summaryrefslogtreecommitdiff
path: root/theories7/Sets/Relations_1_facts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Sets/Relations_1_facts.v')
-rwxr-xr-xtheories7/Sets/Relations_1_facts.v109
1 files changed, 109 insertions, 0 deletions
diff --git a/theories7/Sets/Relations_1_facts.v b/theories7/Sets/Relations_1_facts.v
new file mode 100755
index 00000000..cf73ce8b
--- /dev/null
+++ b/theories7/Sets/Relations_1_facts.v
@@ -0,0 +1,109 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(****************************************************************************)
+(* *)
+(* Naive Set Theory in Coq *)
+(* *)
+(* INRIA INRIA *)
+(* Rocquencourt Sophia-Antipolis *)
+(* *)
+(* Coq V6.1 *)
+(* *)
+(* Gilles Kahn *)
+(* Gerard Huet *)
+(* *)
+(* *)
+(* *)
+(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
+(* to the Newton Institute for providing an exceptional work environment *)
+(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
+(****************************************************************************)
+
+(*i $Id: Relations_1_facts.v,v 1.1.2.1 2004/07/16 19:31:40 herbelin Exp $ i*)
+
+Require Export Relations_1.
+
+Definition Complement : (U: Type) (Relation U) -> (Relation U) :=
+ [U: Type] [R: (Relation U)] [x,y: U] ~ (R x y).
+
+Theorem Rsym_imp_notRsym: (U: Type) (R: (Relation U)) (Symmetric U R) ->
+ (Symmetric U (Complement U R)).
+Proof.
+Unfold Symmetric Complement.
+Intros U R H' x y H'0; Red; Intro H'1; Apply H'0; Auto with sets.
+Qed.
+
+Theorem Equiv_from_preorder :
+ (U: Type) (R: (Relation U)) (Preorder U R) ->
+ (Equivalence U [x,y: U] (R x y) /\ (R y x)).
+Proof.
+Intros U R H'; Elim H'; Intros H'0 H'1.
+Apply Definition_of_equivalence.
+Red in H'0; Auto 10 with sets.
+2:Red; Intros x y h; Elim h; Intros H'3 H'4; Auto 10 with sets.
+Red in H'1; Red; Auto 10 with sets.
+Intros x y z h; Elim h; Intros H'3 H'4; Clear h.
+Intro h; Elim h; Intros H'5 H'6; Clear h.
+Split; Apply H'1 with y; Auto 10 with sets.
+Qed.
+Hints Resolve Equiv_from_preorder.
+
+Theorem Equiv_from_order :
+ (U: Type) (R: (Relation U)) (Order U R) ->
+ (Equivalence U [x,y: U] (R x y) /\ (R y x)).
+Proof.
+Intros U R H'; Elim H'; Auto 10 with sets.
+Qed.
+Hints Resolve Equiv_from_order.
+
+Theorem contains_is_preorder :
+ (U: Type) (Preorder (Relation U) (contains U)).
+Proof.
+Auto 10 with sets.
+Qed.
+Hints Resolve contains_is_preorder.
+
+Theorem same_relation_is_equivalence :
+ (U: Type) (Equivalence (Relation U) (same_relation U)).
+Proof.
+Unfold 1 same_relation; Auto 10 with sets.
+Qed.
+Hints Resolve same_relation_is_equivalence.
+
+Theorem cong_reflexive_same_relation:
+ (U:Type) (R, R':(Relation U)) (same_relation U R R') -> (Reflexive U R) ->
+ (Reflexive U R').
+Proof.
+Unfold same_relation; Intuition.
+Qed.
+
+Theorem cong_symmetric_same_relation:
+ (U:Type) (R, R':(Relation U)) (same_relation U R R') -> (Symmetric U R) ->
+ (Symmetric U R').
+Proof.
+ Compute;Intros;Elim H;Intros;Clear H;Apply (H3 y x (H0 x y (H2 x y H1))).
+(*Intuition.*)
+Qed.
+
+Theorem cong_antisymmetric_same_relation:
+ (U:Type) (R, R':(Relation U)) (same_relation U R R') ->
+ (Antisymmetric U R) -> (Antisymmetric U R').
+Proof.
+ Compute;Intros;Elim H;Intros;Clear H;Apply (H0 x y (H3 x y H1) (H3 y x H2)).
+(*Intuition.*)
+Qed.
+
+Theorem cong_transitive_same_relation:
+ (U:Type) (R, R':(Relation U)) (same_relation U R R') -> (Transitive U R) ->
+ (Transitive U R').
+Proof.
+Intros U R R' H' H'0; Red.
+Elim H'.
+Intros H'1 H'2 x y z H'3 H'4; Apply H'2.
+Apply H'0 with y; Auto with sets.
+Qed.