diff options
Diffstat (limited to 'theories7/Sets/Multiset.v')
-rwxr-xr-x | theories7/Sets/Multiset.v | 186 |
1 files changed, 186 insertions, 0 deletions
diff --git a/theories7/Sets/Multiset.v b/theories7/Sets/Multiset.v new file mode 100755 index 00000000..b5d5edf7 --- /dev/null +++ b/theories7/Sets/Multiset.v @@ -0,0 +1,186 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Multiset.v,v 1.1.2.1 2004/07/16 19:31:39 herbelin Exp $ i*) + +(* G. Huet 1-9-95 *) + +Require Permut. + +Set Implicit Arguments. + +Section multiset_defs. + +Variable A : Set. +Variable eqA : A -> A -> Prop. +Hypothesis Aeq_dec : (x,y:A){(eqA x y)}+{~(eqA x y)}. + +Inductive multiset : Set := + Bag : (A->nat) -> multiset. + +Definition EmptyBag := (Bag [a:A]O). +Definition SingletonBag := [a:A] + (Bag [a':A]Cases (Aeq_dec a a') of + (left _) => (S O) + | (right _) => O + end + ). + +Definition multiplicity : multiset -> A -> nat := + [m:multiset][a:A]let (f) = m in (f a). + +(** multiset equality *) +Definition meq := [m1,m2:multiset] + (a:A)(multiplicity m1 a)=(multiplicity m2 a). + +Hints Unfold meq multiplicity. + +Lemma meq_refl : (x:multiset)(meq x x). +Proof. +NewDestruct x; Auto. +Qed. +Hints Resolve meq_refl. + +Lemma meq_trans : (x,y,z:multiset)(meq x y)->(meq y z)->(meq x z). +Proof. +Unfold meq. +NewDestruct x; NewDestruct y; NewDestruct z. +Intros; Rewrite H; Auto. +Qed. + +Lemma meq_sym : (x,y:multiset)(meq x y)->(meq y x). +Proof. +Unfold meq. +NewDestruct x; NewDestruct y; Auto. +Qed. +Hints Immediate meq_sym. + +(** multiset union *) +Definition munion := [m1,m2:multiset] + (Bag [a:A](plus (multiplicity m1 a)(multiplicity m2 a))). + +Lemma munion_empty_left : + (x:multiset)(meq x (munion EmptyBag x)). +Proof. +Unfold meq; Unfold munion; Simpl; Auto. +Qed. +Hints Resolve munion_empty_left. + +Lemma munion_empty_right : + (x:multiset)(meq x (munion x EmptyBag)). +Proof. +Unfold meq; Unfold munion; Simpl; Auto. +Qed. + + +Require Plus. (* comm. and ass. of plus *) + +Lemma munion_comm : (x,y:multiset)(meq (munion x y) (munion y x)). +Proof. +Unfold meq; Unfold multiplicity; Unfold munion. +NewDestruct x; NewDestruct y; Auto with arith. +Qed. +Hints Resolve munion_comm. + +Lemma munion_ass : + (x,y,z:multiset)(meq (munion (munion x y) z) (munion x (munion y z))). +Proof. +Unfold meq; Unfold munion; Unfold multiplicity. +NewDestruct x; NewDestruct y; NewDestruct z; Auto with arith. +Qed. +Hints Resolve munion_ass. + +Lemma meq_left : (x,y,z:multiset)(meq x y)->(meq (munion x z) (munion y z)). +Proof. +Unfold meq; Unfold munion; Unfold multiplicity. +NewDestruct x; NewDestruct y; NewDestruct z. +Intros; Elim H; Auto with arith. +Qed. +Hints Resolve meq_left. + +Lemma meq_right : (x,y,z:multiset)(meq x y)->(meq (munion z x) (munion z y)). +Proof. +Unfold meq; Unfold munion; Unfold multiplicity. +NewDestruct x; NewDestruct y; NewDestruct z. +Intros; Elim H; Auto. +Qed. +Hints Resolve meq_right. + + +(** Here we should make multiset an abstract datatype, by hiding [Bag], + [munion], [multiplicity]; all further properties are proved abstractly *) + +Lemma munion_rotate : + (x,y,z:multiset)(meq (munion x (munion y z)) (munion z (munion x y))). +Proof. +Intros; Apply (op_rotate multiset munion meq); Auto. +Exact meq_trans. +Qed. + +Lemma meq_congr : (x,y,z,t:multiset)(meq x y)->(meq z t)-> + (meq (munion x z) (munion y t)). +Proof. +Intros; Apply (cong_congr multiset munion meq); Auto. +Exact meq_trans. +Qed. + +Lemma munion_perm_left : + (x,y,z:multiset)(meq (munion x (munion y z)) (munion y (munion x z))). +Proof. +Intros; Apply (perm_left multiset munion meq); Auto. +Exact meq_trans. +Qed. + +Lemma multiset_twist1 : (x,y,z,t:multiset) + (meq (munion x (munion (munion y z) t)) (munion (munion y (munion x t)) z)). +Proof. +Intros; Apply (twist multiset munion meq); Auto. +Exact meq_trans. +Qed. + +Lemma multiset_twist2 : (x,y,z,t:multiset) + (meq (munion x (munion (munion y z) t)) (munion (munion y (munion x z)) t)). +Proof. +Intros; Apply meq_trans with (munion (munion x (munion y z)) t). +Apply meq_sym; Apply munion_ass. +Apply meq_left; Apply munion_perm_left. +Qed. + +(** specific for treesort *) + +Lemma treesort_twist1 : (x,y,z,t,u:multiset) (meq u (munion y z)) -> + (meq (munion x (munion u t)) (munion (munion y (munion x t)) z)). +Proof. +Intros; Apply meq_trans with (munion x (munion (munion y z) t)). +Apply meq_right; Apply meq_left; Trivial. +Apply multiset_twist1. +Qed. + +Lemma treesort_twist2 : (x,y,z,t,u:multiset) (meq u (munion y z)) -> + (meq (munion x (munion u t)) (munion (munion y (munion x z)) t)). +Proof. +Intros; Apply meq_trans with (munion x (munion (munion y z) t)). +Apply meq_right; Apply meq_left; Trivial. +Apply multiset_twist2. +Qed. + + +(*i theory of minter to do similarly +Require Min. +(* multiset intersection *) +Definition minter := [m1,m2:multiset] + (Bag [a:A](min (multiplicity m1 a)(multiplicity m2 a))). +i*) + +End multiset_defs. + +Unset Implicit Arguments. + +Hints Unfold meq multiplicity : v62 datatypes. +Hints Resolve munion_empty_right munion_comm munion_ass meq_left meq_right munion_empty_left : v62 datatypes. +Hints Immediate meq_sym : v62 datatypes. |