summaryrefslogtreecommitdiff
path: root/theories7/Sets/Image.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Sets/Image.v')
-rwxr-xr-xtheories7/Sets/Image.v199
1 files changed, 0 insertions, 199 deletions
diff --git a/theories7/Sets/Image.v b/theories7/Sets/Image.v
deleted file mode 100755
index 0794a3bb..00000000
--- a/theories7/Sets/Image.v
+++ /dev/null
@@ -1,199 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(****************************************************************************)
-(* *)
-(* Naive Set Theory in Coq *)
-(* *)
-(* INRIA INRIA *)
-(* Rocquencourt Sophia-Antipolis *)
-(* *)
-(* Coq V6.1 *)
-(* *)
-(* Gilles Kahn *)
-(* Gerard Huet *)
-(* *)
-(* *)
-(* *)
-(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
-(* to the Newton Institute for providing an exceptional work environment *)
-(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
-(****************************************************************************)
-
-(*i $Id: Image.v,v 1.1.2.1 2004/07/16 19:31:39 herbelin Exp $ i*)
-
-Require Export Finite_sets.
-Require Export Constructive_sets.
-Require Export Classical_Type.
-Require Export Classical_sets.
-Require Export Powerset.
-Require Export Powerset_facts.
-Require Export Powerset_Classical_facts.
-Require Export Gt.
-Require Export Lt.
-Require Export Le.
-Require Export Finite_sets_facts.
-
-Section Image.
-Variables U, V: Type.
-
-Inductive Im [X:(Ensemble U); f:U -> V]: (Ensemble V) :=
- Im_intro: (x: U) (In ? X x) -> (y: V) y == (f x) -> (In ? (Im X f) y).
-
-Lemma Im_def:
- (X: (Ensemble U)) (f: U -> V) (x: U) (In ? X x) -> (In ? (Im X f) (f x)).
-Proof.
-Intros X f x H'; Try Assumption.
-Apply Im_intro with x := x; Auto with sets.
-Qed.
-Hints Resolve Im_def.
-
-Lemma Im_add:
- (X: (Ensemble U)) (x: U) (f: U -> V)
- (Im (Add ? X x) f) == (Add ? (Im X f) (f x)).
-Proof.
-Intros X x f.
-Apply Extensionality_Ensembles.
-Split; Red; Intros x0 H'.
-Elim H'; Intros.
-Rewrite H0.
-Elim Add_inv with U X x x1; Auto with sets.
-NewDestruct 1; Auto with sets.
-Elim Add_inv with V (Im X f) (f x) x0; Auto with sets.
-NewDestruct 1 as [x0 H y H0].
-Rewrite H0; Auto with sets.
-NewDestruct 1; Auto with sets.
-Qed.
-
-Lemma image_empty: (f: U -> V) (Im (Empty_set U) f) == (Empty_set V).
-Proof.
-Intro f; Try Assumption.
-Apply Extensionality_Ensembles.
-Split; Auto with sets.
-Red.
-Intros x H'; Elim H'.
-Intros x0 H'0; Elim H'0; Auto with sets.
-Qed.
-Hints Resolve image_empty.
-
-Lemma finite_image:
- (X: (Ensemble U)) (f: U -> V) (Finite ? X) -> (Finite ? (Im X f)).
-Proof.
-Intros X f H'; Elim H'.
-Rewrite (image_empty f); Auto with sets.
-Intros A H'0 H'1 x H'2; Clear H' X.
-Rewrite (Im_add A x f); Auto with sets.
-Apply Add_preserves_Finite; Auto with sets.
-Qed.
-Hints Resolve finite_image.
-
-Lemma Im_inv:
- (X: (Ensemble U)) (f: U -> V) (y: V) (In ? (Im X f) y) ->
- (exT ? [x: U] (In ? X x) /\ (f x) == y).
-Proof.
-Intros X f y H'; Elim H'.
-Intros x H'0 y0 H'1; Rewrite H'1.
-Exists x; Auto with sets.
-Qed.
-
-Definition injective := [f: U -> V] (x, y: U) (f x) == (f y) -> x == y.
-
-Lemma not_injective_elim:
- (f: U -> V) ~ (injective f) ->
- (EXT x | (EXT y | (f x) == (f y) /\ ~ x == y)).
-Proof.
-Unfold injective; Intros f H.
-Cut (EXT x | ~ ((y: U) (f x) == (f y) -> x == y)).
-2: Apply not_all_ex_not with P:=[x:U](y: U) (f x) == (f y) -> x == y;
- Trivial with sets.
-NewDestruct 1 as [x C]; Exists x.
-Cut (EXT y | ~((f x)==(f y)->x==y)).
-2: Apply not_all_ex_not with P:=[y:U](f x)==(f y)->x==y; Trivial with sets.
-NewDestruct 1 as [y D]; Exists y.
-Apply imply_to_and; Trivial with sets.
-Qed.
-
-Lemma cardinal_Im_intro:
- (A: (Ensemble U)) (f: U -> V) (n: nat) (cardinal ? A n) ->
- (EX p: nat | (cardinal ? (Im A f) p)).
-Proof.
-Intros.
-Apply finite_cardinal; Apply finite_image.
-Apply cardinal_finite with n; Trivial with sets.
-Qed.
-
-Lemma In_Image_elim:
- (A: (Ensemble U)) (f: U -> V) (injective f) ->
- (x: U) (In ? (Im A f) (f x)) -> (In ? A x).
-Proof.
-Intros.
-Elim Im_inv with A f (f x); Trivial with sets.
-Intros z C; Elim C; Intros InAz E.
-Elim (H z x E); Trivial with sets.
-Qed.
-
-Lemma injective_preserves_cardinal:
- (A: (Ensemble U)) (f: U -> V) (n: nat) (injective f) -> (cardinal ? A n) ->
- (n': nat) (cardinal ? (Im A f) n') -> n' = n.
-Proof.
-NewInduction 2 as [|A n H'0 H'1 x H'2]; Auto with sets.
-Rewrite (image_empty f).
-Intros n' CE.
-Apply cardinal_unicity with V (Empty_set V); Auto with sets.
-Intro n'.
-Rewrite (Im_add A x f).
-Intro H'3.
-Elim cardinal_Im_intro with A f n; Trivial with sets.
-Intros i CI.
-LApply (H'1 i); Trivial with sets.
-Cut ~ (In ? (Im A f) (f x)).
-Intros H0 H1.
-Apply cardinal_unicity with V (Add ? (Im A f) (f x)); Trivial with sets.
-Apply card_add; Auto with sets.
-Rewrite <- H1; Trivial with sets.
-Red; Intro; Apply H'2.
-Apply In_Image_elim with f; Trivial with sets.
-Qed.
-
-Lemma cardinal_decreases:
- (A: (Ensemble U)) (f: U -> V) (n: nat) (cardinal U A n) ->
- (n': nat) (cardinal V (Im A f) n') -> (le n' n).
-Proof.
-NewInduction 1 as [|A n H'0 H'1 x H'2]; Auto with sets.
-Rewrite (image_empty f); Intros.
-Cut n' = O.
-Intro E; Rewrite E; Trivial with sets.
-Apply cardinal_unicity with V (Empty_set V); Auto with sets.
-Intro n'.
-Rewrite (Im_add A x f).
-Elim cardinal_Im_intro with A f n; Trivial with sets.
-Intros p C H'3.
-Apply le_trans with (S p).
-Apply card_Add_gen with V (Im A f) (f x); Trivial with sets.
-Apply le_n_S; Auto with sets.
-Qed.
-
-Theorem Pigeonhole:
- (A: (Ensemble U)) (f: U -> V) (n: nat) (cardinal U A n) ->
- (n': nat) (cardinal V (Im A f) n') -> (lt n' n) -> ~ (injective f).
-Proof.
-Unfold not; Intros A f n CAn n' CIfn' ltn'n I.
-Cut n' = n.
-Intro E; Generalize ltn'n; Rewrite E; Exact (lt_n_n n).
-Apply injective_preserves_cardinal with A := A f := f n := n; Trivial with sets.
-Qed.
-
-Lemma Pigeonhole_principle:
- (A: (Ensemble U)) (f: U -> V) (n: nat) (cardinal ? A n) ->
- (n': nat) (cardinal ? (Im A f) n') -> (lt n' n) ->
- (EXT x | (EXT y | (f x) == (f y) /\ ~ x == y)).
-Proof.
-Intros; Apply not_injective_elim.
-Apply Pigeonhole with A n n'; Trivial with sets.
-Qed.
-End Image.
-Hints Resolve Im_def image_empty finite_image : sets v62.