summaryrefslogtreecommitdiff
path: root/theories7/Sets/Powerset.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Sets/Powerset.v')
-rwxr-xr-xtheories7/Sets/Powerset.v188
1 files changed, 0 insertions, 188 deletions
diff --git a/theories7/Sets/Powerset.v b/theories7/Sets/Powerset.v
deleted file mode 100755
index b1fa892c..00000000
--- a/theories7/Sets/Powerset.v
+++ /dev/null
@@ -1,188 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(****************************************************************************)
-(* *)
-(* Naive Set Theory in Coq *)
-(* *)
-(* INRIA INRIA *)
-(* Rocquencourt Sophia-Antipolis *)
-(* *)
-(* Coq V6.1 *)
-(* *)
-(* Gilles Kahn *)
-(* Gerard Huet *)
-(* *)
-(* *)
-(* *)
-(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
-(* to the Newton Institute for providing an exceptional work environment *)
-(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
-(****************************************************************************)
-
-(*i $Id: Powerset.v,v 1.1.2.1 2004/07/16 19:31:39 herbelin Exp $ i*)
-
-Require Export Ensembles.
-Require Export Relations_1.
-Require Export Relations_1_facts.
-Require Export Partial_Order.
-Require Export Cpo.
-
-Section The_power_set_partial_order.
-Variable U: Type.
-
-Inductive Power_set [A:(Ensemble U)]: (Ensemble (Ensemble U)) :=
- Definition_of_Power_set:
- (X: (Ensemble U)) (Included U X A) -> (In (Ensemble U) (Power_set A) X).
-Hints Resolve Definition_of_Power_set.
-
-Theorem Empty_set_minimal: (X: (Ensemble U)) (Included U (Empty_set U) X).
-Intro X; Red.
-Intros x H'; Elim H'.
-Qed.
-Hints Resolve Empty_set_minimal.
-
-Theorem Power_set_Inhabited:
- (X: (Ensemble U)) (Inhabited (Ensemble U) (Power_set X)).
-Intro X.
-Apply Inhabited_intro with (Empty_set U); Auto with sets.
-Qed.
-Hints Resolve Power_set_Inhabited.
-
-Theorem Inclusion_is_an_order: (Order (Ensemble U) (Included U)).
-Auto 6 with sets.
-Qed.
-Hints Resolve Inclusion_is_an_order.
-
-Theorem Inclusion_is_transitive: (Transitive (Ensemble U) (Included U)).
-Elim Inclusion_is_an_order; Auto with sets.
-Qed.
-Hints Resolve Inclusion_is_transitive.
-
-Definition Power_set_PO: (Ensemble U) -> (PO (Ensemble U)).
-Intro A; Try Assumption.
-Apply Definition_of_PO with (Power_set A) (Included U); Auto with sets.
-Defined.
-Hints Unfold Power_set_PO.
-
-Theorem Strict_Rel_is_Strict_Included:
- (same_relation
- (Ensemble U) (Strict_Included U)
- (Strict_Rel_of (Ensemble U) (Power_set_PO (Full_set U)))).
-Auto with sets.
-Qed.
-Hints Resolve Strict_Rel_Transitive Strict_Rel_is_Strict_Included.
-
-Lemma Strict_inclusion_is_transitive_with_inclusion:
- (x, y, z:(Ensemble U)) (Strict_Included U x y) -> (Included U y z) ->
- (Strict_Included U x z).
-Intros x y z H' H'0; Try Assumption.
-Elim Strict_Rel_is_Strict_Included.
-Unfold contains.
-Intros H'1 H'2; Try Assumption.
-Apply H'1.
-Apply Strict_Rel_Transitive_with_Rel with y := y; Auto with sets.
-Qed.
-
-Lemma Strict_inclusion_is_transitive_with_inclusion_left:
- (x, y, z:(Ensemble U)) (Included U x y) -> (Strict_Included U y z) ->
- (Strict_Included U x z).
-Intros x y z H' H'0; Try Assumption.
-Elim Strict_Rel_is_Strict_Included.
-Unfold contains.
-Intros H'1 H'2; Try Assumption.
-Apply H'1.
-Apply Strict_Rel_Transitive_with_Rel_left with y := y; Auto with sets.
-Qed.
-
-Lemma Strict_inclusion_is_transitive:
- (Transitive (Ensemble U) (Strict_Included U)).
-Apply cong_transitive_same_relation
- with R := (Strict_Rel_of (Ensemble U) (Power_set_PO (Full_set U))); Auto with sets.
-Qed.
-
-Theorem Empty_set_is_Bottom:
- (A: (Ensemble U)) (Bottom (Ensemble U) (Power_set_PO A) (Empty_set U)).
-Intro A; Apply Bottom_definition; Simpl; Auto with sets.
-Qed.
-Hints Resolve Empty_set_is_Bottom.
-
-Theorem Union_minimal:
- (a, b, X: (Ensemble U)) (Included U a X) -> (Included U b X) ->
- (Included U (Union U a b) X).
-Intros a b X H' H'0; Red.
-Intros x H'1; Elim H'1; Auto with sets.
-Qed.
-Hints Resolve Union_minimal.
-
-Theorem Intersection_maximal:
- (a, b, X: (Ensemble U)) (Included U X a) -> (Included U X b) ->
- (Included U X (Intersection U a b)).
-Auto with sets.
-Qed.
-
-Theorem Union_increases_l: (a, b: (Ensemble U)) (Included U a (Union U a b)).
-Auto with sets.
-Qed.
-
-Theorem Union_increases_r: (a, b: (Ensemble U)) (Included U b (Union U a b)).
-Auto with sets.
-Qed.
-
-Theorem Intersection_decreases_l:
- (a, b: (Ensemble U)) (Included U (Intersection U a b) a).
-Intros a b; Red.
-Intros x H'; Elim H'; Auto with sets.
-Qed.
-
-Theorem Intersection_decreases_r:
- (a, b: (Ensemble U)) (Included U (Intersection U a b) b).
-Intros a b; Red.
-Intros x H'; Elim H'; Auto with sets.
-Qed.
-Hints Resolve Union_increases_l Union_increases_r Intersection_decreases_l
- Intersection_decreases_r.
-
-Theorem Union_is_Lub:
- (A: (Ensemble U)) (a, b: (Ensemble U)) (Included U a A) -> (Included U b A) ->
- (Lub (Ensemble U) (Power_set_PO A) (Couple (Ensemble U) a b) (Union U a b)).
-Intros A a b H' H'0.
-Apply Lub_definition; Simpl.
-Apply Upper_Bound_definition; Simpl; Auto with sets.
-Intros y H'1; Elim H'1; Auto with sets.
-Intros y H'1; Elim H'1; Simpl; Auto with sets.
-Qed.
-
-Theorem Intersection_is_Glb:
- (A: (Ensemble U)) (a, b: (Ensemble U)) (Included U a A) -> (Included U b A) ->
- (Glb
- (Ensemble U)
- (Power_set_PO A)
- (Couple (Ensemble U) a b)
- (Intersection U a b)).
-Intros A a b H' H'0.
-Apply Glb_definition; Simpl.
-Apply Lower_Bound_definition; Simpl; Auto with sets.
-Apply Definition_of_Power_set.
-Generalize Inclusion_is_transitive; Intro IT; Red in IT; Apply IT with a; Auto with sets.
-Intros y H'1; Elim H'1; Auto with sets.
-Intros y H'1; Elim H'1; Simpl; Auto with sets.
-Qed.
-
-End The_power_set_partial_order.
-
-Hints Resolve Empty_set_minimal : sets v62.
-Hints Resolve Power_set_Inhabited : sets v62.
-Hints Resolve Inclusion_is_an_order : sets v62.
-Hints Resolve Inclusion_is_transitive : sets v62.
-Hints Resolve Union_minimal : sets v62.
-Hints Resolve Union_increases_l : sets v62.
-Hints Resolve Union_increases_r : sets v62.
-Hints Resolve Intersection_decreases_l : sets v62.
-Hints Resolve Intersection_decreases_r : sets v62.
-Hints Resolve Empty_set_is_Bottom : sets v62.
-Hints Resolve Strict_inclusion_is_transitive : sets v62.