summaryrefslogtreecommitdiff
path: root/theories7/Reals/SeqSeries.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/SeqSeries.v')
-rw-r--r--theories7/Reals/SeqSeries.v307
1 files changed, 0 insertions, 307 deletions
diff --git a/theories7/Reals/SeqSeries.v b/theories7/Reals/SeqSeries.v
deleted file mode 100644
index dd93c304..00000000
--- a/theories7/Reals/SeqSeries.v
+++ /dev/null
@@ -1,307 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: SeqSeries.v,v 1.1.2.1 2004/07/16 19:31:36 herbelin Exp $ i*)
-
-Require Rbase.
-Require Rfunctions.
-Require Max.
-Require Export Rseries.
-Require Export SeqProp.
-Require Export Rcomplete.
-Require Export PartSum.
-Require Export AltSeries.
-Require Export Binomial.
-Require Export Rsigma.
-Require Export Rprod.
-Require Export Cauchy_prod.
-Require Export Alembert.
-V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
-Open Local Scope R_scope.
-
-(**********)
-Lemma sum_maj1 : (fn:nat->R->R;An:nat->R;x,l1,l2:R;N:nat) (Un_cv [n:nat](SP fn n x) l1) -> (Un_cv [n:nat](sum_f_R0 An n) l2) -> ((n:nat)``(Rabsolu (fn n x))<=(An n)``) -> ``(Rabsolu (l1-(SP fn N x)))<=l2-(sum_f_R0 An N)``.
-Intros; Cut (sigTT R [l:R](Un_cv [n:nat](sum_f_R0 [l:nat](fn (plus (S N) l) x) n) l)).
-Intro; Cut (sigTT R [l:R](Un_cv [n:nat](sum_f_R0 [l:nat](An (plus (S N) l)) n) l)).
-Intro; Elim X; Intros l1N H2.
-Elim X0; Intros l2N H3.
-Cut ``l1-(SP fn N x)==l1N``.
-Intro; Cut ``l2-(sum_f_R0 An N)==l2N``.
-Intro; Rewrite H4; Rewrite H5.
-Apply sum_cv_maj with [l:nat](An (plus (S N) l)) [l:nat][x:R](fn (plus (S N) l) x) x.
-Unfold SP; Apply H2.
-Apply H3.
-Intros; Apply H1.
-Symmetry; EApply UL_sequence.
-Apply H3.
-Unfold Un_cv in H0; Unfold Un_cv; Intros; Elim (H0 eps H5); Intros N0 H6.
-Unfold R_dist in H6; Exists N0; Intros.
-Unfold R_dist; Replace (Rminus (sum_f_R0 [l:nat](An (plus (S N) l)) n) (Rminus l2 (sum_f_R0 An N))) with (Rminus (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) l2); [Idtac | Ring].
-Replace (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) with (sum_f_R0 An (S (plus N n))).
-Apply H6; Unfold ge; Apply le_trans with n.
-Apply H7.
-Apply le_trans with (plus N n).
-Apply le_plus_r.
-Apply le_n_Sn.
-Cut (le O N).
-Cut (lt N (S (plus N n))).
-Intros; Assert H10 := (sigma_split An H9 H8).
-Unfold sigma in H10.
-Do 2 Rewrite <- minus_n_O in H10.
-Replace (sum_f_R0 An (S (plus N n))) with (sum_f_R0 [k:nat](An (plus (0) k)) (S (plus N n))).
-Replace (sum_f_R0 An N) with (sum_f_R0 [k:nat](An (plus (0) k)) N).
-Cut (minus (S (plus N n)) (S N))=n.
-Intro; Rewrite H11 in H10.
-Apply H10.
-Apply INR_eq; Rewrite minus_INR.
-Do 2 Rewrite S_INR; Rewrite plus_INR; Ring.
-Apply le_n_S; Apply le_plus_l.
-Apply sum_eq; Intros.
-Reflexivity.
-Apply sum_eq; Intros.
-Reflexivity.
-Apply le_lt_n_Sm; Apply le_plus_l.
-Apply le_O_n.
-Symmetry; EApply UL_sequence.
-Apply H2.
-Unfold Un_cv in H; Unfold Un_cv; Intros.
-Elim (H eps H4); Intros N0 H5.
-Unfold R_dist in H5; Exists N0; Intros.
-Unfold R_dist SP; Replace (Rminus (sum_f_R0 [l:nat](fn (plus (S N) l) x) n) (Rminus l1 (sum_f_R0 [k:nat](fn k x) N))) with (Rminus (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) l1); [Idtac | Ring].
-Replace (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) with (sum_f_R0 [k:nat](fn k x) (S (plus N n))).
-Unfold SP in H5; Apply H5; Unfold ge; Apply le_trans with n.
-Apply H6.
-Apply le_trans with (plus N n).
-Apply le_plus_r.
-Apply le_n_Sn.
-Cut (le O N).
-Cut (lt N (S (plus N n))).
-Intros; Assert H9 := (sigma_split [k:nat](fn k x) H8 H7).
-Unfold sigma in H9.
-Do 2 Rewrite <- minus_n_O in H9.
-Replace (sum_f_R0 [k:nat](fn k x) (S (plus N n))) with (sum_f_R0 [k:nat](fn (plus (0) k) x) (S (plus N n))).
-Replace (sum_f_R0 [k:nat](fn k x) N) with (sum_f_R0 [k:nat](fn (plus (0) k) x) N).
-Cut (minus (S (plus N n)) (S N))=n.
-Intro; Rewrite H10 in H9.
-Apply H9.
-Apply INR_eq; Rewrite minus_INR.
-Do 2 Rewrite S_INR; Rewrite plus_INR; Ring.
-Apply le_n_S; Apply le_plus_l.
-Apply sum_eq; Intros.
-Reflexivity.
-Apply sum_eq; Intros.
-Reflexivity.
-Apply le_lt_n_Sm.
-Apply le_plus_l.
-Apply le_O_n.
-Apply existTT with ``l2-(sum_f_R0 An N)``.
-Unfold Un_cv in H0; Unfold Un_cv; Intros.
-Elim (H0 eps H2); Intros N0 H3.
-Unfold R_dist in H3; Exists N0; Intros.
-Unfold R_dist; Replace (Rminus (sum_f_R0 [l:nat](An (plus (S N) l)) n) (Rminus l2 (sum_f_R0 An N))) with (Rminus (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) l2); [Idtac | Ring].
-Replace (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) with (sum_f_R0 An (S (plus N n))).
-Apply H3; Unfold ge; Apply le_trans with n.
-Apply H4.
-Apply le_trans with (plus N n).
-Apply le_plus_r.
-Apply le_n_Sn.
-Cut (le O N).
-Cut (lt N (S (plus N n))).
-Intros; Assert H7 := (sigma_split An H6 H5).
-Unfold sigma in H7.
-Do 2 Rewrite <- minus_n_O in H7.
-Replace (sum_f_R0 An (S (plus N n))) with (sum_f_R0 [k:nat](An (plus (0) k)) (S (plus N n))).
-Replace (sum_f_R0 An N) with (sum_f_R0 [k:nat](An (plus (0) k)) N).
-Cut (minus (S (plus N n)) (S N))=n.
-Intro; Rewrite H8 in H7.
-Apply H7.
-Apply INR_eq; Rewrite minus_INR.
-Do 2 Rewrite S_INR; Rewrite plus_INR; Ring.
-Apply le_n_S; Apply le_plus_l.
-Apply sum_eq; Intros.
-Reflexivity.
-Apply sum_eq; Intros.
-Reflexivity.
-Apply le_lt_n_Sm.
-Apply le_plus_l.
-Apply le_O_n.
-Apply existTT with ``l1-(SP fn N x)``.
-Unfold Un_cv in H; Unfold Un_cv; Intros.
-Elim (H eps H2); Intros N0 H3.
-Unfold R_dist in H3; Exists N0; Intros.
-Unfold R_dist SP.
-Replace (Rminus (sum_f_R0 [l:nat](fn (plus (S N) l) x) n) (Rminus l1 (sum_f_R0 [k:nat](fn k x) N))) with (Rminus (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) l1); [Idtac | Ring].
-Replace (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) with (sum_f_R0 [k:nat](fn k x) (S (plus N n))).
-Unfold SP in H3; Apply H3.
-Unfold ge; Apply le_trans with n.
-Apply H4.
-Apply le_trans with (plus N n).
-Apply le_plus_r.
-Apply le_n_Sn.
-Cut (le O N).
-Cut (lt N (S (plus N n))).
-Intros; Assert H7 := (sigma_split [k:nat](fn k x) H6 H5).
-Unfold sigma in H7.
-Do 2 Rewrite <- minus_n_O in H7.
-Replace (sum_f_R0 [k:nat](fn k x) (S (plus N n))) with (sum_f_R0 [k:nat](fn (plus (0) k) x) (S (plus N n))).
-Replace (sum_f_R0 [k:nat](fn k x) N) with (sum_f_R0 [k:nat](fn (plus (0) k) x) N).
-Cut (minus (S (plus N n)) (S N))=n.
-Intro; Rewrite H8 in H7.
-Apply H7.
-Apply INR_eq; Rewrite minus_INR.
-Do 2 Rewrite S_INR; Rewrite plus_INR; Ring.
-Apply le_n_S; Apply le_plus_l.
-Apply sum_eq; Intros.
-Reflexivity.
-Apply sum_eq; Intros.
-Reflexivity.
-Apply le_lt_n_Sm.
-Apply le_plus_l.
-Apply le_O_n.
-Qed.
-
-(* Comparaison of convergence for series *)
-Lemma Rseries_CV_comp : (An,Bn:nat->R) ((n:nat)``0<=(An n)<=(Bn n)``) -> (sigTT ? [l:R](Un_cv [N:nat](sum_f_R0 Bn N) l)) -> (sigTT ? [l:R](Un_cv [N:nat](sum_f_R0 An N) l)).
-Intros; Apply cv_cauchy_2.
-Assert H0 := (cv_cauchy_1 ? X).
-Unfold Cauchy_crit_series; Unfold Cauchy_crit.
-Intros; Elim (H0 eps H1); Intros.
-Exists x; Intros.
-Cut (Rle (R_dist (sum_f_R0 An n) (sum_f_R0 An m)) (R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m))).
-Intro; Apply Rle_lt_trans with (R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)).
-Assumption.
-Apply H2; Assumption.
-Assert H5 := (lt_eq_lt_dec n m).
-Elim H5; Intro.
-Elim a; Intro.
-Rewrite (tech2 An n m); [Idtac | Assumption].
-Rewrite (tech2 Bn n m); [Idtac | Assumption].
-Unfold R_dist; Unfold Rminus; Do 2 Rewrite Ropp_distr1; Do 2 Rewrite <- Rplus_assoc; Do 2 Rewrite Rplus_Ropp_r; Do 2 Rewrite Rplus_Ol; Do 2 Rewrite Rabsolu_Ropp; Repeat Rewrite Rabsolu_right.
-Apply sum_Rle; Intros.
-Elim (H (plus (S n) n0)); Intros.
-Apply H8.
-Apply Rle_sym1; Apply cond_pos_sum; Intro.
-Elim (H (plus (S n) n0)); Intros.
-Apply Rle_trans with (An (plus (S n) n0)); Assumption.
-Apply Rle_sym1; Apply cond_pos_sum; Intro.
-Elim (H (plus (S n) n0)); Intros; Assumption.
-Rewrite b; Unfold R_dist; Unfold Rminus; Do 2 Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Right; Reflexivity.
-Rewrite (tech2 An m n); [Idtac | Assumption].
-Rewrite (tech2 Bn m n); [Idtac | Assumption].
-Unfold R_dist; Unfold Rminus; Do 2 Rewrite Rplus_assoc; Rewrite (Rplus_sym (sum_f_R0 An m)); Rewrite (Rplus_sym (sum_f_R0 Bn m)); Do 2 Rewrite Rplus_assoc; Do 2 Rewrite Rplus_Ropp_l; Do 2 Rewrite Rplus_Or; Repeat Rewrite Rabsolu_right.
-Apply sum_Rle; Intros.
-Elim (H (plus (S m) n0)); Intros; Apply H8.
-Apply Rle_sym1; Apply cond_pos_sum; Intro.
-Elim (H (plus (S m) n0)); Intros.
-Apply Rle_trans with (An (plus (S m) n0)); Assumption.
-Apply Rle_sym1.
-Apply cond_pos_sum; Intro.
-Elim (H (plus (S m) n0)); Intros; Assumption.
-Qed.
-
-(* Cesaro's theorem *)
-Lemma Cesaro : (An,Bn:nat->R;l:R) (Un_cv Bn l) -> ((n:nat)``0<(An n)``) -> (cv_infty [n:nat](sum_f_R0 An n)) -> (Un_cv [n:nat](Rdiv (sum_f_R0 [k:nat]``(An k)*(Bn k)`` n) (sum_f_R0 An n)) l).
-Proof with Trivial.
-Unfold Un_cv; Intros; Assert H3 : (n:nat)``0<(sum_f_R0 An n)``.
-Intro; Apply tech1.
-Assert H4 : (n:nat) ``(sum_f_R0 An n)<>0``.
-Intro; Red; Intro; Assert H5 := (H3 n); Rewrite H4 in H5; Elim (Rlt_antirefl ? H5).
-Assert H5 := (cv_infty_cv_R0 ? H4 H1); Assert H6 : ``0<eps/2``.
-Unfold Rdiv; Apply Rmult_lt_pos.
-Apply Rlt_Rinv; Sup.
-Elim (H ? H6); Clear H; Intros N1 H; Pose C := (Rabsolu (sum_f_R0 [k:nat]``(An k)*((Bn k)-l)`` N1)); Assert H7 : (EX N:nat | (n:nat) (le N n) -> ``C/(sum_f_R0 An n)<eps/2``).
-Case (Req_EM C R0); Intro.
-Exists O; Intros.
-Rewrite H7; Unfold Rdiv; Rewrite Rmult_Ol; Apply Rmult_lt_pos.
-Apply Rlt_Rinv; Sup.
-Assert H8 : ``0<eps/(2*(Rabsolu C))``.
-Unfold Rdiv; Apply Rmult_lt_pos.
-Apply Rlt_Rinv; Apply Rmult_lt_pos.
-Sup.
-Apply Rabsolu_pos_lt.
-Elim (H5 ? H8); Intros; Exists x; Intros; Assert H11 := (H9 ? H10); Unfold R_dist in H11; Unfold Rminus in H11; Rewrite Ropp_O in H11; Rewrite Rplus_Or in H11.
-Apply Rle_lt_trans with (Rabsolu ``C/(sum_f_R0 An n)``).
-Apply Rle_Rabsolu.
-Unfold Rdiv; Rewrite Rabsolu_mult; Apply Rlt_monotony_contra with ``/(Rabsolu C)``.
-Apply Rlt_Rinv; Apply Rabsolu_pos_lt.
-Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l; Replace ``/(Rabsolu C)*(eps*/2)`` with ``eps/(2*(Rabsolu C))``.
-Unfold Rdiv; Rewrite Rinv_Rmult.
-Ring.
-DiscrR.
-Apply Rabsolu_no_R0.
-Apply Rabsolu_no_R0.
-Elim H7; Clear H7; Intros N2 H7; Pose N := (max N1 N2); Exists (S N); Intros; Unfold R_dist; Replace (Rminus (Rdiv (sum_f_R0 [k:nat]``(An k)*(Bn k)`` n) (sum_f_R0 An n)) l) with (Rdiv (sum_f_R0 [k:nat]``(An k)*((Bn k)-l)`` n) (sum_f_R0 An n)).
-Assert H9 : (lt N1 n).
-Apply lt_le_trans with (S N).
-Apply le_lt_n_Sm; Unfold N; Apply le_max_l.
-Rewrite (tech2 [k:nat]``(An k)*((Bn k)-l)`` ? ? H9); Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Apply Rle_lt_trans with (Rplus (Rabsolu (Rdiv (sum_f_R0 [k:nat]``(An k)*((Bn k)-l)`` N1) (sum_f_R0 An n))) (Rabsolu (Rdiv (sum_f_R0 [i:nat]``(An (plus (S N1) i))*((Bn (plus (S N1) i))-l)`` (minus n (S N1))) (sum_f_R0 An n)))).
-Apply Rabsolu_triang.
-Rewrite (double_var eps); Apply Rplus_lt.
-Unfold Rdiv; Rewrite Rabsolu_mult; Fold C; Rewrite Rabsolu_right.
-Apply (H7 n); Apply le_trans with (S N).
-Apply le_trans with N; [Unfold N; Apply le_max_r | Apply le_n_Sn].
-Apply Rle_sym1; Left; Apply Rlt_Rinv.
-
-Unfold R_dist in H; Unfold Rdiv; Rewrite Rabsolu_mult; Rewrite (Rabsolu_right ``/(sum_f_R0 An n)``).
-Apply Rle_lt_trans with (Rmult (sum_f_R0 [i:nat](Rabsolu ``(An (plus (S N1) i))*((Bn (plus (S N1) i))-l)``) (minus n (S N1))) ``/(sum_f_R0 An n)``).
-Do 2 Rewrite <- (Rmult_sym ``/(sum_f_R0 An n)``); Apply Rle_monotony.
-Left; Apply Rlt_Rinv.
-Apply (sum_Rabsolu [i:nat]``(An (plus (S N1) i))*((Bn (plus (S N1) i))-l)`` (minus n (S N1))).
-Apply Rle_lt_trans with (Rmult (sum_f_R0 [i:nat]``(An (plus (S N1) i))*eps/2`` (minus n (S N1))) ``/(sum_f_R0 An n)``).
-Do 2 Rewrite <- (Rmult_sym ``/(sum_f_R0 An n)``); Apply Rle_monotony.
-Left; Apply Rlt_Rinv.
-Apply sum_Rle; Intros; Rewrite Rabsolu_mult; Pattern 2 (An (plus (S N1) n0)); Rewrite <- (Rabsolu_right (An (plus (S N1) n0))).
-Apply Rle_monotony.
-Apply Rabsolu_pos.
-Left; Apply H; Unfold ge; Apply le_trans with (S N1); [Apply le_n_Sn | Apply le_plus_l].
-Apply Rle_sym1; Left.
-Rewrite <- (scal_sum [i:nat](An (plus (S N1) i)) (minus n (S N1)) ``eps/2``); Unfold Rdiv; Repeat Rewrite Rmult_assoc; Apply Rlt_monotony.
-Pattern 2 ``/2``; Rewrite <- Rmult_1r; Apply Rlt_monotony.
-Apply Rlt_Rinv; Sup.
-Rewrite Rmult_sym; Apply Rlt_monotony_contra with (sum_f_R0 An n).
-Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1l; Rewrite Rmult_1r; Rewrite (tech2 An N1 n).
-Rewrite Rplus_sym; Pattern 1 (sum_f_R0 [i:nat](An (plus (S N1) i)) (minus n (S N1))); Rewrite <- Rplus_Or; Apply Rlt_compatibility.
-Apply Rle_sym1; Left; Apply Rlt_Rinv.
-Replace (sum_f_R0 [k:nat]``(An k)*((Bn k)-l)`` n) with (Rplus (sum_f_R0 [k:nat]``(An k)*(Bn k)`` n) (sum_f_R0 [k:nat]``(An k)*-l`` n)).
-Rewrite <- (scal_sum An n ``-l``); Field.
-Rewrite <- plus_sum; Apply sum_eq; Intros; Ring.
-Qed.
-
-Lemma Cesaro_1 : (An:nat->R;l:R) (Un_cv An l) -> (Un_cv [n:nat]``(sum_f_R0 An (pred n))/(INR n)`` l).
-Proof with Trivial.
-Intros Bn l H; Pose An := [_:nat]R1.
-Assert H0 : (n:nat) ``0<(An n)``.
-Intro; Unfold An; Apply Rlt_R0_R1.
-Assert H1 : (n:nat)``0<(sum_f_R0 An n)``.
-Intro; Apply tech1.
-Assert H2 : (cv_infty [n:nat](sum_f_R0 An n)).
-Unfold cv_infty; Intro; Case (total_order_Rle M R0); Intro.
-Exists O; Intros; Apply Rle_lt_trans with R0.
-Assert H2 : ``0<M``.
-Auto with real.
-Clear n; Pose m := (up M); Elim (archimed M); Intros; Assert H5 : `0<=m`.
-Apply le_IZR; Unfold m; Simpl; Left; Apply Rlt_trans with M.
-Elim (IZN ? H5); Intros; Exists x; Intros; Unfold An; Rewrite sum_cte; Rewrite Rmult_1l; Apply Rlt_trans with (IZR (up M)).
-Apply Rle_lt_trans with (INR x).
-Rewrite INR_IZR_INZ; Fold m; Rewrite <- H6; Right.
-Apply lt_INR; Apply le_lt_n_Sm.
-Assert H3 := (Cesaro ? ? ? H H0 H2).
-Unfold Un_cv; Unfold Un_cv in H3; Intros; Elim (H3 ? H4); Intros; Exists (S x); Intros; Unfold R_dist; Unfold R_dist in H5; Apply Rle_lt_trans with (Rabsolu (Rminus (Rdiv (sum_f_R0 [k:nat]``(An k)*(Bn k)`` (pred n)) (sum_f_R0 An (pred n))) l)).
-Right; Replace ``(sum_f_R0 Bn (pred n))/(INR n)-l`` with (Rminus (Rdiv (sum_f_R0 [k:nat]``(An k)*(Bn k)`` (pred n)) (sum_f_R0 An (pred n))) l).
-Unfold Rminus; Do 2 Rewrite <- (Rplus_sym ``-l``); Apply Rplus_plus_r.
-Unfold An; Replace (sum_f_R0 [k:nat]``1*(Bn k)`` (pred n)) with (sum_f_R0 Bn (pred n)).
-Rewrite sum_cte; Rewrite Rmult_1l; Replace (S (pred n)) with n.
-Apply S_pred with O; Apply lt_le_trans with (S x).
-Apply lt_O_Sn.
-Apply sum_eq; Intros; Ring.
-Apply H5; Unfold ge; Apply le_S_n; Replace (S (pred n)) with n.
-Apply S_pred with O; Apply lt_le_trans with (S x).
-Apply lt_O_Sn.
-Qed.