diff options
Diffstat (limited to 'theories7/Sets/Relations_2_facts.v')
-rwxr-xr-x | theories7/Sets/Relations_2_facts.v | 151 |
1 files changed, 0 insertions, 151 deletions
diff --git a/theories7/Sets/Relations_2_facts.v b/theories7/Sets/Relations_2_facts.v deleted file mode 100755 index b82438eb..00000000 --- a/theories7/Sets/Relations_2_facts.v +++ /dev/null @@ -1,151 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(****************************************************************************) -(* *) -(* Naive Set Theory in Coq *) -(* *) -(* INRIA INRIA *) -(* Rocquencourt Sophia-Antipolis *) -(* *) -(* Coq V6.1 *) -(* *) -(* Gilles Kahn *) -(* Gerard Huet *) -(* *) -(* *) -(* *) -(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *) -(* to the Newton Institute for providing an exceptional work environment *) -(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *) -(****************************************************************************) - -(*i $Id: Relations_2_facts.v,v 1.1.2.1 2004/07/16 19:31:40 herbelin Exp $ i*) - -Require Export Relations_1. -Require Export Relations_1_facts. -Require Export Relations_2. - -Theorem Rstar_reflexive : - (U: Type) (R: (Relation U)) (Reflexive U (Rstar U R)). -Proof. -Auto with sets. -Qed. - -Theorem Rplus_contains_R : - (U: Type) (R: (Relation U)) (contains U (Rplus U R) R). -Proof. -Auto with sets. -Qed. - -Theorem Rstar_contains_R : - (U: Type) (R: (Relation U)) (contains U (Rstar U R) R). -Proof. -Intros U R; Red; Intros x y H'; Apply Rstar_n with y; Auto with sets. -Qed. - -Theorem Rstar_contains_Rplus : - (U: Type) (R: (Relation U)) (contains U (Rstar U R) (Rplus U R)). -Proof. -Intros U R; Red. -Intros x y H'; Elim H'. -Generalize Rstar_contains_R; Intro T; Red in T; Auto with sets. -Intros x0 y0 z H'0 H'1 H'2; Apply Rstar_n with y0; Auto with sets. -Qed. - -Theorem Rstar_transitive : - (U: Type) (R: (Relation U)) (Transitive U (Rstar U R)). -Proof. -Intros U R; Red. -Intros x y z H'; Elim H'; Auto with sets. -Intros x0 y0 z0 H'0 H'1 H'2 H'3; Apply Rstar_n with y0; Auto with sets. -Qed. - -Theorem Rstar_cases : - (U: Type) (R: (Relation U)) (x, y: U) (Rstar U R x y) -> - x == y \/ (EXT u | (R x u) /\ (Rstar U R u y)). -Proof. -Intros U R x y H'; Elim H'; Auto with sets. -Intros x0 y0 z H'0 H'1 H'2; Right; Exists y0; Auto with sets. -Qed. - -Theorem Rstar_equiv_Rstar1 : - (U: Type) (R: (Relation U)) (same_relation U (Rstar U R) (Rstar1 U R)). -Proof. -Generalize Rstar_contains_R; Intro T; Red in T. -Intros U R; Unfold same_relation contains. -Split; Intros x y H'; Elim H'; Auto with sets. -Generalize Rstar_transitive; Intro T1; Red in T1. -Intros x0 y0 z H'0 H'1 H'2 H'3; Apply T1 with y0; Auto with sets. -Intros x0 y0 z H'0 H'1 H'2; Apply Rstar1_n with y0; Auto with sets. -Qed. - -Theorem Rsym_imp_Rstarsym : - (U: Type) (R: (Relation U)) (Symmetric U R) -> (Symmetric U (Rstar U R)). -Proof. -Intros U R H'; Red. -Intros x y H'0; Elim H'0; Auto with sets. -Intros x0 y0 z H'1 H'2 H'3. -Generalize Rstar_transitive; Intro T1; Red in T1. -Apply T1 with y0; Auto with sets. -Apply Rstar_n with x0; Auto with sets. -Qed. - -Theorem Sstar_contains_Rstar : - (U: Type) (R, S: (Relation U)) (contains U (Rstar U S) R) -> - (contains U (Rstar U S) (Rstar U R)). -Proof. -Unfold contains. -Intros U R S H' x y H'0; Elim H'0; Auto with sets. -Generalize Rstar_transitive; Intro T1; Red in T1. -Intros x0 y0 z H'1 H'2 H'3; Apply T1 with y0; Auto with sets. -Qed. - -Theorem star_monotone : - (U: Type) (R, S: (Relation U)) (contains U S R) -> - (contains U (Rstar U S) (Rstar U R)). -Proof. -Intros U R S H'. -Apply Sstar_contains_Rstar; Auto with sets. -Generalize (Rstar_contains_R U S); Auto with sets. -Qed. - -Theorem RstarRplus_RRstar : - (U: Type) (R: (Relation U)) (x, y, z: U) - (Rstar U R x y) -> (Rplus U R y z) -> - (EXT u | (R x u) /\ (Rstar U R u z)). -Proof. -Generalize Rstar_contains_Rplus; Intro T; Red in T. -Generalize Rstar_transitive; Intro T1; Red in T1. -Intros U R x y z H'; Elim H'. -Intros x0 H'0; Elim H'0. -Intros x1 y0 H'1; Exists y0; Auto with sets. -Intros x1 y0 z0 H'1 H'2 H'3; Exists y0; Auto with sets. -Intros x0 y0 z0 H'0 H'1 H'2 H'3; Exists y0. -Split; [Try Assumption | Idtac]. -Apply T1 with z0; Auto with sets. -Qed. - -Theorem Lemma1 : - (U: Type) (R: (Relation U)) (Strongly_confluent U R) -> - (x, b: U) (Rstar U R x b) -> - (a: U) (R x a) -> (EXT z | (Rstar U R a z) /\ (R b z)). -Proof. -Intros U R H' x b H'0; Elim H'0. -Intros x0 a H'1; Exists a; Auto with sets. -Intros x0 y z H'1 H'2 H'3 a H'4. -Red in H'. -Specialize 3 H' with x := x0 a := a b := y; Intro H'7; LApply H'7; - [Intro H'8; LApply H'8; - [Intro H'9; Try Exact H'9; Clear H'8 H'7 | Clear H'8 H'7] | Clear H'7]; Auto with sets. -Elim H'9. -Intros t H'5; Elim H'5; Intros H'6 H'7; Try Exact H'6; Clear H'5. -Elim (H'3 t); Auto with sets. -Intros z1 H'5; Elim H'5; Intros H'8 H'10; Try Exact H'8; Clear H'5. -Exists z1; Split; [Idtac | Assumption]. -Apply Rstar_n with t; Auto with sets. -Qed. |