summaryrefslogtreecommitdiff
path: root/theories7/Sets/Powerset_facts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Sets/Powerset_facts.v')
-rwxr-xr-xtheories7/Sets/Powerset_facts.v276
1 files changed, 0 insertions, 276 deletions
diff --git a/theories7/Sets/Powerset_facts.v b/theories7/Sets/Powerset_facts.v
deleted file mode 100755
index fbe7d93e..00000000
--- a/theories7/Sets/Powerset_facts.v
+++ /dev/null
@@ -1,276 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(****************************************************************************)
-(* *)
-(* Naive Set Theory in Coq *)
-(* *)
-(* INRIA INRIA *)
-(* Rocquencourt Sophia-Antipolis *)
-(* *)
-(* Coq V6.1 *)
-(* *)
-(* Gilles Kahn *)
-(* Gerard Huet *)
-(* *)
-(* *)
-(* *)
-(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
-(* to the Newton Institute for providing an exceptional work environment *)
-(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
-(****************************************************************************)
-
-(*i $Id: Powerset_facts.v,v 1.1.2.1 2004/07/16 19:31:39 herbelin Exp $ i*)
-
-Require Export Ensembles.
-Require Export Constructive_sets.
-Require Export Relations_1.
-Require Export Relations_1_facts.
-Require Export Partial_Order.
-Require Export Cpo.
-Require Export Powerset.
-
-Section Sets_as_an_algebra.
-Variable U: Type.
-Hints Unfold not.
-
-Theorem Empty_set_zero :
- (X: (Ensemble U)) (Union U (Empty_set U) X) == X.
-Proof.
-Auto 6 with sets.
-Qed.
-Hints Resolve Empty_set_zero.
-
-Theorem Empty_set_zero' :
- (x: U) (Add U (Empty_set U) x) == (Singleton U x).
-Proof.
-Unfold 1 Add; Auto with sets.
-Qed.
-Hints Resolve Empty_set_zero'.
-
-Lemma less_than_empty :
- (X: (Ensemble U)) (Included U X (Empty_set U)) -> X == (Empty_set U).
-Proof.
-Auto with sets.
-Qed.
-Hints Resolve less_than_empty.
-
-Theorem Union_commutative :
- (A,B: (Ensemble U)) (Union U A B) == (Union U B A).
-Proof.
-Auto with sets.
-Qed.
-
-Theorem Union_associative :
- (A, B, C: (Ensemble U))
- (Union U (Union U A B) C) == (Union U A (Union U B C)).
-Proof.
-Auto 9 with sets.
-Qed.
-Hints Resolve Union_associative.
-
-Theorem Union_idempotent : (A: (Ensemble U)) (Union U A A) == A.
-Proof.
-Auto 7 with sets.
-Qed.
-
-Lemma Union_absorbs :
- (A, B: (Ensemble U)) (Included U B A) -> (Union U A B) == A.
-Proof.
-Auto 7 with sets.
-Qed.
-
-Theorem Couple_as_union:
- (x, y: U) (Union U (Singleton U x) (Singleton U y)) == (Couple U x y).
-Proof.
-Intros x y; Apply Extensionality_Ensembles; Split; Red.
-Intros x0 H'; Elim H'; (Intros x1 H'0; Elim H'0; Auto with sets).
-Intros x0 H'; Elim H'; Auto with sets.
-Qed.
-
-Theorem Triple_as_union :
- (x, y, z: U)
- (Union U (Union U (Singleton U x) (Singleton U y)) (Singleton U z)) ==
- (Triple U x y z).
-Proof.
-Intros x y z; Apply Extensionality_Ensembles; Split; Red.
-Intros x0 H'; Elim H'.
-Intros x1 H'0; Elim H'0; (Intros x2 H'1; Elim H'1; Auto with sets).
-Intros x1 H'0; Elim H'0; Auto with sets.
-Intros x0 H'; Elim H'; Auto with sets.
-Qed.
-
-Theorem Triple_as_Couple : (x, y: U) (Couple U x y) == (Triple U x x y).
-Proof.
-Intros x y.
-Rewrite <- (Couple_as_union x y).
-Rewrite <- (Union_idempotent (Singleton U x)).
-Apply Triple_as_union.
-Qed.
-
-Theorem Triple_as_Couple_Singleton :
- (x, y, z: U) (Triple U x y z) == (Union U (Couple U x y) (Singleton U z)).
-Proof.
-Intros x y z.
-Rewrite <- (Triple_as_union x y z).
-Rewrite <- (Couple_as_union x y); Auto with sets.
-Qed.
-
-Theorem Intersection_commutative :
- (A,B: (Ensemble U)) (Intersection U A B) == (Intersection U B A).
-Proof.
-Intros A B.
-Apply Extensionality_Ensembles.
-Split; Red; Intros x H'; Elim H'; Auto with sets.
-Qed.
-
-Theorem Distributivity :
- (A, B, C: (Ensemble U))
- (Intersection U A (Union U B C)) ==
- (Union U (Intersection U A B) (Intersection U A C)).
-Proof.
-Intros A B C.
-Apply Extensionality_Ensembles.
-Split; Red; Intros x H'.
-Elim H'.
-Intros x0 H'0 H'1; Generalize H'0.
-Elim H'1; Auto with sets.
-Elim H'; Intros x0 H'0; Elim H'0; Auto with sets.
-Qed.
-
-Theorem Distributivity' :
- (A, B, C: (Ensemble U))
- (Union U A (Intersection U B C)) ==
- (Intersection U (Union U A B) (Union U A C)).
-Proof.
-Intros A B C.
-Apply Extensionality_Ensembles.
-Split; Red; Intros x H'.
-Elim H'; Auto with sets.
-Intros x0 H'0; Elim H'0; Auto with sets.
-Elim H'.
-Intros x0 H'0; Elim H'0; Auto with sets.
-Intros x1 H'1 H'2; Try Exact H'2.
-Generalize H'1.
-Elim H'2; Auto with sets.
-Qed.
-
-Theorem Union_add :
- (A, B: (Ensemble U)) (x: U)
- (Add U (Union U A B) x) == (Union U A (Add U B x)).
-Proof.
-Unfold Add; Auto with sets.
-Qed.
-Hints Resolve Union_add.
-
-Theorem Non_disjoint_union :
- (X: (Ensemble U)) (x: U) (In U X x) -> (Add U X x) == X.
-Intros X x H'; Unfold Add.
-Apply Extensionality_Ensembles; Red.
-Split; Red; Auto with sets.
-Intros x0 H'0; Elim H'0; Auto with sets.
-Intros t H'1; Elim H'1; Auto with sets.
-Qed.
-
-Theorem Non_disjoint_union' :
- (X: (Ensemble U)) (x: U) ~ (In U X x) -> (Subtract U X x) == X.
-Proof.
-Intros X x H'; Unfold Subtract.
-Apply Extensionality_Ensembles.
-Split; Red; Auto with sets.
-Intros x0 H'0; Elim H'0; Auto with sets.
-Intros x0 H'0; Apply Setminus_intro; Auto with sets.
-Red; Intro H'1; Elim H'1.
-LApply (Singleton_inv U x x0); Auto with sets.
-Intro H'4; Apply H'; Rewrite H'4; Auto with sets.
-Qed.
-
-Lemma singlx : (x, y: U) (In U (Add U (Empty_set U) x) y) -> x == y.
-Proof.
-Intro x; Rewrite (Empty_set_zero' x); Auto with sets.
-Qed.
-Hints Resolve singlx.
-
-Lemma incl_add :
- (A, B: (Ensemble U)) (x: U) (Included U A B) ->
- (Included U (Add U A x) (Add U B x)).
-Proof.
-Intros A B x H'; Red; Auto with sets.
-Intros x0 H'0.
-LApply (Add_inv U A x x0); Auto with sets.
-Intro H'1; Elim H'1;
- [Intro H'2; Clear H'1 | Intro H'2; Rewrite <- H'2; Clear H'1]; Auto with sets.
-Qed.
-Hints Resolve incl_add.
-
-Lemma incl_add_x :
- (A, B: (Ensemble U))
- (x: U) ~ (In U A x) -> (Included U (Add U A x) (Add U B x)) ->
- (Included U A B).
-Proof.
-Unfold Included.
-Intros A B x H' H'0 x0 H'1.
-LApply (H'0 x0); Auto with sets.
-Intro H'2; LApply (Add_inv U B x x0); Auto with sets.
-Intro H'3; Elim H'3;
- [Intro H'4; Try Exact H'4; Clear H'3 | Intro H'4; Clear H'3].
-Absurd (In U A x0); Auto with sets.
-Rewrite <- H'4; Auto with sets.
-Qed.
-
-Lemma Add_commutative :
- (A: (Ensemble U)) (x, y: U) (Add U (Add U A x) y) == (Add U (Add U A y) x).
-Proof.
-Intros A x y.
-Unfold Add.
-Rewrite (Union_associative A (Singleton U x) (Singleton U y)).
-Rewrite (Union_commutative (Singleton U x) (Singleton U y)).
-Rewrite <- (Union_associative A (Singleton U y) (Singleton U x)); Auto with sets.
-Qed.
-
-Lemma Add_commutative' :
- (A: (Ensemble U)) (x, y, z: U)
- (Add U (Add U (Add U A x) y) z) == (Add U (Add U (Add U A z) x) y).
-Proof.
-Intros A x y z.
-Rewrite (Add_commutative (Add U A x) y z).
-Rewrite (Add_commutative A x z); Auto with sets.
-Qed.
-
-Lemma Add_distributes :
- (A, B: (Ensemble U)) (x, y: U) (Included U B A) ->
- (Add U (Add U A x) y) == (Union U (Add U A x) (Add U B y)).
-Proof.
-Intros A B x y H'; Try Assumption.
-Rewrite <- (Union_add (Add U A x) B y).
-Unfold 4 Add.
-Rewrite (Union_commutative A (Singleton U x)).
-Rewrite Union_associative.
-Rewrite (Union_absorbs A B H').
-Rewrite (Union_commutative (Singleton U x) A).
-Auto with sets.
-Qed.
-
-Lemma setcover_intro :
- (U: Type)
- (A: (Ensemble U))
- (x, y: (Ensemble U))
- (Strict_Included U x y) ->
- ~ (EXT z | (Strict_Included U x z)
- /\ (Strict_Included U z y)) ->
- (covers (Ensemble U) (Power_set_PO U A) y x).
-Proof.
-Intros; Apply Definition_of_covers; Auto with sets.
-Qed.
-Hints Resolve setcover_intro.
-
-End Sets_as_an_algebra.
-
-Hints Resolve Empty_set_zero Empty_set_zero' Union_associative Union_add
- singlx incl_add : sets v62.
-
-