diff options
Diffstat (limited to 'theories7/Sets/Relations_2.v')
-rwxr-xr-x | theories7/Sets/Relations_2.v | 56 |
1 files changed, 56 insertions, 0 deletions
diff --git a/theories7/Sets/Relations_2.v b/theories7/Sets/Relations_2.v new file mode 100755 index 00000000..92a1236e --- /dev/null +++ b/theories7/Sets/Relations_2.v @@ -0,0 +1,56 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(****************************************************************************) +(* *) +(* Naive Set Theory in Coq *) +(* *) +(* INRIA INRIA *) +(* Rocquencourt Sophia-Antipolis *) +(* *) +(* Coq V6.1 *) +(* *) +(* Gilles Kahn *) +(* Gerard Huet *) +(* *) +(* *) +(* *) +(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *) +(* to the Newton Institute for providing an exceptional work environment *) +(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *) +(****************************************************************************) + +(*i $Id: Relations_2.v,v 1.1.2.1 2004/07/16 19:31:40 herbelin Exp $ i*) + +Require Export Relations_1. + +Section Relations_2. +Variable U: Type. +Variable R: (Relation U). + +Inductive Rstar : (Relation U) := + Rstar_0: (x: U) (Rstar x x) + | Rstar_n: (x, y, z: U) (R x y) -> (Rstar y z) -> (Rstar x z). + +Inductive Rstar1 : (Relation U) := + Rstar1_0: (x: U) (Rstar1 x x) + | Rstar1_1: (x: U) (y: U) (R x y) -> (Rstar1 x y) + | Rstar1_n: (x, y, z: U) (Rstar1 x y) -> (Rstar1 y z) -> (Rstar1 x z). + +Inductive Rplus : (Relation U) := + Rplus_0: (x, y: U) (R x y) -> (Rplus x y) + | Rplus_n: (x, y, z: U) (R x y) -> (Rplus y z) -> (Rplus x z). + +Definition Strongly_confluent : Prop := + (x, a, b: U) (R x a) -> (R x b) -> (exT U [z: U] (R a z) /\ (R b z)). + +End Relations_2. + +Hints Resolve Rstar_0 : sets v62. +Hints Resolve Rstar1_0 : sets v62. +Hints Resolve Rstar1_1 : sets v62. +Hints Resolve Rplus_0 : sets v62. |