction 1. - Intro E. - Generalize (app_inj_tail E) . - Induction 1;Intros. - Generalize (app_inj_tail H6) ;Induction 1;Intros. - Rewrite <- H7; Rewrite <- H10; Generalize H6. - Generalize (app_ass x4 l1 (Cons x2 Nil)); Intro E1. - Rewrite -> E1. - Intro. - Generalize (Hind x4 (l1^(Cons x2 Nil)) H11) . - Induction 1;Split. - Auto with sets. - - Generalize H14. - Rewrite <- H10; Intro. - Apply d_conc;Auto with sets. -Qed. - - - -Lemma dist_Desc_concat : (x,y:List)(Descl x^y)->(Descl x)/\(Descl y). -Proof. - Intros. - Apply (dist_aux (x^y) H x y); Auto with sets. -Qed. - - -Lemma desc_end:(a,b:A)(x:List) - (Descl x^(Cons a Nil)) /\ (ltl x^(Cons a Nil) (Cons b Nil)) - -> (clos_trans A leA a b). - -Proof. - Intros a b x. - Case x. - Simpl. - Induction 1. - Intros. - Inversion H1;Auto with sets. - Inversion H3. - - Induction 1. - Generalize (app_comm_cons l (Cons a Nil) a0). - Intros E; Rewrite <- E; Intros. - Generalize (desc_tail l a a0 H0); Intro. - Inversion H1. - Apply t_trans with y:=a0 ;Auto with sets. - - Inversion H4. -Qed. - - - - -Lemma ltl_unit: (x:List)(a,b:A) - (Descl (x^(Cons a Nil))) -> (ltl x^(Cons a Nil) (Cons b Nil)) - -> (ltl x (Cons b Nil)). -Proof. - Intro. - Case x. - Intros;Apply (Lt_nil A leA). - - Simpl;Intros. - Inversion_clear H0. - Apply (Lt_hd A leA a b);Auto with sets. - - Inversion_clear H1. -Qed. - - -Lemma acc_app: - (x1,x2:List)(y1:(Descl x1^x2)) - (Acc Power Lex_Exp (exist List Descl (x1^x2) y1)) - ->(x:List) - (y:(Descl x)) - (ltl x (x1^x2))->(Acc Power Lex_Exp (exist List Descl x y)). -Proof. - Intros. - Apply (Acc_inv Power Lex_Exp (exist List Descl (x1^x2) y1)). - Auto with sets. - - Unfold lex_exp ;Simpl;Auto with sets. -Qed. - - -Theorem wf_lex_exp : - (well_founded A leA)->(well_founded Power Lex_Exp). -Proof. - Unfold 2 well_founded . - Induction a;Intros x y. - Apply Acc_intro. - Induction y0. - Unfold 1 lex_exp ;Simpl. - Apply rev_ind with A:=A P:=[x:List] - (x0:List) - (y:(Descl x0)) - (ltl x0 x) - ->(Acc Power Lex_Exp (exist List Descl x0 y)) . - Intros. - Inversion_clear H0. - - Intro. - Generalize (well_founded_ind A (clos_trans A leA) (wf_clos_trans A leA H)). - Intros GR. - Apply GR with P:=[x0:A] - (l:List) - ((x1:List) - (y:(Descl x1)) - (ltl x1 l) - ->(Acc Power Lex_Exp (exist List Descl x1 y))) - ->(x1:List) - (y:(Descl x1)) - (ltl x1 (l^(Cons x0 Nil))) - ->(Acc Power Lex_Exp (exist List Descl x1 y)) . - Intro;Intros HInd; Intros. - Generalize (right_prefix x2 l (Cons x1 Nil) H1) . - Induction 1. - Intro; Apply (H0 x2 y1 H3). - - Induction 1. - Intro;Induction 1. - Clear H4 H2. - Intro;Generalize y1 ;Clear y1. - Rewrite -> H2. - Apply rev_ind with A:=A P:=[x3:List] - (y1:(Descl (l^x3))) - (ltl x3 (Cons x1 Nil)) - ->(Acc Power Lex_Exp - (exist List Descl (l^x3) y1)) . - Intros. - Generalize (app_nil_end l) ;Intros Heq. - Generalize y1 . - Clear y1. - Rewrite <- Heq. - Intro. - Apply Acc_intro. - Induction y2. - Unfold 1 lex_exp . - Simpl;Intros x4 y3. Intros. - Apply (H0 x4 y3);Auto with sets. - - Intros. - Generalize (dist_Desc_concat l (l0^(Cons x4 Nil)) y1) . - Induction 1. - Intros. - Generalize (desc_end x4 x1 l0 (conj ? ? H8 H5)) ; Intros. - Generalize y1 . - Rewrite <- (app_ass l l0 (Cons x4 Nil)); Intro. - Generalize (HInd x4 H9 (l^l0)) ; Intros HInd2. - Generalize (ltl_unit l0 x4 x1 H8 H5); Intro. - Generalize (dist_Desc_concat (l^l0) (Cons x4 Nil) y2) . - Induction 1;Intros. - Generalize (H4 H12 H10); Intro. - Generalize (Acc_inv Power Lex_Exp (exist List Descl (l^l0) H12) H14) . - Generalize (acc_app l l0 H12 H14). - Intros f g. - Generalize (HInd2 f);Intro. - Apply Acc_intro. - Induction y3. - Unfold 1 lex_exp ;Simpl; Intros. - Apply H15;Auto with sets. -Qed. - - -End Wf_Lexicographic_Exponentiation. |