diff options
Diffstat (limited to 'theories7/Relations/Relation_Definitions.v')
-rwxr-xr-x | theories7/Relations/Relation_Definitions.v | 83 |
1 files changed, 0 insertions, 83 deletions
diff --git a/theories7/Relations/Relation_Definitions.v b/theories7/Relations/Relation_Definitions.v deleted file mode 100755 index 1e38e753..00000000 --- a/theories7/Relations/Relation_Definitions.v +++ /dev/null @@ -1,83 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Relation_Definitions.v,v 1.1.2.1 2004/07/16 19:31:38 herbelin Exp $ i*) - -Section Relation_Definition. - - Variable A: Type. - - Definition relation := A -> A -> Prop. - - Variable R: relation. - - -Section General_Properties_of_Relations. - - Definition reflexive : Prop := (x: A) (R x x). - Definition transitive : Prop := (x,y,z: A) (R x y) -> (R y z) -> (R x z). - Definition symmetric : Prop := (x,y: A) (R x y) -> (R y x). - Definition antisymmetric : Prop := (x,y: A) (R x y) -> (R y x) -> x=y. - - (* for compatibility with Equivalence in ../PROGRAMS/ALG/ *) - Definition equiv := reflexive /\ transitive /\ symmetric. - -End General_Properties_of_Relations. - - - -Section Sets_of_Relations. - - Record preorder : Prop := { - preord_refl : reflexive; - preord_trans : transitive }. - - Record order : Prop := { - ord_refl : reflexive; - ord_trans : transitive; - ord_antisym : antisymmetric }. - - Record equivalence : Prop := { - equiv_refl : reflexive; - equiv_trans : transitive; - equiv_sym : symmetric }. - - Record PER : Prop := { - per_sym : symmetric; - per_trans : transitive }. - -End Sets_of_Relations. - - - -Section Relations_of_Relations. - - Definition inclusion : relation -> relation -> Prop := - [R1,R2: relation] (x,y:A) (R1 x y) -> (R2 x y). - - Definition same_relation : relation -> relation -> Prop := - [R1,R2: relation] (inclusion R1 R2) /\ (inclusion R2 R1). - - Definition commut : relation -> relation -> Prop := - [R1,R2:relation] (x,y:A) (R1 y x) -> (z:A) (R2 z y) - -> (EX y':A |(R2 y' x) & (R1 z y')). - -End Relations_of_Relations. - - -End Relation_Definition. - -Hints Unfold reflexive transitive antisymmetric symmetric : sets v62. - -Hints Resolve Build_preorder Build_order Build_equivalence - Build_PER preord_refl preord_trans - ord_refl ord_trans ord_antisym - equiv_refl equiv_trans equiv_sym - per_sym per_trans : sets v62. - -Hints Unfold inclusion same_relation commut : sets v62. |