summaryrefslogtreecommitdiff
path: root/theories7/Sets/Multiset.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Sets/Multiset.v')
-rwxr-xr-xtheories7/Sets/Multiset.v186
1 files changed, 186 insertions, 0 deletions
diff --git a/theories7/Sets/Multiset.v b/theories7/Sets/Multiset.v
new file mode 100755
index 00000000..b5d5edf7
--- /dev/null
+++ b/theories7/Sets/Multiset.v
@@ -0,0 +1,186 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Multiset.v,v 1.1.2.1 2004/07/16 19:31:39 herbelin Exp $ i*)
+
+(* G. Huet 1-9-95 *)
+
+Require Permut.
+
+Set Implicit Arguments.
+
+Section multiset_defs.
+
+Variable A : Set.
+Variable eqA : A -> A -> Prop.
+Hypothesis Aeq_dec : (x,y:A){(eqA x y)}+{~(eqA x y)}.
+
+Inductive multiset : Set :=
+ Bag : (A->nat) -> multiset.
+
+Definition EmptyBag := (Bag [a:A]O).
+Definition SingletonBag := [a:A]
+ (Bag [a':A]Cases (Aeq_dec a a') of
+ (left _) => (S O)
+ | (right _) => O
+ end
+ ).
+
+Definition multiplicity : multiset -> A -> nat :=
+ [m:multiset][a:A]let (f) = m in (f a).
+
+(** multiset equality *)
+Definition meq := [m1,m2:multiset]
+ (a:A)(multiplicity m1 a)=(multiplicity m2 a).
+
+Hints Unfold meq multiplicity.
+
+Lemma meq_refl : (x:multiset)(meq x x).
+Proof.
+NewDestruct x; Auto.
+Qed.
+Hints Resolve meq_refl.
+
+Lemma meq_trans : (x,y,z:multiset)(meq x y)->(meq y z)->(meq x z).
+Proof.
+Unfold meq.
+NewDestruct x; NewDestruct y; NewDestruct z.
+Intros; Rewrite H; Auto.
+Qed.
+
+Lemma meq_sym : (x,y:multiset)(meq x y)->(meq y x).
+Proof.
+Unfold meq.
+NewDestruct x; NewDestruct y; Auto.
+Qed.
+Hints Immediate meq_sym.
+
+(** multiset union *)
+Definition munion := [m1,m2:multiset]
+ (Bag [a:A](plus (multiplicity m1 a)(multiplicity m2 a))).
+
+Lemma munion_empty_left :
+ (x:multiset)(meq x (munion EmptyBag x)).
+Proof.
+Unfold meq; Unfold munion; Simpl; Auto.
+Qed.
+Hints Resolve munion_empty_left.
+
+Lemma munion_empty_right :
+ (x:multiset)(meq x (munion x EmptyBag)).
+Proof.
+Unfold meq; Unfold munion; Simpl; Auto.
+Qed.
+
+
+Require Plus. (* comm. and ass. of plus *)
+
+Lemma munion_comm : (x,y:multiset)(meq (munion x y) (munion y x)).
+Proof.
+Unfold meq; Unfold multiplicity; Unfold munion.
+NewDestruct x; NewDestruct y; Auto with arith.
+Qed.
+Hints Resolve munion_comm.
+
+Lemma munion_ass :
+ (x,y,z:multiset)(meq (munion (munion x y) z) (munion x (munion y z))).
+Proof.
+Unfold meq; Unfold munion; Unfold multiplicity.
+NewDestruct x; NewDestruct y; NewDestruct z; Auto with arith.
+Qed.
+Hints Resolve munion_ass.
+
+Lemma meq_left : (x,y,z:multiset)(meq x y)->(meq (munion x z) (munion y z)).
+Proof.
+Unfold meq; Unfold munion; Unfold multiplicity.
+NewDestruct x; NewDestruct y; NewDestruct z.
+Intros; Elim H; Auto with arith.
+Qed.
+Hints Resolve meq_left.
+
+Lemma meq_right : (x,y,z:multiset)(meq x y)->(meq (munion z x) (munion z y)).
+Proof.
+Unfold meq; Unfold munion; Unfold multiplicity.
+NewDestruct x; NewDestruct y; NewDestruct z.
+Intros; Elim H; Auto.
+Qed.
+Hints Resolve meq_right.
+
+
+(** Here we should make multiset an abstract datatype, by hiding [Bag],
+ [munion], [multiplicity]; all further properties are proved abstractly *)
+
+Lemma munion_rotate :
+ (x,y,z:multiset)(meq (munion x (munion y z)) (munion z (munion x y))).
+Proof.
+Intros; Apply (op_rotate multiset munion meq); Auto.
+Exact meq_trans.
+Qed.
+
+Lemma meq_congr : (x,y,z,t:multiset)(meq x y)->(meq z t)->
+ (meq (munion x z) (munion y t)).
+Proof.
+Intros; Apply (cong_congr multiset munion meq); Auto.
+Exact meq_trans.
+Qed.
+
+Lemma munion_perm_left :
+ (x,y,z:multiset)(meq (munion x (munion y z)) (munion y (munion x z))).
+Proof.
+Intros; Apply (perm_left multiset munion meq); Auto.
+Exact meq_trans.
+Qed.
+
+Lemma multiset_twist1 : (x,y,z,t:multiset)
+ (meq (munion x (munion (munion y z) t)) (munion (munion y (munion x t)) z)).
+Proof.
+Intros; Apply (twist multiset munion meq); Auto.
+Exact meq_trans.
+Qed.
+
+Lemma multiset_twist2 : (x,y,z,t:multiset)
+ (meq (munion x (munion (munion y z) t)) (munion (munion y (munion x z)) t)).
+Proof.
+Intros; Apply meq_trans with (munion (munion x (munion y z)) t).
+Apply meq_sym; Apply munion_ass.
+Apply meq_left; Apply munion_perm_left.
+Qed.
+
+(** specific for treesort *)
+
+Lemma treesort_twist1 : (x,y,z,t,u:multiset) (meq u (munion y z)) ->
+ (meq (munion x (munion u t)) (munion (munion y (munion x t)) z)).
+Proof.
+Intros; Apply meq_trans with (munion x (munion (munion y z) t)).
+Apply meq_right; Apply meq_left; Trivial.
+Apply multiset_twist1.
+Qed.
+
+Lemma treesort_twist2 : (x,y,z,t,u:multiset) (meq u (munion y z)) ->
+ (meq (munion x (munion u t)) (munion (munion y (munion x z)) t)).
+Proof.
+Intros; Apply meq_trans with (munion x (munion (munion y z) t)).
+Apply meq_right; Apply meq_left; Trivial.
+Apply multiset_twist2.
+Qed.
+
+
+(*i theory of minter to do similarly
+Require Min.
+(* multiset intersection *)
+Definition minter := [m1,m2:multiset]
+ (Bag [a:A](min (multiplicity m1 a)(multiplicity m2 a))).
+i*)
+
+End multiset_defs.
+
+Unset Implicit Arguments.
+
+Hints Unfold meq multiplicity : v62 datatypes.
+Hints Resolve munion_empty_right munion_comm munion_ass meq_left meq_right munion_empty_left : v62 datatypes.
+Hints Immediate meq_sym : v62 datatypes.