diff options
Diffstat (limited to 'theories7/Relations/Rstar.v')
-rwxr-xr-x | theories7/Relations/Rstar.v | 78 |
1 files changed, 0 insertions, 78 deletions
diff --git a/theories7/Relations/Rstar.v b/theories7/Relations/Rstar.v deleted file mode 100755 index 3747b45e..00000000 --- a/theories7/Relations/Rstar.v +++ /dev/null @@ -1,78 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Rstar.v,v 1.1.2.1 2004/07/16 19:31:38 herbelin Exp $ i*) - -(** Properties of a binary relation [R] on type [A] *) - -Section Rstar. - -Variable A : Type. -Variable R : A->A->Prop. - -(** Definition of the reflexive-transitive closure [R*] of [R] *) -(** Smallest reflexive [P] containing [R o P] *) - -Definition Rstar := [x,y:A](P:A->A->Prop) - ((u:A)(P u u))->((u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)) -> (P x y). - -Theorem Rstar_reflexive: (x:A)(Rstar x x). - Proof [x:A][P:A->A->Prop] - [h1:(u:A)(P u u)][h2:(u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)] - (h1 x). - -Theorem Rstar_R: (x:A)(y:A)(z:A)(R x y)->(Rstar y z)->(Rstar x z). - Proof [x:A][y:A][z:A][t1:(R x y)][t2:(Rstar y z)] - [P:A->A->Prop] - [h1:(u:A)(P u u)][h2:(u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)] - (h2 x y z t1 (t2 P h1 h2)). - -(** We conclude with transitivity of [Rstar] : *) - -Theorem Rstar_transitive: (x:A)(y:A)(z:A)(Rstar x y)->(Rstar y z)->(Rstar x z). - Proof [x:A][y:A][z:A][h:(Rstar x y)] - (h ([u:A][v:A](Rstar v z)->(Rstar u z)) - ([u:A][t:(Rstar u z)]t) - ([u:A][v:A][w:A][t1:(R u v)][t2:(Rstar w z)->(Rstar v z)] - [t3:(Rstar w z)](Rstar_R u v z t1 (t2 t3)))). - -(** Another characterization of [R*] *) -(** Smallest reflexive [P] containing [R o R*] *) - -Definition Rstar' := [x:A][y:A](P:A->A->Prop) - ((P x x))->((u:A)(R x u)->(Rstar u y)->(P x y)) -> (P x y). - -Theorem Rstar'_reflexive: (x:A)(Rstar' x x). - Proof [x:A][P:A->A->Prop][h:(P x x)][h':(u:A)(R x u)->(Rstar u x)->(P x x)]h. - -Theorem Rstar'_R: (x:A)(y:A)(z:A)(R x z)->(Rstar z y)->(Rstar' x y). - Proof [x:A][y:A][z:A][t1:(R x z)][t2:(Rstar z y)] - [P:A->A->Prop][h1:(P x x)] - [h2:(u:A)(R x u)->(Rstar u y)->(P x y)](h2 z t1 t2). - -(** Equivalence of the two definitions: *) - -Theorem Rstar'_Rstar: (x:A)(y:A)(Rstar' x y)->(Rstar x y). - Proof [x:A][y:A][h:(Rstar' x y)] - (h Rstar (Rstar_reflexive x) ([u:A](Rstar_R x u y))). - -Theorem Rstar_Rstar': (x:A)(y:A)(Rstar x y)->(Rstar' x y). - Proof [x:A][y:A][h:(Rstar x y)](h Rstar' ([u:A](Rstar'_reflexive u)) - ([u:A][v:A][w:A][h1:(R u v)][h2:(Rstar' v w)] - (Rstar'_R u w v h1 (Rstar'_Rstar v w h2)))). - - -(** Property of Commutativity of two relations *) - -Definition commut := [A:Set][R1,R2:A->A->Prop] - (x,y:A)(R1 y x)->(z:A)(R2 z y) - ->(EX y':A |(R2 y' x) & (R1 z y')). - - -End Rstar. - |