summaryrefslogtreecommitdiff
path: root/theories7/Relations/Relation_Definitions.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Relations/Relation_Definitions.v')
-rwxr-xr-xtheories7/Relations/Relation_Definitions.v83
1 files changed, 0 insertions, 83 deletions
diff --git a/theories7/Relations/Relation_Definitions.v b/theories7/Relations/Relation_Definitions.v
deleted file mode 100755
index 1e38e753..00000000
--- a/theories7/Relations/Relation_Definitions.v
+++ /dev/null
@@ -1,83 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Relation_Definitions.v,v 1.1.2.1 2004/07/16 19:31:38 herbelin Exp $ i*)
-
-Section Relation_Definition.
-
- Variable A: Type.
-
- Definition relation := A -> A -> Prop.
-
- Variable R: relation.
-
-
-Section General_Properties_of_Relations.
-
- Definition reflexive : Prop := (x: A) (R x x).
- Definition transitive : Prop := (x,y,z: A) (R x y) -> (R y z) -> (R x z).
- Definition symmetric : Prop := (x,y: A) (R x y) -> (R y x).
- Definition antisymmetric : Prop := (x,y: A) (R x y) -> (R y x) -> x=y.
-
- (* for compatibility with Equivalence in ../PROGRAMS/ALG/ *)
- Definition equiv := reflexive /\ transitive /\ symmetric.
-
-End General_Properties_of_Relations.
-
-
-
-Section Sets_of_Relations.
-
- Record preorder : Prop := {
- preord_refl : reflexive;
- preord_trans : transitive }.
-
- Record order : Prop := {
- ord_refl : reflexive;
- ord_trans : transitive;
- ord_antisym : antisymmetric }.
-
- Record equivalence : Prop := {
- equiv_refl : reflexive;
- equiv_trans : transitive;
- equiv_sym : symmetric }.
-
- Record PER : Prop := {
- per_sym : symmetric;
- per_trans : transitive }.
-
-End Sets_of_Relations.
-
-
-
-Section Relations_of_Relations.
-
- Definition inclusion : relation -> relation -> Prop :=
- [R1,R2: relation] (x,y:A) (R1 x y) -> (R2 x y).
-
- Definition same_relation : relation -> relation -> Prop :=
- [R1,R2: relation] (inclusion R1 R2) /\ (inclusion R2 R1).
-
- Definition commut : relation -> relation -> Prop :=
- [R1,R2:relation] (x,y:A) (R1 y x) -> (z:A) (R2 z y)
- -> (EX y':A |(R2 y' x) & (R1 z y')).
-
-End Relations_of_Relations.
-
-
-End Relation_Definition.
-
-Hints Unfold reflexive transitive antisymmetric symmetric : sets v62.
-
-Hints Resolve Build_preorder Build_order Build_equivalence
- Build_PER preord_refl preord_trans
- ord_refl ord_trans ord_antisym
- equiv_refl equiv_trans equiv_sym
- per_sym per_trans : sets v62.
-
-Hints Unfold inclusion same_relation commut : sets v62.