summaryrefslogtreecommitdiff
path: root/theories7/Sets/Relations_2.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Sets/Relations_2.v')
-rwxr-xr-xtheories7/Sets/Relations_2.v56
1 files changed, 56 insertions, 0 deletions
diff --git a/theories7/Sets/Relations_2.v b/theories7/Sets/Relations_2.v
new file mode 100755
index 00000000..92a1236e
--- /dev/null
+++ b/theories7/Sets/Relations_2.v
@@ -0,0 +1,56 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(****************************************************************************)
+(* *)
+(* Naive Set Theory in Coq *)
+(* *)
+(* INRIA INRIA *)
+(* Rocquencourt Sophia-Antipolis *)
+(* *)
+(* Coq V6.1 *)
+(* *)
+(* Gilles Kahn *)
+(* Gerard Huet *)
+(* *)
+(* *)
+(* *)
+(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
+(* to the Newton Institute for providing an exceptional work environment *)
+(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
+(****************************************************************************)
+
+(*i $Id: Relations_2.v,v 1.1.2.1 2004/07/16 19:31:40 herbelin Exp $ i*)
+
+Require Export Relations_1.
+
+Section Relations_2.
+Variable U: Type.
+Variable R: (Relation U).
+
+Inductive Rstar : (Relation U) :=
+ Rstar_0: (x: U) (Rstar x x)
+ | Rstar_n: (x, y, z: U) (R x y) -> (Rstar y z) -> (Rstar x z).
+
+Inductive Rstar1 : (Relation U) :=
+ Rstar1_0: (x: U) (Rstar1 x x)
+ | Rstar1_1: (x: U) (y: U) (R x y) -> (Rstar1 x y)
+ | Rstar1_n: (x, y, z: U) (Rstar1 x y) -> (Rstar1 y z) -> (Rstar1 x z).
+
+Inductive Rplus : (Relation U) :=
+ Rplus_0: (x, y: U) (R x y) -> (Rplus x y)
+ | Rplus_n: (x, y, z: U) (R x y) -> (Rplus y z) -> (Rplus x z).
+
+Definition Strongly_confluent : Prop :=
+ (x, a, b: U) (R x a) -> (R x b) -> (exT U [z: U] (R a z) /\ (R b z)).
+
+End Relations_2.
+
+Hints Resolve Rstar_0 : sets v62.
+Hints Resolve Rstar1_0 : sets v62.
+Hints Resolve Rstar1_1 : sets v62.
+Hints Resolve Rplus_0 : sets v62.