summaryrefslogtreecommitdiff
path: root/theories7/Sets/Powerset_Classical_facts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Sets/Powerset_Classical_facts.v')
-rwxr-xr-xtheories7/Sets/Powerset_Classical_facts.v338
1 files changed, 0 insertions, 338 deletions
diff --git a/theories7/Sets/Powerset_Classical_facts.v b/theories7/Sets/Powerset_Classical_facts.v
deleted file mode 100755
index 1a51c562..00000000
--- a/theories7/Sets/Powerset_Classical_facts.v
+++ /dev/null
@@ -1,338 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(****************************************************************************)
-(* *)
-(* Naive Set Theory in Coq *)
-(* *)
-(* INRIA INRIA *)
-(* Rocquencourt Sophia-Antipolis *)
-(* *)
-(* Coq V6.1 *)
-(* *)
-(* Gilles Kahn *)
-(* Gerard Huet *)
-(* *)
-(* *)
-(* *)
-(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
-(* to the Newton Institute for providing an exceptional work environment *)
-(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
-(****************************************************************************)
-
-(*i $Id: Powerset_Classical_facts.v,v 1.1.2.1 2004/07/16 19:31:39 herbelin Exp $ i*)
-
-Require Export Ensembles.
-Require Export Constructive_sets.
-Require Export Relations_1.
-Require Export Relations_1_facts.
-Require Export Partial_Order.
-Require Export Cpo.
-Require Export Powerset.
-Require Export Powerset_facts.
-Require Export Classical_Type.
-Require Export Classical_sets.
-
-Section Sets_as_an_algebra.
-
-Variable U: Type.
-
-Lemma sincl_add_x:
- (A, B: (Ensemble U))
- (x: U) ~ (In U A x) -> (Strict_Included U (Add U A x) (Add U B x)) ->
- (Strict_Included U A B).
-Proof.
-Intros A B x H' H'0; Red.
-LApply (Strict_Included_inv U (Add U A x) (Add U B x)); Auto with sets.
-Clear H'0; Intro H'0; Split.
-Apply incl_add_x with x := x; Tauto.
-Elim H'0; Intros H'1 H'2; Elim H'2; Clear H'0 H'2.
-Intros x0 H'0.
-Red; Intro H'2.
-Elim H'0; Clear H'0.
-Rewrite <- H'2; Auto with sets.
-Qed.
-
-Lemma incl_soustr_in:
- (X: (Ensemble U)) (x: U) (In U X x) -> (Included U (Subtract U X x) X).
-Proof.
-Intros X x H'; Red.
-Intros x0 H'0; Elim H'0; Auto with sets.
-Qed.
-Hints Resolve incl_soustr_in : sets v62.
-
-Lemma incl_soustr:
- (X, Y: (Ensemble U)) (x: U) (Included U X Y) ->
- (Included U (Subtract U X x) (Subtract U Y x)).
-Proof.
-Intros X Y x H'; Red.
-Intros x0 H'0; Elim H'0.
-Intros H'1 H'2.
-Apply Subtract_intro; Auto with sets.
-Qed.
-Hints Resolve incl_soustr : sets v62.
-
-
-Lemma incl_soustr_add_l:
- (X: (Ensemble U)) (x: U) (Included U (Subtract U (Add U X x) x) X).
-Proof.
-Intros X x; Red.
-Intros x0 H'; Elim H'; Auto with sets.
-Intro H'0; Elim H'0; Auto with sets.
-Intros t H'1 H'2; Elim H'2; Auto with sets.
-Qed.
-Hints Resolve incl_soustr_add_l : sets v62.
-
-Lemma incl_soustr_add_r:
- (X: (Ensemble U)) (x: U) ~ (In U X x) ->
- (Included U X (Subtract U (Add U X x) x)).
-Proof.
-Intros X x H'; Red.
-Intros x0 H'0; Try Assumption.
-Apply Subtract_intro; Auto with sets.
-Red; Intro H'1; Apply H'; Rewrite H'1; Auto with sets.
-Qed.
-Hints Resolve incl_soustr_add_r : sets v62.
-
-Lemma add_soustr_2:
- (X: (Ensemble U)) (x: U) (In U X x) ->
- (Included U X (Add U (Subtract U X x) x)).
-Proof.
-Intros X x H'; Red.
-Intros x0 H'0; Try Assumption.
-Elim (classic x == x0); Intro K; Auto with sets.
-Elim K; Auto with sets.
-Qed.
-
-Lemma add_soustr_1:
- (X: (Ensemble U)) (x: U) (In U X x) ->
- (Included U (Add U (Subtract U X x) x) X).
-Proof.
-Intros X x H'; Red.
-Intros x0 H'0; Elim H'0; Auto with sets.
-Intros y H'1; Elim H'1; Auto with sets.
-Intros t H'1; Try Assumption.
-Rewrite <- (Singleton_inv U x t); Auto with sets.
-Qed.
-Hints Resolve add_soustr_1 add_soustr_2 : sets v62.
-
-Lemma add_soustr_xy:
- (X: (Ensemble U)) (x, y: U) ~ x == y ->
- (Subtract U (Add U X x) y) == (Add U (Subtract U X y) x).
-Proof.
-Intros X x y H'; Apply Extensionality_Ensembles.
-Split; Red.
-Intros x0 H'0; Elim H'0; Auto with sets.
-Intro H'1; Elim H'1.
-Intros u H'2 H'3; Try Assumption.
-Apply Add_intro1.
-Apply Subtract_intro; Auto with sets.
-Intros t H'2 H'3; Try Assumption.
-Elim (Singleton_inv U x t); Auto with sets.
-Intros u H'2; Try Assumption.
-Elim (Add_inv U (Subtract U X y) x u); Auto with sets.
-Intro H'0; Elim H'0; Auto with sets.
-Intro H'0; Rewrite <- H'0; Auto with sets.
-Qed.
-Hints Resolve add_soustr_xy : sets v62.
-
-Lemma incl_st_add_soustr:
- (X, Y: (Ensemble U)) (x: U) ~ (In U X x) ->
- (Strict_Included U (Add U X x) Y) ->
- (Strict_Included U X (Subtract U Y x)).
-Proof.
-Intros X Y x H' H'0; Apply sincl_add_x with x := x; Auto with sets.
-Split.
-Elim H'0.
-Intros H'1 H'2.
-Generalize (Inclusion_is_transitive U).
-Intro H'4; Red in H'4.
-Apply H'4 with y := Y; Auto with sets.
-Red in H'0.
-Elim H'0; Intros H'1 H'2; Try Exact H'1; Clear H'0. (* PB *)
-Red; Intro H'0; Apply H'2.
-Rewrite H'0; Auto 8 with sets.
-Qed.
-
-Lemma Sub_Add_new:
- (X: (Ensemble U)) (x: U) ~ (In U X x) -> X == (Subtract U (Add U X x) x).
-Proof.
-Auto with sets.
-Qed.
-
-Lemma Simplify_add:
- (X, X0 : (Ensemble U)) (x: U)
- ~ (In U X x) -> ~ (In U X0 x) -> (Add U X x) == (Add U X0 x) -> X == X0.
-Proof.
-Intros X X0 x H' H'0 H'1; Try Assumption.
-Rewrite (Sub_Add_new X x); Auto with sets.
-Rewrite (Sub_Add_new X0 x); Auto with sets.
-Rewrite H'1; Auto with sets.
-Qed.
-
-Lemma Included_Add:
- (X, A: (Ensemble U)) (x: U) (Included U X (Add U A x)) ->
- (Included U X A) \/
- (EXT A' | X == (Add U A' x) /\ (Included U A' A)).
-Proof.
-Intros X A x H'0; Try Assumption.
-Elim (classic (In U X x)).
-Intro H'1; Right; Try Assumption.
-Exists (Subtract U X x).
-Split; Auto with sets.
-Red in H'0.
-Red.
-Intros x0 H'2; Try Assumption.
-LApply (Subtract_inv U X x x0); Auto with sets.
-Intro H'3; Elim H'3; Intros K K'; Clear H'3.
-LApply (H'0 x0); Auto with sets.
-Intro H'3; Try Assumption.
-LApply (Add_inv U A x x0); Auto with sets.
-Intro H'4; Elim H'4;
- [Intro H'5; Try Exact H'5; Clear H'4 | Intro H'5; Clear H'4].
-Elim K'; Auto with sets.
-Intro H'1; Left; Try Assumption.
-Red in H'0.
-Red.
-Intros x0 H'2; Try Assumption.
-LApply (H'0 x0); Auto with sets.
-Intro H'3; Try Assumption.
-LApply (Add_inv U A x x0); Auto with sets.
-Intro H'4; Elim H'4;
- [Intro H'5; Try Exact H'5; Clear H'4 | Intro H'5; Clear H'4].
-Absurd (In U X x0); Auto with sets.
-Rewrite <- H'5; Auto with sets.
-Qed.
-
-Lemma setcover_inv:
- (A: (Ensemble U))
- (x, y: (Ensemble U)) (covers (Ensemble U) (Power_set_PO U A) y x) ->
- (Strict_Included U x y) /\
- ((z: (Ensemble U)) (Included U x z) -> (Included U z y) -> x == z \/ z == y).
-Proof.
-Intros A x y H'; Elim H'.
-Unfold Strict_Rel_of; Simpl.
-Intros H'0 H'1; Split; [Auto with sets | Idtac].
-Intros z H'2 H'3; Try Assumption.
-Elim (classic x == z); Auto with sets.
-Intro H'4; Right; Try Assumption.
-Elim (classic z == y); Auto with sets.
-Intro H'5; Try Assumption.
-Elim H'1.
-Exists z; Auto with sets.
-Qed.
-
-Theorem Add_covers:
- (A: (Ensemble U)) (a: (Ensemble U)) (Included U a A) ->
- (x: U) (In U A x) -> ~ (In U a x) ->
- (covers (Ensemble U) (Power_set_PO U A) (Add U a x) a).
-Proof.
-Intros A a H' x H'0 H'1; Try Assumption.
-Apply setcover_intro; Auto with sets.
-Red.
-Split; [Idtac | Red; Intro H'2; Try Exact H'2]; Auto with sets.
-Apply H'1.
-Rewrite H'2; Auto with sets.
-Red; Intro H'2; Elim H'2; Clear H'2.
-Intros z H'2; Elim H'2; Intros H'3 H'4; Try Exact H'3; Clear H'2.
-LApply (Strict_Included_inv U a z); Auto with sets; Clear H'3.
-Intro H'2; Elim H'2; Intros H'3 H'5; Elim H'5; Clear H'2 H'5.
-Intros x0 H'2; Elim H'2.
-Intros H'5 H'6; Try Assumption.
-Generalize H'4; Intro K.
-Red in H'4.
-Elim H'4; Intros H'8 H'9; Red in H'8; Clear H'4.
-LApply (H'8 x0); Auto with sets.
-Intro H'7; Try Assumption.
-Elim (Add_inv U a x x0); Auto with sets.
-Intro H'15.
-Cut (Included U (Add U a x) z).
-Intro H'10; Try Assumption.
-Red in K.
-Elim K; Intros H'11 H'12; Apply H'12; Clear K; Auto with sets.
-Rewrite H'15.
-Red.
-Intros x1 H'10; Elim H'10; Auto with sets.
-Intros x2 H'11; Elim H'11; Auto with sets.
-Qed.
-
-Theorem covers_Add:
- (A: (Ensemble U))
- (a, a': (Ensemble U))
- (Included U a A) ->
- (Included U a' A) -> (covers (Ensemble U) (Power_set_PO U A) a' a) ->
- (EXT x | a' == (Add U a x) /\ ((In U A x) /\ ~ (In U a x))).
-Proof.
-Intros A a a' H' H'0 H'1; Try Assumption.
-Elim (setcover_inv A a a'); Auto with sets.
-Intros H'6 H'7.
-Clear H'1.
-Elim (Strict_Included_inv U a a'); Auto with sets.
-Intros H'5 H'8; Elim H'8.
-Intros x H'1; Elim H'1.
-Intros H'2 H'3; Try Assumption.
-Exists x.
-Split; [Try Assumption | Idtac].
-Clear H'8 H'1.
-Elim (H'7 (Add U a x)); Auto with sets.
-Intro H'1.
-Absurd a ==(Add U a x); Auto with sets.
-Red; Intro H'8; Try Exact H'8.
-Apply H'3.
-Rewrite H'8; Auto with sets.
-Auto with sets.
-Red.
-Intros x0 H'1; Elim H'1; Auto with sets.
-Intros x1 H'8; Elim H'8; Auto with sets.
-Split; [Idtac | Try Assumption].
-Red in H'0; Auto with sets.
-Qed.
-
-Theorem covers_is_Add:
- (A: (Ensemble U))
- (a, a': (Ensemble U)) (Included U a A) -> (Included U a' A) ->
- (iff
- (covers (Ensemble U) (Power_set_PO U A) a' a)
- (EXT x | a' == (Add U a x) /\ ((In U A x) /\ ~ (In U a x)))).
-Proof.
-Intros A a a' H' H'0; Split; Intro K.
-Apply covers_Add with A := A; Auto with sets.
-Elim K.
-Intros x H'1; Elim H'1; Intros H'2 H'3; Rewrite H'2; Clear H'1.
-Apply Add_covers; Intuition.
-Qed.
-
-Theorem Singleton_atomic:
- (x:U) (A:(Ensemble U)) (In U A x) ->
- (covers (Ensemble U) (Power_set_PO U A) (Singleton U x) (Empty_set U)).
-Intros x A H'.
-Rewrite <- (Empty_set_zero' U x).
-Apply Add_covers; Auto with sets.
-Qed.
-
-Lemma less_than_singleton:
- (X:(Ensemble U)) (x:U) (Strict_Included U X (Singleton U x)) ->
- X ==(Empty_set U).
-Intros X x H'; Try Assumption.
-Red in H'.
-LApply (Singleton_atomic x (Full_set U));
- [Intro H'2; Try Exact H'2 | Apply Full_intro].
-Elim H'; Intros H'0 H'1; Try Exact H'1; Clear H'.
-Elim (setcover_inv (Full_set U) (Empty_set U) (Singleton U x));
- [Intros H'6 H'7; Try Exact H'7 | Idtac]; Auto with sets.
-Elim (H'7 X); [Intro H'5; Try Exact H'5 | Intro H'5 | Idtac | Idtac]; Auto with sets.
-Elim H'1; Auto with sets.
-Qed.
-
-End Sets_as_an_algebra.
-
-Hints Resolve incl_soustr_in : sets v62.
-Hints Resolve incl_soustr : sets v62.
-Hints Resolve incl_soustr_add_l : sets v62.
-Hints Resolve incl_soustr_add_r : sets v62.
-Hints Resolve add_soustr_1 add_soustr_2 : sets v62.
-Hints Resolve add_soustr_xy : sets v62.