summaryrefslogtreecommitdiff
path: root/theories7/Reals/Rtrigo_def.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Rtrigo_def.v')
-rw-r--r--theories7/Reals/Rtrigo_def.v357
1 files changed, 357 insertions, 0 deletions
diff --git a/theories7/Reals/Rtrigo_def.v b/theories7/Reals/Rtrigo_def.v
new file mode 100644
index 00000000..0897416b
--- /dev/null
+++ b/theories7/Reals/Rtrigo_def.v
@@ -0,0 +1,357 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Rtrigo_def.v,v 1.1.2.1 2004/07/16 19:31:36 herbelin Exp $ i*)
+
+Require Rbase.
+Require Rfunctions.
+Require SeqSeries.
+Require Rtrigo_fun.
+Require Max.
+V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
+Open Local Scope R_scope.
+
+(*****************************)
+(* Definition of exponential *)
+(*****************************)
+Definition exp_in:R->R->Prop := [x,l:R](infinit_sum [i:nat]``/(INR (fact i))*(pow x i)`` l).
+
+Lemma exp_cof_no_R0 : (n:nat) ``/(INR (fact n))<>0``.
+Intro.
+Apply Rinv_neq_R0.
+Apply INR_fact_neq_0.
+Qed.
+
+Lemma exist_exp : (x:R)(SigT R [l:R](exp_in x l)).
+Intro; Generalize (Alembert_C3 [n:nat](Rinv (INR (fact n))) x exp_cof_no_R0 Alembert_exp).
+Unfold Pser exp_in.
+Trivial.
+Defined.
+
+Definition exp : R -> R := [x:R](projT1 ? ? (exist_exp x)).
+
+Lemma pow_i : (i:nat) (lt O i) -> (pow R0 i)==R0.
+Intros; Apply pow_ne_zero.
+Red; Intro; Rewrite H0 in H; Elim (lt_n_n ? H).
+Qed.
+
+(*i Calculus of $e^0$ *)
+Lemma exist_exp0 : (SigT R [l:R](exp_in R0 l)).
+Apply Specif.existT with R1.
+Unfold exp_in; Unfold infinit_sum; Intros.
+Exists O.
+Intros; Replace (sum_f_R0 ([i:nat]``/(INR (fact i))*(pow R0 i)``) n) with R1.
+Unfold R_dist; Replace ``1-1`` with R0; [Rewrite Rabsolu_R0; Assumption | Ring].
+Induction n.
+Simpl; Rewrite Rinv_R1; Ring.
+Rewrite tech5.
+Rewrite <- Hrecn.
+Simpl.
+Ring.
+Unfold ge; Apply le_O_n.
+Defined.
+
+Lemma exp_0 : ``(exp 0)==1``.
+Cut (exp_in R0 (exp R0)).
+Cut (exp_in R0 R1).
+Unfold exp_in; Intros; EApply unicity_sum.
+Apply H0.
+Apply H.
+Exact (projT2 ? ? exist_exp0).
+Exact (projT2 ? ? (exist_exp R0)).
+Qed.
+
+(**************************************)
+(* Definition of hyperbolic functions *)
+(**************************************)
+Definition cosh : R->R := [x:R]``((exp x)+(exp (-x)))/2``.
+Definition sinh : R->R := [x:R]``((exp x)-(exp (-x)))/2``.
+Definition tanh : R->R := [x:R]``(sinh x)/(cosh x)``.
+
+Lemma cosh_0 : ``(cosh 0)==1``.
+Unfold cosh; Rewrite Ropp_O; Rewrite exp_0.
+Unfold Rdiv; Rewrite <- Rinv_r_sym; [Reflexivity | DiscrR].
+Qed.
+
+Lemma sinh_0 : ``(sinh 0)==0``.
+Unfold sinh; Rewrite Ropp_O; Rewrite exp_0.
+Unfold Rminus Rdiv; Rewrite Rplus_Ropp_r; Apply Rmult_Ol.
+Qed.
+
+Definition cos_n [n:nat] : R := ``(pow (-1) n)/(INR (fact (mult (S (S O)) n)))``.
+
+Lemma simpl_cos_n : (n:nat) (Rdiv (cos_n (S n)) (cos_n n))==(Ropp (Rinv (INR (mult (mult (2) (S n)) (plus (mult (2) n) (1)))))).
+Intro; Unfold cos_n; Replace (S n) with (plus n (1)); [Idtac | Ring].
+Rewrite pow_add; Unfold Rdiv; Rewrite Rinv_Rmult.
+Rewrite Rinv_Rinv.
+Replace ``(pow ( -1) n)*(pow ( -1) (S O))*/(INR (fact (mult (S (S O)) (plus n (S O)))))*(/(pow ( -1) n)*(INR (fact (mult (S (S O)) n))))`` with ``((pow ( -1) n)*/(pow ( -1) n))*/(INR (fact (mult (S (S O)) (plus n (S O)))))*(INR (fact (mult (S (S O)) n)))*(pow (-1) (S O))``; [Idtac | Ring].
+Rewrite <- Rinv_r_sym.
+Rewrite Rmult_1l; Unfold pow; Rewrite Rmult_1r.
+Replace (mult (S (S O)) (plus n (S O))) with (S (S (mult (S (S O)) n))); [Idtac | Ring].
+Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR; Repeat Rewrite Rinv_Rmult; Try (Apply not_O_INR; Discriminate).
+Rewrite <- (Rmult_sym ``-1``).
+Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r.
+Replace (S (mult (S (S O)) n)) with (plus (mult (S (S O)) n) (S O)); [Idtac | Ring].
+Rewrite mult_INR; Rewrite Rinv_Rmult.
+Ring.
+Apply not_O_INR; Discriminate.
+Replace (plus (mult (S (S O)) n) (S O)) with (S (mult (S (S O)) n)); [Apply not_O_INR; Discriminate | Ring].
+Apply INR_fact_neq_0.
+Apply INR_fact_neq_0.
+Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0].
+Apply pow_nonzero; DiscrR.
+Apply INR_fact_neq_0.
+Apply pow_nonzero; DiscrR.
+Apply Rinv_neq_R0; Apply INR_fact_neq_0.
+Qed.
+
+Lemma archimed_cor1 : (eps:R) ``0<eps`` -> (EX N : nat | ``/(INR N) < eps``/\(lt O N)).
+Intros; Cut ``/eps < (IZR (up (/eps)))``.
+Intro; Cut `0<=(up (Rinv eps))`.
+Intro; Assert H2 := (IZN ? H1); Elim H2; Intros; Exists (max x (1)).
+Split.
+Cut ``0<(IZR (INZ x))``.
+Intro; Rewrite INR_IZR_INZ; Apply Rle_lt_trans with ``/(IZR (INZ x))``.
+Apply Rle_monotony_contra with (IZR (INZ x)).
+Assumption.
+Rewrite <- Rinv_r_sym; [Idtac | Red; Intro; Rewrite H5 in H4; Elim (Rlt_antirefl ? H4)].
+Apply Rle_monotony_contra with (IZR (INZ (max x (1)))).
+Apply Rlt_le_trans with (IZR (INZ x)).
+Assumption.
+Repeat Rewrite <- INR_IZR_INZ; Apply le_INR; Apply le_max_l.
+Rewrite Rmult_1r; Rewrite (Rmult_sym (IZR (INZ (max x (S O))))); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r; Repeat Rewrite <- INR_IZR_INZ; Apply le_INR; Apply le_max_l.
+Rewrite <- INR_IZR_INZ; Apply not_O_INR.
+Red; Intro;Assert H6 := (le_max_r x (1)); Cut (lt O (1)); [Intro | Apply lt_O_Sn]; Assert H8 := (lt_le_trans ? ? ? H7 H6); Rewrite H5 in H8; Elim (lt_n_n ? H8).
+Pattern 1 eps; Rewrite <- Rinv_Rinv.
+Apply Rinv_lt.
+Apply Rmult_lt_pos; [Apply Rlt_Rinv; Assumption | Assumption].
+Rewrite H3 in H0; Assumption.
+Red; Intro; Rewrite H5 in H; Elim (Rlt_antirefl ? H).
+Apply Rlt_trans with ``/eps``.
+Apply Rlt_Rinv; Assumption.
+Rewrite H3 in H0; Assumption.
+Apply lt_le_trans with (1); [Apply lt_O_Sn | Apply le_max_r].
+Apply le_IZR; Replace (IZR `0`) with R0; [Idtac | Reflexivity]; Left; Apply Rlt_trans with ``/eps``; [Apply Rlt_Rinv; Assumption | Assumption].
+Assert H0 := (archimed ``/eps``).
+Elim H0; Intros; Assumption.
+Qed.
+
+Lemma Alembert_cos : (Un_cv [n:nat]``(Rabsolu (cos_n (S n))/(cos_n n))`` R0).
+Unfold Un_cv; Intros.
+Assert H0 := (archimed_cor1 eps H).
+Elim H0; Intros; Exists x.
+Intros; Rewrite simpl_cos_n; Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Rewrite Rabsolu_Ropp; Rewrite Rabsolu_right.
+Rewrite mult_INR; Rewrite Rinv_Rmult.
+Cut ``/(INR (mult (S (S O)) (S n)))<1``.
+Intro; Cut ``/(INR (plus (mult (S (S O)) n) (S O)))<eps``.
+Intro; Rewrite <- (Rmult_1l eps).
+Apply Rmult_lt; Try Assumption.
+Change ``0</(INR (plus (mult (S (S O)) n) (S O)))``; Apply Rlt_Rinv; Apply lt_INR_0.
+Replace (plus (mult (2) n) (1)) with (S (mult (2) n)); [Apply lt_O_Sn | Ring].
+Apply Rlt_R0_R1.
+Cut (lt x (plus (mult (2) n) (1))).
+Intro; Assert H5 := (lt_INR ? ? H4).
+Apply Rlt_trans with ``/(INR x)``.
+Apply Rinv_lt.
+Apply Rmult_lt_pos.
+Apply lt_INR_0.
+Elim H1; Intros; Assumption.
+Apply lt_INR_0; Replace (plus (mult (2) n) (1)) with (S (mult (2) n)); [Apply lt_O_Sn | Ring].
+Assumption.
+Elim H1; Intros; Assumption.
+Apply lt_le_trans with (S n).
+Unfold ge in H2; Apply le_lt_n_Sm; Assumption.
+Replace (plus (mult (2) n) (1)) with (S (mult (2) n)); [Idtac | Ring].
+Apply le_n_S; Apply le_n_2n.
+Apply Rlt_monotony_contra with (INR (mult (S (S O)) (S n))).
+Apply lt_INR_0; Replace (mult (2) (S n)) with (S (S (mult (2) n))).
+Apply lt_O_Sn.
+Replace (S n) with (plus n (1)); [Idtac | Ring].
+Ring.
+Rewrite <- Rinv_r_sym.
+Rewrite Rmult_1r; Replace R1 with (INR (1)); [Apply lt_INR | Reflexivity].
+Replace (mult (2) (S n)) with (S (S (mult (2) n))).
+Apply lt_n_S; Apply lt_O_Sn.
+Replace (S n) with (plus n (1)); [Ring | Ring].
+Apply not_O_INR; Discriminate.
+Apply not_O_INR; Discriminate.
+Replace (plus (mult (S (S O)) n) (S O)) with (S (mult (2) n)); [Apply not_O_INR; Discriminate | Ring].
+Apply Rle_sym1; Left; Apply Rlt_Rinv.
+Apply lt_INR_0.
+Replace (mult (mult (2) (S n)) (plus (mult (2) n) (1))) with (S (S (plus (mult (4) (mult n n)) (mult (6) n)))).
+Apply lt_O_Sn.
+Apply INR_eq.
+Repeat Rewrite S_INR; Rewrite plus_INR; Repeat Rewrite mult_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Replace (INR O) with R0; [Ring | Reflexivity].
+Qed.
+
+Lemma cosn_no_R0 : (n:nat)``(cos_n n)<>0``.
+Intro; Unfold cos_n; Unfold Rdiv; Apply prod_neq_R0.
+Apply pow_nonzero; DiscrR.
+Apply Rinv_neq_R0.
+Apply INR_fact_neq_0.
+Qed.
+
+(**********)
+Definition cos_in:R->R->Prop := [x,l:R](infinit_sum [i:nat]``(cos_n i)*(pow x i)`` l).
+
+(**********)
+Lemma exist_cos : (x:R)(SigT R [l:R](cos_in x l)).
+Intro; Generalize (Alembert_C3 cos_n x cosn_no_R0 Alembert_cos).
+Unfold Pser cos_in; Trivial.
+Qed.
+
+(* Definition of cosinus *)
+(*************************)
+Definition cos : R -> R := [x:R](Cases (exist_cos (Rsqr x)) of (Specif.existT a b) => a end).
+
+
+Definition sin_n [n:nat] : R := ``(pow (-1) n)/(INR (fact (plus (mult (S (S O)) n) (S O))))``.
+
+Lemma simpl_sin_n : (n:nat) (Rdiv (sin_n (S n)) (sin_n n))==(Ropp (Rinv (INR (mult (plus (mult (2) (S n)) (1)) (mult (2) (S n)))))).
+Intro; Unfold sin_n; Replace (S n) with (plus n (1)); [Idtac | Ring].
+Rewrite pow_add; Unfold Rdiv; Rewrite Rinv_Rmult.
+Rewrite Rinv_Rinv.
+Replace ``(pow ( -1) n)*(pow ( -1) (S O))*/(INR (fact (plus (mult (S (S O)) (plus n (S O))) (S O))))*(/(pow ( -1) n)*(INR (fact (plus (mult (S (S O)) n) (S O)))))`` with ``((pow ( -1) n)*/(pow ( -1) n))*/(INR (fact (plus (mult (S (S O)) (plus n (S O))) (S O))))*(INR (fact (plus (mult (S (S O)) n) (S O))))*(pow (-1) (S O))``; [Idtac | Ring].
+Rewrite <- Rinv_r_sym.
+Rewrite Rmult_1l; Unfold pow; Rewrite Rmult_1r; Replace (plus (mult (S (S O)) (plus n (S O))) (S O)) with (S (S (plus (mult (S (S O)) n) (S O)))).
+Do 2 Rewrite fact_simpl; Do 2 Rewrite mult_INR; Repeat Rewrite Rinv_Rmult.
+Rewrite <- (Rmult_sym ``-1``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1r; Replace (S (plus (mult (S (S O)) n) (S O))) with (mult (S (S O)) (plus n (S O))).
+Repeat Rewrite mult_INR; Repeat Rewrite Rinv_Rmult.
+Ring.
+Apply not_O_INR; Discriminate.
+Replace (plus n (S O)) with (S n); [Apply not_O_INR; Discriminate | Ring].
+Apply not_O_INR; Discriminate.
+Apply prod_neq_R0.
+Apply not_O_INR; Discriminate.
+Replace (plus n (S O)) with (S n); [Apply not_O_INR; Discriminate | Ring].
+Apply not_O_INR; Discriminate.
+Replace (plus n (S O)) with (S n); [Apply not_O_INR; Discriminate | Ring].
+Rewrite mult_plus_distr_r; Cut (n:nat) (S n)=(plus n (1)).
+Intros; Rewrite (H (plus (mult (2) n) (1))).
+Ring.
+Intros; Ring.
+Apply INR_fact_neq_0.
+Apply not_O_INR; Discriminate.
+Apply INR_fact_neq_0.
+Apply not_O_INR; Discriminate.
+Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0].
+Cut (n:nat) (S (S n))=(plus n (2)); [Intros; Rewrite (H (plus (mult (2) n) (1))); Ring | Intros; Ring].
+Apply pow_nonzero; DiscrR.
+Apply INR_fact_neq_0.
+Apply pow_nonzero; DiscrR.
+Apply Rinv_neq_R0; Apply INR_fact_neq_0.
+Qed.
+
+Lemma Alembert_sin : (Un_cv [n:nat]``(Rabsolu (sin_n (S n))/(sin_n n))`` R0).
+Unfold Un_cv; Intros; Assert H0 := (archimed_cor1 eps H).
+Elim H0; Intros; Exists x.
+Intros; Rewrite simpl_sin_n; Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Rewrite Rabsolu_Ropp; Rewrite Rabsolu_right.
+Rewrite mult_INR; Rewrite Rinv_Rmult.
+Cut ``/(INR (mult (S (S O)) (S n)))<1``.
+Intro; Cut ``/(INR (plus (mult (S (S O)) (S n)) (S O)))<eps``.
+Intro; Rewrite <- (Rmult_1l eps); Rewrite (Rmult_sym ``/(INR (plus (mult (S (S O)) (S n)) (S O)))``); Apply Rmult_lt; Try Assumption.
+Change ``0</(INR (plus (mult (S (S O)) (S n)) (S O)))``; Apply Rlt_Rinv; Apply lt_INR_0; Replace (plus (mult (2) (S n)) (1)) with (S (mult (2) (S n))); [Apply lt_O_Sn | Ring].
+Apply Rlt_R0_R1.
+Cut (lt x (plus (mult (2) (S n)) (1))).
+Intro; Assert H5 := (lt_INR ? ? H4); Apply Rlt_trans with ``/(INR x)``.
+Apply Rinv_lt.
+Apply Rmult_lt_pos.
+Apply lt_INR_0; Elim H1; Intros; Assumption.
+Apply lt_INR_0; Replace (plus (mult (2) (S n)) (1)) with (S (mult (2) (S n))); [Apply lt_O_Sn | Ring].
+Assumption.
+Elim H1; Intros; Assumption.
+Apply lt_le_trans with (S n).
+Unfold ge in H2; Apply le_lt_n_Sm; Assumption.
+Replace (plus (mult (2) (S n)) (1)) with (S (mult (2) (S n))); [Idtac | Ring].
+Apply le_S; Apply le_n_2n.
+Apply Rlt_monotony_contra with (INR (mult (S (S O)) (S n))).
+Apply lt_INR_0; Replace (mult (2) (S n)) with (S (S (mult (2) n))); [Apply lt_O_Sn | Replace (S n) with (plus n (1)); [Idtac | Ring]; Ring].
+Rewrite <- Rinv_r_sym.
+Rewrite Rmult_1r; Replace R1 with (INR (1)); [Apply lt_INR | Reflexivity].
+Replace (mult (2) (S n)) with (S (S (mult (2) n))).
+Apply lt_n_S; Apply lt_O_Sn.
+Replace (S n) with (plus n (1)); [Ring | Ring].
+Apply not_O_INR; Discriminate.
+Apply not_O_INR; Discriminate.
+Apply not_O_INR; Discriminate.
+Left; Change ``0</(INR (mult (plus (mult (S (S O)) (S n)) (S O)) (mult (S (S O)) (S n))))``; Apply Rlt_Rinv.
+Apply lt_INR_0.
+Replace (mult (plus (mult (2) (S n)) (1)) (mult (2) (S n))) with (S (S (S (S (S (S (plus (mult (4) (mult n n)) (mult (10) n)))))))).
+Apply lt_O_Sn.
+Apply INR_eq; Repeat Rewrite S_INR; Rewrite plus_INR; Repeat Rewrite mult_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Replace (INR O) with R0; [Ring | Reflexivity].
+Qed.
+
+Lemma sin_no_R0 : (n:nat)``(sin_n n)<>0``.
+Intro; Unfold sin_n; Unfold Rdiv; Apply prod_neq_R0.
+Apply pow_nonzero; DiscrR.
+Apply Rinv_neq_R0; Apply INR_fact_neq_0.
+Qed.
+
+(**********)
+Definition sin_in:R->R->Prop := [x,l:R](infinit_sum [i:nat]``(sin_n i)*(pow x i)`` l).
+
+(**********)
+Lemma exist_sin : (x:R)(SigT R [l:R](sin_in x l)).
+Intro; Generalize (Alembert_C3 sin_n x sin_no_R0 Alembert_sin).
+Unfold Pser sin_n; Trivial.
+Qed.
+
+(***********************)
+(* Definition of sinus *)
+Definition sin : R -> R := [x:R](Cases (exist_sin (Rsqr x)) of (Specif.existT a b) => ``x*a`` end).
+
+(*********************************************)
+(* PROPERTIES *)
+(*********************************************)
+
+Lemma cos_sym : (x:R) ``(cos x)==(cos (-x))``.
+Intros; Unfold cos; Replace ``(Rsqr (-x))`` with (Rsqr x).
+Reflexivity.
+Apply Rsqr_neg.
+Qed.
+
+Lemma sin_antisym : (x:R)``(sin (-x))==-(sin x)``.
+Intro; Unfold sin; Replace ``(Rsqr (-x))`` with (Rsqr x); [Idtac | Apply Rsqr_neg].
+Case (exist_sin (Rsqr x)); Intros; Ring.
+Qed.
+
+Lemma sin_0 : ``(sin 0)==0``.
+Unfold sin; Case (exist_sin (Rsqr R0)).
+Intros; Ring.
+Qed.
+
+Lemma exist_cos0 : (SigT R [l:R](cos_in R0 l)).
+Apply Specif.existT with R1.
+Unfold cos_in; Unfold infinit_sum; Intros; Exists O.
+Intros.
+Unfold R_dist.
+Induction n.
+Unfold cos_n; Simpl.
+Unfold Rdiv; Rewrite Rinv_R1.
+Do 2 Rewrite Rmult_1r.
+Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
+Rewrite tech5.
+Replace ``(cos_n (S n))*(pow 0 (S n))`` with R0.
+Rewrite Rplus_Or.
+Apply Hrecn; Unfold ge; Apply le_O_n.
+Simpl; Ring.
+Defined.
+
+(* Calculus of (cos 0) *)
+Lemma cos_0 : ``(cos 0)==1``.
+Cut (cos_in R0 (cos R0)).
+Cut (cos_in R0 R1).
+Unfold cos_in; Intros; EApply unicity_sum.
+Apply H0.
+Apply H.
+Exact (projT2 ? ? exist_cos0).
+Assert H := (projT2 ? ? (exist_cos (Rsqr R0))); Unfold cos; Pattern 1 R0; Replace R0 with (Rsqr R0); [Exact H | Apply Rsqr_O].
+Qed.