summaryrefslogtreecommitdiff
path: root/theories7/Wellfounded/Disjoint_Union.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Wellfounded/Disjoint_Union.v')
-rw-r--r--theories7/Wellfounded/Disjoint_Union.v56
1 files changed, 56 insertions, 0 deletions
diff --git a/theories7/Wellfounded/Disjoint_Union.v b/theories7/Wellfounded/Disjoint_Union.v
new file mode 100644
index 00000000..04930170
--- /dev/null
+++ b/theories7/Wellfounded/Disjoint_Union.v
@@ -0,0 +1,56 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Disjoint_Union.v,v 1.1.2.1 2004/07/16 19:31:41 herbelin Exp $ i*)
+
+(** Author: Cristina Cornes
+ From : Constructing Recursion Operators in Type Theory
+ L. Paulson JSC (1986) 2, 325-355 *)
+
+Require Relation_Operators.
+
+Section Wf_Disjoint_Union.
+Variable A,B:Set.
+Variable leA: A->A->Prop.
+Variable leB: B->B->Prop.
+
+Notation Le_AsB := (le_AsB A B leA leB).
+
+Lemma acc_A_sum: (x:A)(Acc A leA x)->(Acc A+B Le_AsB (inl A B x)).
+Proof.
+ NewInduction 1.
+ Apply Acc_intro;Intros y H2.
+ Inversion_clear H2.
+ Auto with sets.
+Qed.
+
+Lemma acc_B_sum: (well_founded A leA) ->(x:B)(Acc B leB x)
+ ->(Acc A+B Le_AsB (inr A B x)).
+Proof.
+ NewInduction 2.
+ Apply Acc_intro;Intros y H3.
+ Inversion_clear H3;Auto with sets.
+ Apply acc_A_sum;Auto with sets.
+Qed.
+
+
+Lemma wf_disjoint_sum:
+ (well_founded A leA)
+ -> (well_founded B leB) -> (well_founded A+B Le_AsB).
+Proof.
+ Intros.
+ Unfold well_founded .
+ NewDestruct a as [a|b].
+ Apply (acc_A_sum a).
+ Apply (H a).
+
+ Apply (acc_B_sum H b).
+ Apply (H0 b).
+Qed.
+
+End Wf_Disjoint_Union.